
Chi Ching Chi, Mauricio Álvarez-Mesa, Benjamin Bross, Ben Juurlink, Thomas
Schierl

SIMD acceleration for HEVC decoding

Article, Postprint version
This version is available at http://dx.doi.org/10.14279/depositonce-5742.

Suggested Citation
Chi, Chi Ching; Álvarez-Mesa, Mauricio; Bross, Benjamin; Juurlink, Ben; Schierl, Thomas: SIMD
acceleration for HEVC decoding. - In: IEEE transactions on circuits and systems for video technology : a
publication of the Circuits and Systems Society. - ISSN: 1558-2205 (online). - 25 (2015), 5. - pp.
841-855. - DOI: 10.1109/TCSVT.2014.2364413. (Postprint version is cited, page numbers differ.)

Terms of Use
© © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

SIMD Acceleration for HEVC Decoding
Chi Ching Chi, Mauricio Alvarez-Mesa, Member, IEEE, Benjamin Bross, Student Member, IEEE, Ben

Juurlink, Senior Member, IEEE, and Thomas Schierl, Member, IEEE,

Abstract—SIMD instructions have been commonly used to
accelerate video codecs. The recently introduced HEVC codec
like its predecessors is based on the hybrid video codec principle,
and, therefore, also well suited to be accelerated with SIMD. In
this paper we present the SIMD optimization for the entire HEVC
decoder for all major SIMD ISAs. Evaluation has been performed
on 14 mobile and PC platforms covering most major architectures
released in recent years. With SIMD up to 5× speedup can be
achieved over the entire HEVC decoder, resulting in up to 133
fps and 37.8 fps on average on a single core for Main profile
1080p and Main10 profile 2160p sequences, respectively.

Index Terms—H.265, HEVC, SIMD, SSE, AVX, NEON, UHD.

I. INTRODUCTION

Computer architecture and video coding have mutually
influenced each other during their technological advancements.
The mutual influence is especially strong in the deployment
of the single instruction multiple data (SIMD) instructions.
SIMD instructions have first been introduced for the purpose
of software-only MPEG-1 real-time decoding using general
purpose processors [1], [2]. Since then the concept of SIMD
has been further exploited by many architectures for many
following video coding standards [3]. To allow for more
efficient implementation, video coding standards also take the
SIMD capabilities of the processors into account during the
standardization process. For instance, explicit effort is made
to define reasonable intermediate computation precision and
eliminate sample dependencies.

The Joint Collaborative Team on Video Coding (JCTVC)
has recently released the High Efficiency Video Coding
(HEVC) [4] coding standard. HEVC allows for 50% bi-
trate reduction with the same subjective quality compared
to H.264/AVC [5]. Similar to previous standards, significant
attention was paid to allow the new standard to be accelerated
with SIMD and custom hardware solutions. It is commonly
known that hardware-only solutions can potentially provide
much higher energy efficiency compared to software solutions
using general purpose processors (GPPs). Optimized software
solutions, however, are required on platforms where hardware
acceleration is not available, have a reduced implementation

C. C. Chi, M. Alvarez-Mesa, and B. Juurlink are with the
Embedded Systems Architecture group, Technische Universität Berlin.
Sekretariat EN 12, Einsteinufer 17, 10587 Berlin, Germany. email:
{chi.c.chi,mauricio.alvarezmesa,b.juurlink}@tu-berlin.de

Benjamin Bross and T. Schierl are with the Fraunhofer Hein-
rich Hertz Institute, Einsteinufer 37, 10587 Berlin, Germany. email:
{benjamin.bross,thomas.schierl}@hhi.fraunhofer.de

This work is supported in part by the LPGPU Project (www.lpgpu.org),
grant agreement n◦ 288653.

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

effort and time-to-market, and avoid hardware overspecializa-
tion problems [6].

Many of the improvements to the coding tools responsible
for coding efficiency improvements in HEVC over previous
standards are also beneficial for accelerating the codec using
SIMD. Among others, the larger block sizes, more accurate
interpolation filter, and parallel deblocking filter, could make
SIMD acceleration even more important than in previous video
coding standards.

While HEVC has significant potential for SIMD accelera-
tion, the HEVC standard is also more complex than previous
ones. With support for three different coding tree block sizes,
more transform sizes, additional loop filter, more intra pre-
diction angles, etc., significantly more effort is required for
fully accelerating HEVC using SIMD. This will only become
more complex with the addition of future range extensions,
which will introduce more chroma formats and higher bit
depths. Additionally in recent years much more diversity has
been introduced in the instruction set architectures (ISAs)
and their micro-architectures. SIMD ISAs have become more
complex with multiple instruction set extensions, and even
with the same ISA the instructions have different performance
characteristics depending on the implementation.

In this paper we investigate the impact SIMD acceleration
has on HEVC decoding. For this the entire HEVC decoder has
been accelerated, i.e., SIMD has been applied to all suitable
kernels and operations. An implementation has been developed
for all recent x86 SIMD extensions as well as ARM NEON.
The main contributions of this paper are:

• SIMD acceleration is presented for all the data-parallel
kernels of the HEVC decoder (main and main10 profiles).

• Implementation and optimization of the HEVC decoder is
performed for all relevant SIMD ISAs, including NEON,
SSE2, SSSE3, SSE4.1, XOP, and AVX2.

• The effect of an interleaved chroma format on the SIMD
implementation is investigated.

• Performance evaluation is performed on 14 platforms
providing a large coverage of recent architectures for
1080p (HD) and 2160p (UHD) resolutions.

• With SIMD optimizations the decoder is able to process
up to 133 fps for 1080p and 37.8 fps for 2160p on average
on recent architectures.

The paper is organized as follows. First, Section II gives
an introduction to SIMD ISAs, while Section III presents
the related work. Section IV describes the optimized HEVC
decoder used as a baseline. Section V presents the SIMD
implementation of the suitable HEVC decoding kernels. Sec-
tion VI details the experimental setup, and in Section VII the
performance results are discussed. Finally, in Section VIII,
conclusions are drawn.

pubs-permissions@ieee.org

TABLE I
SIMD EXTENSIONS TO GENERAL PURPOSE PROCESSORS

SIMD ISA Base ISA Vendor Year SIMD Registers

MAX [8] PA-RISC HP 1994 31×32b
VIS SPARC Sun 1995 32×64b
MAX-2 PA-RISC HP 1995 32×64b
MVI Alpha DEC 1996 31×64b
MMX [10] x86 Intel 1996 8×64b
MDMX MIPS-V MIPS 1996 32×64b
3DNow! x86 AMD 1998 8×64b
Altivec [11] PowerPC Motorola 1998 32×128b
MIPS-3D MIPS-64 MIPS 1999 32×64b
SSE [12] x86/x86-64 Intel 1999 8/16×128b
SSE2 [13] x86/x86-64 Intel 2000 8/16×128b
SSE3 x86/x86-64 Intel 2004 8/16×128b
NEON ARMv7 ARM 2005 32×64b — 16×128b
SSSE3 x86/x86-64 Intel 2006 8/16×128b
SSE4 x86/x86-64 Intel 2007 8/16×128b
VSX Power v2.06 IBM 2010 64×128b
AVX x86/x86-64 Intel 2011 16×256b
XOP x86/x86-64 AMD 2011 8/16×128b
AVX2 [14] x86/x86-64 Intel 2013 16×256b
AVX-512 [15] x86-64 Intel 2015 32×512b

II. OVERVIEW OF SIMD INSTRUCTIONS

SIMD instructions for GPPs are a variation of the classical
SIMD computing paradigm [7]. Their purpose is, as the name
implies, to process multiple data elements with the same
instruction. In a GPP this is achieved by partitioning each
register into subwords and applying the same operation to all
of them. With this approach SIMD instructions offer signifi-
cant performance improvements with relatively little additional
hardware. The algorithm, however, must be suited for SIMD
acceleration, i.e., it must contain data level parallelism.

SIMD instructions were first introduced for the PA-RISC
architecture in 1995 [8] for accelerating MPEG-1 video de-
coding [9]. After that they have been included in almost
all architectures and have been used for accelerating many
applications apart from video decoding. One of the main
properties of a SIMD ISA is the SIMD width, which defines
the number of elements that can be processed in parallel
within a register. The first SIMD ISAs such as MAX-1 for
the PA-RISC, and MMX for x86 used 64-bit registers. The
next generation including Altivec for PowerPC, SSE for x86,
and NEON for ARM increased the SIMD width to 128-bit. In
2013 Intel introduced a new extension called AVX2 that in-
creased the SIMD width to 256-bit. Recently a new extension
specification for the x86 architecture has been released with
512-bit registers called AVX-512. Table I presents an overview
of the SIMD extensions released over the years.

Generally a SIMD ISA support arithmetic, logical, load,
store, type conversion, and data swizzling instructions. Some
SIMD ISAs, however, are more complete than others and
support for instance more packed data types or operations.
The load and store instructions depend on the SIMD vector
width, but some ISAs have stricter rules regarding the data
alignment than others. Often there are also differences in
the data swizzling instructions that rearrange the data inside
a vector. Although SIMD acceleration for most algorithms
generally can follow a similar method for different ISAs,
implementing an optimal solution for each ISA requires it to
be uniquely tuned.

III. RELATED WORK

By using SIMD extensions it was possible in 1995, for
the first time with software-only, to decode CIF (352×288)
MPEG-1 videos in real-time (25 fps) [9], [1] using a work-
station running at 80 MHz. After that, SIMD instructions
have been used for accelerating different video codecs such
as MPEG-2, MPEG-4 Part 2, and more recently H.264/AVC
and HEVC. A summary of works reporting SIMD optimization
for codecs before H.264/AVC can be found in [3].

In the case of H.264/AVC SIMD has been used to accelerate
luma and chroma interpolation filters, inverse transform and
deblocking filter. Using SSE2 complete application speedups
ranging from 2.0 to 4.0 have been reported [16], [17]. Real
time decoding of 720p content using a Pentium IV processor
with SSE3, and a low-power Pentium-M processor with SSE2
have been reported [18].

Some recent works have proposed SIMD acceleration for
HEVC decoding. L. Yan et al. [19] have reported a decoder
with Intel SSE2 optimization for luma and chroma interpo-
lation filters, adaptive loop filter (not included in the final
HEVC standard), deblocking filter and inverse transform. The
obtained speedups are 6.08, 2.21, 5.21 and 2.98 for each
kernel respectively. The total application speedup is 4.16,
taking as baseline the HEVC HM4.0 reference decoder. Using
an Intel i5 processor running at 2.4 GHz this system can
decode 1080p videos from 27.7 to 44.4 fps depending on
the content and bitrate. Bossen et al. [20] have presented an
optimized HEVC decoder using SSE4.1 and ARM NEON. On
an Intel processor i7 running at turbo frequency of 3.6 GHz
the decoder can process more than 60 fps for 1080p video up
to 7 Mbps. On a Cortex-A9 processor running at 1.0 GHz it
can decode 480p videos at 30 fps and up to 2 Mbps. Bossen
has also shown [21] that on an ARMv7 processor running at
1.3 GHz 1080p sequences can be decoded at 30 fps. In this
study, however, the experimental setup is not well described
direct comparisons cannot be made. Bross et al. [22] have
reported an optimized HEVC decoder using SSE4.1 on an
Intel i7 processor with an overall speedup of 4.3 and 3.3 for
1080p and 2160p, respectively. When running at 2.5 GHz the
system is able to process, in average, 68.3 and 17.2 fps for
1080p and 2160p respectively. Table II presents a summary of
the mentioned works reporting SIMD acceleration for video
decoders.

In previous works results have been presented for one or two
SIMD extensions (such as SSE4.1 and NEON) and one or two
processor architectures. Or in some cases only the complete
application speedup with SIMD is reported but not the SIMD
techniques and the per-stage speedups. Instead in this paper,
we present a detailed analysis of the impact of SIMD opti-
mization on the HEVC decoder by comparing implementations
for multiple SIMD ISAs. In addition, we quantify the impact
of the microarchitecture improvements over several processor
generations. Furthermore, we evaluate the chroma interleaved
format which benefits SIMD acceleration compared to the
traditional planar format. Overall, compared to previous work
the performance of the presented decoder is higher when using
similar processors and input videos.

TABLE II
VIDEO DECODING WITH SIMD OPTIMIZATIONS

Application Year ISA Processor Freq. Resol. fps Sp

[MHz]

H.264 [16] 2003 SSE2 Pentium-IV 2400 480p 48 3.0
H.264 [18] 2004 SSE3 Pentium-IV 3400 720p 60 n.a.

2004 SSE2 Pentium-M 1700 720p 30 n.a.

HEVC [19] 2012 SSE2 i7-2400 3400 1080p 28-44 4.2
HEVC [20] 2012 NEON Cortex A9 1000 480p 30 n.a.

2012 SSE4.1 i7-3720QM 3600 1080p 60 n.a.
HEVC [21] 2012 NEON n.a. 1300 1080p 30 n.a.
HEVC [22] 2013 SSE4.1 i7-2920XM 2500 1080p 68.3 4.3

2013 SSE4.1 i7-2920XM 2500 2160p 17.2 3.3

IV. GENERAL STRUCTURE OF OPTIMIZED HEVC
DECODER

In this section we describe the optimized HEVC decoder
used as a baseline for the SIMD optimization. In the descrip-
tion we will focus on the decoding process of a coding tree
unit (CTU). We discuss first the steps performed on the CTU
level, and then in more detail the parsing and reconstruction
which is performed on smaller units such as prediction units
(PUs) and transform units (TUs). Afterwards, we present the
CTU memory management of the optimized decoder.

A. CTU Decoding

For performance reasons the entire CTU decoding is per-
formed on a small intermediate buffer that has space for the
required data window which is slightly more than two CTUs.
Part of the kernels can be performed on CTU granularity where
others have to be performed on smaller units. Our decoder
performs the following high-level steps on a CTU level:
1) Pre-synchronization: Before a CTU is decoded a synchro-

nization is performed to check whether the CTU dependen-
cies are resolved. Depending on the parallelization strategy
either it is checked if the top-right CTU has been decoded
(WPP), or the co-located CTU has been decoded (frame
parallel).

2) Initialization: In the initialization phase the syntax element
data structures are filled with the appropriate neighboring
data and initial values. In order to reduce the memory
requirements and improve cache performance only the data
of current, top and left CTUs is restored.

3) Parsing and reconstruction: The CTU syntax parsing,
boundary strength calculation, intra prediction, motion
compensation, and inverse transform are performed in this
step and will be further detailed in Section IV-B.

4) In-loop filtering: After the reconstruction, the deblocking
and SAO filters are performed. The filters are not fully
applied on the current CTU. Due to data dependencies the
filters are partially or fully performed on previous decoded
CTUs as illustrated in Figure 1 (for luma samples). For
deblocking, all vertical edges of the CTU are filtered first
(Figure 1a) followed by the horizontal edges (Figure 1b).
Due to the deblocking filter specification in HEVC the
deblocking of the horizontal edges cannot be fully per-
formed because it requires the deblocked samples from
the vertical edges as input. The last 4 sample columns

(a) Vertical edges (b) Horizontal edges (c) SAO

Fig. 1. Order and translation of filtering steps to allow CTU based execution.
For clarity only the deblocking of edges on a 16×16 grid are illustrated.

Coding Blocks

CB 2

CB 0 CB 1

CB 5

CB 3

CB 6

CB 4

Prediction Blocks

Transform Blocks

Fig. 2. Subdivision of a CTB in coding blocks (CBs), prediction blocks (PBs),
and transform blocks (TBs).

on the right side of the CTU are not available, before
deblocking the first vertical edge of the next CTU. The
filtering has to be delayed by a minimum of 4 samples
to circumvent this issue. In the SIMD accelerated decoder,
however, the horizontal edges are delayed half the CTU
width (Figure 1b) for better performance. These details will
be discussed in Section V-D where the deblocking filter
implementation is presented.
The SAO filter for similar reasons also requires a delay
(Figure 1c). Because it requires deblocked samples as
input it has to be delayed by 4 samples vertically. In the
horizontal direction a full CTU delay is used instead of
delaying the minimum of 5 samples to avoid having to
cross 4 CTUs with potentially different SAO modes on
unaligned data. In the SAO step, the finalized samples are
stored to the picture memory.

5) Post-synchronization: After each CTU is processed,
thread(s) stalled on this CTU are notified. Depending on the
parallelization strategy either stalled threads are notified for
each CTU (WPP), or the at the end of a CTU line (frame
parallel).

Some other management steps such as border exchange, syntax
element and sample line buffer management, and picture
border extension are performed by the decoder but are left
out to simplify the description.

B. CTU Split Process and Leaf Node Processing

In the main parsing and reconstruction step, the CTU is split
in CUs using a recursive quad-tree, and the leaf CU nodes are
then further split in PUs and TUs. The coding tree block (CTB)
subdivision is illustrated in Figure 2. The processing of a final
leaf PU is as follows:
1) Parsing the prediction information: Depending on the CU

type parsing the prediction information involves retrieving
the reference indices and motion vectors (inter/skip) or
intra luma and chroma modes (intra).

Entropy

Intra

IT

MC
PB

TB CTB

DPB

SAO

DBLK

CTU buffer

Line buffer

Fig. 3. Overview of the optimized decoder implementation using local buffers.
The results of each kernel are stored in the local CTU buffer until they are
completely processed.

2) Motion compensation: The PB samples for an
inter-predicted CB are obtained from an area in a
reference picture located by a reference index and motion
vector. Interpolation filters (luma/chroma) are used to
generate the samples for non-integer positions.

The processing of a final leaf TU is as follows:
1) Intra prediction: In HEVC intra prediction is interleaved

with the inverse transform on a TU-basis (instead of on a
PU basis). Using the mode retrieved for the corresponding
PU the intra prediction is invoked.

2) Parsing coefficients and inverse quantization: In case co-
efficients are available for this TU (depends on various
conditions), the coefficients are parsed from the bitstream.
In our decoder the inverse quantization is performed after
parsing the coefficient level and sign. In this way no zero
coefficients are needlessly inverse quantized.

3) Inverse transform: In case coefficients have been parsed
for this TU, the inverse transform is performed to recreate
the residual. This step also directly adds the residual to the
corresponding prediction (inter or intra) and saturates the
result.

C. CTU Memory Management

To reduce the SIMD implementation complexity and im-
prove the cache and memory efficiency the intermediate sam-
ples are stored in a local buffer first instead of in the picture
memory directly. Figure 3 illustrates the interaction of the
different decoding steps and the local buffer. The local CTU
buffer can hold the samples for 2 CTUs and their required
neighboring samples. The interaction between decoding steps
goes via the local buffer. A line buffer is utilized to store
and restore intermediate bottom and top neighboring samples,
respectively.

This scheme has two main advantages compared to op-
erating on the picture memory directly. First, the SIMD
implementation complexity is reduced as only two decoding
steps, the motion compensation and SAO filter, are interacting
directly with the decoded picture buffer (DPB). Because the
decoded samples are either stored in 8-bit or 16-bit containers

TABLE III
COEFFICIENTS FOR HALFPEL AND QUARTERPEL POSITIONS FOR THE

HEVC INTERPOLATION FILTER.

position -3 -2 -1 0 1 2 3 4
0.25 -1 4 -10 58 17 -5 1 0
0.5 -1 4 -11 40 40 -11 4 -1
0.75 0 1 -5 17 58 -10 4 -1

depending on the bit depth of the sequence, the all decoding
functions that interact with the pictures must have two variants.

Second, decoupling the writing to the picture buffer allows
for additional memory and cache optimizations. The first
writes to the picture buffer introduce significant memory stalls
as the output picture memory at this time is not cached. To
reduce these stalls CTBs in the picture memory are aligned to
cache lines. Modern architectures that support write combin-
ing [23] will omit the line-fill read when it detects entire cache
lines are written. Aligning this to CTBs ensures that as little
cache lines as possible are written to, and consequently are
written as fully as possible. Additionally, non-temporal store
instructions [13] can be used to bypass the cache hierarchy and
directly write the lines to memory. This is beneficial because
the caches are not polluted with picture buffer data that will
not be read until at least the next frame starts decoding. As
we will discuss in Section VII-E the usage of non-temporal
stores leads to considerable reduction in capacity misses and,
consequently, memory transfers.

V. SIMD OPTIMIZATION

Our HEVC decoder implements SIMD for all the HEVC
processing steps except for the bitstream parsing. This includes
inter prediction, intra prediction, inverse transform, deblocking
filter, SAO filter, and various memory movement operations.
We have implemented this for x86, with specialized versions
for each of the SIMD extension sets from SSE2 up to AVX2,
as well as ARM NEON. For brevity we will not discuss each
implementation for every kernel in detail, bu instead we will
focus more on the general solutions and challenges involving
the SIMD implementations and highlight some distinctions
between different instruction sets when required. We will
mainly discuss SIMD for the luma component and comment
briefly on the chroma implementation.

A. Inter Prediction

During inter prediction, the PB samples must be created
from previous pictures indexed by the reference indices.
The associated motion vectors specify a translation in these
pictures with quarter-sample precision. In case the horizontal
or vertical vector component points to a fractional position
interpolation is required. HEVC specifies that the interpolation
is performed using a 7/8-tap FIR filter of which the coefficients
listed in Table III.

Inter prediction is the most time consuming step in
HEVC [20]. To derive a horizontally interpolated sample 7 to
8 multiplications and additions must be performed. If also the
vertical position is fractional a second filter iteration is applied
on the horizontally interpolated samples to derive the final

8-10 bit
reference

H

16 bit
horizontal

interpolated

V

8-10 bit
HV interpolated

Fig. 4. Horizontal (H) and vertical (V) interpolation of a 8×8 block

interpolated samples. This process is repeated for the other
reference direction in case of bi-prediction and the results are
either averaged or weighted to form the final block prediction.
The interpolation process is parallel for each sample and
is well suited for SIMD acceleration. Figure 4 shows the
interpolation process for one direction for a 8×8 block.

While a basic SIMD implementation is straightforward,
simply multiplying and adding a vector 8 times either in
horizontal or vertical direction, arriving to an optimal solution
for each ISA requires more analysis.

• Input and Intermediate Precision: Because HEVC supports
8- to 10-bit unsigned input sample value ranges, and up
to 16-bit in Range Extension profiles, input samples are
either 1 or 2 bytes in size. Furthermore, the interpolation
filter gain is between -22 and +88, which adds 8 bits to
the intermediate precision. This means that only for 8-bit
input precision a 16-bit intermediate precision is sufficient.
Because of this implementing a specialized version for 8-bit
input bit depth improves performance significantly across all
SIMD ISAs.

• ISA Specifics in Core Computation: The straightforward
implementation of the 7/8-tap filter is to simply perform
always 8 multiply-add operations with the different filter
coefficients. Closer inspection of the halfpel coefficients
show that the filter is symmetric allowing the operations
to be factorized, i.e., values corresponding to the same
coefficients can be added first before multiplying saving 4
multiplications (often used in H.264/AVC). Also the quarter-
pel filter requires only 4 multiplications, as the three other
multiplications can be implemented with shifts, additions,
or subtracts.
Creating 3 different specialized versions improved the per-
formance for ARM NEON for most of the 8-bit and 16-bit
interpolation modes. For the x86 architectures, however, a
different implementation is used because there is no regular
integer multiply-accumulate instruction. SSE2, however, has
the PMADDWD instruction which multiplies the packed
16-bit integers in the source operands and adds the adjacent
32-bit intermediate results. With some rearranging of input
values only four PMADDWD and PADDD instructions are
required for 4 samples. In SSSE3 also the PMADDUBSW
instruction is introduced which is the 8-bit variant of
PMADDWD, allowing 8 samples to be computed with only
four PMADDUBSW and PADDW instructions. With these
instructions no specialization for the halfpel is possible as

(a) Intra prediction

2
3

4
5

6
7
8
9
10
11
12

13
14

15
16

17
18

19
20

2122232425262728293031
32

33
34

non-frac
fractional

(b) Intra angles

Fig. 5. Angular intra prediction in HEVC.

the factorization would potentially overflow the input vector.
We also observed that specialization for the quarterpel
filter, using less complex instructions such as shifts and
adds, does not improve performance. The PMADDWD and
PMADDUBSW are relatively fast instructions and effec-
tively perform more work than a regular SIMD instruction
(12/24 ops vs 8/16 ops).
Additionally specialized versions for different block widths
can better utilize the ISAs. In our approach, SIMD versions
are created that process 4, 8, or 16 horizontally adjacent
samples at a time depending on the block width and avail-
able SIMD ISA. For instance, interpolating a 32×32 block
can be processed with 8 samples at a time on SSE2, while
on AVX2 this can be performed with 16 samples at a time.

• Multiple Filter Backends: The inter prediction does not only
have different input precisions, but also different output
precisions. For instance, HEVC specifies that a horizontal
filter that is followed by a vertical filter must not clip the
values to the input bit depth, but only shift the values
back to fit in a 16-bit range. Furthermore, the different
operations must be performed when a single/bi-directional
with weighted/averaged prediction is performed. Because
this variability exists inside the core loop of the filter, it is
not feasible to check this dynamically. Instead an optimized
version of the filter is created for each specific case.

B. Intra Prediction

The intra prediction has been refined in HEVC compared
to H.264. In H.264 10 distinct modes (dc, planar, 8 angular)
of which up to 9 are available depending on the block size.
HEVC extends this to 35 modes (dc, planar, 33 angular) which
are available to all block sizes (4×4 to 32×32) as shown in
Figure 5.

For all modes the derivation of the prediction values is
independent, and therefore well suited for SIMD acceleration.
For brevity we will focus on the angular modes. Each sample
can be derived from extrapolating the position to the boundary
samples using the specified angle. If the intersecting position is
fractional the prediction value is derived from bilinear filtering
two neighboring samples (uses the fractional position as the
weight). While each sample can be derived in parallel, several
specializations are required for a fast implementation.
• Fractional and non-fractional angles: Figure 5b shows that

some angles do not require bilinear filtering. Intra modes
2, 10, 18, 26, and 34 are aligned to 45◦ and therefore will
always hit full boundary positions, and only require a copy
of the boundary samples similar to H.264/AVC. For these
intra modes a specialized version is created.

• Vertical angles: For intra modes 18-34 the samples are
extrapolated to the horizontal boundary of the prediction
block. This means that all horizontally adjacent predic-
tion samples have the same fractional position, allowing
a relatively straightforward SIMD implementation. For the
bilinear filtering an intermediate precision of 16-bit can be
used for input bit depth up to 10-bit, because the fraction
precision is 5 bits and 1 bit is required for the averaging.
This means that 8 samples can be predicted in parallel using
128-bit SIMD ISAs.

• Horizontal angles: For intra modes 2-17 the samples are
extrapolated to the vertical boundary of the prediction block.
This means that all vertically adjacent prediction samples
have the same fractional position. The prediction can still
be performed horizontally, however, by first copying the
vertical boundary samples to an array. The prediction sam-
ples will then be created in a bottom-to-top, left-to-right
order. Storing the produced prediction samples in the right
orientation then requires a 90◦ rotation, which can be
implemented using a SIMD transpose and a reverse store
of the transposed registers.
While the derivation process of the samples can be accel-

erated with SIMD, this is not possible for the preparation of
the boundary samples. Preparing the boundary samples can
be quite complex as samples must be extended for boundaries
that are not available for prediction, and afterwards must also
filtered. On average, preparing the boundary samples takes
about as much time as the prediction

C. Inverse Transform
The inverse transform has traditionally been a well suited

kernel for SIMD acceleration. In HEVC this is also true and
with block sizes up to 32 × 32 the transform is much more
computational complex compared to previous standards [24].
A common implementation of the 2-D inverse transform is to
perform a series of two 1-D transforms on the columns and
then on the rows of the transform block [25]. The computation
of a 1-D column transform consists of a series of matrix-vector
multiplication, followed by adding/subtracting the partial re-
sults. Figure 6 illustrates the 1-D inverse transform for 32×32
TBs.

The figure shows that for the largest inverse transform the
odd positions of the input vector x are multiplied with the
16×16 matrix. Positions 2 to 30 with steps of 4 (4n+2)
are multiplied with the 8×8 matrix, and so on. Then the
resulting partial solutions are combined with additions and
subtractions to the final inverse transformed output vector. In
HEVC the smaller 1D-transforms are contained in the larger
ones, meaning that the coefficients of the transform matrices
are the same for the smaller transforms. The difference when
performing a smaller transform is that larger matrix-vector
multiplications are omitted and the input position pattern is
starting with the odd pattern at one of the smaller matrices.

2× 2
x0

x16
2× 2

x8

x24 4× 4

x4

x12

x28
8× 8

x2

x6

x10

x30

16× 16

x1

x3

x5

x7

x31

+ −

+ −

+ −

+ −

eeeo[2]

eeo[4]

eo[8]

o[16]

eeee[2]

eee[4]

ee[8]

e[16]

y[32]

s = length(c)

c[n] =

{
a[n] + b[n] 0 ≤ n < s/2
a[s− n− 1]− b[s− n− 1] s/2 ≤ n < s

+ −

a b

c

1

Fig. 6. HEVC 1D inverse transform for 32×32 TBs.

Column transform Row transform

non-zero coeffs column trans-
formed

ommitable
columns

ommitable during
transform

Fig. 7. Omitting unnecessary computation on zero elements in column and
subsequent row transform (16× 16 example).

An optimization that can be performed to the inverse
transform in general is omitting calculations depending on
the input. It is very uncommon that all positions of the input
array are fully populated with non-zero values. Similar to most
hybrid video codecs, the coefficient scan pattern of HEVC
concentrates the coefficients in the top left corner. Because of
the larger transforms in HEVC compared to H.264/AVC more
columns and rows contain only zero coefficients for which the
computation can be dropped as this would result back in zero.
An example of which inputs can be omitted for computation
is shown for an 16×16 TB in Figure 7. For the special case
that the input coefficients are all zero except for the top left
corner position an even more aggressive optimization can be
performed, known as the DC transform. In this case the entire
inverse transform is omitted as this would result in the same
value, which can be computed with a single rounding shift, for
all positions in the residual block. These optimizations results
in up to 5× speedup for the scalar code, and up to 3.6× and
2.8× for SSE2 and AVX2 respectively for high QP videos.

The SIMD implementation of the inverse transform can be
either performed inside one column or row transform or using
SIMD on multiple columns/rows, or a combination of the two.
We have experimented with these approaches and found that
the differences are small. The fastest SSE2 implementation
uses SIMD over columns followed by a transpose for both
passes of the inverse transform. In this approach not all zero
columns can be dropped, because 8 columns are inverse trans-

0
0

1

1

2

2

3

3
0 1 2 3

Q

P

Edge part

Block edge

Fig. 8. Samples around a block edge involved in the deblocking filter.

formed at once, and additional transpose overhead is present.
This aprroach is still faster, because for the entire transform
all the SIMD lanes can be used efficiently which is not the
case when applying SIMD to an individual column/row. With
NEON the best approach is the same as SSE2 for the smaller
transforms (4×4, 8×8). For the larger transforms a combined
approach without any transposing overhead proves to be better,
in which the first pass used multi-column SIMD and the
second pass performs SIMD per row.

D. Deblocking Filter

The deblocking filter can be accelerated using SIMD by
considering multiple edge parts simultaneously as illustrated
in Figure 8. Because (for <11-bit) the computation precision
of the deblocking filter is within 16-bit, 8 computation lanes
are available for both SSE2+ and NEON implementations,
which can be used to process 4-sample wide edges at a time
(for AVX2 16 16-bit lanes are available and can be used to
process 8 edge parts simultaneously). A major difference of
the deblocking filter compared with other kernels is that a
large part of it consists of evaluating conditions [26]. Because
multiple edge parts fit inside a SIMD vector the execution
of the filter must be made conditional within the vector. The
complete SIMD deblocking filter is performed in four phases
as described below:
1) BS check: In the first phase, if any of 4 consecutive bound-

ary strengths (BS), which are computed during the parsing
and reconstruction step, is larger than 0, the samples of 4
edges parts are loaded. For the vertical edge filter these
samples are transposed after loading.

2) Filtering decisions: In the second phase the first and the
last sample column of each of the 4 edge part are swizzled
into a 128-bit vector. The following filtering expressions
are then evaluated for 4 edge parts at a time.

dp0 = |p2,0 − 2p1,0 + p0,0| dp3 = |p2,3 − 2p1,3 + p0,3|
dq0 = |q2,0 − 2q1,0 + q0,0| dq3 = |q2,3 − 2q1,3 + q0,3|

dpq0 = dp0 + dq0 dpq3 = dp3 + dq3

filter = dpq0 + dpq3 < β

where px,y and qx,y are the samples indicated in red in
Figure 8, and the value of β depends on the QP of the p
and q samples.

3) Normal/strong filter decision: If filter evaluates to true
for any of the four parts, in the third phase the same

swizzled input is used to derive if the filter should be
strong or normal. The following expressions evaluate this:

strong0 = (|p3,0 − p0,0|+ |q0,0 − q3,0| < β/8)∧
(dpq0 < β/8) ∧ (|p0,0 − q0,0| < 2.5tc)

strong3 = (|p3,3 − p0,3|+ |q0,3 − q3,3| < β/8)∧
(dpq3 < β/8) ∧ (|p0,3 − q0,3| < 2.5tc)

strong = strong0 ∧ strong3 normal =!strong

The results of the first 3 phases are a strong and normal
mask, normal second sample mask, and a lossless mask.

4) Filtering operations: In the last phase, in which the actual
sample filtering takes place, we switch back to the original
loaded input and 2 edge parts are filtered at once. If the
strong or normal mask is enabled for any of the two
edge parts, the computation is performed and the masks
are used to select between the filtered samples and the
original samples. Finally, samples that are contained in
lossless coded CBs should not be filtered independent of
previous decisions, and the original samples are selected
before storing back in the local CTU buffer.

The SIMD implementation is performing more work com-
pared to the scalar implementation, because multiple edge
parts, which might not require the same computation, are
processed together. We found that this divergent behavior is
stronger if edge parts do not belong to the same block (TB,
PB, CB, CTB). The horizontal edge filtering would particularly
suffer from this as it must be delayed at the minimum by one
edge part in HEVC. Therefore, the horizontal filter is delayed
by half the CTB width to reduce the divergent behavior.

E. SAO Filter

The SAO filter has 2 different modes, the edge offset mode
and the band offset mode [27]. In both modes the entire CTB
is considered and the deblocked samples are used as input. In
the edge offset mode 4 sample offsets are transmitted in the
bitstream. Each sample Sx,y is derived as follows by using the
edge offset (EO) type of the CTU, the offsets, and neighboring
sample values:

Sx,y = Clip(Px,y + offset(ind(x, y)))

offset(m) =


offset0 if m == −2
offset1 if m == −1

0 if m == 0
offset2 if m == 1
offset3 if m == 2

ind(x, y) =


s(Px,y − Px−1,y) + s(Px,y − Px+1,y) if eo0
s(Px,y − Px,y−1) + s(Px,y − Px,y+1) if eo1

s(Px,y − Px−1,y−1) + s(Px,y − Px+1,y+1) if eo2
s(Px,y − Px+1,y−1) + s(Px,y − Px−1,y+1) if eo3

s(n) = sign(n) =

 −1 if n < 0
0 if n == 0
1 if n > 0

In the band offset mode also 4 offsets are transmitted in the
bitstream. The index derivation is simpler, instead of looking
at neighbor samples each sample value is classified in 1 of

32 bands using the 5 MSBs. The 4 transmitted offsets are
associated to any 4 consecutive bands, while the other bands
will default to an offset of 0.

SIMD can be applied for the entire SAO process by con-
sidering multiple samples at the same time, because each
sample can be derived in parallel. The sign function can
be implemented using clipping to {-1,1} or, when available,
with dedicated sign instructions, making the index calculation
straightforward. Also the add and clip of the final sample
value is possible with all SIMD implementations. The offset
can be derived using in register table lookup. For NEON the
VTBL instruction can perform 8 lookups at a time, and for
SSSE3 and higher 16 lookups can be performed using the
PSHUFB instruction. For the x86 processors not supporting
SSSE3, however, the lookup has to be performed using regular
scalar code.

While the SAO SIMD implementation is straightforward,
two considerations must be made. First, for correctness, the
samples of lossless coded CBs must not be filtered. Also
samples at pictures borders and some slice border must not
be filtered. B ecause t hese c ases a re r elatively r are i t i s not
desired to add complicated checking inside the inner SIMD
loop. We solve this instead by first fi ltering al l th e samples
and afterwards put back the original samples where needed.
Second, because the SAO is the last step in the decoding
process, the output samples are written to the picture buffer
and not back to the intermediate buffer. As discussed earlier
in Section IV-C, non-temporal stores to the picture buffer
are used to reduce cache misses and memory bandwidth
requirements.

F. Other Kernels

At various places in the decoder, other than the the highly
sequential bitstream parsing, memory operations are required
such as filling an array, copying memory, and clearing mem-
ory. For example border extensions, setting initial values
of syntax elements, and clearing coefficient arrays are also
accelerated in our implementation.

G. Chroma Interleaving

Until now we have only considered SIMD acceleration for
the luma plane. SIMD acceleration can also be applied to all
the kernels for the chroma planes. The chroma planes in some
kernels (inverse transform, intra prediction, SAO filter) have
(almost) the same derivation process as luma and the code can
be shared. In other kernels (deblocking and inter prediction)
a different and less complex derivation process is followed,
requiring a specialized chroma implementation.

In the HEVC main profile only YUV420 formats are
supported. This means that all chroma blocks (TB, PB, CB,
CTB) are half the width and height of their luma blocks.
Overall this leads to worse SIMD utilization as the smaller
blocks are unable to fill the entire SIMD vector.

The SIMD efficiency can be improved by interleaving the
two chroma planes horizontally sample-by-sample into one
plane with double the width. This semi-planar sample format
is referedred to as NV12 for 8-bit and PO10 for 10-bit [28].

In HEVC the SIMD efficiency can be improved using this
sample format, because co-located chroma blocks/samples
always require the same computation for all the kernels. An
exception for this is the inverse transform for which one of the
two planes could have no coefficients transmitted. It should
be noted that the use of chroma interleaved formats is not
restricted to the HEVC codec and 4:2:0 formats but can be
applied to any video codec that operates on a planar YUV
format.

The usage of chroma interleaved processing does require
that the application receiving the output of the decoder must
be able to handle the semi-planar color format. The support
level for NV12 and P010 is, at the time of writing, not as good
as the regular planar formats in many applications. Interleaved
chroma formats are currently commonly used in video codec
hardware accelerators, but are still rarely supported through
the entire displaying software stack.

VI. EXPERIMENTAL SETUP

A wide range of platforms has been selected for evaluation,
providing a good coverage of the important consumer proces-
sor architectures of the last 10 years. The properties of the in
total 14 platforms are provided in Table IV , describing the
processor and their memory organization . The table groupsthe
platforms of the three vendors, Intel, AMD, and ARM. Each
platform represents a different core micro-architecture for a
generation of processors. Most platforms have multiple cores
and in addition most Intel platforms also support simultaneous
multithreading (SMT). One AMD platform has also support
for hardware multithreading in the form of cluster multi-
threading (CMT), which promises better performance scaling
compared to SMT.

To provide a fair and reproducible evaluation, an as common
as possible software stack has been used. All x86 platforms
use the Kubuntu 13.04 distribution with Linux kernel 3.8.
The ARM platforms run a Linaro distribution that is also
derived from the Ubuntu 13.04 packages. For all platforms
the GCC 4.8.1 compiler is used with -O3 optimization level.
Execution time is measured outside of the program using the
time command and performance metrics such as instructions,
cycles, and frequency are collected with perf. For all plat-
forms the dynamic voltage frequency scaling is disabled in all
experiments, including the turbo boost and turbo core features
of recent processors. The processors are fixed to their nominal
frequency listed in Table IV.

Two video testsets have been selected for the experiments.
The first include all five 1080p videos from the JCTVC
testset [29] and the second one includes five 2160p50 videos
from the EBU Ultra-High Definition-1 (UHD-1) testset [30].
All videos were encoded with the HM-10.1 reference encoder
using 4 QP points (24, 28, 32, 36). The 1080p sequences are
encoded with the random access main (8-bit) configuration,
and the 2160p sequences are encoded with the random access
main10 (10-bit) configuration. All videos are encoded with
wavefront parallel processing (WPP) enabled. Table V shows
the resulting bitrates.

TABLE IV
MAIN PARAMETERS OF THE PROCESSORS USED IN THE EVALUATED SYSTEMS.

Architecture Model Freq. Cores MT L1I/L1D/L2 L2/L3 Process Transistors TDP Year ISA
[GHz] per core shared [nm] [M] [W]

Dothan LV 758 1.5 1 - 32kB/32kB/- 2MB/- 90 144 7.5 2005 x86
Prescott Xeon 3.6 GHz 3.6 2x1 2-SMT 12kµops/16kB/- 2MB/- 90 2x169 2x110 2005 x86-64
Atom D2550 1.86 2 2-SMT 32kB/24kB/- 512kB/- 32 10 2012 x86-64
Conroe L7500 1.6 2 - 32kB/32kB/- 4MB/- 65 291 17 2006 x86-64
Nehalem i7-920XM 2 4 2-SMT 32kB/32kB/256KB -/8MB 45 731 55 2009 x86-64
Sandybridge i7-2920XM 2.5 4 2-SMT 32kB/32kB/256KB -/8MB 32 1160 55 2011 x86-64
Haswell i7-4770S 3.1 4 2-SMT 32kB/32kB/256KB -/8MB 22 1400 65 2013 x86-64
BayTrail z3740 1.861 4 - 32kB/32kB/- 2MB/- 22 - - 2013 x86-64

K8 A64-X2 3800+ 2 2 - 64kB/64kB/512kB -/- 90 150 89 2005 x86-64
Deneb PII-X4 945 3 4 - 64kB/64kB/512kB -/6MB 45 758 95 2009 x86-64
Piledriver FX-8350 4 4 2-CMT 64kB/2x16kB/2MB -/8MB 32 1200 125 2011 x86-64
Jaguar A4-5000 1.5 4 - 32kB/32kB/- 2MB/- 28 - 15 2013 x86-64

Cortex A9 Exynos 4412 1.2 4 - 32kB/32kB/- 1MB/- 32 N/A - 2012 ARMv7
Cortex A15 Exynos 5410 1.6 4 - 32kB/32kB/- 2MB/- 28 N/A - 2013 ARMv7

1Turbo boost frequency used because it could be maintained.

TABLE V
BITRATE (IN MBPS) FOR ALL THE ENCODED VIDEO SEQUENCES.

Video Hz Frames QP24 QP28 QP32 QP36

1080p 8-bit

BasketballDrive 50 500 10.62 5.16 2.85 1.70
BQTerrace 60 500 19.47 5.58 2.28 1.15
Cactus 50 500 10.55 4.88 2.71 1.60
Kimono 24 241 3.46 1.91 1.08 0.63
ParkScene 24 240 5.43 2.86 1.55 0.85

2160p 10-bit

FountainLady 50 500 30.82 16.73 8.82 4.78
LuppoConfeti 50 500 24.23 13.79 8.20 5.32
RainFruits 50 500 15.33 8.47 4.97 3.00
StudioDancer 50 500 15.20 8.76 5.13 3.18
WaterfallPan 50 500 38.16 18.55 8.73 4.19

VII. RESULTS

A. Single-threaded Performance

Tables VI and VII show the performance of a single
thread in frames per second for 1080p and 2160p resolutions,
respectively. The tables present the performance achieved on
each architecture for 4 different QPs. For each QP, both the
planar chroma (YUV) and the interleaved chroma (YC) results
are shown. The results are averaged over the input videos with
the same resolution.

The results show that there is quite a large performance
difference for different QPs. Depending on the resolution and
architecture, there is a 1.5× up to 2.4× difference between
QP 24 and QP 36. Comparing different architectures an even
larger performance span can be observed. For instance, there
is an up to 15.6× single threaded performance difference
between the tested Cortex-A9 and Haswell platform. Most
of the tested platforms, however, achieve the common movie
frame rate of 24 fps for 1080p. Only the Dothan, Atom, and
Cortex-A9 are not able to achieve this on a single core. This
is different for 2160p 10-bit as none of the platforms is able
to achieve (the expected to be) common frame rate of 50 fps
for any QP point, showing the necessity of parallelization.

TABLE VI
PERFORMANCE (FPS) 1080P 8-BIT

QP 24 QP 28 QP 32 QP 36 Gain
YUV YC YUV YC YUV YC YUV YC YC

Dothan 12.4 13.0 16.1 17.0 18.7 19.6 20.6 21.6 5.4%
Prescott 21.0 22.3 29.0 30.9 35.0 37.2 39.7 42.1 6.4%
Atom 11.2 11.8 14.8 15.6 17.4 18.3 19.6 20.5 5.4%
Conroe 22.1 23.2 30.0 31.6 35.9 37.8 40.5 42.6 5.2%
Nehalem 36.2 38.1 51.3 54.2 63.2 66.8 73.0 77.0 5.5%
Sandy Bridge 50.3 53.3 73.1 77.7 92.0 97.8 107.8 114.6 6.1%
Haswell 79.7 86.0 120.4 130.9 155.5 169.8 186.2 203.8 8.6%
Bay Trail 15.8 16.7 21.9 23.1 26.7 28.0 30.5 32.0 5.2%

K8 19.0 20.0 24.5 25.8 28.3 29.7 31.2 32.7 5.1%
Deneb 39.2 41.8 53.9 57.6 64.7 69.2 73.1 78.1 6.8%
Piledriver 57.3 61.7 81.0 87.4 100.0 107.6 115.2 123.7 7.7%
Jaguar 17.1 18.5 23.3 25.3 28.1 30.6 31.8 34.8 8.7%

Cortex-A9 8.1 8.4 10.3 10.5 11.7 11.9 12.9 13.0 2.5%
Cortex-A15 17.5 18.0 22.9 23.2 26.6 26.5 29.5 29.6 1.3%

TABLE VII
PERFORMANCE (FPS) 2160P 10-BIT

QP 24 QP 28 QP 32 QP 36 Gain
YUV YC YUV YC YUV YC YUV YC YC

Nehalem 11.5 12.0 13.8 14.4 15.8 16.5 17.4 18.2 4.4%
Sandy Bridge 16.1 17.1 19.6 20.8 22.6 24.1 25.3 26.9 6.2%
Haswell 27.1 29.1 33.5 36.3 39.5 43.0 44.4 48.6 8.3%
Bay Trail 4.9 5.1 5.7 6.0 6.5 6.8 7.1 7.5 5.0%

Deneb 11.9 13.6 13.8 16.1 15.4 18.1 16.7 19.8 16.5%
Piledriver 16.8 18.6 19.7 22.2 22.3 25.3 24.4 27.9 12.4%
Jaguar 5.3 5.7 6.2 6.7 6.9 7.6 7.6 8.3 9.3%

Cortex-A9 2.4 2.4 2.7 2.7 3.0 3.0 3.2 3.2 1.2%
Cortex-A15 5.0 5.1 5.7 5.8 6.3 6.4 6.8 6.9 1.5%

Chroma interleaving provides in all cases an improvement.
For Intel processors there is a 4.4 to 8.6% improvement
and this is stable across resolutions. For AMD at 2160p
the improvement is even higher than 16%. On the ARM
processors the difference is smaller with up to 2.5% improve-
ment. Chroma interleaving improves the SIMD utilization and
memory/cache behavior for the chroma plane(s). For brevity,
the results discussed in the next sections use the chroma
interleaved configuration.

B. Impact of ISA and Architecture

In the previous section the absolute single-threaded per-
formance was discussed with respect to resolution, QP, and
platform. In this section we will refine the platform related
results and show the impact of ISA and micro-architectural
differences. For all the results, the runtimes of all the videos
and QPs are averaged for each resolution.

TABLE VIII
AVERAGE EXECUTED INSTRUCTIONS PER FRAME [MINST/FRAME]

scalar neon sse2 ssse3 sse4.1 avx xop avx2

1080p 8-bit

armv7 319.1 76.5
x86 385.4 79.1 68.5 67.9 62.7 60.9 49.4
x86-64 344.7 72.0 61.2 60.6 55.9 54.0 42.8

2160p 10-bit

armv7 1085 299.9
x86 1250 256.2 243.8 242.3 223.2 210.2 159.7
x86-64 1127 232.9 219.3 218.2 198.9 184.3 138.9

Table VIII shows the average number of instructions ex-
ecuted per frame for the different ISAs and their SIMD
extensions. As can be observed, employing SIMD reduces the
instruction count dramatically. The instruction count reduction
compared to scalar ranges from 4.8× to 8.1× depending on the
ISA and SIMD extension. The instruction count reduction is
similar for 1080p 8-bit and 2160p 10-bit. For 10-bit typically
less scalar instructions are replaced by SIMD instructions,
because higher intermediate computation precision is required.
This is counterbalanced by the higher resolution, which in-
creases the portion of time spent in kernels that are improved
by SIMD.

Comparing the 32-bit and 64-bit x86 architectures shows
that 64-bit requires significantly less instructions per frame.
This can be mostly accounted to the increased number of
architectural registers (8 in x86 and 16 in x86-64), which
reduces the generation of so called spilling instructions due
to too few available registers. The instruction count for the
ARMv7 ISA, which also has 16 architectural general purpose
registers, is even lower for scalar execution. NEON, however is
less powerful compared to SSE. While both ISAs have 128-bit
SIMD instruction, many NEON instructions that perform oper-
ations horizontally in the vector, such as table lookup (shuffle),
halving adds, and narrowing and widening, are defined only
for 64-bit. Also not all SIMD instructions and their options are
exposed as intrinsics, putting a higher burden on the compiler
for code generation.

In Figure 9 the normalized performance and instructions per
cycle (IPC) are shown for 1080p and 2160p, respectively. For
the normalized performance, the frequency differences of the
platforms are first factored out (by multiplying the runtimes
with the frequency), and the results are then normalized to
the Haswell scalar results. The plots show how the different
architectures would compare to each other when running at the
same frequency. It can be seen that SIMD always provides a
significant speedup compared to their own scalar baseline. For
instance the Atom performs at the same frequency 4.8× slower

than Haswell in scalar execution, but is about equal when it
uses SIMD. When also using SIMD on Haswell, however, the
performance gap returns.

The improvements of the additional SIMD exten-
sions are more incremental, except for avx2 for which
the SIMD registers are 256-bit instead of 128-bit. The
generation-to-generation architectural improvements have
been more significant.

Finally, it can be observed that the IPC when using SIMD
instructions are always lower compared to scalar. Because only
part of the application is accelerated with SIMD, the IPC of
the parts that have more limited acceleration become more
dominant. Typically the code parts related to bitstream parsing
(CABAC) have low IPC because of frequent branches and
data dependencies. Also SIMD code is more optimized and
processes data faster leading to relatively more cache misses
and control instructions, both typically reducing the IPC.

C. Speedup per Stage

In Table IX the per stage speedup on Haswell is presented
for different SIMD extensions averaged over all QPs. For
1080p 8-bit the overall speedup ranges from 3.6× to 4.84×
from sse2 to avx2. The stages that improve the most are the
inter prediction (10.33×) and the SAO filter (11.18×). The
inverse transform (IT) and deblocking filter (DF) benefit less
with up to 3.69× and 3.44×, respectively. Although limited,
also the PSide, PCoeff, and Other stages are accelerated,
mainly from improving filling and clearing memory. (The
PSide and PCoeff results are discarded from the table for space
reasons.)

Figure 10 shows the execution profile of the decoder for
scalar and SIMD for the Haswell platform. It can be observed
that portion of time spent on parsing the side information and
coefficients (PSide, PCoeff), intra prediction (Intra), and Other
increases when using SIMD. The contribution of these stages
is relatively higher because the SIMD acceleration has limited
effect in these stages.

TABLE IX
SPEEDUP PER STAGE HASWELL FOR DIFFERENT SIMD LEVELS.

Intra Inter IT DF SAO Other Overall

1080p 8-bit

sse2 1.23 6.03 2.68 2.80 4.03 1.24 3.67
ssse3 1.30 7.16 2.87 3.00 7.82 1.24 4.14
sse4.1 1.31 7.12 2.98 3.00 8.09 1.24 4.15
avx 1.33 7.58 3.23 3.04 8.26 1.24 4.29
avx2 1.33 10.33 3.69 3.44 11.18 1.18 4.95

2160p 10-bit

sse2 1.53 5.28 3.34 3.25 3.61 1.16 3.59
ssse3 1.63 5.53 3.34 3.41 4.22 1.16 3.74
sse4.1 1.64 5.51 3.42 3.45 4.27 1.16 3.75
avx 1.65 5.74 3.74 3.49 4.26 1.16 3.85
avx2 1.67 8.03 4.68 4.05 4.75 1.09 4.60

The SAO filter shows the widest speedup span across SIMD
extensions. This is especially caused by sse2 which cannot
accelerate table lookups. This requires the PSHUFB instruc-
tion introduced in ssse3. Apart from avx2 which shows the

scalar sse2
/neon

ssse3 sse4.1 avx avx2
/xop

1

2

3

4

5

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Normalized performance 1080p 8-bit

scalar sse2
/neon

ssse3 sse4.1 avx avx2
/xop

0

1

2

3

IP
C

IPC 1080p 8-bit

Dothan
Prescott
Atom
Conroe
Nehalem
Sandy Bridge
Haswell
Bay Trail
K8
Deneb
Piledriver
Jaguar
Cortex A9
Cortex A15

scalar sse2
/neon

ssse3 sse4.1 avx avx2
/xop

1

2

3

4

5

N
or

m
al

iz
ed

pe
rf

or
m

an
ce

Normalized performance 2160p 10-bit

scalar sse2
/neon

ssse3 sse4.1 avx avx2
/xop

0

1

2

3

IP
C

IPC 2160p 10-bit

Nehalem
Sandy Bridge
Haswell
Bay Trail
Deneb
Piledriver
Jaguar
Cortex A9
Cortex A15

Fig. 9. Single threaded performance at normalized frequency and IPC results.

24 28 32 36 24 28 32 36 24 28 32 36 24 28 32 36 24 28 32 36 24 28 32 36
0

20

40

60

80

100

%

PSide PCoef Intra Inter IT DF SAO Other

scalar sse2 avx2 scalar sse2 avx2
1080p 8-bit 2160p 10-bit

Fig. 10. Decoder execution time breakdown on Haswell for scalar, sse2, and avx2. The PSIDE and PCOEF stages represent the side information and coefficient
parsing (CABAC entropy decoding). The PSIDE includes also the interpretation of the syntax elements and coding tree unit traversal.

biggest improvement due to the wider vectors, ssse3 improves
the performance the most, mainly due to the introduction of
the PSHUFB instruction.

The 2160p (10-bit) results show in general the same trend
as the 1080p (8-bit) results. The main differences are that
the inter prediction and SAO filter achieve lower speedups,
while the intra prediction, inverse transform, and deblocking
filter show higher speedup. The inter prediction and SAO filter
are the two stages where data is read from and written to
picture memory. With 10-bit samples the picture memory and
bandwidth per sample is doubled putting more pressure on
the memory system. The SAO filter achieves less than half
the speedup for 2160p 10-bit compared to 1080p 8-bit and
is clearly bottlenecked by the memory system. The impact

on inter prediction is less, because the memory accesses
are spread over a larger portion of time and can be more
effectively overlapped with computation. Also the computation
when using 10-bit pictures is more costly, counterbalancing the
increased load operations.

The intra prediction, inverse transform, and deblocking filter
do not operate on the picture memory directly, but on an
intermediate buffer and the increased bit depth has limited con-
sequences in these stages. The speedup for 2160p sequences
is slightly higher because of the more common use of larger
prediction and transform blocks, which make more effective
use of the SIMD vector width. For the deblocking filter
larger blocks result in less divergence in the filter evaluation,
reducing the amount of redundant work.

TABLE X
BEST PER STAGE SIMD SPEEDUP OVER SCALAR FOR 1080P 8-BIT.

Intra Inter IT DF SAO Other Total

Prescott 1.08 4.27 2.50 2.08 2.38 1.07 2.91
Atom 1.45 7.21 2.79 2.34 5.36 1.17 4.68
Conroe 1.26 4.76 2.39 2.42 3.95 1.12 3.27
Nehalem 1.30 7.83 2.96 2.96 8.82 1.16 4.50
Sandy Bridge 1.31 7.48 3.10 2.95 8.85 1.20 4.24
Haswell 1.33 10.33 3.69 3.44 11.18 1.18 4.95
Bay Trail 1.34 5.09 2.45 2.42 3.65 1.11 3.30

K8 1.27 3.69 1.84 2.30 3.54 1.11 2.88
Deneb 1.35 6.24 2.50 2.69 3.68 1.22 3.97
Piledriver 1.38 9.48 3.50 2.92 8.77 1.21 5.15
Jaguar 1.40 9.48 2.83 2.65 6.88 1.36 5.44

Cortex-A9 1.45 4.15 1.89 1.78 2.02 1.49 2.82
Cortex-A15 1.42 5.91 2.14 2.21 2.30 1.07 3.27

TABLE XI
BEST PER STAGE SIMD SPEEDUP OVER SCALAR FOR 2160P 10-BIT.

Intra Inter IT DF SAO Other Total

Nehalem 1.65 5.92 3.42 3.35 4.75 1.11 3.96
Sandy Bridge 1.67 5.78 3.69 3.44 4.27 1.18 3.84
Haswell 1.67 8.03 4.68 4.05 4.75 1.09 4.60
Bay Trail 1.74 4.15 2.82 2.67 3.12 1.04 3.09

Deneb 1.78 5.45 2.97 2.97 3.35 1.20 3.76
Piledriver 1.78 7.14 3.99 3.33 5.34 1.20 4.58
Jaguar 1.94 8.36 3.31 2.95 5.67 1.34 5.17

Cortex-A9 1.74 3.62 2.00 2.01 1.23 1.50 2.55
Cortex-A15 1.89 4.83 2.22 2.50 1.27 1.01 2.91

Finally, Tables X and XI show the speedup per stage
for each architecture comparing their best performing SIMD
extension to their own scalar baseline. Similar observations
as for Haswell can be made for the other architectures.
Mostly inter prediction and the SAO filter have the highest
speedup, while the improvements for the inverse transform and
deblocking filter are more moderate. More memory limited
architectures and architectures without a SIMD table lookup
instruction, suffer from lower speedups for the SAO filter.
Prescott and K8, only support SSE2, while Conroe and the
ARM processors are known to be more memory limited. It can
also be observed that the overall speedup on older architectures
such as Prescott, Conroe, K8, and the ARM processors is lower
than on the latest architectures of Intel and AMD. Over the
years more emphasis has been put on SIMD performance,
because more relevant applications have been optimized for
SIMD. An exception is the Bay Trail platform, which improves
performance compared to Atom by introducing out-of-order
execution. The SIMD execution remained in-order leading to
a relatively lower speedup.

D. Multithreaded Performance

Orthogonal to SIMD acceleration, additional performance
can be gained by using multithreading. For parallelization we
used an approach based on [31] which combines WPP and
frame-level parallelism. In this strategy threads decode the
rows of a frame in wavefront order using WPP substreams,
and additionally, rows of the next frame are already started

before fully completing the current frame. To make this
approach fully standard compliant motion vector dependencies
are tracked dynamically.

Tables XII and XIII show the multithreaded performance
for 1080p 8-bit and 2160p 10-bit respectively. The results
are averaged over the four QPs. For reproducibility in the
experiments the threads are pinned to individual physical
cores first, and secondary to the hardware threads exposed
by hardware multithreading.

TABLE XII
1080P 8-BIT MULTITHREADED PERFORMANCE

1 2 4 8
fps fps Sp fps Sp fps Sp

Dothan 17.2
Prescott 31.3 59.7 1.91 70.4 2.25
Atom 15.9 31.1 1.96 42.7 2.69
Conroe 32.1 62.1 1.93
Nehalem 55.0 109.2 1.98 208.0 3.78 223.0 4.05
Sandy Bridge 79.1 155.5 1.97 293.5 3.71 336.6 4.26
Haswell 133.0 259.7 1.95 482.6 3.63 543.0 4.08
Bay Trail 23.5 45.7 1.95 86.8 3.69

K8 26.1 51.3 1.96
Deneb 58.4 113.1 1.94 215.2 3.69
Piledriver 88.9 171.4 1.93 328.7 3.70 483.5 5.44
Jaguar 25.8 50.2 1.94 91.4 3.54

Cortex-A9 10.7 20.8 1.95 35.5 3.32
Cortex-A15 23.5 44.6 1.90 77.8 3.31

TABLE XIII
2160P 10-BIT MULTITHREADED PERFORMANCE

1 2 4 8
fps fps Sp fps Sp fps Sp

Nehalem 14.9 29.5 1.98 57.4 3.86 67.7 4.54
Sandy Bridge 21.6 42.6 1.97 82.7 3.83 98.0 4.54
Haswell 37.8 73.4 1.94 134.9 3.57 155.3 4.11
Bay Trail 6.2 12.2 1.95 23.6 3.79

Deneb 16.6 31.8 1.92 59.9 3.61
Piledriver 22.9 43.9 1.91 82.7 3.60 120.5 5.25
Jaguar 7.0 13.2 1.90 23.3 3.35

Cortex-A9 2.8 5.3 1.90 8.6 3.05
Cortex-A15 6.0 11.4 1.91 19.9 3.33

Overall the decoder scales well with multiple physical
cores for both 1080p and 2160p. With 2 cores the scaling
is mostly close to 2×, while with four cores the speedup is
around 3.8×. The ARM cores scale noticeably less, due to
a relatively weaker memory system. It can also be observed
that Intel’s SMT and AMD’s CMT do not provide the same
improvement as when the threads are executed on individual
cores. SMT provides a performance improvement between
7.2% and 37.2% with a typical improvement of ∼15%. CMT
fares better with an improvement of 45% to 47.1%, because
more resources in the core are duplicated.

E. Memory Footprint and Bandwidth

The maximum resident set size when decoding the ran-
dom access encoded sequences of the optimized decoder for
x86-64 is 29.9 MB and 191.6 MB for 1080p 8-bit and 2160p
10-bit, respectively. When using wavefront and frame-level

parallelism an extra picture buffer is used and the memory
footprint rises to 34.1 MB and 222.6 MB, respectively. For
ARMv7 and x86 32-bit architectures the memory footprint is
slightly lower (1-2%) due to the smaller pointers.

A larger difference between ARMv7 and x86/x86-64 is
present in the binary size. For ARMv7 this is 756 KB, while
for x86-64 1.92 MB is required. This is mostly caused by the
many SIMD extensions of x86 which all are contained in the
same binary. During execution only one part of this binary
is actually residing in the caches, though, as only one of the
SIMD variants is used per sequence.

TABLE XIV
AVERAGE MEMORY TRAFFIC PER FRAME AND BANDWIDTH ON HASWELL.

MB/frame MB/s
scalar avx2 4T + avx2 4T + avx2

1080p 8-bit read write read write read write read write

YUV 10.1 3.7 9.6 3.7 7.9 3.7 3978 1903
YC 8.8 3.6 7.5 3.7 6.2 3.7 3321 2045

2160p 10-bit read write read write read write read write

YUV 68.2 26.0 48.1 26.4 48.2 26.4 6367 3509
YC 67.0 25.9 41.6 26.5 41.5 26.3 5994 3847

Table XIV shows the average bytes transferred per frame
and the memory bandwidth when using scalar, avx2, and
multithreading. The bytes written per frame is very similar for
all configurations and corresponds closely to the actual data
size of the frame with extended borders. The number of bytes
read per frame are in all cases higher than the bytes written
per frame, which is expected because in the random access
configuration the blocks use mainly bi-directional prediction,
which reads more than two times the samples it writes. The
benefit of using non-temporal stores is clearly visible when
comparing scalar to avx2. Especially for 2160p 10-bit the
memory transfers savings are significant. The 8 MB large L3
cache can only fit part of the 27 MB picture buffers, and many
additional capacity misses are avoided by not write allocating
cache lines for the produced picture buffer data. Chroma
interleaving also clearly reduces the memory requirements as
wider blocks improve the utilization of the data fetched in a
cache line.

The average memory bandwidth is significantly higher for
10-bit video because of the 16-bit storage type compared to
8-bit for 8-bit videos. The total memory bandwidth require-
ments for high framerate (120fps+) 2160p video is high at
around 10 GB/s, but is feasible for current mainstream systems
which have a practical limit of around 20-25 GB/s.

VIII. CONCLUSIONS

As for previous video coding standards, HEVC is also well
suited for acceleration with SIMD instructions. Compared to
a well optimized HEVC decoder an additional speedup of 2.8
to 5× can be obtained over the complete decoding process by
using SIMD. The acceleration factor provided by SIMD and
multithreading allows real-time HEVC decoding to be easily
performed on current hardware platforms, even for Ultra High
Definition (UHD) applications.

The large speedup, however, could only be achieved with
high programming complexity and effort. The complexity of
the HEVC standard and the diversity of current computer
architectures required many specializations to achieve the opti-
mal performance. Even when introducing a conceptually sim-
ple change, such as an interleaved chroma format, a specialized
SIMD version for almost every chroma function is required.
When video standards and applications continue to increase in
complexity, the programmability of SIMD could become the
main bottleneck for achieving the highest performance.

To alleviate the programmability issues of SIMD the syn-
ergy between the SIMD ISA, the video codecs, and fore-
most the programming model has to be improved. While the
core of SIMD ISAs fulfill the same purpose, and are often
interchangeable in functionality, none of the ISAs are truly
compatible as a whole. These small ISA differences could
be abstracted away elegantly, through a vendor independent
standardized SIMD extension to programming languages. A
standard SIMD language extension would allow programmers
to target multiple SIMD ISAs with a single SIMD paralleliza-
tion method.

From a video codec perspective the main implementation
complexity arises from the support for multiple bitdepths.
For each function the possible block sizes and the input and
intermediate precisions must be carefully considered to avoid
overflows. This could be avoided by reducing the supported
bitdepths, e.g., only support 8-bit and 12-bit instead of all
the possible bit depths in between. Another possible solution
is to specify the codec in standardized floating point oper-
ations. General purpose architectures have lately increased
their floating point performance at a much faster rate than
integer performance and in the latest architectures have even
a higher floating point throughput. As the use of floating point
numbers might also improve compression performance it is an
interesting and promising direction for future work.

REFERENCES

[1] R. Lee, “Realtime MPEG Video via Software Decompression on a
PA-RISC processor,” in Compcon ’95.’Technologies for the Information
Superhighway’, pp. 186–192, 1995.

[2] K. Mayer-Patel, B. C. Smith, and L. A. Rowe, “The Berkeley Software
MPEG-1 Video Decoder,” ACM Trans. Multimedia Comput. Commun.
Appl., vol. 1, pp. 110–125, feb 2005.

[3] V. Lappalainen, T. Hamalainen, and P. Liuha, “Overview of Research
Efforts on Media ISA Extensions and their Usage in Video Coding,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 12, pp. 660–670, Aug. 2002.

[4] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
High Efficiency Video Coding (HEVC) Standard,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 22, pp. 1649–1668,
Dec. 2012.

[5] J. Ohm, G. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Compari-
son of the Coding Efficiency of Video Coding Standards–Including High
Efficiency Video Coding (HEVC),” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 12, pp. 1669–1684, 2012.

[6] M. Taylor, “A Landscape of the New Dark Silicon Design Regime,”
IEEE Micro, vol. 33, pp. 8–19, Sept 2013.

[7] M. Flynn, “Very High-speed Computing Systems,” Proceedings of the
IEEE, vol. 54, pp. 1901–1909, Dec. 1966.

[8] R. B. Lee, “Accelerating Multimedia with Enhanced Microprocessors,”
IEEE Computer, vol. 15, pp. 22–32, April 1995.

[9] V. Bhaskaran, K. Konstantinides, R. B. Lee, and J. P. Beck, “Algorithmic
and Architectural Enhancements for Real-time MPEG-1 Decoding on a
General Purpose RISC Workstation,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 5, pp. 380–386, Oct. 1995.

[10] A. Peleg and U. Weiser, “MMX Technology Extension to the Intel
Architecture,” IEEE Micro, vol. 16, pp. 42–50, Aug. 1996.

[11] K. Diefendorff, P. Dubey, R. Hochsprung, and H. Scales, “AltiVec
Extension to PowerPC Accelerates Media Processing,” IEEE Micro,
vol. 20, pp. 85–95, April 2000.

[12] S. Thakkar and T. Huff, “The Internet Streaming SIMD extensions,”
IEEE Computer, vol. 32, pp. 26–34, Dec. 1999.

[13] S. K. Raman, V. Pentkovski, and J. Keshav, “Implementing Streaming
SIMD Extensions on the Pentium III Processor,” IEEE Micro, vol. 20,
pp. 47–57, Aug. 2000.

[14] Intel, “Intel Advanced Vector Extensions Programming Reference,”
Tech. Rep. 319433-011, Intel, June 2011.

[15] Intel, “Intel Architecture Instruction Set Extensions Programming Ref-
erence,” Tech. Rep. 319433-015, Intel, July 2013.

[16] X. Zhou, E. Q. Li, and Y.-K. Chen, “Implementation of H.264 Decoder
on General-Purpose Processors with Media Instructions,” in Proc. of
SPIE Conf. on Image and Video Communications and Processing, 2003.

[17] Y.-K. Chen, E. Q. Li, X. Zhou, , and S. Ge, “Implementation of
H.264 Encoder and Decoder on Personal Computers,” Journal of Visual
Communications and Image Representations, 2006.

[18] V. Iverson, J. McVeigh, and B. Reese, “Real-time H.264-AVC Codec on
Intel Architectures,” in International Conference on Image Processing,
ICIP ’04, vol. 2, pp. 757–760 Vol.2, 24-27 2004.

[19] L. Yan, Y. Duan, J. Sun, and Z. Guo, “Implementation of HEVC
Decoder on x86 Processors with SIMD Optimization,” in IEEE Visual
Communications and Image Processing (VCIP), pp. 1–6, 2012.

[20] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC Complexity and
Implementation Analysis,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 22, no. 12, pp. 1685–1696, 2012.

[21] F. Bossen, “On software complexity: decoding 1080p content on a
smartphone,” Tech. Rep. JCTVC-K0327, October 2012.

[22] B. Bross, M. Alvarez-Mesa, V. George, C. C. Chi, T. Mayer, B. Juurlink,
and T. Schierl, “HEVC Real-time Decoding,” in Proceedings of SPIE
8856, Applications of Digital Image Processing XXXVI, August 2013.

[23] “Write Combining Memory Implementation Guidelines,” Tech. Rep.
244422-001, Intel, 1998.

[24] M. Budagavi, A. Fuldseth, G. Bjontegaard, V. Sze, and M. Sadafale,
“Core Transform Design in the High Efficiency Video Coding (HEVC)
Standard,” IEEE Journal of Selected Topics in Signal Processing, vol. 7,
pp. 1029–1041, Dec. 2013.

[25] W.-H. Chen, C. Smith, and S. Fralick, “A Fast Computational Algorithm
for the Discrete Cosine Transform,” IEEE Transactions on Communica-
tions, vol. 25, no. 9, pp. 1004–1009, 1977.

[26] A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke, M. Ikeda,
K. Andersson, M. Zhou, and G. Van der Auwera, “HEVC Deblocking
Filter,” IEEE Transactions on Circuits and Systems for Video Technol-
ogy, vol. 22, pp. 1746–1754, Dec 2012.

[27] C.-M. Fu, E. Alshina, A. Alshin, Y.-W. Huang, C.-Y. Chen, C.-Y. Tsai,
C.-W. Hsu, S.-M. Lei, J.-H. Park, and W.-J. Han, “Sample Adaptive
Offset in the HEVC Standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, pp. 1755–1764, Dec. 2012.

[28] G. Sullivan and S. Estrop, “Recommended 8-Bit YUV Formats for Video
Rendering,” 2002, update 2008.

[29] F. Bossen, “Common test conditions and software reference configura-
tions,” Tech. Rep. L1100, JCTVC, January 2013.

[30] H. Hoffman, A. Kouadio, Y. Thomas, and M. Visca, “The Turin Shoots,”
in EBU Tech-i, no. 13, pp. 8–9, European Broadcasting Union (EBU),
September 2012.

[31] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux,
and T. Schierl, “Parallel Scalability and Efficiency of HEVC Paralleliza-
tion Approaches,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 12, pp. 1827–1838, 2012.

Chi Ching Chi received the BSc degree in electri-
cal engineering in 2008 and MSc degree in com-
puter engineering in 2010 from Delft University
of Technology, the Netherlands. Since 2010, he is
working towards the PhD degree in the Embedded
Systems Architecture group at TU Berlin, Germany.
His research interest include multi- and many-core
architectures, operating systems, parallel program-
ming models and languages, and video compression
applications.

Mauricio Alvarez-Mesa received the MSc degree
in Electronic Engineering in 2000 from University
of Antioquia, Medellin, Colombia and the PhD de-
gree in Computer Science in 2011 from Universitat
Politècnica de Catalunya (UPC), Barcelona, Spain.
From 2006 to 2011 he was an adjunct lecturer
at UPC. He was a summer intern at IBM Haifa
Research labs, Israel in 2007, and a research visitor
at Technische Universität Berlin (TU Berlin), Berlin,
Germany in 2011. In January 2012 he joined the
Multimedia Communications group at the Fraun-

hofer Institut HHI in Berlin and the Embedded Systems Architecture group
at TU Berlin. His research interest includes parallel computing, computer
architecture and video coding.

Benjamin Bross (S’11) received the Dipl.-Ing. de-
gree in electrical engineering from RWTH Univer-
sity Aachen, Germany in 2008. During his studies
he was working on three-dimensional image reg-
istration in medical imaging and on decoder side
motion vector derivation in H.264/AVC. He is cur-
rently with the image processing group at Fraunhofer
Institute for Telecommunications – Heinrich Hertz
Institute, Berlin, Germany. His research interests in-
clude motion estimation/prediction, residual coding
and contributions to the evolving High Efficiency

Video Coding standard, H.265/HEVC. Since 2010, he is coordinating core
experiments for the development of H.265/HEVC and co-chairing the editing
ad hoc group. In July 2011, he was appointed as the Editor of the H.265/HEVC
video coding standard.

Ben Juurlink is professor of Embedded Systems Ar-
chitectures of the Electrical Engineering and Com-
puter Science faculty of TU Berlin. He has an MSc
degree from Utrecht University (NL) and a PhD
degree from Leiden University (NL). In 1997-1998
he worked as a post-doctoral research fellow at the
Heinz Nixdorf Institute in Paderborn (DE). From
1998 to 2009 he was a faculty member in the Com-
puter Engineering laboratory of Delft University
of Technology (NL). His research interests include
multi- and manycore processors, instruction-level

parallel and media processors, low-power techniques, and hierarchical mem-
ory systems. He has (co-)authored more than 100 papers in international
conferences and journals and received a best paper award at the IASTED
PDCS conference in 2002. He has been the leader of several national projects,
work package leader in several European projects, and is currently coordinator
of the EU FP7 project LPGPU (lpgpu.org). He is a senior member of the
IEEE, a member of the ACM, and a member of the HiPEAC NoE. He served
in many program committees, is area editor of the journal Microprocessors
and Microsystems: Embedded Hardware Design (MICPRO), and is general
co-chair of the HiPEAC 2013 conference.

Thomas Schierl received the Diplom-Ingenieur de-
gree in Computer Engineering from the Berlin Uni-
versity of Technology (TUB), Germany in December
2003 and the Doktor der Ingenieurwissenschaften
(Dr.-Ing.) degree in Electrical Engineering and Com-
puter Science from Berlin University of Technology
(TUB) in October 2010. He has been with Fraun-
hofer Institute for Telecommunications — HHI since
end of 2004. Since 2010, Thomas is head of the
Multimedia Communications Group in the Image
Processing Department of Fraunhofer HHI, Berlin.

Thomas is the co-author of various IETF RFCs, beside others he is author of
the IETF RTP Payload Format for H.264 SVC (Scalable Video Coding) as well
as for HEVC. In the ISO/IEC MPEG group, Thomas is co-editor of the MPEG
Standard on Transport of H.264 SVC, H.264 MVC and HEVC over MPEG-2
Transport Stream. Thomas is also a co-editor of the AVC File Format. In
2007, he visited the Image, Video, and Multimedia Systems group of Prof.
Bernd Girod at Stanford University, CA, USA for different research activities.
Thomas’ research interests currently focus on mobile media streaming and
content delivery.

lpgpu.org

	Introduction
	Overview of SIMD Instructions
	Related Work
	General Structure of Optimized HEVC Decoder
	CTU Decoding
	CTU Split Process and Leaf Node Processing
	CTU Memory Management

	SIMD Optimization
	Inter Prediction
	Intra Prediction
	Inverse Transform
	Deblocking Filter
	SAO Filter
	Other Kernels
	Chroma Interleaving

	Experimental Setup
	Results
	Single-threaded Performance
	Impact of ISA and Architecture
	Speedup per Stage
	Multithreaded Performance
	Memory Footprint and Bandwidth

	Conclusions
	References
	Biographies
	Chi Ching Chi
	Mauricio Alvarez-Mesa
	Benjamin Bross
	Ben Juurlink
	Thomas Schierl

