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Abstract We develop further a linear theory of discrete complex analysis on
general quad-graphs, extending previous work of Duffin, Mercat, Kenyon, Chelkak
and Smirnov on discrete complex analysis on rhombic quad-graphs. Our approach
based on the medial graph leads to generalizations as well as to new proofs of previ-
ously known discrete analogs of classical theorems. New results include in particular
discretizations of Green’s first identity and Cauchy’s integral formula for the deriv-
ative of a holomorphic function. Another contribution is a discussion on the product
of discrete holomorphic functions that is itself discrete holomorphic in a specific
sense. In this paper, we focus on planar quad-graphs, but many notions and the-
orems can be easily adapted to discrete Riemann surfaces. In the case of planar
parallelogram-graphs with bounded interior angles and bounded ratio of side lengths
explicit formulae for a discrete Green’s function and discrete Cauchy’s kernels are
obtained. This slightly generalizes the previous results on rhombic lattices. When we
further restrict to the integer lattice of a two-dimensional skew coordinate system a
discrete Cauchy’s integral formulae for higher order derivatives is derived.

Keywords Discrete complex analysis · Quad-graph · Green’s function · Cauchy’s
integral formulae · Parallelogram-graph

1 Introduction

Linear theories of discrete complex analysis look back on a long and varied
history.We refer here to the survey of Smirnov [24]. Already Kirchhoff’s circuit laws
describe a discrete harmonicity condition for the potential function whose gradient
describes the current flowing through the electric network. A notable application
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of Kirchhoff’s laws in geometry was the article [4] of Brooks, Smith, Stone, and
Tutte, who used coupled discrete harmonic functions (in fact, discrete holomorphic
functions) to construct tilings of rectangles into squares with different integral side
lengths. Discrete harmonic functions on the square lattice were studied by a number
of authors in the 1920s, including Courant, Friedrichs, and Lewy, who showed con-
vergence of solutions of the Dirichlet boundary value problem to their corresponding
continuous counterpart [8].

Discrete holomorphic functions on the square lattice were studied by Isaacs [14].
He proposed twodifferent definitions for holomorphicity. Thefirst one is not symmet-
ric on the square lattice, but it becomes symmetric on the triangular lattice obtained
by inserting all southwest-to-northeast diagonals. Dynnikov and Novikov studied an
equivalent notion in [11]. His second definition was reintroduced by Lelong-Ferrand
in [12]. She developed the theory to a level that allowed her to prove the Riemann
mapping theorem using discrete methods [18]. Duffin also studied discrete complex
analysis on the square grid [9] and was the first who extended the theory to rhombic
lattices [10]. Mercat [19], Kenyon [16], Chelkak and Smirnov [6] resumed the inves-
tigation of discrete complex analysis on rhombic lattices or, equivalently, isoradial
graphs. In these settings, it was natural to split the real and the imaginary part of a
discrete holomorphic function to the two vertex sets of a bipartite decomposition.

Some two-dimensional discrete models in statistical physics exhibit conformally
invariant properties in the thermodynamical limit. Such conformally invariant prop-
erties were established by Smirnov for site percolation on a triangular grid [25] and
for the random cluster model [26], by Chelkak and Smirnov for the Ising model [7],
and byKenyon for the dimer model on a square grid (domino tiling) [15]. In all cases,
linear theories of discrete analytic functions on regular grids were highly important.
Kenyon [16] as well as Chelkak and Smirnov [6] obtained important analytic results
that were instrumental in the proof that the critical Ising model is universal, i.e.,
that the scaling limit is independent of the shape of the lattice [7]. Already Mercat
related the theory of discrete complex analysis to the Ising model and investigated
criticality [19].

Important non-linear discrete theories of complex analysis involve circle packings
or, more generally, circle patterns. Rodin and Sullivan proved that the Riemann
mapping of a complex domain to the unit disk can be approximated by circle packings
[22]. A similar result for isoradial circle patterns, even with irregular combinatorics,
is due toBücking [5]. In [2] itwas shown that discrete holomorphic functions describe
infinitesimal deformations of circle patterns. Moreover, in the case of parallelogram-
graphs it was discussed that the corresponding theory is integrable by embedding the
quad-graph into Zn .

Our setup in Sect. 2 is a strongly regular cellular decomposition of the com-
plex plane into rectilinear quadrilaterals, called quad-graph. The medial graph of a
quad-graph plays a crucial role in our work. It provides the connection between the
notions of discrete derivatives ofKenyon [16],Mercat [20], Chelkak andSmirnov [6],
extended from rhombic to general quad-graphs, and discrete differential forms and
discrete exterior calculus as suggested by Mercat [19, 21]. Our treatment of discrete
differential forms is close to what Mercat proposed in [21]. However, our version
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of discrete exterior calculus is slightly more general. Having introduced the basic
notations in the first two sections and the discrete exterior derivative in Sect. 2.3.1,
we come to Proposition 2.13. There, it is described how the medial graph allows to
multiply discrete holomorphic functions to a function that is discrete holomorphic
in a certain sense, in particular that it fulfills (discrete) Morera’s theorem.

Themedial graph approach turns out to be quite useful for integration theory. The-
orem 2.16 shows that the discrete exterior derivative is a derivation of the discrete
wedge product. Many further results rely on this result and discrete Stokes’ Theo-
rem 2.9. In particular, this concerns discreteGreen’s identities (Theorem 2.23). A dis-
cretization of Green’s second identity was one ingredient in the proof of Skopenkov’s
convergence result in [23]. Before the theorem is proved, we introduce the discrete
wedge product, the discrete Hodge star, and the discrete Laplacian in Sects. 2.3
and 2.4.

Skopenkov’s results on the existence and uniqueness of solutions to the discrete
Dirichlet boundary value problem [23] help us to prove Theorem 2.30. This theorem
states surjectivity of the discrete derivatives and the discrete Laplacian seen as lin-
ear operators. This implies in particular the existence of discrete Green’s functions
and discrete Cauchy’s kernels. Furthermore, discrete Cauchy’s integral formulae for
discrete holomorphic functions are derived in Theorem 2.35 and for the discrete
derivative of a discrete holomorphic function on the vertices of the quad-graph in
Theorem 2.36. Note that discrete Cauchy’s integral formula was used by Chelkak
and Smirnov to derive certain asymptotic estimates in [7].

Section3 is devoted to discrete complex analysis on planar parallelogram-graphs.
There, explicit formulae for discrete Green’s functions and discrete Cauchy’s kernels
with asymptotics similar to the functions in the rhombic case [5, 6, 16] are given
(Theorems 3.7, 3.8, and 3.10). The general assumption is that the interior angles and
the ratio of side lengths of all parallelograms are bounded. The construction of these
functions is based on the discrete exponential introduced by Kenyon on quasicrys-
tallic rhombic quad-graphs [16] and its extension to quasicrystallic parallelogram-
graphs [2].

In the end, we close with the very special case of the integer lattice of a skew
coordinate system in the complex plane. In this case, discrete Cauchy’s integral
formulae for higher order discrete derivatives of a discrete holomorphic function are
derived in Theorem 3.11.

2 Discrete Complex Analysis on Planar Quad-Graphs

Although we focus on planar quad-graphs in this paper, many of our notions and
theorems generalize to discrete Riemann surfaces. A corresponding linear theory of
discrete Riemann surfaces is discussed in the subsequent paper [1] and can be found
in more detail in the thesis [13].
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2.1 Basic Definitions and Notation

The aimof this section is to introducefirst planar quad-graphs and somebasic notation
in Sect. 2.1.1 and then to discuss the medial graph in Sect. 2.1.2.

2.1.1 Planar Quad-Graphs

Definition A planar quad-graph Λ without boundary is an infinite graph embedded
into the complex plane C such that all edges are straight line segments and such that
all faces are quadrilaterals which may be non-convex. In addition, we assume that Λ
induces a cellular decomposition of the whole complex plane that is locally finite,
i.e., a compact subset of C contains only finitely many quadrilaterals, and strongly
regular, i.e., two different faces are either disjoint or share exactly one vertex or share
exactly one edge (but not two edges).

Let V (Λ) denote the set of vertices, E(Λ) the set of edges, and F(Λ) the set of
faces of Λ.

It is well known that any planar quad-graph is bipartite. We fix one decomposi-
tion of the vertices of Λ into two independent sets and refer to the vertices of this
decomposition as black and white vertices, respectively.

Definition Let Γ and Γ ∗ be the graphs defined on the black and white vertices
where vv′ is an edge of Γ (or Γ ∗) if and only if its two black (or white) endpoints
are vertices of a single face.

Remark The assumption of strong regularity guarantees that any edge of Γ or Γ ∗ is
the (possibly outer) diagonal of exactly one quadrilateral.

In order to make the duality between Γ and Γ ∗ apparent, we consider just for
this paragraph the edges of Γ or Γ ∗ as curves lying totally inside the face they
are a diagonal of. Then, any black edge of Γ corresponds to the white edge of
Γ ∗ that crosses it and vice versa. The black and white vertices are in one-to-one
correspondence to the faces of Γ ∗ and Γ they are contained in.

Definition The complex number assigned to a vertex of Λ is the corresponding
complex value of its embedding in C. To oriented edges of Λ,Γ, Γ ∗ we assign the
complex numbers determined by the difference of the complex numbers assigned to
their two endpoints.

Remark For simplicity, we perform our calculations hereafter directly with the ver-
tices and oriented edges of Λ,Γ, Γ ∗ rather than replacing them with their corre-
sponding complex values.

Definition ♦ := Λ∗ is the dual graph of Λ.
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In general, we do not specify a planar embedding of the dual graph♦. We will just
identify vertices or faces of ♦ with their corresponding dual faces and vertices of Λ,
respectively. However, in the particular case that all quadrilaterals are parallelograms,
it makes sense to identify the vertices of ♦ (i.e., faces of the quad-graph Λ) with
the centers of the parallelograms. Here, the center of a parallelogram is the point of
intersection of its two diagonals. Further detailswill be given in Sects. 2.2.1 and 2.2.3.

Definition If a vertex v ∈ V (Λ) is a vertex of a quadrilateral Q ∈ F(Λ), we write
Q ∼ v or v ∼ Q and say that v and Q are incident to each other.

Throughout our paper, we will denote the vertices of a single quadrilateral Q by
b−, w−, b+, w+ in counterclockwise order, where b± ∈ V (Γ ) and w± ∈ V (Γ ∗).

Definition For a quadrilateral Q ∈ F(Λ) we define

ρQ := −i
w+ − w−
b+ − b−

.

Moreover, let

ϕQ := arccos

(
Re

(
i

ρQ

|ρQ |
))

= arccos

(
Re

(
(b+ − b−)(w+ − w−)

|b+ − b−||w+ − w−|

))

be the angle under which the diagonal lines of Q intersect.

Note that 0 < ϕQ < π . Figure1 shows a finite bipartite quad-graph together with
the notations we have introduced for a single quadrilateral Q and the notations we
are using later for the star of a vertex v, i.e., the set of all faces incident to v.
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Fig. 1 Bipartite quad-graph with notations
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In addition, we denote by ♦0 a subgraph of ♦ that we always assume to be
connected and by V (♦0) ⊆ V (♦) the corresponding subset of faces of the quad-
graph Λ. Through our identification V (♦) ∼= F(Λ), we can call the elements of
V (♦) quadrilaterals and identify them with the corresponding faces of Λ.

Definition ♦0 ⊆ ♦ is said to form a simply-connected closed region if the union of
all quadrilaterals in V (♦0) is a simply-connected closed region in C.

Definition Let Λ0 be the subgraph of Λ whose vertices and edges are exactly the
corners and edges of the quadrilaterals in V (♦0). The interior faces of Λ0 are given
by V (♦0). Let Γ0 and Γ ∗

0 denote the subgraphs of Γ and of Γ ∗ whose edges are the
diagonals of quadrilaterals in V (♦0) and who do not contain isolated vertices.

Remark Since ♦0 ⊆ ♦ is connected, Γ0 and Γ ∗
0 are connected as well. Indeed, if

Q, Q′ ∈ V (♦0) are two quadrilaterals adjacent in ♦0, then the corresponding sub-
graphs on Γ0 and Γ ∗

0 consisting of the three black and white vertices of Q and Q′
are paths of two edges each.

Definition Λ0 is called a (planar) quad-graph induced by the subgraph ♦0 ⊆ ♦. Its
boundary ∂Λ0 is the subgraph of Λ0 that consists of all the edges of Λ0 that belong
to both a quadrilateral in V (♦0) and one in V (♦)\V (♦0).

Remark If ♦0 ⊆ ♦ is finite and forms a simply-connected closed region, then the set
of all interior faces of Λ0 is homeomorphic to a disk and ∂Λ0 is a closed broken line
without self-intersections.

2.1.2 Medial Graph

Definition The medial graph X of Λ is defined as follows. Its vertex set is given
by all the midpoints of the edges of Λ embedded in C, and two vertices x, x ′ are
adjacent if and only if the corresponding edges belong to the same face Q of Λ and
have a vertex v ∈ V (Λ) in common. We denote this edge by [Q, v]. Taking [Q, v] as
a straight line segment if v is a convex corner of the quadrilateral Q and as a curve
lying inside Q that does not intersect the three other edges [Q, v′] (v′ ∼ Q, v′ �= v)
inside Q if v is a concave corner, we get an embedding of X into C. Then, the set
F(X) of faces of X is in bijection with V (Λ) ∪ V (♦): A face Fv of X corresponding
to v ∈ V (Λ) has the midpoints of edges of Λ incident to v as vertices, and a face FQ

of X corresponding to Q ∈ F(Λ) ∼= V (♦) has the midpoints of the four edges of Λ

belonging to Q as vertices. The vertices of FQ and Fv are colored gray in Fig. 2.

Remark Clearly, any pair Q ∼ v of a face and an incident vertex of Λ corresponds
to an edge [Q, v] of X . Moreover, a face FQ lies inside Q and v is contained in Fv.

Definition As for the vertices and edges ofΛ, we assign to a vertex of X the complex
number corresponding to its position in C, and to an oriented edge of X we assign
the difference of the two endpoints.
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v

Q

FQ
PQ

Fv

Pv

Fig. 2 Bipartite quad-graph (dashed) with medial graph (solid)

Even though not all edges of X might be straight line segments, we actually think
of them as being straight since we assign the vector of its endpoints to it if the edge is
oriented. In this sense, any face FQ , Q ∈ F(Λ), is a parallelogram due to Varignon’s
theorem. Moreover, the complex number assigned to the edge [Q, v0], v0 ∼ Q, if
oriented from the midpoint of the edge v0v′− to the one of the edge v0v′+ of Λ is
just half of e = v′+ − v′−. We will say that [Q, v0] is parallel to e (disregarding the
orientation), as it would be if we considered all edges of X as straight line segments.

Remark If all quadrilaterals of Λ are convex, then the embedding of X given above
consists of straight line segments only. If no Varignon parallelogram of a non-convex
quadrilateral contains another vertex of X apart from its corners, then the correspond-
ing straight line realization gives an embedding equivalent to the one above. In this
case, the face Fv of X corresponding to a vertex v ∈ V (Λ) that is a concave corner
of a quadrilateral does not contain v any longer. However, if such a Varignon paral-
lelogram contains an additional vertex of X , then connecting adjacent vertices of X
by straight line segments does not yield an embedding of X .

Definition For a connected subgraph ♦0 ⊆ ♦, we denote by X0 ⊆ X the connected
subgraph of X consisting of all edges [Q, v] where Q ∈ V (♦0) and v is a corner of
Q. The boundary ∂ X0 is the subgraph of X0 whose edges are exactly those [Q, v]
where v ∈ V (∂Λ0) and Q ∈ V (♦0) is incident to v.We consider the orientation on the
boundary ∂ X0 that is induced by orienting any of its edges [Q, v] counterclockwise
with regard to Q. For a finite collection F of faces of X0, ∂ F denotes the union
of all counterclockwise oriented boundaries of faces in F , where oriented edges in
opposite directions cancel each other out.

Remark In the case that all quadrilaterals in V (♦0) are convex, X0 consists of all
straight edges of X that lie inside the closed region formed by the quadrilaterals in
V (♦0). In any case, the medial graph X corresponds to a (strongly regular and locally
finite) cellular decomposition of the plane in a canonical way. In particular, we can
talk about a topological disk D in F(X0) as a finite collection of faces of X0 that form
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a closed region homeomorphic to a disk, and we can consider its counterclockwise
oriented boundary ∂ D as a subgraph of X0.

Definition For v ∈ V (Λ) and Q ∈ F(Λ), let Pv and PQ be the closed paths on
X connecting the midpoints of edges of Λ incident to v and Q, respectively, in
counterclockwise direction. In Fig. 2, their vertices are colored gray. We say that Pv

and PQ are discrete elementary cycles.

2.2 Discrete Holomorphicity

To motivate the definition of discrete holomorphicity due to Mercat [21] that was
also used previously in the rhombic setting by Duffin [10] and others, let us have
a short look to the classical theory. There, a real differentiable complex function f
defined on an open subset of the complex plane is holomorphic if and only if in
any point all directional derivatives coincide. Moreover, holomorphic functions with
nowhere-vanishing derivative preserve angles, and at a single point, infinitesimal
lengths are uniformly scaled.

Definition Let Q ∈ V (♦) ∼= F(Λ) and f be a complex function on the vertices
b−, w−, b+, w+ of the quadrilateral Q. f is said to be discrete holomorphic at Q if
the discrete Cauchy-Riemann equation is satisfied:

f (b+) − f (b−)

b+ − b−
= f (w+) − f (w−)

w+ − w−
.

Definition Let f : V (Λ0) → C. f is said to be discrete holomorphic if f is discrete
holomorphic at all Q ∈ V (♦0).

Note that if a discrete holomorphic function f does not have the same value on
both black vertices b− and b+, then it preserves the angle ϕQ and f uniformly scales
the lengths of the diagonals of Q. However, the image of Q under f might be a
degenerate or self-intersecting quadrilateral.

We immediately see that for discrete holomorphicity, only the differences at black
and at white vertices matter. Hence, we should not consider constants on V (Λ), but
biconstants [20] determined by each a value on V (Γ ) and V (Γ ∗).

Definition A function f : V (Λ0) → C that is constant on V (Γ0) and constant on
V (Γ ∗

0 ) is said to be biconstant.

In the following, wewill define discrete analogs of ∂, ∂̄ , first of functions on V (Λ)

in Sect. 2.2.1 and later of functions on V (♦) in Sect. 2.2.3. Before, we introduce
discrete differential forms in Sect. 2.2.2.
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2.2.1 Discrete Derivatives of Functions on the Vertices of Λ

Definition Let Q ∈ V (♦) ∼= F(Λ), and let f be a complex function on its vertices
b−, w−, b+, w+. The discrete derivatives ∂Λ f , ∂̄Λ f are defined by

∂Λ f (Q) := λQ
f (b+) − f (b−)

b+ − b−
+ λ̄Q

f (w+) − f (w−)

w+ − w−
,

∂̄Λ f (Q) := λ̄Q
f (b+) − f (b−)

b+ − b−
+ λQ

f (w+) − f (w−)

w+ − w−
,

where 2λQ := exp
(−i

(
ϕQ − π

2

))
/ sin(ϕQ).

Remark Clearly, biconstant functions have vanishing discrete derivatives.

If the quadrilateral Q is a rhombus, then ϕQ = π/2 and λQ = 1/2. Therefore, the
definition above then reduces to the previous one given by Chelkak and Smirnov [6].
The definition of discrete derivatives matches the notion of discrete holomorphicity;
and the discrete derivatives approximate their smooth counterparts correctly up to
order one for general quad-graphs and up to order two for parallelogram-graphs:

Proposition 2.1 Let Q be a face of the quad-graph Λ and f be a complex function
on its vertices b−, w−, b+, w+.

(i) f is discrete holomorphic at Q if and only if ∂̄Λ f (Q) = 0.
(ii) For the function f (v) = v, ∂̄Λ f (Q) = 0 and ∂Λ f (Q) = 1.

(iii) If Q is a parallelogram and f (v) = v2, then ∂̄Λ f (Q) = 0, ∂Λ f (Q) = 2Q̂.
(iv) If Q is a parallelogram and f (v) = |v|2, then ∂̄Λ f (Q) = ∂Λ f (Q) = Q̂.

In parts (iii) and (iv), Q̂ denotes the center of the parallelogram Q.

Proof (i) We observe that

2 sin(ϕQ)λ̄Q

b+ − b−
= exp

(
i
(
ϕQ − π

2

))
b+ − b−

=
−i exp

(
iϕQ

) b+−b−|b+−b−|
|b+ − b−| = −i (w+ − w−)

|w+ − w−||b+ − b−| ,

2 sin(ϕQ)λQ

w+ − w−
= exp

(
i
(
π
2 − ϕQ

))
w+ − w−

=
i exp

(−iϕQ
) w+−w−|w+−w−|

|w+ − w−| = i (b+ − b−)

|w+ − w−||b+ − b−| .

So if we multiply ∂̄Λ f (Q) by 2i |w+ − w−||b+ − b−| sin(ϕQ) �= 0, we obtain

(w+ − w−) ( f (b+) − f (b−)) − (b+ − b−) ( f (w+) − f (w−)) ,

which vanishes if and only if the discrete Cauchy-Riemann equation is satisfied.
(ii) Clearly, f (v) = v satisfies the discrete Cauchy-Riemann equation. By the

first part, ∂̄Λ f (Q) = 0. Due to 2 sin(ϕQ) = exp
(−i

(
ϕQ − π

2

)) + exp
(
i
(
ϕQ − π

2

))
,

∂Λ f (Q) simplifies to λQ + λ̄Q = 1.
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(iii) For the function f (v) = v2, the discrete Cauchy-Riemann equation is equiv-
alent to b+ + b− = w+ + w−. But since Q is a parallelogram, both (b+ + b−)/2 and
(w+ + w−)/2 equal its center Q̂. Thus, f is discrete holomorphic at Q and

∂Λ f (Q) = λQ(b+ + b−) + λ̄Q(w+ + w−) = 2Q̂(λQ + λ̄Q) = 2Q̂.

(iv) Since f is a real function, ∂̄Λ f (Q) = ∂Λ f (Q) follows straight from the defin-
ition. Let z ∈ C be arbitrary. If g(v) := vz̄, then ∂Λg(Q) = z̄ and ∂Λḡ(Q) = 0 by the
second part. So if we define the function h(v) := |v − z|2 = |v|2 − vz̄ − v̄z + |z|2,
then ∂Λh(Q) = ∂Λ f (Q) − z using the second part and observing that constant func-
tions have vanishing derivatives. Hence, the statement is invariant under transla-
tion, and it suffices to consider the case Q̂ = 0. Then, b+ = −b− and w+ = −w−
since Q is a parallelogram. It follows that f (b−) = f (b+) and f (w−) = f (w+), so
∂Λ f (Q) = 0.

Our first discrete analogs of classical theorems are immediate consequences of
the discrete Cauchy-Riemann equation:

Proposition 2.2 Let f : V (Λ0) → C be discrete holomorphic.

(i) If f is purely imaginary or purely real, then f is biconstant.
(ii) If ∂Λ f ≡ 0, then f is biconstant.

Proof (i) Let us assume that f is not biconstant. Then, without loss of generality, f
is not constant on Γ0. Since Γ0 is connected, there are two adjacent vertices b−, b+
of Γ0 such that f (b+) �= f (b−). Let b−, w−, b+, w+ ∈ V (Λ0) be the vertices of the
interior face of Λ0 with black diagonal b−b+. Due to the discrete Cauchy-Riemann
equation,

f (w+) − f (w−)

f (b+) − f (b−)
= w+ − w−

b+ − b−
.

The left hand side is real and well-defined since f is purely imaginary or purely real
and f (b+) �= f (b−). But the right hand side is not, contradicting the assumption that
f is not biconstant.
(ii) Since f is discrete holomorphic,

f (b+) − f (b−)

b+ − b−
= f (w+) − f (w−)

w+ − w−
.

∂Λ f ≡ 0 then yields that both sides of the discrete Cauchy-Riemann equation equal
zero, so f is constant on V (Γ0) and on V (Γ ∗

0 ) since both graphs are connected.

2.2.2 Discrete Differential Forms

In our paper, we mainly consider two type of functions, functions f : V (Λ0) → C

and functions h : V (♦0) → C. An example for a function on V (♦0) is ∂Λ f .
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Definition A discrete one-form ω is a complex function on the oriented edges of the
medial graph X0 such that ω(−e) = ω(e) for any oriented edge e of X0. Here, −e
denotes the edge e with opposite orientation.

The evaluation of ω at an oriented edge e of X0 is denoted by
∫

e ω. If P is a
directed path in X0 consisting of oriented edges e1, e2, . . . , en , then the discrete
integral along P is

∫
P ω = ∑n

k=1

∫
ek

ω. For closed paths P , we write
∮

P ω instead.
If P is the oriented boundary of a topological disk D in F(X0), then we say that the
discrete integral is a discrete contour integral with discrete contour P .

Since we consider the planar case, one-forms dz and dz̄ are globally defined.

Definition The discrete one-forms dz and dz̄ are given by
∫

e dz = e and
∫

e d z̄ = ē
for any oriented edge e of X .

It turns out that discrete one-forms that actually come from discrete one-forms on
Γ and Γ ∗ are of particular interest:

Definition A discrete one-form ω defined on the oriented edges of X0 is of type ♦ if
for any Q ∈ V (♦0) there exist complex numbers p, q such that ω = pdz + qdz̄ on
all edges e = [Q, v], v ∈ V (Λ0) incident to Q. ω is of type Λ if for any v ∈ V (Λ0)

there exist complex numbers p, q such that ω = pdz + qdz̄ on all edges e = [Q, v],
Q ∈ V (♦0) incident to v.

Remark Discrete one-forms of type Λ do not play such an important role as discrete
one-forms of type♦, although they occur as discrete differentials of functions defined
on V (♦0). This will become clear in the end of Sect. 2.3.2, one of the reasons being
that discrete one-forms of type Λ are not defined on discrete Riemann surfaces, but
discrete one-forms of type ♦ are.

Definition A discrete two-form Ω is a complex function on the faces of X0.
The evaluation of Ω at a face F of X0 is denoted by

∫∫
F Ω . If S is a set of

faces F1, F2, . . . , Fn of X0, then
∫∫

S Ω = ∑n
k=1

∫∫
Fk

Ω is the discrete integral ofΩ
over S.

As we are mainly interested in functions f : V (Λ0) → C and h : V (♦0) → C,
discrete two-forms of particular interest are those that vanish on faces of X0 corre-
sponding to vertices of either ♦ or Λ.

Definition A discrete two-form Ω defined on F(X0) is of type Λ if Ω vanishes on
all faces of X0 corresponding to V (♦0) and of type ♦ if Ω vanishes on all faces of
X corresponding to V (Λ0).

Remark These discrete two-forms correspond to functions on V (Λ0) or V (♦0) by
the discrete Hodge star that will be defined later in Sect. 2.3.3.

Since we did not give a precise embedding of the medial graph into the complex
plane in the general case, we have to specify what the area of a face is. This area
includes a factor of two in order to get the same coefficients in the discrete setup as
in the smooth case.
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Definition Let F be a face of the medial graph X . We define ar(F) to be twice the
Euclidean area of the polygon that results from connecting adjacent vertices of F by
straight line segments in the complex plane. In contrast, area(P) will always denote
the Euclidean area of a polygon P .

Remark Aswehavementioned before, ourmain objects either live on the quad-graph
Λ or on its dual ♦. Thus, we have to deal with two different cellular decompositions
at the same time. The medial graph has the crucial property that its faces are in
one-to-one correspondence to vertices of Λ and of ♦, i.e., to faces of ♦ and of Λ.
Furthermore, the Euclidean area of the Varignon parallelogram of Q ∈ F(Λ) is just
half of the area of Q. In some sense, a corresponding statement is true for the cells
of X corresponding to vertices of Λ, i.e., faces of ♦. However, there is not only
no canonical embedding of X , but also no natural embedding of ♦ in the general
setting. But in the particular case of parallelogram-graphs, when we have a canonical
embedding of X with rectilinear edges, we canmake the statement precise: If an edge
Q Q′ of ♦ is represented by the two line segments that connect the centers of the
parallelograms Q and Q′ with themidpoint of their common edge, then the Euclidean
area of the face of X corresponding to a vertex v ∈ V (Λ) ∼= F(♦) is exactly half of
the area of the face of ♦ corresponding to v.

In summary, the medial graph allows us to deal with just one decomposition of the
complex plane, but we have to count areas twice in order to get the right coefficients
as in the continuous setup.

Definition The discrete two-forms ΩΛ and Ω♦ are defined as being zero on faces
of X corresponding to vertices of ♦ or Λ, respectively, and defined by

∫∫
Fv

ΩΛ = −2iar(Fv) and
∫∫
FQ

Ω♦ = −2iar(FQ)

on faces Fv and FQ corresponding to v ∈ V (Λ) or Q ∈ V (♦). As defined above,
ar(F) is twice the Euclidean area of the straight-line embedding of Fv or FQ .

Remark ΩΛ and Ω♦ are the straightforward discretizations of dz ∧ dz̄ having in
mind that they are essentially defined on faces of ♦ or of Λ, respectively. It turns
out that in local coordinates, we can perform our calculations with ΩΛ and Ω♦ in
the discrete setting exactly as we do with dz ∧ dz̄ in the smooth theory. We will
see in Sect. 2.3.2 that Ω♦ is indeed the discrete wedge product of dz and dz̄ seen
as discrete one-forms of type ♦. The same would be true for ΩΛ if we considered
dz and dz̄ as being of type Λ, but the discrete wedge product is of interest just for
discrete one-forms of type ♦ and we therefore define it just for these forms.

Definition Let f : V (Λ0) → C, h : V (♦0) → C, ω a discrete one-form defined on
the oriented edges of X0, and Ω1,Ω2 discrete two-forms defined on F(X0) that are
of typeΛ and♦, respectively. For any oriented edge e = [Q, v] and any faces Fv, FQ
of X0 corresponding to v ∈ V (Λ0) or Q ∈ V (♦0), we define the products f ω, hω,
f Ω1, and hΩ2 by
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∫
e

f ω : = f (v)
∫
e

ω and
∫∫
Fv

f Ω1 := f (v)
∫∫
Fv

Ω1,

∫∫
FQ

f Ω1 := 0;

∫
e

hω : = h(Q)

∫
e

ω and
∫∫
Fv

hΩ2 := 0,
∫∫
FQ

hΩ2 := h(Q)

∫∫
FQ

Ω2.

In the following table, we give a quick overview of various discrete differential
forms (most of them will be discussed in Sect. 2.3) and state whether they are essen-
tially functions on V (Λ) (first column) or functions on V (♦) (second column) or
entirely objects on the cellular decomposition X (third column). In the first row we
find functions, in the second discrete one-forms, and in the third discrete two-forms.
So for example, the intersection of the second rowwith the third column lists discrete
one-forms that are entirely objects on X and cannot be reduced to functions on V (Λ)

or V (♦).

Λ ♦ X
functions f, g : V (Λ) → C h1, h2 : V (♦) → C f · g = ∫

( f dg + gd f )

∂♦h, ∂̄♦h ∂Λ f, ∂̄Λ f
1-forms dh d f f dg + gd f

h1dz + h2dz̄ f dz + gdz̄ f hdz
η of type Λ ω,ω′ of type ♦ f ω

2-forms ΩΛ Ω♦
� f �h
dω dη d( f hdz)
f dω ω ∧ ω′ d( f ω)

Remark Although discrete one-forms of type Λ or of type ♦ do not live themselves
on Λ or ♦, they are described by two functions defined on the vertices of Λ or ♦,
respectively.

2.2.3 Discrete Derivatives of Functions on the Faces of Λ

Before we pass on to discrete derivatives of functions on V (♦), we first prove an
alternative formula for the discrete derivatives of functions on V (Λ).

Lemma 2.3 Let Q ∈ V (♦) ∼= F(Λ) and f be a complex function on the vertices
b−, w−, b+, w+ of Q. Let PQ be the discrete elementary cycle around Q and F the
face of X corresponding to Q. Then,

∂Λ f (Q) = −1

2iar(F)

∮
PQ

f d z̄ and ∂̄Λ f (Q) = 1

2iar(F)

∮
PQ

f dz.



70 A.I. Bobenko and F. Günther

Proof Since we think of F as a parallelogram (see Sect. 2.1.2), its Euclidean area is
half of the area of Q. So by definition,

ar(F) = 1

2
|b+ − b−||w+ − w−| sin(ϕQ).

Furthermore, f (b+) and − f (b−) are multiplied by the same factor (w+ − w−)/2
when evaluating the discrete contour integral

∮
PQ

f d z̄. Therefore, the coefficient in
front of f (b+) − f (b−) in the right hand side of the first equation in the lemma is

i
w+ − w−
4ar(F)

= −i
w+ − w−

2 sin(ϕQ)|w+ − w−||b+ − b−| = exp
(−i

(
ϕQ − π

2

))
2 sin(ϕQ)(b+ − b−)

= λQ

b+ − b−

(comparewith the proof of Proposition 2.1(i)),which is exactly the coefficient appear-
ing in ∂Λ f (Q). Analogously, the coefficients in front of f (w+) − f (w−) are equal.
This shows the first equation. The second one follows from the first, noting that
the coefficients in front of f (b+) − f (b−) and f (w+) − f (w−) on both sides of
the second equation are just complex conjugates of the corresponding coefficients
appearing in the first equation.

Inspired by Lemma 2.3 that is illustrated by Fig. 3a, we can now define the discrete
derivatives for complex functions on V (♦), see Fig. 3b.

Definition Let v ∈ V (Λ) and h be a complex function defined on all quadrilaterals
that are incident to v. Let Pv be the discrete elementary cycle around v and F the face
of X corresponding to v. Then, the discrete derivatives ∂♦h, ∂̄♦h at v are defined by

∂♦h(v) := −1

2iar(F)

∮
Pv

hdz̄ and ∂̄♦h(v) := 1

2iar(F)

∮
Pv

hdz.

h is said to be discrete holomorphic at v if ∂̄♦h(v) = 0.

w−

w+

b− b+

PQ

vs
v

v′
s

v′
s−1

Qs

Pv

(a) (b)

Fig. 3 Illustrations to the integration formulae for discrete derivatives. a Lemma 2.3 for ∂Λ, ∂̄Λ.
b Definitions of ∂♦ , ∂̄♦
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Definition h : V (♦0) → C is said to be discrete holomorphic if h is discrete holo-
morphic at all v ∈ V (Λ0)\V (∂Λ0).

Note that in the rhombic case, our definition coincides with the one used by
Chelkak and Smirnov in [6]. As an immediate consequence of the definition, we
obtain a discrete Morera’s theorem.

Proposition 2.4 Functions f : V (Λ0) → C and h : V (♦0) → C are discrete holo-
morphic if and only if

∮
P f dz = 0 and

∮
P hdz = 0 for all discrete contours P on

X0.

Proof Clearly,
∮

Pv
f dz = f (v)

∮
Pv

dz = 0 for any discrete elementary cycle Pv

around a vertex v of V (Λ0). Similarly,
∮

PQ
hdz = 0 for any Q ∈ V (♦0). Using

Lemma 2.3 and the definition of ∂̄♦, f and h are discrete holomorphic if and only
if

∮
P f dz = 0 and

∮
P hdz = 0 for all discrete elementary cycles P . To conclude the

proof, we observe that any integration along a discrete contour can be decomposed
into integrations along discrete elementary cycles since by definition, a discrete con-
tour is the boundary of a topological disk in F(X0).

The discrete derivatives of constant functions on V (♦) vanish. As an analog of
Proposition 2.1, we prove that the discrete derivatives ∂♦, ∂̄♦ locally approximate
their smooth counterparts correctly up to order one if the quadrilaterals in V (♦) are
identified with the midpoints of their black or white edges. In a parallelogram-graph,
these two midpoints coincide for each face, which then gives a global approximation
statement. Note that even for rhombic quad-graphs, the discrete derivatives ∂♦, ∂̄♦
generally do not coincide with the smooth derivatives in order two.

Proposition 2.5 Let v ∈ V (Λ), and let h be a complex function on all faces incident
to v. As illustrated in Fig.3b, we counterclockwise enumerate them by Q1, . . . , Qk,
where k is the degree of v in Λ, and their vertices adjacent to v by v′

1, v′
2, . . . , v′

k ,
v′

k+1 = v1. Let Q̂s = (v′
s−1 + v′

s)/2. Then, if h(Qs) = Q̂s for all s, ∂̄♦h(v) = 0 and
∂♦h(v) = 1 hold true.

Proof

4
∮
Pv

hdz =
∑
Qs∼v

2h(Qs)(v
′
s − v′

s−1) =
∑
Qs∼v

(v′
s−1 + v′

s)(v
′
s − v′

s−1)

=
∑
Qs∼v

((
v′

s

)2 − (
v′

s−1

)2) = 0,

4
∮

Pv

hdz̄ =
∑
Qs∼v

(v′
s−1 + v′

s)(v
′
s − v′

s−1) =
∑
Qs∼v

(∣∣v′
s

∣∣2 − ∣∣v′
s−1

∣∣2 − 2i Im
(
v′

s v̄′
s−1

))

= −2i
∑
Qs∼v

Im
(
v′

s v̄′
s−1

) = −8iar(Fv).
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Thus, ∂̄♦h(v) = 0 and ∂♦h(v) = 1. Here, we have used that by definition, ar(Fv) is
half of the Euclidean area of the polygon v′

1v′
2 . . . v′

k , so ar(F) equals

1

2

∑
Qs∼v

area(�vv′
s−1v′

s) = 1

4

∑
Qs∼v

Im
((

v′
s − v

) (
v′

s−1 − v
)) = 1

4

∑
Qs∼v

Im
(
v′

s v̄′
s−1

)
,

using that
∑

Qs∼v

(
vv̄′

s−1 + v̄v′
s

) = ∑
Qs∼v

(
vv̄′

s + v̄v′
s

)
is real.

In [6], Chelkak and Smirnov used averaging operators to map functions on V (Λ)

to functions on V (♦) and vice versa. On parallelogram-graphs, the averaging opera-
tor m( f )(Q) := ∑

v∼Q f (v)/4 actually maps discrete holomorphic functions f on
V (Λ) to discrete holomorphic functions on V (♦). Our proof will be similar as the
one for rhombic quad-graphs in [6]. Note that discrete holomorphic functions on
V (♦) cannot be averaged to discrete holomorphic functions on V (Λ) in general, so
the averaging operator of Chelkak of Smirnov that mapped functions on V (♦) to
functions on V (Λ) did not preserve discrete holomorphicity.

Proposition 2.6 Let Λ be a parallelogram-graph and f : V (Λ) → C be discrete
holomorphic. Then, m( f ) : V (♦) → C is discrete holomorphic.

Proof Let us consider the star of the vertex v ∈ V (Λ) and use the notation we used in
Proposition 2.5 (illustrated by Fig. 3b). Since f is discrete holomorphic, the discrete
Cauchy-Riemann equation is satisfied on any Qs ∼ v. Therefore, we can express
f (vs) in terms of f (v), f (v′

s) and f (v′
s−1). Plugging this in the definition of the

averaging operator, we obtain

4m( f )(Qs) = 2 f (v) + vs − v + v′
s − v′

s−1

v′
s − v′

s−1

f (v′
s) − vs − v − v′

s + v′
s−1

v′
s − v′

s−1

f (v′
s−1)

= 2 f (v) + 2
v′

s − v

v′
s − v′

s−1

f (v′
s) − 2

v′
s−1 − v

v′
s − v′

s−1

f (v′
s−1).

Here, we have used the properties vs − v′
s−1 = v′

s − v and vs − v′
s = v′

s−1 − v of the
parallelogram Qs . Hence, m( f ) is discrete holomorphic at v by definition due to

4
∮
Pv

m( f )dz = 2 f (v)
∮
Pv

dz +
∑
Qs∼v

(v′
s − v) f (v′

s) −
∑
Qs∼v

(v′
s−1 − v) f (v′

s−1) = 0.

Remark As mentioned above, our main interest lies in functions that are defined
either on the vertices or the faces of the quad-graph. Now, extending f : V (Λ) → C

to a complex function on F(X) by using its average m( f ) on V (♦) seems to be
an option. However, functions on V (Λ) and on V (♦) behave differently. In Corol-
lary 2.11 we will see that ∂Λ f is discrete holomorphic if f is, but ∂♦m( f ) does not
need to be discrete holomorphic in general. So to make sense of differentiating twice,
we can only consider functions on V (Λ).
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Definition Let f1, f2 : V (Λ0) → C and h1, h2 : V (♦0) → C. Their discrete scalar
products are defined as

〈 f1, f2〉 := − 1

2i

∫∫
F(X0)

f1 f̄2ΩΛ and 〈h1, h2〉 := − 1

2i

∫∫
F(X0)

h1h̄2Ω♦,

whenever the right hand side converges absolutely.

Proposition 2.7 −∂♦ and −∂̄♦ are the formal adjoints of ∂̄Λ and ∂Λ, respectively.
That is, if f : V (Λ) → C or h : V (♦) → C is compactly supported, then

〈∂Λ f, h〉 + 〈 f, ∂̄♦h〉 = 0 = 〈∂̄Λ f, h〉 + 〈 f, ∂♦h〉.
Proof In Lemma 2.3, we showed how the discrete derivative ∂Λ f (Q) can be
expressed as a contour integration around the face of X associated to Q ∈ V (♦).

Using this, the definitions of ΩΛ and Ω♦, and ∂♦h̄ = ∂̄♦h, we get

〈∂Λ f, h〉 + 〈 f, ∂̄♦h〉 =
∑

Q∈V (♦)

∂Λ f (Q)h̄(Q)ar(FQ) +
∑

v∈V (Λ)

f (v)∂̄♦h(v)ar(Fv)

= i

2

∑
Q∈V (♦)

h̄(Q)

∮
PQ

f dz̄ + i

2

∑
v∈V (Λ)

f (v)
∮
Pv

h̄d z̄

= i

2

∮
P

f h̄d z̄ = 0,

where P is a large contour enclosing all the vertices of Λ and ♦ where f or h do
not vanish. In particular, f h̄ vanishes in a neighborhood of P . In the same way,
〈∂̄Λ f, h〉 + 〈 f, ∂♦h〉 = 0.

Remark Note that in their work on discrete complex analysis on rhombic quad-
graphs, Kenyon [16] and Mercat [20] did not give explicit formulae for the discrete
derivatives, but defined −∂♦ and −∂̄♦ instead as the formal adjoints of the discrete
derivatives ∂̄Λ and ∂Λ, respectively. In contrast,we derived the formal adjoint property
from our explicit formulae for the discrete derivatives.

In Corollary 2.11, we will prove that ∂Λ f is discrete holomorphic if the function
f : V (Λ) → C is. Conversely, we can find discrete primitives of discrete holomor-
phic functions on subgraphs ♦0 ⊆ ♦ that form a simply-connected closed region,
extending the corresponding result for rhombic quad-graphs given by Chelkak and
Smirnov [6].

Proposition 2.8 Let ♦0 ⊆ ♦ form a simply-connected closed region. Then, for any
discrete holomorphic function h on V (♦0), there is a discrete primitive f := ∫

h on
V (Λ0), i.e., f is discrete holomorphic and ∂Λ f = h. f is unique up to two additive
constants on Γ0 and Γ ∗

0 .
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Proof Since h is discrete holomorphic,
∮

P hdz = 0 for any discrete contour P in
X0 by discrete Morera’s Theorem 2.23. Therefore, hdz can be integrated to a well-
defined function fX on V (X) that is unique up to an additive constant. The equation
fX ((v + w) /2) = ( f (v) + f (w)) /2 for any edge (v, w) of Λ defines a function f
on V (Λ). Indeed, since ♦0 forms a simply-connected closed region, it suffices to
check the compatibility of the equations defining f just for one quadrilateral face
Q. Now, the differences of f along the black and white diagonals of Q are given by
integration of hdz along the edges of X that are parallel to these diagonals. Since hdz
is a discrete one-form of type ♦, the two integrations along the edges of X parallel to
one diagonal are the same if they are oriented the same, and compatibility follows.
Given fX , f is unique up to another additive constant.

In summary, f is unique up to two additive constants that can be chosen indepen-
dently on Γ0 and Γ ∗

0 . By construction, f satisfies

f (b+) − f (b−)

b+ − b−
= h(Q) = f (w+) − f (w−)

w+ − w−

on any quadrilateral Q ∈ V (♦0). So f is discrete holomorphic and ∂Λ f = h.

2.3 Discrete Exterior Calculus

Our treatment of discrete exterior calculus is similar to the approach of Mercat in
[19–21], but differs in some aspects. The main differences are due to our differ-
ent notation of multiplication of functions with discrete one-forms, which allows
us to define a discrete exterior derivative on a larger class of discrete one-forms
in Sect. 2.3.1. It coincides with Mercat’s discrete exterior derivative in the case of
discrete one-forms of type ♦ that Mercat considers. In contrast, our definitions are
based on a coordinate representation and mimic the smooth case. Eventually, they
lead to essentially the same definitions of a discrete wedge product in Sect. 2.3.2 and
a discrete Hodge star in Sect. 2.3.3 as in [21].

2.3.1 Discrete Exterior Derivative

Definition Let f : V (Λ0) → C, h : V (♦0) → C. We define the discrete exterior
derivatives d f and dh as the discrete one-forms on oriented edges of X0 given by

d f := ∂Λ f dz + ∂̄Λ f d z̄ and dh := ∂♦hdz + ∂̄♦hdz̄.

Definition Let ω be a discrete one-form defined on all boundary edges of a face Fv

of the medial graph X corresponding to v ∈ V (Λ) or on all four boundary edges of a
face FQ of X corresponding to Q ∈ F(Λ). In the first case, wewriteω = pdz + qdz̄
with functions p, q defined on all faces of Λ that are incident to v, and in the second
case, we write ω = pdz + qdz̄ with functions p, q defined on all vertices of Λ that
are incident to Q. The discrete exterior derivative dω on Fv or FQ is given by
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dω|Fv := (
∂♦q − ∂̄♦ p

)
ΩΛ and dω|FQ := (

∂Λq − ∂̄Λ p
)
Ω♦.

The representation of ω as pdz + qdz̄ (p, q defined on edges of X ) we have used
above may be nonunique. However, dω is well-defined by the following discrete
Stokes’ theorem that also justifies our definition of d f and dω. Note that Mercat
defined the discrete exterior derivative by the discrete Stokes’ theorem [19].

Theorem 2.9 Let f : V (Λ0) → C and ω be a discrete one-form defined on oriented
edges of X0. Then, for any directed edge e of X0 starting in the midpoint of the edge
vv′− and ending in the midpoint of the edge vv′+ of Λ0 and for any finite collection of
faces F of X0 with counterclockwise oriented boundary ∂ F we have:

∫
e

d f = f (v′+) − f (v′−)

2
= f (v) + f (v′+)

2
− f (v) + f (v′−)

2
and

∫∫
F

dω =
∮

∂ F

ω.

Proof Let v− be the other vertex of the quadrilateral Q with vertices v, v′− and v′+.
Without loss of generality, let v be white. Since d f = ∂Λ f dz + ∂̄Λ f d z̄,

∫
e d f equals

∂Λ f
v′+ − v′−

2
+ ∂̄Λ f

v′+ − v′−
2

=1

2
(λQ + λ̄Q)( f (v′+) − f (v′−)) + 1

2

(
λ̄Q

v′+ − v′−
v − v−

+ λQ
v′+ − v′−
v − v−

)
( f (v) − f (v−))

= f (v′+) − f (v′−)

2
+ Re

(
λ̄Q

v′+ − v′−
v − v−

)
( f (v) − f (v−)) = f (v′+) − f (v′−)

2
.

To get to the third line, we used λQ + λ̄Q = 1, and for the last step we used

arg

(
λ̄Q

v′+ − v′−
v − v−

)
= arg

(
± exp

(
i
(
ϕQ − π

2

))
exp

(−iϕQ
)) = ±π/2.

The sign depends on whether v, v′−, v−, v′+ denote the corners of Q in clockwise or
counterclockwise order. In either case, the expression inside arg is purely imaginary.

The second identity has to be shown just for one single face of X0. Let us write
ω = pdz + qdz̄ on all edges of X0 that are boundary edges of FQ or Fv, where p, q
are functions defined on the vertices of the quadrilateral Q ∈ V (♦0) or on the faces
incident to v ∈ V (Λ0). Then, by the representation of ∂Λ, ∂̄Λ as discrete contour
integrals in Lemma 2.3 and the definition of the discrete derivatives ∂♦, ∂̄♦,

∫∫
FQ

dω =
∫∫
FQ

(
∂♦q − ∂̄♦ p

)
Ω♦ = −2iar(FQ)

(
∂♦q − ∂̄♦ p

) =
∮

∂ FQ

(pdz + qdz̄) ,

∫∫
Fv

dω =
∫∫
Fv

(
∂Λq − ∂̄Λ p

)
ΩΛ = −2iar(Fv)

(
∂Λq − ∂̄Λ p

) =
∮

∂ Fv

(pdz + qdz̄) .
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Definition Let♦0 ⊆ ♦ form a simply-connected closed region. A discrete one-form
ω defined on oriented edges of X0 is said to be closed if dω ≡ 0.

Note that if ω is a discrete one-form of type ♦, then
∫∫

F dω = 0 for any face F
corresponding to a face of Λ. Examples for closed discrete one-forms are discrete
exterior derivatives of complex functions on V (Λ):

Proposition 2.10 Let f : V (Λ0) → C. Then, dd f = 0 on any face Fv of X0 corre-
sponding to v ∈ V (Λ0)\V (∂Λ0).

Proof By discrete Stokes’ Theorem 2.9, we have to show
∮

P d f = 0 for any dis-
crete elementary cycle P in X0 in order to prove dd f = 0. Since d f is of type
♦, the statement is trivially true if P = PQ for Q ∈ V (♦0). So let P = Pv for
v ∈ V (Λ0)\V (∂Λ0). Using discrete Stokes’ Theorem 2.9 again,

∮
Pv

d f =
∑
Qs∼v

f (v′
s) − f (v′

s−1)

2
= 0.

An immediate corollary of the last proposition is the commutativity of discrete deriv-
atives, generalizing the known result for rhombic quad-graphs in [6].

Corollary 2.11 Let f : V (Λ0) → C. Then, ∂♦∂̄Λ f (v) = ∂̄♦∂Λ f (v) for all vertices
v ∈ V (Λ0)\V (∂Λ0). In particular, ∂Λ f is discrete holomorphic if f is discrete holo-
morphic.

Proof Due to the preceding Proposition 2.10 and the definition of the discrete deriv-
ative, the equation 0 = dd f = (

∂♦∂̄Λ f − ∂̄♦∂Λ f
)
ΩΛ holds on all faces of X0 cor-

responding to a vertex of Λ0 that is not on the boundary ∂Λ0. The claim follows
since ΩΛ is nonzero on these faces.

Remark Note that even in the generic rhombic case, ∂Λ∂̄♦h does not always equal
∂̄Λ∂♦h for a function h : V (♦) → C [6]. Hence, ddh = 0 cannot hold for such
functions h in general.

Corollary 2.12 Let f : V (Λ0) → C. Then, f is discrete holomorphic if and only if
d f = pdz for some p : V (♦0) → C. In the case that f is discrete holomorphic, p
is discrete holomorphic as well.

Proof Since all quadrilaterals Q ∈ V (♦0) are nondegenerate, the representation
of d f |∂ FQ as pdz + qdz̄ is unique (see Lemma 2.14 below). Clearly, we have
d f = ∂Λ f dz + ∂̄Λ f d z̄. It follows that f is discrete holomorphic at Q if and only if
d f |∂ FQ = pdz.

Assuming that d f = pdz for some p : V (♦0) → C, dd f = 0 on any face Fv of
X0 corresponding to v ∈ V (Λ0)\V (∂Λ0) by Proposition 2.10. Thus, ∂̄♦ p(v) = 0 for
any such v and f is discrete holomorphic.

Definition Let♦0 ⊆ ♦ form a simply-connected closed region. A discrete one-form
ω defined on the oriented edges of X0 is discrete holomorphic if ω = pdz for some
p : V (♦0) → C and dω = 0.
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Remark This notion recurs in the more general setting of discrete Riemann surfaces
in [1]. By Corollary 2.12, d f is discrete holomorphic if f is, and by Proposition 2.8
on the existence of a discrete primitive for discrete holomorphic functions defined
on the vertices of a subset ♦0 ⊆ ♦ that forms a simply-connected closed region, any
discrete holomorphic one-form ω defined on the oriented edges of X0 is the discrete
exterior derivative of a discrete holomorphic function on V (Λ0).

Due toChelkak and Smirnov [6], one of the unpleasant facts of all discrete theories
of complex analysis is that (pointwise) multiplication of discrete holomorphic func-
tions does not yield a discrete holomorphic function in general. We define a product
of complex functions on V (Λ) that is defined on V (X) and a product of complex
functions on V (Λ) with functions on V (♦) that is defined on E(X). In general, the
product of two discrete holomorphic functions is not discrete holomorphic according
to the classical quad-based definition (on planar quad-graphs different fromΛ), but it
will be discrete holomorphic in the sense that a discretization of its exterior derivative
is closed and is of the form pdz, p defined on the edges of the medial graph of the
new quad-graph, or in the sense that it fulfills a discrete Morera’s theorem.

Proposition 2.13 Let f, g : V (Λ) → C and h : V (♦) → C.

(i) f dg + gd f is a closed discrete one-form.
(ii) If f and h are discrete holomorphic, then f hdz is a closed discrete one-form.

Proof (i) Let ω := f dg + gd f . By Proposition 2.10, dd f = 0 and ddg = 0, i.e.,
d f and dg are closed. Thus,

∮
∂ Fv

ω = f (v)
∮

∂ Fv

dg + g(v)
∮

∂ Fv

d f = 0

for any face Fv corresponding to v ∈ V (Λ). Using Lemma 2.3 that relates discrete
derivatives with discrete contour integration,

2iar(FQ)

∮
∂ FQ

ω = 2iar(FQ)

∮
∂ FQ

(
f ∂Λgdz + f ∂̄Λgdz̄ + g∂Λ f dz + g∂̄Λ f d z̄

)

= (
∂̄Λ f ∂Λg − ∂Λ f ∂̄Λg + ∂̄Λg∂Λ f − ∂Λg∂̄Λ f

)
(Q) = 0

for any face FQ corresponding to Q ∈ F(Λ). It follows by discrete Stokes’ Theo-
rem 2.9 that dω = 0.

(ii) By discrete Morera’s Theorem 2.23, discrete holomorphicity of f and h
implies that f dz and hdz are closed. Thus,

∮
∂ Fv

f hdz = f (v)
∮
∂ Fv

hdz = 0 as well
as

∮
∂ FQ

f hdz = h(Q)
∮
∂ FQ

f dz = 0 for any faces Fv and FQ of X corresponding to
v ∈ V (Λ) and Q ∈ F(Λ). Therefore, f hdz is closed.

Remark In particular, for any f, g : V (Λ) → C a product f · g : V (X) → C can
be defined by integration of f dg + gd f . Note that this product f · g is defined up to
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an additive constant. Furthermore, f · h : E(X) → C can be defined by “pointwise”
multiplication. If f, g, h are discrete holomorphic, then f dg + gd f = pdz is closed,
where p = f · ∂Λg + g · ∂Λ f : E(X) → C, and so to say a discrete holomorphic
one-form,meaning that f · g is discrete holomorphic in this sense. Similarly, f hdz is
closed, so f · h is discrete holomorphic in the sense that a discrete Morera’s theorem
holds true. Even though f · g is defined on the vertices of the dual of a planar quad-
graph different from Λ, as well is f · h on the dual of a different planar quad-graph,
these products are generally not discrete holomorphic everywhere according to the
quad-based definition of discrete holomorphicity on the dual of a bipartite quad-graph
given by the definition in Sect. 2.2.3. To define the mentioned planar quad-graphs,
we identify Q ∈ V (♦) with such a point in the interior of the face Q that all line
segments connecting it to the four corners of Q lie inside the quadrilateral.

First, f · g is a complex function on the vertices of X . The medial graph X is
the dual of the bipartite quad-graph with vertex set V (Λ) � V (♦), edges connecting
points Q ∈ V (♦) with all incident vertices v ∈ V (Λ), and faces in one-to-one cor-
respondence to edges of Λ. But even if f and g are discrete holomorphic on V (Λ),
f · g does not need to be a discrete holomorphic function on the faces of the quad-
graph we just defined. For example, consider f (v) = 0 if v is black and f (v) = 1
if v is white and a discrete holomorphic g that is not biconstant. Then, the product
f · g is not discrete holomorphic at all Q ∈ V (♦) (seen as vertices of the quad-graph
described above) where ∂Λg(Q) �= 0.

Second, f · h is a complex function on the edges of X , so it is a function on the
vertices of the medial graph of X . The medial graph of the medial graph of Λ is the
dual of the quad-graph with vertex set (V (Λ) ∪ V (♦)) � V (X), edges connecting
points v ∈ V (Λ) or Q ∈ V (♦) with the midpoints of all incident edges, and each
face being in one-to-one correspondence to an edge of X . Since f hdz is closed,
f · h is discrete holomorphic on the new quad-graph at vertices ofΛ or♦ by discrete
Morera’s Theorem 2.23. But there is no need for f · h to be discrete holomorphic
at vertices of X , even for constant h. For example, take the function f defined by
f (v) = 0 if v is black and f (v) = 1 if v is white.
In summary, we defined products f · g and f · h, where f, g : V (Λ) → C and

h : V (♦) → C are discrete holomorphic, that are local (on each vertex, they depend
just on the values of f and g in a small neighborhood) and discrete holomorphic at
least in the sense that its discrete exterior derivative is closed and of the form pdz or
in the sense that it fulfills a discrete Morera’s theorem.

Somehow missing is a product h · h′, where h, h′ : V (♦) → C. In the general
case, we do not know an appropriate product so far. But we want to point out that
Chelkak and Smirnov showed in [7] that for so-called spin holomorphic functions
h, h′, the pointwise product satisfies Re

(
∂̄♦

(
h · h′)) ≡ 0.

2.3.2 Discrete Wedge Product

FollowingWhitney [27],Mercat defined in [19] a discrete wedge product for discrete
one-forms living on the edges of Λ. Then, the discrete exterior derivative defined by
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a discretization of Stokes’ theorem is a derivation for the discrete wedge product.
However, a discrete Hodge star cannot be defined onΛ. To circumvent this problem,
Mercat used an averaging map to relate discrete one-forms on the edges of Λ with
discrete one-forms on the edges of Γ and Γ ∗, i.e., discrete one-forms of type ♦.
Then, he could define a discrete Hodge star; however, the discrete exterior derivative
was not a derivation for the now heterogeneous discrete wedge product.

In this section, a different interpretation of the discrete wedge product is proposed.
Still, the notions ofMercat in [19–21] are recovered. Startingwith discrete one-forms
of type ♦ that are defined on the edges of X , a discrete wedge product on (half of)
the faces of X is defined. This definition is different from Whitney’s [27] and has
the advantage that both a discrete wedge product and a discrete Hodge star can be
defined on the same structure. In addition, the discrete exterior derivative is now a
derivation for the discrete wedge product in a well-defined sense, see Theorem 2.16.
It turns out that Theorem 2.16 is a powerful tool leading to discretizations of Green’s
identities in Sect. 2.4.1 and of a Cauchy’s integral formula for the discrete derivative
of a discrete holomorphic function in Sect. 2.6.

Lemma 2.14 Let ω be a discrete one-form of type ♦ defined on the oriented edges of
X0. Then, there is a unique representation ω = pdz + qdz̄ with p, q : V (♦0) → C.
On a quadrilateral Q ∈ V (♦0), p and q are given by

p(Q) = λQ

∫
e ω

e
+ λ̄Q

∫
e∗ ω

e∗ and q(Q) = λ̄Q

∫
e ω

ē
+ λQ

∫
e∗ ω

ē∗ .

Here, e is an oriented edge of X0 parallel to a black edge of Γ0, and e∗ is parallel to
a white edge of Γ ∗

0 .

Proof First, we show that a representation ω|∂ FQ = pdz + qdz̄ exists for any face
FQ of X0 corresponding to a quadrilateral Q ∈ V (♦0). Givenω, we have to solve the
system of linear equations

∫
eQ

ω = p
∫

eQ
dz + q

∫
eQ

d z̄ for all four boundary edges
eQ of FQ . Since ω is of type ♦, we just have to consider two equations, namely
one for a boundary edge eb of FQ parallel to a black edge of Γ0 and one equation
for a boundary edge ew parallel to a white edge of Γ ∗

0 . Since all quadrilaterals are
nondegenerate, the diagonals are not parallel to each other and it follows that the pair
(dz, dz̄) gives different values when integrated over eb and ew. Thus, this system
of two linear equations in two variables is nondegenerate. It follows that p, q are
uniquely defined on V (♦0).

Furthermore, we can find for any quadrilateral Q ∈ V (♦0) ∼= F(Λ0) a function
f that is defined on the vertices b±, w± of Q such that 2

∫
e ω = f (b+) − f (b−) and

2
∫

e∗ ω = f (w+) − f (w−), where e is one of the two oriented edges of X0 going
from the midpoint of b− and w± to the midpoint of b+ and w±, and e∗ is one of the
two edges connecting the midpoint of w− and b± with the midpoint ofw+ and b±. By
discrete Stokes’ Theorem 2.9, we get ω|∂ FQ = d f = pdz + qdz̄ with p = ∂Λ f (Q)

and q = ∂̄Λ f (Q). Replacing the differences of f in the definition of the discrete
derivative by discrete integrals of ω yields the desired result.



80 A.I. Bobenko and F. Günther

Definition Let ω = pdz + qdz̄ and ω′ = p′dz + q ′dz̄ be two discrete one-forms
of type ♦ defined on the oriented edges of X0. Here, p, p′, q, q ′ : V (♦0) → C are
given by the above Lemma 2.14. Then, the discrete wedge product ω ∧ ω′ is defined
as the discrete two-form of type ♦ defined on F(X0) that equals

(
pq ′ − qp′)Ω♦

on faces of X corresponding to interior faces of the quad-graph Λ0.

Remark Note that if one considers dz and dz̄ as discrete one-forms of type ♦, then
Ω♦ = dz ∧ dz̄.

Proposition 2.15 Let F be a face of X0 corresponding to Q ∈ F(Λ0), and let e, e∗
be oriented edges of X parallel to the black and white diagonal of the quadrilateral
Q, respectively, such that Im (e∗/e) > 0. If ω,ω′ are discrete one-forms of type ♦
defined on the oriented edges of ∂ F, then

∫∫
F

ω ∧ ω′ = 2
∫
e

ω

∫
e∗

ω′ − 2
∫
e∗

ω

∫
e

ω′.

Proof Both sides of the equation are bilinear and antisymmetric in ω,ω′. Hence,
it suffices to check the identity for ω = dz, ω′ = dz̄. On the left hand side, we get∫∫

F ω ∧ ω′ = −2iar(F). This equals the right hand side

2eē∗ − 2e∗ē = 4i Im(eē∗) = −i |2e||2e∗| sin(ϕQ) = −2iar(F).

Remark Since the complex numbers e and e∗ are just half of the oriented diagonals,
the above definition of the discrete wedge product is essentially the same as the one
given by Mercat in [19–21].

The discrete exterior derivative is a derivation for the discrete wedge product if
one considers functions on Λ and discrete one-forms of type ♦:

Theorem 2.16 Let f : V (Λ0) → C and ω be a discrete one-form of type ♦ defined
on the oriented edges of X0. Then, the following identity holds on F(X0):

d( f ω) = d f ∧ ω + f dω.

Proof Let ω = pdz + qdz̄ with p, q : V (♦0) → C given by Lemma 2.14. If Fv and
FQ are faces of X0 corresponding to a vertex v and a face Q of Λ0, then

d( f ω)|Fv = (
f (v)

(
∂♦q

)
(v) − f (v)

(
∂̄♦ p

)
(v)

)
ΩΛ = f dω|Fv ,

d( f ω)|FQ = (
q(Q) (∂Λ f ) (Q) − p(Q)

(
∂̄Λ f

)
(Q)

)
Ω♦ = (d f ∧ ω)|FQ .
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But (d f ∧ ω)|Fv = 0 since Ω♦|Fv = 0 and f dω|FQ = 0 since ω is of type ♦, so
d( f ω) = d f ∧ ω + f dω.

Remark In [19], Mercat formulated an analog of the above Theorem 2.16 in a setting
where discrete one-forms are defined on edges of Λ. In the setting of discrete one-
forms defined on edges of Γ and Γ ∗, the claim d( f ω) = d f ∧ ω + f dω could not
be well-defined.

Above, a discrete wedge product just of two discrete one-forms of type ♦ is
defined. Actually, we could define a discrete wedge product of two discrete one-
forms of type Λ in essentially the same way, getting a discrete two-form of type
Λ. Then, the analog of Theorem 2.16 would be true for this kind of discrete wedge
product and functions on V (♦0). Also the discrete Hodge star of a discrete one-form
in the next section could be defined not only for those of type ♦. However, there
exist no analogs of Propositions 2.15 and 2.18. These propositions imply that the
discrete wedge product as well as the discrete Hodge star of discrete one-forms of
type ♦ can be defined in a chart-independent way. This enables one to consider these
objects on discrete Riemann surfaces, see [1]. There are no such statements if one
chooses discrete one-forms of typeΛ. In fact, a discrete one-form of typeΛ cannot be
canonically defined on a discrete Riemann surface as opposed to discrete one-forms
of type ♦. So since our interest lies in the latter, we do not define a discrete wedge
product or a discrete Hodge star for discrete one-forms of type Λ.

2.3.3 Discrete Hodge Star

Definition Let f : F(Λ0) → C and h : V (♦0) → C, let ω = pdz + qdz̄ be a dis-
crete one-form of type ♦ defined on oriented edges of X0 with p, q : V (♦0) → C,
and let Ω1,Ω2 : F(X0) → C be discrete two-forms of type Λ and ♦. Then, the
discrete Hodge star is given by

� f := − 1

2i
f ΩΛ; �h := − 1

2i
hΩ♦; �ω := −i pdz + iqdz̄;

�Ω1 := −2i
Ω1

ΩΛ

; �Ω2 := −2i
Ω2

Ω♦
.

If ω and ω′ are both discrete one-forms of type ♦ defined on oriented edges of X0,
we define their discrete scalar product

〈ω,ω′〉 :=
∫∫

F(X0)

ω ∧ �ω̄′,

whenever the right hand side converges absolutely. Similarly, a discrete scalar product
for discrete two-forms of the same type is defined.
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Remark As in the classical theory, the Hodge star corresponds to a π/2-rotation:∫
ie �ω = ∫

e ω where ω is a discrete one-form of type ♦, e an oriented edge of X and
ie its (virtual) image under π/2-rotation around the origin.

Corollary 2.17 The following statements are true:

(i) �2 = −Id on discrete one-forms of type ♦ defined on oriented edges of X0.
(ii) �2 = Id on complex functions on V (Λ0) or V (♦0) and discrete two-forms

defined on F(X0) of type Λ or ♦.
(iii) f : V (Λ0) → C is discrete holomorphic if and only if �d f = −id f .
(iv) 〈 f1, f2〉 = ∫∫

F(X0)
f1� f2 for functions f1, f2 : V (Λ0) → C and

〈h1, h2〉 = ∫∫
F(X0)

h1�h2 for functions h1, h2 : V (♦0) → C.
(v) 〈·, ·〉 is a Hermitian scalar product on discrete differential forms (of type Λ or

of type ♦).

Proposition 2.18 Let Q ∈ V (♦), and let e, e∗ be oriented edges of X parallel to
the black and white diagonal of Q, respectively, such that Im (e∗/e) > 0. If ω is a
discrete one-form of type ♦ defined on the oriented edges of the boundary of the face
of X corresponding to Q, then

∫
e

�ω = cot
(
ϕQ

) ∫
e

ω − |e|
|e∗| sin (

ϕQ
)

∫
e∗

ω,

∫
e∗

�ω = |e∗|
|e| sin (

ϕQ
)

∫
e

ω − cot
(
ϕQ

) ∫
e∗

ω.

Proof Both sides of any of the two equations are linear and behave the same under
complex conjugation. Thus, it suffices to check the statement for ω = dz. Hence, it
remains to show that

−ie = cot
(
ϕQ

)
e − |e|

|e∗| sin (
ϕQ

)e∗ and e∗ = |e∗|
|e| sin (

ϕQ
)e − cot

(
ϕQ

)
e∗.

Now, both sides of the first equation behave the same under scaling and simultaneous
rotation of e and e∗, the same statement is true for the second equation. Thus, we
may assume e = 1 and e∗ = cos

(
ϕQ

) + i sin(ϕQ). Multiplying both equations by
sin(ϕQ) gives the equivalent statements

−i sin(ϕQ) = cos
(
ϕQ

) − (
cos

(
ϕQ

) + i sin(ϕQ)
)
,

−i sin(ϕQ) exp(iϕQ) = 1 − cos
(
ϕQ

)
exp(iϕQ).

Both equations are true, noting that cos
(
ϕQ

) − i sin(ϕQ) = exp(−iϕQ).

Remark Proposition 2.18 shows that our definition of a discrete Hodge star on dis-
crete one-forms coincides with Mercat’s definition given in [21]. But on discrete
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two-forms and complex functions, our definition of the discrete Hodge star includes
an additional factor of the area of the corresponding face of X .

Proposition 2.19 δ := − � d� is the formal adjoint of the discrete exterior
derivative d: Let f : V (Λ) → C, and let ω be a discrete one-form of type ♦ defined
on the oriented edges of X and Ω : F(X) → C a discrete two-form of type Λ. Assume
that all of them are compactly supported. Then,

〈d f, ω〉 = 〈 f, δω〉 and 〈dω,Ω〉 = 〈ω, δΩ〉.
Proof By the assumption that all forms are compactly supported, we can take a large
enough finite ♦0 ⊆ ♦ that forms a simply-connected closed region such that f, ω,Ω
vanish outside Λ0, X0,♦0 and ω is zero on the boundary ∂ X0. By discrete Stokes’
Theorem 2.9 and Theorem 2.16 that states that the discrete exterior derivative is a
derivation for the discrete wedge product,

0 =
∮

∂ X0

f � ω̄ =
∫∫

F(X0)

d( f � ω̄) =
∫∫

F(X0)

f d � ω̄ +
∫∫

F(X0)

d f ∧ �ω̄ = 〈 f, �d � ω〉 + 〈d f, ω〉,

0 =
∮

∂ X0

�Ω̄ω =
∫∫

F(X0)

d(�Ω̄ω) =
∫∫

F(X0)

�Ω̄dω +
∫∫

F(X0)

(d � Ω̄) ∧ ω = 〈dω,Ω〉 − 〈ω, δΩ〉.

In the last equalities, we have used Corollary 2.17(ii) and (iv) (the basic properties of
the discreteHodge star) and the observation that complex conjugation commuteswith
the discrete Hodge star and the discrete exterior derivative. The latter observation
immediately follows from the definitions that mimic the classical theory.

2.4 Discrete Laplacian

The discrete Laplacian and the discrete Dirichlet energy on general quad-graphs
were introduced by Mercat in [21]. Later, Skopenkov reintroduced these definitions
in [23], taking the same definition in a different notation. In our discussion of the
discrete Laplacian in Sect. 2.4.1, we follow the classical approach of Mercat (up to
sign) and adapt it to our notations. A feature of the medial graph approach is that it
allows to formulate a discrete analog of Green’s first identity from which discrete
Green’s second identity immediately follows.

In Sect. 2.4.2, the discrete Dirichlet energy is investigated. In particular, in
Theorem 2.30 it is shown how uniqueness and existence of solutions to the dis-
crete Dirichlet boundary value problem imply surjectivity of the discrete derivatives
and the discrete Laplacian. We conclude this section with a result concerning the
asymptotics of discrete harmonic functions.
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2.4.1 Definition and Basic Properties

Definition The discrete Laplacian on functions f : V (Λ) → C, discrete one-forms
of type ♦, or discrete two-forms of type Λ is defined as the linear operator

� := −δd − dδ = �d � d + d � d � .

For a connected subgraph ♦0 ⊆ ♦ and f : V (Λ0) → C, � f is still defined by
the formula above as a complex function on V (Λ0)\V (∂Λ0). f is said to be discrete
harmonic at v ∈ V (Λ0)\V (∂Λ0) if� f (v) = 0. f is discrete harmonic if it is discrete
harmonic at all such v.

The following factorization of the discrete Laplacian in terms of discrete deriv-
atives generalizes the corresponding result given by Chelkak and Smirnov in [6] to
general quad-graphs. The local representation of � f at v ∈ V (Λ) is, up to a factor
involving the area of the face Fv of X corresponding to v, the same as Mercat’s [21].

Corollary 2.20 Let f : V (Λ0) → C. Then, � f (v) = 4∂♦∂̄Λ f (v) = 4∂̄♦∂Λ f (v)
for all vertices v ∈ V (Λ0)\V (∂Λ0) and

� f (v) = 1

2ar(Fv)

∑
Qs∼v

1

Re (ρs)

(
|ρs |2 ( f (vs) − f (v)) + Im (ρs)

(
f (v′

s) − f (v′
s−1)

))
.

Here, ρs := ρQs if v is black, and ρs := 1/ρQs if v is white.
In particular, Re(� f ) ≡ �Re( f ) and Im(� f ) ≡ � Im( f ).

Proof Since the definitions of the discrete Hodge star and the discrete exterior deriv-
ative mimic the classical theory and ∂♦∂̄Λ f (v) = ∂̄♦∂Λ f (v) by Corollary 2.11,

� f (v) = �d � d f (v) = 2∂♦∂̄Λ f (v) + 2∂̄♦∂Λ f (v) = 4∂♦∂̄Λ f (v) = 4∂̄♦∂Λ f (v)

holds exactly as in the smooth setting.
For the second statement, let us assume without loss of generality that v ∈ V (Γ0).

Then, we have to show that

� f (v) = 1

2ar(Fv)

∑
Qs∼v

( |ρQs |
sin(ϕQs )

( f (vs) − f (v)) − cot(ϕQs )
(

f (v′
s) − f (v′

s−1)
))

.

The structure is similar to the formula of the discrete Hodge star in Proposition 2.18.
Indeed, if es denotes an edge of X parallel to the black diagonal vvs and e∗

s an edge
parallel to the dual diagonal, then
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� f (v) = 1

ar(Fv)

∫∫
Fv

d � d f = 1

ar(Fv)

∮
∂ Fv

�d f

= 1

ar(Fv)

∑
Qs∼v

⎛
⎜⎝ |e∗

s |
|es | sin(ϕQs )

∫
es

d f − cot(ϕQs )

∫
e∗

s

d f

⎞
⎟⎠

= 1

2ar(Fv)

∑
Qs∼v

( |ρQs |
sin(ϕQs )

( f (vs) − f (v)) − cot(ϕQs )
(

f (v′
s) − f (v′

s−1)
))

,

using discrete Stokes’ Theorem 2.9 in the first and third equality, Proposition 2.18
that compares the integration of the discrete Hodge star of a discrete one-form of
type ♦ with the integration of the discrete one-form d f itself in the second equality,
and |ρQs | = |e∗

s |/|es | for the last step.
Remark In the case when the diagonals of the quadrilaterals are orthogonal to each
other, ρQ is always a positive real number. In this case, the discrete Laplacian splits
into two separate discrete Laplacians on Γ and Γ ∗. In this case, it is known and
actually an immediate consequence of the local representation in Corollary 2.20 that
a discrete maximum principle holds true, i.e., a discrete harmonic function can attain
its maximum only at the boundary of a closed region. This is not true for general
quad-graphs, see for example Skopenkov’s paper [23].

Corollary 2.21 Let f : V (Λ0) → C.

(i) If f is discrete harmonic, then ∂Λ f is discrete holomorphic.
(ii) If f is discrete holomorphic, then f , Re f , and Im f are discrete harmonic.

Proof By Corollary 2.20, � f ≡ 4∂̄♦∂Λ f ≡ 4∂♦∂̄Λ f . In particular, ∂̄♦∂Λ f ≡ 0 if
� f ≡ 0, which shows (i). Also, f is discrete harmonic if it is discrete holomorphic.
Using Re(� f ) ≡ �Re( f ) and Im(� f ) ≡ � Im( f ), Re( f ) and Im( f ) are discrete
harmonic if f is.

Similar to Proposition 2.1 that compares the discrete derivative ∂Λ with the smooth
derivative, the discrete Laplacian coincides with the smooth one up to order one in the
general case and up to order two for parallelogram-graphs. This was already shown
by Skopenkov in [23]. Since this result follows immediately from our previous ones,
we give a proof here as well.

Proposition 2.22 Let fC : C → C and f its restriction to V (Λ).

(i) If fC(z) is a polynomial inRe(z) and Im(z) of degree at most one, then the smooth
and the discrete Laplacian coincide on vertices: �C fC(v) = � f (v) = 0.

(ii) Let all faces of Λ be parallelograms. If fC(z) is a polynomial inRe(z) and Im(z)
of degree at most two, then the smooth and the discrete Laplacian coincide on
vertices: �C fC(v) = � f (v).
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Proof (i) Proposition 2.1(ii) says that the function f (v) = v is discrete holomorphic
and Corollary 2.21(ii) that real and imaginary part of discrete holomorphic functions
are discrete harmonic. Since constants are discrete harmonic, the statement follows.

(ii) In the parallelogram case, let Q̂ denote the center of the parallelogram
Q ∈ F(Λ) ∼= V (♦). Analogously to (i), f (v) = v2 is discrete harmonic by Propo-
sition 2.1(iii) and Corollary 2.21(ii). Looking at real and imaginary part separately,
� f 21 ≡ � f 22 and � ( f1 f2) ≡ 0 where we consider f1(v) = Re(v), f2(v) = Im(v).
Finally,

�| f |2 ≡ 4∂♦∂̄Λ| f |2 ≡ 4∂♦h = 4

with h(Q) = Q̂ for all Q ∈ V (♦), due to Propositions 2.1(iv) and 2.5 that implied
∂̄Λ| f |2 ≡ h and ∂♦h ≡ 1. Since any polynomial in Re(z) and Im(z) of monomials
of degree two is a linear combination of f 21 − f 22 , f 21 + f 22 , and f1 f2, and since we
have shown that the discrete Laplacian � and the smooth Laplacian �C coincide on
these, we are done.

Remark The second part of the last proposition generalizes the known result for
rhombi given by Chelkak and Smirnov [6]. Note that this is not true for general
quadrilaterals even if one assumes that the diagonals of quadrilaterals are orthogonal
to each other. For this, consider the following (finite) bipartite quad-graph of Fig. 4:
the black vertex 0 is adjacent to the white vertices ±1 and ±i in the quad-graph and
adjacent to the black vertices 2 + 2i ,−1 ± i , and 1 − i in the graph on black vertices.
There are no further vertices. Then, � f (0) �= 0 for f (v) = v2. Indeed, we would
get � f (0) = 0 if we had replaced v = 2 + 2i by v = 1 + i obtaining a rhombic
quad-graph; but

(|ρQ |2/Re(ρQ)
)
( f (v) − f (0)) scales by a factor of 2, whereas the

other nonzero summands in the formula for � f (0) remain invariant.
In the case of general quad-graphs, smooth functions fC : C → C, and restrictions

f to V (Λ), Skopenkov compared the integral of �C fC over a square domain R and
a sum of � f (v) over black vertices v in R [23]. Moreover, he showed that for
f (v) = |v|2,

� f (v) = 2

ar(Fv)

∑
Qs∼v

area(vv′
s−1 Q̂sv′

s)

0

2+2i

1−i

−1+i

−1−i

1

i

−i

−1

Q

Fig. 4 � f (0) �= 0 for f (v) = v2
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when Q̂s is the intersection point of the middle perpendiculars to the diagonals of
the quadrilateral Qs (which equals the intersection point of the diagonals if Qs is a
parallelogram). Note that in general, h(Q) = Q̂ is not discrete holomorphic if Q̂ is
the intersection of these middle perpendiculars.

Definition For a finite connected subset ♦0 ⊂ ♦, let F0 be the set of faces of
X0 that correspond to a quadrilateral Q ∈ V (♦0) that is incident to a vertex in
V (Λ0)\V (∂Λ0). Now, let f1 : V (Λ0) → C and f2 : V (Λ0)\V (∂Λ0) → C (or vice
versa) be given. Then, we denote by

〈 f1, f2〉 := − 1

2i

∫∫
F0

f1 f̄2ΩΛ

the discrete scalar product of f1 and f2 seen as functions on V (Λ0)\V (∂Λ0).

In the rhombic setup, discrete versions of Green’s second identity were already
stated byMercat [19], whose integrals were not well-defined separately, and Chelkak
and Smirnov [6], whose boundary integral was an explicit sum involving boundary
angles. Skopenkov formulated a discrete Green’s second identity with a vanishing
boundary term [23].

Theorem 2.23 Let ♦0 ⊂ ♦ be finite, and let f, g : V (Λ0) → C.

(i) Discrete Green’s first identity: 〈 f,�g〉 + 〈d f, dg〉 = ∮
∂ X0

f � dḡ.

(ii) Discrete Green’s second identity: 〈 f,�g〉 − 〈� f, g〉 = ∮
∂ X0

( f � dḡ − ḡ � d f ) .

Proof (i) Since the discrete exterior derivative is a derivation for the discrete wedge
product by Theorem 2.16,

d ( f � dḡ) = d f ∧ �dḡ + f � (�d � dḡ) = d f ∧ �dḡ + f � �ḡ.

Now, integration over F(X0) yields the desired result together with discrete Stokes’
Theorem 2.9 and the basic properties of the discrete Hodge star given in Corol-
lary 2.17(ii) and (iv).

(ii) Just apply twice discrete Green’s first identity, once with the roles of f and g
interchanged, and subtract the equations from another.

The following discrete Weyl’s lemma is a direct consequence of discrete Green’s
second identity, Theorem 2.23(ii). A version for rhombic quad-graphs was given by
Mercat in [19], proven by an explicit calculation.

Corollary 2.24 f : V (Λ) → C is discrete harmonic if and only if 〈 f,�g〉 = 0 for
every compactly supported g : V (Λ) → C.

Skopenkov introduced the notion of discrete harmonic conjugates in [23]. We
recover his definitions in our notation, observing that his discrete gradient corre-
sponds to the discrete exterior derivative and his counterclockwise rotation by π/2
to the discrete Hodge star.
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Definition Let f be a real (discrete harmonic) function on V (Λ0). A real discrete
harmonic function f̃ on V (Λ0) is said to be a discrete harmonic conjugate of f if
f + i f̃ is discrete holomorphic at all vertices of ♦0.

Note that the existence of a real function f̃ such that f + i f̃ is discrete holomor-
phic requires already that f is discrete harmonic at all interior vertices of Λ0 (i.e.,
V (Λ0)\V (∂Λ0)) due to Corollary 2.21(ii) implying that the real part of a discrete
holomorphic function is discrete harmonic.

Lemma 2.25 Let f : V (Λ0) → R satisfy � f (v) = 0 for all v ∈ V (Λ0)\V (∂Λ0).

(i) The discrete harmonic conjugate f̃ is unique up to two additive real constants
on Γ0 and Γ ∗

0 .
(ii) If ♦0 forms a simply-connected closed region, then a discrete harmonic

conjugate f̃ exists.

Proof (i) If f̃1 and f̃2 are two real discrete harmonic conjugates, then their difference
f̃1 − f̃2 is real and discrete holomorphic at all vertices of♦0. So by Proposition 2.2(ii)
(♦0 is connected), it is biconstant as a real discrete holomorphic function.

(ii) Since f is harmonic, d � d f = 0, i.e., �d f is closed and of type ♦. Moreover,
reality of f implies �d f = −i∂Λ f dz + i ∂̄Λ f d z̄ = 2 Im (∂Λ f dz). So in the same
manner as in the proof of Proposition 2.8 (existence of a discrete primitive if ♦0

forms a simply-connected closed region), �d f can be integrated to a real function f̃
on V (Λ0). Since

d( f + i f̃ ) = d f + i � d f = 2Re (∂Λ f dz) + 2i Im (∂Λ f dz) = 2∂Λ f dz

is of the form pdz and of type ♦, f + i f̃ is discrete holomorphic by Corollary 2.12.

Note that in the case of quadrilaterals with orthogonal diagonals, such that �
splits into two discrete Laplacians on Γ and Γ ∗, it follows that a discrete harmonic
conjugate of a discrete harmonic function on V (Γ ) can be defined on V (Γ ∗) and
vice versa, as was already noted by Chelkak and Smirnov in [6].

Corollary 2.26 Let f : V (Λ0) → C be discrete holomorphic at all vertices of ♦0.
Then, Im( f ) is uniquely determined by Re( f ) up to two additive constants on Γ0

and Γ ∗
0 .

2.4.2 Discrete Dirichlet Energy

We follow the classical approach of discretizing the Dirichlet energy introduced by
Mercat in [21]. Note that Skopenkov’s definition in [23] is exactly the same. In par-
ticular, Skopenkov’s results, including an approximation property of the Laplacian,
convergence of the discrete Dirichlet energy to the smooth Dirichlet energy for non-
degenerate uniform sequences of quad-graphs, and further theorems for quad-graphs
with orthogonal diagonals apply as well in our setting. We refer to his work [23] for
details on these results.
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Definition For a function f : V (Λ0) → C, we define the discrete Dirichlet energy
of f on ♦0 as E♦0( f ) := 〈d f, d f 〉 ∈ [0,∞].

If ♦0 is finite, then the discrete Dirichlet boundary value problem asks for a real
function f on V (Λ0) such that f is discrete harmonic at all points of V (Λ0)\V (∂Λ0)

and such that f agrees with a preassigned real function f0 on the boundary V (∂Λ0).

Proposition 2.27 Let ♦0 ⊆ ♦ be finite, and let f : V (Λ0) → C. Then,

E♦0( f ) =
∑

Q∈V (♦0)

1

2Re
(
ρQ

) (|ρQ |2 | f (b+) − f (b−)|2 + | f (w+) − f (w−)|2)

+
∑

Q∈V (♦0)

Im
(
ρQ

)
Re

(
ρQ

) Re (
( f (b+) − f (b−)) ( f (w+) − f (w−))

)
.

Proof Since E♦0( f ) is a sum over Q ∈ V (♦0), it suffices to check the identity for
just a singular quadrilateral Q. Furthermore, E♦0( f ) = E♦0(Re( f )) + E♦0(Im( f ))

allows us to restrict to real functions f . Then, EQ( f ) equals

∫∫
FQ

d f ∧ �d f = 4area(Q)∂Λ f (Q)∂̄Λ f (Q)

= 2|w+ − w−||b+ − b−| sin(ϕQ)|∂̄Λ f (Q)|2.

Here, b−, w−, b+, w+ are the vertices of Q in counterclockwise order, starting with
a black vertex, and FQ is the face of X corresponding to Q.

In the proof of Proposition 2.1(i), we calculated

∂̄Λ f (Q) = (w+ − w−) ( f (b+) − f (b−)) − (b+ − b−) ( f (w+) − f (w−))

2i |w+ − w−||b+ − b−| sin(ϕQ)
.

It follows that EQ( f ) equals

|w+ − w−|
2|b+ − b−| sin(ϕQ)

| f (b+) − f (b−)|2 + |b+ − b−|
2|w+ − w−| sin(ϕQ)

| f (w+) − f (w−)|2

− Re

(
(w+ − w−)(b+ − b−)

|w+ − w−||b+ − b−| sin(ϕQ)
( f (b+) − f (b−)) ( f (w+) − f (w−))

)
.

Remembering ρQ = −i exp(iϕQ)|w+ − w−|/|b+ − b−|, the claim follows from

|w+ − w−|
2|b+ − b−| sin(ϕQ)

= |ρQ |2
2 Re

(
ρQ

) ,
|b+ − b−|

2|w+ − w−| sin(ϕQ)
= 1

2Re
(
ρQ

) ,

−Re

(
(w+ − w−)(b+ − b−)

|w+ − w−||b+ − b−| sin(ϕQ)

)
= Im(ρQ)

Re(ρQ)
.
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The same formula of E♦0( f ) was given by Mercat [21].
In the case of rhombic quad-graphs, Duffin proved in [10] that the discrete Dirich-

let boundary value problem has a unique solution. The same argument applies for
general quad-graphs with the discrete Dirichlet energy defined here. Using a differ-
ent notation, Skopenkov proved existence and uniqueness of solutions of the discrete
Dirichlet boundary value problem as well [23].

Lemma 2.28 Let ♦0 ⊂ ♦ be finite and f0 : V (∂Λ0) → R. We consider the affine
space of real functions f : V (Λ0) → R that agree with f0 on the boundary.

Then, E♦0 is a strictly convex nonnegative quadratic functional in terms of the
interior values f (v). Furthermore,

− ∂ E♦0

∂ f (v)
( f ) = 2ar(Fv)� f (v)

for any v ∈ V (Λ0)\V (∂Λ0). In particular, the solution of the discrete Dirichlet
boundary value problem is given by the unique minimizer of E♦0 .

Proof By construction, E♦0 is a quadratic form in the vector space of real functions
f : V (Λ0)\V (∂Λ0) → R. In particular, it is convex, nonnegative, and quadratic in
terms of the values f (v). Thus, global minima exist. To prove strict convexity, it
suffices to check that the minimum is unique.

For an interior vertex v0 ∈ V (Λ0)\V (∂Λ0), let φ(v) := δvv0 be the Kronecker
delta function on V (Λ0). Then,

∂ E♦0

∂ f (v0)
( f ) = d

dt
E♦0( f + tφ)|t=0 = 2〈d f, dφ〉 = −2〈� f, φ〉 = −2ar(Fv0)� f (v0)

due to Proposition 2.19 that stated that δ is the formal adjoint of d. To apply the
proposition, we consider φ as a function on V (Λ) and extend f to V (Λ) by setting
it zero on V (Λ)\V (Λ0). This changes neither 〈d f, dφ〉 nor 2〈� f, φ〉.

It follows that exactly theminima of E♦0 are discrete harmonic and therefore solve
the discrete Dirichlet boundary value problem. The difference g of two minima is a
discrete harmonic function vanishing on the boundary. Similar to the argument given
in the previous paragraph, E♦0(g) = 〈dg, dg〉 = −〈�g, g〉 = 0 by Proposition 2.19
since g is zero on V (∂Λ0). But only biconstant functions have zero energy. Thus,
the difference has to vanish everywhere, i.e., minima are unique.

In the following, we apply Lemma 2.28 to show that ∂Λ, ∂̄Λ, ∂♦, ∂̄♦,� are surjec-
tive operators. This implies immediately the existence of discrete Green’s functions
and discrete Cauchy’s kernels, as we will see in Sects. 2.5 and 2.6.

Lemma 2.29 Let ♦0 ⊂ ♦ be finite and assume that it forms a simply-connected
closed region. Then, the discrete derivatives ∂Λ, ∂̄Λ, ∂♦, ∂̄♦ and the discrete Lapla-
cian � are surjective operators. That means, given any complex functions h0

on V (♦0) and f0 on V (Λ0)\V (∂Λ0), there exist functions h∂ , h ∂̄ on V (♦0) and
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f∂ , f∂̄ , f� on V (Λ0) such that ∂♦h∂ = ∂̄♦h ∂̄ = � f� = f0 and ∂Λ f∂ = ∂̄Λ f∂̄ = h0.
If f0 is real-valued, then f� can be chosen real-valued as well.

Proof Denote by B the number of vertices of ∂Λ0. By assumption, ∂Λ0 is a simple
closed broken line with B edges.

By the previous Lemma 2.28, the space of real discrete harmonic functions on
V (Λ0) has dimension B. Clearly, real and imaginary part of a discrete harmonic
function are itself discrete harmonic. Therefore, the complex dimension of the space
of complex discrete harmonic functions, i.e., of the kernel of �, is B as well. Thus,
� : KV (Λ0) → K

V (Λ0\∂Λ0) is a surjective linear operator with K ∈ {R,C}.
Now, � = 4∂♦∂̄Λ = 4∂̄♦∂Λ by Corollary 2.20, so ∂♦, ∂̄♦ : CV (♦0) → C

V (Λ0\∂Λ0)

are surjective as well. The kernel of ∂̄♦ consists of all discrete holomorphic functions
on V (♦0). By Proposition 2.8 (♦0 forms a simply-connected closed region), any
such function has a discrete primitive, i.e., the kernel is contained in the image of
∂Λ. Using the surjectivity of �, it follows that ∂Λ : CV (Λ0) → C

V (♦0) is surjective.
The same is true for ∂̄Λ.

Theorem 2.30 The discrete derivatives ∂Λ, ∂̄Λ, ∂♦, ∂̄♦ and the discrete Laplacian
� (defined on complex or real functions) are surjective operators on the vector space
of functions on V (Λ) or V (♦).

Proof Let ♦0 ⊂ ♦1 ⊂ ♦2 ⊂ . . . ⊂ ♦ be a sequence of finite subgraphs forming sim-
ply-connected closed regions such that

⋃∞
k=0 ♦k = ♦. ByΛk we denote the subgraph

of Λ whose vertices and edges are the vertices and edges of quadrilaterals in ♦k .
Let us first prove that any h : V (♦) → C has a preimage under the discrete deriv-

atives ∂Λ, ∂̄Λ. By the previous Lemma 2.29, the affine space A(0)
k of all complex

functions on V (Λk) that are mapped to h|V (♦k ) by ∂Λ (or ∂̄Λ) is nonempty. Let

A(0)
k

∣∣∣
Λ j

denote the affine space of restrictions of these functions to V (Λ j ) ⊆ V (Λk).

Clearly,

A(0)
0 ⊇ A(0)

1

∣∣∣
Λ0

⊇ A(0)
2

∣∣∣
Λ0

⊇ . . .

Since all affine spaces are finite-dimensional and nonempty, this chain becomes
stationary at some point, giving a function f0 on V (Λ0) mapped to h|V (♦0) by ∂Λ (or
∂̄Λ) that can be extended to a function in A(0)

k for any k.
Inductively, assume that f j : V (Λ j ) → C is mapped to h|V (♦ j ) by ∂Λ (or ∂̄Λ) and

that f j can be extended to a function in A( j)
k for all k � j . Let A( j+1)

k , k � j + 1,
be the affine space of all complex functions on V (Λk) that are mapped to h|V (♦k ) by
∂Λ (or ∂̄Λ) and whose restriction to V (Λ j ) is equal to f j . By assumption, all these
spaces are nonempty. In the same way as above, there is a function f j+1 extending
f j to V (Λ j+1) that is mapped to h|V (♦ j+1) by ∂Λ (or ∂̄Λ) and that can be extended to

a function in A( j+1)
k for all k � j + 1.

For v ∈ V (Λk), define f (v) := fk(v). f is a well-defined complex function on
V (Λ) with ∂Λ f = h (or ∂̄Λ f = h). Hence, ∂Λ, ∂̄Λ : CV (Λ) → C

V (♦) are surjective.
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Replacing V (♦k) by V (Λk)\V (∂Λk), we obtain with the same arguments that
� is surjective, regardless whether � is defined on real or complex functions.
Finally, ∂♦, ∂̄♦ : CV (♦) → C

V (Λ) are surjective due to � = 4∂♦∂̄Λ = 4∂̄♦∂Λ by
Corollary 2.20.

In the case of rhombic quad-graphs with bounded interior angles, Kenyon proved
the existence of a discrete Green’s function and a discrete Cauchy’s kernel with
asymptotic behaviors similar to the classical setting [16]. But in the general case, it
seems to be practically impossible to speak about any asymptotic behavior of certain
discrete functions. For this reason, we will consider functions that discretize Green’s
functions andCauchy’s kernels apart from their asymptotics in Sects. 2.5 and 2.6. Not
requiring a certain asymptotic behavior leads to non-uniqueness of these functions.

Still, one can expect results concerning the asymptotics of special discrete func-
tions if the interior angles and the side lengths of the quadrilaterals are bounded,
meaning that the quadrilaterals do not degenerate at infinity. And indeed, on such
quad-graphs any discrete harmonic function whose difference functions on V (Γ )

and V (Γ ∗) have asymptotics o(v−1/2) as |v| → ∞ is biconstant. In the rhombic set-
ting, Chelkak and Smirnov showed that a discrete Liouville’s theorem holds true,
i.e., any bounded discrete harmonic function on V (Λ) vanishes [6].

Theorem 2.31 Assume that there exist constants α0 > 0 and E1 � E0 > 0 such that
α � α0 and E1 � e � E0 for all interior angles α and side lengths e of quadrilaterals
Q ∈ F(Λ). If f : V (Λ) → C is discrete harmonic and f (v+) − f (v−) = o(v−1/2

± )

for any two adjacent v± ∈ V (Γ ) or v± ∈ V (Γ ∗) as |v±| → ∞, then f is biconstant.

Proof Without loss of generality, we can restrict to real functions f . Assume that
f is not biconstant. Then, d f ∧ �d f is nonzero somewhere on a face F of X . In
particular, the discrete Dirichlet energy of f is bounded away from zero if a domain
contains F . Now, the idea of proof is to show that if the domain is large enough but
still compact, the function being zero in the interior and equal to f on the boundary
has a smaller discreteDirichlet energy than f , contradicting Lemma 2.28 that implies
that f is the unique minimizer of the discrete Dirichlet energy on that domain.

Let us first bound the intersection angles and the lengths of diagonals of the
quadrilaterals. Take Q ∈ F(Λ) and denote its vertices by b−, w−, b+, w+ in coun-
terclockwise order, starting with a black vertex. Then, there are two opposite interior
angles that are less thanπ , say α± at vertices b±. Since all interior angles are bounded
by α0 from below, one of α± is less than or equal to π − α0, say α0 � α− � π − α0.

By triangle inequality, |b+ − b−|, |w+ − w−| < 2E1. Twice the area of Q equals

|w− − b−||w+ − b−| sin(α−) + |w− − b+||w+ − b+| sin(α+) � E2
0 sin(α0),

so |b+ − b−||w+ − w−| sin(ϕQ) = 2area(Q) � E2
0 sin(α0). It follows that

|b+ − b−| � E2
0 sin(α0)

|w+ − w−| sin(ϕQ)
>

E2
0 sin(α0)

2E1
=: E ′

0.
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Similarly, |w+ − w−| > E ′
0 and sin(ϕQ) > E ′

0/(2E1). Thus, we can bound

ρQ = |w+ − w−|
|b+ − b−| exp

(
i
(
ϕQ − π

2

))
= |w+ − w−|

|b+ − b−|
(
sin(ϕQ) − i cos(ϕQ)

)

by |ρQ | <
2E1

E ′
0

and Re
(
ρQ

)
>

(
E ′
0

2E1

)2

.

For some r > 0, denote by B♦(0, r) ⊂ V (♦) the set of quadrilaterals that have a
nonempty intersectionwith the open ball B(0, r) around 0 and radius r . Let R > 2E1,
and consider the ball B♦(0, R) ⊂ V (♦). Since Λ is locally finite, B♦(0, R) is finite.
Also, if we connect two elements of B♦(0, R) if they are adjacent in ♦, then we
obtain a connected subgraph of ♦ that we will also denote by B♦(0, R). To see that
it is connected, we observe that the closed region in the complex plane formed by
the quadrilaterals in B♦(0, R) is connected, and that if Q ∈ B♦(0, R), then one of
its corners, say v, has to lie in B(0, R) and so all quadrilaterals incident to v are in
B♦(0, R). We denote by ΛR the subgraph of Λ that consists of all the vertices and
edges of quadrilaterals in B♦(0, R)

Since edge lengths are bounded by E1, all elements of B♦(0, R) that are not
completely contained in B(0, R) are contained in B(0, R + 2E1)\B(0, R − 2E1).
The area of the latter is 8π RE1. Any quadrilateral has area at least E2

0 sin(α0)/2, so
at most 16π RE1/(E2

0 sin(α0)) quadrilaterals of B♦(0, R) do not lie completely in
B(0, R). We call these quadrilaterals for short boundary faces.

Consider the real function fR defined on V (ΛR) that is equal to f at V (∂ΛR)

and equal to 0 in V (ΛR)\V (∂ΛR). When computing the discrete Dirichlet energy of
fR on B♦(0, R), only boundary faces can give nonzero contributions. If we look at
the formula of the discrete Dirichlet energy in Proposition 2.27 and use in addition
that f (v+) − f (v−) = o(R−1/2) for vertices of boundary faces, then we see that
any contribution of a boundary face has asymptotics o(R−1). For this, we use that∣∣Re (

ρQ)
)∣∣ is bounded from below by a constant and

∣∣Im (
ρQ

)∣∣ �
∣∣ρQ

∣∣ < 2E1/E ′
0.

Using that there are only O(R) faces in the boundary (the constant depending on
E0, E1, α0 only), the discrete Dirichlet energy EB♦(0,R)( fR), considered as a function
of R, behaves as o(1). So if R is large enough, then

EB♦(0,R)( fR) <

∫∫
F

d f ∧ �d f � EB♦(0,R)( f ),

contradicting that f minimizes the discrete Dirichlet energy by Lemma 2.28.

2.5 Discrete Green’s Functions

Definition Let v0 ∈ V (Λ). A real function G(·; v0) on V (Λ) is a (free) discrete
Green’s function for v0 if
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G(v0; v0) = 0 and �G(v; v0) = 1

2ar(Fv0)
δvv0 for all v ∈ V (Λ).

Remark It is important to note that discrete Green’s functions as we defined them
are far from being unique. The contrast to the smooth setting or the rhombic case
investigated by Kenyon [16], Chelkak and Smirnov [6] is that no asymptotics are
required. So it might be more appropriate to call these functions functions of discrete
Green’s function type, but for the sake of convenience, we still call them discrete
Green’s functions.

However, when considering planar parallelogram-graphs with bounded interior
angles and bounded ratio of side lengths in Sect. 3.3, existence of a discrete Green’s
function with asymptotics generalizing the corresponding result for rhombic quad-
graphs is proven.

As a corollary of Theorem 2.30 we get existence of discrete Green’s functions.

Corollary 2.32 A discrete Green’s function exists for any v0 ∈ V (Λ).

Proof By Theorem 2.30, � is surjective, so there exists a function G : V (Λ) → R

with �G(v) = δvv0/
(
2ar(Fv0)

)
. Since constant functions are discrete harmonic, we

can adjust G to get G(v0) = 0.

The following notion of discrete Greens’ functions in a discrete domain follows
the presentation of Chelkak and Smirnov in [6].

Definition Let ♦0 ⊂ ♦ be finite and form a simply-connected closed region. For
a vertex v0 ∈ V (Λ0)\V (∂Λ0), a real function GΛ0(·; v0) on V (Λ0) is a discrete
Green’s function in Λ0 for v0 if

GΛ0(v; v0) = 0 for all v ∈ V (∂Λ0)

and �GΛ0(v; v0) = 1

2ar(Fv0)
δvv0 for all v ∈ V (Λ0)\V (∂Λ0).

An immediate corollary of Lemma 2.29 is now the existence of these functions.

Corollary 2.33 Let ♦0 ⊂ ♦ be finite and form a simply-connected closed region.
Furthermore, let v0 ∈ V (Λ0)\V (∂Λ0). Then, there exists a unique discrete Green’s
function in Λ0 for v0.

Proof Due to our assumptions on ♦0, existence follows from Lemma 2.29 stating
surjectivity of � on such domains. Since the difference of two discrete Green’s
functions inΛ0 for v0 is discrete harmonic on V (Λ0) and equals zero on the boundary
V (∂Λ0), it has to be identically zero by Lemma 2.28 since the zero function is the
unique solution of the corresponding discrete Dirichlet boundary value problem.
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2.6 Discrete Cauchy’s Integral Formulae

In this section, we first formulate discretizations of the standard Cauchy’s integral
formula, both for discrete holomorphic functions on V (Λ) and V (♦). Later, we
give with Theorem 2.36 a discrete formulation of Cauchy’s integral formula for the
derivative of a holomorphic function. We conclude this part with Sect. 2.6.1, where
we relate our formulation of the discrete Cauchy’s integral formula for discrete
holomorphic functions on V (♦) with Chelkak’s and Smirnov’s notation in [6].

Definition Discrete Cauchy’s kernels with respect to Q0 ∈ V (♦) and v0 ∈ V (Λ)

are functions KQ0 : V (Λ) → C and Kv0 : V (♦) → C, respectively, that satisfy for
all Q ∈ V (♦), v ∈ V (Λ):

∂̄ΛK Q0(Q) = δQ Q0

π

ar(FQ)
and ∂̄♦Kv0(v) = δvv0

π

ar(Fv)
.

For fixed Q0 ∈ V (♦0), v0 ∈ V (Λ0)\V (∂Λ0), functions KQ0 : V (Λ0) → C and
Kv0 : V (♦0) → C satisfying the above equations for all faces Q ∈ V (♦0) and ver-
tices v ∈ V (Λ0)\V (∂Λ0) are called discrete Cauchy’s kernels on V (Λ0) or V (♦0),
respectively.

Clearly, the restrictions of discrete Cauchy’s kernels to V (Λ0) or V (♦0), respec-
tively, are discrete Cauchy’s kernels on V (Λ0) or V (♦0), respectively.

Remark It is important to note that exactly as discrete Green’s functions, discrete
Cauchy’s kernels as we defined them are far from being unique. Again, it might be
more appropriate to call these functions functions of discrete Cauchy’s kernel type,
but we still call them discrete Cauchy’s kernels.

But if interior angles and side lengths of quadrilaterals are bounded, then it follows
from Theorem 2.31 that any discrete Cauchy’s kernel with respect to a vertex of ♦
with asymptotics o(v−1/2) as |v| → ∞ is necessarily unique, but we cannot prove
existence so far. In Sect. 3.4, explicit formulae for discrete Cauchy’s kernels with
asymptotics similar to the smooth setting are given, generalizing Kenyon’s result
[16] on rhombic quad-graphs to parallelogram-graphs.

The existence of discreteCauchy’s kernels follows from the surjectivity of discrete
derivatives by Theorem 2.30:

Corollary 2.34 Let Q0 ∈ V (♦) and v0 ∈ V (Λ) be arbitrary. Then, discrete
Cauchy’s kernels with respect to Q0 and v0 exist.

Theorem 2.35 Let f and h be discrete holomorphic functions on V (Λ0) and V (♦0),
respectively. Furthermore, let v0 ∈ V (Λ0)\V (∂Λ0) and Q0 ∈ V (♦0) be given, and
let Kv0 : V (♦) → C and KQ0 : V (Λ) → C be discrete Cauchy’s kernels with respect
to v0 and Q0 on V (♦0) and V (Λ0), respectively.

Then, for any discrete contours Cv0 and CQ0 on X0 surrounding v0 and Q0,
respectively, once in counterclockwise order, discrete Cauchy’s integral formulae
hold:
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f (v0) = 1

2π i

∮
Cv0

f Kv0dz and h(Q0) = 1

2π i

∮
CQ0

hK Q0dz.

Proof Let Pv and PQ be discrete elementary cycles, v being an interior vertex and
Q an interior face of Λ0. By Lemma 2.3 that relates ∂Λ, ∂̄Λ with discrete contour
integrals and the definition of ∂̄♦, we get:

1

2π i

∮
Pv

f Kv0dz = 1

π
ar(Fv) f (v)∂̄♦Kv0(v) = δvv0 f (v),

1

2π i

∮
PQ

f Kv0dz = 1

π
ar(FQ)∂̄Λ f (Q)Kv0(Q) = 0.

Here, we used that the value of the product on [Q′, v′] ∈ E(X0) is f (v′)Kv0(Q′),
so in the first integration we could factor out f (v), in the second one Kv0(Q).

By definition, the discrete contour Cv0 is the oriented boundary of a topological
disk in F(X0), so we can decompose the integration along Cv0 into a couple of
integrations along discrete elementary cycles Pv and PQ as above. Summing up,
only the contribution of Pv0 is nonvanishing, and we get the desired result. The
second formula is shown in an analog fashion.

Remark In the case of rhombic quad-graphs, Mercat formulated a discrete Cauchy’s
integral formula for the average of a discrete holomorphic function on V (Λ) along an
edge ofΛ. In [6], Chelkak and Smirnov provided a discreteCauchy’s integral formula
for discrete holomorphic functions on V (♦) using an integration along cycles on Γ

and Γ ∗, see Sect. 2.6.1.

Theorem 2.36 Let f : V (Λ0) → C be discrete holomorphic, let Q0 ∈ V (♦0), and
let KQ0 : V (Λ0) → C be a discrete Cauchy’s kernel with respect to Q0 on V (Λ0).

Then, for any discrete contour CQ0 in X0 surrounding Q0 once in counterclockwise
order that does not contain any edge [Q0, v] of X0, v ∼ Q0 (see Fig.5), the discrete
Cauchy’s integral formula is true:

∂Λ f (Q0) = − 1

2π i

∮
CQ0

f ∂ΛK Q0dz.

Q0

Fig. 5 Discrete contour as in Theorem 2.36
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Proof Let D be the discrete domain in F(X0) bounded by CQ0 . Since no edge of
CQ0 passes through Q0, the discrete one-form ∂̄ΛK Q0dz̄ vanishes on CQ0 . Therefore,
d KQ0 = ∂ΛK Q0dz on CQ0 and

∮
CQ0

f ∂ΛK Q0dz =
∮

CQ0

f d K Q0 =
∫∫
D

d( f d K Q0) =
∫∫
D

d f ∧ d KQ0

due to discrete Stokes’ Theorem 2.9 in the second equality and Theorem 2.16 that
assures that d( f d K Q0) = d f ∧ d KQ0 + f dd KQ0 and Proposition 2.10 that assures
that dd KQ0 = 0 in the third equality. Now, f is discrete holomorphic, so we obtain
d f ∧ d KQ0 = ∂Λ f ∂̄ΛK Q0Ω♦. But ∂̄ΛK Q0 vanishes on all vertices of ♦0 but Q0.
Finally,

− 1

2π i

∮
CQ0

f ∂ΛK Q0dz = − 1

2π i

∫∫
FQ0

∂Λ f ∂̄ΛK Q0Ω♦ = ∂Λ f (Q0).

Remark In general, there exists no analog of the above Theorem 2.36 for the dis-
crete derivative of a discrete holomorphic function on V (♦0), because the discrete
derivative itself does not need to be discrete holomorphic. However, in the special
case of integer lattices, any discrete derivative of a discrete holomorphic function is
itself discrete holomorphic. In Sect. 3.5, we will obtain discrete analogs of Cauchy’s
integral formulae for higher derivatives of discrete holomorphic functions.

2.6.1 A Different Notation

Let W be a cycle on the edges ofΓ ∗, having (ordered) white verticesw0, w1, . . . , wm ,
wm = w0. Then, any edge connecting two consecutive vertices wk, wk+1 forms the
diagonal of a quadrilateral face Q(wk, wk+1) ∈ V (♦).We denote the set of such faces
together with the induced orientation of their white diagonals by W♦. For Q ∈ W♦,
we denote its white vertices by w−(Q), w+(Q) such that the corresponding oriented
diagonal goes from w−(Q) to w+(Q). Its black vertices are denoted by b(Q), b′(Q)

in such a way that w−(Q), b(Q), w+(Q), b′(Q) appear in counterclockwise order.
The reason why we do not choose our previous notation of Fig. 1 is that black and
white vertices now play a different role that shall be indicated by the notation.

Now, we construct a cycle B on the edges of Γ having (ordered) black vertices
b0, b1, . . . , bn , bn = b0, in the following way. We start with b0 := b (Q (w0, w1)).
In the star of the vertex w1, there are two simple paths on Γ connecting b0 and
b (Q (w1, w2)), and we choose the path that does not go through Q(w0, w1). Note
that it may happen that b (Q (w1, w2)) = b0; in this case, we do not add any vertices
to B. Also, w2 = w0 is possible, which causes adding the nondirect path connecting
the black vertices b0 and b (Q (w1, w2)) = b′ (Q (w0, w1)).



98 A.I. Bobenko and F. Günther

Continuing this procedure till we have connected b (Q (wm−1, wm)) with b0, we
end up with a closed path B on Γ . Without loss of generality, any two consec-
utive vertices in B are different. As above, any edge connecting two consecutive
vertices bk, bk+1 forms the diagonal of a face Q(bk, bk+1) ∈ V (♦). We denote the
set of such faces together with the induced orientation of their black diagonals by
B♦. For Q ∈ B♦, we denote its black vertices by b−(Q), b+(Q) such that the cor-
responding oriented diagonal goes from b−(Q) to b+(Q). Finally, its white vertices
are denoted by w(Q), w′(Q) in such a way that b−(Q), w′(Q), b+(Q), w(Q) appear
in counterclockwise order.

Definition Let W and B be cycles as above and h a function defined on W♦ ∪ B♦.
We define the discrete integrals along W and B by

∮
W

h(Q)dz :=
m−1∑
k=0

h (Q (wk, wk+1)) (wk+1 − wk) ,

∮
W

h(Q)dz̄ :=
m−1∑
k=0

h (Q (wk, wk+1)) (wk+1 − wk);
∮

B
h(Q)dz :=

n−1∑
k=0

h (Q (bk, bk+1)) (bk+1 − bk) ,

∮
B

h(Q)dz̄ :=
n−1∑
k=0

h (Q (bk, bk+1)) (bk+1 − bk).

In between the closed paths B and W , there is a cycle P on the medial graph
X that comprises exactly all edges [Q, v] with Q ∈ W♦ and v ∈ B incident to Q
and all edges [Q, v] with Q ∈ B♦ and v ∈ W incident to Q. The orientation of
[Q, v] is induced by the orientation of the corresponding parallel white or black
diagonal. Figure6 gives an example for this construction,where all cycles are oriented
counterclockwise.

W

P
B

Fig. 6 Cycles W on Γ ∗, B on Γ , and closed path P on X in between
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Remark Note that an oriented cycle P on X induces a white cycle W = W (P) and
a black cycle B = B(P) in such a way that W , P , and B are related as above.

Lemma 2.37 Let P be an oriented cycle on X and let W = W (P) and B = B(P)

be the white and black cycles it induces. Let f be a function defined on the vertices
of W and B and h a function defined on W♦ ∪ B♦. Then,

∮
W

f (b(Q))h(Q)dz +
∮
B

f (w(Q))h(Q)dz = 2
∮
P

f hdz.

Proof Any edge e = [Q, b(Q)] (Q ∈ W♦) or [Q, w(Q)] (Q ∈ B♦) of P is parallel to
either an edgew−(Q)w+(Q) of W or to an edge b−(Q)b+(Q) of B, respectively, and
vice versa. Since the complex number associated to e is just half of the corresponding
parallel edge of Γ or Γ ∗, 2

∫
e f h = f (b (Q)) h(Q)(w+(Q) − w−(Q)) in the first

and 2
∫

e f h = f (w (Q)) h(Q)(b+(Q) − b−(Q)) in the second case. Therefore, the
discrete integral along P decomposes into one along B and one along W .

Remark Note that the construction of B and Lemma 2.37 are also valid if W consists
of a single point or of only twoedges (being the same, but traversed in both directions).
In both cases, P will be a discrete contour, as well when W is simple and oriented
counterclockwise.

The discrete Cauchy’s integral formula of Chelkak and Smirnov in [6] reads as

π ih(Q0) =
∮

W
h(Q)KQ0(b(Q))dz +

∮
B

h(Q)K Q0(w(Q))dz

if Q0 ∈ V (♦) is surrounded once by the simple closed curve W on Γ ∗ in counter-
clockwise direction, h is discrete holomorphic on V (♦), and KQ0 : V (Λ) → C is a
discrete Cauchy’s kernel with respect to Q0. The above Lemma 2.37 directly relates
this formulation to the one of the discrete Cauchy’s integral formula in Theorem 2.35.

Finally, we conclude this section with a proposition relying on the decomposition
of a discrete contour into black and white cycles. In Proposition 2.13(i), we have
already seen that f dg + gd f is closed for functions f, g : V (Λ) → C. Actually, a
slightly stronger statement is true:

Proposition 2.38 Let W be a closed cycle on Γ ∗ and B be the corresponding closed
cycle on Γ as above, and let f, g : V (Λ) → C. Then,

∮
W

f (b(Q))
(
∂Λg(Q)dz + ∂̄Λg(Q)dz̄

) +
∮

B
g(w(Q))

(
∂Λ f (Q)dz + ∂̄Λ f (Q)dz̄

) = 0.

Proof We first rewrite the discrete integral along the cycle W . By definition, we have
dg = ∂Λgdz + ∂̄Λgdz̄. By discrete Stokes’ Theorem 2.9,

∫
e dg = g (w+) − g (w−)

if e is an edge on X parallel to w−w+ and oriented the same, so
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∮
W

f (b(Q))
(
∂Λg(Q)dz + ∂̄Λg(Q)dz̄

) =
∑

Q∈W♦

f (b(Q)) (g (w+ (Q)) − g (w− (Q)))

= −
∑

Q∈B♦

g (w (Q)) ( f (b+ (Q)) − f (b− (Q))) ,

where we changed the summation along the path W into a summation along the path
B in the last step. Similar to above, we rewrite the discrete integral along B as

∮
B

g(w(Q))
(
∂Λ f (Q)dz + ∂̄Λ f (Q)dz̄

) =
∑

Q∈B♦

g(w(Q)) ( f (b+ (Q)) − f (b− (Q))) .

In summary,

∮
W

f (b(Q))
(
∂Λg(Q)dz + ∂̄Λg(Q)dz̄

) +
∮

B
g(w(Q))

(
∂Λ f (Q)dz + ∂̄Λ f (Q)dz̄

) = 0.

3 Discrete Complex Analysis on Planar
Parallelogram-Graphs

3.1 Preliminaries

Definition A planar parallelogram-graph Λ (without boundary) is a planar quad-
graph without boundary such that all its faces are parallelograms. Its dual ♦ is
embedded in the complex plane by placing all Q ∈ V (♦) at the center Q̂ of the
corresponding parallelogram Q and connecting adjacent vertices by straight line
segments.

Remark Remembering the duality V (♦) ∼= F(Λ), we will omit the hat above Q in
the sequel and identify the vertex Q ∈ V (♦) representing a parallelogram in Λ with
the corresponding point Q̂ in the complex plane. It will be clear from the context
whether Q is meant to be a face of Λ or a point in the complex plane.

In Sect. 3, discrete complex analysis on planar parallelogram-graphs Λ is dis-
cussed. As in Sect. 2, Λ is bipartite, the induced graphs on black and white vertices
are denoted by Γ and Γ ∗, respectively, and we assume that the cellular decomposi-
tion induced by Λ is locally finite and strongly regular (which already follows from
all faces being parallelograms).

In Propositions 2.1, 2.5, and 2.22, we have already seen that discrete complex
analysis on parallelogram-graphs is closer to the classical theory than on general
quad-graphs. For example, f (v) = v2 is a discrete holomorphic function on V (Λ)

and ∂Λ f (Q) = 2Q; h(Q) = Q is a discrete holomorphic function on V (♦) and
∂♦h ≡ 1; and the discrete Laplacian � approximates the smooth one correctly up to
order two.



Discrete Complex Analysis on Planar Quad-Graphs 101

In order to concentrate on the calculation of the asymptotics of a certain discrete
Green’s function and discrete Cauchy’s kernels, we postpone the discussion of some
necessary combinatorial and geometric results on planar parallelogram-graphs to the
appendix. Our setup is closely related to the quasicrystallic parallelogram-graphs
discussed in [2]. There, the quad-graph was embedded into Zn and explicit formulae
for a discrete exponential function and a discrete logarithm were introduced. These
results relied on Kenyon’s formulae for a discrete exponential and a discrete Green’s
function in [16].

In the following, the ideas of [2] are adapted to our slightly more general setting in
Sect. 3.2. The discrete exponential is the basic building block for the integral formulae
of a discrete Green’s function in Sect. 3.3 and discrete Cauchy’s kernels in Sect. 3.4.
The corresponding functions can be defined for general planar parallelogram-graphs,
but we need more regularity of the graph to calculate their asymptotics. The two
conditions we use are that all interior angles of the parallelograms are bounded
(the same condition was used by Chelkak and Smirnov in [6]) and that the ratio of
side lengths of the parallelograms is bounded as well. For rhombic quad-graphs, the
second condition is trivially fulfilled; for quasicrystallic graphs, there are only a finite
number of interior angles. Note that instead of using boundedness of the ratio of side
lengths of the parallelograms, we can assume that the side lengths themselves are
bounded. This seems to be a stronger condition at first, but actually, both conditions
are equivalent, see Proposition 4.3 in the appendix.

Remark To our knowledge, it is an open problem to find an explicit formula for a
discrete Green’s function or a discrete Cauchy’s kernel in the case of general quad-
graphs as discussed in Sect. 2.

We conclude this section by a discussion of integer lattices in Sect. 3.5. On these
graphs, discrete holomorphic functions can be discretely differentiated infinitely
many times, and for all higher order discrete derivatives, discrete Cauchy’s integral
formulae with the asymptotics one expects from the asymptotics of the discrete
Cauchy’s integral formula for a discrete holomorphic function hold true.

Lemma 3.1 Let v, v′ ∈ V (Λ), let k be an odd integer, let e1, . . . , en be a sequence
of n oriented edges of Λ forming a directed path from v to v′ on Λ, and let f1, . . . , fm

be another such sequence of m oriented edges. Then,

n∑
j=1

ek
j =

m∑
j=1

f k
j .

Here, the calculations are performed directly with edges rather than replacing them
with their associated complex numbers (see Sect.2.1.1).

Proof Consider a path p1, p2, p3, p4 of oriented edges of Λ going once around a
parallelogram. Since p1 = −p3 and p2 = −p4, we have

∑4
j=1 pk

j = 0. Now, any
closed cycle on the planar graph Λ can be decomposed into elementary oriented
cycles around faces, where edges e,−e with opposite orientation cancel out, and
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pairs of oppositely oriented edges (that are not necessarily successive). Using that
ek + (−e)k = 0, the claim now follows from

n∑
j=1

ek
j +

m∑
j=1

(− f j )
k = 0

for the cycle e1, . . . , en,− f1, . . . ,− fm of oriented edges starting and ending in v.

In the remainder of the paper, we use the following shorthand notation.

Definition Let v, v′ ∈ V (Λ) and Q, Q′ ∈ V (♦).

(i) Choose any directed path of edges e1, . . . , en on Λ going from v′ to v. Define

J (v, v′) :=
n∑

j=1

e−1
j ,

which does not depend on the choice of path from v to v′ due to Lemma 3.1.
(ii) Choose any vertex vQ incident to Q and any directed path of edges e1, . . . , en

on Λ from v to vQ . Moreover, let d1, d2 be the two oriented edges of Q that
emanate in vQ . We now define

−J (v, Q) = J (Q, v) :=
n∑

j=1

e−1
j + 1

2
d−1
1 + 1

2
d−1
2 .

Note that J (Q, v) does not depend on the choice of path from v to vQ by
Lemma 3.1 nor on the choice of vQ by a similar argument as in the proof of the
above lemma.
Moreover, let τ(v, Q) = τ(Q, v) := 1/(d1d2) if vQ, v are both in V (Γ ) or both
in V (Γ ∗) and τ(v, Q) = τ(Q, v) := −1/(d1d2) otherwise. Since Q is a paral-
lelogram, these quantities depend on v and Q only.

(iii) Choose any vertices vQ′ incident to Q′ and vQ incident to Q and a directed path
of edges e1, . . . , en on Λ going from vQ′ to vQ . Let d1, d2 be the two oriented
edges of Q′ ending in vQ′ and f1, f2 the two oriented edges of Q emanating
from vQ . Define

J (Q, Q′) := 1

2
d−1
1 + 1

2
d−1
2 +

n∑
j=1

e−1
j + 1

2
f −1
1 + 1

2
f −1
2 .

J (Q, Q′) does not depend on the choice of vQ′ and vQ or the path from vQ′ to vQ .

Furthermore, let τ(Q, Q′) := 1/(d1d2 f1 f2) if vQ, vQ′ are both in V (Γ ) or both
in V (Γ ∗) and τ(Q, Q′) := −1/(d1d2 f1 f2) otherwise. τ(Q, Q′) depends on Q
and Q′ only, since they are both parallelograms.
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Remark In the case that all parallelograms are rhombi of side length one, we have
J (x, x ′) = x − x ′.

Finally, the notion of the argument of a complex number will become important in
the sequel. In our paper, it will be usually an arbitrary real number and not a number
modulo 2π .

Definition For a complex number λ �= 0, a real number φ such that λ/ exp(iφ) is a
positive real number is called argument of λ. On the other hand, arg(λ) denotes the
unique argument φ of λ that is contained in the interval (−π, π ].

3.2 Discrete Exponential Function

Definition Let v0 be a vertex of Λ. Then, the discrete exponentials e(λ, ·; v0) and
exp(λ, ·; v0) on V (Λ) are the rational functions in the complex variable λ that are
inductively defined by e(λ, v0; v0) = 1 = exp(λ, v0; v0) and

e(λ, v′; v0)

e(λ, v; v0)
= λ + (v′ − v)

λ − (v′ − v)
and

exp(λ, v′; v0)

exp(λ, v; v0)
= 1 + λ

2 (v
′ − v)

1 − λ
2 (v

′ − v)

for all vertices v, v′ ∈ V (Λ) adjacent to each other.

Remark Note that the quotient of e or exp at the vertices of an oriented edge e
is by definition the inverse of the quotient for the edge −e oriented in the opposite
direction. Since all faces ofΛ are parallelograms, the complex numbers associated to
opposite edges oriented the same are equal and therefore are corresponding quotients
of the discrete exponentials. Thus, the discrete exponentials are well-defined.

For v ∈ V (Λ), exp(·, v; v0) is a rational function on C with poles being the com-
plex numbers associated to the oriented edges of a shortest directed path connecting
v0 with v. It follows from Lemma 4.2 in the appendix that the arguments of all poles
can be chosen to lie in an interval of length less than π . If in addition the interior
angles of parallelograms are bounded from below by α0, then the arguments of all
poles can be chosen to lie even in an interval of length at most π − α0.

Remark Note that exp(λ, ·; v0) = e(2/λ, ·; v0). Hence, e and exp are equivalent up to
reparametrization.On square lattices, the discrete exponentialwas already considered
by Ferrand [12] and Duffin [9]. The discrete exponential e on rhombic lattices was
used in the papers [2, 5, 16]. To be comparable to these, we use e and not exp
to perform our calculations of the asymptotic behavior. In contrast, Mercat [20],
Chelkak and Smirnov [6] preferred the parametrization of exp that is closer to the
smooth setting. Indeed, Mercat remarked that the discrete exponential exp in the
rhombic setting is a generalization of the formula
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exp(λx) =
(
1 + λx

2n

1 − λx
2n

)n

+ O

(
λ3x3

n2

)

to the case when the path from the origin to x consists of O(|x |/δ) straight line
segments of length δ of any directions [20].

Definition For a face Q ∈ V (♦) with incident vertices v−, v′−, v+, v′+ in counter-
clockwise order and v ∈ V (Λ), we define the discrete exponentials as the following
rational functions in the complex variable λ:

e(λ, v; Q) := e(λ, v; v±)(
λ − (v± − v′+)

) (
λ − (v± − v′−)

) ,

exp(λ, Q; v) := exp(λ, v±; v)(
1 − λ

2 (v
′+ − v±)

) (
1 − λ

2 (v
′− − v±)

) .

Remark For arbitrary Q0 ∈ V (♦) and v0 ∈ V (Λ), the above definition yields well-
defined rational functions e(·, v0; Q0) and exp(·, Q0; v0). As long as λ is not a pole,
e(λ, ·; Q0) is a function on V (Λ) and exp(λ, ·; v0) is a function on V (♦).

Proposition 3.2 Let v0 ∈ V (Λ), Q ∈ V (♦). Then, for any λ ∈ C that is not a pole
of exp(·, v; v0) for any vertex v ∼ Q, exp(λ, ·; v0) is discrete holomorphic at Q and

(∂Λ exp (λ, ·; v0)) (Q) = λ exp(λ, Q; v0).

Proof Let v−, v′−, v+, v′+ be the vertices of Q in counterclockwise order. Let us
denote a := v′+ − v− and b := v′− − v−. Using Lemma 2.3 that describes ∂̄Λ as a
discrete contour integration, v+ − v− = a + b, v′+ − v′− = a − b, and the inductive
formula for exp, we get that

(
∂̄Λ exp(λ, ·; v0)

)
(Q) equals

exp(λ, v−; v0)

2iar(FQ)

∮
∂ FQ

exp(λ, ·; v0)

exp(λ, v−; v0)
dz

= exp(λ, v−; v0)

2iar(FQ)

(
a + b

2
·
(
1 + λ

2 b

1 − λ
2 b

− 1 + λ
2 a

1 − λ
2 a

)
+ a − b

2
·
(
1 + λ

2 b

1 − λ
2 b

1 + λ
2 a

1 − λ
2 a

− 1

))

= exp(λ, v−; v0)

4iar(FQ)
(
1 − λ

2 a
) (

1 − λ
2 b

) ((a + b) λ (b − a) + (a − b) λ (a + b)) = 0.

Here, FQ is the Varignon parallelogram inside Q, and ar(FQ) = area(Q). Similarly,
we obtain that (∂Λ exp(λ, ·; v0)) (Q) equals

exp(λ, v−; v0)

4iar(FQ)
(
1 − λ

2a
) (
1 − λ

2b
) (−(a + b)λ (b − a) + (b − a)λ (a + b)

)

= λ exp(λ, v−; v0)

2i |a||b| sin(ϕQ)
(
1 − λ

2a
) (
1 − λ

2b
)2i Im(ab̄) = λ exp(λ, Q; v0).
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3.3 Asymptotics of the Discrete Green’s Function

Following the presentation in [2], we first define a discrete logarithmic function on
the lift Λ̃v0 of the quad-graphΛ onto the Riemann surface of the logarithmic function
log(· − v0), which can be considered as a branched covering of the quad-graph Λ

seen as a cellular decomposition of the complex plane.
Throughout the following paragraphs, fix v0 ∈ V (Λ), and let e1, e2, . . . , en be the

directed edges starting in v0, ordered according to their slopes.

Definition To each of these edges e we assign the angle θe := arg(e) ∈ (−π, π ].
We assume that θe1 < θen . Now, define θa+bn := θa + 2πb, where a ∈ {1, . . . , n} and
b ∈ Z. For m ∈ Z, let em := em mod n , considering the residue classes {1, 2, . . . , n}.
Definition Let e be one of the ek . The sector Ue ⊂ Λ is the subgraph of Λ that
consists of all vertices and edges of directed paths onΛ starting in v0 whose oriented
edges have arguments that can be chosen to lie in [arg(e), arg(e) + π).

Definition Form ∈ Z, we define the graph Ũm to be the sectorUem with the additional
data that each vertex v of Uem besides v0 is assigned the real number ϑm(v) given by
ϑm(v) ≡ arg(v − v0)mod 2π and ϑm(v) ∈ [θm, θm + π). Then,

Ũ :=
∞⋃

m=−∞
Ũm

defines a graph Λ̃v0 on the Riemann surface of log(· − v0) that projects to the planar
parallelogram graph Λ. Here, vertices v of Uem and v′ of Uem′ are equal as vertices
of Ũm and Ũm ′ if and only if v = v′ and either v = v′ = v0 or ϑm(v) = ϑm ′(v′).

Remark Apart from the additional data of the vertices, Ũm is composed of all the
vertices of edges of directed paths of edges on Λ starting in v0 whose arguments can
be chosen to lie in [θm, θm + π). It follows that all Ũm+bn , b ∈ Z and 1 � m � n,
cover the same sector Uem , and Ũm ∩ Ũm ′ contains more than just v0 if and only if
|m − m ′| < n. In addition, Lemma 4.2 shows that the union of all Uek , k = 1, . . . , n,
covers the whole quad-graph Λ. It follows that Λ̃v0 is a branched covering of the
cellular decomposition Λ, branched over v0.

Definition To each vertex ṽ ∈ V (Λ̃v0) covering a vertex v �= v0 of Λ, let us denote
θṽ := ϑm(v) if ṽ ∈ Ũm .

Remark θṽ increases by 2π when the vertex winds once around v0 in counterclock-
wise order; and if ṽ, ṽ′ �= v0 are adjacent vertices of Λ̃v0 , then |θṽ − θṽ′ | < π .

Note that by construction, if we connect v0 to some ṽ �= v0 by a shortest directed
path of edges of Λ̃v0 , then the arguments of all oriented edges can be chosen to lie
all in (θṽ − π, θṽ + π).
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Definition Let v0 ∈ V (Λ) and let Λ̃v0 be the corresponding branched covering of
Λ. The discrete logarithmic function on V (Λ̃v0) is given by log(v0; v0) := 0 and

log(ṽ; v0) := 1

2π i

∫
Cṽ

log(λ)

2λ
e(λ, v; v0)dλ

for ṽ �= v0. Here, Cṽ is a collection of sufficiently small counterclockwise oriented
loops going once around each pole of e(·, v; v0), v ∈ V (Λ) being the projection of
ṽ ∈ V (Λ̃v0). On each loop around a pole e, we take the branch of logarithm that
satisfies Im(log(e)) ∈ (θṽ − π, θṽ + π).

Remark Let us suppose that v0 is a black vertex. In the special case of a rhombic qua-
sicrystallic quad-graph, the notion of the discrete logarithm is motivated as follows
[2]: The discrete logarithm is real-valued and does not branch on black vertices; and
it is purely imaginary on white points and increases by 2π i if one goes once around
v0 in counterclockwise order. Therefore, the discrete logarithm models the behavior
of the real and the imaginary part of the smooth logarithm if restricted to black and
white vertices, respectively. As we will see later in the proof of Proposition 3.4, the
values at vertices adjacent to v0 coincide with the smooth logarithm.

Lemma 3.3 Let ṽ, ṽ′ ∈ V (Λ̃v0) be two points that cover the same vertex v ∈ V (Λ)

such that θṽ′ − θṽ = 2π . Then

log(ṽ′; v0) − log(ṽ; v0) = 0

if v0, v are both in V (Γ ) or both in V (Γ ∗), and otherwise

log(ṽ′; v0) − log(ṽ; v0) = 2π i.

Proof By definition,

log(ṽ′; v0) − log(ṽ; v0) =
∫
Cṽ

1

2λ
e(λ, v; v0)dλ.

The function that is integrated is meromorphic on C with poles given by the one of
e(·, v; v0) and zero. By residue formula, we can replace integration along Cṽ by an
integration along a circle centered at 0 with large radius R (such that all other poles
lie inside the disk) in counterclockwise direction and an integration along a circle
centered at 0 with small radius r (such that all poles lie outside the disk) in clockwise
direction. Now, e(∞, v; v0) = 1. If v0, v are both in V (Γ ) or both in V (Γ ∗), then
e(0, v; v0) = 1, otherwise e(0, v; v0) = −1. Hence, log(ṽ′; v0) − log(ṽ; v0) = 0 in
the first and log(ṽ′; v0) − log(ṽ; v0) = 2π i in the latter case.

In particular, the real part of the discrete logarithm log(·; v0) is a well-defined
function on V (Λ). Divided by 2π , one actually obtains a discrete Green’s function
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with respect to v0. In the rhombic case, it coincides with Kenyon’s discrete logarithm
in [16] as was shown in [2].

Proposition 3.4 Let v0 be a vertex of V (Λ). The function G(·; v0) : V (Λ) → R

defined by G(v0; v0) = 0 and

G(v; v0) = 1

2π
Re

⎛
⎝ 1

2π i

∫
Cv

log(λ)

2λ
e(λ, v; v0)dλ

⎞
⎠

for each v �= v0 is a (free) discrete Green’s function with respect to v0. Here, Cv is
a collection of sufficiently small counterclockwise oriented loops going once around
each pole of e(·, v; v0), and on each loop around a pole e, we take the branch of log
where Im(log(e)) ∈ (arg(v − v0) − π, arg(v − v0) + π).

Proof When evaluating the real part of the integral, we can also take the branches of
the logarithm that satisfy Im(log(e)) ∈ (arg(v − v0) − π, arg(v − v0) + π) + 2kπ

for all poles e, where k ∈ Z is fixed. Indeed, Lemma3.3 asserts that under this change,
the discrete logarithm changes by 0 or 2kπ i , so the real part does not change.

Consider all faces incident to v0 in Λ and its lift to Λ̃v0 . For any vertex v′
s ∈ V (Λ)

adjacent to v0, λ = v′
s − v0 is the only pole of e(λ, v′

s; v0). The residue theorem shows
that log(ṽ′

s; v0) and log(v′
s − v0) coincide up to a multiple of 2π i if ṽ′

s covers v′
s . By

a similar calculation for vertices vs adjacent to v0 in Γ or Γ ∗, we finally get

G(v′
s; v0) = 1

2π
Re(log(v′

s − v0)),

G(vs; v0) = 1

2π
Re

((
log

(
v′

s − v0
) − log

(
v′

s−1 − v0
)) vs − v0

v′
s − v′

s−1

)
,

where v0, v′
s−1, vs, v′

s are the vertices of Qs ∼ v0 in counterclockwise order.
As in Corollary 2.20, let ρs := −i(v′

s − v′
s−1)/(vs − v0). In addition, we assign

angles θv′
s
≡ arg

(
v′

s − v0
)
mod 2π in such a way that 0 < θv′

s
− θv′

s−1
< π . Due to

Re (−i/ρs) = − Im (ρs) /|ρs |2 and Im (−i/ρs) = −Re (ρs) /|ρs |2,

|ρs |2 (G(vs; v0) − G(v0; v0)) + Im (ρs)
(
G(v′

s; v0) − G(v′
s−1; v0)

)
Re(ρs)

=|ρs |2 Re (−i/ρs) + Im (ρs)

2π Re (ρs)
log

∣∣∣∣ v′
s − v0

v′
s−1 − v0

∣∣∣∣ − |ρs |2 Im (−i/ρs)

2π Re (ρs)

(
θv′

s
− θv′

s−1

)

=θv′
s
− θv′

s−1

2π
.

It follows from the explicit formula for the discrete Laplacian in Corollary 2.20 that
�G(v0; v0) = 1/(2ar(Fv0)).

Now, we show that G(·; v0) is discrete harmonic away from v0. For this, we
consider the star of some vertex v �= v0, i.e., all faces of Λ incident to v ∈ V (Λ).
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Let us assume that we can find one collection C of loops together with appropriate
branches of log such that for all vertices v′ of the star, G(v′; v0) can be computed
by an integration along C instead of Cv′ . Then, when we compute �G(v; v0), we
can exchange the discrete Laplacian not only with the real part, but also with the
integration. Since e(λ, ·; v0) is discrete holomorphic by Proposition 3.2, it is also
discrete harmonic by Corollary 2.21. By this, we conclude that �G(v; v0) = 0.

It remains to show that there exists such a collectionC of loopswith corresponding
branches of log.Wewill show that a collection of sufficiently small counterclockwise
oriented loops going once around each pole of e(·, v′; v0), v′ any vertex of the star
of v, does the job, where around a pole e of e(·, v′; v0) that branch of logarithm
is taken where Im(log(e)) ∈ (arg(v′ − v0) − π, arg(v′ − v0) + π). For this, we just
have to show that the branches of the logarithm are well-defined. This is the case if
for two vertices v′, v′′ of the star and a common pole e of e(·, v′; v0) and e(·, v′′; v0),
there is an argument of e contained in both (arg(v′ − v0) − π, arg(v′ − v0) + π) and
(arg(v′′ − v0) − π, arg(v′′ − v0) + π).

It easily follows from v �= v0 that if v′′ is not adjacent to v′, there is a vertexw adja-
cent to v′ such that all common poles of e(·, v′; v0) and e(·, v′′; v0) are also common
poles of e(·, v′; v0) and e(·, w; v0). So let us assume without loss of generality that
v′ and v′′ are adjacent. Clearly, we can also assume that both vertices are different
from v0 since e(·, v0; v0) ≡ 1.

Let us suppose the converse from our claim, that means suppose that there is
a common pole e of e(·, v′; v0) and e(·, v′′; v0) such that no argument of the edge
e is contained in both the two intervals (arg(v′ − v0) − π, arg(v′ − v0) + π) and
(arg(v′′ − v0) − π, arg(v′′ − v0) + π). This can only happen if the edge v′v′′ inter-
sects the ray v0 − te, t � 0. But since the edge e is a pole of the discrete exponential,
there is a strip with common parallel e, i.e., an infinite path in the dual graph ♦ with
edges dual to edges of Λ that are parallel to e, that separates v0 from both v′ and v′′
in such a way that e is pointing toward the region of v′ and v′′ (see the first part of the
appendix for more information on a strip). In particular, the edge v′v′′ is separated
from the ray v0 − te, t � 0, and cannot intersect it, contradiction.

Remark With almost the same arguments as in the proof of Proposition 3.4, we see
that the discrete logarithm is a discrete holomorphic function on the vertices of Λ̃v0 . In
[2], it was shown that the discrete logarithm on rhombic quasicrystallic quad-graphs
is even more than discrete holomorphic, namely isomonodromic.

Before we derive the asymptotics of the discrete Green’s function given in Propo-
sition 3.4, we state and prove some necessary estimations in two separate lemmas
since we will use them later during the corresponding calculations for the discrete
Cauchy’s kernel in Sect. 3.4.

Lemma 3.5 Let E1 � E0 > 0 be fixed real constants and consider a complex vari-
able λ. Then, for any e ∈ C\ {0} satisfying E1 � |e| � E0, the following holds true,
where log denotes the principal branch of the logarithm and constants in O-notation
depend on E0 and E1 only:
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(i) As λ → 0,

−λ + e

λ − e
= 1 + 2

λ

e
+ 2

λ2

e2
+ O(λ3),

log

(
−λ + e

λ − e

)
= 2

λ

e
+ O(λ3), and log

(
− e

λ − e

)
= λ

e
+ O(λ2).

(ii) As |λ| → ∞,

λ + e

λ − e
= 1 + 2

e

λ
+ 2

e2

λ2
+ O(λ−3),

log

(
λ + e

λ − e

)
= 2

e

λ
+ O(λ−3), and log

(
λ

λ − e

)
= e

λ
+ O(λ−2).

Proof (i)

−λ + e

λ − e
= 1 + λ

e

1 − λ
e

=
(
1 + λ

e

)(
1 + λ

e
+ λ2

e2
+ O(λ3)

)
= 1 + 2

λ

e
+ 2

λ2

e2
+ O(λ3)

shows the first equation and implies the second equation noting that

log(1 + x) = x − x2/2 + O(x3) as x → 0.

The series expansion for log also implies the third equation using

−d

λ − d
= 1

1 − λ
d

= 1 + λ

d
+ O(λ2).

(ii) These equations are shown in a completely analogous way to (i), e/λ taking
the place of λ/e.

Lemma 3.6 Assume that there exist real constants α0 > 0 and E1 � E0 > 0 such
that α � α0 and E1 � e � E0 for all interior angles α and side lengths e of paral-
lelograms of Λ. Let v0 ∈ V (Λ) and Q0 ∈ V (♦) be fixed and consider v ∈ V (Λ) and
Q ∈ V (♦) in the following.

(i) Let k(v) be the combinatorial distance on Λ between v0 and v (or between a
vertex incident to Q0 and v).
Then, k(v) = Ω(|v − v0|) (or k(v) = Ω(|v − Q0|)) as |v| → ∞.

(ii) J (v, v0) = Ω(v − v0), J (Q, v0) = Ω(Q − v0) and J (Q, Q0) = Ω(Q − Q0)

as |v|, |Q| → ∞.
(iii) τ(v, Q0) = Ω(1) and τ(Q, Q0) = Ω(1) as |v|, |Q| → ∞.
(iv) Furthermore, assume that |v − v0| � 1 and that the arguments of all oriented

edges of a shortest directed path on Λ from v0 to v can be chosen to lie in
[θ0,−θ0], where θ0 := −(π − α0)/2.
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Then, for any λ ∈ [−E1
√|v − v0|,−E1/

√|v − v0|] :

|e(λ, v; v0)| � exp

(
−cos(θ0)

√|v − v0|
2E1

)
.

Here, constants in the Ω-notation depend on α0, E0, and E1 only.

Proof Let e1, e2, . . . , ek(v) denote the oriented edges of Λ of a shortest directed path
onΛ from v0 (or a vertex incident to Q0) to v. Due to the bound on the interior angles
of parallelograms in Λ, there is a real θ0 such that the arguments of e1, e2, . . . , ek(v)

can be chosen to lie all in [θ0, θ0 + π − α0] by Lemma 4.2. All the claims in the
first three parts stay (essentially) the same under rotation of the complex plane, so
we may assume that θ0 = −(π − α0)/2. The same assumption is used in the fourth
part.

(i) Under the assumptions above, the projections of the ek onto the real axis lie
on the positive axis and are at least E0 cos(θ0) long since edge lengths are bounded
by E0 from below. It follows that k(v) � Re(v − v0)/(E0 cos(θ0)). Using in addition
that k(v) � |v − v0|/E1, we get k(v) = Ω(|v − v0|).

(ii) Using 1/|E0| � 1/|e j | � 1/|E1| for all j , we get

|J (v, v0)| =
∣∣∣∣∣∣

k(v)∑
j=1

e−1
j

∣∣∣∣∣∣ � k(v)

E0
= O(|v − v0|),

Re(J (v, v0)) = Re

⎛
⎝ k(v)∑

j=1

ē j

|e j |2

⎞
⎠ � 1

E2
1

Re

⎛
⎝ k(v)∑

j=1

e j

⎞
⎠ = cos(θ0)|v − v0|

E2
1

.

Hence, J (v, v0) = Ω(|v − v0|). This also implies that J (Q, v0) = Ω(Q − v0) since
|J (v, v0) − J (Q, v0)| � 1/|E0| for any v incident to Q, which follows easily from the
definition and the lower bound for edge lengths. Similarly, J (Q, Q0) = Ω(Q − Q0)

follows from the previous statements if we take v0 incident to Q0.
(iii) E−2

0 � |τ(Q, Q0)| � E−2
1 and E−4

0 � |τ(Q, Q0)| � E−4
1 follow immedi-

ately from the definitions and the boundedness of edge lengths.
(iv) Using that λ < 0 and Re(e) > 0, we get

|λ + e|2
|λ − e|2 = 1 + 4λRe(e)

λ2 − 2λRe(e) + |e|2 � 1 + 4λRe(e)

(λ − |e|)2 � exp

(
4λRe(e)

(λ − E1)2

)
.

Taking the product of such inequalities,

|e(λ, v; v0)| � exp

(
2λRe(v − v0)

(λ − E1)2

)
� exp

(
2λ cos(θ0)|v − v0|

(λ − E1)2

)
.

Now, we observe that λ/(λ − E1)
2 attains its maximum on the boundary. Together

with |v − v0| � 1,
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λ

(λ − E1)2
� −√|v − v0|

E1
(
1 + √|v − v0|

)2 � −1

4E1
√|v − v0| .

Plugging this into the estimation before gives the desired result.

Theorem 3.7 Assume that there exist real constants α0 > 0 and E1 � E0 > 0 such
that α � α0 and E1 � e � E0 for all interior angles α and side lengths e of paral-
lelograms of Λ. Let v0 ∈ V (Λ) be fixed. Then, the following is true:

(i) The discrete Green’s function G(·; v0) given in Proposition 3.4 has the following
asymptotic behavior as |v| → ∞:

G(v; v0) = 1

4π
log

∣∣∣∣ v − v0
J (v, v0)

∣∣∣∣ + O
(|v − v0|−2) if v and v0 are of different color,

G(v; v0) = γEuler + log(2)

2π
+ 1

4π
log |(v − v0)J (v, v0)| + O

(|v − v0|−2) otherwise.

(ii) There is exactly one discrete Green’s function G : V (Λ) → R for v0 that
behaves for |v| → ∞ as

G(v) = 1

4π
log

∣∣∣∣ v − v0
J (v, v0)

∣∣∣∣ + o
(|v − v0|−1/2) if v and v0 are of different color,

G(v) = γEuler + log(2)

2π
+ 1

4π
log |(v − v0)J (v, v0)| + o

(|v − v0|−1/2) otherwise.

Here, constants in the O-notation depend on α0, E0, and E1 only, and γEuler

denotes the Euler-Mascheroni constant.

Remark Note that due to Lemma 3.6(ii), J (v, v0) = Ω(v − v0) as |v| → ∞.
By Proposition 4.3, we may replace the existence of constants E1 � E0 > 0 such

that E1 � e � E0 for all side lengths e of parallelograms by the existence of q0 such
that e/e′ � q0 for the two side lengths e, e′ of any parallelogram ofΛ since the latter
implies the first assumption. Then, the constants in the O-notation depend instead
of E0 and E1 on q0, e0, and e1, where e0 and e1 are the side lengths of an arbitrary
but fixed parallelogram of Λ.

The proof of the first part follows the ideas of Kenyon [16] and Bücking [5].
Both considered just quasicrystallic rhombic quad-graphs. But the main difference
to [16] is that we deform the path of integration into an equivalent one different
from Kenyon’s, since his approach does not generalize to parallelogram-graphs. As
Chelkak and Smirnov did for rhombic quad-graphs with bounded interior angles in
[6], Kenyon used that two points v, v′ ∈ V (Λ) can be connected by a directed path
of edges such that the angle between each directed edge and v′ − v is less than π/2
or the angle between the sum of two consecutive edges and v′ − v is less than π/2.
This is true for rhombic quad-graphs, but not for parallelogram-graphs. Instead, we
use essentially the same deformation of the path of integration as Bücking did.
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Proof (i) The poles e1, . . . , ek(v) of e(·, v; v0) correspond to the directed edges of a
path from v0 to v of minimal length k(v). By Lemma 4.2, there is a real θ0 such that
the arguments of all directed edges above can be chosen to lie in [θ0, θ0 + π − α0].
It is easy to check that the claim is invariant under rotation of the complex plane, so
we can assume θ0 = −(π − α0)/2. By definition,

G(v; v0) = Re

⎛
⎝ 1

8π2i

∫
Cv

log λ

λ
e(λ, v; v0)dλ

⎞
⎠ ,

where Cv is a collection of sufficiently small counterclockwise oriented loops going
once around each e1, . . . , ek(v) and log is the principal branch of the logarithm since
it satisfies Im(log(e j )) ∈ [θ0,−θ0] for all j .

By residue theorem, we can deform Cv into a new path of integration C ′
v that goes

first along a circle centered at 0 with large radius R(v) (such that all poles lie inside
this disk) in counterclockwise direction starting and ending in −R(v), then goes
along the line segment [−R(v),−r(v)] followed by the circle centered at 0 with
small radius r(v) (such that all poles lie outside this disk) in clockwise direction,
and finally goes the line segment [−R(v),−r(v)] backwards. Note that the principal
branch of log jumps by 2π i at the negative real axis where the integration along the
two line segments takes place.

By assumption, E0 � |e j | � E1 for all j . Using |v − v0| � E0, it follows that

E5
0

2
|v − v0|−4 � E0

2
< |e j | < 2E1 � 2

E1

E4
0

|v − v0|4.

In particular, we can choose

R(v) := 2
E1

E4
0

|v − v0|4 and r(v) = E5
0

2
|v − v0|−4

for all v �= v0. We first look at the contributions of the circles with radii r(v) and
R(v) to G(v; v0).

Let λ be on the small circle with radius r(v). Then, λ = Ω(|v − v0|−4) → 0 as
|v| → ∞. In particular, we can apply (−λ + e)/(λ − e) = 1 + 2λ/e + O(λ2) by
Lemma 3.5(i) to estimate (−1)k(v)e(λ, v; v0). More precisely, the latter is a product
of k(v) = Ω(|v − v0|) terms (see Lemma 3.6(i)) with e = e j . Multiplying out and
using in addition E0 � |e j | � E1 easily gives for |v| → ∞ that

(−1)k(v)e(λ, v; v0) = 1 + O(|v − v0|−3).

Thus, we get for the integration along the small circle with radius r(v):
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Re

⎛
⎝ 1

8π2i

−π∫
π

(−1)k(v) log(r(v)) + iθ

r(v) exp(iθ)

(
1 + O(|v − v0|−3)

)
d (r(v) exp(iθ))

⎞
⎠

= − Re

⎛
⎝ 1

8π2

π∫
−π

(−1)k(v) (log(r(v)) + iθ)
(
1 + O(|v − v0|−3)

)
dθ

⎞
⎠

= − (−1)k(v) log(r(v))

4π

(
1 + O(|v − v0|−3)

)
.

Let us now consider λ to be on the large circle with radius R(v). Then, we have
|λ| = Ω(|v − v0|4) → ∞ as |v| → ∞. Analogously to above, repeated use of the
first equation in Lemma 3.5(ii) gives e(λ, v; v0) = 1 + O(|v − v0|−3) as |v| → ∞.
Thus, log(R(v))/(4π) · (

1 + O(|v − v0|−3)
)
is the contribution of the circle of radius

R(v). In total, the asymptotics for the real part of the integration along the two circles
are

1

4π

(
log(R(v)) − (−1)k(v) log(r(v))

) + O(|v − v0|−2).

The two integrations along [−R(v),−r(v)] can be combined into the integral

1

4π

−r(v)∫
−R(v)

e(λ, v; v0)

λ
dλ.

Since we are interested in the asymptotics for |v| → ∞, we can consider
|v − v0| � 1 large enough and split the integration into the three parts along

[−R(v),−E1
√|v − v0|], [−E1

√|v − v0|, − E1√|v − v0|
], and [− E1√|v − v0|

, −r(v)].

We first show that the contribution of λ ∈ [−E1
√|v − v0|,−E1/

√|v − v0|] can
be neglected. Indeed, it is a consequence of the estimation in Lemma 3.6(iv) that

∣∣∣∣∣∣∣
1

4π

−E1/
√|v−v0|∫

−E1
√|v−v0|

e(λ, v; v0)

λ
dλ

∣∣∣∣∣∣∣
� E1

√|v − v0| exp
(

−cos(θ0)
√|v − v0|
2E1

)
.

As |v| → ∞, the latter expression decays faster to zero than any power of |v − v0|.
Now, consider λ ∈ [−E1/

√|v − v0|,−r(v)]. Then, λ → 0 as |v| → ∞, so using
the second equation in Lemma 3.5(i) k(v) = Ω(|v − v0|) times gives as |v| → ∞:

(−1)k(v)e(λ, v; v0) = exp
(
2λJ (v, v0) + O(k(v)λ3)

)
= exp (2λJ (v, v0))

(
1 + O(|v − v0|λ3)

)
.



114 A.I. Bobenko and F. Günther

Thus, the integral near the origin is equal to

(−1)k(v)

4π

−r(v)∫
−E1/

√|v−v0|

(
exp (2λJ (v, v0))

λ
+ exp (2λJ (v, v0)) O(|v − v0|λ2)

)
dλ.

The expansion of the integral of the second term involves two exponential factors,
one for each bound: exp(−2J (v, v0)r(v)) and exp(−2E1 J (v, v0)/

√|v − v0|). Now,
we will use that J (v, v0) = Ω(|v − v0|) by Lemma 3.6(ii). Since the exponent of
the first factor goes to 0 in speed |v − v0|−3, the exponential goes exponentially fast
to 1 as |v| → ∞. For the second factor, we use our assumption that the arguments
of all the poles can be chosen to lie in [−(π − α0)/2, (π − α0)/2]. It follows that
Re(J (v, v0)) is positive and goes to infinity like Ω(|v − v0|) as |v| → ∞, such that
the second exponential factor goes to zero exponentially fast. Now, it is not hard to
see that the integral of exp (2λJ (v, v0)) O(|v − v0|λ3) gives O(|v − v0|−2). For the
first term, we get

(−1)k(v)

4π

⎛
⎜⎝

−1∫
−2E1 J (v,v0)/

√|v−v0|

exp(s)

s
ds +

−2r(v)J (v,v0)∫
−1

exp(s) − 1

s
ds

⎞
⎟⎠

+ (−1)k(v)

4π

−2r(v)J (v,v0)∫
−1

1

s
ds

= (−1)k(v)

4π

⎛
⎝

−1∫
−∞

exp(s)

s
ds +

0∫
−1

exp(s) − 1

s
ds

⎞
⎠ + (−1)k(v)

4π
log(2r(v)J (v, v0))

− (−1)k(v)

4π

⎛
⎜⎝

−2E1 J (v,v0)/
√|v−v0|∫

−∞

exp(s)

s
ds +

0∫
−2r(v)J (v,v0)

exp(s) − 1

s
ds

⎞
⎟⎠

= (−1)k(v)

4π

(
γEuler + Ω(|v − v0|−3) + log(2r(v)J (v, v0))

)
.

To get to the last line, we used that Re(J (v, v0)) = Ω(|v − v0|) as |v| → ∞ stays
positive. Indeed, as |v| → ∞, the first integral in the second to last line goes to zero
exponentially fast (to see this, just write the integrand as s exp(s)/s2 and bound
the absolute value of the integral from above by s0 exp(s0) where s0 denotes the
term −2E1 J (v, v0)/

√|v − v0|) and the second integral is of order Ω(|v − v0|−3) as
|v| → ∞ as a Taylor expansion of the exponential shows.

Finally, letλ ∈ [−R(v),−E1
√|v − v0|]. Then,λ → −∞ as |v| → ∞, and repeated

use of the second equation in Lemma 3.5(ii) gives
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e(λ, v; v0) = exp

(
2(v − v0)

λ

) (
1 + O(|v − v0|λ−3)

)

as |v| → ∞, so the corresponding contribution of the integral to 4πG(v; v0) is

−E1
√|v−v0|∫

−R(v)

exp(λ, v; v0)

λ
dλ =

−E1
√|v−v0|∫

−R(v)

exp
(
2(v−v0)

λ

)
λ

dλ + O(|v − v0|−2)

=
−1∫

−R(v)/(2(v−v0))

exp
(
1
s

) − 1

s
ds +

−E1
√|v−v0|/(2(v−v0))∫

−1

exp
(
1
s

)
s

ds

+
−1∫

−R(v)/(2(v−v0))

1

s
ds + O(|v − v0|−2)

= γEuler − log

(
R(v)

2(v − v0)

)
+ O(|v − v0|−2)

by a similar reasoning as above. Summing up the integrals over all four parts of the
contour and taking the real part, we finally get that 4πG(v; v0) equals

(
1 + (−1)k(v)

)
(γEuler + log(2)) + log |v − v0| + (−1)k(v) log |J (v, v0)| + O(|v − v0|−2).

(ii) We know from Theorem 2.31 that discrete harmonic functions of asymptotics
o(|v − v0|−1/2) as |v| → ∞ are zero.We can apply this result to the discrete harmonic
function G − G(·; v0), where G(·; v0) from the first part has the desired asymptotics.

Remark Let us compare this result to the case of rhombi of side length one. Assume
that v0 ∈ V (Γ ). Then, the discrete logarithm is purely real and nonbranched on
V (Γ ) and purely imaginary and branched on V (Γ ∗). It follows that G(v; v0) = 0 if
v ∈ V (Γ ∗), well fitting to the fact that � splits into two discrete Laplacians on Γ

and Γ ∗. Using J (v, v0) = v − v0,

G(v; v0) = 1

2π
(γEuler + log(2) + log |v − v0|) + O(|v − v0|−2)

as |v| → ∞ for v ∈ V (Γ ), exactly as in the work of Bücking [5], who slightly
strengthened the error term in Kenyon’s work [16]. In this paper, Kenyon showed
that there is no further discrete Green’s function with asymptotics o(|v − v0|).
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3.4 Asymptotics of Discrete Cauchy’s Kernels

Let v0 ∈ V (Λ) and Q0 ∈ V (♦) be given. We first give a formula for a discrete
Cauchy’s kernel Kv0 with respect to v0 on V (♦) that has asymptotics Ω(|Q − v0|−1)

as |Q| → ∞. Remember that the vertex Q ∈ V (♦) ∼= F(Λ) is placed on the center
of the corresponding parallelogram. Then, we provide a discrete Cauchy’s kernel
K Q0 with respect to Q0 on V (Λ) with asymptotics Ω(|v − Q0|−1) as v → ∞.
In both cases, there are no further discrete Cauchy’s kernels with asymptotics
o(|Q − v0|−1/2) or o(|v − Q0|−1/2) as |Q|, |v| → ∞. In the end of this section, the
asymptotics of ∂ΛK Q0 are determined.

Theorem 3.8 Let G(·; v0) be a discrete Green’s function on V (♦) for v0 ∈ V (Λ).

(i) Kv0 := 8π∂ΛG(·; v0) is a discrete Cauchy’s kernel with respect to v0.
(ii) Assume additionally that there exist real constants α0 > 0 and E1 � E0 > 0

such that α � α0 and E1 � e � E0 for all interior angles α and side lengths e
of parallelograms of Λ. Suppose that G(·; v0) is the discrete Green’s function
given in Proposition 3.4 and Kv0 the discrete Cauchy’s kernel given in (i). Then,

Kv0(Q) = 1

Q − v0
+ τ(Q, v0)

J (Q, v0)
+ O(|Q − v0|−2)

as |Q| → ∞. Here, constants in the O-notation depend on α0, E0, and E1 only.
(iii) Under the conditions of (ii), there is exactly one discrete Cauchy’s kernel with

respect to v0 with asymptotics o(|Q − v0|−1/2) as |Q| → ∞.

Remark Note that due to Lemma 3.6(ii) and (iii),

τ(Q, v0)

J (Q, v0)
= Ω

(
(Q − v0)

−1
)

as |Q| → ∞. As in Theorem 3.7, we may replace the existence of E1 � E0 > 0
such that E1 � e � E0 for all side lengths e of parallelograms by the existence of
q0 such that e/e′ � q0 for the two side lengths e, e′ of any parallelogram of Λ since
the latter implies the first assumption by Proposition 4.3. Then, the constants in the
O-notation depend instead of E0 and E1 on q0, e0, and e1, where e0 and e1 are the
side lengths of an arbitrary but fixed parallelogram of Λ.

Proof (i) By Corollary 2.20 about the factorization of the discrete Laplacian,

∂̄♦Kv0(v) = 8π
(
∂̄♦∂ΛG(·; v0)

)
(v) = 2π�G(v; v0) = δvv0

π

ar(Fv0)
.

(ii) For the ease of notation, we assume that v0 ∈ V (Γ ), but note that the other
case of a white vertex v0 can be handled in the same manner. Let b−, w−, b+, w+
denote the vertices of the parallelogram Q in counterclockwise order, starting with
a black vertex. Using the asymptotics of Theorem 3.7, as |Q| → ∞:
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4πG(b+; v0) − 4πG(b−; v0) = log

( |J (b+, v0)||b+ − v0|
|J (b−, v0)||b− − v0|

)
+ O(|Q − v0|−2),

4πG(w+; v0) − 4πG(w−; v0) = log

( |J (w−, v0)||w+ − v0|
|J (w+, v0)||w− − v0|

)
+ O(|Q − v0|−2).

Let a := w+ − b− and b := w− − b−. Using log |1 + x | = (x + x̄)/2 + O(x2)

as x → 0 and J (Q, v0) = Ω(|Q − v0|) as |Q| → ∞ given by Lemma 3.6(ii), we
get as |Q| → ∞:

log |b± − v0| = log

∣∣∣∣(Q − v0)

(
1 ± a + b

2(Q − v0)

)∣∣∣∣
= log |Q − v0| ± Re

(
a + b

2(Q − v0)

)
+ O(|Q − v0|−2),

log |w± − v0| = log |Q − v0| ± Re

(
a − b

2(Q − v0)

)
+ O(|Q − v0|−2),

log |J (b±, v0)| = log

∣∣∣∣J (Q, v0)

(
1 ± a−1 + b−1

2J (Q, v0)

)∣∣∣∣
= log |J (Q, v0)| ± Re

(
a−1 + b−1

2J (Q, v0)

)
+ O(|Q − v0|−2),

log |J (w±, v0)| = log |J (Q, v0)| ± Re

(
a−1 − b−1

2J (Q, v0)

)
+ O(|Q − v0|−2).

Therefore, we get for the discrete derivative of 8πG(·; v0) at the face Q:

Kv0(Q) = λQ

Re
(

a+b
Q−v0

)
+ Re

(
a−1+b−1

J (Q,v0)

)
a + b

+ λ̄Q

Re
(

a−b
Q−v0

)
− Re

(
a−1−b−1

J (Q,v0)

)
a − b

+ O(|Q − v0|−2)

= 1

Q − v0
+ 1

abJ (Q, v0)
+ O(|Q − v0|−2)

+ 1

2

(
λQ

a + b

a + b
+ λ̄Q

a − b

a − b

)(
1

Q − v0
+ 1

abJ (Q, v0)

)

= 1

Q − v0
+ τ(Q, v0)

J (Q, v0)
+ O(|Q − v0|−2)

as |Q| → ∞. Here, λQ = exp
(−i(ϕQ − π/2)

)
, and we have used the identity

−λQ

λ̄Q
= exp

(−2iϕQ
) = a + b

a − b
· a − b

a + b
⇔ λQ

a + b

a + b
+ λ̄Q

a − b

a − b
= 0.
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(iii) Let h be the difference of two discrete Cauchy’s kernels with respect to v0
with asymptotics o(|Q − v0|−1/2) as |Q| → ∞. Kv0 in the second part is such a
discrete Cauchy’s kernel. Then, h is discrete holomorphic, and by Proposition 2.8, a
discrete primitive f on V (Λ) exists. By construction,

f (b+) − f (b−)

b+ − b−
= f (w+) − f (w−)

w+ − w−
= ∂Λ f (Q) = h(Q) = o(|Q − v0|−1/2).

Since angles and edge lengths of parallelograms are bounded, the conditions of
Theorem 2.31 are fulfilled, implying that f is biconstant, so h vanishes identically.

Since we do not have discrete Green’s functions on V (♦), we have to derive
a discrete Cauchy’s kernels on V (Λ) differently. To do so, we follow the original
approach of Kenyon using the discrete exponential [16] that was reintroduced by
Chelkak and Smirnov in [6].

Proposition 3.9 Let Q0 ∈ V (♦). The function defined by

KQ0(v) := 1

π i

∫
Cv

log(λ)e(λ, v; Q0)dλ = 2

0∫
−(v−Q0)∞

e(λ, v; Q0)dλ

is a discrete Cauchy’s kernel with respect to Q0. Here, Cv is a collection of sufficiently
small counterclockwise oriented loops going once around each pole of e(·, v; Q0).
On each loop around a pole e of e(·, v; Q0), we take the branch of logarithm that
satisfies Im(log(e)) ∈ (θv − π, θv + π), where θv := arg(v − Q0). The second inte-
gration goes along the straight ray that ends in the origin in direction (v − Q0).

Proof Lemma 4.2 assures that the arguments of all poles can be indeed chosen in
such a way that they lie in (θv − π, θv + π).

By residue theorem, we can replace integration along Cv by an integration along a
circle centered at 0 with large radius R (such that all poles lie inside the disk) in coun-
terclockwise direction, an integration along a circle centered at 0 with small radius
r (such that all poles lie outside the disk) in clockwise direction, and integrations
along the two directions of the line segment [−R,−r ]. Using that

lim|λ|→∞ λe(λ, v; Q0) log(λ) = 0

and taking r arbitrarily small, there is a homotopy between the new integration path
and the path from complex infinity to 0 and back along the ray spanned by−(v − Q0)

that does not change the value of the integral. The branch of log we consider jumps
by 2π i on the two sides of the ray, which shows

1

π i

∫
Cv

log(λ)e(λ, v; Q0)dλ = 2

0∫
−(v−Q0)∞

e(λ, v; Q0)dλ.
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In particular, θv can be replaced by any θv + 2kπ , k ∈ Z, in the first integration.
Let us consider the parallelogram Q0 with vertices b−, w−, b+, w+ in counter-

clockwise direction, starting with a black vertex, and let us denote a := w+ − b−,
b := w− − b−. Without loss of generality, we rotate the complex plane in such a way
that arg(b+ − Q0) = 0. Then, arg(a) and arg(b) lie between 0 and ±π , and using
residue theorem,

K Q0(b−) = 2
(log |a| + i arg(a) + iπ) − (log |b| + i arg(b) + iπ)

b − a
,

K Q0(b+) = 2
(log |b| + i arg(b)) − (log |a| + i arg(a))

b − a
,

KQ0(w−) = 2
(log |b| + i arg(b) + 2iπ) − (log |a| + i arg(a) + iπ)

a + b
,

KQ0(w+) = 2
(log |a| + i arg(a)) − (log |b| + i arg(b) + iπ)

a + b
.

Finally, we get by Lemma 2.3 giving an integration formula for ∂̄Λ:

∂̄ΛK Q0(Q0) = (a − b)
(
K Q0(b+) − K Q0(b+)

) + (a + b)
(
K Q0(w−) − K Q0(w+)

)
4iar(FQ0)

= π

ar(FQ0)
.

By a similar argument as in the proof of Proposition 3.4, we can choose the same
contours of integration for all incident vertices v of a face Q �= Q0. Then, the discrete
derivative ∂̄Λ commuteswith the integration, and ∂̄ΛK Q0(Q) = 0 because e(λ, ·; Q0)

is discrete holomorphic by Proposition 3.2.

Theorem 3.10 Assume that there are α0 > 0 and E1 � E0 > 0 such that α � α0

and E1 � e � E0 for all interior angles α and side lengths e of parallelograms of
Λ. Let Q0 ∈ V (♦) be fixed.

(i) The discrete Cauchy’s kernel K Q0 given in Proposition 3.9 has the following
asymptotics as |v| → ∞:

K Q0(v) = 1

v − Q0
+ τ(v, Q0)

J (v, Q0)
+ O

(|v − Q0|−3
)
.

(ii) There is no further discrete Cauchy’s kernel with respect to Q0 that has asymp-
totics o(|v − Q0|−1/2) as |v| → ∞.

(iii) For the discrete Cauchy’s kernel KQ0 given in Proposition 3.9, ∂ΛK Q0 has the
following asymptotics as |v| → ∞:

∂ΛK Q0(Q) = − 1

(Q − Q0)2
− τ(Q, Q0)

J (Q, Q0)2
+ O

(|Q − Q0|−3
)
.
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(iv) Up to two additive complex constants on Γ and Γ ∗, there is no further dis-
crete Cauchy’s kernel with respect to Q0 such that its discrete derivative has
asymptotics o(|Q − Q0|−1/2) as |Q| → ∞.

Here, constants in the O-notation depend on α0, E0, and E1 only.

Remark By Lemma 3.6(ii) and (iii),

τ(v, Q0)

J (v, Q0)
= Ω

(
(v − Q0)

−1
)

and
τ(Q, Q0)

J (Q, Q0)2
= Ω

(
(Q − Q0)

−2
)

as |v|, |Q| → ∞. As in the previous Theorem 3.8, we may replace the existence of
constants E1 � E0 > 0 such that E1 � e � E0 for all side lengths e of parallelo-
grams by the existence of q0 such that e/e′ � q0 for the two side lengths e, e′ of any
parallelogram of Λ since the latter implies the first assumption by Proposition 4.3.
Then, the constants in the O-notation depend instead of E0 and E1 on q0, e0, and e1,
where e0 and e1 are the side lengths of an arbitrary but fixed parallelogram of Λ.

The proof of the first part follows the ideas of Kenyon [16]. Similar to the proof
of Theorem 3.7, the path of integration is deformed into a path different from the
one Kenyon used, (−(v − Q0)∞, 0]. For the same reasons as before, his approach
does not generalize to parallelogram-graphs. The second and the fourth part of the
theorem are immediate consequences of Theorem 2.31; the third part is shown by a
direct computation.

Proof (i) Among all the vertices incident to Q0, let v0 be the one that is combinatori-
ally closest to v on Λ. Then, the poles d1, d2, e1, . . . , ek(v) of e(·, v; Q0) correspond
to the directed edges of a shortest path from v0 to v of length k(v) and the two directed
edges of Q0 that point toward v0. It is easy to deduce from Lemma 4.2 that the argu-
ments of all poles can be chosen to lie in [θ0, θ0 + π − α0]. For more details, we refer
to the appendix in [13]. The claim is invariant under multiplication of the complex
plane, so we can assume that θ0 = −(π − α0)/2. Then, there are no poles in the left
half-plane, such that we can reduce the calculation to an integration over R:

KQ0(v) = 2

0∫
−(v−Q0)∞

e(λ, v; Q0)dλ = 2

0∫
−∞

e(λ, v; Q0)dλ.

Since we are interested in the limit |v| → ∞, we take |v − Q0| � 1 large enough
and split the integration into the three parts along the intervals (−∞,−E1

√|v − Q0|],
[−E1

√|v − Q0|,−E1/
√|v − Q0|], [−E1/

√|v − Q0|, 0]. Lemma 3.6(iv) shows
that the contribution of the range λ ∈ [−E1

√|v − Q0|,−E1/
√|v − Q0|] decays

faster to zero than any power of v − Q0 as |v| → ∞. By Lemma 3.6(i) and (ii) we
know that k(v) = Ω(v − Q0) and J (v, Q0) = Ω(v − Q0) as |v| → ∞. Since the
arguments of all the poles can be chosen to lie in [−(π − α0)/2, (π − α0)/2], it
follows even that Re(J (v, Q0)) = Ω(|v − Q0|) as |v| → ∞ stays positive.
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Let λ ∈ [−E1/
√|v − Q0|, 0]. Then, λ → 0 as |v| → ∞. Repeated use of the

second and the third equation in Lemma 3.5(i) yields

e(λ, v; Q0) = τ(v, Q0) exp (2λJ (v, Q0))
(
1 + O(λ2) + O(|v − Q0|λ3)

)

as |v| → ∞. Thus, the integral near the origin behaves for |v| → ∞ as

2

0∫
−E1/

√|v−Q0|

e(λ, v; Q0)dλ = τ(v, Q0)

J (v, Q0)
+ O(|v − Q0|−3).

For this, we used that exp(−2E1 J (v, Q0)/
√|v − Q0|) goes to zero exponentially

fast as |v| → ∞.
Now, let λ ∈ (−∞,−E1

√|v − Q0|]. Then, λ → −∞ as |v| → ∞. Repeated use
of the second and the third equation in Lemma 3.5(ii) shows that

e(λ, v; Q0) = λ−2 exp (2(v − Q0)/λ)
(
1 + O(λ−2) + O(|v − Q0|λ−3)

)

as |v| → ∞. Using the result of above, we get for the integral near minus infinity:

2

−E1
√|v−Q0|∫

−∞
e(λ, v; Q0)dλ

=2

−E1
√|v−Q0|∫

−∞
λ−2 exp (2(v − Q0)/λ)

(
1 + O(λ−2) + O(|v − Q0|λ−3)

)
dλ

=2

0∫
−1/(E1

√|v−Q0|)

exp (2λ(v − Q0))
(
1 + O(λ2) + O(|v − Q0|λ3)

)
dλ

= 1

v − Q0
+ O(|v − Q0|−3).

Summing the contributions of the three ranges up gives the desired result and also
shows the asymptotic behavior required in (ii).

(ii) The difference f of two discrete Cauchy’s kernels with respect to Q0 of
asymptotics o(|v − Q0|−1/2) is discrete holomorphic and fulfills the conditions of
Theorem 2.31. Hence, f is biconstant, so f ≡ 0.

(iii) Let b−, w−, b+, w+ denote the vertices of the parallelogram Q ∈ V (♦) in
counterclockwise order, starting with a black vertex. Let us introduce a := w+ − b−
and b := w− − b−. Using the expansion 1/(1 + x) = 1 − x + O(x2) as x → 0 and
the asymptotics of the first part, we get that KQ0(b±) and K Q0(w±) equal
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1

Q − Q0
∓ a + b

2(Q − Q0)
2 + τ(b−, Q0)

J (Q, Q0)
∓ τ(b−, Q0)

a−1 + b−1

2J (Q, Q0)
2 + O(|Q − Q0|−3),

1

Q − Q0
∓ a − b

2(Q − Q0)
2 + τ(w−, Q0)

J (Q, Q0)
∓ τ(w−, Q0)

a−1 − b−1

2J (Q, Q0)
2 + O(|Q − Q0|−3),

respectively. By definition, τ(b−, Q0) = −τ(w−, Q0). Therefore,

∂ΛK Q0 (Q) = − λQ

a+b
(Q−Q0)2

− τ(b−, Q0)
a−1+b−1

J (Q,Q0)2

a + b

+ λ̄Q

a−b
(Q−Q0)2

− τ(b−, Q0)
a−1−b−1

J (Q,Q0)2

a − b
+ O(|Q − Q0|−3)

= − 1

(Q − Q0)2
− τ(b−, Q0)

abJ (Q, Q0)2
+ O(|Q − Q0|−3)

= − 1

(Q − Q0)2
− τ(Q, Q0)

J (Q, Q0)2
+ O(|Q − Q0|−3).

(iv) Let f be the difference of two discrete Cauchy’s kernels with respect to Q0

whose discrete derivatives have asymptotics o(|Q − v0|−1/2). Then, f is discrete
holomorphic and

f (b+) − f (b−)

b+ − b−
= f (w+) − f (w−)

w+ − w−
= ∂Λ f (Q) = o(|Q − v0|−1/2).

Since angles and edge lengths are bounded, the conditions of Theorem 2.31 are
fulfilled. Hence, f is biconstant.

Remark Note that Kenyon [16] and Chelkak and Smirnov [6] proved in the rhombic
setting the stronger result that there is a unique discrete Cauchy’s kernel on V (Λ)

with respect to Q0 with asymptotics o(1) as |v| → ∞.

3.5 Integer Lattice

Let us consider a planar parallelogram-graph Λ such that each vertex has degree
four. With the embedding of ♦ described in Sect. 3.1, this happens if and only if ♦ is
a planar quad-graph or, equivalently, if Λ has the combinatorics of the integer lattice
Z
2. The vertices of ♦ lie at the midpoints of edges of Γ or Γ ∗. Since any vertex

of Γ or Γ ∗ is enclosed by a quadrilateral of Γ ∗ or Γ , respectively, the faces of ♦
are parallelograms by Varignon’s theorem. Thus, ♦ becomes a planar parallelogram-
graph as well.

Of particular interest is the case that the two notions of discrete holomorphicity
on♦, the one coming from♦ being the dual ofΛ and the other coming from the quad-
graph ♦ itself, coincide. It is not hard to show that this happens only for the integer
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lattice of a skew coordinate system, onto whichwe restrict ourselves in the following.
For more details, see [13]. If e1, e2 denote two spanning vectors, then ♦ is a parallel
shift ofΛ by e1/2 + e2/2. Furthermore, the discrete derivatives on♦ seen as the dual
of Λ coincide with the discrete derivatives on ♦ seen as a parallelogram-graph.

Since corresponding notions coincide and ♦ and Λ are congruent, we can skip all
subscripts Λ and ♦ in the definitions of discrete derivatives. Moreover, the discrete
Laplacian � is now defined for functions on V (Λ) and functions on V (♦) in the
same way. Due to Corollary 2.20, 4∂∂̄ = � = 4∂̄∂ is now true on both graphs. It
follows that all discrete derivatives ∂n f of a discrete holomorphic function f are
discrete holomorphic themselves. Conversely, a discrete primitive exists for any
discrete holomorphic function on a simply-connected domain by Proposition 2.8.

Our main interests lie in giving discrete Cauchy’s integral formulae for higher
order derivatives of a discrete holomorphic function and determining the asymptotics
of higher order discrete derivatives of the discrete Cauchy’s kernel given in Sect. 3.4.
Note that due to the uniqueness statements in Theorems 3.8 and 3.10, both formulae
yield the same discrete Cauchy’s kernel.

Without loss of generality, we restrict our attention to functions on V (Λ). For the
ease of notation, we introduce the discrete distance D(·, ·) on V (Λ) ∪ V (♦) that is
induced by the | · |∞-distance on the integer lattice spanned by e1/2, e2/2.

Theorem 3.11 Let Λ be the integer lattice spanned by the pair e1, e2 of linearly
independent complex vectors. Let v0 ∈ V (Λ), Q0 := v0 + e1/2 + e2/2 ∈ V (♦), let
f be a discrete holomorphic function on V (Λ), and let Kv0 and KQ0 be discrete
Cauchy’s kernels with respect to v0 and Q0, respectively. Let n be a nonnegative
integer and define x0 := v0 if n is even and x0 := Q0 if n is odd. Similarly, let
x ∈ V (Λ) if n is even and x ∈ V (♦) if n is odd.

(i) For any counterclockwise oriented discrete contour Cx0 in the medial graph X
enclosing all points x ′ ∈ V (Λ) ∪ V (♦) with D(x ′, x0) � n/2,

∂n f (x0) = (−1)n

2π i

∮
Cx0

f ∂n Kx0dz.

(ii) If KQ0 is the discrete Cauchy’s kernel given in Proposition 3.9, then

(−1)n

n! ∂n K Q0(x) = 1

(x − Q0)n+1
+ τ ′(x, Q0)

(J (x, Q0)e1e2)n+1
+ O(|x − Q0|−n−3)

as |x | → ∞, where τ ′(x, Q0) = 1 if x and Q0 or (x + e1/2 + e2/2) and Q0 can
be connected by a path on V (♦) of even length and τ ′(x, Q0) = −1 otherwise.
Constants in the O-notation depend on the spanning vectors e0, e1 only.
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Remark By Lemma 3.6(ii) and (iii), we have for |x | → ∞:

τ ′(x, Q0)

(J (x, Q0)e1e2)n+1 = Ω
(
(x − Q0)

−(n+1)
)

.

Proof (i) Let D be the discrete domain in F(X) bounded byCx0 . By the assumptions
on Cx0 , the discrete one-form ∂̄∂n−1Kx0dz̄ vanishes on Cx0 . Thus,

∮
Cx0

f ∂n Kx0dz =
∮

Cx0

f d
(
∂n−1Kx0

)
=

∫∫
D

d( f d(∂n−1Kx0 )) =
∫∫
D

d f ∧ d
(
∂n−1Kx0

)

by discrete Stokes’ Theorem2.9 in the second equation andTheorem2.16 and Propo-
sition 2.10 stating that d is a derivation for the discrete wedge product and dd f = 0
in the third equation. Now, f is discrete holomorphic, meaning that ∂̄ f ≡ 0, so
d f ∧ d

(
∂n−1Kx0

) = ∂ f ∂̄∂n−1Kx0Ω♦. But since the discrete derivatives commute
according to Corollary 2.11, ∂̄∂n−1Kx0 = ∂n−1∂̄Kx0 vanishes outside Cx0 , so by
repeated use of Proposition 2.7 stating that ∂ is the formal adjoint of −∂̄ ,

∮
Cx0

f ∂n Kx0dz = −2i〈∂ f, ∂̄n−1∂ K̄x0〉 = 2i(−1)n〈∂n f, ∂ K̄x0〉 = 2π i(−1)n∂n f (x0).

(ii) Let us define the discrete exponential e(λ, Q; Q0) for Q ∈ V (♦) in the same
way as a rational function in the complex variable λ as we defined e(λ, v; v0). By
inductive use of the formula for the discrete derivative of exp in Proposition 3.2 and
exp(λ, ·; Q0) = e(2/λ, ·; Q0), we get for the discrete exponential e(λ, ·; Q0) that is
defined on V (Λ):

(∂ne(λ, ·; Q0))(x) = (2λ)n

((λ − e1)(λ − e2)(λ + e1)(λ + e2))
�n/2� e(λ, x; Q0).

To compute ∂n K Q0(x), we need the values of KQ0 only at vertices v ∈ V (Λ)with
D(v, x) � n/2. For these points,

KQ0(v) = 2
∫ 0

−(v−Q0)∞
e(λ, v; Q0)dλ

by the formula in Proposition 3.9. If D(x, Q0) is sufficiently large, then we can
choose e ∈ {e1, e2,−e1,−e2} such that D(ke, x) > n/2 for all positive integers k.
So if D(v, x) � n/2 and D(x, Q0) is sufficiently large, then e(·, v; Q0) does not
have the pole e. Since ±e1,±e2 are the only possible poles, it follows that there are
no poles in the convex hull of all the rays (−(v − Q0)∞, 0] for the vertices v with
D(v, x) � n/2. By residue theorem, we can use the same path of integration for all
relevant values of KQ0 and get
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∂n K Q0(x) = 2

0∫
−(x−Q0)∞

(∂ne(λ, ·; Q0))(x)dλ.

Now, we follow the proof of Theorem 3.10(i). Again, the claim is invariant under
rotation of the complex plane, so we may assume (x − Q0) > 0.

Let E1 := max {|e1|, |e2|} and E0 := min {|e1|, |e2|}. For |x − Q0| � 1 large
enough, we split the integration into the three parts along (−∞,−E1

√|x − Q0|],
[−E1

√|x − Q0|,−E1/
√|x − Q0|], and [−E1/

√|x − Q0|, 0].
By Lemma 3.6(iv), the contribution of λ ∈ [−E1

√|x − Q0|,−E1/
√|x − Q0|]

decays faster to zero than anypower of x − Q0 as |x | → ∞. ByLemma3.6(i) and (ii),
we know that D(x, Q0) = Ω(x − Q0) and J (x, Q0) = Ω(x − Q0). Furthermore,
the choice of (x − Q0) > 0 implies that Re(J (x, Q0)) = Ω(x − Q0) stays positive
as |x | → ∞.

Let λ ∈ [−E1/
√|x − Q0|, 0]. Then, λ → 0 as |x | → ∞, and repeated use of the

second and third equation in Lemma 3.5(i) gives that (∂ne(λ, ·; Q0))(x) equals

τ ′(x, Q0)

(e1e2)n+1
(2λ)n exp (2λJ (x, Q0))

(
1 + O(λ2) + O(|x − Q0|λ3)

)
.

With a similar argument as in the proof of Theorem 3.10(i), the integral near the
origin behaves for |x | → ∞ as

(−1)nn!τ ′(x, Q0)

(e1e2 J (x, Q0))n+1
+ O(|x − Q0|−n−3).

Now, let λ ∈ (−∞,−E1
√|x − Q0|]. For |x | → ∞, λ → −∞, and repeated use

of the second and third equation in Lemma 3.5(ii) implies that (∂ne(λ, ·; Q0))(x)

equals

(2λ)nλ−2n−2 exp

(
2(x − Q0)

λ

) (
1 + O(λ−2) + O(|x − Q0|λ−3)

)
.

Using the result of above, we get for the integral near minus infinity for |x | → ∞:

−E1
√|x−Q0|∫

−∞
(∂ne(λ, ·; Q0))(x)dλ

= 2

−E1
√|x−Q0|∫

−∞

(
2

λ

)n

λ−2 exp

(
2(x − Q0)

λ

) (
1 + O(λ−2) + O(|x − Q0|λ−3)

)
dλ
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= 2

0∫
−1/(E1

√|x−Q0|)

(2λ)n exp (2λ(x − Q0))
(
1 + O(λ2) + O(|x − Q0|λ3)

)
dλ

= (−1)nn!
(x − Q0)n+1

+ O(|x − Q0|−n−3).

Summing up the contributions of the three ranges gives

(−1)n

n! ∂n K Q0(x) = 1

(x − Q0)n+1
+ τ ′(x, Q0)

(J (x, Q0)e1e2)n+1
+ O(|x − Q0|−n−3).
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Appendix: Planar Parallelogram-Graphs

The aim of this appendix is to discuss some combinatorial and geometric properties
of parallelogram-graphs that were used in Sect. 3. The following notion of a strip is
standard, see for example the book [3].

Definition A strip in a planar quad-graph Λ is a path on its dual ♦ such that two
successive faces share an edge and the strip leaves a face in the opposite edge where
it enters it. Moreover, strips are assumed to have maximal length, i.e., there are no
strips containing it apart from itself.

Note that a strip is uniquely determined by the edges it passes through, meaning
the edges two successive faces share.

Definition For a strip S of a parallelogram-graph Λ, there exists a complex vector
aS such that any (nonoriented) edge through which S passes is ±aS . We call aS a
common parallel.

aS is unique up to sign; the choice of the sign induces an orientation on all edges.
The parallel edges of the strip can be rescaled to length |aS| = 1,without changing the
combinatorics. Hence, rhombic planar quad-graphs and planar parallelogram-graphs
are combinatorially equivalent. Rhombic planar quad-graphs are characterized by the
following proposition of Kenyon and Schlenker [17]:
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Proposition 4.1 A planar quad-graph Λ admits a combinatorially equivalent
embedding in C with all rhombic faces if and only if the following two conditions
are satisfied:

• No strip crosses itself or is periodic.
• Two distinct strips cross each other at most once.

Remark Let us prove the simpler claim that planar parallelogram-graphs fulfill these
two conditions as was already noted by Kenyon in [16]. The underlying reason is
that any strip S is monotone with respect to the direction iaS: The coordinates of
the endpoints of the edges parallel to aS are strictly increasing or strictly decreasing
if they are projected to iaS . Whether the projections are decreasing or increasing
depends on the direction in which the faces of S are passed through. Without loss
of generality, we assume that the faces of S are passed through in such a way that
the projections of the corresponding coordinates are strictly increasing. For Q ∈ S,
let SQ denote the semi-infinite part of S starting in the quadrilateral Q that passes
through the faces of S in the same order.

As a consequence, no strip crosses itself or is periodic. Furthermore, S divides
the complex plane into two unbounded regions, to one is aS pointing and to the other
−aS . When a distinct strip S′ crosses S, it enters a different region determined by S,
say it goes to the one to which aS is pointing. Due to monotonicity, the angle between
iaS′ and aS is less than π/2. It follows that S′ cannot cross S another time, since it
would then go to the region −aS is pointing to, contradicting that the angle between
iaS′ and −aS is greater and not less than π/2.

In order to give explicit formulae for the discrete Green’s function and the discrete
Cauchy’s kernels in Sects. 3.3 and 3.4, we chose a particular directed path connecting
two vertices (or a face and a vertex) by edges of the parallelogram-graph Λ. This
path was monotone in one direction. The existence of such a path follows from the
following lemma, generalizing a result of [2] to general parallelogram-graphs. The
proof bases on the same ideas.

Lemma 4.2 Let Λ be a parallelogram-graph and let v0 ∈ V (Λ) be fixed. For a
directed edge e of Λ starting in v0, consider the subgraph Ue ⊂ Λ that consists of
all vertices and edges of directed paths on Λ starting in v0 whose oriented edges
have arguments that can be chosen to lie in [arg(e), arg(e) + π).

Then, the union of all Ue, e a directed edge starting in v0, covers the whole quad-
graph. If there is a constant α0 > 0 such that α � α0 for all interior angles α of
faces of Λ, then the same statement holds true if [arg(e), arg(e) + π) is replaced by
[arg(e), arg(e) + π − α0].
Proof Let us rescale the edges such that all of them have length one. By this, we
change neither the combinatorics of Λ nor the size of interior angles.

For a directed edge e starting in v0, let U−
e and U+

e denote the (directed) paths
on Λ starting in v0, obtained by choosing the directed edge with the least or largest
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argument in [arg(e), arg(e) + π) (or [arg(e), arg(e) + π − α0]) at a vertex, respec-
tively. We first show that all vertices in between U−

e and U+
e are contained in V (Ue).

Then, it follows that Ue is the conical sector with boundary U−
e and U+

e .
Suppose the contrary, i.e., suppose that there is a vertex v between U−

e and U+
e to

which v0 cannot be connected by a directed path of edges whose arguments lie all in
the interval [arg(e), arg(e) + π) (or [arg(e), arg(e) + π − α0]). Let the combinato-
rial distance between v0 and v be minimal among all such vertices.

In the case that interior angles of rhombi are bounded by α0 from below, they
are bounded from above by π − α0. Hence, there is a vertex v′ adjacent to v such
that the argument of the directed edge v′v lies in [arg(e), arg(e) + π − α0]. Even if
interior angles are not uniformly bounded, v′ can be chosen in such a way that the
argument of v′v lies in [arg(e), arg(e) + π). By construction, v′ is not in V (Ue), but
still between U−

e and U+
e . Let us look at the strip S passing through v′v. Suppose

that the common parallel aS points from v′ to v.
If S intersects U−

e or U+
e , then an edge parallel to aS is contained in U−

e or U+
e ,

respectively. By construction, v0 and v′ then lie on the same side of the strip S.
If S does neither intersect U−

e nor U+
e , then it is completely contained in the left

half space determined by the oriented line v0 + te, t ∈ R, asU−
e andU+

e are. Suppose
S intersects the ray v0 + taS , t � 0. Again, it follows that v0 and v′ lie on the same
side of S.

It remains the case that S neither intersects U−
e , U+

e , nor the ray v0 + taS , t � 0.
Consider the quadrilateral area R in between the parallels v0 + taS , v′ + taS and
v0 + te, v′ + te, t ∈ R. By assumption, the semi-infinite part of S that starts with the
edge v′v and then goes into R does not intersect an edge of R incident to v0, and by
monotonicity, it does not intersect v′ + taS again. Now, Λ is locally finite, such that
only finitely many quadrilaterals of S are inside P . Thus, S leaves P on the edge
v′ + te, t ∈ R, and it follows that S separates v0 and v.

So in any case, S separates v0 from v. Any shortest path P connecting both points
has to pass through S. Let w be the first point of P that lies on the same side of S as
v does. Any strip passing through an edge on the shortest path connecting w and v
on S has to intersect P as well. It follows that replacing all edges of P on the same
side of S as v by the path from w to v does not change its length. But then, v′ is
combinatorially nearer to v0 than v, contradiction.

Finally, we can cyclically order the directed edges starting in v0 according to their
slopes. Then, the sectors Ue are interlaced, i.e., Ue contains both U+

e− and U−
e+ , where

e−, e, e+ are consecutive according to the cyclic order. As a consequence, the union
of all these Ue covers the whole Λ.

To perform our computations in Sects. 3.3 and 3.4, we needed not only that the
interior angles were bounded, but also that the side lengths were bounded. We can
relax the latter condition to boundedness of the ratio of side lengths.

Proposition 4.3 Let Λ be a parallelogram-graph and assume that there are con-
stants α0, q0 > 0 such that α � α0 and e/e′ � q0 for all interior angles α and two
side lengths e, e′ of any parallelogram of Λ. Then, E1 � e � E0 for all edge lengths
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e, where E0 := e0q N
0 and E1 := e1q

−N
0 with N := ��2π/α0�/2� and e1 � e0 being

the side lengths of an arbitrary parallelogram of Λ.

Proof Let Q′ ∈ V (♦) be fixed with edge lengths e1 � e0 and let Q ∈ V (♦) be
another parallelogram with center x . In the following, we construct a sequence of
n strips such that any two consecutive strips are crossing each other, the first one
contains Q′, the last one contains Q, and n � N . Then, it follows that the side lengths
of Q are bounded by E0 and E1.

Let S0 be a strip containing Q′. If Q ∈ S0, we are done. Otherwise, we choose
the common parallel aS0 in such a way that x lies in the region −aS0 is pointing to.
Let β0 := arg(aS0). Since S0 is monotone in the direction iaS0 and interior angles are
uniformly bounded, the ray x + taS0 , t > 0, intersects S in exactly one line segment.
Let y0 be the first intersection point and Q0 a quadrilateral of S containing y0.

Because Λ is locally finite, the line segment connecting x and y0 intersects only
finitely many parallelograms. Through any such parallelogram at most two strips are
passing. Thus, only a finite number of strips intersect this line segment. Therefore,
we can choose a strip S1 intersecting SQ0

0 in a parallelogram Q0,1 such that S1 does
not contain Q and does not intersect the line segment connecting x and y0. Moreover,
we require that Q′ /∈ SQ0,1

0 . Now, choose the common parallel aS1 of S1 in such a way
that there is an argument β1 of aS1 that satisfies π + β0 > β1 > β0. By construction,
x lies in the region−aS1 is pointing to. Note that SQ0,1

1 cannot cross S0 a second time.
Suppose we have already constructed the strip Sk with common parallel aSk and

argument βk , k > 0, and x lies in the region−aSk is pointing to. Sk shall not intersect
the line segments connecting x and y0 or connecting x and yk−1. Moreover, assume
that the semi-infinite part SQk−1,k

k starting in the intersection Qk−1,k of Sk with Sk−1

does not cross S0.
Let yk be the first intersection of the ray x + taSk , t > 0, with a quadrilateral Qk

of the strip Sk . By the same arguments as above, there exists a strip Sk+1 intersect-
ing SQk−1,k

k ∩ SQk
k that does not contain Q and does not intersect the line segments

connecting x and y0 or x and yk . Choose its common parallel aSk+1 in such a way
that it has an argument βk+1 that satisfies π + βk > βk+1 > βk . By construction, x
lies in the region −aSk+1 is pointing to. If the semi-infinite part SQk,k+1

k+1 starting in the
intersection Qk,k+1 with Sk does not cross S0, then we continue this procedure. For
a schematic picture of the proof, see Fig. 7.

After at most l := �2π/α0� steps, we end up with a strip Sl such that SQl−1,l

l
intersects S0. Indeed, let us suppose the contrary, that is, let us suppose that all
SQ1,2

2 , . . . , SQl−1,l

l do not cross S0.
By assumption, βk + π − α0 � βk+1 � βk + α0. It follows that the first j such

that β j is greater or equal than β0 + 2π satisfies j � �2π/α0�. In addition, we have
β j < β0 + 3π − α0.

By construction, Sj does not intersect the line segment connecting x and y j−1.

Moreover, S
Q j−1, j

j cannot cross Sj−1 a second time. It follows that S
Q j−1, j

j cannot
intersect the ray x + taSj−1 , t > 0.
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Fig. 7 Schematic picture of the proof of Proposition 4.3

Also, S
Q j−1, j

j does neither cross S0 nor does it intersect the line segment connecting

x and y0, so it does not intersect the ray x + taS0 , t > 0. Thus, S
Q j−1, j

j is contained in
the cone with tip x spanned by aSj−1 and aS0 (with angle less than π ). This contradicts

the monotonicity of S
Q j−1, j

j into the direction iaSj , because the ray x + taSj , t > 0,
is not contained in the interior of the cone above.

In summary, we found a cycle of m strips S0, S1, . . . , Sm−1 surrounding x , where
m � �2π/α0� + 1. Actually, m � �2π/α0�, because the aSk are cyclically ordered.
Since only finitely many strips intersect the strip S0 in between Q′ and Q0,1, we can
assume that Q′ is contained in SQm−1,0

0 .
These m strips determine a bounded region x is contained in. If Q′ �= Qm−1,0,

then we look at the semi-infinite part of the strip S̃0 different from S0 that passes
through Q′ and goes into the interior of the bounded region above. It has to intersect
one of the strips S1, . . . , Sm−1, say Sk . Then, S0, . . . , Sk, S̃0 or S̃0, Sk, . . . , Sm−1, S0
determine a bounded region x is contained in (Q may be an element of S̃0). Clearly,
they are at most �2π/α0� such strips, and Q′ lies on an intersection.

If Q /∈ S̃0, then a strip SQ containing Q has to cross two different strips of the
cycle due to local finiteness. In the same way as above, we can find a cycle of at
most m ′ � �2π/α0� strips S′

0, S′
1, . . . , S′

m ′−1 such that Q lies on one of the strips,
say S′

k , and the intersection of S′
0 and S′

m ′−1 is Q′. If k � �m ′/2�, then we choose the
sequence of strips S′

0, S′
1, . . . , S′

k ; otherwise, we take S′
m ′−1, S′

m ′−2, . . . , S′
k . Any two

consecutive strips are crossing each other, Q′ is on the first strip, Q on the last one,
and there are at most ��2π/α0�/2� of them.

Remark In general, the bound ��2π/α0�/2� in the proof is optimal. Indeed, consider
n rays emanating from 0 such that the angle between any two neighboring rays is
2π/n. In each of the n segments, choose the quad-graph combinatorially equivalent
to the positive octant of the integer lattice that is spanned by two consecutive rays.
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For example, if n = 4, we obtain Z
2. Then, any strip passes through exactly two

adjacent segments, and �n/2� is the optimal bound.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
Noncommercial 2.5 License (http://creativecommons.org/licenses/by-nc/2.5/) which permits any
noncommercial use, distribution, and reproduction in any medium, provided the original author(s)
and source are credited.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.
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