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Implementing extensive molecular dynamics simulations we explore the organization of magnetic
particle assemblies (clusters) in a uniaxial liquid crystalline matrix comprised of rodlike particles. The
magnetic particles are modelled as soft dipolar spheres with diameter significantly smaller than the
width of the rods. Depending on the dipolar strength coupling the magnetic particles arrange into head-
to-tail configurations forming various types of clusters including rings (closed loops) and chains. In turn,
the liquid crystalline matrix induces long range orientational ordering to these structures and promotes
their diffusion along the director of the phase. Different translational dynamics are exhibited as the liquid
crystalline matrix transforms either from isotropic to nematic or from nematic to smectic state. This is
caused due to different collective motion of the magnetic particles into various clusters in the
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1 Introduction

Self assembly of sub-micron particles, such as gold nano-
particles," quantum dots,” and magnetic particles®® into super-
structures, hosted in functional matrices, provides an avenue
for producing multi-stimuli responsive materials. Liquid crystalline
(LC) matrices are functional mediums that exhibit a plethora of
ordering motives connected with directional and translational
sensitivity to external stimuli. In recent experimental reviews”'°
and approaches®>'" is shown that LC matrices can be used
for inducing the self organization of superstructures and
nanoparticles.

Correspondingly, creating suspensions of magnetic nano-
particles (MNP) in liquid crystalline (LC) matrices, i.e. LC-MNP
hybrid systems,>'® is a non-trivial strategy for obtaining
materials that are sensitive both to external magnetic and
electric fields. The simplest of LC-MNP hybrid, a ferronematic,
was coined by Brochard and de Gennes'? four decades ago;
formulating the free energy in a mesoscopic model of colloidal
MNP and thermotropic LCs, they have predicted that the
system can be locally ferromagnetic without exhibiting macro-
scopic magnetization. Systematic efforts to synthesize ferro-
nematics have produced a variety of colloidal suspensions of MNP
in thermotropic low molar mass LCs."* ™ Nevertheless, realization
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of a LC-MNP hybrid that consist of local ferromagnetic domains
announced® two years ago. Early experiments in lyotropics have
shown that lyomesophases doped with magnetic particles signifi-
cantly alter the sensitivity of these systems to magnetic field'®"”
in comparison to undoped lyomesophases. There is also strong
current interest'® in lyotropic suspensions of colloidal rodlike LC
and MNP spheres in which both species have comparable size.
Further, experimental research has produced'®° colloidal sus-
pensions of spherical magnetic particles with pigment rodlike
particles.”! These systems are quite promising regarding their
sensitivity both to magnetic and electric fields, since even
the mono-dispersed system of pigment rods exhibits non-
conventional behavior (e.g. reversible phase separation upon
application of an external electric field*").

Herein, we attempt to clarify the role of basic geometrical
features of liquid crystalline and magnetic particles on the
self-organization of such systems using molecular dynamics
simulations. To this end we consider a rod-sphere mixture
(see ref. 22 and 23) in which the magnetic particles are
represented as soft dipolar spheres with an embedded dipole.
We focus on situations where the length scales of the two
species are comparable. Thus, our model is not appropriate for
situations where the magnetic particles are much larger than
the LC molecules (such as in ref. 3) and thus, induce strong
distortions (for corresponding theoretical approaches, see ref. 12
and 24). Still, our model provides a realistic description of other
experimental systems. For example, we have recently used our
model to interpret the response of a real system>’-consisting of
LC pigment nanorods (of typical width of 40 nm) and magnetic
spheres (of diameter 10 nm)-under an external magnetic field.
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The constituent parts of this model (i.e. rod-sphere mixtures and
monodispersed dipolar spheres) have already been studied
extensively as it is shown below.

Nonmagnetic rod-sphere mixture systems have attracted
considerable scientific interest. In particular, the phase behavior
of such systems has been investigated by experiments,>?°
theoretical studies’”° and computer simulations®'* revealing
a rich polymorphism that includes re-entrance phase transitions
as well as multiphase equilibria between isotropic, nematic,
smectic and columnar phases. Our intention here is concen-
trated in fully miscible binary rod-sphere mixtures in various
LC states.

Mono-dispersed dipolar sphere systems have also been
studied intensively since it constitutes the simplest model of
magnetic fluids (ferrofluids). Insight into the phase behavior
of such systems has been obtained by analytical theories®>°
and computer simulations.*>*>*°*® These systems exhibit a
variety of self-assembled micro-structures in which the dipolar
spheres are arranged into head-to-tail configurations. In particular,
they form ferromagnetic chains,*®™** networks,*®*"4® rings*%*3~
and branched®™® structures. The stability of these structures has
been related to thermodynamic variables of concentration and
temperature. Experimental observations of magnetic particle
assemblies in isotropic solutions can be found in ref. 6-8.
Furthermore, the self-organization and assembly of the magnetic
particles can be tuned by external fields giving rise to (infinite or
finite) ferromagnetic chains in homogeneous magnetic fields,*”
formation of synchronized ferromagnetic layers in rotational
fields,*® cave structures in triaxial fields*® with potential applica-
tions in biomedicine®>*" and magneto-rheology.”” Even though,
an enormous effort has been devoted in mono-dispersed dipolar
sphere systems, as it is shown above, there are a few simulation
studies”>* that take into account explicitly the presence of
an anisotropic medium (e.g. a LC matrix) in dipolar spheres
suspensions. In this paper we attempt to further contribute to
this scientific research.

This work has a two-fold purpose: firstly, to examine under
what conditions the magnetic particles self assembly into
superstructures in LC matrices and, more importantly, how
the anisotropic medium promotes the self-organization of these
assemblies. Secondly, by monitoring the evolution of the system
with time we examine the translational dynamics both in the
isotropic state and LC matrices. To the best of our knowledge,
the study both of structure and dynamics of magnetic particle
assemblies (clusters) in LC matrices using simulations is
missing from the research literature. In earlier Monte Carlo
simulations®*>* we have focused on systems in which the
diameter of spheres is equal or greater than the width of the
rods; consequently, the magnetic particles form infinite or
fragmented chains that organize into uniaxial and biaxial
states. In the present work, we scrutinise the opposite direction,
by studying both the structure and dynamics in mixtures of
rods and relative small magnetic spheres (i.e. of diameter
smaller than the width of the rods). In other words, we give
emphasis to both static and dynamic properties of such systems.
This is challenging, both from theoretical and the ongoing
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experimental perspective, since this model system is closer to
the real suspensions of rod-magnetic sphere particles.">*

The model and simulation details are presented in Section 2.
Our results for the ordering and structure of the magnetic
particles assemblies in the LC matrices are presented and
discussed in Section 3.1. In Section 3.2 we present the evolution
of the system with time and the corresponding translational
dynamic mechanisms. Finally, the conclusions are presented in
Section 4.

2 Model and simulations details

We have studied binary mixtures of N, Gay Berne (GB) rods and
N; dipolar soft spheres (DSS), with an embedded permanent
point dipolar moment g in their center. Here we provide a brief
description of the parametrization of the model that is used; a
more detailed presentation is given elsewhere.?*** The rods
interact via an anisotropic (orientational dependent) attractive-
repulsive GB potential.>®> The GB potential is of Lennard-Jones
form incorporating an orientation dependent range; it depends
both on the orientation and interparticle distance of two
anisotropic particles. We have set the length (/) to width (o)
aspect ratio l/o, = 3. We have chosen this value since (i)
corresponds to a well studied mono-dispersed GB system,>?
and (ii) it is in the accessible limit, though in the lowest,
of experimentally investigated real rodlike liquid crystalline
colloidal suspensions.'®?® The DSS particles interact via a soft
repulsive potential and a dipole-dipole interaction.?*?* The
diameter of the DSS particles is set o.* = g5/gy = 0.25 (L.e. it is
four times smaller than the width of the rods comparable with
that in corresponding experimental systems'®°). A systematic
examination of mixtures with spheres diameter equal or greater
than the width of the rods has been reported elsewhere.?*?*
The long range interactions are handled by the implementation
of the three dimensional Ewald sum.>* The reduced permanent

point dipole moment is set to u* = y/\/soas3 =3 (or 3.5 in

some cases), and the reduced temperature is T* = kgT/e, (With kg
being Boltzmann’s constant and ¢, is energy parameter of the
GB interaction®?). The dipolar coupling parameter /. = */kTo >
then takes values greater than 6, which is characteristic of
strongly coupled magnetic particles.*®>>°® Finally, for inter-
action of rods and spheres we consider a modified GB
potential.>**” The modified GB potential depends only on the
orientation of the rods and the interparticle distance vector of
the center of mass of rods and spheres.

We have implemented extensive molecular dynamics (MD)
simulations®® using N = N, + N; particles at constant volume V
and (kinetic) temperature 7. We have used the leap-frog
algorithm®®° to handle the equations of motion. We have
examined binary mixtures of GB-DSS particles for a fixed
particle composition x; = N;/N = 0.8 and volume fraction ratio
¢./ds = 780 (where ¢, = N,u,/V is the volume fraction and u, is
the volume of particle a = r, s-for rods and spheres, respectively-)
and for various number densities p* = No,*/V. The volume
fraction ratio, ¢./¢s, is quite high in comparison to previous
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studies’>*® in which the corresponding value is one or two
orders of magnitude smaller. An important advantage of study-
ing suspensions of magnetic particles of relative high volume
fraction ratio, ¢./¢s, is that this permits to examine the influence
of the LC matrix on the magnetic particle assemblies rather than
the other way round. The reduced moment of inertia is set for
both particles to I* = I/ma,> = 1.0 and a time step At* = 0.002
(where the reduced time r* = /&y/mo*t). Equilibration requires
a length of a least 10° time steps and further 10° time steps are
used for producing ensemble average.

3 Results and discussion
3.1 Self organization of magnetic particles assemblies

We have examined GB-DSS mixtures consisting of N = 2000 or
4000 particles for composition x, = 0.8; the systems show
statistically equivalent results. We have performed cooling
series using as initial configuration either an isotropic phase
or a nematic phase (obtained by melting a crystal state) with a
homogeneous distribution of the DSS particles in the simula-
tion box. The reversibility of the states has been tested for
selected state points [(T*, p*)] by performing heating series
from positionally ordered states. The state diagram in a [(T*, p*)]
presentation is shown in Fig. 1. Here, we have set u* = 3.0. We
should note that this diagram shows states in equilibrium. Our
intention here is not to locate the phase transition boundaries.
The calculation of the exact phase boundaries requires simula-
tion techniques and methods to calculate the absolute free
energy (see for example ref. 60) that exceed the scope of this
paper. Optical observations indicate that only one phase is
present in the simulation box of each state point. In that sense
we provide an overview of the phases exhibited. The states are
indicated in the diagram by different symbols. We have obtained
three fully miscible phases (categorised with respect to the
ordering of the GB particles), namely: (i) an isotropic (I), a
uniaxial nematic (N,) and a smectic-B (SmB) phase. The topology
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Fig. 1 (a) Tentative state diagram of a GB—DSS mixture with ¢* = 0.25
and x, = 0.8. The points on the diagram indicate the pairs (T*, p*) for which
the actual simulations were performed. The dipole moment is set u* = 3.0.
The dotted lines indicate, approximately, coexistence densities of the pure
GB system.>® Abbreviations: fully miscible isotropic (1), uniaxial nematic
(Ny). uniaxial smectic (SmB) states.
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of the diagram is similar to that of a pure GB system.’?
The dotted lines indicate, approximately, coexistence densities
(p* = p.*NIN,) of pure GB system (the data for p.* = N;5,*/V where
taken from ref. 53). Note that the lines drawn a guide to the eye.
Thus, the DSS particles do not exert strong perturbation on the
LC matrix. As we have already mentioned, this is expected due to
the small total volume of DSS in comparison to corresponding
volume of the GB particles. In the I phase, the orientational
order of GB species has been confirmed by the calculated global
nematic order parameter S” that takes values essentially zero.
The global nematic order parameter S@ (with a = r, s) is
calculated by diagonalization of the ordering matrix and extract-
ing the largest eigenvalues® (see also ESI,t Section I). The N,
phase is a uniaxial phase similar to the pure GB system. At lower
temperature the GB particles are arranged into layers forming a
smectic phase that in addition exhibits hexagonal (in-layer) order
indicative of a SmB phase. Depending on the coupling strength 4
the DSS particles self-assemble into (finite) clusters as it is
illustrated in Fig. 2. In the next subsections, we turn to under-
stand the structure of the clusters of the magnetic particles and

Fig. 2 Representative snapshots of a GB—DSS mixture with gs* = 0.25 and
X, = 0.8 in various states: (a) isotropic state at [(T*, p*) = (1.2, 0.34)],
(b) uniaxial nematic (N,) state at [(T*, p*) = (1.4, 0.44)] and (c) uniaxial
nematic (N,) at [(T*, p*) = (1.2, 0.44)]. The direction of A, and the principal
axis frames of a ring and a chain are also shown. For clarity, the rod species
have been removed from the simulation box (right column).
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the mechanisms that determine the organization of these struc-
tures in the LC matrix.

3.1.1 Clustering of magnetic particles. From the snapshots
that are shown in Fig. 2 one clearly recognizes the presence of
clusters of DSS particles in the LC matrix. The self assembly of
DSS particles into clusters has been quantified by implement-
ing the following procedure: We know the positions of the DSS
particles at each time step (note that we obtain ensemble
averages by collecting samples every 5000 time steps), (1) we
begin with the DSS particle i, (2) secondly, a simple criterion is
used to define a ‘bond’ between two particles. Specifically, two
DSS particles i and j are considered bonded if their interparticle
distance (ry) fulfils: rj; < rq, where ry is set to 1.240,. (3)
Another DSS particle 1 is ‘bonded’ with i if r; < ry; moreover,
if (i,j) are bonded then 1 is a member of the cluster (i,j,]) when
either rj; < rq or 1y < ry. This process is continued to
determine all DSS particles that form a cluster with DSS particle
i. (4) We then continue the search of other clusters implement-
ing the same process (1 to 3). The value of r lies between the
first maximum and minimum of the pair correlation function
g(r) and does not change considerably for the p* and T* we have
examined (see ESI,i Section II, for representative g(r)). This
minimal criterion, that is used here and based on geometrical
considerations, simplifies the parameterization criterion rela-
tive to the one introduced in previous studies*® that, in addi-
tion, uses a negative inter-particle energy fulfilment («(i,j) < 0).
After employing the above procedure to determine the clusters,
we further categorize them according to their topology into: (i)
chain clusters consisting of at least three particles (for which
two particles of the cluster have one bond-i.e. the ends of the
chain-), (ii) ring clusters (for which all particles of the cluster
have two bonds), (iii) branched clusters (for which at least one
particle of the cluster has three or more bonds) and (iv) “free”
(non-bonded) particles and pairs of DSS particles. Therefore,
the ring clusters and branched structures consist of at least
three and four DSS particles, respectively. This is not surprising
since small rings of three particles have also been observed in
other theoretical studies.*®

We have examined the size distribution of clusters for
various state points [(T*, p*)] in the I, N, and SmB phases.
Initially, we investigate the self-assembly of particles into
clusters for fixed p* = 0.44 by varying the temperature 7* within
the N, and SmB phases. The calculated fractions of DSS
particles into (i) rings, (ii) chains, (iii) branched structures,
and (iv) “free” or pairs of particles as a function of temperature
are presented in Fig. 3. As it is shown in the diagram, the
majority of the particles form clusters of rings, chains, pairs or
remain in the sample as “free” particles; whereas branched
structures correspond only to a small fraction (lower than 0.1)
that decays to 0.07 by decreasing the temperature to 7* = 1.2.
On cooling, the fraction of the rings increases considerably
from 0.1 (at T* = 1.4) to 0.7 (at T* = 1.0). At the same time the
fraction of “free” and pairs of DSS particles decreases drama-
tically. The formation of chains has a peculiar behavior: it
slightly increases from high to lower temperatures and then
decreases. This behavior can be interpreted by the fact that the
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Fig. 3 (a) Fraction of DSS particles into various clusters dependence on
temperature T* along an isochore p* = 0.44 and (b) fraction of DSS
particles into various clusters dependence on density p* along an isotherm
T* = 1.2. Different symbols are used to indicate: rings (square), chains
(circles), branched structures (triangles) and ‘free’ or pairs (down triangles)
clusters.

formation of rings become energetically more favourable at
lower temperatures (i.e. by increasing the dipolar coupling 4).
Rovigatti et al.**** have found that in mono-dispersed dipolar
hard spheres the fraction of ring clusters increases by lowering
the temperature whereas chain clusters show the reverse beha-
vior. Our results indicate that even in an anisotropic medium
the DSS component exhibits qualitative similar behavior
regarding the formation of chains and rings. In summary, we
have found that the LC matrix does not prevent the formation
of clusters. Rather the attractive-repulsive interaction between
the GB and DSS particles supports the formation of clusters.
The clusters size distribution n(k) (with k being the number
of particles in the cluster) of all types along an isochore
p* = 0.44 and various temperatures is presented in Fig. 4a.
Lowering the temperature promotes the formation of larger
clusters; consequently, the amount of clusters consisting of few
particles decreases. Furthermore, for 7% < 1.4 we observe a
local maximum of k£ & 10 — 20 that is related to the contribu-
tion from ring clusters. This is proven both by an increment of
the fraction of the rings in the sample (see Fig. 3) and by the
diagram of the distribution n,(k) of the ring clusters that is
shown in Fig. 4b. It is evident that n,(k) exhibits a maximum for
size k ~ 10 and shows a tail at lower temperatures indicating
the presence of even larger clusters. The cluster distribution of
the chains n.(k) does not show any local maxima and decays
as the cluster size k is increased (see Fig. 4c). At lower tem-
peratures the tail of the distribution expands to larger cluster
size k indicating an increment of the mean size of the chains.
We now turn to study the clusters distribution dependence
on the density p* at constant temperature 7* = 1.2. As it can be
seen from Fig. 4d-f the behavior is qualitatively similar for the
whole range of densities examined. This is also reflected in the
populations of clusters that do not change significantly with
density (see Fig. 3b). This demonstration is a non-trivial finding
with consequences yet to be explored in the design of real
suspensions (e.g. in ref. 20) of magnetic particles in LC matrices.
The fact that the orientational state of the matrix (isotropic
versus nematic) does not significantly change the cluster types
and their size distributions suggests, on the one hand, that the
(free) energy landscape determining the cluster formation is
similar to the case of pure DSS particles (without the matrix).

This journal is © The Royal Society of Chemistry 2016
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Fig. 4 (a—c) Number of clusters of arbitrary type n(k), rings n,(k) and
chains nc(k) of size k for several temperatures T* along an isochore p* =
0.44. (d—f) Number of clusters n(k), rings n,(k) and chains n.(k) of size k for
several densities p* along an isotherm T* = 1.2.

This might be a consequence of the fact that the particles are too
small to feel the character of the matrix. On the other hand, our
results reveal that the matrix in its nematic state induces an
average orientational ordering of the clusters (see Section 3.1.2),
showing that the cluster structures (and thus the landscape)
does respond, to some extent, to the matrix.

3.1.2 Orientational ordering of clusters in the LC matrix.
In this subsection we examine the orientational ordering of
clusters as individual entities in the LC matrix. Indeed, the
global order parameter S® of the DSS particles can not measure
the orientational order of the clusters in the LC matrix. Below,
we describe the method we have used® to monitor the orienta-
tional order of the clusters (see also ESL,t Section I): (i) initially,
we calculate the nematic director (fi,) for the entire system, (ii)
secondly, we construct the ordering matrix of each cluster and
from the extracted eigenvalues S§' > S5 > S we get the
corresponding eigenvectors i, i and A (this set of eigen-
vectors defines a local principal axis frame for each cluster),
and (iii) finally, we calculate ensemble averages of the clusters
order parameters that are given by S = (P,(A.Af)), with
b =+, —, 0 and P, the second legendre polynomial. The order
parameter S shows the orientational order of the local princi-
pal axis of the cluster with respect to the director fi, of the whole
system. Here, ‘cl = ring or chain’ for rings and chains, respec-
tively. The A$' is the major axis of the cluster (either ring-of
elliptical shape-or of ‘snake-like’ chains). The other two eigen-
values are perpendicular to fi'. For example, in a uniaxial linear
chain, S§' is equal to S and therefore the corresponding

Acl

eigenvectors can be any vector that is perpendicular to <.
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Fig. 5 Order parameters of clusters S§' dependence on temperature T*
for constant p* = 0.44 and p* = 3.0. Solid symbols correspond to the

global order parameter of the rods and ring clusters; open symbols
correspond to chain clusters.

A plot of the Sf order parameters at various temperatures in
the N, and SmB phase for p* = 0.44 is given in Fig. 5. Interest-
ingly, the S¢' order parameter has relatively large positive
value -between 0.4 and 0.6 both for rings and chains-whereas
the other two are not equal and have negative (or near to zero)
values. This clearly indicates that the major axes fi§ of the
clusters tend to be, on average, parallel to ii,. We conclude that
the LC matrix induces orientational order to the clusters. An
illustration of the local principal axis frame of a ring and a chain
is shown in Fig. 2c. This type of alignment is not found in the
isotropic phase in which the Sf parameters are close to zero.
Calculations of corresponding pure dilute dipolar systems (by
dropping the LC particles and keeping the same volume) show
that there is no orientational order in these systems. The same
behavior is expected in pure, relative dilute, isotropic systems of
dipolar spheres reported in ref. 45. The alignment of the clusters
is enhanced at lower temperatures in which more ‘tight’ clusters
are formed. The non-uniaxiality of the shape of the clusters is
shown by the inequality of the other two values S§ and S (see
Fig. 5). Indeed, the nonvanishing 4 = 5§ — 5% shows deviation
from a uniaxial shape (i.e. either of linear-chains or circle-rings)
that is more pronounced in the case of ring clusters (see Fig. 5).
In the nematic states the order parameter of rings A" is
greater than the order parameter of chains 4", Furthermore,
one of the principal axes of the ring clusters i tends to be
perpendicular to i, with the corresponding order parameter of
rings being —0.25 < 5§ < 0. The remaining axis, A, follows the
motion of A and A since they form an orthogonal frame.
Hence, even though the LC matrix posses uniaxial symmetry, the
clusters do not rotate freely around the axis of alignment (7.e. A"
due to their non-uniaxial shape.

In the next subsection we keep the matrix at the same
conditions (nematic) and examine the impact of a stronger dipole
moment p* on the cluster formation and their orientational order.

3.1.3 Ordering and clusters size distribution for a stronger
dipole moment of the magnetic particles. Let as now examine
the clusters’ size distribution in the nematic phase by considering
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stronger dipole moment of the DSS at a fixed state point.
Specifically, we have studied the case y* = 3.5 (as compared to
u* = 3.0), yielding 4 = 10.2 (as compared to 1 = 7.5) at [(T*, p*) =
(1.2, 0.44)] in the N, state. Over 98/100 of the particles participate
in the formation of ring type clusters whereas all other types
nearly extinguish. A snapshot that illustrates this is given in Fig. 6.
This is another confirmation that strong dipolar interactions
favour the formation of ring clusters. In practice, the total clusters
distribution, n(k), coincides with n,(k) and is presented in Fig. 6b.
The n(k) distribution becomes flat and does not show a maximum
as in the case of smaller dipole moment Z.e. y* = 3.0. This means
that rings of cluster size 10-100 coexist in the sample and are
distributed homogeneously in the LC matrix (see Fig. 6a). These
results show that there are both quantitative (regarding the type of
distribution) and qualitative (regarding the type of dominant
clusters) differences in comparison to a system of smaller p*.
Moreover, the orientational ordering of the clusters in the N,
phase is clearly enhanced with S7¢ increment from 0.45 (u* = 3.0)
to 0.60 (u* = 3.5). The order parameter 4 = S§"¢ — S""¢ ~ 0.19 is
essentially equal to the system with smaller x*. Note also that the
corresponding order of the N, phase is not affected indicating
that the presence of clusters does not exert strong perturbation in
the LC matrix properties.

3.2 Translational dynamics of magnetic particles in the LC
matrix

In this section we investigate the diffusion properties of the DSS
particles in the LC matrix. The translational dynamics have

= 2=10 T b
100' —v-A=7.5 W\%nnu [ e i ( )
- | %v
k=1 v
S0 o Vf%z o
10-2- V/ v éiv o
10° 10’ 102

k

Fig. 6 (a) Representative snapshots at state point [(T*, p*) = (1.2, 0.44)] in

the Ny phase for u* = 3.5. It is evident that ring clusters are dominant

and (b) ring type clusters n.(k) size distribution for u* = 3.5 (squares) and
= 3.0 (down triangles).
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been investigated by the evaluation of the mean-square dis-
placement (MSD):®>

(IAr(n") = ;ﬁj (1) = riO)) &)

For a typical fluid, the MSD function is for short times propor-
tional to ¢* indicating a short time ballistic regime, followed by
a diffusion regime where (|Ar(f)|*) ~ ¢ Through Einstein’s
relation®” at sufficiently long times we can calculate the self
diffusion coefficient of the DSS particles,

o 1200) g

In an orientationally ordered LC matrix (e.g. in the N, or SmB
state) it is expected that the diffusion coefficients parallel (D))
and perpendicular (D, ) to the director fi, are different. These
diffusion coefficients are related through® 6D = 2D + 4D, . The
MSD as a function of reduced time is given in Fig. 7a for several
temperatures, along the isochore p* = 0.44. At high temperature
(T* = 1.4), in the N, state, the MSD is proportional to ¢* (ballistic
regime) and approach the linear “Einstein’s” regime at longer
times. At lower temperature (7* = 1.2), still in the N, state, a
sub-diffusive regime appears (for time range (0.1 < t* < 1)). At
even lower temperature (7* = 1.0), in the SmB state, the normal
diffusive regime is barely reached within long time simulation
runs of over 10° time steps. Nevertheless, the fact that we do
reach the diffusive regime suggests normal, fluid-like (rather
than glass-like) behaviour. For states of T* > 1.0 the linear
diffusive regime is reached at less than 10° time steps (see
Fig. 7a). In the ESI,t Section III we also present dipole-dipole
autocorrelation functions that decay to zero within the simula-
tion time runs, indicating a fluid behavior with respect to the
magnetic particles orientations. Due to both the long range and
local (hexagonal) translational ordering of the SmB state, the
magnetic particles become dynamically arrested covering only
short distances even at very long times.

The dependence of the total diffusion coefficient D on
temperature derived from the slope of MSD, which is 6D, (see
eqn (2)) at long times (linear regime), is shown in Fig. 7c. The
corresponding slopes provide 2D and 4D, . A linear fit of the
diffusion coefficients is also given in Fig. 7b. Clearly, the
equation® 6D = 2D + 4D is verified (see also Fig. 7c). As it
can be seen D increases by temperature for a given dipole
moment (¢* = 3.0). This has also been observed in pure systems of
dipolar dumbbells using simulations.®* This behavior can be
rationalized as follows: the percentage of “free” DSS particles
decreases by lowering the temperature giving place to the forma-
tion of clusters that slow down the mobility of DSS particles.

Further, we find that the diffusion of magnetic particles is
different in parallel and perpendicular directions. An example of
calculated MSD parallel (|Ar)()|*) and perpendicular (|Ar , (£)|*)
to i, are shown in Fig. 7b. The difference of the coefficients is
indicated by the diffusion anisotropy A = (D, — D_.)/D that is
shown in Fig. 7c. Further, A varies with 7* within the N, state. This
means that the formation of more strongly ‘bonded’ clusters,

This journal is © The Royal Society of Chemistry 2016
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Fig. 7 (a) Total mean square displacement (MSD) for fixed dipole moment
u* = 3.0 (exceptions are indicated), (b) direction resolved MSD parallel and
perpendicular to the nematic director in N, state at [(T*, p*) = (1.3, 0.44)]
(linear fits MSD-grey-, MSD parallel-dark red and MSD perpendicular-
cyan-) and (c) diffusion coefficients D, parallel D, perpendicular D, to
the nematic director, and diffusion anisotropy parameter A. Close and
open symbols correspond to dipolar moment u* = 3.0 and p* = 3.5,
respectively. The results were taken for various temperatures T* along an
isochore p* = 0.44.

occurring at lower temperatures due to an increase of 4, leads to
smaller A. Interestingly, at short times the magnetic particles
travel faster perpendicular to the nematic director. This behavior
is reversed at longer times (linear diffusive regime) and the
motion parallel to the LC director becomes faster. Therefore,
the LC matrix induces orientational order to the clusters (see also
Section 3.1.2) and promotes their long time collective motion
along the director.

We have also calculated the MSD dependence on time ¢* in
Fig. 8a for several densities, along an isotherm (7* = 1.2). The system
reaches the diffusive ‘linear regime’ for all densities examined.
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Fig. 8 (a) Mean square displacement (MSD) and (b) non-gaussian para-
meter a(t) dependence on time for several densities p* along an isotherm
T* = 1.2. The dipole moment u* = 3.0.

As it is expected at higher densities the reduced diffusion
coefficient D (not shown here) decreases.

To further monitor the translational dynamics in our system
we have calculated the ‘non-gaussian’ parameter®

3<\Ar(z)|4>

o(f) = ———5 -1 (3)
s(|ar(0)P )

By definition, «(¢) is zero in perfectly ballistic or perfectly
diffusive regimes, deviations from zero thus indicate non-trivial
behavior. As seen from Fig. 9 the «(¢) is a non-monotonic for
several temperatures and constant density p* = 0.44. At high
temperature (T* = 1.4), in the N, state, it initially increases and
then decays smoothly as the system passes from the ballistic to
the diffusive regime. This behavior is also evident by the MSD
that is shown in Fig. 7a. Note that at this state point a large
amount of particles do not form clusters (see Fig. 3). At
intermediate temperature (7* = 1.2) starting from the ballistic
regime, o(t) exhibits various modes and rises (¢* &~ 100) before
starting decreasing as the system passes to the linear regime.
The sub-diffusive regime that is detected by the MSD function
(see Fig. 7a) is indicated here by a plateau in the time range
0.1 < t* < 1 (see Fig. 9). This time period corresponds to
translational motion of length scale 0.10, to 1g, that is of the
order of magnitude of the size of DSS particles or very small
clusters. Therefore, it corresponds to intra-cluster correlations
in a non-ballistic and non-diffusive regime. At even lower
temperature (7* = 1.0), in the SmB state, «(¢) rises sharply and
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Fig. 9 Non-gaussian parameter a(t) dependence on time for several
temperatures T* along an isochore p* = 0.44 (with u* = 3.0). It is also
shown the corresponding quantities for a system with stronger dipolar
moment (with u* = 3.5).

decays for long times that correspond to diffusive regime (see
Fig. 9). This is caused because the local and long range
positional order of SmB ‘traps” various clusters, slowing
down differently their motion within the sample. Therefore,
the smectic structure significantly affects the collective
motion of the magnetic particles. Non-gaussian dynamics
has also been found®® in pure hard rods systems in the
smectic phase due to the layered structure and cooperative
motion of rod particles within the phase. On the other hand,
in a system of a relatively strong dipole moment, i.e. u* = 3.5,
in the same N, state (see Section 3.1.3), the presence of
dominant well defined rings suppresses this behavior. This
is shown in Fig. 9 in which a(¢) takes relative small values.
Nevertheless, the diffusion coefficients decrease in comparison
to a system with smaller p¢* in the same N, state (see Fig. 7c open
symbols).

We now turn to examine the behavior of the system along an
isotherm (T* = 1.2). The «(f) parameter indicates that the
dynamics of the system show qualitative difference as the
system goes from the low to high densities at an isotherm
(T* = 1.2) (see Fig. 8b). Indeed, at low densities in the isotropic
phase two plateau are found. The first one, indicated by a red
arrow, corresponds to short times ¢* ~ 1. As we have already
mention this is related to intra-cluster correlations. The other
plateau, is indicated by a green arrow, (reduced in height) is
found at long times ¢* =~ 100. At even longer times, by
approaching the linear diffusive regime the «(¢) decays to zero.
At higher densities (in the N, state) the second peak in the o(t)
plot rises before the DDS particles reach the diffusive regime.
This may be caused by the anisotropy of the LC matrix as it
transforms from an isotropic to a nematic state. A similar
interpretation was given above regarding the behavior of «(¢)
in the SmB state. The non-monotonic behavior of a(t) indicates
that the assembly and disassembly of clusters (chains, rings
and branched structures) can be attributed to two modes: one
corresponding to short times (intra-clusters correlations-first
plateau-) and another corresponding to longer times (inter-
cluster correlations-second plateau-).
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4 Conclusions

In this work, using extensive molecular dynamics simulations
we have studied the orientational and dynamical behavior of
magnetic particles in liquid crystal matrices. We have imple-
mented a simple model system comprising of Gay-Berne rods
and dipolar soft spheres in which their diameter is smaller than
the width of the rods. This prototype properly matches for
addressing fundamental problems regarding the organization
of magnetic particles in liquid crystalline ferrofluids.

We have observed the presence of magnetic particle assem-
blies (clusters) within the LC matrices. The matrix either in
isotropic or in the LC state does not prevent the assembly of the
magnetic particles into clusters. Hence, the host supports these
structures. Nevertheless, their type as well as the quantity of
DSS particles that form clusters depends crucially on the
dipolar coupling strength between DSS particles. Two main
types of clusters are exhibited, namely, rings (closed loops) and
chains in which the DSS particles self-assembly into head-to-
tail configuration. Interestingly, a small amount of branched
structures is found indicating that their stability is not favoured
in the binary mixtures we have examined. The anisotropic
matrix (either in the nematic or in the SmB state) promotes
the orientational order of the clusters indicating that it can be
used as a template for the self-organization of magnetic particle
assemblies. Tuning the dipolar strength, within the same
nematic state, causes qualitative and quantitative changes on
the properties of clusters. In particular, by rising the dipolar
strength, ring clusters become dominant and their orientational
ordering increases. The ordering of the nematic host does not
change due to small perturbation that is exerted from the
magnetic particles. This is in contrast to liquid crystalline
magnetic particles systems*>** in which the volume fraction of
magnetic particles is comparable to the LC particles and the
orientational ordering of the matrix is influenced. Suitable
orientational order parameters suggest that the clusters posses
a non-uniaxial shape (“snake’-like chains and ellipsoidal rings).

Furthermore, we have analysed the dynamical behavior
of the DSS particles in the LC matrix. At a moderate dipolar
coupling strength, in which a relative small number of
clusters is formed, the DSS particles go smoothly from the
ballistic to the linear diffusive regime. A sub-diffusive regime
appears for stronger dipolar strength between the ballistic and
linear diffusive regime. An anisotropy in diffusivity of the
magnetic particles in space occurs that is induced by the LC
matrix. It is found that the diffusion constant parallel is
greater than the diffusion constant perpendicular to the
nematic director. At long times the magnetic particles travel
faster along the director of the phase, whereas, at short times
the reversed behavior is found. The non-gaussian parameter
indicates the presence of different collective motion of various
clusters in the sample that depend on the orientational and
translational ordering of the matrix. Therefore, we have found
that both the LC state of the matrix and the dipolar coupling
strength plays an important role on the translational dynamics
of the DSS particles.
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Our findings provide a coherent frame under which the
structure and dynamical properties of complex LC ferrofluids
can be understood. This frame constitutes an exemplary tool
that can be used to gain physical insight into and interpret the
behaviour of experimental systems. Current research® shows
that magnetic field induced structural transformations in such
systems, by varying the strength of the field and the composi-
tion of the magnetic particles, opens up a route for the design
of new functional materials with potential application as
LC/MNP hybrid displays. An other interesting point that is also
under examination®” is who light propagation is influenced by
morphological transformations of the magnetic particles
within the matrix. Therefore, our results are of interdisciplinary
character and may combine theoretical, simulations and experi-
mental fields of fundamental research.
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