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REGULARIZATION PROPERTIES OF MUMFORD-SHAH TYPE
FUNCTIONALS WITH PERIMETER AND NORM CONSTRAINTS

FOR LINEAR ILL-POSED PROBLEMS

ESTHER KLANN∗ AND RONNY RAMLAU

Abstract. In this paper we consider the simultaneous reconstruction and segmentation of a
function f from measurements g = Kf , where K is a linear operator. Assuming that the inversion
of K is ill-posed, regularization methods have to be used for the inversion process in case of inexact
data. We propose to use a Mumford-Shah type functional for the stabilization of the inversion.
Restricting our analysis to the recovery of piecewise constant functions, we investigate the existence
of minimizers, their stability and the regularization properties of our approach. Finally we present a
numerical example from Single Photon Emission Computed Tomography (SPECT).
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1. Introduction. In this article, we study the regularization properties of a
Mumford-Shah type functional for ill-posed operator equations

Kf = g . (1.1)

We assume that K is a linear operator between Hilbert spaces X and Y (usually L2)
and does not have a bounded inverse. Furthermore, we assume that instead of the
exact data g, only a noisy version gδ with known noise level δ is available. In such
a situation, regularization methods have to be applied in order to achieve a stable
reconstruction. In standard methods one aims for the reconstruction of f in terms of
function values only. In contrast to this we reconstruct the singularity set of f , i.e.,
the set of points where the function f is discontinuous, as well as averaged function
values of the function away from the singularities. To be more concrete, we assume
that the solution f is defined on some domain D ⊂ R2 and can be represented as a
piecewise constant function, i.e.,

f =
∑
i∈I

fiχΩi (1.2)

where I is a finite index set, fi ∈ R and
⋃
i∈I Ωi = D with pairwise disjoint sets.

For the presented approach we define a solution to consist of a sequence Ω of
sets Ωi ⊂ R2 with

⋃
i∈I Ωi = D and a vector f of coefficients fi ∈ R. In doing so, we

achieve a segmentation of f defined by Ω and a reconstruction of f as in (1.2). In
order to find an approximation to our problem we consider the Mumford-Shah type
functional

Jβ,γ(Ω, f) = ‖Kf − gδ‖2 + β‖f‖2 + γ
∑
i∈I
|∂Ωi|

where ‖f‖2 denotes a norm penalty on the coefficient vector f , and |∂Ωi| denotes
the length of the boundary of the set Ωi. A solution to the problem of simultaneous
reconstruction and segmentation is defined as minimizing argument of this functional,
see also (2.8) and (2.9).
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The paper is mainly concerned with an analysis of the above functional. In partic-
ular, we show existence and stability of its minimizers, see Section 5. We also propose
a rule for choosing the regularization parameters β and γ that ensures convergence of
the sequence of minimizers (Ωδ

β,γ , f
δ
β,γ) to the exact solution (Ω†, f†) as δ → 0.

Our approach can be understood as a generalization to the Mumford-Shah type
functional that was considered in [32]. The significant difference is our choice of
regularization terms. In [32], a reduced Mumford-Shah type functional with only
the second penalty term, i.e., the perimeter regularization, was used. This causes
problems in the analysis of the method. In particular, convergence could only be
shown under additional assumptions on the solutions.

Inverse Problems, where the variable to be reconstructed is a shape, have been
considered for a long time. We refer to [32] for an overview on the related research.
The Mumford-Shah functional as objective functional allows to reconstruct functional
and geometrical parameters simultaneously in contrast to pure shape identification
problems. It was originally used with the identity operator in place of the opera-
tor K, designed to identify the singularities in, e.g., an image and to provide at the
same time a smooth (denoised) approximation to the image away from the singular-
ities [30, 5, 7, 17, 24]. A non-trivial operator K in the Mumford-Shah functional
was — to our knowledge — first treated in [33] using an Ambrosio-Tortorelli type
approximation of the Mumford-Shah functional. In [12] the Mumford-Shah idea was
used for geometric image registration and in [31] and [19] the operator under consider-
ation was the Radon transform and the attenuated Radon transform of computerized
tomography. In these three papers, the Mumford-Shah model was interpreted as a
shape identification problem over a restricted class of admissible shapes. In [2], the au-
thors combine semi-blind deconvolution (parametric blur kernel) and Mumford-Shah
segmentation.

In our paper, we are in particular interested in regularization properties of the
considered Mumford Shah functional, i.e., in parameter choice rules that ensure con-
vergence of the approximate solutions. Burger [4] used Morozov’s discrepancy prin-
ciple in order to identify an indicator function from noisy measurements of a linear
system and proved that the approximations obtained by a level set approach con-
verge to the original set. Ben Ameur et.al. [3] considered a Mumford-Shah functional
for a linear elasticity problem. Equipped with an a priori rule for the regularization
parameter they proved convergence of the reconstructed shapes in the Haussdorf met-
ric. Leitao and Scherzer proposed a variational approach towards regularization by
level-set methods, where the authors also penalized the level-set function and showed
convergence in a weak sense [22, 13]. DeCezaro et.al.[10] analyzed a multiple level-set
method regarding existence, stability and convergence of minimizer of a corresponding
Tikhonov functional. In most geometrical inverse problems the structure of the opti-
mal shape is not known a-priori, and methods that allow a topology change have to be
used. A well established approach for this is the level set method [23, 27, 28, 29, 35],
where the shape of the object is encoded by means of a level-set function.

Analytic and geometric properties of minimizers of the Mumford-Shah functional
have been studied extensively in the last years (see, e.g., the comprehensive exposition
[9] and the references therein). However, analytical investigations from the perspective
of regularization theory of ill-posed problems are rather rare.

We finish our review with a few remarks on BV regularization as introduced
in [34]. As this methods prefers the reconstruction of piecewise constant functions, it
seems to fit to our problem. A BV-functional with a linear operator has been studied,
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e.g., in [16]. However, the reconstruction is still a functional one, i.e., a segmentation is
not simultaneously done with the inversion procedure and has to be done afterwards.
For a numerical comparison of the two methods we refer to [32].

The paper is organized as follows. In Section 2 we define the Mumford-Shah
type functional and introduce basic notation concerning perimeter, partitions and
piecewise constant functions. In Section 3 we define convergence of piecewise constant
functions and present a result on the compactness of partitions with finite perimeter.
In Section 4 we compute optimal coefficients of the Mumford-Shah type functional
for fixed geometry as well as their behavior if a convergent sequence of partitions is
given. In Section 5 we present the main results on regularization of linear ill-posed
problems by the described Mumford-Shah type method. In Section 6 we apply the
proposed method to a problem from medical imaging (SPECT with known density
function) and demonstrate numerically that the proposed parameter choice rule yields
a convergent scheme.

2. The Mumford-Shah type functional. In order to define the functional
for which we are going to prove existence, stability and convergence of minimizers we
start with a specification of the solutions we want to reconstruct.

We aim for the reconstruction of a piecewise constant function f : D → R,
compare equation (1.2). The geometrical part of the reconstruction, i.e., the segmen-
tation, is described by a collection of finite perimeter or Caccioppoli sets which form
a partition of the domain of definition of the function.

Definition 2.1. Let D be a domain in Rd and Ω a measurable subset of D. The
perimeter of Ω in D is defined as

pD(Ω) := sup
{∫

Ω

div(v(x))dx ; v : D → Rd,

v smooth with supp(v) ⊂ D and ‖v(x)‖∞ ≤ 1 ∀x ∈ D
}
.

(2.1)

A measurable set Ω with pD(Ω) <∞ is called a set of finite perimeter or a Caccioppoli
set.

Later on, we also need the measure theoretic boundary and some relation between
the perimeter and the Hausdorff measure of a set.

Definition 2.2 (Measure-theoretic boundary). Let D ⊂ Rd be a Lebesgue mea-
surable set, i.e., µ(D) < ∞. Then, the measure-theoretic boundary of D is defined
as

∂MD :=

{
x : lim sup

r→0

µ(D ∩B(x, r))

µ(B(x, r))
> 0

}
∩
{
x : lim sup

r→0

µ((Rd \D) ∩B(x, r))

µ(B(x, r))
> 0

}
.

(2.2)

Definition 2.3 (Hausdorff-measure). For each γ ≥ 0, ε > 0, α(γ) > 0 and
Ω ⊂ Rd, let

Hγ
ε (Ω) := inf

{ ∞∑
i=1

α(γ)2−γdiam(Ai)
γ : Ω ⊂

∞⋃
i=1

Ai, diam(Ai) < ε
}
.

As Hγ
ε is decreasing in ε the limit for ε → 0 exists and the γ-dimensional Hausdorff

measure of Ω is defined by

Hγ(Ω) := lim
ε→0

Hγ
ε (Ω).
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If γ = s ∈ N, α(γ) denotes the volume of the unit ball in Rs.
The perimeter and the Hausdorff measure of a set are related as follows, e.g., [1].
Proposition 2.4 (Perimeter and Hausdorff measure).
1. For an open set Ω ⊂ D with a C1-smooth boundary it is

pD(Ω) = Hn−1(∂Ω \ ∂D) .

2. For a Caccioppoli set Ω ⊂ D it is

pD(Ω) = Hn−1(∂MΩ) . (2.3)

Definition 2.5 (Partition). Let D ⊂ Rd be a domain and I ⊂ N an index set.
A collection of Caccioppoli sets Ωi ⊂ D with µ(Ωi) > 0 for i ∈ I forms a partition of
D if

χD =
∑
i∈I

χΩi
(2.4)

in L1(D). As the standard notation for a partition we use Ω =
(
Ωi
)
i∈I .

From now on we restrict our reconstructions to partitions consisting of finitely
many sets.

Definition 2.6. Let D ⊂ Rd be a domain and M ∈ N. The set of partitions of
D of at most M components is defined as

GM (D) := {Ω : Ω =
(
Ωi
)
i∈I is a partition of D with #I ≤M} . (2.5)

We denote the number of sets in a partition Ω with mΩ, i.e., it is #I = mΩ.
A piecewise constant function f : D → R is determined by a partition Ω ∈ GM (D)

and a coefficient vector f = (f1, . . . , fmΩ
) ∈ RmΩ via the mapping

F : GM (D)× RmΩ → L2(D)

F (Ω, f) :=

mΩ∑
i=1

fi χΩi .
(2.6)

Definition 2.7. The (total) perimeter of a partition Ω ∈ GM (D) is defined as

|∂Ω| :=
mΩ∑
i=1

pD(Ωi) (2.7)

where pD(A) denotes the perimeter of A ⊂ D.
We formulate the Mumford-Shah type functional with perimeter and norm con-

straints for the reconstruction of a piecewise constant function as

Jβ,γ(Ω, f) = ‖KF (Ω, f)− gδ‖2L2
+ β‖f‖2`2 + γ|∂Ω| , (2.8)

where β and γ are non-negative regularization parameters. As a regularized solution
of the problem of simultaneous reconstruction and segmentation we define

(Ωβ,γ , fβ,γ) := arg min
GM (D)×RmΩ

Jβ,γ(Ω, f) . (2.9)
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3. Compactness of partitions. For two measurable sets Ω1, Ω2 ⊂ D we define
the distance

dL1(Ω1,Ω2) = ‖χΩ1 − χΩ2‖L1(D) . (3.1)

The set of equivalence classes of Lebesgue measurable subsets of D which differ
only by a set of measure zero, together with the distance function dL1

is a complete
metric space (see, [11, Thm.2.1; p.93]). In the following we are not going to distinguish
between the equivalence classes and their individual representatives. Moreover, we will
write

Ωn
dL1−→ Ω⇐⇒ dL1

(Ωn,Ω)→ 0 (3.2)

for the convergence of sets in the sense of characteristic functions.
Definition 3.1. A sequence

(
Ωn
)

of partitions Ωn =
(
Ωni
)mn

i=1
converges to a

partition Ω =
(
Ωi
)m
i=1

, in short Ωn → Ω , if

1. ∃N ∈ N such that for all n ≥ N : ∃Ĩn ⊂ In = {1, . . . ,mn} such that #Ĩn
= m and

Ωnj
dL1−→ Ωj ∀j ∈ Ĩn,

2. µ
(
D \ ∪j∈ĨnΩnj

)
→ 0 as n→∞ .

Remark 3.2. In order to simplify notation we remark that – after a possible
necessary reordering – we may write

Ωn → Ω :⇔ ∃N ∈ N : ∀n ≥ N :

{
Ωni

dL1−→ Ωi ∀i ≤ m and n→∞ ,

µ(Ωni )→ 0 ∀i > m and n→∞ .

To prove convergence of the minimizers of the Mumford-Shah type functional as
the noise level tends to zero we need the following concept of convergence.

Definition 3.3. A sequence (Ωn, fn)n∈N ⊂ GM (D)×RmΩ converges to (Ω, f) ∈
GM (D)× RmΩ (or (Ωn, fn)→ (Ω, f) in short notation), if

1. Ωn → Ω in the sense of Definition 3.1.
2. The subsequence (fn

Ĩn
)n∈N, Ĩn acc. to Definition 3.1, fulfills

fn
Ĩn
→ f .

3. Coefficients related to vanishing elements of partitions stay bounded.
To guarantee that the third condition is fulfilled by the minimizers of the Mumford-

Shah type functional the second penalty term on the norm of the coefficients is
needed. Otherwise, the use of the reduced functional does not exclude the case of
a sequence of partitions where at least one area shrinks to zero while the associated
coefficient grows unboundedly in such a way, that the corresponding function f is still
in L2. As an example, let j be arbitrary but fixed with µ(Ωnj ) ∼ 1

n . Then, we have

‖fnj χΩn
j
‖2L2
≤ |fnj |2µ(Ωnj ), and though fnj ∼

√
n the L2-norm of f stays bounded.

Please note that in the approach of [32] the additional penalty term was not
needed because vanishing sets were excluded by the problem setting. Furthermore,
the results in [32] are valid only for operators that are injective on the set of piecewise
constant functions. In our approach, we do not need neither of these two additional
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conditions: sets are allowed to vanish in the limit and the operator might have a
non-trivial nullspace on the set of piecewise constant functions.

For sets with finite perimeter we have the following compactness [11] and lower
semicontinuity result [1].

Proposition 3.4 (Compactness of finite perimeter sets in L1). Let D ⊂ Rd be
a bounded open domain with Lipschitz boundary ∂D. Let {Ωn}n∈N be a sequence of
measurable sets with uniformly bounded perimeter, i.e., pD(Ωn) = |∂MΩn| ≤ C for all
n ∈ N. Then there exists a subsequence of {Ωn} that converges towards a measurable
set Ω with respect to the metric dL1

.
Proposition 3.5 (Lower semi continuity of perimeter in L1). The perimeter

mapping Ω 7→ |∂MΩ| is lower semi-continuous on the set of sets with finite perimeter
with respect to the metric dL1

, i.e., for any sequence {Ωn}n∈N of sets with finite
perimeter the implication

Ωn
dL1−→ Ω⇒ |∂MΩ| ≤ lim inf |∂MΩn|

holds.
We now extend the compactness result to partitions with finite perimeter. A

similar result was shown in [32, Proposition 5]. However, as explained above, in [32]
the notion of partition is defined slightly different and hence the compactness results
of [32] is for a sequence of partitions in which each sequence member as well as the
limiting partition consists of the same number of sets.

Proposition 3.6 (Compactness of partitions with finite perimeter). Let (Ωn)n∈N ⊂
GM (D) be a sequence of partitions of D with uniformly bounded perimeter, i.e., there
exists a constant C > 0 such that |∂Ω| :=

∑mn

i=1 pD(Ωni ) < C for all n ∈ N. Then

there exists a partition Ω̃ = (Ω̃i)
m̃
i=1 and a subsequence of (Ωn)n∈N, again denoted by

(Ωn)n∈N, such that

Ωn → Ω̃

in the sense of Definition 3.1.
Proof. The proof is a slight modification of [32, Proof of Propostion 5] and is

given here for completeness. With mn we denote the number of sets in the partition
Ωn. As Ωn ∈ GM (D) it is 1 ≤ mn ≤M for all n ∈ N. Let m ∈ [1,M ] be an arbitrary
but fixed accumulation point of the sequence (mn)n∈N. We consider the subsequence
of partitions that consists of m sets. The subsequence is again denoted by (Ωn)n∈N.

By the compactness of finite perimeter sets, Proposition 3.4, there exists a subse-

quence (Ω1,nk

1 )nk∈N of (Ωn1 )n∈N and a set Ω̃1 such that Ω1,nk

1

dL1−→ Ω̃1 for nk →∞. By
the lower-semicontinuity of the perimeter map, Proposition 3.5, we have pD(Ω̃1) <∞
and the limiting set Ω̃1 is a Caccioppoli set. We denote the subsequence (Ω1,nk

1 )nk∈N
by (Ω1,n

1 )n∈N and the corresponding (sub)sequence of partitions by (Ω1,n)n∈N.
Set (Ω0,n)n∈N := (Ωn)n∈N. Now, assume that for k with 1 ≤ k < m we have

constructed subsequences (Ωk,n)n∈N of (Ωk−1,n)n∈N and Caccioppoli sets Ω̃k such

that Ωk,nj
dL1−→ Ω̃j for n→∞ and 1 ≤ j ≤ k.

For the sequence of sets (Ωk,nk+1)n∈N we have pD(Ωk,nk+1) ≤ |∂Ωk,n| ≤ |∂Ωn| for all
n and by the compactness of finite perimeter sets there exists another subsequence

(Ωk+1,n)n∈N and a Caccioppoli set Ω̃k+1 such that Ωk+1,n
k+1

dL1−→ Ω̃k+1 for n→∞. For

1 ≤ j ≤ k the subsequence (Ωk+1,n
j )n∈N inherits the limit from (Ωk,nj )n∈N, i.e., we

have Ωk+1,n
j

dL1−→ Ω̃j .
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Induction with respect to k finally leads to a subsequence (Ωm,n)n∈N, again de-

noted by (Ωn)n∈N and m sets Ω̃i, i = 1, . . . ,m, such that Ωni
dL1−→ Ω̃i for all 1 ≤ i ≤ m

and n→∞. Because of

m∑
i=1

χΩ̃i
= lim
n→∞

m∑
i=1

χΩm,n
i

= lim
n→∞

χD = χD

there exists at least one j ∈ 1, . . . ,m such that µ(Ω̃j) > 0. Denoting the number of
sets with non-zero Lebesgue measure by m̃ we have that, after a possible renumbering
of the limiting sets, Ω̃ := (Ω̃i)

m̃
i=1 is a partition of D and Ωn → Ω̃ in the sense of

Definition 3.1.

4. Optimal coefficients for a given geometry. In this section we compute
optimal coefficients of the Mumford-Shah type functional for a fixed geometry and
analyze their behavior for convergent sequences of partitions.

First we want to determine the coefficients that minimize the defect for a given
(fixed) partition Ω = (Ωi)

m
i=1.

Proposition 4.1. Let Ω be a fixed, given partition, β > 0 and gδ ∈ L2 and
let f = F (Ω, f) =

∑m
i=1 fiχΩi be the unknown reconstruction. Then the (unique)

minimizer of the functional

min
f∈Rm

‖KF (Ω, f)− gδ‖2L2
+ β‖f‖2`2 (4.1)

exists and is given by the solution f = (fi)
m
i=1 of the matrix-vector system

gδ = Kf , (4.2)

where gδ = (gδi )
m
i=1 and K = (kij)

m
i,j=1 with

gδi =
〈
χΩi

,K∗gδ
〉

(4.3a)

kij =
〈
KχΩi

,KχΩj

〉
+ βδij . (4.3b)

Proof. As the geometry is fix, we identify functions h ∈ VΩ := span{χΩi :
i = 1, . . .m} ⊂ L2(D) with their coefficient vector h = (hi)

m
i=1 ∈ Rm. For the

optimization we use the operator

K : Rm → Y, h 7→
m∑
i=1

hiKχΩi

and its adjoint

K∗ : Y → Rm, g 7→
(
〈χΩi ,K

∗g〉
)
i=1,..,m

.

With Kh = Kh the necessary condition for a minimizer of the functional (4.1) is given
by

〈K∗(Kf − gδ),h〉`2 + β〈f ,h〉`2 = 0 ∀h ∈ Rm . (4.4)

Equation (4.4) holds if

K∗Kf + βf = K∗gδ
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or (
K∗Kf + βf

)
i

=
(
K∗gδ

)
i

∀i = 1, . . . ,m .

The assertion follows with (
K∗gδ

)
i

=
〈
χΩi ,K

∗gδ
〉 (4.3a)

= gδi

and (
K∗Kf + βf

)
i

=
(
K∗Kf

)
i
+ β

(
f
)
i

=
〈
χΩi ,K

∗Kf
〉

+ βfi

=
〈
KχΩi ,

∑
fjKχΩj

〉
Y

+ βfi

=

m∑
j=1

kijfj

with kij according to (4.3b). Existence and uniqueness of a solution of the linear
system is guaranteed by Lemma 4.2 and β > 0.

Lemma 4.2. For β > 0 the matrix K in (4.2) is positive definite. Hence, a
unique solution to the linear system exists.

Proof. Let h =
∑m
i=1 hiχΩi 6= 0. For i = 1, . . . ,m we have µ(Ωi) > 0 which

implies h 6= 0. It is

〈h,Kh〉Rm =

m∑
i,j=1

hikijhj

=

m∑
i,j=1

hi〈KχΩi
,KχΩj

〉Y hj + β

m∑
i=1

h2
i

= 〈Kh,Kh〉Y + β‖h‖2`2
= ‖Kh‖2Y + β‖h‖2`2
> 0 as β > 0, h 6= 0.

Hence, for β > 0 the matrix K is positive definite.
Now, we aim at a stability result for the solution to (4.1) under perturbations

of the geometry. Assume that we are given a sequence of partitions (Ωn)n∈N with
Ωn = (Ωni )mn

i=1 and a partition Ω = (Ωi)
m
i=1 such that Ωn → Ω for n → ∞ in the

sense of Definition 3.1. The number of sets in the partitions Ωn and Ω is denoted
by mn and m, respectively. Hence, the according linear systems in Proposition 4.1
have dimension mn ×mn and m ×m, respectively. The number of sets in Ωn and
Ω does not necessarily coincide even for large n. However, as Ωn → Ω there is an
N ∈ N such that

∀ n ≥ N : mn ≥ m .

According to Remark 3.2, for each partition Ωn with n ≥ N , we can reorder the
indices 1, . . . ,mn such that

Ωni
dL1−→ Ωi for i = 1, . . . ,m and µ(Ωni )→ 0 for i > m .
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For each partition Ωn, Ω we compute the solution to (4.1) as solution of the equations
Knfn = gδ,n and Kf = gδ. The notation Kn is used for the matrix that belongs to
the nth partition, the upper index n is not to be misunderstood as an exponent.
According to the reordering of the indices, the system matrices Kn can be written as

Kn =


Kn
m Kn

j>m

Kn
i>m Kn

i,j>m


(4.5)

with Kn
m ∈ Rm×m, Kn

j>m ∈ Rm×(mn−m), Kn
i>m ∈ R(mn−m)×m and Kn

i,j>m ∈
R(mn−m)×(mn−m). Following the lines of the proof of Lemma 4.2 we see that the
reordering does not change the positive definiteness.

The data vector gδ,n and the coefficient vector fn are reordered analogously,

gδ,n =


gδ,nm

gδ,ni>m

 and fn =


fnm

fni>m

 (4.6)

with gnm, f
n
m ∈ Rm and gni>m, f

n
i>m ∈ R(mn−m).

The following approximation result holds for the upper left part Kn
m of the matrix

Kn.
Proposition 4.3. The elements of the matrices K and Kn

m fulfill

|kij − knij | ≤ εn(i, j) (4.7)

where εn(i, j) is defined by

εn(i, j) =
√
µ(D)‖K∗K‖2

(√
dL1

(Ωni ,Ωi) +
√
dL1

(Ωnj ,Ωj)

)
.

Moreover,

εn(i, j)→ 0 as n→∞ .

Proof. It is

|knij − kij | =
∣∣∣〈KχΩn

i
,KχΩn

j
〉 − 〈KχΩi

,KχΩj
〉
∣∣∣

≤
∣∣∣〈χΩn

i
,K∗K(χΩn

j
− χΩj

〉
∣∣∣+
∣∣〈χΩj

,K∗K(χΩn
i
− χΩi

〉
∣∣

≤ ‖K∗K‖
(√

µ(Ωni )‖χΩn
j
− χΩj

‖2 +
√
µ(Ωj)‖χΩn

i
− χΩi

‖2
)
,

≤
√
µ(D)‖K∗K‖

(
‖χΩn

j
− χΩj

‖2 + ‖χΩn
i
− χΩi

‖2
)
,
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where we have used that ‖χD‖2 =
√
µ(D) and µ(Ωnj ), µ(Ωj) ≤ µ(D). Assertion (4.7)

follows with ‖χΩi,n
− χΩi

‖2 =
√
dL1

(Ωni ,Ωi).

The convergence of the sets, Ωni
dL1−→ Ωi, implies εn(i, j)→ 0 as n→∞.

Corollary 4.4. The sequence (Kn
m)n∈N of the upperleft parts of the matrices

Kn converges (in norm) to the matrix K.
Proof. This is an immediate consequence of Proposition 4.3 and the finite dimen-

sion of the matrices.
Lemma 4.5. The elements of the matrix Kn

j>m fulfill

knij → 0 as n→∞

Proof. Note that Kn
j>m = (knij)ij with i = 1, . . . ,m and j > m. Hence the term

βδij in (4.3b) always vanishes and it is

|knij | =
∣∣∣〈KχΩn

i
,KχΩn

j
〉
∣∣∣ =

∣∣∣〈K∗KχΩn
i
, χΩn

j
〉
∣∣∣

≤ ‖K∗K‖
√
µ(Ωnj )

√
µ(Ωni )→ 0

as µ(Ωnj )→ 0 for j > m and µ(Ωni ) ≤ µ(D) ∀i .
The other two submatrices also converge to zero. However, this is not important

as they do not appear in our future analysis. A similar approximation result as for
the matrices Kn

m and K also holds for the data vectors gδ,nm and gδ.
Lemma 4.6. Let K : L2(D) → L2(D2) be a bounded linear operator. For gδ,nm

and gδ the estimate

|gδ,ni − gδi | ≤ C ·
√
dL1

(Ωni ,Ωi) (4.8)

holds for all 1 ≤ i ≤ m with some constant C > 0.
Proof. With (4.3a) it is

|gδ,ni − gδi | = |〈χΩn
i
− χΩi

,K∗gδ〉L2
| ≤ ‖χΩn

i
− χΩi

‖L2
‖K∗gδ‖L2

.

With the help of these auxiliary results we now prove convergence of the sequence
of coefficient vectors.

Proposition 4.7. Let (Ωn)n∈N and Ω be partitions with Ωn = (Ωni )i=1,...,mn
and

Ω = (Ωi)i=1,...,m; assume Ωn → Ω as n→∞. Let β > 0 and fn = (fnm, fni>m) and f
be the solutions to Knfn = gδ,n and Kf = gδ. Assume further that ‖fn‖ ≤ C < ∞.
Then, the sequence (fnm)n∈N converges to f ,

fnm → f as n→∞ . (4.9)

Proof. For the convergence of the first m coefficients we use a standard pertur-
bation argument from linear algebra (see Kress [20], Theorem 10.1, page 164). As
β > 0 we know from Lemma 4.2 that the matrix K is positive definite and hence
invertible. Since Kn

m and K have the same dimensions and since Kn
m → K as n→∞

due to Corollary 4.4 we can choose n large enough such that ‖K−1(Kn
m −K)‖ < 1

where ‖ · ‖ is an arbitrary matrix norm induced by a vector norm on Rm. Using a
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Neumann series argument it is apparent that I + K−1(Kn
m − K) is invertible. We

have (compare (4.5) and (4.6))

gδ,nm − gδ = Kn
mfnm + Kn

j>mfni>m −Kf

=
(
K + (Kn

m −K)
)
(fnm − f)− (Kn

m −K)f + Kn
j>mfni>m.

Consequently

K
(
I + K−1(Kn

m −K)
)
(fnm − f) = gδ,nm − gδ + (Kn

m −K)f −Kn
j>mfni>m

and therefore

fnm − f =
(
I + K−1(Kn

m −K)
)−1

K−1
(
gδ,nm − gδ + (Kn

m −K)f −Kn
j>mfni>m

)
or

‖fnm − f‖ ≤ ‖K−1‖
1− ‖K−1(Kn

m −K)‖
(
‖gδ,nm − gδ‖+ ‖Kn

m −K‖‖f‖+ ‖Kn
j>m‖‖fni>m‖

)
.

(4.10)
Here we used that ‖(I +A)−1‖ ≤ 1

1−‖A‖ for every quadratic matrix A with ‖A‖ < 1.

Application of Corollary 4.4, Lemma 4.5 and Lemma 4.6 together with the bounded-
ness of the fn shows that the right-hand side of this inequality converges to zero as
n→∞.

Corollary 4.8. Under the conditions of Proposition 4.7 and setting f =
F (Ω, f), fn = F (Ωn, fn) we have

fn
L2−→ f .

Proof. We have ‖fn‖ ≤ C < ∞ and hence |fi| ≤ C for all i = 1, . . . ,mn.
Furthermore, it is µ(Ωni ) ≤ µ(D) for all i = 1, . . . ,mn. We get

‖f − fn‖L2 =
∥∥∥ m∑
i=1

fiχΩi −
mn∑
i=1

fni χΩn
i

∥∥∥
L2

≤
∥∥∥ m∑
i=1

fni
(
χΩn

i
− χΩi

)∥∥∥
L2

+
∥∥∥ m∑
i=1

(
fni − fi

)
χΩi

∥∥∥
L2

+
∥∥∥ mn∑
i=m+1

fni χΩn
i

∥∥∥
L2

≤ C
m∑
i=1

dL1(Ωni ,Ωi) +
√
µ(D)

m∑
i=1

∣∣fni − fi
∣∣+ C

mn∑
i=m+1

√
µ(Ωni ) .

The assertion follows with Ωn → Ω and Proposition 4.7.

5. Existence, stability and regularization results. In this section we present
the main properties of the reconstructions based on the described Mumford-Shah type
method, namely existence of a minimizer (Theorem 5.1), stability of the minimizer
with respect to error in the data (Theorem 5.3), and that the presented approach is a
regularization method if equipped with a proper parameter choice rule (Theorem 5.4).

As it is frequently used in the following theorems we would like to recall the
definition of convergence of a sequence (Ωn, fn)n∈N consisting of pairs of a partition
and a coefficient vector. According to Definitions 3.3 and 3.1 we request that the
sets Ωni converge with respect to dL1

. However, the associated components of the
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coefficient vectors only have to converge whenever the associated limiting set has
measure greater than zero. The remaining coefficients only have to stay bounded
which is always guaranteed by the norm penalty in the Mumford-Shah type functional.

Theorem 5.1. The Mumford-Shah functional defined in (2.8) with fixed β, γ > 0
has a (not necessarily unique) minimizer (Ωδ

β,γ , f
δ
β,γ) ∈ GM (D) × Rm for each set of

data gδ.
Proof. The functional Jβ,γ is bounded from below by zero and there clearly

exists an argument (Ω, f) such that Jβ,γ(Ω, f) < ∞. Hence, there exists a mini-

mizing sequence (Ω̃
n
, f̃n) with Jβ,γ(Ω̃

n
, f̃n) → inf Jβ,γ(Ω, f) and –after possibly ex-

tracting a subsequence– Jβ,γ(Ω̃
n
, f̃n) ≤ Jβ,γ(Ω̃

n−1
, f̃n−1). In particular, we have

|∂Ω̃
n| ≤ 1

γJβ,γ(Ω̃
0
, f̃0). Hence, (Ω̃

n
)n∈N has uniformly bounded perimeter and by

Proposition 3.6 there exists a subsequence of partitions Ωn of Ω̃
n

and a limiting

partition Ω such that Ωn dL1−→ Ω for n → ∞ . Now we construct a new minimizing
sequence by changing the coefficients f̃n for the subsequence of partitions Ωn. We
define the vector fn to be the solution of the linear system (4.2) with fixed geome-
try Ωn, i.e., the set of coefficients that minimizes the functional (4.1). According to
Proposition 4.1 we have Jβ,γ(Ωn, fn) ≤ Jβ,γ(Ωn, f̃n), i.e., (Ωn, fn) is also a minimiz-
ing sequence for Jβ,γ and the associated coefficients are bounded. For the limiting
partition Ω we define f as the solution of the linear system (4.2). The vector fn is
split according to (4.6). According to Proposition 4.7, eq. (4.9), we have fnm → f
where fnm denotes the reordered first m coefficients of each of the coefficient vectors
fn; i.e., coefficients associated to sets that do not vanish in the limit.

From Corollary 4.8 we get fn = F (Ωn, fn)
dL2−→ F (Ω, f) = f . By the lower

semicontinuity of norm and perimeter it follows

Jβ,γ(Ω, f) ≤ lim infn→∞

(
‖Kfn − gδ‖2L2(D) + β‖fnm‖2`2 + γ|∂Ωn|

)
≤ lim infn→∞

(
‖Kfn − gδ‖2L2(D) + β(‖fnm‖2`2 + ‖fni>m‖2`2) + γ|∂Ωn|

)
= lim infn→∞Jβ,γ(Ωn, fn)

= inf Jβ,γ(Ω, f) .

The next lemma is used to show the stability of the minimizers of the Mumford-
Shah like functional with respect to perturbations in the data.

Lemma 5.2. Let gδn → gδ and denote by (Ωδn
β,γ , f

δn
β,γ) and (Ωδ

β,γ , f
δ
β,γ) the mini-

mizers of the functionals Jβ,γ with data gδn and gδ. Then, the sequence of minimiz-
ing partitions and the sequence of minimizing coefficients are uniformly bounded, i.e.,
there exist constants C1, C2 ≥ 0 such that

|∂Ωδn
β,γ | ≤ C1 <∞ ∀n , (5.1)

‖fnβ,γ‖ ≤ C2 <∞ ∀n . (5.2)

The proof is analogous to the proof of [32, Lemma 13]. We present it for completeness.
Proof. Let fδnβ,γ = F (Ωδn

β,γ , f
δn
β,γ). As (Ωδn

β,γ , f
δn
β,γ) is a minimizer of Jβ,γ with data

gδn we have

γ|∂Ωδn
β,γ | ≤ ‖Kf

δn
β,γ − g

δn‖2L2(D) + β‖fδnβ,γ‖
2
`2 + γ|∂Ωδn

β,γ |

≤ ‖Kfδβ,γ − gδn‖2L2(D) + β‖fδβ,γ‖2`2 + γ|∂Ωδ
β,γ | .
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As limn→∞ ‖Kfδβ,γ − gδn‖2L2(D) = ‖Kfδβ,γ − gδ‖2L2(D) we conclude that ‖Kfδβ,γ −
gδn‖2L2(D) ≤ C̃ for n sufficiently large. It follows that

|∂Ωδn
β,γ | ≤

C̃

γ
+
β

γ
‖fδβ,γ‖2`2 + |∂Ωδ

β,γ | ,

independent of n. An analogous computation yields

‖fδnβ,γ‖ ≤
C̃

β
+ ‖fδβ,γ‖2`2 +

γ

β
|∂Ωδ

β,γ | .

Theorem 5.3. Let gδn → gδ in L2 and denote by (Ωδn
β,γ , f

δn
β,γ) a sequence of

minimizers of the functionals Jβ,γ with data gδn . Then there exists a subsequence of

(Ωδn
β,γ , f

δn
β,γ), again denoted by (Ωδn

β,γ , f
δn
β,γ), such that

(Ωδn
β,γ , f

δn
β,γ)→ (Ωδ

β,γ , f
δ
β,γ) (5.3)

in the sense of Definition 3.3 and (Ωδ
β,γ , f

δ
β,γ) is a minimizer of Jβ,γ with data gδ.

Proof. According to Theorem 5.1, minimizers (Ωδn
β,γ , f

δn
β,γ) of the functional Jβ,γ

with data gδn exists. By Lemma 5.2 we have that the perimeter of the partitions
and the norm of the coefficients are uniformly bounded , i.e., |∂Ωδn

β,γ | ≤ C1 and

‖fδnβ,γ‖ ≤ C2.
Analogous to the proof of Theorem 5.1, by using Proposition 4.7, there exists

a subsequence of (Ωδn
β,γ , f

δn
β,γ), for simplicity again denoted by (Ωδn

β,γ , f
δn
β,γ), and an

element (Ω̃, f̃) ∈ GM (D)× Rm such that
Ωδn
β,γ → Ω̃ for n→∞ and (fδnβ,γ)m → f̃ for n→∞ ,

with a possible reordering of the vector as described in Remark 3.2. It remains to show
that the limiting element (Ω̃, f̃) =: (Ωδ

β,γ , f
δ
β,γ) is a minimizer of the functional Jβ,γ

with data gδ. This follows again analogously to the proof of Theorem 5.1, exploiting
the lower-semicontinuity of norm and perimeter.

Theorem 5.4 (Regularization property). Let (Ω†, f†) ∈ GM (D)× Rm† be given
such that f† = F (Ω†, f†) fulfills Kf† = g. For noisy data gδ ∈ Y with ‖gδ − g‖ ≤ δ
choose the regularization parameters β = β(δ) and γ = γ(δ) according to

β(δ)→ 0, γ(δ)→ 0

δ2

min( β(δ),γ(δ) ) → 0

max( β(δ),γ(δ) )
min( β(δ),γ(δ) ) → 1

 as δ → 0 . (5.4)

For a sequence (gδn , δn) with ‖gδn−g‖ ≤ δn → 0 let the pair (Ωδn
βn,γn

, fδnβn,γn
) denote a

minimizer of the Mumford-Shah functional Jβn,γn with data gδn and the regularization
parameter βn = β(δn) and γn = γ(δn) chosen as above.

Then there exists a convergent subsequence of (Ωδn
βn,γn

, fδnβn,γn
) with limit (Ω̃, f̃).

The associated function f̃ = F (Ω̃, f̃) is a solution of the equation Kf̃ = g. If the
solution is unique then the whole sequence converges toward the solution.

Proof. Let a sequence gδn be given with ‖gδn − g‖ ≤ δn → 0 as n → ∞ and let
(βn, γn) be chosen according to the above parameter choice rule. We use the short
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notation Jn := Jβn,γn , Ωn := Ωδn
βn,γn

and fn := fδnβn,γn
. As (Ωn, fn) is a minimizer of

the Mumford-Shah functional with data gδn we have

βn‖fn‖2`2 + γn|∂Ωn| ≤ ‖KF (Ωn, fn)− gδn‖2 + βn‖fn‖2`2 + γn|∂Ωn|
≤ ‖KF (Ω†, f†)− gδn‖2 + βn‖f†‖2`2 + γn|∂Ω†|
≤ δn2 + βn‖f†‖2`2 + γn|∂Ω†| .

(5.5)

In the same way we get

‖KF (Ωn, fn)− gδn‖2 ≤ δn2 + βn‖f†‖2`2 + γn|∂Ω†| . (5.6)

Using (5.5), it is

min(βn, γn)
(
‖fn‖2`2 + |∂Ωn|

)
≤ βn‖fn‖2`2 + γn|∂Ωn|
≤ δn2 + βn‖f†‖2`2 + γn|∂Ω†|

≤ δn2 + max(βn, γn)
(
‖f†‖2`2 + |∂Ω†|

)
.

It follows

‖fn‖2`2 + |∂Ωn| ≤ δn
2

min(βn, γn)
+

max(βn, γn)

min(βn, γn)

(
‖f†‖2`2 + |∂Ω†|

)
. (5.7)

With equation (5.7) and the parameter choice rule (5.4) the sequence of partitions
(Ωn)n has uniformly bounded perimeter and the sequence of coefficients is uniformly
bounded,

|∂Ωn| ≤ C1 ∀n and ‖fn‖ ≤ C2 ∀n .

Again as in the previous proof we can extract a subsequence of (Ωn, fn), for simplicity
also denoted by (Ωn, fn), such that

(Ωn, fn)→ (Ω̃, f̃) ∈ GM (D)× Rm̃ . (5.8)

Applying successively the lower-semicontinuity of norm and perimeter with respect
to dL1

, estimate (5.7) and the parameter choice rule (5.4) we get

‖f̃‖2`2 + |∂Ω̃| ≤ lim inf
n→∞

(
‖fn‖2`2 + |∂Ωn|

)
.

≤ lim inf
n→∞

(
δn

2

min(βn, γn)
+

max(βn, γn)

min(βn, γn)

(
‖f†‖2`2 + |∂Ω†|

))
= ‖f†‖2`2 + |∂Ω†| .

By (5.8) and Corollary 4.8 we have fn = F (Ωn, fn)
L2−→ F (Ω̃, f̃) = f̃ . As the

operator K is linear and bounded we get by the lower semicontinuity of the norm,
estimate (5.6), the parameter choice rule (5.4) and the assumption gδn → g

‖Kf̃ − g‖2L2
≤ lim inf

n→∞
‖Kfn − gδn‖2L2

≤ lim inf
n→∞

(
δn

2 + βn‖f†‖2`2 + γn|∂Ωn|
)

= 0 .

Hence, it is g = Kf̃ = KF (Ω̃, f̃) and f̃ is a solution to the equation. As f† = F (Ω†, f†)
was an arbitrary solution and ‖f̃‖2`2 + |∂Ω̃| ≤ ‖f†‖2`2 + |∂Ω†| we have found a solution
with minimal penalty.
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6. SPECT - an application from medical imaging. In this section we
present a numerical verification of our main result, Theorem 5.4, which states that
we reconstruct the right segmentation and the exact coefficients only if the noise in
the data is small enough and the regularization parameters are chosen according to
the given parameter choice rule (5.4). The conditions of equation (5.4) are readily
fulfilled if we choose

β(δ) = c1γ(δ) = c2δ
ν

with constants c1, c2 > 0 and an exponent 1 ≤ ν < 2. For our test computations we
have chosen c1 = 1, c2 = 0.01 and ν = 1.9.

The results of the previous sections are formulated for arbitrary linear operators.
Here, we will consider the reconstruction and segmentation of an activity distribu-
tion f from SPECT data with known density function µ. SPECT stands for Single
Photon Emission Computerized Tomography [8, 39, 41, 18] and is an imaging method
designed to provide information about the functional level of a part of the body.
SPECT involves the injection of a low-level radioactive chemical, called radiotracer
or radiopharmaceutical into the bloodstream. The radiotracer travels in the blood-
stream and accumulates, e.g., in the heart or it can be attached to certain types of
proteins which are known to bind to tumor cells. The concentration of the radiophar-
maceutical within the body is referred to as activity distribution f . The radioactive
material ejects photons which travel through the body and interact with the tissue,
where the interaction (i.e., the absorption of photons) depends on the mass density of
the tissue µ. Finally the photons are measured outside the body by a SPECT scanner
(a γ-camera). The resulting sinogram data y is modeled by the attenuated Radon
transform,

g(s, ω) = Aµf(s, ω) =

∫
R
f(sω + tω⊥) exp

(∫ ∞
τ=−t

−µ(sω + τω⊥)

)
dt (6.1)

with (s, ω) ∈ R × S1 where S1 is the one-dimensional unit sphere. The attenuated
Radon transform is linear with respect to the activity distribution f and in this
case, exact inversion formulae exist [25, 26, 39]. However, due to the measurement
process, the given data will be noisy and hence, also for the linear attenuated Radon
transform considered as operator Aµ : L2(R2) → L2(R× S1) regularization methods
have to be used [14, 21]. Due to the underlying physical process (photons are emitted,
interact, travel and are finally counted) the noise in SPECT data follows a Poisson
distribution [37, 15].

In order to support Theorem 5.4 we need data with a noise level that tends to zero.
In general, the only way to reduce the effect of Poisson noise (also called photon noise
or shot noise) is to capture more signal. In practice, this can be realized by a longer
exposure time, but still, the number of photons captured is limited by the capacity
of the sensor. As mentioned above, the noise in the SPECT measurements follows a
Poisson distribution. For our numerical tests, however, the data was contaminated
with multiplicative white noise, which resembles important properties of Poisson noise,
e.g. that the amount of noise is related to the intensity of the signal, see Figure 6.2.

As test functions we choose activity and density distributions as shown in Fig-
ure 6.1. The density distribution is an ellipsoid with constant value 1 and assumed
to be known. The activity distribution consists of five different objects: a square
with value 8, two different sized diamonds with values 3 and 4 for the bigger and the
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Fig. 6.1. Left: The (unknown) activity function f with five domains: square with value 8, big
diamond with value 3, small diamond with value 4, big circle with value 6 and circular inclusion
with value 5. Middle: The (known) density function µ: ellipsoid with value 1.

Fig. 6.2. SPECT data with different amounts of multiplicative noise. From left to right: 5, 10
and 15 %.

smaller one respectively, a big circle with value 6 with an off-center circular inclusion
with value 5.

With a Matlab-implementation of the attenuated Radon transform (6.1) sinogram
data are generated and perturbed by multiplicative noise with different error level.
The approximate solution (Ωδ

β,γ , f
δ
β,γ) is calculated as minimizer of the Mumford-Shah

type functional Jβ,γ with the algorithm as described in [31]. We briefly repeat the most
important steps of the algorithm. The shape variable Ω is encoded as the zero level-set
of a level-set function φ [28, 36]. The update of the coefficients and the shape variable
is done in an alternating fashion: first, the shape variable Ω is fixed and optimal
coefficients are computed as described in Proposition 4.1. Second, the coefficients are
fixed and the shape is updated using shape optimization techniques [6, 17, 31, 40]. For
that, we compute the shape derivative dΓ of the reduced functional (i.e., we consider
only the geometry Ω as free variable)

Ĵ(Ω) = ‖Aµ(f)− gδ‖2L2(R×S1) + β‖f(Ω)‖2`2 + γ|∂Ω|
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and get

dΓ(Ĵ , F ) = 2

n∑
i=1

fi

∫
x∈∂Ωi

A∗µ(Aµ(f)− gδ)(x)F (x)dS(x)

+ β

n∑
i=1

f2
i

∫
x∈∂Ωi

F (x)dS(x) + γ

∫
∂Ω

κdS .

Choosing a descent direction F , i.e., an F such that dΓ(Ĵ , F ) < 0, enables us to
update the geometry by propagating the associated level-set function φ by solving the
level-set equation

∂φ

∂t
+ F |∇φ| = 0 .

As the level-set evolution might get stuck in local minima we also use an insert strategy
to create new components based on the functional derivative of the data fit term. For
a detailed description of the algorithm we refer to [31, 19].

The unknown (as well as the known) distribution (Figure 6.1) has dimension
101 × 101 pixels. Its sinogram was computed for 101 samples and 100 angles. We
have calculated reconstructions from data with relative error levels

δrel ∈ {0%, 0.005%, 0.01%, . . . , 30%} .

The distance of the associated reconstruction to the original function is measured
in the L1-norm. Figure 6.3 shows the values of the Mumford-Shah type functional
evaluated at the computed minimizers fδβ,γ (left image) and the relative L1-accuracy

‖f−fδβ,γ‖L1
/‖f‖L1

of the computed minimizers fδβ,γ of the Mumford-Shah type func-
tional (right image). With decreasing noise level also the values of the functional
and the reconstruction error decrease. The Mumford-Shah type functional evaluated
at the computed minimizers decrease monotonically (apart from two outliers) with
the error level (Figure 6.3, left) whereas the relative L1-accuracy of the computed
minimizers only shows in average a decreasing behavior (Figure 6.3, right). The fre-
quently observed outliers are due to the fact that single pixels, that are assigned to
the wrong set, have a greater influence in the L1-norm than in the Mumford-Shah
type functional.

Figure 6.4 and Figure 6.5 show reconstructions and segmentations from data with
1%, 5%, 10%, 15%, 20% and 25% noise. The iteration was stopped when one of the
following criteria was fulfilled

• The residual error of the current approximation fn is of the size of the data
error, i.e., the iteration was carried out as long as ‖Aµ(fn)− gδ‖ > τ‖g− gδ‖
with τ = 1.1.

• The maximal number of outer iterations (100) was reached. (With outer
iteration we refer to one complete update of both the coefficients and the
geometry. For the geometry update another inner iteration, namely time
stepping for the solution of the level set equation, is done for each outer
iteration.)

For the lower error levels up to 6% relative noise, the maximal number of iterations
was used. For the larger error levels, the number of iterations varied between 40 and
75, decreasing with increasing error level.

Figures 6.4 and 6.5 clearly demonstrate that the reconstructions from noisy data
converge as the noise level gets smaller, which is in accordance to Theorem 5.4. For
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Fig. 6.3. Left: Values of the Mumford-Shah type functional evaluated at the computed mini-
mizers fδβ,γ . Right: Relative reconstruction error ‖f − fδβ,γ‖L1

/‖f‖L1
; both for data with relative

error level between 0 and 30%.

high noise levels, the reconstruction misses a whole component and the values of f
are slightly off. Furthermore, one can see some oscillations in the segmenting contour
(e.g., the square in Figure 6.5, upper left). However, the smaller the noise in the
data, the better the reconstruction for both the shapes and the values, until we get
an almost perfect reconstruction from data with 1% noise. The oscillations in the
segmenting contour could be prevented by putting a higher weight on the perimeter
penalty. However, there is always a trade-off between small details such as the circular
inclusion and smooth boundaries. The circular inclusion, which has a very low contrast
difference to the background, is detected for noise up to 8%, for higher noise level the
inclusion is not detected, at least not for the chosen set of parameters. This is mainly
due to the influence of the perimeter penalty: for large regularization parameters (i.e.,
high noise), the influence of the perimeter constraint increases, leading to vanishing
small sets, in particular if the contrast difference to the background is small.

As a second, ‘real world’, example we have performed test computations for ac-
tivity and density functions specified by the standard mathematical cardiac torso
(MCAT) phantom [38, 41] as shown in Figure 6.6. The piecewise constant activity
function f represents a section through a simplified model of a human heart. Fig-
ure 6.6(left and right) shows the blood supply of the myocardal muscle (no.2) and the
two ventricles (no.1 and no.3). The blood supply is interrupted at one point, namely
in the outer left area of the myocardal muscle. This point is not reached by the
radiopharmaceuticum, hence the left ventricle seems to be ‘open’. For that reason,
the outer area (no.1) and the upper cardic ventricle have the same number and are
modeled as one connected domain in the PCm-model.

Even with a high noise level in the data we obtain an excellent reconstruction and
segmentation, see Figure 6.7. However, it is more difficult to see the regularization
property of our approach. This might be due to the fact that the activity function of
Figure 6.6 only consists of very few pixels. This means that the discretization error
dominates in the reconstruction.
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