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Abstract. The human factor plays the key role for safety in many indus-
trial and civil every-day operations in our technologized world. Human
failure is more likely to cause accidents than technical failure, e.g. in the
challenging job of tugboat captains. Here, cognitive workload is crucial,
as its excess is a main cause of dangerous situations and accidents while
being highly participant and situation dependent. However, knowing the
captain’s level of workload can help to improve man-machine interaction.
The main contributions of this paper is a successful workload indication
and a transfer of cognitive workload knowledge from laboratory to real-
istic settings.

Keywords: Workload - BCI - EEG

1 Introduction

In the maritime world, as in many other workplaces, working memory, the ability
to process information and to take decision is crucial. The quantification of cog-
nitive workload is a measure to study these aspects. The insight can shed light
onto the limitations posed by the human factor and point out how to improve
equipment, conditions or training. While there exists no generally accepted def-
inition of cognitive workload, there is a large agreement that it encompasses the
two concepts of activation and resources or capacity [15].

In the present investigation, we designed a BCI system based on spectral
decompositions of electroencephalographic data [17] that is trained to detect
states of high/low cognitive workload. The workload was manipulated by the
main task itself within one of the conditions while in the other we employed the
2-back task [8] as a secondary task which is a common tool for the measurement
of workload [14]. The aim of this study was to investigate cognitive workload in
a more realistic environment and set the results into context with those from
experiments obtained in clean laboratory settings. Therefore, professional tug-
boat captains were observed in a realistic training simulator study, where we
investigated whether and how laboratory based cognitive workload studies are
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transferable to more realistic settings. In particular, we investigated if and how
alpha & theta oscillations are modulated by cognitive workload.

1.1 Neurophysilogical Correlates of Cognitive Workload

Cognitive workload is reflected in different components of brain activity. In view
of the present target application, modulations of event-related potentials due to
workload [11,12,18] are not relevant, since there are no controlled and continu-
ously repeated stimuli. Therefore, we concentrate on workload-induced modula-
tions of spontaneous brain activity.

The power of oscillatory brain activity in the theta frequency range (4 to
7Hz) in frontal brain regions have been found to positively correlate with the
level of workload, see e.g. [5,7,20].

With respect to the more prominent alpha frequency band, most studies
report a negative correlation of cognitive workload and alpha power at parito-
occipital scalp locations, see e.g. [4,7]. However, these studies used tasks in the
visual modality to induce workload, such that one can only derive the implica-
tion of alpha reduction for workload in visual resources. In general, the func-
tional role of alpha band oscillations is not yet conclusive. For a memory task
in the auditory domain, [6] reports a modulation of theta oscillations only, but
no modulations of the alpha rhythm. Some studies using auditory stimulation
even found an increase of alpha activity with increasing workload [2,10,13,16].
A possible interpretation is provided by the hypothesis of functional inhibition,
which postulates that strong alpha activity reflects active inhibition of task-
irrelevant processes [9]: when the critical processing load is in the non-visual,
the visual areas are actively deactivated. The idea to build EEG-based workload
monitoring systems was presented, e.g. in [3,4,19].

2 Experimental Design

In a 10-participant simulator study, we recorded electroencephalographic data
from a realistic tugboat scenario with professional captains (participant 8 excl.:
sickness). The participants were recruited along the training network of MARIN
and were compensated for their voluntary participation. They were all male with
ages ranging from 30 to 65 years and different levels of experience. The exper-
iment consisted of 3 different scenarios (approx. 40 min each), where scenario
1&3 were identical, see Fig. 1.

The simulator was a professional ship simulator bridge optimized for tug-
boat missions which can be observed in Fig.2. It consisted of a 360° projected
screen around a set of ordinary tugboat controls. This included several addi-
tional screens for radar and ship-parameters. The study was approved by the
committee of the ethical department of Philips, the Netherlands, as we collabo-
rated with them on this project. An informed written consent was obtained from
all participants.
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Phase 1 Phase 2 Phase 3
Workload induced by sailing task secondary task
Block length 5+5+5 min 4+4min Equivalentto
Phase 1
Conditions Low, High1, Low, High
High2
40min 40min 40min

Fig. 1. Experimental design - overview

Fig. 2. Simulator Setting with 360° projections

While in phase 1&3, the cognitive workload was modulated by the sailing task
itself in combination with environmental changes (weather, sea), we increased it
in phase 2 by an additional task (2-back task [8]) and kept sailing constant.

2.1 Phase 1 and 3: Bow-to-Bow

In this scenario the focus was to keep the experimental conditions as naturalistic
as possible while still being able to modulate the workload induced on the cap-
tain. Therefore, 3 conditions were generated with different tasks and different
weather conditions. An overview about the temporal structure can be found in
Fig. 3 on the left. For the later classification, the high! and high2 epochs are
combined to a common high class.

Condition 1: Free Sailing Condition: low workload: The captain was instructed
to follow a large container ship astern while the weather was manipulated to
have no extra effect on the workload.

Condition 2: Connecting Condition: highl workload: After a transition phase
moving to the front of the vessel the tugboat captain got the instruction to get
ready for bow-to-bow connection while the weather conditions were changed to
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Fig. 3. Experimental design of workload modulation

harsh (wind, waves, fog). Then, the captains were told to wait for connection for
5 min which represents the highl phase.

Condition 3: Pulling Condition: high2 workload: After the rope was connected,
a constant tow force and line length was instructed. The weather stayed harsh.

2.2 Phase 2: n-Back

The n-back task is commonly used in neuroscientific research as a manipulation
tool for cognitive workload. We used this as a secondary task to have a condition
comparable to common research and to see how much our bow-to-bow scenario
corresponds to the neural patterns of this commonly known task. We used an
auditory 2-back task, where the participant had to follow a stream of spoken
numbers. If the last number heard corresponded with the digit 2 back, they had
to press a button. The digits 1-9 were used with 3s interleave randomly (75%)
and forced 2-back repetition (25%) to get a reasonable amount of repetitions. The
2-back was played auditorily to keep a realistic behavioral scheme of the captain.
There were 2 conditions, 4 min each, which were repeated 5 times, resulting in
a total duration of 40 min for the whole phase (see also Fig.3 on the right):

Condition 1: Free Sailing Condition low workload: In this condition, the same
low workload task of the bow-to-bow Scenario was induced for comparison.

Condition 2: Free Sailing with 2-Back Condition high workload: The 2-back
task was used additionally to the Free Sailing to induce a higher workload while
keeping the primary task constant.

3 EEG-Analysis

3.1 Dealing with Artifacts

A preliminary analysis of the data’s spatio-spectral content showed that the EEG
of some participants was heavily affected by artifacts. This was expected due to
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the participants being allowed to act naturally. Head and trunk movements were
required for the sailing tasks, as the simulator provided a 360° projection.

First, the automatic artifact removal method MARA [22] had been employed,
that gives good results in usual EEG datasets. The method is based on a decom-
position of the multivariate EEG by the use of an Independent Component
Analysis (ICA). The components were classified into artifacts and neuronal com-
ponents. Then, the cleaned EEG signals were obtained by projecting only the
neuronal components back into the sensor space. The classifier that distinguishes
between artifactual and neuronal components was trained on a large data base
of EEG datasets for which the ICA decomposition was manually annotated. For
datasets that contain artifacts unlike those ones contained in the training data
base, some of the artifactual components may go undetected. This seemed to be
the case for the dataset at hand.

Therefore, we went the tedious way of annotating all ICA components (ICs)
manually. This decision between artifactual and neuronal components was based
on the following plots: the propagation pattern that corresponds to the IC, the
time series of the IC and its power spectral density. Examples of those plots are
given in Fig. 4.
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Fig. 4. Inspection of components obtained by ICA: A neuronal component: The pat-
tern suggests a left arm motor area origin and shows a smooth dipolar structure. The
power spectral density (upper left subplot) has the typical 1/f shape with enhanced
power around 9.5 Hz, which is the typical frequency of the sensorimotor rhythm. There
are no obvious irregularities in the time course. B artifactual component: Pattern,
spectrum and time course do not look like neuronal activity: the pattern is very focal
with no typical spectral 1/f shape, has least power in the 10 Hz range and strong power
in high frequencies and the time course contains a high frequency burst.

3.2 Results

The grand average (i.e., average across participants) of the spectral analysis
of the automatic artifact removal method MARA cleaned signals is shown in
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Fig.5 (2-back task) and Fig.6 (bow-to-bow task). When comparing the results
for individual participants, it became clear that the grand average is only of
limited use. The effect of the workload conditions seen in the alpha band varies
with respect to the specific frequency range: we observed individual frequencies
and topologies at which alpha levels appeared characteristic for the individual
participants - also across conditions.

For the 2-back as a secondary tasks, effects in higher visual alpha can be
observed across participants around parietal to occipital electrodes. The effect
is contrary to common results in laboratory settings, as the alpha increases with
increasing task difficulty. On a single participant level, we find this at an indi-
vidual frequency of around 10-12Hz in 6 of 7 participants (subj 1 excluded due
to recording error, subj 10 excluded due to obvious task misunderstanding: but-
ton press after every stimulus). One participant with seemingly different results
shows no effect at these frequencies but contrary signed 72 at lower alpha (around
9Hz). A possible explanation to this difference is personal stress we observed on
a subjective behavioral level. Unexpectedly, theta is not very relevant except for
one participant.

For the bow-to-bow condition, the differences are much weaker (note the
different scale) and results are more variable in general: the spectra look very
noisy and variable across participants. In the grand-average, we find no clearly
peaked differences in the spectrum. The lower alpha range shows an increase
in power for high workload. For single participants, visual alpha peaks show an
effect mostly at lower levels around 7-9Hz in 6 of 9 while around 10 Hz for 2
participants. These visual alpha peaks are mostly at a frequency 2-3 Hz lower
than those of the 2-back condition and mostly with opposite sign (5 participants).
Strong frontal theta is found to be significant in one participant (same as in
phase 2), less in others.

4 Classification Analysis

4.1 Aim and Approach

The spectral analysis showed strong artifacts in the data. Apart from noise
of the technical devices, there are artifacts from muscle activity (seen in high
frequencies, mostly at outer temporal and occipital electrodes) as well as from
eye movements (seen in low frequencies at very frontal channels). Furthermore,
there may be motion artifacts due to the motion of the electrode cables induced
by head and trunk movements.

The muscular and ocular artifacts are indicative of the workload condition
for a number of participants and could in principle be used for the workload
classifier. However, the goal of this analysis was to estimate the contribution
of genuine brain activity to the workload level. Still, we evaluated an approach
that works on uncorrected data (R), which can be expected to exploit workload-
specific artifacts to some degree, and methods including artifact corrected data
which work presumably on brain activity only.
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Fig. 5. Grand average of the spectral analysis of the 2-back task.
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Fig. 6. Grand average of the spectral analysis of the bow-to-bow task.
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4.2 Preprocessing, Artifact Reduction, Feature Extraction
and Classification

We used 1Hz high-pass filtering alone (R), in combination with the automatic
ICA artifact reduction MARA [22] (C) as well as manual ICA artifact reduction
(CM) (for details see Sect. 3.1). The blocks were subdivided into epochs of 1 min.
Then, we built different spectral band power based features. In addition, we
performed widely used Common Spatial Pattern analysis (CSP) [1] in different
band combinations with the logarithm of the variances as features. We evaluated
the different classification designs within phases as block-wise cross-validations
(CV) as well as between phases to test for generalization. The classifier itself
was based on regularized shrinkage linear discriminant analysis (rsLDA) [21].

4.3 Results

The results show a high variability in performance between participants. Clas-
sification works best in the 2-back scenario (phase 2), but also the intra-phase
classification in the more complex bow-to-bow scenario (phases 1 and 3) works
well with CV-loss below 25% for methods R and C. The transfer of the classi-
fier between the different tasks (2-back and bow-to-bow) yielded results around
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Fig. 7. Classification results: class-wise normalized loss (average indicated by light blue
diamond, individual participants colored circles). Methods are labeled by capital letters
for preprocessing and lower-case for different combinations of frequency bands: R only
high-pass (1Hz), C MARA artifact removal, CM manual ICA based artifact removal:
a 1Hz bins from 1-20Hz, b sum over alpha (8-12Hz) and theta band (4-7Hz). CSP
common spatial pattern algorithm: CSPa alpha and theta band CSPb alpha, beta,
gamma and theta band. (Color figure online)
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Bow-To-Bow Phase 1 vs. 3
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Fig. 8. Classification Results: class-wise normalized loss (average indicated by light
blue diamond, individual participants colored circles). Methods are labeled by capital
letters for preprocessing and lower-case for different combinations of frequency bands:
R only high-pass (1Hz), C MARA artifact removal, CM manual ICA based artifact
removal: a 1Hz bins from 1-20Hz, b sum over alpha (8-12Hz) and theta band (4-
7Hz). CSP common spatial pattern algorithm: CSPa alpha and theta band CSPb
alpha, beta, gamma and theta band. (Color figure online)

chance level (see Fig.7), while the transfer of classifiers within the bow-to-bow
scenario, i.e. between phases 1 and 3, works almost as good as the respective
within phase classification (see Fig.8). On average, the automatically cleaned
sums over alpha & theta band (Cb) show best results. CSP works comparably
in the 2-back but almost at chance level in the bow-to-bow scenario.

5 Discussion

The results of the 2-back scenario already show the complexity of a physiological
index of cognitive workload, when the task is not performed in a constrained
laboratory setting, but embedded into a more realistic and complex scenario.
The expected increase of the frontal theta oscillation was in general not observed,
and the power in the parietal alpha did not decrease as found in most workload
studies, but it showed a contrary effect. The alpha effect is consistent with some
of the literature on non-visual tasks. The common hypothesis for this ambiguity
is that the task-irrelevant visual brain region is actively inhibited in order to focus
resources to the relevant non-visual processing. One participant who showed a
parieto-occipital alpha decrease might have had a visual strategy to memorize
the sequence of numbers - albeit presented auditorily.
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Classification of workload levels in the complex bow-to-bow scenario is in gen-
eral successful. Transferring the classifier between the two phases 1 and 3 does
not degrade the performance appreciably. The fact that classification in the
realistic bow-to-bow task worked less well compared to the 2-back task requires
consideration. As found in the literature on electrophysiological correlates of
workload, there are two opposing effects concerning the modulation of the alpha
rhythm. Tasks in the visual modality mostly decrease alpha activity, while work-
load in non-visual modalities might increase it (as in our 2-back paradigm). In
the complex bow-to-bow scenario, these effects may be in conflict. Retrieving
expertise about the maneuvering can be expected to be mainly non-visual. Nev-
ertheless, the control of the boat does not allow a rigorous visual inhibition as
it requires synchronized visual processing, in particular as the weather condi-
tions were challenging during the high workload condition. This conflict can be
assumed to lead to a much weaker effect on alpha power - an issue well worth
deeper investigation.

Another interesting point in the view of applicability is the fact that the
complex concept workload encompasses different factors, two of which are acti-
vation and resources. Therefore, a high output of the workload monitor could
indicate a strong activation in the sense of an effective focusing of the task at
hand (inhibiting task-irrelevant processing). Accordingly, an interpretation of
the participant being at the limit of her/his resources might not be adequate.

6 Conclusions

Out-of-the-lab results are not easily transferable to realistic settings, but indi-
vidual strategy and modality dependent neural activity can be used to adopt
the interaction between system and user towards a symbiosis.
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.
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