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1 Introduction 

1.1 Background and aim of the thesis 

The prevalence of overweight and obesity has increased dramatically during the last 

decades and excess body weight has become a major public health problem worldwide [1]. 

According to the World Health Organization (WHO), over 1.5 billion adults were overweight in 

2008 globally, including more than 500 million obese [2]. In Europe, the prevalence of 

overweight among adults ranges between 30-80% and up to 36% of all adults are classified 

as obese [3, 4]. A substantial body of evidence has emerged to show that excess body fat is 

associated with higher risks for chronic diseases, including type 2 diabetes, cardiovascular 

diseases, and certain types of cancer [5]. According to the World Health Report 2002, 

approximately 58% of diabetes, 21% of ischemic heart disease and 8-42% of certain cancers 

are attributable to a Body-Mass-Index (BMI) above 21 kg/m² [6]. Consequently, obesity 

places a substantial economic burden on societies. In Europe, for example, the relative 

economic burden of obesity-related healthcare ranges from 0.09% to 0.61% of the national 

gross domestic product [7]. 

Given the increasing prevalence of overweight and obesity in most Western populations and 

its significant cost to society, strategies to combat the rapid rise in obesity prevalence are 

urgently needed. Although intervention studies report effective strategies for weight loss in 

the short-term, the long-term effect of most obesity treatments is limited [8]. Therefore, in the 

first place, it is preferable to avoid (substantial) weight gain that may lead to overweight and 

obesity. Even though excess weight is in principle a matter of energy balance, susceptibility 

to weight gain appears to be determined by a complex interaction between genetic, 

environmental, socio-economic, cultural and behavioural factors [1]. Up to now, much effort 

has been devoted to the identification of single risk factors for weight gain or risk of obesity; 

however, understanding the magnitude of effects of these risk factors, particularly in 

combination, is fundamental in order to identify priorities for public health efforts. Also, in 

view of limited resources, obesity prevention efforts may be targeted specifically to those 

individuals who are at high risk for gaining substantial amounts of weight and thus might 

benefit most from prevention programmes. One way to summarise the impact of multiple risk 

factors and to identify high-risk groups is the development of risk prediction models. Such 

statistical models are being increasingly used in the medical field to estimate an individual’s 

risk of disease on the basis of established biological or behavioural risk factors and to stratify 

apparently healthy individuals into risk categories [9]. During the last decades, numerous risk 

assessment tools have been developed in the context of cardiovascular diseases (CVD) [10], 

type 2 diabetes [11] and cancer [12-15]. These prediction models have been mainly 

developed in rather homogenous study populations, in which they generally performed well, 
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and a number of them have been validated in external populations, mainly with less success 

[10, 11]. Hence, these findings challenge the idea of the existence of one universal, disease-

specific prediction model applicable to all populations.  

Apart from a recently published study among newborns presenting a risk score to predict 

overweight at the age of 8 years [16], there is currently no risk score available to predict 

absolute risk of weight gain or overweight/obesity among adults. Therefore, the aim of the 

present thesis is twofold. First, it is attempted to develop a simple, practical and informative 

risk score model predicting risk of substantial weight gain (SWG) within the following 5 years 

based on the current risk factor profile using data of the large-scale, multi-centre European 

Prospective Investigation into Cancer and Nutrition (EPIC) study. Second, it will be 

investigated whether this overall risk score is equally well applicable to different European 

populations in order to evaluate the idea of one universal, transnational risk prediction model 

for weight gain. 

 

1.2 Overweight and obesity 

1.2.1 Definition 

Obesity and to a lesser extent overweight is defined as a condition of excessive fat 

accumulation in adipose tissue to the extent that health may be adversely affected [1]. The 

most commonly used marker of body fatness is the BMI. It is a simple index of weight relative 

to height, calculated as body weight in kilograms divided by height in metres squared 

(kg/m²). It is used to classify underweight (BMI<18.5 kg/m²), overweight (25≤BMI<30 kg/m²) 

and obesity (BMI≥30 kg/m²) in adults [1] and is considered to be the most useful population-

level measure of obesity. It should be noted, though, that it does not distinguish between 

weight associated with muscle and weight associated with fat and hence does not account 

for the variation in the nature of obesity between different individuals and populations [1]. 

1.2.2 Human evolution 

Only fairly recently in human history, overweight and obesity became a public health issue 

[17]. Before industrialisation, underweight and weight loss due to periodic episodes in 

deficiency of energy from food, e.g. resulting from seasonal variation, constituted the main 

nutritional problems and overweight has been considered a sign of wealth, wellbeing and 

social advantage. In order to cope with circular energy deficiencies, the human body has 

developed excellent physiological strategies in that it favoured the deposition of body fat 

when (good-quality) food was readily available [18]. Nowadays, seasonal variation in food 

supply resulting in cycles of positive and negative energy balance, are still a feature of life for 

the remaining gatherer-hunter and many agricultural communities in adverse social or 
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environmental circumstances [17]. In Europe and the United States, however, food insecurity 

disappeared with industrialisation and urbanisation from the 19th century onwards and food 

became abundant, inexpensive and in general more energy-dense (increasingly processed 

and rich in fat and sugar, low in complex carbohydrates and fibre). These shifts in the 

structure of diet have been widely referred to as the “nutrition transition” [19]. At the same 

time, the overall lifestyle became more sedentary due to mechanisation and computerisation 

of workplaces, increase in motor vehicle dependence, widely spread lifts and escalators in 

public places, and increase in sedentary pursuits such as watching television, surfing the 

internet or playing video games. Consequently, overweight and obesity became fairly 

common in industrialised countries, particularly from the middle of the 20th century. Within the 

last two decades, however, there has been a dramatic increase in the prevalence of 

overweight and obesity in developed and also developing countries [1] and excess body fat 

is increasingly recognised as a serious, global public health problem. 

1.2.3 Public health relevance 

According to the WHO, more than 10% of the world’s adult population was obese in 2008 [2]. 

Based on latest data from the US National Health and Nutrition Examination Survey in 2003-

2004, a relative increase of 18% and 41% in prevalence of overweight and obesity, 

respectively, was observed in comparison to the preceding survey conducted between 1988 

and 1994 [20]. Likewise, the prevalence of obesity has risen threefold or more since the 

1980s in European countries [4].  

In recent years, a large body of evidence has accumulated to show that excess body fat is 

associated with higher risks for diseases, disorders or disabilities. Table 1 summarises the 

approximate relative risk (RR) of health problems associated with obesity. A recent meta-

analysis of 89 studies reported on the association of overweight and obesity with the 

incidence of various co-morbidities and found obesity most strongly associated with risk of 

type 2 diabetes compared to other co-morbidities [5]. In that study, the pooled relative risks 

(95% Confidence Interval, CI) for obese subjects compared to normal-weight subjects were 

6.74 (5.55-8.19) among men and 12.41 (9.03-17.06) among women. Excess body fat also 

predisposes to dyslipidaemia and hypertension, which are established risk factors for 

cardiovascular diseases [21]. Further, a number of epidemiological studies have shown that 

obesity is associated with higher risks for certain types of cancer. The expert panel of the 

World Cancer Research Fund (WCRF) has recently judged that there was convincing 

evidence for overweight and obesity to increase risk of cancers of the colorectum, breast 

(postmenopausal), oesophagus, pancreas, kidney, and the endometrium [17]. Finally, there 

is an exhaustive body of literature suggesting excess body weight to be related to the 
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development of other health problems, including chronic kidney diseases [22], 

musculoskletal disorders [23], respiratory diseases [24], and psychological problems [1]. 

 

Table 1. Approximate relative risk of physical health problems associated with obesity 
   

Relative Risk > 3 Relative Risk 2 – 3  Relative Risk 1 – 2 
   

Type 2 diabetes Coronary heart disease Cancer 
   

Gallbladder disease Hypertension Reproductive hormone abnormalities 
   

Dyslipidaemia Osteoarthritis Polycystic ovary syndrome 
   

Insulin resistance Hyperuricaemia and gout Impaired fertility 
   

Breathlessness  Low back pain 
   

Sleep apnoea  Increased risk of anaesthesia 
complications 

   

  Foetal defects (associated with 
maternal obesity) 

Adapted from WHO [1]. 

 

Beyond its impact on health and well-being of individuals, obesity imposes a substantial 

economic burden on society. This burden is not limited to the direct costs associated with 

medical treatment of obesity-related co-morbidities, but also includes indirect costs 

measured as loss of production due to absenteeism, early retirement or premature death [1]. 

In addition, obesity is accompanied by intangible costs arising for the individual with respect 

to quality of life. In the United States, the obesity-related costs were estimated to account for 

1.2% of the gross domestic product [25]. For Europe, a recent systematic review reported the 

estimated relative economic burden of obesity to range between 0.09% and 0.61% of the 

national gross domestic product, reflecting a maximum in absolute costs of 10.4 billion Euros 

in Germany [7].  

1.2.4 Energy balance and the regulation of body weight 

A simplistic overview of major influences on energy balance and weight gain is illustrated in 

Figure 1. In simple terms, energy balance, thereby stability of body weight, is achieved when 

energy intake matches energy expenditure over longer periods of time. Hence, weight gain 

results from a prolonged positive energy balance, while weight loss occurs when energy 

intake is lower than energy expenditure [1]. Energy intake refers to all energy consumed as 

food and drink that can be metabolised inside the body, with the constituent macronutrients 

fat, carbohydrate and protein providing approximately 9 kcal/g, 4 kcal/g and 4 kcal/g, 

respectively [1]. Further, alcohol contributes about 7 kcal/g. On the other side of the energy 

balance equation, total energy expenditure is accounted for by basal metabolic rate (BMR), 

(diet-induced) thermogenesis and the non-resting energy expenditure (physical activity) [1]. 
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The BMR reflects the energy needed to sustain the metabolic activities of cells and tissues, 

plus the energy to maintain blood circulation and respiration in the awake state and is 

measured while the subject is supine and motionless in a thermoneutral environment [26]. It 

accounts for approximately 60% of total energy expenditure in sedentary individuals and is 

affected by age, gender, body composition, health and nutrition status [1]. Thermic energy 

comprises the increase in energy expenditure related to the digestion and absorption of food 

and processing or storing of nutrients, or related to cold and heat exposure [26]. It accounts 

for about 10% of total energy expenditure. Finally, the remaining 30% are accounted for by 

physical activity. Physical activity is the most variable component of total energy expenditure 

and offers the largest potential to increase energy output. 

Under normal circumstances, energy balance oscillates from day to day and week to week 

without any lasting changes in body fat stores to occur, a regulatory process referred to as 

energy homeostasis [1]. Therefore, body fat mass reflects the long-term balance between 

energy expenditure and energy intake, whereby the latter appears to have the predominant 

role in maintaining this balance [27]. Humans have many physiological control mechanisms 

that are primarily responsible for body weight regulation. Although this complex regulatory 

process is still incompletely understood, it is currently well-accepted that food intake, thereby 

energy balance, is determined by a complex interplay of hormonal and neural mechanisms 

coordinated by the central nervous system [27, 28]. Briefly, in the arcuate nucleus of the 

hypothalamus two opposing sets of neuronal circuitry, an appetite-stimulating and an 

appetite-inhibitory, are housed [28]. Those two circuits receive signals from peripheral 

hormones expressed in the stomach, intestine, pancreas and adipose tissue. These 

peripheral hormones are thought to monitor the inflow of nutrients, their distribution and 

metabolism and/or storage. For example, several short-term acting hormones are expressed 

in the intestine immediately in response to the presence of food to determine meal size and 

terminate meals. Leptin and insulin, in contrast, are released in proportion to body fat stores, 

thereby monitoring the long-term nutritional status of the body and regulating individual meal 

size in the service of overall energy homeostasis. 

In view of this complex and exquisite physiological regulation to maintain energy 

homeostasis, long-lasting changes in body weight appear to be difficult to achieve. 

Nevertheless, the increasing prevalence of overweight and obesity suggests that powerful 

environmental and psycho-social forces may influence energy intake and energy expenditure 

and may overwhelm the tightly regulated physiological control systems [1].  
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Figure 1. Schematic overview of major influences on energy balance and body weight 
regulation 
BMR = Basal metabolic rate, CHO = carbohydrate, TEF = thermic effect of food. Modified from WHO 2000 [1]. 

 

 

1.2.5 Major modifiable risk factors for weight gain, overweight and 

obesity 

Although genetics clearly contribute to individual differences in anthropometric measures, the 

genetic milieu is unlikely to have changed during recent decades and the inexorable increase 

in prevalence of overweight and obesity has been mainly attributed to changes in diet and 

physical activity [29]. It is currently well-accepted that body weight is ultimately determined by 

a complex interaction of genetic, environmental and psycho-social factors acting through 
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several physiological mediators of energy intake and energy expenditure. The environment, 

for instance, includes several extremely potent factors to overcome the physiological 

mechanisms operating to maintain body weight, e.g. readily available and cheap high 

energy-dense food, mechanised transport, non-manual labour (“obesogenic environment”). 

Further, humans do not eat only to satisfy their appetite but also for many other reasons such 

as sensory hedonics, sensory stimulation, tension reduction, social pressure, emotional 

problems, and boredom [30]. Hence, psychological, social, environmental and cultural factors 

are important underlying influences on dietary patterns and physical activity, finally 

determining weight gain. Table 2 shows the most important factors related to diet and 

physical activity that promote or protect against weight gain and obesity as suggested by the 

WCRF in 2007 [17]. In the following section, the main modifiable risk factors will be 

discussed briefly.  

 

Table 2. Summary of strength of evidence on factors that might promote or protect 

against weight gain and obesity 
   

Evidence Decreased risk Increased risk 
   

Convincing Physical activity Sedentary lifestyle 
   
Probable Low energy-dense foods High intake of energy-dense foods  
   

 Breastfeeding High intake of sugar-sweetened soft dinks 
   

  Fast foods  
(energy-dense, large portion sizes) 

   

  Television viewing 
   
Possible - - 
   
Insufficient Refined cereals; starchy roots, tubers, and plantains; fruits; meat; fish; milk and 

dairy products; fruit juices; alcohol drinks 

Adapted from WCRF [17]. 

 

 

1.2.5.1 Dietary factors 

Fruit and vegetables 

Due to their high content of water and their low content of energy, fruit and vegetables have 

a low energy density which has been shown to increase satiety and decrease energy intake 

[31]. Fruit and vegetables are also rich in dietary fibre which may slow gastric emptying and 

result in elevated stomach distention, thereby increasing satiety and reducing hunger. 

Although not completely consistent, results from intervention and observational studies 

generally support a beneficial, albeit small, effect of a diet high in fruit and vegetables in the 

prevention of weight gain [32-38]. 
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Meat intake  

Particularly because of its high energy density and fat content, meat has been suggested to 

be a risk factor for weight gain. On the other hand, meat is a relevant source of protein and 

diets high in protein intake have been suggested to be beneficial in the prevention of weight 

gain because of increased thermogenesis and satiety [39]. Unlike expected, the majority of 

the rather few previous cohort studies did not observe an association between protein intake 

and subsequent weight gain [40]; two studies, however, found positive associations, one of 

them particularly for animal protein from red and processed meat as well as poultry [41].  

Although the evidence is not abundant in respect of meat intake, most prospective 

observational studies reported a positive association between intake of meat and subsequent 

weight gain [34, 35, 42-46]. Short-term weight loss intervention studies specifically on meat 

intake, however, yielded mix results [47-52], with most studies showing no difference in 

weight loss between meat-based or plant-based diets [49-52]. 

Whole-grain cereals and cereal products 

Whole-grains have been suggested to facilitate weight management due to different 

physiological mechanisms [53]. Among other valuable constituents such as vitamins, 

minerals, phytoestrogens and antioxidants, whole-grain foods provide an abundant source of 

dietary fibre which has been shown to promote satiation and satiety by increasing chewing, 

slowing gastric emptying, elevating stomach distention, and stimulating gut hormones such 

as CCK [53, 54]. Also, the increased viscosity of soluble fibre may reduce the overall rate 

and extent of digestion which may reduce enzymatic digestion of other macronutrients such 

as fat and protein. Finally, the slower digestion and absorption rate of carbohydrates in high 

fibre foods would lead to a reduced postprandial blood glucose response, which increases 

satiety and could improve insulin sensitivity over the long-term and increases fat oxidation. 

Although the epidemiological data that directly investigates whole-grain intake on weight gain 

is sparse, results of the few studies generally show a decreased risk of weight gain and/or 

obesity for higher intake of wholegrain products [17, 55]. With respect to dietary fibre, 

findings from most well-controlled intervention trials and large cohort studies indicate a 

beneficial role in body weight control [17, 55, 56]. 

Milk and dairy products 

The consumption of dairy foods has been hypothesised to play a beneficial role in the 

regulation of body weight, mainly due to the anti-obesity effects suggested for dietary calcium 

[57]. Despite intensive research efforts and a convincing biological mechanisms, the possible 

link between dairy products/calcium and weight change remains controversial though. While 

no relation was found in the Health Professionals Follow-up Study [58], results from other 

prospective studies indicate different associations across subgroups of the population and 
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according to type of dairy product [59, 60]. Intervention studies also yielded mixed results. Of 

nine randomised dairy product supplementation trials reviewed by Barr [61], seven did not 

find a significant difference between treatment and control groups. 

Sweets (cake, cookies, chocolate) 

Because sweets tend to be energy dense (rich in sugar and fat), higher intake of these foods 

may cause many people to exceed daily energy requirements. Evidence supporting this 

hypothesis, however, is sparse and the few available studies yielded contradictory findings. 

While Parker et al. did not observe an association between intake of sweets (not defined) 

and changes in BMI over twelve years [33], Sammel reported an inverse association 

between intake of desserts and candy with body weight gain over four years among 

American women [62]. Finally, a cohort of German adults found higher intake of sweets 

(chocolate, pralines, candy bars, ice-cream, and sugar) to be related to higher risks of large 

weight gain among men and to lower risks of large weight loss among women [35]. 

Sugar-sweetened beverages (“soft drinks”) 

Sugar-sweetened beverages, including sodas such as coke, fruit drinks, lemonade, and iced 

tea have been suggested to promote weight gain mainly due to increasing overall energy 

intake [63]. In line with this, short-term feeding studies in humans have shown that energy 

provided by sugar-sweetened beverages is not adequately compensated for in subsequent 

meals in contrast to energy consumed from solid foods [63-65]. In recent years, a huge 

amount of evidence has accumulated to report on the role of sugar-sweetened beverages in 

weight gain or development of overweight and obesity [66, 67]. Although there is a paucity of 

high-quality intervention studies, the evidence in general support that consumption of soft 

drinks promotes weight gain and the WCRF judged the epidemiological and mechanistic 

evidence for a positive association to be “probable” [17]. 

Alcohol use 

Similar to sugar-sweetened beverages, alcohol is a form of liquid energy which might lead to 

excess energy intake and thus predispose to (larger) weight gain in the long-term [63]. The 

drinking pattern of the moderate alcohol consumer is characterised by the addition of 

alcoholic beverages to usual food intake leading to a positive energy balance [68].  In 

addition, alcohol cannot be stored in the human body and its oxidation takes precedence 

over other substrates which may result in suppressed fat oxidation, thereby promoting fat 

storage. Finally, alcohol has been shown to stimulate appetite, though the underlying 

mechanisms are unclear. So far, epidemiological studies have not provided consistent 

evidence for alcohol use as a risk factor for weight gain and obesity. Findings from 

prospective studies are conflicting [17, 68], showing, for example, positive [69, 70] or null [35, 

71] associations in men and positive [69], null [35, 72] or inverse [71, 73] associations in 
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women. In 2007, the WCRF judged the evidence for an association of alcohol use with 

subsequent weight change or the development of overweight/obesity to be “insufficient” [17]. 

A recently published review including 13 prospective studies also concluded that results were 

contradictory, but also suggested that particularly heavy drinking might be associated with 

larger weight gain and that relations may differ according to type of alcoholic beverage [74].  

Other factors related to diet 

Many other factors related to diet have been suggested to play a role in the regulation of 

energy intake and body weight. For example, increasing portion size, e.g. served at 

restaurants and produced by manufacturers, could promote weight gain by increasing total 

energy intake [75, 76]. Likewise, eating outside home has been proposed to be a risk factor 

for weight gain due to the generally higher fat and total energy content of foods eaten outside 

home, however, evidence from longitudinal studies is scarce and inconsistent [77]. Further, a 

higher eating frequency might prevent weight gain as it appears to be associated with 

metabolic advantages, including reduced serum levels of total cholesterol, LDL cholesterol, 

and insulin [78]. Eating frequently may further increase food-induced thermogenesis, 

decrease efficiency of energy utilisation and suppress hunger; however, evidence is sparse 

[79, 80]. Finally, being breastfed has been consistently shown to protect against childhood 

obesity [17]. 

1.2.5.2 Physical activity 

As physical activity is the most variable component of total daily energy expenditure, it 

qualifies as key lifestyle intervention strategy to prevent weight gain and thus to combat the 

increasing prevalence of overweight and obesity and associated co-morbidities. Apart from 

solely increasing energy expenditure, physical activity has been shown to involve several 

metabolic and physiological benefits. For example, regular (moderate-intensity) exercise 

increases fat oxidation presumed to result from improved insulin sensitivity and has been 

shown to affect appetite control by increasing sensitivity of satiety signals, altering food 

choices and macronutrient preference, and modifying the pleasure response to food [17, 81].  

A number of studies have reported on the role of physical activity in successful weight loss, 

in the prevention of weight regain after weight loss, and in the primary prevention of weight 

gain up to now [82]. In 2007, the WCRF systematically summarised the evidence on physical 

activity and subsequent weight gain from 16 cohort studies and from the few available 

randomized controlled trials on weight loss maintenance [17]. The expert panel concluded 

that there was substantial and convincing evidence that all types of physical activity protect 

against weight gain. Only recently, results from the Nurses’ Health Study and from the 

CARDIA study underlined this conclusion by reporting that greater duration of physical 

activity was associated with less weight gain over 8 years of follow-up [83] and that subjects 
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who consistently maintained high levels of physical activity over 20 years gained significantly 

lower amounts of weight than subjects who maintained lower physical activity [84], 

respectively. 

However, despite the large body of evidence indicating an inverse association between 

physical activity and weight gain, the amount of physical activity that is necessary to prevent 

weight gain has been widely debated [85, 86]. In 1995, the US Centers for Disease Control 

and Prevention (CDC) and the American College of Sports Medicine (ACSM) jointly 

recommended 30 minutes or more of moderate-intensity activity (such as brisk walking) on 

most, preferably on all days of the week to improve health (in particular cardiovascular 

health) [87]. This recommendation was confirmed in the US Surgeon General’s report in 

1996 [88, 89] and has been generally accepted as the physical activity guideline for the 

public worldwide. In 2007, the ACSM and the American Heart Association updated the 

recommendation from 1995 and specified these recommendations with regard to type and 

amounts of physical activity by recommending a minimum of 30 minutes moderate-intensity 

aerobic activity on five days each week or vigorous-intensity aerobic activity for a minimum of 

20 minutes at three days of the week to promote and maintain overall health [90]. With 

respect to the primary prevention of weight gain, however, the adequacy of these 

recommendations has been debated [85, 86, 91]. Although acknowledging that “definitive 

data are lacking”, the authors of a consensus statement published in 2003 concluded that 

physical activity of moderate intensity for 45 to 60 minutes per day may be required to avoid 

the transition to overweight or obesity [85]. Erlichman and colleagues even suggested 

60-90 min of moderate-intensity activity to maintain a stable weight [86]. These higher 

recommendations are underlined by recent findings from the Women’s Health Study showing 

that 60 minutes of moderate-intensity activity each day were needed to successfully maintain 

or to gain only few amounts of weight over a period of 13 years [92]. Nevertheless, 

irrespective of the exact duration of physical activity necessary for weight gain prevention, 

vigorous activity appears to be more clearly linked to weight stability, it allows a higher 

intensity of exercise for general activities and reduces the time needed for achieving the 

recommended energy expenditure through physical activity.  

Apart from physical activity, associations of sedentary living or single sedentary behaviours 

like television watching with weight gain are increasingly being investigated. With respect to 

television watching, for instance, the evidence is mostly consistent showing a positive 

association with weight gain and overweight [17]. Mechanism to explain this relationship refer 

to reduced time available for physical activity, reduced resting metabolic rate and increased 

energy intake as television watching appears to be associated with the consumption of 

energy-dense foods and drinks [93].  
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1.2.5.3 Other modifiable factors  

Duration of sleep 

Parallel to the dramatic increase in prevalence of overweight and obesity in Western 

societies during the last decades, a steady and rapid decline in time spent sleeping has been 

documented [94, 95]. One of the strongest hypotheses for a link between sleep deprivation 

and higher risk for weight gain is that sleep restriction leads to increased dietary intake. In 

animal studies, sleep deprivation has been consistently found to produce hyperphagia. In line 

with this finding, sleep restriction was associated with decreased leptin levels and increased 

appetite-stimulating ghrelin levels also in human cohort studies, suggesting an effect on 

peripheral regulators of dietary intake. Further hypotheses refer to reduced impulse control 

and difficulties with delaying gratification following chronic sleep deprivation which may result 

in increased hedonistic eating and the suggestion that calorie intake may be directly 

proportional to time spent awake. A recent systematic review concluded that short sleep 

duration appears to be associated with weight gain [94]; however, it should be noted that 

evidence from prospective studies is sparse. 

Status and change in smoking habits 

Current smoking has generally been associated with lower BMI, but increased abdominal fat 

distribution [96, 97]. Another widely observed phenomenon is weight gain after cessation of 

smoking [96, 98]. About 80% of all smokers who quit smoking are estimated to gain weight, 

particularly in the first year after cessation [96]. Data from the NHANES study have shown 

that weight gain attributable to smoking cessation was 4.4 kg among men and 5.0 kg among 

women over a 10-year period [99]. Although the evidence for a strong association between 

smoking cessation and subsequent weight gain is convincing, the underlying biological 

mechanisms are not yet clear. Hypothesised mechanisms include increased energy intake, 

metabolic changes, i.e. decreased resting metabolic rate, and increased lipoprotein lipase 

activity [96, 98]. Nicotine has been suggested to influence levels and expression of peptide 

hormones and neurotransmitters, such as leptin and neuropeptide Y, which are involved in 

the regulation of food intake. With respect to adipose tissue metabolism, it has been 

observed that fat oxidation increases with increasing nicotine uptake and that smoking 

cessation is related to increases in lipoprotein lipase activity in adipose tissue, which may 

contribute to post-cessation weight gain. 
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1.3 The risk score approach: application and methodological 

aspects  

Prediction models are important statistical tools in various fields, including meteorology, 

physics and finance [100]. In the medical field, much emphasis has traditionally been given 

to the identification of single risk factors that aetiologically relate to the development of 

diseases or other adverse events and measures of associations such as regression 

coefficients or relative risks were commonly reported [100]. However, in recent years, 

prediction models are increasingly being developed to summarise the effect of single risk 

factors (predictors) and to estimate an individual’s absolute risk for the outcome of interest 

given a specific risk factor profile. Importantly, in contrast to models aiming to explain 

aetiological associations between risk factors and the outcome, prediction models aim to 

develop a good predictor (e.g. risk score) and do only marginally consider the model 

structure [101]. In chronic disease epidemiology, logistic or Cox Proportional Hazards (PH) 

regression models are most frequently used to identify relevant predictors of the outcome. 

Predictors are usually retained in the model if they are statistically significantly associated 

with the outcome and a risk score is commonly calculated for each individual by assigning 

weights to the predictors based on their effect size, with larger risk scores relating to higher 

risks for the outcome. Different approaches exist for selecting candidate predictors to be 

included in the final model, including causal vs. non-causal, modifiable vs. non-modifiable 

and easily assessable vs. more sophisticated measurements of risk factors. 

Prediction models are considered valuable tools for public health, clinical practice, and 

medical research. In public health, the key purpose of prediction models is to estimate an 

individual’s risk of developing a disease within a specified time period and to stratify 

apparently healthy individuals into clinically relevant or other meaningful risk categories [9, 

100]. This information may then be used to target preventive interventions particularly to 

those subjects who are at high risk for developing the disease of interest. For example, statin 

therapy is only considered for those subjects at relatively high risk for cardiovascular disease 

[100] and subjects with high risk for certain cancers may consider chemoprevention 

intervention [102] or may undergo a program of screening surveillance that might not be 

appropriate for individuals with lower disease risk. 

In clinical practice, prediction models may inform patients and physicians on the probability of 

an existing, underlying disease (diagnosis) or a prognostic outcome (e.g. mortality risk after 

diagnosis, weighing of harms vs. individual benefit) and thus may help to decide on further 

testing and may guide therapeutic decision-making [100].  

In medical research, prediction models may for instance be used for designing, planning and 

establishing eligibility criteria for intervention studies or stratification of individuals to obtain 
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balanced treatment groups with respect to the main prognostic factors in a randomised trial 

[100]. In observational studies, prediction models may be used to control for confounding, for 

example using propensity scores. 

Importantly, a clear distinction has to be made between diagnostic and prognostic models. 

While in the diagnostic setting, models are concerned with accurately determining the 

current, but unknown, disease state of a patient, in prognostic modelling, the disease 

outcome has not yet developed at the time when predictors are assessed and future disease 

status is determined by stochastic processes and estimated as a probability [103]. In the 

following, the term “prediction model” will refer to prognostic models unless otherwise stated. 

Risk assessment tools may help to correctly and easily identify subjects at high risk for a 

specific disease in order to deliver targeted intervention advice and treatment to them. 

Accurate risk assessment will avoid over-treatment of those individuals with lower risk of the 

disease and allows an efficient use of medical resources [10]. Therefore, appropriate and 

careful evaluation of the accuracy of a prediction model is essential before it can be 

recommended for practical use. The two main aspects of the performance (validity) of a 

statistical prediction model are discrimination and calibration. Within the following, these two 

performance measures will be described. Further, the importance of evaluating the model’s 

accuracy in other populations (external validity) will be highlighted. Finally, a brief overview 

about some important and most well-known risk prediction models in the field of major 

chronic diseases, CVD, cancer and type 2 diabetes, is given. 

1.3.1 Measures of model performance 

Discrimination 

Discrimination refers to the ability of a diagnostic test or a risk prediction model to distinguish 

between those individuals with and without the outcome or between those at high and low 

risk of the disease, respectively. In the case of a simple binary (diagnostic) test, subjects are 

classified into two groups, those with the outcome and those without the outcome. 

Subsequently, a 2-by-2 table (Table 3) can be used to evaluate how well the test assesses 

the outcome in comparison to the truth which is usually determined using a “gold standard”, a 

more definitive and often more invasive test [104]. Ideally, all subjects would fall into the two 

light blue-shaded cells in the upper left and lower right on the table, implying that people 

would be correctly classified as diseased or healthy. In reality, this is very rarely if ever the 

case and some people are classified erroneously as diseased although they are healthy and 

vice versa (referred to as “false-positives” and “false-negatives”, respectively). 

The two basic measures of quantifying the discriminatory accuracy of a test are the 

sensitivity and specificity [104]. Sensitivity of a test, or true positive rate, is defined as the 
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probability of a positive test result among those subjects with the outcome (TP/P). Specificity, 

or true negative rate, refers to the probability of a negative test result among those subjects 

without the outcome (TN/N). In comparing tests, those that are higher in both sensitivity and 

specificity are preferred; however, there is a trade-off between both measures, as sensitivity 

increases, specificity decreases and vice versa.  

 
 
 

Table 3. Comparison of a dichotomous test result with true disease status  

 

In most circumstances, however, the result of a test is not a simple binary one, but may be 

rather a continuous measure, such as blood pressure, plasma glucose or a risk score 

derived from a multivariate prediction model. In this case, designation of a cut-off point for 

distinguishing test positive (high risk) versus test negative (low risk) in order to compute 

sensitivity and specificity is arbitrary [105]. Alternatively, the whole range of a continuous 

predictor and all combinations of sensitivity and specificity may be considered. Such a 

summary of sensitivity and specificity across the whole range of a continuous predictor can 

be illustrated using a receiver operating characteristic (ROC) curve (Figure 2).  

 

Figure 2. Example of a receiver operating characteristic curve.  
This figure is taken from [106]. AUC = area under the receiver operating characteristic curve.    
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The ROC curve is a plot of the sensitivity versus 1 – specificity (false-positive rate) where the 

different points on the curve correspond to different cut-off points of the continuous measure 

used to designate test positives/high-risk individuals [105]. The discriminatory ability of a 

continuous test or risk score is most commonly quantified by the concordance statistic (c-

statistic) which is identical to the area under the ROC curve (aROC) [100]. In the case of risk 

prediction, it is equivalent to the probability that the predicted risk is higher for a randomly 

selected individual who will develop the disease within a specific time period than for a 

randomly drawn non-case who will not develop the disease within the same period of time 

[100]. The aROC ranges from a minimum of 0.5 when the ROC curve lies on the 45° 

reference line to a theoretical maximum of 1.0 when the curve reaches the upper left corner. 

A value of 0.5 indicates that the model is uninformative, it has no discriminatory ability, and is 

not superior to a random guess; a value of 1.0 represents perfect discrimination. Perfect 

discrimination is achieved if the predicted risk for all cases is higher than for non-cases, with 

no overlap.  

Because sensitivity and specificity reflect the ability of a test to distinguish between 

individuals with and without the outcome, they are specifically important for public health, i.e. 

for screening of free-living populations [104]. Basically, the question that can be answered 

using sensitivity and specificity is: “If we screen a population, what proportion of people will 

be correctly identified as diseased or non-diseased, respectively?”. In clinical practice, 

however, it is also important to know, how good the test is at giving the correct outcome. 

Specifically, a physician may be particularly interested in the question “If the test result is 

positive, what is the probability that the person has or will develop the disease of interest?”. 

Likewise, a parallel question about negative test results may be asked: “If the test result is 

negative, what is the probability that the person does not have or will not develop the 

disease?”. These aspects of a test are captured by the concept of predictive values. The 

positive predictive value (PPV) is the probability that an individual has (or will develop) the 

disease or condition of interest given that the test result is positive (TP/P’). Hence, the 

negative predictive value (NPV) is the probability that an individual does not (will not) have 

the disease/condition given that the test result is indeed negative (TN/N’). Importantly, the 

predictive value is affected by the prevalence of the disease in the population tested [104]. 

The higher the prevalence, the higher the PPV, with the gain in PPV being particularly high in 

the lower ranges of disease prevalences (<20%). Therefore, the result of any test result must 

be interpreted in the context of the disease prevalence in the population from which the 

person originates (high-risk vs. low-risk population) [104]. Additionally, the PPV may be 

improved by increasing the specificity of a test [104]. 

With respect to the application of a risk score in practice, an appropriate cut-off value for the 

continuous risk score needs to be chosen in order to discriminate between test positive/high-
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risk and test negative/low-risk individuals. Mathematically, the optimal threshold in ROC 

curves is defined as the 45 tangent in the upper left corner of the plot, i.e., the point 

maximising sensitivity and specificity. The Youden’s index is a simple measure finding the 

“optimal” threshold value for which sensitivity and specificity are maximised across a range of 

possible cut-off values [107, 108]. It is defined as J = sensitivity + specificity – 1 and ranges 

from 0 to 1, with 1 implying perfect separation of diseased and non-diseased by the 

continuous marker [108]. One drawback of the Youden’s index is that sensitivity and 

specificity are considered equally important in the calculation which might not hold true in 

practice. In some circumstances, for example, a false-negative finding may be more critical 

than a false-positive one or vice versa. False positives may be an important issue because 

individuals with a positive test may be advised to undergo more sophisticated and more 

expensive tests placing a considerable burden on the health care system [104]. Further, 

anxiety and worry may be induced by a positive test result and create a stigma that is difficult 

to erase. In contrast, false negative test results might be of particular concern when the 

disease is serious and effective intervention is available, but may only be effective in early 

stages of the disease. Therefore, in clinical practice and public health, designation of a cut-

off value depends in the end on the importance attached to false-positives and false-

negatives and misclassification-costs need to be taken into account. 

Calibration 

Calibration is a measure of how reliable the predictions are, that is how well predicted 

probabilities agree with actual observed risks [100]. Thus, a model is well calibrated when 

the average predicted risk matches the proportion that actually develops the disease under 

study. Usually, subjects are placed within categories of predicted risk and the category 

values are compared with the observed incidence in each category. More formally, the 

Hosmer-Lemeshow goodness-of-fit test (HLT) compares observed with predicted risk, 

typically across deciles of the distribution of estimated risk [109]. The null hypothesis is “the 

model is well calibrated” and thus a low p-value indicates lack of calibration. A graphical 

illustration of the HLT is often presented in terms of calibration plots, which plot the observed 

risk by deciles of the predicted risk (Figure 3). The closeness of the points to a 45° line is 

then evaluated. If the points are lying above the straight line, the model underestimates the 

true risk, while it overestimates the true risk when the points are lying below the line. 

However, it should be noted that the p-value of the HLT is highly influenced by sample size 

and sensitive to the way groups are formed [110]. In this respect, it might be reasonable to 

form categories on the basis of predicted probabilities that are of clinical relevance or have a 

more intuitive meaning than deciles (such as >0–<5%, 5–<10%, etc.) [103]. 
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Figure 3. Hypothetical example of a calibration plot 
The calibration plot indicates that the risk score overestimates the true risk in the lower range of the score points while it 
accurately quantifies the true risk in the upper range of the score points. 

 

It is important to note that a risk prediction model cannot be both perfectly discriminatory and 

perfectly calibrated. It has been shown that a model which maximises discrimination does so 

at the expense of calibration and vice versa [111]. Diamond et al. demonstrated that a 

perfectly calibrated model, in which the observed risk matches the predicted risk for all 

subgroups, cannot achieve a c-statistic of 1.00 in usual settings [111]. In this regard, it was 

also shown that the maximum attainable c-statistic varies with the distribution of risk in the 

population [112]. Further, the c-statistic is based on the ranks of the predicted probabilities of 

cases and non-cases, but it is not a function of the actual predicted probabilities, which 

means that it is insensitive to errors in calibration [9]. For instance, a model that assigns all 

cases a value of 0.56 and all non-cases a value of 0.54 would have perfect discrimination, 

although the probabilities it assigns may not be meaningful. Whether discrimination or 

calibration may be of prime importance depends on the purpose of the risk score. In the 

diagnostic setting where classification into groups of disease state is the main purpose, 

discrimination is of higher interest than calibration. In prognostic modelling where risk of 

future diseases is estimated and with respect to public health decision making, the actual risk 

itself may be of major concern and calibration accuracy may play a pivotal role [103]. Also, 

precise computation of the absolute risk is particularly essential when the likely absolute 

benefit from an intervention for cost-benefit analyses needs to be estimated [11]. Further, the 

decision of an individual to participate in an intervention program might be influenced by 

providing information on the expected benefit. In this case, accurate estimation of absolute 
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risk is also highly important. On the contrary, if a prognostic risk score solely serves the 

purpose to identify high-risk individuals to undergo prevention interventions, the risk score 

would need to accurately rank individuals according to their absolute risk, but would not 

necessarily need to provide accurate estimates of the risk itself.  

Validation of a risk score 

Because the purpose of a prediction model is to provide valid outcome predictions in 

practical settings outside the sample it was developed in, validation is a crucial step in 

predictive modelling [100]. An important distinction has to be made between internal and 

external validation. Internal validation refers to the assessment of the validity (discrimination, 

calibration) of a predictive model for the population it was developed in (training sample). In 

contrast, external validation determines whether the model is generalisable to other 

populations that are fully independent from the development data and originate from different 

but related settings (same underlying source population). A key threat to validity of a 

prediction model is overfitting/optimism, which means that the data under study are well 

described but that predictions do not generalise to new subjects outside the sample [100]. 

Overfitting is likely to occur in data-dependent analyses and may result from fitting specifics 

and idiosyncrasies of the sample rather than generalisable patterns [100]. It leads to a too 

optimistic impression of model performance that can be achieved in new subjects from the 

underlying population. Although several techniques do exist to correct for optimism, including 

cross-validation and bootstrapping methods, validation in external, independent study 

populations is the most stringent type of validation and of crucial importance if a prediction 

model should be used in the clinical or public health setting [100]. The more often a model is 

externally validated and the more diverse these validation settings, the higher the confidence 

with regard to general applicability of the model. 

1.3.2 Overview about existing risk scores  

During the past three decades, numerous risk prediction models have been developed in the 

context of cardiovascular diseases, type 2 diabetes and cancer. A number of these prediction 

algorithms have been transferred to simplified score sheets that allow physicians to easily 

identify subjects at high risk of the disease and to deliver targeted individualised intervention 

advice [113-116]. In the field of weight management, there is currently no risk score available 

to predict weight gain or overweight/obesity among adults; nevertheless, a risk score to 

predict overweight among children has been published recently [16] and is presented below. 

Also, Table 1 in the appendix gives a selective overview about some important, widely-

known risk prediction models in the field of major chronic diseases, including information on 

the predictors included in the respective score, the corresponding performance measures 

and on external validation. 
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The first risk prediction model for a chronic disease was published in 1976 in the field of 

cardiovascular diseases [117]. This risk prediction model used data from the Framingham 

Heart Study to assess an individual’s risk for developing CVD during the next 8 years using 

information on a number of clinical and biological factors [117, 118]. Recently, a modified 

version of this risk assessment tool to predict 10-year risk of CVD was published [119]. 

Further, data from the Framingham study were used to develop risk prediction models to 

predict specific components of CVD, including coronary heart disease (CHD) [113], heart 

failure [120] and stroke [121]. For instance, the Framingham risk score to predict risk of 

developing CHD within the next 10 years is a simple algorithm using information on age, 

prevalence of diabetes, smoking, blood pressure and cholesterol and was incorporated into 

the Third Report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood 

Cholesterol in Adults [122]. This CHD risk assessment tool showed a discriminatory ability 

ranging between 0.73 and 0.77, depending on sex and whether categorical or continuous 

variables for cholesterol were used, and has been validated in whites and blacks in the 

United States [123]. Because the Framingham risk equations were only transportable to 

other populations after recalibration, several CVD prediction models have been developed in 

Europe, such as the SCORE equation [115] recommended by the Third Joint European Task 

Force on cardiovascular prevention [124], the PROCAM score developed in Germany [125], 

the QRISK algorithm developed in the UK [126], and the ASSIGN score developed in 

Scotland [127]. Similarly, risk prediction models for CVD have been constructed in other 

parts of the world, including China, Japan, New Zealand, and Australia [10]. 

In the late 1980s and early 1990s, the first risk prediction models in the field of cancer were 

published. The best known and most widely applied risk prediction model is that developed 

by Gail et al. in 1989 to predict breast cancer risk within the following 5 years [12]. The Gail 

model is based on risk factor information collected in a case-control study nested in the 

Breast Cancer Detection Demonstration Project (BCDDP). Estimates of relative risk from the 

case-control data were combined with age-specific breast cancer rates in the entire BCDDP 

cohort to estimate absolute risk developing breast cancer within the next 5 years. The model 

includes standard risk factors known at that time, including current age, age at menarche, 

age at birth of first child, number of first-degree relatives with breast cancer, and number of 

previous breast biopsy examinations. This original model was recalibrated to national cancer 

incidence rates for estimating 5-year risks of invasive breast cancer and this modified version 

is implemented in the National Cancer Institute’s Breast Cancer Risk Assessment Tool 

(BCRAT) [128]. The model has been used to design prevention trials such as the Breast 

Cancer Prevention Trial to evaluate the benefits of tamoxifen in a population of women with 

an elevated risk of breast cancer and to assist in clinical decisions. Further, women with a 

high risk score are encouraged to undergo mammographic screening or genetic evaluation. 



Introduction             21 

The Gail model has been shown to reliably predict risk at the population level (well 

calibrated), but its discriminatory accuracy at the individual level is only fair [129-133]. For 

instance, in a prospective cohort study of the San Francisco Mammography Registry [131] 

and in the Nurses’ Health Study [130], the aROCs were 0.67 and 0.58, respectively. In recent 

years, the Gail model was modified by adding newly identified risk factors such as breast 

density [131, 134] or by including genetic information [135, 136]. However, improvements in 

discriminatory ability were generally modest, e.g. the aROC increased from 0.607 to 0.632 

when risk factor information of 7 genetic variants was added [135]. Next to breast cancer, an 

increasing number of risk prediction tools have also been developed for other types of 

cancer, including cancers of the colorectum [13, 14, 137], ovary [138], prostate [139], lung 

[102, 140-144], and skin [145, 146]. The discriminatory ability was mainly fair, with aROCs 

ranging between 0.60 and 0.75, with the exception of recently published results on lung 

cancer coming from a large randomized screening trial showing aROCs of 0.86 and 0.81 

among the whole control arm and among smokers only, respectively [144]. In external 

validation studies of cancer risk prediction models, calibration is mostly good and 

discriminatory accuracy is generally modest. For instance, the aROC was 0.61 for colorectal 

cancer [147] and 0.69 for lung cancer [148]. Although these risk prediction models were 

developed on the basis of well-established risk factors, the comparatively poor discriminatory 

ability suggests the need to find additional strong risk factors. 

As recently summarised in a systematic review, a variety of risk prediction models has also 

been developed in the field of type 2 diabetes [11]. Overall, 46 studies presenting risk 

prediction models for diabetes were identified, of which 10 were validated in external 

populations, including the Finnish diabetes risk score [149], the Atherosclerotic Risk in 

Communities study (ARIC) diabetes risk score from the US [150], the Cambridge diabetes 

risk score [151], and the German diabetes risk score developed in EPIC-Potsdam [114]. Risk 

prediction models for diabetes can be broadly divided into three categories: models solely 

based on non-invasive measurements (e.g. age, measures of anthropometry, diet and 

lifestyle factors), models including classical biochemical measures such as fasting plasma 

glucose and lipids along with non-invasively assessed variables, and finally those models 

additionally containing novel biomarkers (e.g. C-reactive protein or adiponectin) and/or 

genetic information. The discriminatory accuracy of risk scores solely based on non-invasive 

measurements generally ranged from 0.70 to 0.80, the Finnish Diabetes Risk Score and the 

German Diabetes Risk Score even reported aROCs of 0.84 and 0.82, respectively. In 

general, the addition of biochemical measures, in particular fasting plasma glucose, could 

strongly improve the performance of models only containing non-invasive measures. For 

example, the German Diabetes Risk Score based on age, waist circumference, height, 

hypertension, physical activity, smoking, and consumption of whole-grain bread, red meat, 
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coffee and moderate alcohol improved after inclusion of measures of fasting plasma glucose, 

glycated haemoglobin, lipids, and liver enzymes to an aROC of 0.90 [114]. In contrast, the 

addition of multiple genetic markers only marginally improved discrimination beyond non-

invasive characteristics in EPIC-Potsdam and in other studies [11, 152]. Similar as with 

prediction models in the context of CVD and cancer, the discriminatory ability was usually 

reduced in external populations. For instance, the Finnish diabetes risk score, which is the 

most frequently validated risk score, was tested in eight independent cohorts and yielded 

good discrimination among a similar Finnish population (aROC=0.87), though somewhat 

lower discrimination among other cohorts (aROC ranged from 0.65 to 0.81) [11]. The majority 

of studies did not report measures of calibration. 

With regard to weight gain or overweight, only fairly recently a risk score predicting the risk 

of newborn children to be overweight at 8 years of age was developed [16]. In this birth 

cohort study from the Netherlands, a total of 1,687 newborn children were followed until the 

age of 8 years to undergo a medical examination. Overweight was defined according to age- 

and sex-specific cut-off points for BMI. A risk score comprising information on paternal BMI, 

maternal BMI, gender, smoking in the parental house, birth weight of the child and hospital 

delivery was able to adequately predict risk of overweight at the age of 8 years. The aROC 

was 0.75, and the Hosmer-Lemeshow Test implied adequate calibration after adjustment for 

optimism (p=0.30). A validation of the risk score in an external study population has not yet 

been performed. 



Introduction             23 

1.4 Challenges and research questions of the thesis 

Given the rapid rise in obesity prevalence around the world in recent years and the 

considerable strains involved with the treatment of overweight and obesity, primary 

prevention of weight gain that may lead to overweight and obesity is of predominant public 

health importance. Because resources for prevention are limited, a simple and pragmatic tool 

that allows for identifying individuals who are at high risk of experiencing substantial weight 

gain and who may benefit most from timely intervention seems appealing. As no such tool 

has been developed among adults so far, the aim of the present thesis is to investigate 

whether it is possible to develop a risk score predicting 5-year risk of SWG in the context of 

the multi-centre EPIC study.  

Given the continuous nature of the outcome variable weight gain and the multi-centric design 

of the EPIC study, the current thesis is faced with two major methodological challenges that 

need to be accomplished. First, the question arises of how to model the continuous measure 

weight gain in order to estimate absolute risks analogously to risk prediction model building 

for hard clinical endpoints, while accounting for varying follow-up times between study 

participants. Second, care needs to be taken of heterogeneity, originating from differences in 

questionnaire design, anthropometric measurements and follow-up times, across single 

centres in the statistical modelling process in a way that the final risk score is independent of 

any effects of the study centres themselves.   

In particular, the following research questions will be addressed: 

Is it possible to develop a risk score based on readily available factors to predict substantial 

weight gain over 5 years using data of the multi-centre EPIC study? 

• How well does the risk score discriminate between cases and non-cases?  

• How well does the score quantify absolute risk? 

• How well does the score perform in an independent population? 

• How well does the score perform across diverse European populations? 
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2 Material and Methods 

2.1 The EPIC study 

The EPIC study is an ongoing large multi-centre prospective cohort study designed primarily 

to investigate the relationship between diet, lifestyle and genetic factors and the incidence of 

cancer [153, 154]. It was initiated in 1992 within the framework of the “Europe against 

Cancer” programme of the European Union and is coordinated by the International Agency 

for Research on Cancer (IARC) of the World Health Organization (WHO) in Lyon, France. 

Between 1992 and 2000, a total of 521,448 participants (~70% women and 30% men) has 

been recruited in 23 administrative centres located in 10 European countries: Denmark, 

Sweden, Norway, the United Kingdom, France, Germany, The Netherlands, Spain, Italy and 

Greece (Figure 4).  

 

Figure 4. Map of cohorts participating in the EPIC study 
Source: Bingham and Riboli, 2004 [155] 

 

Eligible male and female study participants were generally aged between 35 and 70 years at 

enrolment and, in the majority of study centres, they were invited from the general population 

residing in a given geographical area, a town, or a province. Exceptions were the French 

cohort (based on members of the health insurance for teachers), the cohorts of Utrecht (The 
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Netherlands) and Florence (Italy), which are based on women attending local population-

based breast cancer screening programmes, components of the Italian and Spanish cohorts 

(including members of local blood donor associations), and most of the Oxford (UK) cohort 

(comprising health-conscious subjects, mainly vegetarians). In France, Norway, Utrecht, and 

Naples (Italy) only women were recruited. All participants gave written informed consent and 

approval for this study was obtained by the local ethics committee in the participating 

countries and the International Review Board of IARC.  

Baseline examination 

In the majority of centres, individuals who agreed to participate were mailed a questionnaire 

on diet and a questionnaire on lifestyle, which they completed at home. Subjects were then 

invited to a study centre to turn in the questionnaires, to provide a blood sample and to have 

anthropometric measurements taken. 

Follow-up data collection 

EPIC participants are passively followed for vital status, cause of death and disease 

occurrence. In most of the centres, these data are obtained by regular record linkage, with 

the exception of Greece and Germany where an active follow-up is used. For updating 

lifestyle and anthropometric data, most participants were contacted for a second time several 

years after recruitment. Assessment was conducted through mailed questionnaires, with 

exception of Spain and Greece who contacted all participants by phone, Varese (Italy) who 

used a combination of questionnaires and telephone, and Cambridge (UK) and Doetinchem 

(The Netherlands) where individuals were invited to a study centre for a second 

measurement of anthropometric parameters. 

2.1.1 Assessment of relevant variables 

Diet 

Usual dietary intake over the past 12 months was assessed at baseline by means of country-

specific dietary questionnaires that were designed to capture local dietary habits and to 

provide high compliance [154, 156]. These dietary questionnaires had been developed and 

validated in a series of studies within the various source populations participating in EPIC 

and they had been shown to be able to rank subjects according to dietary intake within 

centres [156, 157]. Participants were asked to report their average consumption of each food 

item over the previous 12 months, according to pre-coded categories ranging from never or 

less than once per month to five or more times per day. In the majority of countries, 

extensive quantitative food frequency questionnaires (FFQ) containing up to 260 food items 

and estimating individual portion sizes were used [154]. In Denmark, Norway, Naples, and 

Umea (Sweden), semi-quantitative FFQ assigning the same standard portion(s) to all 
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participants were administered. In most countries, dietary questionnaires were self-

administered, with the exception of Greece, Spain, and southern Italy (Naples and Ragusa) 

where questionnaires were administered at a personal interview in order to increase 

compliance of study participants. In Malmö (Sweden) and the UK, a combination of dietary 

methods (semi-quantitative FFQ and diet record) was used. Food intake was calculated by 

multiplying food frequency and portion size and expressed as grams per day.  

Anthropometry 

In all EPIC centres, except France, part of the Oxford cohort, and Norway, height and weight 

were measured at baseline on all subjects by trained personnel according to standardised 

procedures with subjects wearing no shoes [158]. Body weight was corrected to reduce 

heterogeneity due to protocol differences in clothing worn during measurement by 

subtracting 1.5kg in those individuals who were normally dressed and 1kg in those 

participants who wore light clothing (Table 4). For part of the Oxford cohort where only self-

reported data were available, linear regression models were used to predict sex- and age-

specific values from subjects with both measured and self-reported body measures (referred 

to as Oxford prediction equations in the remainder of the text, equations see below) [158]: 

)age052.0()height_sr923.0(032.15Height

)age006.0()weight_sr012.1(561.0Weight

:Men

⋅+⋅+=

⋅+⋅+=  

)age069.0()height_sr853.0(096.27Height

)age006.0()weight_sr010.1(444.0Weight

:Women

⋅+⋅+=

⋅+⋅+=  

At follow-up, body weight was self-reported by the participants in all centres, except for 

participants in the cohorts of Cambridge (UK-Nor) and Doetinchem (NL-Doe), in whom 

measurements were performed by trained staff following the same protocol as during 

baseline measurements. Self-reported body weight at follow-up was corrected for potential 

underreporting by using the Oxford prediction equations. BMI was calculated by dividing 

weight in kilograms by height in metres squared (kg/m²).  

Socio-demographic and lifestyle factors 

At baseline, information on a large number of lifestyle and health factors was collected by 

means of questionnaires and/or face-to-face interviews including questions on education and 

socio-economic status, occupation, physical activity (occupational and recreational activity), 

history of previous illnesses, menstrual and reproductive history, consumption of alcoholic 

beverages, and tobacco smoking [154]. Updated information on smoking status was also 

collected at follow-up at the same time as the second anthropometric assessment. 

sr = self-reported 
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Table 4. Body weight assessment at baseline in the centres participating in EPIC 

   Method  In light 

underwear 

In light 

clothing * 

Normally 

dressed 

Correction for 

clothing 
        

Greece  M  +  - 1.0 kg 
Spain (all centres)  M +   none 
Italy       
 Ragusa  M +   none 
 Naples  M +   none 
 Florence  M +   none 
 Turin  M   + - 1.5 kg 
 Varese  M +   none 
France (all centres)  SR   + - 
Germany       
 Heidelberg  M +   none 
 Potsdam  M +   none 
The Netherlands       
 Doetinchem  M  +  - 1.0 kg 
 Amsterdam/Maastricht  M  +  - 1.0 kg 
 Utrecht  M   + - 1.5 kg 
United Kingdom       
 Cambridge (Norfolk)  M  +  - 1.0 kg 
 Oxford (GP)  M  +  - 1.0 kg 
 Oxford (HC)  SR/M  +  - 1.0 kg 
Denmark (both centres)  M +   none 
Sweden       
 Malmö  M  +  - 1.0 kg 
 Umea  M   + - 1.5 kg 
Norway  SR    - 

M = measured, SR = self-report, GP = General population, HC = health conscious.  
* After removal of shoes, heavier sweaters, indoor jackets and heavier objects from pockets. 
Modified from Haftenberger et al. (2002). 

 

2.1.2 Analytical study populations 

Given the importance of validating a risk prediction model in an external study population, the 

total study population of EPIC was non-randomly divided into two samples: a training sample 

to guide model development and an independent validation sample to test the model. As 

illustrated in Figure 5, the model was developed using data of those EPIC cohorts 

participating in the Diet, Obesity and Genes (DiOGenes) project which is a multi-disciplinary, 

integrated European research programme focussing on the identification of key dietary, 

psychological, genetic and behavioural factors in the prevention of weight gain [159, 160]. 

The development of the risk score model was therefore based on data from five EPIC 

countries which are the United Kingdom (Norfolk, UK-Nor), the Netherlands (Doetinchem, 

Amsterdam and Maastricht), Denmark (Copenhagen and Aarhus, DK-CopAa), Germany 

(Potsdam, GER-Pot), and Italy (Florence, IT-Flo). Because of differences in the assessment 

of follow-up anthropometric measurements in the Netherlands (see 2.1.1), the cohort of 

Doetinchem (NL-Doe) and the cohort of Amsterdam/Maastricht (NL-AmMa) were treated as 
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separate cohorts; thus, a total of six EPIC cohorts constituted the training sample. Because 

the definition of the training sample was determined by participation in the DiOGenes project 

and not by making a random split of the total EPIC cohort, the remaining, but independent 

and geographically separate, EPIC cohorts could be used to assess the external validity of 

the prediction model. The remaining EPIC cohorts are hereafter referred to as the (external) 

validation sample. 

 

Figure 5. Definition of the training and validation sample 
 

The exclusion criteria applied to both the training and validation sample and corresponding 

numbers of included participants are displayed in a flow diagram below (Figure 6). A number 

of exclusion criteria were agreed upon among EPIC centres beforehand and were applied in 

the present analysis. For instance, to reduce the impact of implausible extreme dietary 

values, subjects who were in the sex- and centre-specific top 1% and bottom 1% of the 

distribution of the ratio of reported energy intake to estimated energy requirement (energy 

requirement = basal metabolic rate calculated from age, body weight and height [161] x 1.55) 

were excluded. Further exclusions refer to participants who provided no or unrealistic 

information on anthropometrics at either baseline or follow-up or who reported prevalent 

CVD, diabetes or cancer to avoid influences of these conditions on body weight changes. 

Additionally, to maintain the same age range in all cohorts and to minimise confounding from 

changes in body composition and shape occurring in older age [162] or from undiagnosed 

chronic disease, the present study was restricted to participants aged ≥35 years at baseline 

and <65 years at follow-up. Since prevention efforts should particularly focus on individuals 

EPIC without DiOGenes project 

(France, Italy-Naples, Spain, UK-Oxford, NL-Utrecht,  
Ger-Heidelberg, Sweden) 

 

DiOGenes project 

(UK-Nor, NL-Doe, NL-AmMa,  
IT-Flo, GER-Pot, DK-CopAa) 

 

Validation sample 

(External validation) 

 

Training sample 

(Internal validation) 

Common exclusion criteria 

The EPIC study  
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at high-risk of (substantial) weight gain to avoid obesity, the present study was restricted to 

non-obese (BMI<30) individuals. Finally, individuals who had missing values in any of the 

candidate predictors were excluded. From the 146,543 men and women who took part in the 

baseline examination across the 6 training cohorts during 1992-1998, data of 47,203 male 

and female participants were finally used to guide model development. For the validation 

sample, all individuals participating in any of the six DiOGenes cohorts were additionally 

excluded in order to obtain two completely independent samples. Also, it may be noteworthy 

that the complete cohorts of Norway, Greece and Varese (Italy) had to be excluded from the 

validation sample due to missing information on physical activity or smoking at follow-up. In 

Ragusa (Italy) and Turin (Italy) the follow-up assessment of body weight was ongoing when 

the dataset was compiled and therefore data from Ragusa and Turin were not included in the 

present dataset. The final validation sample thus consisted of 115,099 men and women. 

 
     

 Training sample  Validation sample  

     

Baseline population 146,543  521,448 (EPIC total)  

     

Cause of exclusion     
     

No follow-up data1 102,346   393,533  

 

 

    

Common exclusion criteria in EPIC  
(Pregnant2, no dietary data3, EI/EE ratio4, no 
anthropometry5, outliers or unrealistic 
combinations6, unrealistic annual change in 
weight or waist7) 

97,944  367,509  

     

Prevalent disease at baseline8 89,432  336,635  

  

 

   

Baseline age <35 or follow-up age ≥65 years 60,547  257,314  

 

 

    

Obese at baseline (BMI≥30) 53,758  225,972  

 

 

 

 

  

 

 

Missing in any covariate 47,203  167,888  

 

 

    

Participant of any DiOGenes cohort   115,099  

 

Figure 6. Flow diagram of participants excluded from the present study 
 

1 No follow-up questionnaire. 2 Pregnant at baseline or follow-up. 3 10% missing items on FFQ. 4 Ratio of energy intake (EI) to 
energy expenditure (EE) estimated from predicted resting energy expenditure. 5 Missing data on baseline or follow-up weight, 
waist or height, missing follow-up time. 6 Baseline height<130 cm, BMI<16 kg/m2, 0<waist <40 cm, waist>160 cm, follow-up 
weight>700 kg. Combination of waist<60 cm and BMI>25 kg/m2. 7 Annual weight change>5 kg (either direction) or annual waist 
change>7 cm (either direction). 8 Baseline cancer, diabetes or cardiovascular disease. 
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2.2 Statistical approaches 

Statistical analyses were performed using SAS (Statistical Analysis System, version 9.2; 

SAS Institute Inc, Cary, NC). Meta-analyses were conducted using the package “meta” 

developed by Schwarzer [163] for R software (version 2.12.1, http://www.r-project.org). 

2.2.1 Definition of study variables 

2.2.1.1 Case status 

In order to develop a risk score predicting absolute risks of SWG within the next 5 years, a 

meaningful threshold for weight gain representing substantial and, most likely, unhealthy 

weight gain over 5 years needed to be defined. Most previous studies on a dichotomous 

endpoint related to weight gain either used established BMI categories and estimated risk of 

obesity or defined major weight gain on the basis of absolute changes in weight, e.g. 25 kg 

over 12 years [32] or 15 kg over 16 years of follow-up [164]. However, absolute weight gains 

are difficult to compare across persons with different initial body weights. Thus, in order to 

facilitate more fair comparisons between persons, weight change was used on a relative 

scale and the outcome was defined as weight change in percent of baseline weight (pi) 

(Equation 1).  

 

Substantial weight gain was defined as gaining ≥10% of baseline weight during follow-up 

(p≥0.1) which was considered major weight gain with respect to the time period of 5 years 

the risk score will be tailored to. The threshold was mainly chosen because it is high enough 

to exclude random variation in body weight and, additionally, allows for some weight gain as 

natural part of the aging process while identifying those subjects who gain major and 

possibly unhealthy amounts of weight over a relatively short time period. Given the large 

variation in follow-up times between individuals, methods of survival analysis appeared most 

appropriate for statistical analysis. Thus, each participant was followed for incidence of SWG 

from study entry to the second assessment of body weight (end of follow-up) and all 

participants gaining ≥10% of their baseline weight during follow-up constituted the set of 

cases. Those subjects not experiencing SWG within the period of observation were censored 

at time of their second weight assessment. Because it was only possible to determine case 

status at the end of follow-up, the exact time point when the threshold of p≥0.1 was crossed 

and thus the exact survival time was unknown for the cases. Therefore, the theoretical time 

point when the threshold of ≥10% baseline-based weight gain had been crossed was 

i

ii

0

0T

i W

WW
p

−
=  , WTi = weight at follow-up     

  W0i = weight at baseline  (Equation 1) 
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estimated. For this, weight gain was assumed to be linear and the mean annual proportion of 

baseline-based weight gain was determined (Equation 2). 

 

The time period theoretically needed to gain ≥10% of baseline weight (“survival time”) among 

cases was subsequently calculated by modifying the observed follow-up time (Equation 3).  

 

Exemplarily, Figure 7 illustrates the estimation of the survival time for a case with baseline 

weight W0=64kg and follow-up weight after 7 years W7years=73kg. Assuming linear weight 

gain, this particular case theoretically crossed the threshold of ≥10% baseline-based weight 

gain after approximately 5 years. 
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Figure 7. Example for the estimation of survival time among cases 
For a hypothetical case with W0=64kg and W7years=73kg (weight gain in percent of baseline weight = 14%).  
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2.2.1.2 Potential predictor variables 

For this study, a total of 21 variables were selected to be included in the risk prediction model 

as candidate predictors of SWG (Table 5). Selection of candidate predictors was primarily 

based on reported or hypothesised associations with weight change and risk of overweight or 

obesity in the literature (see chapter 1.2.5). In view of a possible application of the risk score 

in practice, candidate predictors should also be easy to assess; therefore, the selection of 

dietary factors was restricted to main food groups and nutrients were not considered. As 

available in the data set, the following candidate predictors were finally considered: age, sex, 

baseline weight and height, sports, occupational physical activity, smoking habits, alcohol 

consumption, education, and several dietary factors, such as intake of fruits and vegetables, 

red and processed meat, bread, and soft drinks. All dietary factors were treated continuously 

per increase of a portion size mainly following the specifications in the FFQ and the actually 

observed intake values in the study population. Updated information on smoking status was 

used to classify participants into one of the following four categories: stable non-smokers 

(never smokers and those who stopped smoking before baseline), stables smokers (those 

who reported smoking at baseline and follow-up), quitters (those who stopped smoking 

during follow-up), and started smokers (those who started smoking during follow-up). 

Smoking was the only variable for which updated information was used in the present study. 

However, change in smoking status, particularly smoking cessation, is one of the strongest 

determinants of subsequent weight change that should be accounted for if information is 

available. The decision to deviate from the otherwise systematic line of action of solely 

including baseline data was additionally underlined by the finding that analyses exclusively 

using baseline smoking status showed a positive association between current smoking at 

baseline and future risk of SWG, which was found to be due to the strong positive effect 

among those baseline smokers who stopped smoking during follow-up. 
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Table 5. Candidate predictors to be included in the prediction model building and their 

corresponding scale  
  

Candidate predictors  Scale 

  

Socio-demographic and anthropometric factors 
  

Age continuous (per year) 

Sex Dichotomous 

Baseline weight continuous (per kg) 

Baseline height continuous (per cm) 

Education 4 categories:  

none or primary school, technical school, 

secondary school, university 

Occupational physical activity 4 categories: 

sedentary, standing, manual, and non-work 

Lifestyle factors  
  

Sports continuous (per hour/week) 

Smoking habits 4 categories: 

stable non-smoking during follow-up, stable 

smoking, start smoking, smoking cessation 

Alcohol consumption 6 categories: 

non-consumer, >0-<6g/d, 6-<18 g/d, 18-<30 g/d,  

30-<60 g/d, and ≥60 g/d 

Dietary factors  
  

Fruits and vegetables continuous (per 125g/d) 

Red and processed meat continuous (per 100g/d) 

Poultry continuous (per 50g/d) 

Fish continuous (per 100g/d) 

Milk and yogurt continuous (per 150g/d) 

Pasta and rice continuous (per 50g/d) 

Bread continuous (per 50g/d) 

Vegetable oil continuous (per 20g/d) 

Butter and margarine continuous (per 20g/d) 

Chocolate continuous (per 25g/d) 

Cake and cookies continuous (per 50g/d) 

Soft drinks continuous (per 250g/d) 
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2.2.2 Descriptive statistics 

For descriptive purposes, general characteristics were computed across the training and 

validation sample. For continuous variables, arithmetic means and standard deviations were 

presented; proportions were computed for categorical variables. Further, absolute weight 

gain was calculated across subgroups of the training and validation sample and the 

incidence of SWG in the two study populations was displayed graphically.  

2.2.3 Risk prediction model building 

Cox Proportional Hazards regression was used to identify significant predictors for 

substantial weight gain by estimating relative risks as incidence rate ratios (PROC PHREG in 

SAS) [165]. In contrast to the logistic regression model which simply considers whether an 

event occurs, in Cox PH regression time to event is taken into account. In this way, varying 

follow-up times between individuals could be accounted for, while extrapolation of actually 

observed weight changes to a fixed non-observed follow-up time was avoided.  

Figure 8 illustrates the statistical analysis in a flow-diagram. In terms of practical usefulness, 

the prediction model may only include relevant predictor variables. Therefore, the first step of 

the model building encompassed the selection of the most significant predictors to be 

retained in the final model. For this, the set of candidate predictor variables was entered into 

a Cox PH regression model using “stepwise selection”, an automatic variable selection 

procedure implemented in the PHREG procedure in SAS [166]. In this stepwise selection 

process, variables are entered into and removed from the model by repeated application of a 

selection-deletion cycle based on a pre-specified level of significance. In the present study, 

the p-values for entering and staying in the model were both set to 0.1. The stepwise 

selection process terminates if no further variable can be added to the model or if the 

variable just entered into the model is the only variable removed in the subsequent backward 

elimination. Interaction terms were not included in order to keep the model parsimonious and 

easy to use. In view of the aim to develop a universal risk score predicting SWG among 

European middle-aged adults based on data from six EPIC cohorts, the prediction model 

should be independent of any effects of the study centres themselves. In order to account for 

heterogeneity between centres due to differences in questionnaire design, follow-up 

procedures, and other non-measured centre effects, stepwise Cox regression was conducted 

separately by centre. Variables that appeared to be statistically significantly associated with 

SWG in the same direction in at least two cohorts were retained as predictors for 

construction of the final prediction model. Ultimately, centre-specific regression coefficients 

were obtained for all retained predictor variables and random-effects meta-analysis was used 

to calculate combined estimates by weighting the centre-specific predictor-SWG effects by 

the inverse of their variances [167]. In contrast to the fixed-effect model, the random-effects 
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model has the advantage that it allows for variation of effect size between studies [167, 168]. 

I², describing the percentage of variation across centres that is due to heterogeneity rather 

than chance, with 95% confidence intervals (CI), as well as Cochran’s Q-statistic and 

corresponding p-value were reported as measures to quantify the amount of heterogeneity 

[169]. The results of these meta-analyses were graphically presented on forest plots using 

the package “meta” for R software [163].  

To estimate absolute risks of experiencing SWG within the following 5 years (Step II), the 

survival function from the Cox PH model was used (Equation 4) [170].  

 

This survival function formula says that the estimated survival probability at time t for a 

subject with a given specification of a set of predictors, denoted by the bold X, is given by a 

baseline survival function S0(t) raised to a power equal to the exponential of the sum of βi 

times xi [170]. Score points for each predictor were assigned based on the value of the 

corresponding pooled β-coefficients obtained from separate meta-analyses multiplied by the 

constant factor of 100 and rounded to two decimal places. For each individual, a risk score 

(RSi) was computed as a linear function of those score points. To avoid negative score 

values, the score was rescaled by adding a constant of 500. 

 

As can be seen from Equation 4, for the calculation of individual survival probabilities S(t,X), 

and thus the calculation of absolute risks of SWG for the next 5 years, it was necessary to 

estimate the baseline survival probability of SWG at 5 years S0(5y). By definition, baseline 

survival probability refers to the probability of survival (probability of not having gained ≥10% 

of baseline weight) at a specific time point when all covariates are equal to zero. However, 

when S0(5y) was estimated with all covariates equal to zero separately by centre, there was 

large heterogeneity in the 5-year baseline survival probability across the six training cohorts 

(App. Figure 1) and pooling was impossible. Therefore, the mean value of each predictor 

over all subjects in the total training sample ( ix ) was chosen to compute the “baseline” 

survival function at 5 years (SM(5y)) (Equation 6). As for the predictors, centre-specific values 

of SM(5y) were computed first and then pooled using random-effects meta-analysis. 
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Next, the individual risk score points (Equation 5) were inserted into the survival function and 

the probability of experiencing SWG within the following 5 years was finally calculated by 

subtracting the survival probability S(5, RSi) from 1 (Equation 7). Importantly, in order to 

account for the modification in estimating S0(5y), the linear predictor in the survival function 

formula was corrected for the averages of the participants’ predictors (RSM). It can be shown 

mathematically that this approach and the approach of setting all covariates to zero yield 

equivalent results in terms of absolute risks (App. Figure 2). 

 

Subsequent to the development of the risk score, its predictive performance was evaluated 

by means of discrimination and calibration in the training sample (internal validation) and in 

the external validation sample (Step III). The discriminatory accuracy of the risk score was 

assessed by plotting the ROC curve and computing the corresponding c-statistic. 95% 

confidence intervals for the c-statistic were estimated according to the algorithm developed 

by DeLong and colleagues [171] using the macro provided by the SAS support page on the 

internet (http://support.sas.com/kb/25/017.html, last access: May 23rd, 2011). For determining 

an appropriate cut-off value of the score, the Youden’s index was used. Calibration of the 

model was evaluated by comparing the observed incidence of SWG within the first 5 years of 

follow-up with the corresponding predicted probability across meaningful categories of 

predicted risk. Additionally, a graphical presentation was chosen to best capture the intuitive 

meaning of calibration by plotting observed versus predicted risk across deciles of predicted 

risk. As a formal test, the Hosmer-Lemeshow Test (HLT) was performed. 
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Figure 8: Overview of the statistical analysis to develop a risk score predicting 
substantial weight gain in the multi-centre EPIC study 
Substantial weight gain was defined as gaining ≥10% of baseline weight during follow-up. 

Step I: Selection of predictor variables 

a) Identification of predictors for substantial weight gain (SWG) separately by centre in 

the six cohorts of the  training sample using proportional hazards regression 

(stepwise, slentry=0.1, slstay=0.1) 

b) Selection of common predictor variables across the six centres  

(to be retained variables should be predictors in at least two centres; association in 

the same direction) 

c) Estimation of centre-specific regression coefficients for each retained predictor and 

pooling of these estimates using a random-effects meta-analytical approach 

Step II: Construction of the risk score and estimation of absolute risks 

Step III: Evaluation of the predictive performance of the risk score 

d) Estimation of the background survival probability for the following 5 years given all 

covariates take on average values of risk factors (SM (5y)) 

e) Calculation of the score points as a linear function of the predictors weighted by the 

regression coefficients (multiplied by 100)  

f) Estimation of the absolute risk of SWG during the following 5 years after insertion the 

individual score (RSi) into a survival function corrected for the averages of participants’ 

values (RSM): 

 )100/)RSRSexp((
Mi
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g) Internal validation (Discrimination, Calibration) 

h) External validation (Discrimination, Calibration) 
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3 Results 

3.1 Description and comparison of the study populations 

3.1.1 General characteristics 

General characteristics for each cohort of the training sample and the total validation 

population are presented in Table 6. Cohort-specific results for the validation set can be 

found in the appendix (App. Table 2).  

A total of 47,203 subjects were included in the training sample, 41% of whom were men. The 

largest contribution in terms of participants came from Denmark already constituting half 

(51%) of the total training sample, followed by GER-Pot (19%) and IT-Flo (12%). Mean age 

at baseline was 50.4 years, with participants from the Netherlands being the youngest on 

average and the Danish people being the oldest. Due to logistical reasons, follow-up time 

differed considerably between centres with an average (±SD) follow-up of 6.2±2 years, 

ranging from an average of 3.6 years in UK-Nor to an average of 8.7 years in IT-Flo (total 

variation: 1.2–12.2 years). Mean annual weight gain was 387g, with the lowest annual weight 

gain observed in the Danish cohort and the largest annual weight gain found in UK-Nor. On 

average, subjects gained 3.7% of their baseline weight during follow-up, representing a 

mean annual proportion of baseline-based weight gain of 0.6%. The overall percentage of 

obese individuals at follow-up mounts up to 4.9%. Almost one third of all individuals had a 

university degree, varying from 18% to 44% across cohorts. About 7% of all subjects stopped 

smoking during follow-up, whereas the proportion varied according to cohort from 2% in UK-

Nor to 13% in NL-AmMa. Among baseline smokers only, 24% quit smoking on average, 

ranging between 19% in NL-Doe and 37% in NL-AmMa (data not shown). With regard to 

dietary habits, intake of fruits and vegetables, pasta and rice and vegetable oil was 

substantially higher in the Italian cohort than in all other cohorts, reflecting a typical 

Mediterranean dietary pattern. The highest consumption of meat was found in the Danish, 

Dutch and German cohorts, consumption of soft drinks was highest in Denmark, the 

Netherlands and the UK-Nor. 

In comparison to the training sample, the proportion of men was substantially lower in the 

validation sample (19.5 vs. 41.1%) which was due to the cohorts of France, IT-Naples and 

NL-Utrecht that only consisted of women. The cohorts of France, Spain and GER-Heidelberg 

contributed the largest proportion of subjects with 40%, 21% and 13%, respectively. The 

average (±SD) duration of follow-up was 3.6±1.2 years and thus considerable lower than in 

the training population. Conversely, mean annual weight gain was almost 150g higher in the 

validation sample. With regard to lifestyle and dietary factors, some differences between the 

two study populations became apparent. First, subjects in the validation set were more likely 
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to have a higher education and more likely to be a constant non-smoker during follow-up 

than individuals in the training set. Second, the proportion of non- and low-consumers of 

alcohol was substantially higher in the validation population than in the training set. Finally, 

while mean intake of fruits and vegetables was considerably higher in the validation than in 

the training sample, the intake of red and processed meat was lower. The average 

consumption of soft drinks in the validation population was less than half of the average 

consumption in the training set, which was attributable to the cohorts of France, IT-Naples 

and Spain showing a very low consumption of sugar-sweetened beverages (9–26g/d) while 

the consumption in the other cohorts varied between 60 and 113g/d. 
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Table 6. General characteristics of the training and validation population 
      

    Training population 

          UK-Nor           NL-Doe     NL-AmMa           IT-Flo      GER-Pot   DK-CopAa                All 

Validation 
population 

              

N  3,930 2,088 2,327 5,512 9,104 24,242 47,203   115,099 
Men (%)  42.3 49.0 44.4 22.5 35.5 46.2 41.1   19.5 
Age at baseline (y)   51.5 (5.2) 45.9 (6.7) 45.3 (5.8) 47.5 (5.7) 45.2 (6.3) 53.7 (2.6) 50.4 (5.9)   49.5 (6.3) 
Duration of follow-up (y)  3.61 (0.81) 4.89 (0.46) 8.58 (1.8) 8.74 (1.8) 7.97 (1.5) 5.22 (0.53) 6.18 (1.99)   3.56 (1.15) 
              

Anthropometry            
 Weight            
  Baseline (kg)  69.5 (11.1) 73.8 (11.5) 71.1 (11.4) 64.5 (10.3) 69.3 (11.4) 72.4 (11.4) 70.6 (11.5)   65.0 (10.4) 
  Follow-up (kg)  71.2 (11.6) 76.0 (12.1) 75.2 (12.4) 68.2 (11.4) 73.2 (12.2) 74.2 (12.0) 73.2 (12.1)   66.9 (11.0) 
  Absolute change (kg)  1.67 (3.60) 2.23 (4.1) 4.10 (5.5) 3.63 (4.9) 3.84 (5.0) 1.82 (4.1) 2.54 (4.5)   1.94 (3.7) 
  Annual change (g/y)  469.4 (1019) 444.7 (809) 440.0 (598) 385.0 (518) 447.7 (583) 340.3 (771) 386.5 (734)   522.6 (1054) 
  % Change  2.48 (5.2) 3.10 (5.6) 5.97 (8.0) 5.79 (7.7) 5.74 (7.4) 2.61 (5.7) 3.76 (6.6)   3.05 (5.6) 
 BMI            
  Baseline (kg/m²)  24.5 (2.6) 24.6 (2.6) 24.1 (2.8) 24.0 (2.7) 24.4 (2.8) 24.7 (2.7) 24.5 (2.7)   24.0 (2.8) 
  Follow-up (kg/m²)  25.1 (2.9) 25.4 (2.9) 25.5 (3.2) 25.4 (3.2) 25.8 (3.2) 25.3 (2.9) 25.4 (3.0)   24.7 (3.1) 
  Obese at follow-up (%)  5.8 6.9 6.6 6.2 6.7 3.4 4.9   4.8 
              

Physical activity            
 At Work (%)            
  Sedentary  30.6 32.5 42.5 46.1 57.9 43.3 44.9   32.0 
  Standing  22.3 20.2 16.9 18.5 28.3 19.5 21.1   38.5 
  Manual  22.4 18.3 15.6 9.2 4.8 26.6 19.1   6.6 
  Non-workers  24.7 29.0 25.0 26.2 9.1 10.6 14.8   22.9 
 Sports (hours/week)  1.48 (2.6) 1.79 (2.3) 1.95 (2.7) 1.30 (2.1) 1.08 (1.8) 1.45 (2.1) 1.40 (2.1)   1.39 (2.2) 
            

Education (%)            
 No school / primary school  24.2 6.1 6.5 35.3 9.2 25.6 21.7   24.1 
 Techn. / profess. school  48.5 44.9 31.1 12.9 40.1 41.2 37.9   14.4 
 Secondary school  9.2 25.0 24.7 29.2 7.2 11.5 13.8   27.9 
 University degree  18.1 24.0 37.7 22.6 43.5 21.7 26.6   33.6 
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Table 6 continued. 
      

    Training population 

         UK-Nor        NL-Doe    NL-AmMa            IT-Flo       GER-Pot   DK-CopAa                All 

Validation 
population 

              

Smoking habits (%)            
 Non-smokers  89.4 67.4 62.7 69.8 78.4 64.2 69.7   79.4 
 Stable smokers  7.7 24.4 22.4 19.2 14.1 26.5 21.4   14.2 
 Started smokers  0.8 2.5 1.9 1.8 2.0 2.1 2.0   3.1 
 Quitters  2.0 5.7 13.1 9.3 5.6 7.2 6.9   3.3 
              

Alcohol use (%)            
 No alcohol  14.7 9.3 6.6 10.1 2.1 1.5 4.3   14.6 
 > 0 - ≤ 6g/d  38.3 35.9 33.2 38.6 37.2 18.5 27.6   33.4 
 > 6 - ≤ 18g/d  33.8 30.1 28.5 23.2 33.2 38.0 34.2   28.3 
 > 18 - ≤ 30g/d  5.9 12.5 15.7 14.3 14.8 14.2 13.7   11.6 
 > 30 - ≤ 60g/d  6.6 10.6 12.7 11.3 10.1 20.8 15.6   9.4 
 > 60g/d  0.6 1.6 3.4 2.5 2.6 6.8 4.6   2.6 
            

Dietary factors (g/d)            
 Fruits and vegetable  476.0 (218) 318.4 (138) 312.6 (149) 509.3 (229) 289.5 (134) 364.4 (199) 371.6 (202)   504.8 (268) 
 Red and processed meat  64.9 (41) 103.5 (49) 94.4 (55) 79.2 (42) 98.2 (57) 104.1 (51) 96.3 (52)   74.2 (50) 
 Poultry  27.0 (20) 10.5 (9) 12.7 (12) 26.9 (20) 11.8 (11) 22.0 (18) 20.0 (18)   20.7 (21) 
 Fish  36.5 (25) 10.1 (9) 11.7 (12) 29.7 (21) 22.3 (23) 41.9 (24) 33.3 (25)   37.5 (33) 
 Milk and yogurt  387.7 (177) 349 (263) 296.0 (285) 188.8 (173) 180.9 (208) 325.6 (290) 286.4 (264)   247.8 (207) 
 Pasta and rice  44.3 (41) 54.5 (45) 63.9 (57) 167.5 (112) 17.7 (15) 49.6 (38) 57.7 (67)   62.7 (47) 
 Bread  88.0 (58) 153.9 (65) 153.1 (73) 160.2 (90) 179.3 (79) 147.2 (66) 150.5 (75)   125.9 (78) 
 Vegetable oil  4.3 (3) 2.9 (3) 4.6 (4) 31.2 (14) 4.2 (3) 2.7 (4) 6.6 (11)   9.7 (11) 
 Butter and margarine  20.9 (16) 25.4 (16) 22.2 (16) 2.3 (4) 26.8 (17) 20.8 (15) 20.1 (16)   12.9 (15) 
 Chocolate  13.3 (17) 9.8 (12) 10.2 (12) 4.3 (8) 12.4 (15) 8.0 (12) 9.0 (13)   8.5 (16) 
 Cake and cookies  68.0 (62) 30.3 (23) 27.0 (22) 51.7 (49) 61.0 (56) 20.1 (21) 36.5 (43)   43.3 (43) 
 Soft drinks   121.7 (195) 110 (129) 124 (147) 23.0 (70) 46.4 (135) 131.0 (227) 100.0 (194)   41.0 (119) 

DK-CopAa = Denmark (Copenhagen and Aarhus) cohort; GER-Pot = Germany (Potsdam) cohort; IT-Flo = Italy (Florence) cohort; NL-AmMa = the Netherlands (Amsterdam and Maastricht) cohort;  
NL-Doe = Doetinchem cohort; UK-Nor = United Kingdom (Norfolk) cohort. Data are means (SD) or percentages. 
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3.1.2 Weight gain across subgroups of the study populations 

Mean annual weight gain according to subgroups of the training and validation population is 

presented in Table 7. In both training and validation set, mean absolute weight gain per year 

was higher among men and decreased with increasing duration of follow-up. Further, weight 

gain constantly decreased across groups of age and baseline BMI. Large differences were 

found across categories of smoking habits. Weight gain was twice as large among 

individuals who stopped smoking than among stable non-smokers. 

 

Table 7. Annual weight gain across subgroups of the training and validation set  
     

   Training population Validation population 

    Weight gain (g/y) *  Weight gain (g/y) * 
       

All, N  47,203 386.5 (734) 115,099 522.6 (1054) 
      
  %  %  

Sex      
 Men  41.1 414.5 (738) 19.5 611.8 (1145) 
 Women  58.9 367.0 (730) 80.5 500.9 (1029) 
       

Duration of follow-up (y)      
 <3  3.3 1383.3 (1472) 29.0 788.1 (1489) 
 3 – 5  14.5 792.5 (943) 59.0 421.0 (820) 
 5 – 8  59.1 289.4 (635) 11.9 382.1 (588) 
 ≥8  23.0 237.5 (386) 0.2 285.1 (303) 
      

Baseline age group (y)      
 35 – < 45   18.3 501.3 (655) 21.7 515.1 (1128) 
 45 – < 55   56.2 377.3 (741) 53.6 543.4 (1036) 
 55 – < 65   25.5 324.5 (760) 24.7 483.9 (1022) 
       

Baseline BMI category      
 <23 kg/m²  30.7 442.9 (613) 52.8 513.3 (954) 
 23 – <27 kg/m²  49.1 390.1 (728) 31.6 576.1 (1085) 
 27 – <30 kg/m²  20.2 292.3 (889) 15.7 446.4 (1280) 
       

Physical activity at work      
 Sedentary  44.9 381.7 (704) 32.0 543.9 (1078) 
 Standing  21.1 397.1 (713) 38.5 507.7 (1018) 
 Manual  19.1 389.6 (771) 6.6 680.5 (1070) 
 Non-workers  14.8 381.9 (797) 22.9 471.8 (1069) 
      

Education      
 No school/primary school  21.7 399.3 (792) 24.1 507.1 (1117) 
 Techn./profess. school  37.9 389.1 (760) 14.4 610.7 (1115) 
 Secondary school  13.8 369.6 (687) 27.9 513.6 (1006) 
 University degree  26.6 381.2 (666) 33.6 503.3 (1016) 
       

Smoking habits      
 Non-smokers  69.7 368.9 (697) 79.4 514.9 (1021) 
 Stable smokers  21.4 333.1 (759) 14.2 497.7 (1133) 
 Started smokers  2.0 173.7 (820) 3.1 361.9 (1097) 
 Quitters  6.9 789.3 (850) 3.3 965.3 (1292) 

* All values are arithmetic means (SD).  
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3.1.3 Incidence of substantial weight gain 

During an average follow-up of 6.2 years (291,748 person-years, PY), a total of 6,471 men 

and women gained ≥10% of baseline weight in the training population. In the validation 

sample, a total of 10,785 participants experienced substantial weight gain during a mean 

follow-up of 3.6 years (409,909 PY). Incidence rates (per 10,000 PY) for the training and 

validation population are shown in Figure 9. The highest incident rates were observed in the 

cohorts of NL-AmMa, IT-Flo and GER-Pot, while the lowest was found in the Danish cohort. 

However, it has to be noted that despite rigorous exclusion criteria in respect of age, the age 

distribution differs in part between study centres, e.g. the Danish cohort only included 

subjects aged 50 to 65 years at recruitment. Because weight gain is related to age (see 

Table 6), this may explain the comparably low incidence of substantial weight gain observed 

in the Danish cohort. Also, none of the cohorts is a representative sample of the underlying 

source population and direct comparison of country-specific crude incidence rates may 

warrant caution. Incidence of substantial weight gain was consistently higher in women than 

in men, for instance, 262 vs. 162 per 10,000 PY in the total training sample. Overall, the 

largest contribution of cases was from GER-Pot (32%), DK-CopAa (31%) and IT-Flo (20%).  

 

 

 

Figure 9. Incidence rates of substantial weight gain (per 10,000 person-years) across 
cohorts of the training and in the validation sample 
Substantial weight gain was defined as gaining ≥10% of baseline weight during follow-up. 
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3.2 Risk score for substantial weight gain 

3.2.1 Selection of predictor variables and computation of the risk score 

To account for heterogeneity between centres with respect to the effect size of some 

predictors, stratified Cox regression models were conducted (App. Table 3) and variables 

that were predictive of SWG in at least two cohorts in the same direction were retained for 

the final model. The final prediction model was then defined on the basis of the following 

factors: age, sex, baseline body weight and height, technical school, secondary school, 

university, cessation of smoking, sports, non-consumption of alcohol, moderate consumption 

of alcohol, intake of fruits and vegetables, red and processed meat, poultry, bread, butter and 

margarine, cake and cookies, and soft drinks. This final regression model was run in each of 

the six cohorts and the combined effect across cohorts was estimated using random-effects 

meta-analysis. Exemplarily, the forest plots for the relation of sports and intake of red and 

processed meat with risk of SWG are displayed in Figure 10. The remaining graphs can be 

found in the appendix (App. Figure 3). Heterogeneity was found between predictors and 

study centre, as observed by the range in hazard ratios (HR) among centres. For instance, 

the HRs ranged from 1.07 in UK-Nor to 1.46 in NL-Doe for each daily increase in red and 

processed meat intake of 100g. However, confidence intervals did overlap for most, though 

not all, predictors. 

 

Figure 10. Association of a) sports (per hour/week) and b) intake of red and processed 
meat (per 100g/d) with risk of substantial weight gain across cohorts of the training 
sample and combined 

b)  

a)  
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The pooled estimates of relative risk for the association of all retained predictors with risk of 

SWG are presented in Table 8. Baseline age and weight as well as education, sports and 

alcohol consumption were inversely related to risk of SWG. Women had higher risks of 

gaining ≥10% of baseline weight than men and individuals who stopped smoking were also 

at higher risk of SWG in comparison to all other categories of smoking habits. With respect to 

diet, intake of fruits and vegetables, bread, butter and margarine as well as cake and cookies 

showed an inverse association with risk of SWG, while higher intake of meat and soft drinks 

was related to higher risks. 

 

Table 8. Pooled estimates of relative risk from random-effects meta-analyses for the 

association of retained predictors with substantial weight gain in the training sample* 

Predictor β Hazard Ratio 

(95% CI) 

Points 

allocated 
    

Age (years) -0.035731 0.96 (0.96 – 0.97) -3.57 

Sex (Female vs. Male) 0.208152 1.23 (1.07 – 1.41) 20.82 

Baseline weight (kg) -0.022348 0.98 (0.97 – 0.99) -2.23 

Baseline height (cm) 0.003793 1.004 (0.99 – 1.02) 0.38 

Technical school -0.174234 0.84 (0.78 – 0.90) -17.42 

Secondary school -0.196867 0.82 (0.68 – 0.99) -19.69 

University -0.319379 0.73 (0.63 – 0.84) -31.94 

Smoking cessation 1.090748 2.98 (2.21 – 4.01) 109.07 

Sports (h/week) -0.043325 0.96 (0.94 – 0.98) -4.33 

No alcohol 0.159991 1.17 (1.03 – 1.34) 16.00 

Alcohol >6 to ≤ 18g/d -0.210474 0.81 (0.74 – 0.89) -21.05 

Alcohol >18 to ≤ 30g/d -0.242326 0.78 (0.66 – 0.94) -24.23 

Alcohol >30 to ≤ 60g/d -0.251157 0.78 (0.64 – 0.95) -25.12 

Fruits and vegetables (per 125g/d) -0.030047 0.97 (0.95 – 0.99) -3.00 

Red and processed meat (per 100g/d) 0.172187 1.19 (1.12 – 1.26) 17.22 

Poultry (per 50g/d) 0.182238 1.20 (1.11 – 1.29) 18.22 

Bread (per 50g/d) -0.036353 0.96 (0.95 – 0.98) -3.64 

Butter and margarine (per 20g/d) -0.034902 0.97 (0.90 – 1.04) -3.49 

Cake and cookies (per 50g/d) -0.065713 0.94 (0.88 – 0.995) -6.57 

Soft drinks (per 250g/d) 0.093126 1.10 (1.06 – 1.14) 9.31 

*Substantial weight gain was defined as ≥10% of baseline weight during follow-up. 
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Next, β-coefficients were used to assign score points for each variable and, for each 

individual, a risk score (RSi) was calculated as a linear combination of the single predictors 

according to the formula below.  

RSi  = 500 (constant)  

  – 3.57 * age (y) 

  + 20.82 * sex (f vs. m)  

  – 2.23 * weight (kg) 

  + 0.38 * height (cm)  

  – 17.42 * technical school 

  – 19.69 * secondary school 

  – 31.94 * university 

  + 109.07 * smoking cessation 

  – 4.33 * sports (hours/week) 

  + 16.00 * no alcohol consumption 

  – 21.05 * alcohol consumption (>6 to ≤18g/d) 

  – 24.23 * alcohol consumption (>18 to ≤30g/d) 

  – 25.12 * alcohol consumption (>30 to ≤60g/d) 

  – 3.00 * fruits and vegetables (per 125 g/d) 

  + 17.22 * red and processed meat intake (per 100g/d) 

  + 18.22 * poultry (per 50g/d) 

  – 3.64 * bread (per 50g/d) 

  – 3.49 * butter/margarine (per 20g/d) 

  – 6.57 * cake and cookies (per 50g/d) 

  + 9.31 * soft drinks (per 250g/d) 

 

The pooled estimate of the background survival probability at 5 years estimated at average 

values of the predictors was 0.9413. This means that the “average” individual had a 

probability of 94% to survive the following 5 years without gaining ≥10% of his/her baseline 

body weight. Conversely, the 5-year risk of experiencing SWG was 6% for this hypothetical 

subject. The corresponding risk score points were 208.65 points. For each individual, the 

probability of ≥10% baseline-based weight gain within the next 5 years [P(SWG,5y)] was 

then calculated by inserting the individual’s risk score into the following survival function 

while correcting for the averages of the participants’ risk factors: 

 

)100/)65.208RSexp((
i

i9413.01)y5,SWG(P −−=  
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3.2.2 Description of the risk score 

Figure 11 shows the absolute risk of substantial weight gain over 5 years across the whole 

range of observed risk score points in the training sample. A risk score of 100 and 400 points 

corresponded to a 5-year absolute risk of 2.0% and 33.6%, respectively. The lowest score 

observed in the training population was 9 (0.1% risk), while the highest was 450 (49% risk). 

The relative risks (95% CIs) of SWG according to quintiles of the risk score with the first 

quintile as the reference category were 1.67 (1.49–1.87), 2.07 (1.85–2.30), 2.71 (2.44–3.01), 

and 4.23 (3.84–4.67), respectively (data not shown). The corresponding cut-off points for the 

risk score across quintiles were <165, ≥165–<193, ≥193–<218, ≥218–<249, and ≥249, 

respectively. 

 

 

Figure 11. Absolute risk of substantial weight gain according to points from the score  
Substantial weight gain was defined as gaining ≥10% of baseline weight during follow-up. 

 

 

An illustrative example for the calculation of the risk score and the corresponding 5-year risk 

of SWG for two hypothetical individuals is given in Table 9. Individual 1 is a slightly 

overweight man, 39 years old, who obtained a technical school degree, gives up smoking, 

does no sports and follows a diet high in meat (225 g/day) and low in vegetables (125 g/d) 

and bread (50 g/d). For this hypothetical person, the probability of experiencing substantial 

weight gain within the following 5 years was 31.9%. In contrast, the second individual, same 

age and sex, is a stable non-smoker, has a university degree, exercises 2.5 hours per week 

and follows a diet high in fruits and vegetables (500 g/d) and bread (150 g/d), but low in meat 
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(50 g/d). The person has a risk of 5.5% to gain ≥10% of his current body weight during the 

next 5 years.  

 

Table 9. Example for the calculation of the individual risk of experiencing substantial 

weight gain within the following 5 years for two hypothetical individuals* 
 

 Individual 1 Individual 2 

Predictor 

Points from 

the risk 

score Value † 

Individual 

points ‡  Value † 

Individual 

points ‡ 
 

Constant   500  500 

Age (years) -3.57 39 -139.2 39 -139.2 

Sex (Female vs. Male) 20.82 0 0 0 0 

Baseline weight (kg) -2.23 72 -160.6 64 -142.7 

Baseline height (cm) 0.38 170 64.6 169 64.2 

Technical school -17.42 1 -17.4 0 0 

Secondary school -19.69 0 0 0 0 

University -31.94 0 0 1 -31.9 

Smoking cessation 109.07 1 109.1 0 0 

Sports (h/week) -4.33 0 0 2.5 -10.8 

No alcohol 16.00 0 0 0 0 

Alcohol >6 to ≤ 18g/d -21.05 0 0 1 -21.1 

Alcohol >18 to ≤ 30g/d -24.23 0 0 0 0 

Alcohol >30 to ≤ 60g/d -25.12 0 0 0 0 

Fruits and vegetables (per 125g/d) -3.00 1 -3.0 4.0 -12.0 

Red and processed meat (per 100g/d) 17.22 2 34.4 1 8.6 

Poultry (per 50g/d) 18.22 0.5 9.1 0 0 

Bread (per 50g/d) -3.64 1.5 -3.6 3.0 -10.9 

Butter/margarine (per 20g/d) -3.49 0 0 0.1 -0.3 

Cake and cookies (per 50g/d) -6.57 0 0 0.3 -2.0 

Soft drinks (per 250g/d) 9.31 0 0 0 0 

      

Sum of risk score points (RS)   393.4  201.9 
      

5-year absolute risk of SWG (%)¶   31.9  5.5 

* Substantial weight gain (SWG) was defined as gaining ≥10% of baseline weight during follow-up. 
† For dietary factors, the value equals the number of portions of the defined size. 
‡ Individual points were calculated by multiplying the points from the risk score with the value of the respective variable. 
 

¶ 5-year risk of SWG calculated using the following formula:  
)100/)65.208RSexp((

9413.01)y5,SWG(P
−

−=  
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Table 10 depicts absolute risks of SWG across various categories of predictors using cross-

classification of sex, age group and categories of sports and intake of red and processed 

meat. The remaining predictors in the score were held constant at mean values (continuous 

variables) or reference category (categorical variables). Apart from absolute risks of SWG 

according to different exposure strata, changes in risk with changing exposure can be read 

from this table. For instance, a man, aged 40 years, doing no sports, and consuming 150g of 

red and processed meat per day had a 10.8% risk of experiencing SWG within the next 5 

years. If he reduced meat intake by 50g/d and started doing sports for 2 hours/week, he 

would lower his risk to 9.2%, indicating a difference in risk of 1.6 percentage point, with all 

other predictors held constant. Overall, the impact of changes in these two modifiable risk 

factors was rather low compared to the decreasing risk accompanied by the natural process 

of aging. Women had generally higher risks than men in all combinations of risk factors. 

 

Table 10. Predicted 5-year risk of substantial weight gain for men and women across 

categories of age, sport and red and processed meat intake* 

   Men    Women 
                

   
Red and processed meat intake 

(g/d)  

Age 
(y)  

Red and processed meat intake 
(g/d) 

                

   25 50 100 150 200    25 50 100 150 200 
                

0  8.8 9.2 10.0 10.8 11.8    10.8 11.2 12.2 13.2 14.3 
1  8.5 8.8 9.6 10.4 11.3    10.3 10.8 11.7 12.7 13.7 
2  8.1 8.5 9.2 10.0 10.8  40  9.9 10.3 11.2 12.2 13.2 
3  7.8 8.1 8.8 9.6 10.4    9.5 9.9 10.8 11.7 12.7 
4  7.5 7.8 8.5 9.2 10.0    9.1 9.5 10.3 11.2 12.2 

               
               
0  6.3 6.5 7.1 7.7 8.4    7.7 8.0 8.7 9.4 10.2 
1  6.0 6.3 6.8 7.4 8.0    7.4 7.7 8.3 9.0 9.8 
2  5.8 6.0 6.5 7.1 7.7  50  7.1 7.4 8.0 8.7 9.4 
3  5.5 5.8 6.3 6.8 7.4    6.8 7.1 7.7 8.3 9.0 
4  5.3 5.5 6.0 6.5 7.1    6.5 6.8 7.4 8.0 8.7 

               
               
0  4.4 4.6 5.0 5.5 5.9    5.4 5.7 6.2 6.7 7.3 
1  4.2 4.4 4.8 5.2 5.7    5.2 5.4 5.9 6.4 7.0 
2  4.1 4.2 4.6 5.0 5.5  60  5.0 5.2 5.7 6.2 6.7 
3  3.9 4.1 4.4 4.8 5.2    4.8 5.0 5.4 5.9 6.4 

S
p

o
rt

s
 (

h
/w

k
) 

4  3.7 3.9 4.2 4.6 5.0    4.6 4.8 5.2 5.7 6.1 
                

* Substantial weight gain (SWG) was defined as gaining ≥10% of baseline weight during follow-up. All other predictors were 
held constant at mean values (continuous variables) or reference category (categorical variables). 
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 4.1 - < 6 
 6.1 - < 8 
 8.1 - < 10  
 ≥ 10 
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3.2.3 Predictive performance of the risk score 

3.2.3.1 Internal validation 

The discriminatory ability of the score assessed by the aROC (95% CI) was 0.67 (0.66–0.68) 

in the whole training sample (Figure 12). This implies that individuals who experienced SWG 

within 5 years of follow-up had higher predicted risks than persons not experiencing SWG 

approximately 67% of the time. The discriminatory accuracy showed considerable variation 

across single study centres of the training sample. In UK-Nor, NL-Doe, NL-AmMa, IT-Flo, 

GER-Pot, and DK-CopAa, the area under the ROC curve (95% CI) was 0.65 (0.62–0.68), 

0.70 (0.66–0.74), 0.76 (0.72–0.80), 0.66 (62–0.69), 0.69 (0.66–0.71), and 0.69 (0.67–0.70), 

respectively. In addition to between-cohort differences, the score generally performed better 

among men than among women; specifically, in the total training sample, the aROCs (95% 

CI) were 0.71 (0.69–0.73) and 0.63 (0.62–0.64) for men and women, respectively. In UK-Nor, 

NL-Doe, NL-AmMa, IT-Flo, GER-Pot, and DK-CopAa, the aROCs (95% CI) for men vs. 

women were 0.65 (0.58–0.73) vs. 0.58 (0.54–0.62), 0.71 (0.64–0.79) vs. 0.64 (0.58–0.69), 

0.76 (0.67–0.85) vs. 0.72 (0.67–0.77), 0.62 (0.50–0.74) vs. 0.61 (0.59–0.66), 0.73 (0.69–

0.78) vs. 0.62 (0.60–0.65), and 0.72 (0.70–0.74) vs. 0.65 (0.63–0.67), respectively. 

 

 

Figure 12. Receiver operating characteristic curve for the prediction of substantial 
weight gain (gaining ≥10% of baseline weight) over 5 years in the training sample  
 

The proportion of incident cases of SWG and non-cases across categories of the risk score 

is illustrated in Figure 13. In case of perfect discrimination, all cases would be assigned a 

aROC = 0.67 (0.66 – 0.68) 
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higher score value than non-cases and two distinct distributions would be obtained. In line 

with the ROC curve, the figure shows that the score’s ability to distinguish between cases 

and non-cases was moderate. Specifically, the more one gets to the extreme values of the 

score, the better the discrimination was while in the middle range of the score, the score was 

not able to adequately discriminate cases and non-cases.  

 

Figure 13. Proportion of cases and non-cases across score points in the training set  
 

A plot of sensitivity and specificity against the points from the risk score illustrating the trade-

off between both measures is shown in Figure 14. A cut-off value maximising sensitivity did 

so at the expense of specificity and vice versa. At a score value of 218, sensitivity and 

specificity were both 62%. 

 

Figure 14. Plot of sensitivity and specificity across points from the risk score 
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In order to identify high-risk individuals to undergo intervention programmes or to be included 

in clinical trials, designation of a cut-off point to define high-risk individuals is necessary. The 

decision on such an appropriate cut-off value may be taken by evaluating measures of the 

model’s discriminatory accuracy, including sensitivity, specificity, positive and negative 

predictive values across a wide range of possible cut-offs. These test characteristics 

according to various cut-off points of the risk score are presented in Table 11. For example, 

a cut-off point of ≥175 points corresponded to a sensitivity and specificity of 88.1% and 

27.7%, respectively, implying that the probability of having a score value of 175 or above 

among those individuals who actually experience SWG is 88.1%. Likewise, the probability of 

having a risk score below this threshold among those subjects who do not experience SWG 

is 27.7%. The corresponding Youden’s index was J=0.158. The probability of experiencing 

SWG given that the risk score is above the threshold of ≥175 (PPV) and the probability of not 

experiencing SWG given that the test is below this threshold (NPV) were 8.0% and 95%, 

respectively. All NPV’s lay above 90% implying a high ability of the score to rule out 

substantial weight gain within the following 5 years. From the table, the best cut-off value 

was ≥225 score points, with J=0.234. Of the total population, 34% had a score of 225 or 

higher. A score of ≥225 captured 56% of the cases who will experience SWG. Furthermore, 

67% of the persons who do not experience SWG had a score <225. The corresponding PPV 

and NPV were 10.9% and 95.6%, respectively. 

 

Table 11. Sensitivity, specificity, positive and negative predictive value for various cut-

off points of the risk score in the training sample 

Score 
points 

Percentage 
of the 
population  

Sensitivity 
(%) 

Specificity 
(%) 

Youden’s 
index (J) 

PPV (%) NPV (%) 

       

≥100 99.1 99.9 0.9 0.008 6.7 99.5 
≥125 96.0 99.2 4.2 0.034 6.9 98.7 
≥150 87.8 96.6 12.9 0.095 7.3 98.2 
≥175 73.3 88.1 27.7 0.158 8.0 97.0 
≥200 45.2 75.1 47.3 0.224 9.2 96.4 
≥225 34.4 56.3 67.1 0.234 10.9 95.6 
≥250 19.4 39.1 82.1 0.212 13.5 95.0 
≥275 10.4 26.2 90.8 0.170 16.9 94.5 
≥300 5.3 16.6 95.5 0.121 21.0 94.1 
≥325 2.8 10.0 97.7 0.077 23.7 93.8 
≥350 1.4 5.9 98.9 0.048 28.2 93.6 
≥375 0.6 2.7 99.6 0.023 29.2 93.5 

PPV = positive predictive value; NPV = negative predictive value. Youden’s index was calculated according to the following 
formula: J = (sensitivity (%) + specificity (%) – 100)/100. 
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Apart from the score’s ability to discriminate between cases and non-cases, its ability to 

quantify absolute risk was evaluated. Calibration of the score was evaluated by comparing 

observed and predicted probabilities across deciles of predicted risk. In general, the 

estimated probability of experiencing SWG agreed very well with the observed proportion of 

incident cases across deciles (Figure 15), indicating good calibration of the score in the total 

training population (HLT: p=0.15). Although slight differences in the ability of quantifying risk 

were observed across cohorts, the HLT indicated no evidence of miscalibration in any of 

them (App. Figure 4).  

 

Figure 15. Calibration plot showing observed proportion of cases across deciles of 
predicted risk in the training sample 
Hosmer-Lemeshow Test: p=0.15. 

 

In addition to the HLT, Table 12 compares the observed proportion of cases with the 

predicted risk across more intuitive categories of predicted risk. The table shows that the 

observed incidence increased with increasing score points and lay within the range predicted 

by the score, also indicating that the score quantifies risk very well.  

 

Table 12. Incidence of substantial weight gain within the first 5 years of follow-up 

across categories of predicted risk in the training sample 

Estimated  
probability (%) 

Score points Total N Cases (n) Observed 
incidence (%) 

     

<5 <192 18,588 633 3.4 
5 – <10 192 – <264 22,235 1,533 6.9 
10 – <15 264 – <307 4,292 517 12.1 
15 – <20 307 – <339 1,174 233 19.9 
20 – <25 339 – <364 515 107 20.8 
≥25 ≥364 399 126 31.6 

aROC = 0.67 (0.66 – 0.68) 
p-value for miscalibration: 

p=0.15 
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3.2.3.2 External validation 

In the independent study sample, the area under the ROC curve (95% CI) implied a poor 

discriminatory ability of the risk score, with a c-statistic of 0.57 (0.566–0.578) (Figure 16). 

This means that the risk score performed only slightly better than a random guess in 

distinguishing cases from non-cases in this external population. To rule out influences of 

differences in the structure of the population with respect to sex between the training and 

validation sample, the performance of the risk score was assessed after exclusion of those 

cohorts consisting only of women (France, Utrecht and Naples); however, the discriminatory 

ability only slightly improved to 0.59 (0.58 to 0.59). Additional exclusions refer to all subjects 

for whom only self-reported body weight at baseline was available, but results remained 

virtually unchanged. Importantly, as in the training sample, there were considerable 

differences in discriminatory accuracy of the score between the separate cohorts of the 

validation sample. Specifically, the aROCs (95% CIs) for France, IT-Naples, Spain, UK-

General Population, UK-Health Conscious, NL-Utrecht, GER-Heidelberg, and Sweden were 

0.56 (0.55–0.57), 0.60 (0.50–0.70), 0.62 (0.60–0.63), 0.65 (0.61–0.68), 0.58 (0.57–0.59), 

0.62 (0.61–0.64), 0.66 (0.63–0.68), and 0.66 (0.64–0.67), respectively. 

 

Figure 16. Receiver operating characteristic curve for the prediction of substantial 
weight gain (gaining ≥10% of baseline weight) over 5 years in the external validation 
sample  
 

The calibration plot (Figure 17, HLT: p<0.0001) as well as the comparison of observed 

incidence with predicted risk across the chosen categories of predicted risk (Table 13) 

aROC = 0.57 (0.566–0.578) 
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showed that the score was able to adequately quantify absolute risk in the external validation 

sample, though not as well as in the training sample. The calibration plot indicated that the 

score somewhat overestimated risk in the lower and upper range of the score while it slightly 

underestimated risk in the middle range of the score. Cohort-stratified analyses, however, did 

not reveal a particular centre to be responsible for the slight evidence of miscalibration (all p-

values >0.05).  

 

Figure 17. Calibration plot showing observed proportion of cases across deciles of 
predicted risk in the external validation sample  
 

 

Table 13. Incidence of gaining ≥10% of baseline weight within the first 5 years of 

follow-up across categories of predicted risk in the validation sample 

Estimated  
probability (%) 

Score points Total N Cases (n) Observed 
incidence (%) 

     

< 5 < 192 31,111 1,899 6.1 
5 - < 10 192 to < 264 65,227 5,950 9.1 
10 - < 15 264 to < 307 14,231 1,481 10.4 
15 - < 20 307 to < 339 2,889 398 13.8 
20 - < 25 339 to < 364 882 180 20.4 
≥ 25 ≥ 364 759 190 25.0 
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3.2.4 Robustness of the risk score 

Because there were considerable differences in the predictive accuracy of the risk score 

between centres, both within the training sample and within the validation sample, the 

question arose whether centre-specific models might yield better predictive performances 

than the overall, universal model. Hence, to further investigate this issue, two approaches 

were followed for all cohorts of the training and validation sample. First, the overall risk score 

was re-estimated in each cohort by using all predictors included in the overall risk score but 

assigning weights to the predictors based on centre-specific regression coefficients. Second, 

centre-specific predictors were identified by stepwise Cox PH regression and used to 

construct population-specific risk scores (for the training sample, centre-specific predictors 

can be found in App. Table 3). Results in terms of discriminatory ability and calibration for 

these two approaches in comparison to the overall model among centres of the training and 

validation sample are presented in Table 14. For the majority of centres in the training set, 

model performance changed only marginally when the overall risk score was re-estimated 

using centre-specific regression coefficients of all predictors or when centre-specific risk 

scores were derived. An exception was the cohort of UK-Norfolk for which the re-estimated 

overall model and the centre-specific prediction model obtained moderately higher aROCs 

than the overall model (0.69 and 0.68 vs. 0.65). Further, it seems noteworthy that in both 

Dutch cohorts almost the same discriminatory ability was achieved in the centre-specific 

prediction models in comparison to the overall model although a remarkably reduced number 

of variables were included (9 vs. 20 predictors for NL-Doe and 11 vs. 20 predictors for NL-

AmMa). Also among most centres of the validation population, only slight improvements in 

model performance were observed when regression coefficients were re-estimated or 

complete centre-specific prediction models were developed. Exceptions were the cohorts of 

France and Italy-Naples among which the re-estimated model exhibited considerably higher 

predictive accuracy than the original overall model (0.63 vs. 0.56 and 0.70 vs. 0.61, 

respectively).  

As the overall risk score performed better among men than among women, it was further 

investigated whether sex-specific prediction models may yield higher predictive accuracy 

than the overall model. However, model performance in terms of discrimination did virtually 

not change in sex-specific models, further underlining the finding of a considerably lower 

predictability of weight gain among women compared to men. Also, the inclusion of 

information on menopausal status and use of hormones for menopause at recruitment did 

not materially alter the predictive accuracy among women.  
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Table 14. Performance of the overall risk score compared to the re-estimated overall 

score and centre-specific scores in single cohorts of the training and validation set 

 Overall model Re-estimated overall 
model * 

Centre-specific 
prediction models † 

 aROC (95% CI) HLT  aROC (95% CI) HLT  aROC (95% CI) HLT  
       

 

Training sample 
       

UK-Nor 0.65 (0.62–0.68) 0.50 0.69 (0.65–0.72) 0.14 0.68 (0.65–0.71) 0.15 

NL-Doe 0.70 (0.66–0.74) 0.15 0.72 (0.68–0.76) 0.53 0.71 (0.66–0.75) 0.40 

NL-AmMa 0.76 (0.72–0.80) 0.89 0.76 (0.72–0.80) 0.94 0.75 (0.71–0.79) 0.97 

IT-Flo 0.66 (0.62–0.69) 0.14 0.67 (0.64–0.70) 0.17 0.68 (0.65–0.71) 0.82 

GER-Pot 0.69 (0.66–0.71) 0.05 0.68 (0.66–0.71) 0.05 0.68 (0.66–0.70) 0.07 

DK-CopAa 0.69 (0.67–0.70) 0.38 0.69 (0.68–0.71) 0.84 0.69 (0.68–0.71) 0.08 

       

Validation Sample 
       

Total  0.57 (0.57–0.58) <.0001 0.61 (0.60–0.61) 0.003 - - 

France 0.56 (0.55–0.57) 0.08 0.63 (0.62–0.64) 0.002 0.63 (0.62–0.64) 0.01 

It-Nap 0.60 (0.50–0.70) 0.49 0.70 (0.61–0.80) 0.52 0.66 (0.54–0.78) 0.23 

Spain 0.62 (0.60–0.63) 0.07 0.65 (0.63–0.66) 0.23 0.65 (0.63–0.66) 0.33 

UK-GP 0.65 (0.61–0.68) 0.60 0.66 (0.63–0.69) 0.53 0.65 (0.62–0.69) 0.08 

UK-HC 0.58 (0.57–0.59) 0.35 0.60 (0.59–0.61) 0.71 0.61 (0.60–0.62) 0.05 

NL-Utr 0.62 (0.61–0.64) 0.58 0.63 (0.62–0.65) 0.37 0.64 (0.62–0.65) 0.49 

Ger-Hd 0.66 (0.63–0.68) 0.96 0.67 (0.64–0.70) 0.87 0.67 (0.64–0.70) 0.88 

Swe-Mal 0.66 (0.64–0.67) 0.06 0.67 (0.65–0.68) 0.55 0.67 (0.65–0.69) 0.88 

* Using centre-specific regression coefficients as weights for all predictor variables included in the overall model.  
† Including only centre-specific predictor variables as identified from stepwise Cox regression (for training sample see App. 
Table 2). 
HLT = p-value Hosmer-Lemeshow Test to evaluate calibration of the model. 
DK-CopAa = Denmark (Copenhagen and Aarhus) cohort; GER-Pot = Germany (Potsdam) cohort; IT-Flo = Italy (Florence) 
cohort; NL-AmMa = the Netherlands (Amsterdam and Maastricht) cohort; NL-Doe = Doetinchem cohort; UK-Nor = United 
Kingdom (Norfolk) cohort; IT-Nap = Italy (Naples) cohort; UK-GP = United Kingdom (General population) cohort; UK-HC = 
United Kingdom (Health Conscious) cohort; NL-Utr = The Netherlands (Utrecht) cohort; GER-Hd = Germany (Heidelberg) 
cohort; SWE-Mal = Sweden (Malmö) cohort. 
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4 Discussion 

The research described in this thesis is focused on the development and validation of a risk 

score predicting substantial weight gain over 5 years among middle-aged European men and 

women. The risk score was developed in six cohorts of the EPIC study, comprising 47,203 

men and women, and subsequently validated in eight independent EPIC cohorts, involving 

115,099 men and women. The risk score, which was based on easily assessable information 

on several socio-demographic, dietary and lifestyle factors, allowed for accurately estimating 

risk of SWG during the following 5 years in various European populations. The discriminatory 

accuracy of the risk score was moderate in the six training cohorts and reduced in the 

external validation cohorts. Importantly, there was considerable variation in discriminatory 

ability between study populations (aROCs ranging from 0.56–0.76) which mainly persisted 

when population-specific risk scores were developed. This finding suggests that the present 

risk score does not predict 5-year risk of SWG equally well across European populations, but 

it also indicates that the performance of the score is hardly inferior to population-specific risk 

score models. 

4.1 Methods 

4.1.1 Study design and population  

Major strengths of the present study are its prospective design, the large sample size, and 

the diverse study cohort. It may be considered, though, that the single study cohorts cannot 

be assumed to be representative of the underlying source populations. Study populations 

represent samples of convenience of volunteers [154] and 30% of the original cohort had to 

be excluded due to lack of follow-up data. Consequently, the descriptive characteristics of 

the study population in the present study, including the incidence of SWG, the range and 

distribution of predictors, risk score points and absolute risks of SWG, may not be 

generalisable to the underlying European population which might be considered a potential 

weakness of the study. However, this selection of participants should not have affected the 

internal validity of the present study. According to Rothman et al. bias occurs when non-

response or loss to follow-up is associated with both exposure and disease [172], which is 

rather unlikely in the present study. Therefore, comparisons of incidences between exposure 

groups among the study population might well reflect the ratios of risks being present in 

similarly defined subgroups of the source population, independent of differing absolute risks 

[173, 174]. Valid estimation of relative risks is a fundamental requirement to construct a risk 

score with high predictive performance and ensures that the score also applies to subjects in 

the source population. Clearly, the same risk factor profile would result in the same absolute 

risk. 
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4.1.2 Data quality of predictors and the outcome 

The internal validity and interpretability of the study results depend on the quality of the data 

at hand. In the present study, information on dietary and lifestyle factors was mainly obtained 

by means of self-administered questionnaires at baseline. Questionnaires are most feasible 

for large-scale epidemiologic studies since they are easy to process, inexpensive to be 

administered and the respondent’s burden is lower than for many other assessment 

methods. Habitual dietary intake of the preceding year was assessed using country-specific 

FFQs. The FFQ is a widely used dietary assessment instrument in large epidemiologic 

studies [175, 176]. A general limitation of the FFQ is that participants are required to have a 

good memory to accurately assess frequency and portion size of food consumption during 

the previous year. Further inaccuracies may result from incomplete food lists contained in the 

FFQ [175]. Various pilot studies have been conducted before recruitment of the main study 

cohorts to assess the relative validity and reproducibility of the FFQs used in EPIC [156, 157, 

177-182]. Theses pilot studies showed that the repeatability of the questionnaire was 

generally good, while the validity ranged from modest to good and varied between food items 

and according to country [156, 157]. Clearly, the intake measured with highest validity was 

alcohol (correlation coefficient: 0.63–0.90), however, in general, correlations were not higher 

than 0.4–0.7 for the main food groups. Exemplarily, correlations varied between 0.38 and 

0.70 for meat intake and between 0.30 and 0.60 for vegetable intake across countries. 

Previous studies on the validity of FFQ measurements obtained similar results, and, from this 

perspective, the dietary questionnaires developed for the EPIC study can be considered 

acceptable [156]. Nevertheless, given that the validity varied across food groups and 

countries, relative risk estimates for some food groups (and in some countries) might have 

been less precisely estimated which might have lead to an underestimation of the predictive 

strength of these components in the risk score and might have limited the predictive ability of 

the score.  

Likewise, information on lifestyle factors may suffer from random error and self-reporting bias 

in the measurement which might also have limited the ability to obtain accurate risk 

estimates. For example, some behaviours, i.e. smoking and alcohol, are value-laden and 

prone to underreporting, while others are socially desirable, i.e. physical activity, and likely to 

be overreported. In particular, it was shown that accuracy in recalling physical activity may 

vary according to gender, body weight status and exercise type and level [81]. In this 

respect, several studies have also demonstrated that (structured) high-intensity activities are 

more accurately and reliably recalled than low-intensity behaviours [81]. Because exercise 

activities were exclusively considered in the present study, measurement error may be 

marginal for this predictor.  
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With the exception of smoking status, information on dietary and lifestyle factors has been 

assessed only at a single point in time in the present study. Consequently, the meaning of 

the present findings depends on the stability of dietary and lifestyle habits over time. 

Although it is not expected that middle-aged men and women, the majority of EPIC 

participants, dramatically change their lifestyle and diet over time, slight changes are likely to 

occur over longer periods of follow-up. More importantly, changes in diet or lifestyle, thereby 

changes in energy balance, are a prerequisite for subsequent changes in weight among 

individuals not suffering from weight-influencing diseases. Only fairly recently, a study from 

the US using data of three large prospective cohorts highlighted the impact of changes in 

dietary and lifestyle behaviours on long-term weight gain [183]. Because individuals achieve 

a new steady-state of weight within short time periods after they changed their lifestyle, 

repeated assessments of behavioural factors over time might be important to discern long-

term effects and to identify specific lifestyle changes to be translated into obesity-prevention 

strategies [183]. At this point, however, it should be kept in mind that the purpose of the 

present risk score was to estimate the 5-year risk of SWG based on the current risk profile. 

The inclusion of numerous variables indicating dietary and behavioural changes represents a 

different concept and would have been beyond the scope of this thesis. Future studies might 

however explore whether the incorporation of lifestyle changes improves the predictability of 

weight gain.  

With respect to the assessment of weight change, differences in the measurement of body 

weight at baseline and follow-up between study cohorts may be considered a drawback. 

Although body weight was measured by trained staff in most centres at baseline, local study 

protocols about the participants’ clothing varied between cohorts. At follow-up, body weight 

was professionally measured in two centres, while it was self-reported by the participants in 

the follow-up questionnaire in all other centres and was thus most likely underestimated [184, 

185]. These methodological limitations were accounted for by correcting body weight for 

protocol differences in clothing worn during measurement and by applying prediction 

equations to correct for potential underreporting in self-reported body weight as previously 

described [158]. Because there were only two measures of body weight available for each 

individual, case status could be determined only at the end of follow-up. In order to estimate 

the time point when cases theoretically crossed the threshold of SWG, the extremeness of 

weight gain was judged through an underlying thought of linear weight gain. This is a strong 

assumption about the structure of weight gain that might not hold true. Weight gain is 

reversible, and it is well known that body weight tends to fluctuate over time [186], which may 

lead to repeated cycles of weight loss and recovery [187, 188] that are not reflected in a two-

point-in-time measurement. Thus, some study participants might have experienced periods 

in which they crossed the threshold of SWG during their follow-up although they appeared 
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not to have done so as determined from the two points of measurement. Fluctuations or non-

linear weight gain in general may have resulted in misclassification of cases and non-cases 

and additionally in misspecification of the cases’ survival time, which might have limited the 

predictive performance of the obtained risk score model. However, recent findings from the 

EPIC-Potsdam study using 5 measurements of weight suggest that weight gain can be 

reasonably well approximated by a straight line over a follow-up period of 8 years on the 

population-level [189]. Further, the assumption of linearity, although not fully appropriate, 

appeared to be the most meaningful approach given the structure of the present data and the 

most self-evident assumption to start from. 

4.1.3 Methodological and statistical approaches 

Model building 

The pre-selection of the set of variables to be considered as candidate predictors for the final 

model was mainly based on subject matter knowledge, specifically, on reported or 

hypothesised associations with weight change or risk of overweight/obesity in the literature. 

A second criterion for inclusion was that candidate predictors should be easy to assess by 

questionnaire. The questionnaire approach is commonly used as a first step in risk 

assessment as it does not require blood testing and is thus simple and inexpensive [190]. 

Although only modifiable risk factors can be addressed by intervention strategies, non-

modifiable risk factors like age and current body weight are important components to 

determine an individual’s risk and thus have been previously used in numerous risk 

prediction models for diabetes [11], CVD [119, 125] and cancer [12, 14].  

In order to keep the model parsimonious and easy to use in practice, only the most relevant 

predictors from the set of candidate variables were retained for the final model. The process 

of model specification is considered the most difficult part of prediction modelling [100]. In the 

present study, the selection of the final predictors was based on the variable selection 

method “stepwise” implemented in the PHREG procedure in SAS [166]. Such an automated 

variable selection procedure has several advantages and has been applied in previous 

studies on risk prediction [114, 191]. Such procedures are objective, straightforward to apply 

in modern statistical packages and usually reach the goal of making a model smaller [100]. 

Because the number of predictors retained in the final model is determined by the level of 

significance, the stopping rule for inclusion and exclusion of variables is a central issue [100]. 

As for many procedures, the standard level of significance (α=0.05) is often used. For 

inclusion in a Cox PH model, α=0.1 has also been recommended for selecting variables in 

stepwise regression [192]. Because of different sample sizes across single centres of the 

training sample, a value of α=0.1 was chosen in the present study in order to be less likely to 

reject possibly important variables and to obtain a larger overlap in respect of centre-specific 
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predictors to choose a common set from. Also, in model building, it may be generally better 

to err on the side of caution, i.e. to include a variable rather than to exclude it, and to decide 

on a less stringent level of significance [192]. In this regard, simulation studies have shown 

that noise variables in a model do hardly decrease predictive ability [100]. Despite the 

advantages of the automated stepwise selection procedure, some concerns have also been 

raised about this method, including bias in the estimation of regression coefficients, their 

standard errors and p-values or instability of the selection [100, 172]. Instability of the 

selection refers to the case that different combinations of predictors may actually produce 

similar predictive performances. This implies that the selection of predictors may depend on 

the set of subjects used to develop the model and that the selection is unstable. However, as 

the sample sizes in the present study were sufficiently large (events per variable ≥10 in all 

centres and in three of them even >50 which is considered appropriate for reliable selection 

[100, 101]), it is unlikely, that important predictor variables were missed and that the set of 

predictors would essentially change if a slightly different selection of participants was 

considered for the development of the model. Likewise, the problem of biased estimation of 

coefficients is essentially a problem of small sample size [100]. Also, there was no difference 

in the final set of predictor variables when the other selection methods available in SAS 

(forward and backward selection) were used, which supports the stability of the selected 

model. Ultimately, although many statisticians may have reservations about the use of 

automated variable selection methods, Austin and Tu concluded that these methods are 

appropriate in the setting of prediction modelling if the predictive accuracy of the final model 

is evaluated in an independent population [193], which has been done in the present study.  

Apart from the selection of variables to be included in the final model, the way these 

variables, particularly continuous predictors, are modelled is an important consideration. A 

crucial assumption of the Cox model is that the log hazard of the outcome relates linearly to 

a set of covariates [170]. For continuous variables, however, this linearity assumption may be 

inappropriate and relationships may be more complex. Categorisation of quantitative 

variables has often been criticised as this approach is tied to loss of power and results in risk 

step-functions which are biologically less plausible than smooth relationships [194]. 

Alternatively, (cubic) spline functions, polynomials or fractional polynomials may be used to 

capture non-linear relationships and increase predictive ability of the model [100, 194, 195]. 

However, interpretability of these relationships appears to be difficult and in terms of 

practicability, continuous predictors were modelled using linear terms. Depending on the 

context in which the risk score will be applied, e.g. in general practices or in medical 

research, non-linear modelling of continuous variables may be meaningful to consider, 

though. 
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Model validation 

Performance of the model was evaluated using measures of discrimination and calibration. 

Although the area under the ROC curve, or c-statistic, is very straightforward to interpret and 

the most commonly used measure of discrimination, its short-comings should be noted. One 

of the most obvious concerns is the question of how high discrimination needs to be in order 

to be “high enough” to justify a model [196]. Further, it has been criticised that the aROC 

does not account for the stochastic process of the disease outcome in risk prediction 

modelling [9]. While aROC is a useful method to assess the quality of a test in the diagnostic 

setting, the random nature of the outcome in the prognostic setting is not taken into account.  

Also, the c-statistic is based on ranks and does not consider the actual distribution of risk. 

Thus, minor differences in risk between two individuals, e.g. 1.0% vs. 1.1% would have the 

same impact on the c-statistic as two individuals who are at moderate versus high risk (e.g. 

5% vs. 20%), if their difference in rank is the same [9]. This limitation of the c-statistic may be 

of particular concern in prospective cohorts that are generally characterised by a 

preponderance of individuals at low or very low risk. The fact that the c-statistic is rank-based 

also implies that even in case of perfect discrimination, the predicted risk can be substantially 

different from the actual observed risk [111]. On account of these limitations, the second 

component of model performance, calibration, plays a pivotal role in model validation and 

has been considered in the present study. The Hosmer-Lemeshow Test, which is the most 

popular measure of calibration, was used to formally test for significant differences between 

observed and predicted risk across deciles of predicted risk. This test has been criticised 

because the null hypothesis is that “the model is well calibrated” and the test can only tell 

that there is insufficient evidence of miscalibration [196]. As with the c-statistic, there is no 

clear threshold to decide how much miscalibration would be too much implying that a model 

is not of value. Furthermore, it is very sensitive to the way the groups are formed and large 

sample sizes [110]. Particularly, the latter property needs to be considered in view of the 

large sample size of the present study. Therefore, observed incidence of SWG was also 

compared with predicted risk across intuitively meaningful categories of predicted risk. 

A major strength of the present study is that the performance of the risk score was evaluated 

in independent study populations. A key threat to validity of a prediction model is that the 

model may not solely explain part of the relationship between the outcome variable and its 

predictors, but may also explain accidental variability present in that dataset (idiosyncrasies, 

“random noise”) which does not generalise beyond this particular population sample [100]. 

Collaborative multi-centric studies, such as EPIC, offer the unique opportunity to develop a 

risk score in a non-randomly selected set of centres and validate it in the remaining, 

geographically independent centres. This approach has been followed in the present thesis 

by choosing the cohorts participating in the DiOGenes project to guide model development 
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and the remaining cohorts to test the model. This approach of geographical validation has 

been judged more meaningful than standard techniques such as cross-validation to account 

for overfitting [100]. Further it is noteworthy, that the EPIC study with its multi-centric nature 

comprising countries from Northern to Southern Europe is characterised by large 

heterogeneity in dietary and lifestyle habits which allowed for testing the prediction model in 

several culturally diverse study populations. This aspect can be clearly seen as an 

advantage of the present study and increased the confidence with respect to general 

applicability of the model.  

4.2 Results 

4.2.1 Predictors included in the risk score 

The risk score developed in the present study was based on the following factors: age, sex, 

baseline body weight and height, educational level (technical school, secondary school, 

university), smoking cessation, sports, non-consumption of alcohol, consumption of alcohol 

in moderate amounts, intake of fruits and vegetables, red and processed meat, poultry, 

bread, butter/margarine, cake and cookies, and soft drinks.  

In interpreting the associations between predictors and SWG in the risk score model, it has 

to be kept in mind that the aim of risk prediction is to most accurately predict future disease 

risk on the basis of a few variables reflecting the structure of the data while these predictors 

do not necessarily need to be causally related to the outcome [101]. Thus, in some cases, 

predictors may indeed reflect (established or hypothesised) aetiological associations with 

weight gain in the present study, while in other circumstances, predictors may essentially be 

a marker of other lifestyle factors and reflect behavioural patterns that are more/less 

favourable for the regulation of body weight rather than causal relationships. In the present 

risk score, for example, education, sex and also alcohol may be considered non-causal 

predictors. Although numerous epidemiological studies reported on the aetiological role of 

alcohol consumption in weight gain, results are conflicting [74], alcohol consumption may 

also represent a measure of other dietary and lifestyle factors. Specifically, in sex-specific 

analyses, alcohol consumption was predictive of a lower risk for SWG particularly among 

women for whom it was shown before that higher alcohol consumption is related to higher 

education [197, 198] which in turn may be accompanied by a greater health and body weight 

consciousness.  

In contrast, most of the dietary predictors identified in the present study have also emerged 

as aetiological factors in previous epidemiological studies. For instance, higher intake of 

fruits and vegetables and bread were associated with lower risks of SWG, while intake of 

meat and soft drinks showed a positive relation to the outcome in the current analysis and in 



Discussion  65 

previous studies [17, 34, 35, 37, 42, 43, 66]. For these predictors, clear hypotheses about 

causal associations with weight gain do exist (see chapter 1.2.5) and these modifiable 

factors may be well addressed by prevention strategies. The inverse association observed 

with intake of cake and cookies was striking, though. Evidence from aetiological studies is 

scarce and conflicting [33, 35, 62]. Because cake and cookies tend to be energy dense, 

higher intake may cause many people to exceed daily energy requirements and would be 

suspected to increase risk of weight gain. Since cake and cookies are usually perceived as 

socially undesirable foods, one explanation for the observed inverse association could be 

selective misreporting of intake in the way that subjects experiencing weight problems 

underreported consumption. An inverse association might also have occurred if participants 

experiencing weight gain or weight fluctuations before baseline might have reduced their 

intake of cake and cookies. This confounding effect of post hoc changes in intake of cakes 

and cookies was accounted for by excluding cases occurring during the first two years of 

follow-up; however, findings remained virtually unchanged. Another explanation may refer to 

the number of eating occasions per day. Because cake and cookies may be mainly 

consumed between regular meals, intake of these foods may be associated with a higher 

number of eating occasions and would therefore represent a marker of dietary habits. Higher 

frequency of eating has been shown to be related to lower insulin concentrations [78] which 

again may assist in body weight control. A number of cross-sectional studies reported higher 

eating frequency to be inversely related to body weight [199-201]; data from prospective 

studies are lacking though. Hence, further prospective (and mechanistic) studies are needed 

to evaluate a potential causal role of cake and cookies in body weight management. 

Exercise activity was predictive of lower risk of SWG which is consistent with the literature on 

aetiological associations and has a clear causal basis [17]. In accordance with previous 

observations in epidemiological studies and hypothesised biological mechanisms [96, 98], 

smoking cessation was related to a higher risk of SWG in the present study and appeared to 

be one of the strongest predictors in the model. Smoking cessation-induced weight gain may 

frequently be a source of concern for smokers planning to quit and may discourage many of 

them from actually trying to do so [98]. Indeed, the rise in prevalence of overweight and 

obesity in the United States has been partly attributed to smoking cessation, whereby weight 

gain seems to be greatest within the first few months after quitting and former smokers do 

not seem to continue weight gain at a higher rate than never smokers [99]. Nevertheless, 

despite cessation-induced weight gain, it is widely argued that the health benefits associated 

with smoking cessation far exceed any health risks that may result from (short-term) post-

cessation body weight gain [96]. Smoking is one of the strongest risk factors for many types 

of cancer, for respiratory and cardiovascular diseases and remains the leading cause of 

preventable mortality worldwide [6]. A total of 9% of all deaths globally are estimated to be 
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attributable to smoking [6]. Also, despite smoking may facilitate to maintain a lower total body 

weight, it promotes abdominal body fat distribution which has been increasingly shown to be 

an independent risk factor for cancer [202], diabetes [203] and overall mortality [204]. Hence, 

the present risk score underscores the importance of weight control among subjects who 

attempt to quit smoking. Given the undeniable health benefits associated with cessation, 

post-cessation weight gain should not hold people off stopping to smoke. To remove barriers 

to quitting, the promotion of smoking cessation in public health may further be accompanied 

by offering information on weight management and support to smokers concerned about 

gaining weight. 

4.2.2 Predictive performance of the risk score 

The overall discriminatory ability in the training sample was modest and considerably lower 

than found for most diabetes risk prediction models achieving aROCs of roughly 0.80 [11]. 

Nevertheless, it lay within the range observed for most cancer risk prediction models that 

mainly yielded aROCs between 0.60 and 0.75 [102, 137, 138, 140]. Low discriminatory 

accuracy of a prediction model may be explained by lack of information on important 

predictors. For instance, television watching [17], sleep duration [94] as well as weight loss 

attempts [205, 206], weight cycling [207, 208] and large short-term weight changes [186, 

208] have been shown to be risk factors for future weight change. Unfortunately, information 

on these risk factors was not available in the present dataset, but may additionally be 

considered in future risk prediction models for weight gain. In the field of chronic diseases, 

hopes have been raised that next to the inclusion of non-invasive factors and biochemical 

measures, information on common genetic markers may be used to improve discriminatory 

accuracy and thereby disease prevention programmes [11, 135]. The predictive ability of 

genetic factors, however, currently appears limited [11, 135]. For example, the addition of 

seven SNP’s to the breast cancer model developed by Gail et al. only modestly improved 

discriminatory accuracy [135]. Similarly, the additional inclusion of 20 diabetogenic SNP’s did 

barely improve discrimination of incident type 2 diabetes beyond lifestyle factors and 

metabolic markers in the EPIC-Potsdam cohort [152]. In respect to obesity, the EPIC-Norfolk 

study reported that 12 obesity-susceptible loci explained 0.9% of variation in BMI, with an 

aROC of 0.57 for prediction of obesity [209]. Thus, despite overwhelming statistical 

significances and repeated replications, the explained variance and the predictive value of 

the currently identified obesity-susceptibility loci is too low to be clinically meaningful [29]. 

Another promising approach might be the concept of gene-environment interactions 

describing the differential response to an environmental factor on disease risk dependent on 

an individual’s genotype [29]. Several studies have shown, for instance, that the BMI-

increasing effect of the FTO-variant, which is currently the most promising genetic marker for 

BMI, is more pronounced in individuals who have a sedentary lifestyle and attenuated in 
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physically active individuals [29]. Overall, only relatively few studies have investigated gene-

environment interactions with respect to obesity development so far, which might be an 

important aspect for better targeting obesity prevention strategies. However, even if this 

progress in identifying enough genetic variants (or gene-environment interactions) is made, it 

still needs to be figured out how such information can be communicated to individuals and 

whether it will motivate people to adopt a healthy lifestyle [210].   

At this point, it may be noteworthy though that very large independent relative risks are 

needed for a single predictor to meaningfully improve discrimination [135]. Hence, although 

one may think of other possible predictors to be included in a risk prediction model for weight 

gain, it is questionable whether the predictive ability measured by the c-statistic would 

meaningfully improve. As the present study is already based on a large number of standard 

risk factors for weight gain, the findings rather convey the impression that the predictability of 

weight gain in terms of discrimination may be limited in general. Nonetheless, the addition of 

new risk predictors might improve the present risk score model in terms of discrimination 

beyond the ROC curve. Recently, two new measures of discrimination, the net 

reclassification index and the integrated discrimination improvement, have been suggested 

to evaluate new variables for their ability to improve upon the original model beyond the ROC 

curve [211]. These measures are based primarily on stratification into risk categories and 

attempt to evaluate the ability of an extended model to more accurately reclassify individuals 

into higher or lower risk categories. These measures might, therefore, be considered in 

subsequent studies on the improvement of the present risk prediction model for weight gain 

instead of solely focussing on the c-statistic.  

The discriminatory ability of the present risk score was reduced in the external validation 

sample in the present study, an observation that is also commonly reported for risk prediction 

models in the field of chronic diseases [10, 11]. Several reasons may be thought of to explain 

this phenomenon. First, overfitting of the model in the training sample may certainly be an 

explanation for poorer performance in the validation sample; however, given that the sample 

size was large in the present study and that the amount of optimism decreases with larger 

sample size [100], this explanation appears unlikely. Second, lower predictive accuracy in 

external populations may be due to differences between the training and validation 

population, especially in methods of data collection, coding of predictors and endpoint, and 

the availability of all variables used to construct the score [100]. However, given the 

standardised methodology followed in EPIC, this explanation also seems rather unlikely. 

Interestingly, apart from the overall difference in predictive ability between training and 

validation sample, there was considerable variation in discrimination across single cohorts of 

the training and validation sample, respectively. Specifically, discriminatory power ranged 

from 0.65 in UK-Nor to 0.76 in NL-AmMa in the training set and varied between 0.56 
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(France) and 0.66 (GER-Heidelberg and Sweden) in the validation set. In this respect it is 

also noteworthy, that despite a comparably lower overall predictive accuracy in the validation 

sample, the score was found to exhibit quite similar discriminatory accuracy among those 

validation cohorts that may be assumed to be comparable to selected cohorts of the training 

sample in respect of cultural and lifestyle factors. In particular, the predictive accuracy for 

GER-Pot and GER-Heidelberg was 0.69 and 0.66, respectively. Likewise, the score’s ability 

to discriminate cases and non-cases differed only slightly between Denmark and Sweden 

(0.69 vs. 0.66). This comparable predictive accuracy among centres of similar socio-cultural 

background in addition to the variation in predictive accuracy between culturally (more) 

diverse populations indicates that the prediction of weight gain may depend on underlying 

socio-cultural or structural factors that were not similarly represented by the predictors 

included in the present risk score across study populations and that extrapolation of the 

model to other populations should be done with caution. This speculation is further supported 

by the finding, that the discriminatory accuracy among 6.521 individuals stemming from the 

same source population as the training sample (participant of any cohort included in the 

DiOGenes project) but whose data were not included in the DiOGenes project, and thus 

were not used for model development, was very similar to that observed in the training 

sample. Specifically, the overall c-statistic was 0.68 (0.66–0.71).  

It has been suggested that re-estimation of regression coefficients in other populations may 

lead to more precise risk estimates and thus to better performances of the model in external 

populations [11, 190]. Nevertheless, in the present study, discriminatory ability did not 

materially change in most centres when centre-specific regression coefficients were used, 

which implies that the universal model seems to reasonably well reflect the effects of single 

predictors on SWG across European countries. Only the cohorts of France and IT-Naples 

showed a meaningful improvement in discriminatory ability which might be due to differences 

in the structure of these populations compared to the other populations in the training 

sample. Specifically, the cohorts of France and IT-Naples were both solely composed of 

women for whom weighting of predictors differed from weighting in the overall model.  

Apart from varying effect sizes of predictors, the set of important predictor variables per se 

may differ between structurally and culturally diverse populations and it has been suggested 

that population-specific prediction models may be more useful than a universal risk score 

working in all populations [11]. In the present study, however, centre-specific risk prediction 

models did improve predictive accuracy only in the centres of UK-Nor, France and IT-Flo 

while no improvement was observed in the other centres. Although this observation does not 

rule out the possibility that important, maybe population-specific, predictors may not have 

been assessed in the present study, it conveys the impression that the predictive accuracy of 

the overall model already exhibits good discrimination within the limits of what appears to be 
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achievable in the prediction of weight gain and that the model is relatively robust against the 

exchange of single (centre-specific) behavioural predictors. This observation is not surprising 

given that the added predictive ability of modifiable factors was only modest (App. Figure 4). 

In particular, the addition of smoking cessation to a model containing all non-modifiable 

predictors strongly improved the aROC from 0.59 (0.58–0.60) to 0.65 (0.64–0.66), while 

further including various dietary factors and physical activity, those predictors varying 

between centre-specific models, only improved the aROC to 0.67 (0.66–0.68). 

Finally, it may be worthwhile to mention that the predictability of SWG was lower among 

women than among men in most study centres. Reasons for this difference may include lack 

of information on important predictor variables or inaccuracies in the reporting of body weight 

or some predictors in women. Nevertheless, with respect to body weight, body weight was 

corrected for self-report using prediction equations in the present study [158]. Also, the 

additional inclusion of information on menopausal status and use of hormones for 

menopause at recruitment did not materially alter the predictive accuracy among women. 

Because sex-specific models did not perform better than the overall model, there was no 

reason for constructing sex-specific risk scores. Future studies, however, might investigate 

possible differences in the predictability of weight gain between sexes in more detail. 

4.3 Implications for public health 

In the field of chronic diseases, some risk scores are implemented in national prevention 

programmes in several Western countries [122, 128, 212, 213] and are recommended for 

clinical decision-making to decide on prevention intervention, further testing or therapeutic 

guidance. For example, the Framingham algorithm for predicting coronary heart disease was 

incorporated into the Third Report of the Expert Panel on Detection, Evaluation, and 

Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) [122]. Further, the 

Gail model and the German Diabetes Risk Score are publicly available as interactive Web 

tools [128, 214]. Likewise, the present risk score to predict SWG among European adults 

might be implemented in (national) obesity prevention programmes and may be used to 

identify high-risk individuals who may benefit most from timely intervention. However, test 

characteristics of the present risk score were only modest. The threshold of 225 points, 

maximising sensitivity and specificity, implies, that preventive actions will be indicated for a 

substantial part of the population (34%), which would have important implications for the 

healthcare system. Of these high-risk individuals, 11% will indeed experience SWG within 

the timeframe of 5 years. The decision about an appropriate cut-off point to define high-risk 

individuals requires careful weighing of risks and benefits associated with this threshold 

[104]. In contrast to serious diseases such as cancer or CVD, however, misclassification-

costs may essentially reduce to those costs attached to false-positive findings in the context 
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of weight gain. Specifically, a false-negative test result may create false reassurance which is 

most critical when the disease is serious, only curable in early stages and effective 

intervention is available [104]. False-positives may pose a large economic burden to the 

healthcare system since a high number of individuals will be unnecessarily advised to 

undergo intervention programmes of weight gain prevention. Thus, a cut-off point related to 

higher specificity, i.e. 250 or 275, could substantially reduce the percentage of false-positives 

in the present study – certainly, at the expense of higher sensitivity. 

The comparison of observed and predicted probabilities indicated that the ability of the score 

to quantify absolute risk of SWG was very good in the cohorts of the training sample and 

good to adequate in cohorts of the validation sample. Accurate estimation of risk, even from 

models with modest discriminatory accuracy, may have several important applications [116]. 

Well-calibrated projections of absolute risk are particularly important for designing 

intervention trials because the power of those studies depends on the number of incident 

cases, a reflection of absolute risk [116]. Thus, the present risk prediction model may serve 

to design more powerful and “smarter” prevention trials for weight gain by enriching the 

number of observed events. Results from these trials may be helpful to identify successful 

key strategies for obesity prevention among high-risk individuals. Because effective and 

sustainable prevention strategies may require action at both the individual and the societal 

level [215], the strategies identified for high-risk individuals could be translated to population-

based programmes in a next step. Accurate risk estimation is also crucial in the context of 

prevention programmes which focus on the motivation of individuals to change their 

behaviour by providing information on the expected benefit. Although the present risk score 

includes several modifiable dietary and lifestyle factors, caution may be warranted with 

respect to the application of the present risk score in prevention programmes given the 

associations of some predictor variables with SWG that may be misinterpreted by laymen. 

4.4 Conclusion and outlook 

The present thesis is the first study to report on the development and validation of a risk 

score predicting absolute risk of (substantial) weight gain among adults. In this large 

prospective cohort study of middle-aged European men and women, a model using easily 

assessable information on several socio-demographic, dietary and lifestyle factors was found 

to be moderately effective at identifying individuals at high risk (discrimination) and good at 

quantifying absolute risk (calibration) of experiencing SWG within the next 5 years. The 

results of the present thesis highlight that the prediction of weight gain is complex and may 

be limited in general. Within these limits, the findings of the thesis further suggest the 

appropriateness of one universal, transnational risk score to predict weight gain among 

European adults.  
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On the basis of this first work on weight gain prediction among adults, future research may 

aim to consider additional predictors to attempt to further improve the predictive ability of a 

risk score model for weight gain. Emphasis may be particularly put on weight gain prediction 

among women.  

Particularly with regard to the motivation of people to adopt a healthy, weight-preventing 

lifestyle, future studies may also explore the predictive accuracy of a risk score model 

incorporating changes in modifiable lifestyle factors to predict subsequent weight gain. 

In terms of weight gain prevention in general, a supportive social and less obesogenic 

environment may be needed to facilitate changes in lifestyle and ensuring sustainability of 

these changes. Because the key to combat the obesity epidemic ultimately lies at the level of 

individuals, future research may also focus on the identification of factors enabling individuals 

to achieve a long-term behaviour change. 
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Summary 

Given the rapid rise in obesity prevalence around the world in recent years and the 

considerable strains involved with the treatment of overweight and obesity, primary 

prevention of weight gain is of paramount public health importance. Due to limited resources, 

prevention efforts might be particularly targeted to individuals at high risk of excess weight 

gain that may result in overweight and obesity. Therefore, the aim of the present thesis was 

to develop a risk score predicting risk of substantial weight gain (SWG) within the following 5 

years. Because this objective was addressed using data of the large-scale, multi-centre 

European Prospective Investigation into Cancer and Nutrition (EPIC), the present study 

offered the unique opportunity to simultaneously investigate whether such a risk score is 

equally well applicable to different European populations and to evaluate the idea of one 

universal, transnational risk prediction model for weight gain. 

Data from six cohorts (47,203 men and women) of the EPIC study were used to develop a 

risk prediction model for SWG (training sample). Substantial weight gain was defined as 

gaining ≥10% of baseline weight during follow-up. Significant predictors of SWG were 

identified using Cox Proportional Hazards regression. Multivariable regression model 

coefficients were used to assign weights for each predictor and the risk score was calculated 

as a linear combination of the single predictors. The validity of the risk score was assessed 

by means of discrimination (area under a receiver operating characteristic curve, aROC) and 

calibration in the training sample and in external validation samples, comprising eight 

independent cohorts of the EPIC study (115,099 men and women).  

During an average follow-up of 6.2 years (291,748 person-years), a total of 6,471 men and 

women gained ≥10% of baseline weight in the training sample. The final prediction model 

was defined on the basis of the following factors: age, sex, baseline body weight and height, 

technical school, secondary school, university, cessation of smoking, sports, non-

consumption of alcohol, moderate consumption of alcohol, intake of fruits and vegetables, 

red and processed meat, poultry, bread, butter and margarine, cake and cookies, and soft 

drinks. The probability of experiencing SWG within 5 years increased from 2.0% for 100 to 

33.6% for 400 score points. The discriminatory ability of the model measured by the aROC 

(95% CI) was 0.67 (0.66–0.68) in the training sample and 0.57 (0.566–0.578) in the external 

validation sample. Variations in discrimination between cohorts were observed, ranging from 

0.65 to 0.76 in the training and from 0.56 to 0.66 in the validation sample. Calibration was 

very good and good in cohorts of the training and validation sample, respectively.  

The present thesis could demonstrate that it was possible to develop a risk score predicting 

SWG over 5 years among European adults using easily assessable information on several 

socio-demographic, dietary and lifestyle factors. The score was found to exhibit moderate 
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discriminatory accuracy and to accurately predict risk of experiencing SWG during the 

following 5 years. The results of the present thesis highlight that the prediction of weight gain 

is complex and may be limited in general. Within these limits, the findings of the thesis further 

suggest the appropriateness of one universal, transnational risk score to predict weight gain 

among European adults.  
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Zusammenfassung 

Die Primärprävention von Übergewicht und Adipositas ist von hoher gesamtgesellschaftlicher 

Bedeutung. Angesichts limitierter Ressourcen könnten Interventionsmaßnahmen zur 

Prävention vorrangig an jene Personen gerichtet werden, die ein hohes absolutes Risiko für 

die Entwicklung übermäßigen Körpergewichts aufweisen. Daher war das Ziel der 

vorliegenden Dissertation, einen Risikoscore zu entwickeln, der das absolute Risiko für eine 

starke Gewichtszunahme (SGZ) in den folgenden 5 Jahren vorhersagt. Da die 

multizentrische European Prospective Investigation into Cancer and Nutrition (EPIC)-Studie 

die Datengrundlage dieser Arbeit darstellte, konnte überdies der Frage nachgegangen 

werden, ob ein Risikoscore zur Prädiktion einer SGZ gleichermaßen in unterschiedlichen 

europäischen Populationen einsetzbar ist und ob es ein universelles, länderübergreifendes 

Risikoprädiktionsmodell für SGZ gibt. 

Für die Ableitung des Prädiktionsmodells wurden die Daten von 47.203 Männern und Frauen 

aus sechs Kohorten der EPIC-Studie verwendet (Lernstudienpopulation). Eine starke 

Gewichtszunahme war definiert als eine Zunahme von ≥10% des Ausgangsgewichts 

während der Nachbeobachtung. Signifikante Prädiktoren wurden mit Hilfe der Cox 

Regression identifiziert. Multivariable Regressionskoeffizienten dienten der Gewichtung der 

einzelnen Prädiktoren in der Berechnung des Risikoscores. Die Validität des Risikoscores 

wurde anhand von Diskrimination (Fläche unter der Receiver Operating Characteristic-Kurve, 

aROC) und Kalibrierung bewertet. Die externe Validität wurde mit Hilfe von acht 

unabhängigen EPIC-Kohorten beurteilt (Teststudienpopulation, 115.099 Männer und 

Frauen). 

Während einer mittleren Nachbeobachtungszeit von 6,2 Jahren (291.748 Personenjahre) 

verzeichneten 6.471 Männer und Frauen in der Lernstudienpopulation eine SGZ. Das finale 

Prädiktionsmodell wurde auf Basis der folgenden Prädiktoren definiert: Alter, Geschlecht, 

Körpergewicht und –höhe, Bildung, Aufgabe des Rauchens, Sport, Alkoholabstinenz, 

moderater Alkoholkonsum, Verzehr von Obst und Gemüse, rotem und verarbeitetem Fleisch, 

Geflügel, Brot, Butter und Margarine, Kuchen und Keksen und von Softgetränken. Das 

Risiko für eine SGZ in den nächsten 5 Jahren stieg von 2.0% bei 100 auf 33.6% bei 400 

Score-Punkten. Die Fähigkeit zur Diskrimination des Modells gemessen anhand der aROC 

(95% Konfidenzintervall, KI) betrug 0,67  (0,66–0,68) in der Lernstudienpopulation und 0,57 

(0,566–0,578) in der Teststudienpopulation. Die Diskriminationsfähigkeit variierte dabei 

zwischen den einzelnen Studienkohorten und schwankte von 0,65 bis 0,76 in der Lern- und 

von 0,56 bis 0,66 in der Teststudienpopulation. In den Kohorten der Lern- bzw. 

Teststudienpopulation wies das Modell eine sehr gute bzw. gute Kalibrierung auf.  
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In der vorliegenden Arbeit wurde erstmalig ein Risikoscore zur Prädiktion von 

Gewichtszunahmen entwickelt. Dieser Score basiert auf einfach zu erhebenden 

Informationen zu soziodemographischen, Ernährungs- und Lebensstilfaktoren und wies eine 

moderate Diskriminationsfähigkeit auf. Die Ergebnisse der vorliegenden Arbeit stellen die 

Komplexität der Prädiktion von Gewichtszunahmen heraus und weisen darauf hin, dass 

deren Prädiktion im Allgemeinen begrenzt sein könnte. Innerhalb dieser Grenzen scheint ein 

universeller Risikoscore zur Prädiktion von Gewichtszunahmen bei europäischen 

Erwachsenen jedoch geeignet zu sein. 
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App. Table 1. Overview about the most well-known risk scores in the field of major chronic diseases and weight gain* 

First author, Year 
[Ref] 

Population, Country Variables included in the Risk Score Discrimination 
(aROC) * 

Calibration 
(p for HLT) † 

Validation in external 
populations (e.g.),aROC 

      

Cardiovascular disease     
      

Kannel, 1976 [117] 
 
(updated in 1991 by 
Anderson) [118] 

Framingham Study, USA Sex-specific risk function for CVD: age, systolic 
blood pressure, serum cholesterol, cigarette 
smoking, glucose intolerance, left ventricular 
hypertrophy (Update: + HDL cholesterol) 

Not reported Not reported For score from 1991: 
Men: 0.78 
Women: 0.82 
[216] 

      

Wolf, 1991 [121] Framingham Study, USA Sex-specific risk functions for stroke including age, 
systolic blood pressure, treatment of hypertension, 
diabetes status, smoking, prior CVD, atrial fibrillation, 
left ventricular hypertrophy 

Not reported Not reported 0.75 [217] 

      

Wilson, 1998 [113] Framingham Study, USA Sex-specific risk function for CHD including age, 
diabetes status, smoking, categories of blood 
pressure, total cholesterol (or LDL), and HDL 

Men: 0.73 
Women: 0.76 

Not reported D’Agostino, 2001, Hense, 
2003, Liu, 2004,  
aROC betw. 0.63 – 0.88 

      

Assmann, 2002 [125] PROCAM study (only 
among men), Germany 

Risk function for acute coronary event including 
age, LDL cholesterol, smoking, HDL cholesterol, 
systolic blood pressure, family history of premature 
myocardial infarction, diabetes status, triglycerides 

0.82 P > 0.3 0.61 and 0.64 among two 
cohorts of men; 
overestimation of risk 
[218] 

      

Conroy, 2003 [115] SCORE project (12 
European cohort 
studies), Europe 

Sex-specific models for fatal CVD: age, smoking 
status, systolic blood pressure, ratio of total 
cholesterol and HDL cholesterol stratified by low- 
and high-risk populations 

0.71 to 0.84 across 
populations 

Not reported Men: 0.79 
Women: 0.79 
[216] 

      

Hippisley-Cox, 2007 
[126] 

QRESEARCH database 
of health records, UK 

For CVD: Age, ratio of total cholesterol to HDL, 
systolic blood pressure, BMI, family history of 
premature CVD, smoking status, deprivation score, 
use of at least on blood pressure treatment, 
interaction of systolic blood pressure and blood 
pressure treatment 

Men: 0.77 
Women: 0.79 

Overall good 
calibration, 
overestimation 
in the first 
decile 

Men: 0.76 
Women: 0.79 
[219] 

      

D’Agostino, 2008 
[119] 

Framingham Study, US For CVD: Sex-specific risk functions including age, 
total and HDL cholesterol, systolic blood pressure, 
treatment for hypertension, smoking, diabetes status 

Men: 0.76 
Women: 0.79 

Men: 0.14 
Women: 0.56 

Men: 0.78 
Women: 0.83 
[216] 
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App. Table 1. cont. 

First author, Year 
[Ref] 

Population, Country Variables included in the Risk Score Discrimination 
(aROC) * 

Calibration 
(p for HLT) † 

Validation in external 
populations (e.g.),aROC 

      

Cancer      
      

Breast      
Gail, 1989 [12] 
 
(Revised in 1999 by 
Costantino) [220] 

Breast Cancer Detection 
Demonstration Project, 
US 

Age (<50 years vs. ≥50 years), age at menarche, 
number of previous breast biopsies, age at first live 
birth, number of first degree relatives with breast 
cancer, interaction of age category and number of 
biopsies, interaction of age at first birth and number 
of affected relatives 

Not reported Not reported 0.58 [129] 
Gail model and Gail model 
+ mammographic breast 
density, aROCs: 0.60 and 
0.64 [131] 

Chen, 2006 [134] Breast Cancer Detection 
Demonstration Project 

Gail model  
Gail model + mammographic density 

0.60 
0.64 

Well calibrated - 

Gail, 2008 [135] No ind. data, distribution 
of risk factors taken from 
the 2000 National Health 
Interview Survey 

Gail model + information on 7 SNPs 0.63 Not reported - 

      
Colorectum      
Driver, 2007 [14] Physician’s Health Study Age, BMI, history of smoking, alcohol use 0.70 0.91 - 
      

Freedman, 2009  
[13] 

Population-based case-
control study combined 
with national incidence 
data 

For men: sigmoidoscopy/colonoscopy in the last 10 
years, colorectal cancer in first degree relatives, 
aspirin and nonsteroidal anti-inflammatory drug use, 
smoking, BMI, vigorous activity, vegetable intake 
For women: sigmoidoscopy/colonoscopy, polyp 
history, colorectal cancer in first degree relatives, 
aspirin and nonsteroidal anti-inflammatory drug use, 
BMI, vigorous activity, vegetable intake, hormone 
replacement therapy, estrogen exposure 

Not reported 
 
 
 

Not reported 
 
 

0.61 both for men and 
women, also well-calibrated 
[147] 

      

Ma, 2010 [137] Japan Public Health 
Center-based 
Prospective Cohort 
Study II (only men) 

Age, BMI, alcohol consumption, smoking status, 
daily physical activity level 

0.70 0.08 Validation in Cohort I: 0.64 
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App. Table 1 cont. 

First author, Year 
[Ref] 

Population, Country Variables included in the Risk Score Discrimination 
(aROC) * 

Calibration 
(p for HLT) † 

Validation in external 
populations (e.g.),aROC 

      

Cancer      
      

Lung      
Bach, 2003 [140] Carotene and Retinol 

Efficacy Trial (subjects 
with a presence of 
smoking history), US 

Age, duration of smoking, average number of 
cigarettes per day, duration of abstinence, history of 
asbestos, study drug  

0.72 
 
 

Excellent 
calibration  
(calibration 
plot) 
 

0.69 [148] 
0.66 [221] 

      

Spitz, 2007 [102] 
(extended in 2008 
and 2009) 
[143, 222] 

Case-control study 
combined with national 
incidence data, US 

Never smokers: exposure to environmental tobacco 
smoke, family history of cancer 
Former smokers: emphysema, dust exposure, 
family history of cancer, age stopped smoking, no 
prior hay fever 
Current smokers: emphysema, pack-years, dust 
exposure, asbestos exposure, family history of 
cancer, no prior hay fever 
Extended model among former smokers and 

smokers (2008): basic model + DNA repair capacity 
and mutagen sensitivity data 
Extended model (2009): basic model + three SNPs 

0.59 
 
0.63 
 
 
0.63 
 
 
Increase from 0.67 
to 070 and 0.68 to 
0.73, respectively 
Increase from 0.66 
to 0.67 

0.78 
 
0.71 
 
 
0.69 
 
 
0.61 and0.43, 
respectively 
 
Not reported 

Overall: 0.69 
 
0.70 
 
 
0.68  
[221] 

      

Cassidy, 2008 [15] Population-based case 
control study combined 
with age-gender-specific 
incidence rates, UK 

Smoking duration, prior diagnosis of pneumonia, 
occupational exposure to asbestos, prior diagnosis 
of malignant tumour, family history of lung cancer 

0.71 
(0.70 after 10-fold 
cross-validation) 

Not reported 0.69 [221]  

      

Etzel, 2008 [142] Case-control study 
among African-
Americans combined 
with national incidence 
rates, US 

Smoking status, pack-years smoked, age at smoking 
cessation, number of years since smoking cessation, 
chronic obstructive pulmonary disease or hay fever, 
exposure to asbestos or wood dusts 

0.75 Not reported 0.63 in two other case-
control studies on lung 
cancer in African-Americans  
[142] 
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App. Table 1 cont. 

First author, Year 
[Ref] 

Population, Country Variables included in the Risk Score Discrimination 
(aROC) * 

Calibration 
(p for HLT) † 

Validation in external 
populations (e.g.),aROC 

      

Cancer      
      

Tammemagi, 2011 
[144] 

Prostate, Lung, 
Colorectal and Ovarian 
Cancer Screening Trial 
(only among subjects of 
the control arm), US 

For all: Age, sex, education, BMI, family history of 
lung cancer, chronic obstructive pulmonary disease, 
recent chest x-ray, smoking status, pack-years 
smoked, smoking duration 
For ever smokers: basic model + smoking quit time 

0.86 
 
 
 
0.81  

0.27 
 
 
 
0.42 

0.84 in the intervention arm 
of the study 
 
 
0.78 in the intervention arm 

      
Ovary      
Rosner, 2005 Nurses Health Study, US Age at menarche, age at menopause, use of oral 

contraceptives, tubal ligation 
0.60 0.63 - 

      
      
Melanom      
Cho, 2005 Nurses Health Study, 

Nurses Health Study II, 
Health Professionals 
Follow-up Study, US 

Age, male sex, family history of melanoma, higher 
number of nevi, history of sunburn, light hair colour 

0.62 0.41 - 

Fortes, 2010 Italy Nevi, skin and hair colour, freckles, sunburns in 
childhood 

0.79 - 0.79 in Brazilian population 
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App. Table 1 cont. 

First author, Year 
[Ref] 

Population, Country Variables included in the Risk Score Discrimination 
(aROC) * 

Calibration 
(p for HLT) † 

Validation in external 
populations (e.g.),aROC 

      

Diabetes ‡       

Schmidt, 2005 [150] Atherosclerosis Risk in 
Communities study, US 

Clinical model: age, ethnicity, parental history, 
systolic blood pressure, waist circumference, height 
Clinical model + fasting plasma glucose 
Clinical model + fasting plasma glucose, 
triglycerides, HDL 

0.71 
 
0.78 
0.80 

Not reported Validation in several external 
populations with aROCs 
ranging from 0.70 to 0.87  
(see [11]) 

      

Griffin, 2000 [151] Population from general 
practices, UK 

Age, sex, BMI, smoking status, corticosteroid use, 
antihypertensive use, family history 

0.80 Not reported Validation in external 
populations aROCs from 
0.58 to 0.81 (see [11]) 

      

Lindström, 2003 [149] FINRISK, Finland Concise model: age, BMI, WC, history of 
antihypertensive use, previous diabetes 
Full model: concise model + physical inactivity, fruit 
and vegetable intake 

0.857 
 
0.860 

Not reported Validation in external 
populations: aROCs from 
0.65 to 0.87 (see [11]) 

      

Schulze, 2007 [114] EPIC-Potsdam, 
Germany 

Full model: age, WC; height, hypertension, physical 
activity, smoking, and consumption of whole-grain 
bread, red meat, coffee, moderate alcohol 

0.84 Well calibrated Validation in EPIC-
Heidelberg, aROC = 0.82 
[114] 

      

Wilson, 2007 [223] Framingham Offspring 
Study, US 

Personal model: age, sex, parental history, BMI 
Simple clinical model with categorical variables: 
age, sex, parental history, BMI, WC, fasting glucose, 
HDL, triglycerides, hypertension 
Simple clinical model with continuous variables 

0.72 
0.85 
 
 
0.88 

Not reported Validation in several external 
populations, aROCs for 
simple clinical model ranging 
from 0.73 to 86 (see [11]) 

      

Weight gain/Overweight     
      

Steur, 2010 [16] Prevention and 
Incidence of Asthma and 
Mite Allergy birth cohort,  
The Netherlands 

Risk of overweight at the age of 8 years among 
newborns: paternal and maternal BMI, female 
gender, smoking in the parental house, birth weight, 
hospital delivery 

0.75 0.30 - 

* The overview is restricted to a selection of risk score mainly based on publicity of the scores.  
† Area under a receiver operating characteristic curve.  
‡ HLT, Hosmer-Lemeshow-Test. 
¶ Adapted from [11]. For a comprehensive review see [11].
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App. Table 2. General characteristics at baseline and follow-up in the single cohorts of the validation population (n=115,099) 
            

    France IT-Nap Spain UK-GP UK-HC NL-Utr GER-Hd SWE-Mal 
            

N  45,841 359 23,763 2,079 12,684 6,248 14,570 9,557 
Men (%)  – – 37.6 27.4 23.1 – 44.2 37.7 
Age at baseline (y)   50.8 (5.1) 49.1 (4.2) 47.0 (6.93) 49.0 (5.3) 45.6 (6.6) 54.0 (3.3) 49.4 (7.5) 52.5 (4.1) 
Duration of follow-up (y)  3.42 (0.76) 8.83 (1.27) 3.29 (0.34) 5.58 (0.58) 5.32 (0.47) 4.36 (0.81) 2.06 (0.57) 4.96 (0.51) 
            

Anthropometry          
 Weight          
  Baseline (kg)  59.9 (7.5) 62.8 (6.9) 68.7 (9.8) 67.4 (11.2) 64.9 (10.2) 65.9 (8.4) 71.1 (11.7) 69.6 (11.4) 
  Follow-up (kg)  61.4 (8.4) 67.1 (7.9) 70.1 (10.3) 70.6 (11.7) 68.1 (11.3) 69.9 (9.2) 72.1 (12.0) 72.8 (11.8) 
  Absolute change (kg)  1.55 (3.1) 4.27 (4.5) 1.34 (3.53) 3.13 (4.6) 3.22 (4.5) 4.03 (4.0) 1.04 (2.8) 3.22 (4.12) 
  Annual change (g/y)  461.9 (978) 492.2 (524) 413.9 (1088) 560.6 (820) 607.1 (844) 951.6 (966) 544.9 (1457) 650.1 (836) 
  % change  2.58 (5.1) 6.93 (7.1) 2.04 (5.2) 4.88 (6.9) 5.04 (6.8) 6.26 (6.1) 1.52 (4.0) 4.84 (6.0) 
 BMI          
  Baseline (kg/m²)  22.9 (2.5) 25.3 (2.5) 26.0 (2.4) 23.9 (2.7) 23.2 (2.7) 24.1 (2.7) 24.5 (2.8) 24.1 (2.8) 
  Follow-up (kg/m²)  23.5 (2.8) 27.1 (3.0) 26.5 (2.6) 25.1 (3.1) 24.3 (3.1) 25.6 (3.0) 24.9 (2.9) 25.2 (2.9) 
  Obese at follow-up (%)  2.4 1.2 8.7 6.5 5.1 8.0 3.3 5.6 
            

Physical activity          
 At Work (%)          
  Sedentary  23.4 31.8 23.5 59.2 46.9 24.0 52.2 43.0 
  Standing  53.6 7.5 33.0 17.7 27.0 21.3 23.4 34.8 
  Manual  2.1 12.0 11.7 5.7 6.6 21.3 4.8 9.5 
  Non-workers  21.0 48.8 31.9 17.5 19.5 33.3 19.6 12.6 
 Sports (hours/week)  1.25 (1.6) 0.28 (0.93) 1.00 (2.3) 1.71 (2.5) 2.14 1.56 (2.2) 1.80 (2.5) 1.27 (2.3) 
          

Education (%)          
 No school / primary school  10.0 21.2 66.6 – – 12.9 23.3 31.2 
 Techn. / profess. school  0 5.0 10.3 39.0 28.9 33.4 33.7 28.0 
 Secondary school  51.1 52.7 8.0 15.2 16.6 32.2 7.9 10.7 
 University degree  38.9 21.2 15.1 45.8 54.6 21.5 35.1 30.1 
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App. Table 2 cont. 
            

    France IT-Nap Spain UK-GP UK-HC NL-Utr GER-Hd SWE-Mal 
            

Smoking habits (%)          
 Non-smokers  86.5 60.9 67.6 87.3 89.6 75.5 75.4 68.8 
 Stable smokers  8.1 12.3 25.2 8.2 5.8 17.4 17.3 22.4 
 Started smokers  3.9 17.0 2.9 1.5 2.3 1.5 2.7 1.9 
 Quitters  1.5 9.8 4.3 3.0 2.3 5.6 4.6 6.9 
            

Alcohol use (%)          
 No alcohol  12.9 45.1 34.6 0.1 0.1 11.6 4.3 12.7 
 > 0 - ≤ 6g/d  37.4 14.8 21.5 44.5 47.9 39.5 31.1 22.9 
 > 6 - ≤ 18g/d  29.4 17.3 16.4 39.0 37.2 26.5 28.4 40.6 
 > 18 - ≤ 30g/d  11.9 16.7 9.0 6.2 5.5 13.3 16.9 16.2 
 > 30 - ≤ 60g/d  7.3 5.3 12.0 9.5 8.6 8.6 14.5 6.8 
 > 60g/d  1.2 0.8 6.5 0.7 0.8 0.6 4.8 0.8 
          

Dietary factors (g/d)          
 Fruits and vegetable  555.5 (236) 687.5 (247) 614.4 (295) 496.7 (239) 588.4 (284) 377.3 (157) 243.4 (115) 355.2 (181) 
 Red and processed meat  80.48 (45) 62.5 (23) 81.8 (51) 63.6 (38) 24.8 (34) 77.0 (40) 78.3 (56) 85.8 (48) 
 Poultry  21.0 (19) 23.9 (17) 34.9 (26) 29.2 (20) 12.5 (19) 11.5 (11) 12.2 (14) 12.4 (17) 
 Fish  36.7 (26) 52.5 (28) 62.4 (41) 39.4 (25) 27.3 (32) 10.5 (11) 18.7 (19) 38.1 (30.4) 
 Milk and yogurt  202.8 (186) 108.7 (98) 265.6 (178) 384.6 (189) 326.1 (212) 359.5 (239) 173.8 (198) 329.9 (247) 
 Pasta and rice  73.8 (50) 164.0 (66) 60.4 (34) 64.6 (41) 84.0 (54) 37.3 (36) 37.7 (26) 37.8 (42) 
 Bread  126.7 (80) 173.3 (86) 145.3 (87) 87.9 (57) 89.9 (61) 115.8 (44) 134.5 (71.9) 122.1 (72) 
 Vegetable oil  5.8 (4) 30.2 (7.7) 27.9 (13) 3.7 (3) 2.9 (2.7) 3.6 (3) 6.6 (4) 1.8 (3) 
 Butter and margarine  10.5 (10) 2.9 (2) 2.67 (6) 20.2 (15) 18.5 (15) 17.0 (11) 14.7 (11) 35.8 (24) 
 Chocolate  9.6 (17) 3.1 (5) 3.2 (12) 13.1 (17) 10.8 (15) 8.0 (9) 11.9 (20) 8.0 (11) 
 Cake and cookies  38.9 (35) 50.7 (32) 36.9 (47) 60.8 (50) 50.8 (42) 33.3 (23) 63.0 (59) 43.2 (36) 
 Soft drinks   9.4 (44) 9.8 (40) 26.3 (89) 113.3 (178) 97.2 (178) 76.4 (101) 62.6 (180) 84.5 (147) 

IT-Nap = Italy (Naples) cohort; UK-GP = United Kingdom (General population) cohort; UK-HC = United Kingdom (Health Conscious) cohort; NL-Utr = The Netherlands (Utrecht) cohort; GER-Hd = 
Germany (Heidelberg) cohort; SWE-Mal = Sweden (Malmö) cohort; Data are means (SD) or percentages. 
† Defined as the sum of hours spent on cycling and doing sports. 
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App. Table 3. Significant* predictors of substantial weight gain separately by cohort in the training sample (n=47,203) 

 UK-Nor NL-Doe NL-AmMa IT-Flo GER-Pot DK-CopAa 

 Age ↓ Age ↓ Age ↓ Age ↓ Age ↓ 
Sex (F vs. M) ↑   Sex (F vs. M) ↑  Sex (F vs. M) ↑  

 Baseline weight ↓ Baseline weight ↓ Baseline weight ↓ Baseline weight ↓ Baseline weight ↓ 
Baseline height ↓   Baseline height ↓  Baseline height ↑ 

    Techn. school ↓ Techn. school ↓ 
 Sec. school ↓   Sec. school ↓ Sec. school ↓ 

Socio-

demographic 

and anthropo-

metric factors 

University ↓ University ↓ University ↓  University ↓ University ↓ 

    Start smoking ↓  
Smoking cessation ↑ Smoking cessation↑ Smoking cessation ↑ Smoking cessation ↑ Smoking cessation ↑ Smoking cessation ↑ 

     Non-working ↑ 
 Sports (h/week) ↓   Sports (h/week) ↓ Sports (h/week) ↓ Sports (h/week) ↓ 
 No alcohol ↑    No alcohol ↑ 
  Alcohol >6 - ≤18g/d ↓ Alcohol >6 - ≤18g/d ↓ Alcohol >6 - ≤18g/d ↓ Alcohol >6 - ≤18g/d ↓ 
  Alc. >18 to ≤30g/d ↓ Alc. >18 to ≤30g/d ↓  Alc. >18 to ≤30g/d ↓ 

Alc. >30 to ≤60g/d ↓  Alc. >30 to ≤60g/d ↓   Alc. >30 to ≤60g/d ↓ 

Lifestyle 

factors 

     Alcohol >60g/d ↓ 

    Fruits/vegetables ↓ Fruits/vegetables ↓ 
 Red/proc. meat ↑  Red/proc. meat ↑ Red/proc. meat ↑ Red/proc. meat ↑ Red/proc. meat ↑ 
  Poultry ↑ Poultry ↑  Poultry ↑ 
   Fish ↑   
   Pasta/rice ↓   
  Bread ↓  Bread ↓  Bread ↓ 

Cake and cookies ↓    Cake and cookies ↓   
Vegetable oil ↑   Vegetable oil ↓   

 Butter/marg. ↓    Butter/marg. ↓ 
     Milk/yogurt ↓ 

Dietary  

factors 

    Chocolate ↑  
 Soft drinks ↑    Soft drinks ↑ Soft drinks ↑ 

* Significance at the 10% level.  
F vs. M = female vs. male, tech. school = technical school, sec. school = secondary school, red/proc meat = red and processed meat, butter/marg. = butter and margarine.
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App. Figure 1. Baseline survival functions for centres of the training sample with a) all 
covariates set to zero and b) all covariates set to mean values  
 

S
u

rv
iv

a
l 
p

ro
b

a
b

il
it

y
 

S
u

rv
iv

a
l 
p

ro
b

a
b

il
it

y
 

a) 

b) 



Appendix             96 

 

App. Figure 2. Proof that the same estimates of survival probability are obtained 
irrespective of setting all covariates to zero or to the average of all participants’ values 
and correcting afterwards for these average values 

Let X = (x1,…,xm) be a vector of predictors. The survival function can be written as  
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with the baseline survival function S0(t) estimated for an individual with all predictors 

equal to 0 (standard method) [170].  

Alternatively, the “baseline” survival function can be expressed based on the “average 

individual” (SM(t)), where all predictor values equal their respective mean value: 

Hence, it has to be proven that: 

The corresponding survival function, corrected for the means of participants’ values is then: 
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App. Figure 3. Associations of predictors with substantial weight gain across the six cohorts of the training sample and meta-analysis 

Substantial weight gain was defined as gaining ≥10% of baseline weight during follow-up. 

a) Age (per year) b) Body weight (per kg) 

c) Body height (per cm) d) Sex (Female vs. Male) 
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App. Figure 3 cont.  
 

e) Technical school degree vs. no/primary school f) Secondary school vs. no/primary school 

h) No alcohol vs. low alcohol (>0 - ≤ 6g/d) g) University vs. no/primary school 
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App. Figure 3 cont.  

i) Alcohol >6 - ≤18g/d vs. low alcohol (>0 - ≤ 6g/d) j) Alcohol >18 - ≤30g/d vs. low alcohol (>0 - ≤ 6g/d) 

k) Alcohol >30 - ≤60g/d vs. low alcohol (>0 - ≤ 6g/d) 

 

l) Smoking cessation vs. other smoking behaviours 
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App. Figure 3 cont.  

m) Intake of fruits and vegetables (per 125g/d) n) Intake of poultry (per 50g/d) 

o) Intake of bread (per 50g/d) 

 

p) Intake of butter and margarine (per 20g/d) 
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App. Figure 3 cont. 

q) Intake of cakes and cookies (per 50g/d) r) Intake of soft drinks (per 250g/d) 

s) Baseline survival probability at t=5years 
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App. Figure 4. Calibration plots (a-f) for the risk score across cohorts of the training 
sample 

a) UK-Norfolk 

b) NL-Doetinchem 
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App. Figure 4 cont. 
 

c) NL-Amsterdam/Maastricht 

d) IT-Florence 
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App. Figure 4 cont. 
 
 
 

f) DK-Aarhus/Copenhagen 

e) GER-Potsdam 
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App. Figure 5. ROC curves for comparison of models containing non-modifiable and 
modifiable predictors in the training sample

 

 

Non-modifiable predictors (0.59, 95% CI: 0.58-0.60) 

+ Smoking cessation (0.65, 95% CI: 0.64-0.66)  

+ Physical activity and dietary factors (0.67, 95% CI: 0.66-0.68) 
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