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Abstract. Motivated by the analysis of passive control systems, we undertake a detailed perturbation
analysis of Hamiltonian matrices that have eigenvalues on the imaginary axis. We construct minimal Hamil-
tonian perturbations that move and coalesce eigenvalues of opposite sign characteristic to form multiple ei-
genvalues with mixed sign characteristics, which are then moved from the imaginary axis to specific locations
in the complex plane by small Hamiltonian perturbations. We also present a numerical method to compute
upper bounds for the minimal perturbations that move all eigenvalues of a given Hamiltonian matrix outside a
vertical strip along the imaginary axis.

Key words. Hamiltonian matrix, Hamiltonian eigenvalue problem, perturbation theory, passive
system, bounded-realness, purely imaginary eigenvalues, sign characteristic, Hamiltonian pseudospectra,
structured mapping problem, distance to bounded-realness

AMS subject classifications. 93B36, 93B40, 49N35, 65F15, 93B52, 93C05

DOI. 10.1137/10079464X

1. Introduction. In this paper we discuss the perturbation theory for eigenvalues
of Hamiltonian matrices and the explicit construction of small perturbations that move
eigenvalues from the imaginary axis. With F*¢ denoting the vector space of real (F = R)
or complex (F=C)kx ¢ matrices, a matrix H € F?"?" is called Hamiltonian if

(HT)* = HJ, where J = [701,, 10] and I, is the n x n identity matrix (we suppress

the subscript n if the dimension is clear from the context). In order to simplify the pre-
sentation and to treat the real and the complex cases together, we use * to denote ” in
the real case and * in the complex case.

1.1. The distance to bounded-realness. It is well-known [22], [26] that the spec-
trum of Hamiltonian matrices is symmetric with respect to the imaginary axis; i.e., ei-
genvalues occur in pairs (4, —1) in the complex case or quadruples (4, —4,4, —4) in the
real case. This eigenvalue symmetry degenerates if there are eigenvalues on the imagin-
ary axis. The existence of purely imaginary eigenvalues typically leads to difficulties for
numerical methods in control [7], [26]. If purely imaginary eigenvalues occur, then in
some applications (see, e.g., section 1.2) one perturbs the Hamiltonian matrix in such
a way that the eigenvalues are moved away from the imaginary axis. We formulate this
as our first problem.

ProBLEM A. Given a Hamiltonian matriz H that has purely imaginary eigenvalues,
determine (in some norm to be specified) the smallest Hamiltonian perturbation AH
such that for the resulting perturbed matric H + AH an arbitrary small Hamiltonian
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perturbation will generically move all the eigenvalues off the imaginary azis. (By
“generically” it is meant that those small Hamiltonian perturbations which do not move
the imaginary eigenvalues away from the axis lie in a subset of zero measure within the
set of Hamiltonian matrices.)

Since checking the existence of purely imaginary eigenvalues of a Hamiltonian ma-
trix is used in the context of the bounded real lemma [4], we call this distance the dis-
tance to bounded-realness. The converse of this problem of determining the smallest
Hamiltonian perturbation of a Hamiltonian matrix so that all eigenvalues of the result-
ing perturbed matrix are purely imaginary (i.e., the distance to nonbounded-realness)
has recently been studied on the basis of so-called p-values and spectral value sets
in [18].

While the distance to bounded-realness is an important quantity that has to be
determined in order to characterize whether it is possible to find a perturbation that
moves all eigenvalues off the imaginary axis, in applications (see, e.g., section 1.2) often
a modified question is more important.

ProBLEM B. Given a Hamiltonian matriz H that has purely imaginary eigenvalues,
determine (in some norm to be specified) the smallest Hamiltonian perturbation AH
such that the resulting perturbed matriz H + AH has all eigenvalues robustly bounded
away from the imaginary azis; i.e., all eigenvalues of H + AH lie outside an open vertical
strip S, ={z € C| — v <Rz < t} (v > 0) along the imaginary azis.

If a numerically backward stable method is used (and we will propose such a meth-
od), then we just have to choose the width of the strip so that perturbations on the order
of the round-off errors cannot move eigenvalues on the imaginary axis again. We will
discuss such choices below.

In this paper we discuss numerical procedures for the solution of both Problems A
and B. We mention that determination of minimal perturbations is in general a difficult
nonconvex optimization problem; see [10]. Instead, we construct suboptimal perturba-
tions and hence obtain upper bounds for the smallest perturbations.

1.2. Passivation. The main motivation for studying the perturbation problems
that we have discussed in the previous subsection is the following. Consider a linear
time-invariant control system

i = Az + Bu, z(0) =0,
(1.1) y = Cz+ Du,

with matrices A € F*" B e F"™ (C € FP" and D € FP'™. Here u is the input, = the
state, and y the output.

Suppose that the homogeneous system is asymptotically stable; i.e., all eigenvalues
of A are in the open left half complex plane and that D is square and nonsingular. Then
(see, e.g., [4]) the system is called passive if there exists a nonnegative scalar valued
function ® such that the dissipation inequality

O(x(t)) — O(z(to)) < / "ty + yrude

holds for all ¢; > t; i.e., the system absorbs supply energy.

In real world applications the system model (1.1) is typically subject to several ap-
proximations. Often the real physical problem (e.g., the determination of the electric or
magnetic field associated with an electronic device) is infinite dimensional and is
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approximated by a finite element or finite difference model [17], or the system is non-
linear and the linear model is obtained by a linearization. The system may also be ob-
tained by a realization or system identification [8], [16], [35], or it may be the result of a
model reduction procedure [4].

If one uses an approximated model, then it is in general not clear that the property of
passivity will be preserved, and typically it is not; i.e., the approximation process makes
the passive system nonpassive. Since passivity is an important physical property (a pas-
sive system does not generate energy), one then approximates the nonpassive system by
a (hopefully) nearby passive system by introducing small (minimal) perturbations of A,
B, C, Dj see [8], [10], [15], [35], [36].

Typically, one has an estimate or even a bound for the approximation error in the
original system approximation, and then one tries to keep the perturbations within these
bounds. So from the application point of view it may not be necessary to really determine
the minimal perturbation; a perturbation that stays within the range of the already
committed approximation errors is sufficient. But from a system theoretical point of
view, it is also interesting to find a value or a bound for the smallest perturbation that
makes a nonpassive system passive. In general it is an open problem to determine this
minimal perturbation explicitly. Instead one uses optimization methods [8], [10], [11] or
ad hoc perturbation methods [14], [15], [35], [34]; see also [36] for a recent improvement of
the method in [15].

The converse problem of computing the smallest perturbation that makes a passive
system nonpassive has recently been studied in [29], again using optimization tech-
niques.

At first sight the passivation problem does not seem to be related to the perturba-
tion problem for Hamiltonian matrices. However, it is well-known [4], [15] that one can
check whether an asymptotically stable system is passive by checking whether the
Hamiltonian matriz

(1.2) 2 — [F G ] o [A - BR'C —BR'B*

H —F* —C*R'C —(A-BRC)*

has no purely imaginary eigenvalues, where we have set R = D + D*. Thus one can use
the distance to bounded-realness (i.e., perturbations that solve Problems A and B) to
construct perturbations that make the system passive. This topic will be discussed in a
forthcoming work.

The paper is organized as follows: In section 2 we introduce the notation and briefly
present some preliminary results. The perturbation theory for eigenvalues, in particular
purely imaginary eigenvalues of Hamiltonian matrices, is reviewed in section 3. Hamil-
tonian perturbations moving purely imaginary eigenvalues of a Hamiltonian matrix to
specific points in the complex plane are discussed in section 4. The minimal perturba-
tions or bounds of minimal perturbations are discussed in section 5. A numerical method
to compute approximate solutions of Problems A and B for the spectral norm || - ||, is
discussed in section 6.

2. Preliminaries. By C_ and C_, respectively, we denote the positive right half
and negative left half complex plane. For X € F™™ of full column rank, we denote by
Xt = (X*X)"1X* the Moore-Penrose inverse of X; see, e.g., [13]. For A € F™", the
spectrum is denoted by A(A). A subspace X CTF" is said to be A-invariant if
Az € X for any z € X. In this case we denote by A(A|X) the spectrum of the restriction
of the linear operator A to the subspace X. Let X € F™? be a full column rank matrix
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such that X = range(X). Then X is A-invariant if AX = XR for some R € F%? and
then we have A(A|X) = A(R).
It is well-known [28], [31], [32] that the Hermitian form

(2.1) (z,9) & iz* Ty, z,y € F2,

plays an important role in the perturbation theory of Hamiltonian eigenvalues. If
*Jy =0, then = and y are said to be J-orthogonal. Subspaces X,) C F?" are said
to be J-orthogonal if z*Jy =0 for all z € X, y € ). A subspace X C F?" is said to
be J-neutral if * Jx = 0 for all z € X. X is said to be J-nondegenerate if for any x €
X\ {0} there exists y € X’ such that 2*Jy # 0.

Nondegenerate invariant subspaces for Hamiltonian matrices are characterized by
the following theorem, where for a set of complex numbers E = {&,, ..., £} we denote
by Z the set of conjugates of the elements of E.

TueoREM 2.1 (see [12]). Let X, and Xy be invariant subspaces of the Hamiltonian
matriz H € F?™2". Suppose that A(H|X) N (—A(H|X,)) = @. Then 2fJxy =0 for all
T € Xl? Ty € XQ.

Suppose, additionally, that X, @ Xy = F?". Then X, and X5 are J-nondegenerate.

Proof. Let X}, € F?"P be a matrix whose columns form a basis of X}, k = 1,2. Then
HX ;. = X1.Ry, and the matrix R, € FPrPr satisfies A(R;) = A(H|X}). Consider the Syi-
vester operator S(Z) = RYZ + ZR,, Z € FP2. We have

S(XTTIXy) =R XTITXy + XTTXoRy
= —(JX R)* Xy + XT(T Xy Ry)
= —(THX1)* Xy + XT(THX,)
= X (TH)* Xy + X7 (TH) X,
=0.

Furthermore, by assumption 0 ¢ A(R}) + A(R,) and thus the Sylvester operator S is
nonsingular [23]. Hence we have X} J X, = 0, and this completes the proof of the first
claim.

For the second part, suppose that X; @@ X5 = F?" and that X, is degenerate. Then
there exists z; € X1 \ {0} such that 27 Jz =0 for all z € X;. However, we also have
zfJr =0 for all z € X,. This yields 277 = 0, contradicting the nonsingularity of
J. 0

We immediately have the following corollary; see, e.g., [12].

COROLLARY 2.2. Let H € F?"2" be Hamiltonian. Let ioy, ..., i, € iR be the purely
imaginary eigenvalues of H, and let Ay, ..., 4, € C be the eigenvalues of H with negative
real part. Then the H-invariant subspaces ker (H — ia;I)*" and ker (H — A;1)*" P
ker (H +A_jl)2" are pairwise J-orthogonal. All these subspaces are J-nondegenerate.
The subspaces

q
X_(H) = Pker (H — 4;,1)>",
j=1

q -
X, (H) = @ ker (H + A,1)*"
j=1

are J-neutral.
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There are several viewpoints that can be taken to perform the perturbation analysis
for Hamiltonian matrices. We will mostly work with the quadratic form (2.1). Another
approach would be to use the normal and condensed forms for Hamiltonian matrices
under symplectic or unitary symplectic transformations, respectively [24], [26]. Recall
that a matrix S is called symplectic if S*JS = J and it is called unitary (orthogonal
in the real case) symplectic if S is symplectic and §*S = I.

The normal form under symplectic transformations forms the basis for the compu-
tation of eigenvalues, eigenvectors, and invariant subspaces of Hamiltonian matrices.
But since the group of symplectic matrices is not compact, to obtain backward stable
numerical methods it is important to use unitary (orthogonal) symplectic matrices for
the transformations. In this case, in general, we cannot get the complete spectral infor-
mation but only a condensed form—the (partial) Hamiltonian Schur form.

Lemmva 2.3 (see [25], [26]). Given a Hamiltonian matriz H € F?"2", there exists a
unitary symplectic (real orthogonal symplectic if F = R) matriz Q € F?™2" such that

Fll F12 ( Gll G12

0 Fyp Gy Gy
2.2 T =0Q0"HO = ,
(2:2) Q"HQ 0 0 ’ “Fn 0

0  Hy —Fy —F3

where Iy is upper triangular (quasi-upper triangular in the real case) and has only ei-
genvalues in the open left half-plane, while the submatrix

|:F22 G22 :|
Hy | —F3

has only purely imaginary eigenvalues. If there are no purely imaginary eigenvalues, then
this latter block is void, and this becomes a Hamiltonian Schur form.

Under further conditions (see [9], [24], [25]) a Hamiltonian Schur form also exists if
purely imaginary eigenvalues occur.

It is worth mentioning that if 0 is an eigenvalue, then it is treated differently for real
and nonreal Hamiltonian matrices. Indeed, for nonreal Hamiltonian matrices 0 is con-
sidered to be purely imaginary. In contrast, for real Hamiltonian matrices the eigenvalue
0 plays a special role, and in some of the literature (see, e.g., [12]) it is even considered to
be not on the imaginary axis. For us, however, 0 will be treated as purely imaginary.

We now discuss the perturbation theory for purely imaginary eigenvalues of Hamil-
tonian matrices.

3. Perturbation theory for Hamiltonian matrices. In this section we discuss
perturbation results for Hamiltonian matrices. In particular, we analyze how purely ima-
ginary eigenvalues of Hamiltonian matrices behave under Hamiltonian perturbations,
and then we characterize when small perturbations allow one to move purely imaginary
eigenvalues away from the imaginary axis; see also [21], [28], [30], [31], [32]. To be more
precise, given a Hamiltonian matrix H € F?™2" with a purely imaginary eigenvalue ic,
our primary aim is to determine a minimal Hamiltonian perturbation AH such that io
moves away from the imaginary axis to some specified location in the complex plane
when H is perturbed to H + AH. By minimal perturbation we mean that AH has
the smallest norm, either in the Frobenius or in the spectral norm.
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It is well-known that the spectral perturbation theory for Hamiltonian matrices
[28], [30], [31], in particular for the purely imaginary eigenvalues, is substantially dif-
ferent from the well-known classical perturbation theory for eigenvalues and eigenvec-
tors of unstructured matrices; see, e.g., [37].

Let H € F?»2" be Hamiltonian, and suppose that i is a purely imaginary eigenva-
lue of H. Let X be a full column rank matrix such that the columns of X span the right
invariant subspace ker (H — ial)?" associated with ia so that

(3.1) HX=XR and A(R) = {ia}
for some square matrix R. By using the fact that H is Hamiltonian, we also have
(3.2) X*JH=—-R*X*J.

Since A(—R*) = {ia}, it follows that the columns of the full column rank matrix J* X
span the left invariant subspace associated with ix. Hence (J*X)*X = X*JX is
nonsingular and the matrix

(3.3) 7 =iX*JX

associated with the Hermitian form (2.1) is nonsingular. This leads to the following
perturbation result for the spectral norm || - ||,.
THEOREM 3.1 (see [28]). Consider a Hamiltonian matriz H € F*™*" with a purely

imaginary eigenvalue i of algebraic multiplicity p. Suppose that X € F>™P satisfies
rank X = p and (3.1), and that Z as defined in (3.3) is congruent to [Ig Iﬂ (with

T+ p=p)
If AH is Hamiltonian and ||AH||, is sufficiently small, then H + AH has p eigen-
values Ay, ..., A, (counting multiplicity) in the neighborhood of i, among which at least

|r — | eigenvalues are purely imaginary. In particular, we have the following cases.
1. If Z is definite (i.e., either 1 =0 or uw=0), then all Ay, ..., 4, are purely
imaginary with equal algebraic and geometric multiplicity, and satisfy

A = i(e +6;) + O(|AH]]3),

where 84, ..., 8, are the real eigenvalues of the pencil AZ — X*(JAH)X.

2. If there exists a Jordan block associated with i of size larger than 2, then gen-
erically for a given AH some eigenvalues among Ay, ..., A, will no longer be
purely imaginary.

If there exists a Jordan block associated with i of size 2, then for any e > 0,
there always exists a Hamiltonian perturbation matric AH with ||AH||, = € such
that some eigenvalues among Ay, ..., A, will have nonzero real part.

3. Ifia has equal algebraic and geometric multiplicity and Z is indefinite, then for
any € > 0, there always exists a Hamiltonian perturbation matric AH with
|AH ||, = € such that some eigenvalues among 4y, ..., 4, will have nonzero real
part.

We now revisit the perturbation results in Theorem 3.1 and present them in a form
that we can directly use in the construction of small perturbations. In what follows, we
show that an imaginary eigenvalue of H can be moved off the imaginary axis by an
arbitrary small Hamiltonian perturbation if and only if H has a J-neutral eigenvector
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corresponding to the imaginary eigenvalue. We then describe how to construct such a
Hamiltonian perturbation.

Suppose that we wish to construct a Hamiltonian perturbation matrix £ of smallest
norm such that an eigenvalue of H moves to . when H is perturbed to H 4 £. For such a
perturbation then there exists a vector u such that (H + &)u = pu. This means that
Eu = pu — Hu = r. Thus the resulting £ is a solution of the following structured map-
ping problem (see [1], [2]): Given z, b € F?" find a Hamiltonian matriz G of smallest norm
|Gl such that Gz = b. Here || - || is either the spectral norm or the Frobenius norm.

To solve this problem in a more general framework, for X € F?"? and B € F?"?, we
introduce

(3.4) n(X, B) = inf{||H||:H € F2?" (TH)* = JHand HX = B},

denoting n(X, B) by np(X, B) for the Frobenius norm and by 1,(X, B) for the spectral
norm. The following result, taken from [1], [2], provides a complete solution of the
Hamiltonian structured mapping problem.
THEOREM 3.2 (see [1], [2]).
(a)
1. Letxz € " and b € F?". Then there exists a Hamiltonian matriz H € F*»2"
such that Hx = b if and only if z*Jb € R.
2. If £*Jb is real, then

ne(z,b) = \J2Bl13/l12l3 — |=* T2 /] all,
na(e.8) = [|bll, /]l

Furthermore, the matriz

b+ Jab* T (2T b)Jxa*
9o b == !

is the unique Hamiltonian matriz satisfying G(z, b)x = b and ||G(z, b)||» =

nr(z,b).
3. If ||l z|lo||blls # |2*Tb|, then form the Hamiltonian matriz

*Tb zz* N T )
Fla0) =00~ e = e g (I ‘E>j I (I ‘_>

otherwise, set F(z,b):=G(x,b). Then F(z,b)z=1b and ||F(z b)|y=
n2(z. b).

1. Let B F>™P and X € F?™P. Suppose that rankX = p. Then there exists a
Hamiltonian matriz H € F?™2" such that HX = B if and only if X*J B is
Hermitian.

2. If X*J B is Hermitian, then

n2(X, B) = | B(X*X)~/?],,

np(X, B) = \/QIIB(X*X)‘”QII% = |(X* X)X T B(X* X)) 2.

3. Let X" denote the Moore—Penrose inverse of X. Then
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(3.5) G(X.B) == BX* + J(X*)*B*J + JXX*JBX*

is the wunique Hamiltonian matriz satisfying G(X,B)X =B and
1G(X. B)||p = nr(X, B).
4. Set 7= (X*X)\2X*TB(X*X)"\/2 and p = ny(X,B). If p2I — 7% is

nonsingular, then consider the Hamiltonian matriz
F(X,B)=G(X,B)+ JI - XX"KZK*(I — XX1),

where K == JB(X*X)™V/%(p?I — Z?)~'/2. Then F(X, B) is a Hamiltonian
matriz such that F(X, B)X = B and || F(X, B)||, = n2(X, B).
In order to construct a real Hamiltonian matrix H satisfying HX = B we need the
following lemma.
Levmmva 3.3. Let A,B€ C™. Then [A A|[B B]* is a real matriz.

Proof. Let P = {(IJ é} €R»?. Then [A AJP=[A A]. Since P~! =P* =P,

we have P[B B|*'=(B B|P)"=[B B]*. Hence [A4 A|[B B|'=
[A AlP[B B]*=[A A][B B]*. O

We then have the following minimal real perturbations.

COROLLARY 3.4. Let B€ C*"?, X € C*?, and suppose that rank| X X]= 2p.
Then there exists a real Hamiltonian matriz H € R?>™?" such that HX = B if and only
if X*J B is Hermitian and X*TB is symmetric, i.e., (X*jB)T = X*JB.

If the latter two conditions are satisfied, then with G as defined in (3.5), the matriz
Gr=G([X X],[B B]) is a real Hamiltonian matriz with Gz X = B. Furthermore,
among all real Hamiltonian matrices H with HX = B the matriz Gy has the smallest
Frobenius norm.

Proof. If H is any real matrix with HX = B, then also HX = B. Hence
H[X X]=[B B] By Theorem 3.2 a Hamiltonian matrix H satisfying this relation
exists if and only if [ X X |*J[B B]=: Z is Hermitian. It is easily verified that Z is
Hermitian if and only if X* 7 B is Hermitian and X* 7 B is symmetric. If these conditions
are satisfied, then by Theorem 3.2 the matrix Gg is Hamiltonian and Gp[X X]=
[B B]. Moreover, among all Hamiltonian matrices H with H[X X]=[B B]
the matrix Gr has the smallest Frobenius norm. The realness of Gy follows from
Lemma 3.3. |

In this section we have discussed the structured mapping theorem for Hamiltonian
matrices and used it to construct solutions of minimal Frobenius and spectral norms. In
the next section we use these results to construct Hamiltonian perturbations that move
eigenvalues away from the imaginary axis.

4. Moving eigenvalues by small perturbations. We now discuss in detail how
to move an eigenvalue (resp., a group of eigenvalues) of a Hamiltonian matrix by a small
Hamiltonian perturbation to a specific location (resp., locations) in the complex plane.
We construct Hamiltonian perturbations under the assumption that a J-neutral eigen-
vector (resp., J-neutral invariant subspace) exists corresponding to the eigenvalue
(resp., group of eigenvalues).

TueoREM 4.1. Let o be a set of eigenvalues of a Hamiltonian matriz H € C*™?", and
let X € C?¢ be a full column rank matriz such that X* JX = 0 and HX = XR for some
R € C4? with A(R) = o. Then for any D € C%?, the matriz € = G(X, XD), where G(-, )
is defined by (3.5), has the following properties.

(i) The matriz € is Hamiltonian and satisfies € = XDXT + J(XT)*D*X*J,
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EX =XD, |€]l, = IXD(X*X)7' 2|y, and ||€]|lp = V2| XDX*X)"/? p.

Further, we have
(4.1) (H+ €)X = X(R+ tD)

forall t € R, d.e., A(R+ tD) C A(H + &) for all t € R.

(i) Suppose that H is real and 6 C R. Then the matriz X can be chosen to be real
so that & is a real Hamiltonian matriz when D is real.

(iit) Suppose that H is real and o ¢ R. Set & := {A:1 € o'}, and assume that o N
6=0 and o N (—0) = @. Then the matrir K =G([X X|,[XD XD]) is
real Hamiltonian and satisfies KX = XD. Further, for all t € R we have

(4.2) (H+tK)X = X(R + tD),

i.e., A(R+tD) C A(H + tK) for all t € R.

Proof. Since X*J(XD) = 0 is Hermitian, by Theorem 3.2, £ is a well defined Ha-
miltonian matrix, £ = XDXt + J(XT)*D*X*J,EX = XD, ||€||, = | XD(X*X)~1/2|,,
and ||€||p = V2| XD(X*X)~1/2| . This proves (i).

The assertion in (ii) is obvious. So, suppose that H is real and o ¢ R. Then we have
HX = XR and HX = X R with A(R) N A(R) = @. Hence rank[ X X ] = 2d. Since
o N (—0) =@, by Theorem 2.1 the spaces spanned by the columns of X and X are
J-orthogonal. Thus X*JX =0. As X*JXD =0 is Hermitian and X*J7XD =0 is
symmetric, by Corollary 3.4, the matrix K is real and Hamiltonian with X = X D. This
proves (iii). O

Theorem 4.1 shows that an eigenvalue (resp., a group of eigenvalues) of a Hamil-
tonian matrix H can be moved by a small Hamiltonian perturbation if the eigenvalue
(resp., group of eigenvalues) is associated with a J-neutral eigenvector (resp., J-neutral
‘H-invariant subspace).

Remark 4.2. First, observe that if o C iR, then 6 = —o and hence the second as-
sumption in Theorem 4.1(iii) is redundant. Second, if A € C\ iR is a nonimaginary ei-
genvalue of H and v is an associated eigenvector, then v is J-neutral, that is, v*Jv = 0.
Thus by Theorem 4.1, a nonimaginary eigenvalue of H can be moved in any direction in
the complex plane by a small Hamiltonian perturbation. More generally, let o be a set of
eigenvalues of H such that o C C_ (or equivalently o C C_). Then by Corollary 2.2,
there is a full column rank matrix X such that X*J7X = 0 and HX = XR with A(R) =
o for some matrix R. Hence by Theorem 4.1, the group of eigenvalues o can be moved en
block by a small Hamiltonian perturbation. Moreover, when H is real and 0 N o = &,
then the Hamiltonian perturbation can be chosen to be real.

In view of Remark 4.2 we conclude that a nonimaginary eigenvalue (that is, an ei-
genvalue with nonzero real part) of a Hamiltonian matrix can be moved in any direction
in the complex plane by a small Hamiltonian perturbation. However, this property does
not hold in the same generality for purely imaginary eigenvalues. Indeed, suppose that
i is an imaginary eigenvalue of H and v is an associated eigenvector, i.e., Hv = i v.
Then by the Hamiltonian eigenvalue symmetry, Jv is a left eigenvector of H
corresponding to ic, i.e., (Jv)*H = ia(Jv)*. Thus if v is J-neutral, then (Jv)*v =
—v*Jv = 0. Hence it follows that the algebraic multiplicity of i@ must be at least 2.
However, the algebraic multiplicity being at least 2 is not enough to remove an imagin-
ary eigenvalue i« from the imaginary axis by a small Hamiltonian perturbation. By “re-
moving” we mean that the perturbed matrix has no imaginary eigenvalue in a vicinity of
io. The crux of the matter is that the existence of a J-neutral eigenvector is both a
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necessary and sufficient condition for moving an eigenvalue of a Hamiltonian matrix in
any direction in the complex plane by a small Hamiltonian perturbation. More gener-
ally, we have the following result.

THEOREM 4.3. Let o :={A, ..., A4} be a set of distinct eigenvalues in the closed left
half-plane of a Hamiltonian matriz H € C*™?", and let S, denote the generalized eigen-
space S, = @, ker (H — A,1)*". Let p be any integer with d < p < dim S,,. Then there
exists a Hamiltonian matriz € such that H(t) = H + t€ has a p-dimensional H(t)-
invariant subspace X(t) with o(t) = A(H(t)|X(t)) CC_ for 0 <t<1 and o(t) > 0o
as t — 0 if and only if the subspace S, contains a p-dimensional J-neutral H-invariant
subspace X with A(H|X) = 0.

Proof. Suppose that HX = XRwith A(R) = 0 and X*J X = 0, where X € C?>"? is
a full column rank matrix. Then the desired result follows from Theorem 4.1.

Conversely, suppose that there exists a Hamiltonian matrix £ such that H(t) =
‘H + t€ has a p-dimensional H(¢)-invariant subspace X'(¢) with o () := A(H(¢)|X()) C
C_for0 < t<1lando(t) — oast— 0.Let X(t) € C**? be a matrix with orthonormal
columns such that span(X(#)) = X(¢). Then H(t)X(t) = X(¢)R(¢) for some R(t) with
A(R(t)) = o(t). By multiplying the former equation from the left with X (¢)*, it follows
that R(t) = X(¢)*H(t)X(¢). Since for ¢ > 0, the set o(t) contains no purely imaginary
eigenvalue of H(t), the invariant subspace X(t) is J-neutral by Corollary 2.2. Thus
X(t)*JX(t) = 0 for t > 0. Since the set of 2n-by-p matrices with orthonormal columns
is compact, the limit X = lim;_,,, X(¢;) exists for some sequence {t,} with ¢, — 0. By
continuity, it follows that X*JX =0 and HX = XR, where R =lim;_, R({;).
Furthermore, A(R) = lim o(¢;) = 0. Hence X = span(X) is a J-neutral H-invariant
p-dimensional subspace of S, with A(H|X) = o. 0

COROLLARY 4.4. An eigenvalue A of a Hamiltonian matriz H can be removed from
the imaginary axis by an arbitrarily small Hamiltonian perturbation if and only if H has a
J -neutral eigenvector corresponding to A.

We mention that an imaginary eigenvalue of a Hamiltonian matrix may or may not
have a J-neutral eigenvector associated with it. The case when an imaginary eigenvalue
does not have an associated J-neutral eigenvector is addressed in section 5. In our al-
gorithmic construction we remove one imaginary eigenvalue at a time. Therefore, we
first briefly discuss the removal from the imaginary axis of an imaginary eigenvalue
by a Hamiltonian perturbation under the assumption that a J-neutral eigenvector ex-
ists, and then we discuss how to achieve this property. We have the following result
which follows from Theorem 4.1.

TuEOREM 4.5. Let ia be an imaginary eigenvalue of a Hamiltonian matric
H € C*2", Let v be a normalized and J-neutral eigenvector of H corresponding to
i, d.e., ||v]|s =1, v*Tv =0, and Hv = iav. For any u € C, consider the matrices

Ep =G(v,pv) and K, =G([v v].[pv @o]),

where G(-, -) is defined by (3.5). Then &, and K, have the following properties.
(i) The matriv &£, is Hamiltonian and satisfies &, = pvv* +pJvv*J,

IEull, = 1], and ||E,llp = V2|1|. Furthermore, (H + t€,)v = (i + tp)v
forall t € R, i.e., i+t € A(H +t&,) for all t € R.

(i) IfH is a real matriz and o = 0, then the vector v can be chosen to be real in
which case £, is real for all p € R.

(iii) Suppose that H is a real matriz and a # 0. Then K, is a real Hamiltonian
matriz satisfying (H + tIC, )v = (ia + t)v and (H + tIC, )0 = (—ia + tj1)v.
Hence {io + tp, —ia +tjn} C A(H +tK,) for all t € R.
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For a purely imaginary eigenvalue with an associated J-neutral eigenvector, the
perturbations £, and K, constructed in Theorem 4.5 move the imaginary eigenvalue
away from the imaginary axis. Note, however, that these perturbations may also move
the other eigenvalues of H to unspecified positions. For our algorithmic construction, it
is desirable to move eigenvalues one-by-one without affecting the other eigenvalues. The
following result provides Hamiltonian perturbations which move only the specified ei-
genvalue and leave the other eigenvalues unchanged.

THEOREM 4.6. Let ix be an imaginary eigenvalue of a Hamiltonian matriz
H € C*™2", Let v be a normalized and J-neutral eigenvector of H corresponding to
ia, ie., v, =1, v*Tv=0, and Hv=iav. Let w € ker (H — ial)*" be such that
w*Jv=1. For any n € C, consider the matrices

A A

&y = (pvw* + pwo*)J  and K, = éﬂ +(€'M.

Then é’ﬂ and IACM have the following properties. .
(i) The matriz &, is Hamiltonian and (H+t&€,)v = (ia +tu)v for all
t € R. Furthermore, (H + t€,)z = Hz for any z € ker (H — AI)*" and A €
AH)\ {ia}.
(ii) Suppose that 'H is a real matriz and o = 0. Then the vectors v and w can be
chosen to be real in which case SM is real for all p € R.
(iii) Suppose that H is a real matriz and o # 0. Then the matriz ICM is_a real
Hamiltonian matriz satisfying (H + tk w)v = (e +t)v, (H+ tk 0 )V =
(—ia + t)v, and (H+ tK, )z =Hz for any x € ker (H — AI)*" and A€
AH)\ {i, —ia}.
Proof. Since the Hermitian form (z,y)+ —iz*Jy is nondegenerate on
ker (H — ia])?", there exists w € ker (H — iaI)?" such that w*Jv = 1. Hence ‘%u is well

defined. Obviously, éﬂv = pv, whence (H + t€,)v = (i + ti)v. Since ker (H — ial)*"
is J-orthogonal to the other generalized eigenspaces of H, we have v*Jz = w*Jz =0
for any z € ker (H — AI)*" and A € A(H)\ {ia}. Thus éﬂx = 0. This completes the
proof of (i). Assertion (ii) is obvious, and (iii) follows from the identity ker (H + ia1)*" =
ker (H — ial)?" and the J-orthogonality of the generalized eigenspaces. 0

For the construction of Hamiltonian matrices that move eigenvalues off the ima-
ginary axis, we need a J-neutral eigenvector. We now address the issue of existence
of J-neutral eigenvectors corresponding to an imaginary eigenvalue of a Hamiltonian
matrix. First, we show that a J-neutral eigenvector of H corresponding to an imaginary
eigenvalue exists if the eigenvalue is defective.

ProprosiTioN 4.7. Suppose that vy, vy, ..., v, £ > 2, is a Jordan chain of the Hamil-
tonian matriz H associated with an imaginary eigenvalue ia, i.e., Hv, = iovy, + v for
k=1, ...,Z, where vy:=0. Then the subspace span{v, ...,vlfm} 1s J-neutral. In

particular the eigenvector vy is J-neutral.
Proof. We have J(H —ial)=—(H—ia)*T, v, = (H—ial)’*v, for
k=1,...,¢, and (H— zot[)‘fvf fO for ¢>¢. Hence if k+j <7, then vjJuv, =
v (H — i) *) T T (H — dal) v, = (=1) T vpe T (H — dad)? iy, = 0. 0
Proposition 4.7 shows that the first vector in a Jordan chain of length at least 2 is a
J-neutral vector, but this may or may not be true for semisimple purely imaginary
eigenvalues. To characterize when this is the case, we need the sign characteristic of
the purely imaginary eigenvalue, which allows us to classify the purely imaginary eigen-
values into three distinct groups.
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DEFINITION 4.8. Let ia be a purely imaginary eigenvalue of a nonreal H € C*"2" or a
nonzero purely imaginary eigenvalue of H € R?™?". Let X be a full column rank matriz
such that span(X) = ker((H — iaI)?"). Consider the matriz Z == —iX*J X. Then ia is
said to have positive sign characteristic, negative sign characteristic, or mixzed sign char-
acteristic, depending on whether Z is positive definite, negative definite, or indefinite,
respectively.

Remark 4.9. Note that the eigenvalue 0 of a real Hamiltonian matrix is excluded in
Definition 4.8 because in such a case the definition of sign characteristic does not make
sense. Indeed, if 0 is an eigenvalue of a real Hamiltonian matrix and z is an associated
eigenvector, then obviously £7 7z = 0. This shows that there always exists a J-neutral
eigenvector of a real Hamiltonian matrix associated with the eigenvalue 0.

The following result characterizes the existence of a J-neutral eigenvector of a Ha-
miltonian matrix corresponding to an imaginary eigenvalue; see also [12] in the context
of H-self-adjoint matrices.

ProrosITION 4.10. Let ia be a purely imaginary eigenvalue of a nonreal H € C>™2"
or a nonzero purely imaginary eigenvalue of H € R*™>". Then 'H has a J -neutral eigen-
vector corresponding to ia if and only if i has mized sign characteristics.

Proof. Recall that the Hermitian form (z,y)+— —iz*Jy is nondegenerate on
ker (H — ial)?" and hence the matrix Z = —iX*J X in Definition 4.8 is nonsingular.
Suppose that there exists a J-neutral eigenvector associated with i«. Then clearly Z
is indefinite. Hence o has mixed sign characteristics.

Conversely, suppose that ie has mixed sign characteristics; i.e., Z is indefinite. By
Proposition 4.7, a J-neutral eigenvector exists if the eigenvalue i« is defective. So, sup-
pose that ia is semisimple. Since Z is indefinite, there exist eigenvectors v, and v; such
that —iv) J vy > 0 and —iv} Jv; < 0. Hence by continuity there exists an eigenvector v
of the form v = cos(t)vy + sin(t)v;, for some ¢ € R, such that v*Jv = 0. 0

Note that if a purely imaginary eigenvalue of a nonreal Hamiltonian matrix or a
nonzero purely imaginary eigenvalue of a real Hamiltonian matrix is simple, then it
has either positive or negative sign characteristic. Hence if i« has mixed sign character-
istics, then ‘o is necessarily multiple. Note, further, that if ix is defective, then by
Proposition 4.7, ia has mixed sign characteristics. However, when ix is a nondefective
multiple eigenvalue, it may or may not have mixed sign characteristics; see
[28, Example 6].

Remark 4.11. We have shown that only eigenvalues of mixed sign characteristics
can be removed from the imaginary axis by an arbitrarily small Hamiltonian perturba-
tion. A related result is well-known for symplectic perturbations of eigenvalues of
symplectic matrices on the unit circle; see [39, p. 196].

5. Minimal Hamiltonian perturbations. In this section we investigate how to
move purely imaginary eigenvalues which are neither defective nor have mixed sign
characteristics off the imaginary axis by suitable Hamiltonian perturbations. We begin
with the problem of moving an eigenvalue of a Hamiltonian matrix to a specified point in
the complex plane by a minimal Hamiltonian perturbation. This will play an important
role in moving eigenvalues to specific points outside a strip S, as required in Problem B.

By the previous discussion, in order to move a purely imaginary eigenvalue having
either positive or negative sign characteristic from the imaginary axis by a Hamiltonian
perturbation, we first need to coalesce it with another purely imaginary eigenvalue of
opposite sign characteristic.

Thus in this case we split the construction of perturbations that move the eigen-
values off the imaginary axis into two steps. First, we construct a minimal Hamiltonian
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perturbation that coalesces two eigenvalues having negative and positive sign charac-
teristics into an imaginary eigenvalue having mixed sign characteristics. This moves the
eigenvalues on the boundary of the set required in Problem A. Second, we move the
resulting imaginary eigenvalue with mixed sign characteristics off the imaginary axis
by a small Hamiltonian perturbation as required in Problem B.

Since we have already addressed the second stage of the problem in the previous
section, we now address the first step of the construction.

For this purpose, we make use of both the backward error for the Hamiltonian
eigenvalue problem and Hamiltonian pseudospectra. These quantities are introduced
and discussed in the following subsections. In the third subsection we then determine
perturbations of minimum norm which remove a pair of eigenvalues from the imagin-
ary axis.

5.1. Backward errors. We begin with the construction of backward errors for
eigenvalues of a Hamiltonian matrix. The Hamiltonian backward error associated with
a complex number A € C is defined by

(5.1) M (1, H) == inf{||€]|: € € F2"2" Hamiltonian, 2 € A(H + £)}.

Note that in general (4, H) will be different for F = C and for F = R. We use the nota-
tion ptam (2, H) and nile™ (1, H) when the norm in (5.1) is the Frobenius norm and the
spectral norm, respectively.

TueoreM 5.1. Let H € C?™?" be o Hamiltonian matriz, and let A € C be such that
ReA #0. Then we have

(5.2)  plam(A,H) = min {\/QH(H —ADz|)} — |z*THz|? 1z e C™ *Jz= 0},

llzll;=1

(5.3) npitm(A H) = ﬁ‘lizll{H(H —AD)z||y:z € C*", 2* Tz = 0}.

Ham

In particular, we have n3*™ (A, H) <7

Suppose that the minima in (5.2)
respectively. Let £ = G(u, (AI — H)u)
in Theorem 3.2. Then

and (5.3) are attained for u € C*" and v € C*",

gam(}~7 H) < \/inIQrIam(l, H)
and K == F (v, (AI — H)v), where G and F are as

1€]lp = ni (A, H) and (H4+&)u = Au,
1K, = nim(A, H) and (H+ K)v= .

Proof. Let z € C" be nonzero. Then by Theorem 3.2 there exists a Hamiltonian
matrix £ € C*?" such that (H + &)z = Az if and only if z* 7z = 0. Indeed, setting
r = Az — Hz, it follows that z*Jr is real if and only if z* 7z = 0. So, suppose that
2*Jz =0 and w.l.o.g. that 2*z = 1. Then by Theorem 3.2, £ := G(z, r) is the unique
Hamiltonian matrix such that (H + &)z = Az and £ has minimal Frobenius norm
given by

1€l = \/2||(H —ADz|3 — |2* T (H — Al)a.

Similarly, by Theorem 3.2, K:= F(z,r) is a Hamiltonian matrix such that
(H+ K)xz = Az and K has minimal spectral norm given by
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1Ky = [[(H = AD)zl,.

The claim follows by taking the minimum over all z € C?" such that 2* 7z = 0. 0

Note that it is a nontrivial task to determine the minimal values ni*™ (1, H) and
ntam (2, H) when 1 € C and Rel # 0. In contrast, it is relatively simple to determine
these minimal values for purely imaginary values 4 = i@ with w € R. The construction
in Proposition 5.3 below is based on the following observation.

Observation 5.2. Let H € C?™?" be Hamiltonian, and let 4, ..., Ay, € R denote the
eigenvalues of the Hermitian matrix JH. Let vy, ..., vy, € C*" be an orthonormal basis
of eigenvectors of JH such that JHuv, = A v;. Then |4,], ..., |dy,| are the singular va-
lues of H, and the vectors v;, are the associated right singular vectors. The associated left
singular vectors are wu, = —sign(4;)Jv;. Indeed, the matrices V = [vy, ..., vy,],
U=uy, ..., uy,] are unitary, and from JHV = Vdiag(4,, ...,4s,) it follows that
H = Udiag(|4,], 1) V*.

In the following we denote the smallest singular value of a matrix M by o, (M).

PROPOSITION 5.3. Let H € F2"2" be Hamiltonian and o € R. Let v be a normalized
eigenvector of the Hermitian matriz J(H — iwl) corresponding to an eigenvalue A € R.
Then || is a singular value of the Hamiltonian matric H — iwl, and v is an associated
right singular vector.

Further, the matrices

(5.4) E = AJvv*,
(5.5) K = AJ [vv][vo]*

are Hamiltonian, K is real, and we have (H+ &)v = (H + K)v = iwv. Furthermore,
1€l = Il = 1K1l = 2] and |IKC] » = |z|\/rank

Moreover, suppose that A is an eigenvalue of J(H za)l) of smallest absolute value
and let op;(H —iwl) be the smallest singular wvalue of H —iwlI. Then |1 =
Omin(H — iwI), and we have

ngwuw,m — (i, H) = 2| = |€], when F=C.
yim (o, H) < K|y < VI (i, H) = V2| = V2K, when F=R.

Proof. The first assertion follows by applying Observation 5.2 to the Hamiltonian
matrix H —iwl. By construction, H and K are Hamiltonian and (H+&)v =
(H + K)v = iwv. Note that by Lemma 3.3, K is real. Obviously, we have ||€]|» = ||€]], =
KNI, = 14l and [|K[|p = [A]y/rank[v ¥].

If /1 has the smallest absolute value, then o,,;,(H — iwI) = |A| by Observation 5.2.
Since = |l < 1Kl = €] = ] = e (H— i) and nlien (i, H) > gl (ieo, H) >
Omin(H — iwI), the desired result follows. 0

Proposition 5.3 in particular states that a Hamiltonian perturbation of H of smallest
norm that moves an eigenvalue to the point iw can be constructed from an eigenpair
(v,4) of J(H — iwI), where A4 has the smallest absolute value. Our next result shows that
the eigenpair (v, 1) can be chosen as a piecewise analytic (but not necessarily continu-
ous) function of w.

ProposITION 5.4. Let H € C*"2" be Hamiltonian, and let F(w) = J(H — iwl) and
f@) = opin(H — iwI) for w € R. There exist a finite number € of real values y, < Yy <

- <y, and functions Ay, 'R — R, v: R — C2" which are analytic on R\ {yy, ..., y,}
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and have the following properties.

(a) F(a))v(w) = Amin(a))v((u)? |/1min(w>| - Hlln{M‘ e A(F(Cl)))}, a’ndv moreover,
lv(w)]|, =1 for all w € R.

(b) For each ke {0,1,...,¢} either Ayn(w)= f(w) for all o € (y;, Yip1) or
Amin (@) = —f(w) for all € (v, Yis1), Where we set yy = —o0 and y,,.; = oo.

(¢) The vector v(w) is a right singular vector of the matrix H — iwI associated with
the smallest singular value.

(d) The derivative of A,,;,(+) at @ € R\ {yy, ..., y,} satisfies

;L;nin(w) = 72‘”(0))*\7’0((0)'

(e) At each of the (exceptional) points y;. the left and the right limits of 4,3, (-) and
v(+) exist. Suppose that ,;,(-) is continuous at y;. Then the left and the right
side derivative of A,;,(-) at y; both exist and satisfy

. A
lim mm(w) mln()/k) — lim /unjn(w)'
w—yE O — Vi w—=ypE

Proof. Note that F(w)=J(H—iwl), w €R, is a Hermitian matrix. By
[33, pp. 29-33| there exist analytic functions w = v (@), ..., vs,(w) € C*" and

o= A(w), ..., A, (w) € Rsuch that for each @ the vectors v;(w) form an orthonormal

basis of C*" and F(w)v;(@) = 1;(w)v;(). The derivative of ; at w satisfies

B) = = (1,(0)* Fl)y,()
= 0 (0)* F(0)1,() + 1 0)* Fo)o,(0) + v,(0)* F)1 (o)
= i, (0)* T, (0) + (@) (#5(0)" 2, (0) + ,(0)" 1))

=islvj(@)°=0

(5.6) = —1v;(w)*Jvj(w).

For each pair of indices j, & the analytic functions 4;(-), 4;(-) either are identical or meet
in a discrete set P;; C R. Analogously, the functions —4;(-), 4;(-) either are identical or
meet in a discrete set Q; ) C R. Since the union of the graphs of the functions £4,(-)
equals the algebraic curve {(w,4) € R? det((F(w)—AI)(F(w)+ Al)) =0}, both of
the sets P;; and @Q;, are finite [3]. Let {y1,....¥,}, ¥k < Vit1, denote the union of
the sets P;; and the sets (;;. By the third claim of Proposition 5.3, we have that f(w) =
min;_;  9,|4;(@)]. It follows that to each interval Z), = (y}. y441) there exists an index j
such that either 1;(w) = f(w) for all ® € Zj, or 4;(w) = —f(w) for all @ € Z;. Define
Amin(w) = /1,7'(6'))’ 1}(0)) = Uj(a)) for w € I} and /lmin(yk) = /1]'(7/]@)7 ’U()/k) = vj(Yk)' Then
the functions A,,;,(-) and v(-) have the required properties. 0

Ezample 5.5. The left diagram of Figure 1 shows the eigenvalue curves o — 1;(w)
of the Hermitian matrix function o+~ J(H; — iwl) for o €[-16,16] and

H, = [HOI Cﬂ, where
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Fic. 5.1. Figenvalue and singular value curves for Example 5.5.

7 4 2 11 0 11 16 16 5 0
—4 -37 31 -8 0 16 21 30 8 0
Gi=1|2 3 -28 4 0|, H:=/_16 30 48 8 0
11 -8 4 28 0 5 8 8 -1 0

3

o o o0 0 =3 0O 0 0 O

The spectrum of H; is A(H;) = {£34, £5i £ 104, £15:}, and the eigenvalues £107 have
multiplicity 2, while the other eigenvalues are simple. At the real parts of the eigenvalues
of H, the eigenvalue curves 4;(-) cross the real axis. Observe that, according to (5.6), the
sign characteristics of the eigenvalues of H; can be read off from the slopes of the curves
4;(+). The A;-curves crossing the real axis at —15, —3, and 5 have positive slope; i.e., the
eigenvalues —15i, —34, and 54 have positive sign characteristic. The 4,(-)-curves crossing
the real axis at —5, 3, and 15 have negative slope; i.e., the eigenvalues —51%, 37, and 153
have negative sign characteristic. At the points 4-10 there are two 4;-curves crossing the
real axis with positive and negative slopes. Thus the eigenvalues 10 both have mixed
sign characteristic. The graph of the function w — A (@) = Ay (J(H; — iwl)) from
Proposition 5.4 is depicted by thick curves. Note that this function is piecewise analytic
but discontinuous. The right diagram of Figure 1 shows the singular value curves of the
pencil w — H; — iwl. The graph of the continuous function w + o, (H; — iwl) is
depicted as a thick curve. Note that o, (Hi — i@I) = |Anim(@)].

The following proposition characterizes the existence of J-neutral eigenvectors in
terms of the local extrema of the eigenvalue curves.

ProposiTion 5.6. Suppose the function A, :R — R of Proposition 5.4 is continuous
at wg € R and attains a local extremum at wy. Then there exists a J-neutral normalized
eigenvector vy of the Hermitian matriz J(H — iwgl) corresponding to the eigenvalue
/1min (0)0) .

Proof. If wy € R\ {y1, ..., v}, then the derivative of 1,;,(-) at w, satisfies 0 =
A (w) = —iv(wg)* Tv(wy). Hence vy := v(w,) is J-neutral if 4,;, attains a local ex-
tremum at wy. Now suppose that g € {yy, ..., ¥,}. Assume w.l.o.g. that w is a local

maximum. Then the left sided derivative of 4,3, () at wq is nonnegative, and the right
sided derivative is nonpositive. Hence it follows from claim (e) of Proposition 5.4 that
0< lim A, (0)= lim (—iv(w)*Tv(w)) =—iv*Jv_,
w—wy—

min
w—wy—

3 ! _— 3 - * — 5y K

0> wgrax)z+/1 (w) = wglax)zi(—w(a)) Juv(w)) = —iwiJv,,
where v, = lim,,_,, 4 v(®). Suppose that v, and v_ are linearly dependent. Then
—w*Jv_ = —iwiJv, =0; ie., vy = v, has the required properties. If v, and v_
are linearly independent, then let u; = tv, + (1 — ¢)v_. In this case for all t € R, u; #
0 and J(H — iwol)u; = Apin(@o) ;. Furthermore, —iuf Juy < 0 and —iu} Ju; > 0. By
continuity there exists ¢y € [0,1] such that —iu Ju, = 0, and hence vy == u; /| ||
has the required properties. g
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5.2. Pseudospectra. Let A € C™", and let € > 0. Then the e-pseudospectrum of A
is defined as

A(ATF) = | {AA+ E):EeF}.

1E],<e

It is well-known [38] that in the complex case when F = C, we have
A(A,C)={z€Ciopn(A—2I) <€},

where, as noted above, 0,,;,(+) denotes the minimum singular value. Since we are inter-
ested in structured perturbations, we also consider the Hamiltonian e-pseudospectrum

defined by

Al (H F) = | ) {A(H+&):€ € F2"2" and (TE)* = JE}.

lEll2<e
It is obvious that
AB(H C) = {z € Cipllam (2, H) < e},

where nil*m(z, H) is the Hamiltonian backward error as defined in (5.1). Note that the
pseudospectra so defined will in general be different for F = C and for ' = R; however,
for purely imaginary eigenvalues, the following result is an immediate consequence of
Proposition 5.3.

COROLLARY 5.7. Let H € C*™?" be Hamiltonian. Consider the pseudospectra
A (H;F) and AH*™(H;F). Then

Al (H: C) N iR = A" (H;R) N iR = A (H;C) N iR = A (H;R) N iR
={iw:w € R, opin(H — iwl) < ¢}
={iw:w € R, A (T (H — iwl))| < e},

where Ay () denotes the eigenvalue function from Proposition 5.4.

In Definition 4.8 we have associated sign characteristics to the purely imaginary
eigenvalues of a Hamiltonian matrix. We now associate sign characteristics to the
connected components of a Hamiltonian pseudospectrum.

DEerFINITION 5.8. Let H € F2™2". A connected component C.(H) of A (H, F) is said
to have positive (resp., negative) sign characteristic if for all Hamiltonian perturbations
E with ||€]|, < € each eigenvalue of H + £ that is contained in C.(H) has positive (resp.,
negative) sign characteristic.

Observe that if a component C.(H) of A (H, F) has positive (resp., negative) sign
characteristic, then C.(H) C ‘R and all eigenvalues of H that are contained in C.(H)
have positive (resp., negative) sign characteristic. We now show that the sign charac-
teristic of C,(H) is completely determined by the sign characteristic of the eigenvalues of
'H that are contained in C.(H).

THEOREM 5.9. Let ‘H € F**2" and let C.(H) be a connected component of
A (H F). For a Hamiltonian matriz € € F2"2" with ||E||, < €, let X¢ be a full column
rank matrix whose columns form a basis of the direct sum of the generalized eigenspaces
ker (H+E&—21)*, € C.(H) NA(H +E). Set Zg == —iX T Xe. Then the following
conditions are equivalent.
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(a) The component C.(H) has positive (resp., negative) sign characteristic.

(b) All eigenvalues of H that are contained in C.(H) have positive (resp., negative)

sign characteristic.

(¢c) The matriz Zy associated with € =0 is positive (resp., negative) definite.

(d) The matriz Z¢ is positive (resp., negative) definite for all Hamiltonian matriz €

with €], < e.

Proof. Now w.l.o.g. suppose that C.(H) has positive sign characteristic. Then ob-
viously all eigenvalues of H that are contained in C,(H) have positive sign characteristic.
This proves (a) = (b).

Next, suppose that A(H) N C.(H) contains p distinct eigenvalues ia;, ..., i, each
of which has positive sign characteristic. Let X be a full column rank matrix whose
columns form a basis of ker (H — ia;,)?" for k =1, ..., p. Then the columns of 7 X}, form
a basis of the left generalized eigenspace of H corresponding to the eigenvalue ie .. Hence
X3 TIX,=—(JX)* X, = 0for [ # k. Since ier;, has positive sign characteristic, the ma-
trix —i X} J X}, is positive definite for k = 1, ..., p. Now considering X = [X;, ..., X]
it follows that —iX*J7X = diag(—iX7J X, ..., —iX;JX,) is positive definite. Since
Xy = XM for some nonsingular matrix M,it follows that Z; is congruent to —iX*JX.
Hence Z, is positive definite. This proves (b) = (c).

Now suppose that Z, is positive definite. Since C,(H) is a closed and connected com-
ponent of Al (H,F), there is a simple closed rectifiable curve I' such that
' N A" (H,F) = @ and such that the component C,(H) lies inside the curve I'. Let
& be a Hamiltonian matrix with ||€]|; < e. Consider the matrix H(t) = H + t€ for
t € C. Then by [20, Chapters I1.3-11.4, pp. 66—68] there exists a matrix X¢(¢) such that
X¢(1) is analytic in Dy = {t € C:|t|||€]|y < min,er 0y (H — 2I)}. Further, for each t €
Dr the matrix Xg(t) has full column rank and the columns form a basis of the direct sum
of the generalized eigenspaces ker (H(t) — A1)?", 2 € A(H(t)) N C.(H) =: o¢(t). Since
I€]ls < € and min,cr o, (H — 2I) > €, it follows that [0,1] C Dr. Hence the matrix
X¢(1) is smooth on [0, 1]. Set Zg(t) = —iXe(£)* T Xe(2) for t € [0, 1]. Then Zg(t) is con-
tinuous and, by Corollary 2.2, Z¢(t) is nonsingular for ¢ € [0, 1]. Indeed, since o¢(t) is
symmetric with respect to the imaginary axis, the columns of X¢(t) form a basis of the
direct sum of the J-nondegenerate and pairwise J-orthogonal subspaces ker (H(t)—
ial)®, ia € og(t), and ker (H(t) — AI)*" @ker (H(t) + A1)*", 1€ og(t)\iR; see
Corollary 2.2. It follows that span(X¢(¢)) is J-nondegenerate. Thus Z¢(t) is nonsingular
for all ¢ € [0,1]. Since Z¢(0) is positive definite and Z¢(¢) is nonsingular for all ¢ in the
connected set [0, 1], it follows that Z¢(¢) is positive definite for all ¢ € [0, 1]. This shows
that Zg is positive definite. Since £ is arbitrary, we conclude that the assertion in (d)
holds. This proves (¢) = (d).

Finally, suppose that the assertion in (d) holds. Then obviously for all Hamiltonian
matrices £ with ||€]], < e, the eigenvalues in A(H + &) N C.(H) are purely imaginary
and have positive sign characteristic. In other words, C.(H) has positive sign character-
istic. This completes the proof. g

The following result is an immediate consequence of the proof of Theorem 5.9.

CoroLLARY 5.10. Let H € F?"2" and let C,(H) be a connected component of
A" (H F). For a Hamiltonian matriz £ € F2"2" with ||E||, < €, let X¢ be a full column
rank matrix whose columns form a basis of the direct sum of the generalized eigenspaces
ker (H+&—AI)*, A€ C.(H) NA(H +E). Set Zg = —iX, T Xe. Then the following
assertions hold.

(i) The rank of X¢ is constant for all Hamiltonian matrices £ with ||E||, < €.
(i) If C.(H)NiR = @, then Z¢ = 0 for all Hamiltonian matrices £ with |||, < e.
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(iii) If C.(H) N iR # @, then C.(H) = —C.(H) and Z¢ is nonsingular for all
Hamiltonian matrices € with |||y < €. Furthermore, the matrix Z¢ has
the same inertia for all such .
(iv) If Zg is positive (resp., negative) definite for some Hamiltonian matriz € with
I€]ls <€, then C.(H) C iR and C.(H) has positive (resp., negative) sign
characteristic.

The results in Theorem 5.9 and Corollary 5.10 provide important insight into the
evolution of purely imaginary eigenvalues of a Hamiltonian matrix subject to Hamilto-
nian perturbations. With a desire to further understand this evolution, we now analyze
the coalescence of pseudospectral components.

5.3. Coalescence of pseudospectral components. Consider the Hamiltonian
pseudospectrum Al (H, F) of a Hamiltonian matrix H € F?™>". Then obviously the
set valued map e+~ A (H,F) is monotonically increasing; i.e., if ¢ < 8, then
Al (H F) ¢ Al*m(H,F). Furthermore, for € > 0, the pseudospectrum AH*™(H,TF)
consists of at most 2n connected components, and each component contains at least
one eigenvalue of H. Thus when e is sufficiently small, then each component of
A" (H ) contains exactly one eigenvalue of H and as € increases, these components
expand in size and at some stage coalesce with each other. So, let i be a purely ima-
ginary eigenvalue of H, and let C.(H, i) denote the connected component of AT (7, F)
which contains . Then for a sufficiently small €, C,(H, ie) N A(H) = {ie}. Thus if i«
has either positive or negative sign characteristic, then by Theorem 5.9 we have
C.(H, i) C iR. This means that the eigenvalue ia cannot be removed from the imagin-
ary axis by a Hamiltonian perturbation £ of H such that |||, <e.

Next, let i be another purely imaginary eigenvalue of H with « < §, and suppose
that C.(H,if) is a component of AH*™(H,F) containing if such that C.(H,iB) N
A(H) = {iB}. Suppose further that i8 has either positive or negative sign characteristic
so that by Theorem 5.9 we have C.(H, i) C iR. Assume that  does not have an ei-
genvalue iy with y € («, B) and that the component C.(H, ix) coalesces with the com-
ponent C.(H, iB) at iw, as € tends to €y, i.e., C.(H,ia) N C.(H, i) = @ for € < ¢, and
Ce,(H.ia) N C., (H,if) = {iwy}. We now investigate the geometry of the connected
component C, ,s(H, i) = Cq ys(H, i) of Agl”g(HIE‘) in a neighborhood of iw, for a
small § > 0. In particular, we show that when ‘o and i have opposite sign character-
istics, then the pseudospectrum Agéfg (H,TF) contains a disk centered at iw,. Further-
more, in this case we show that there exists a Hamiltonian matrix £ with |||, = €, such
that when H is perturbed to H + &£, then the eigenvalues i and i coalesce at iw, to
form an eigenvalue of H + &£ of mixed sign characteristics. This multiple eigenvalue can
then be removed from the imaginary axis by an arbitrarily small Hamiltonian perturba-
tion of H + &.

We say that two purely imaginary eigenvalues ia and if8 of H are adjacent if H does
not have an eigenvalue 7y with min{«, 8} < y < max{«, 8}.

TaEoREM 5.11. Let i and iff be adjacent imaginary eigenvalues of a Hamiltonian
matriz H € F2"2" witha < B. Let f(w) = 0 (H — iwl) forw € R, and let w, € («, B)
be such that f(wy) = max{f(w):w € [a, B]}. Set ey = f(wy). Suppose that the following
conditions are satisfied.

(i) Fore < €, the connected components C.(H, ia) and C.(H,if) of A (H,F)
containing the eigenvalues io and iff, respectively, have either positive or
negative sign characteristic.

(ll) Ifwe [Ol,ﬂ], then iw € Cf(w)(H, i(X) U Cf(w)(H, Z,B)

Then the following assertions hold.
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(a) The function f is strictly increasing in [0, o] and strictly decreasing in [, B].
For e < ¢y, we have iwy ¢ A (H,F), C.(H,ia) N C(H,iB) = @, and iw, €
Ce,(H.ia) = Ce, (H,if) = C, (H. i) U C, (H, iB).

(b) Let Ayin() be the function given in Proposition 5.4. If i has positive sign char-
acteristic and if has negative sign characteristic, then Ay, (@) = f(w) for all
w € [, B]. On the other hand, if i has negative sign characteristic and if8
has positive sign characteristic, then Ay, (w) = —f(w) for allw € [«, B]. In both
cases there exists a J-neutral normalized eigenvector vy of J(H — iwgl)
corresponding to the eigenvalue Ay, (wy).

(c) Suppose that the eigenvalues i and i have opposite sign characteristic. Then
for any 8 > 0 we have {z € C:|z — iwy| < 8} C Agi‘%('){, F) whenF = C. When
F=R and wy#0, then for any 6 >0 there exists an n >0 such that
{ze€ C:lz—iwy| <n} C Agﬁfg(H,F). Further, for any 8 >0 the interval

[—6, 8] is contained in Agi‘fg (H,F) when F =R and wy = 0.
(d) Suppose that the eigenvalues i and if have the same sign characteristic. Then
for € > €y, C.(H, i) is a connected component of AH™(H,F) containing the
eigenvalues o and if. If C. (H,ia) contains no other eigenvalues of H except
io and if, then C. (H, i) C iR and has the same sign characteristic as that of
io. Moreover, in such a case, there is a 8, > 0 such that C, . s(H, ia) C iR for

all0 <6 < 8.

Proof. (a) Observe that if € < ¢y = f(wy), then iwy, ¢ AT (H,F), and hence by
assumption (i) and Corollary 5.10 we have that C.(H, ia) N C.(H, i) = @ and that
Cc(H,ia) C iR and C.(H,if) C iR. By assumption (ii) it follows that C. (H, i) U
Ce,(H.iB) is a connected component of A (H,F) and hence iwg € Cq (M. ia) =
Col(H. ).

First, we show that f is strictly increasing in [, wg]. Let vy, y5 € [, wg] be such that
Y1 < ¥2. Then by assumption (ii), we have iy, € Cy,)(H, i) U Cy(,,)(H,iB). Now,
suppose that f(ys) < ey = f(wp). Then, as we have just seen, Cp,)(H, ic) N
Ci(y,)(H.iB) = @, and hence iy, € Cy(,,)(H, i) C iR. Let £ € F?"" be a Hamiltonian
matrix such that ||€]|, = f(y2) and iy, € A(H + &). Setting H(t) :== H + &, it follows
that A(H(t)) C A?&‘;‘)(HF) for ¢t € [0,1]. Since ia € A(H(0)) and iy, € A(H(1)), by the
continuity of eigenvalues it follows that A(H(t)) N Cy,,)(H,ia) # @ for t € [0,1] and
that iy, € A(H(t)) for some t € (0,1). Hence £(y) < €]l < €l = f(7)

Next, suppose that f(y,) = €y = f(wg). If y5 = wy, then there is nothing to prove.
So, suppose that Yy < wg. Then there exists y5 € (2, wg) such that f(y3) < f(wy) = €.
Since ys, y3 € [, wg] with yy < y3 and f(y3) < €y, as we have just proved above, we
have that ¢y = f(y,) < f(y3), which is a contradiction. Hence we conclude that f is
strictly increasing in [, wg]. By similar arguments, it follows that f is strictly decreasing
in [wg, B]. This concludes the proof of (a).

(b) Note that f(a) = f(8) =0 and that for any w € [o, B] \ {wy} the connected
components Cy(,)(H, ia) and Cy(,)(H, iB) are disjoint, and

ilo, ] € Cpoy(H, i) if o € [, @),
(5.7) ilw, B] € Cyy(H,iB) if @ € (wy, B].
Now consider the functions A, (+) and v(-) given in Proposition 5.4. There exist finitely
many numbers —co =y < y; <+ < ¥, < ¥, = 00 and signs s;, € {—1, 1} such that

lmin(') is analytic on (Vkv yk+1) and f(w) = Sk/lmin(w) for w € (yk’ V/c+1)' Then
E(w) = Apm(w)Tv(w)v(w)* is Hamiltonian, ||E(w)|, = f(®), and (H 4+ &(w))v(w) =
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iwv(w). Let o € (a,wy). Then by (5.7) the eigenvalue iw of H + E(w) lies in the
connected component Cy,)(H,ia) which has the same sign characteristic as that
of .

Suppose that i has positive sign characteristic. Then Cy ) (H, i) has positive sign
characteristic. Thus iw has positive sign characteristic and therefore —iv(w)* Jv(w) >
0. Analogously we have —iv(w)*Jv(w) <0 for all w € (wy, B]. Now, for w €

[, BI\{y1. ..., ¥}, we have

- , , >0 if 0ol N (Vi Vi),
) o) =FON 20 G

The latter inequalities are consequences of (a). It follows that s; = 1 and hence f(w) =
Amin(@) for all w € [a, B]. Our derivation of the latter identity was based on the assump-
tion that ix has positive sign characteristic and 8 has negative sign characteristic. In
the opposite case an analogous argument leads to the conclusion that f(w) = —A,,(w)
for all w € [a, B]. Since f is a continuous function, it now follows from Proposition 5.6
that there exists a J-neutral unit vector vy such that J(H — iwyl) vy = Ayin(@g) v This
concludes the proof of (b).

(c) Let p € C and consider & := Ay, (wg) T vovg + G(vg, tvg) when F = C, where
G(-,-) is defined as in Theorem 3.2. Then & is Hamiltonian, (H+ &)y, =
(iwg + p)vg, and [|G(vg, Lvy)|ls = |1]- Hence the desired result follows when F = C.

Note that v is real when F = R and wy, = 0. Hence £ is real and Hamiltonian for
1 € R. Consequently, we have [—§, 8] C Ag*‘f}s(H, F) when F =R and wy = 0.

Now, suppose that F =R and wy# 0. Let u € C. Then it is easily seen that
rank[vy U] =2 and [vy U]*T[pvy 2] = 0. Consider

K = Auin(@0) T [vg Vo][ve W)™ + G([vy o], [evy 2 70]),

where G([vy Vo], [tvy L)) = [y fog][vg o]™ + Tlvy fg)[vy vo]"T is defined as
in Theorem 3.2. Then K is real and Hamiltonian, (H 4+ K)vy = (iwg + 1)vy, and
[1G([vo Vo, vy Ae])ly < 2|plll[vg Vollloll[ve vo]*|l, Hence for & >0, setting  :=
8/2lve volllalllve ©o]™l2), it follows that the disk {iwy+ p:pu € C:|u| < n} is con-
tained in Ag%(?—{, R). This proves (c).

(d) Finally, w.l.o.g. suppose that both the eigenvalues ia and i have positive sign
characteristic. Then both components C,(H, ia) and C.(H, 8) have positive sign char-
acteristic for all e < ¢;. Hence C.(H, ia) UC.(H,if) C iR for all € < ¢;. Recall that
Ce,(H,iat) = C. (H.iB) is a connected component of Af™(H,F). Since C (H, ia) N
A(H) = {ia,if}, by Theorem 5.9 the component C,, (H, ic) has positive sign character-
istic. Hence by Corollary 5.10, we have C, (H,ia) C iR.

Note that the map e = A (H, F) is continuous and monotonically increasing and
that the components of A" (H, F) are closed connected sets. Hence there is a 8y > 0
such that the component C.(H, ie) remains disjoint from the rest of the components of
A (H,F) for all ¢y < € < ¢ + 8. This shows that C, ,s(H, i) N A(H) = {ia, if} for
all0 < 6 < 8y. Consequently, by Theorem 5.9, C,, 4s(H., i) has positive sign character-
istic and hence C, ,5(H., i) C iR for all 0 < 6 < 6,. This completes the proof. O

Observe that the assumptions in Theorem 5.11 make sure that components of the
Hamiltonian pseudospectrum AH*™(H,F) do not coalesce at a point iw, for some
w € [, B] \ {wy}, for all € < ¢.

We now consider the special case when all eigenvalues of a Hamiltonian matrix H
are purely imaginary and each eigenvalue has either positive or negative sign character-
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istic. Then by Theorem 5.11 we conclude that a purely imaginary eigenvalue of H can be
moved off of the imaginary axis only after the eigenvalue is made to coalesce with an
imaginary eigenvalue of H of opposite sign characteristic. In order to analyze this issue
further, we proceed as follows.

Let H € F?™?" be a Hamiltonian matrix whose eigenvalues are all purely imaginary,
and define

pe(H) = inf{[€],:€ € B2, (F&)* = JE.
‘H + £has a nonimaginary eigenvalue},
Rp(H) = inf{||&||,: & e F*»2,  (JE)* = JE,
‘H + Ehas a J -neutral eigenvector}.

Obviously, pp(H) > Rp(H). The following result shows equality and how to compute
either using the singular value function w — o, (H — iwl), w € R.

THeOREM 5.12. Let H € F?™?" be a Hamiltonian matriz whose eigenvalues are all
purely imaginary, and let f(w) = oy (H — iwl), w € R. Then the following assertions
hold.

(i) If at least one eigenvalue of H has mized sign characteristic, then Rg(H) =

pr(H) = 0.
(ii) Suppose that each eigenvalue of H has either positive or negative sign char-
acteristic. Let iZ,, ...,iL, C iR denote the closed intervals on the imaginary

azxis whose end points are adjacent eigenvalues of H with opposite sign char-
acteristics. Then we have

(5.8) Rp(H) = pp(H) = min max f().

1<k<q w€I,

Consider an interval T € {I,, ..., I} satisfying

(5.9) min max f(w) = max f(w) = f(wy), wy € L.

1<k<q w€I, wel

Suppose that iZ is given by iZ = [ia, if]. Then the claims (a) and (b) of The-
orem5.11 hold. For the J-neutral unit vector vy of claim (b) in Theorem 5.11,
consider the matrices

E" = Dunin(@0) T w97,
K = Znin(@0) T [vo T ][v0 4],
5# = G(vg, 1 1p),
(5.10) Kyp=6G(vo wl.[pnv pwl). neC,

where G(-, -) is defined as in Theorem 3.2. Then &0 is Hamiltonian, K° is real
and Hamiltonian, (H + £%)vy = (H + K°%)vy = iwgvy, and ||E%]], = [|K°||, =
f(wy). For any p € C the matriz £, is Hamiltonian, and (H + " + &, )vy =
(iwy + 1) vg. If g = 0 and H is real, then vy can be chosen as a real vector.
Then £° + &, is a real matriz for all p € R. If oy # 0 and H is real, then for
any p€C, K, is a real Hamiltonian matriz satisfying (H + KO+
Ky)vo = (iwy + p)vy.
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Proof. Part (i) is obvious.

For part (ii), let v denote the right-hand side of (5.8), let w; € Z;. be such that
f(@)) = max,ez, f(@), and let the numbering be such that w; <w, <-- < w,.
Then for 0 <e<v and all k we have €< f(®;), and hence AM™(H,F)nN
{iwy, ... iw,} = @. Furthermore, by the definition of the intervals 7, the numbers
iw), separate the eigenvalues of H of different sign characteristic. More precisely, for
any k, all eigenvalues of H that are contained in the interval i(w;_;, ;) C iR have
the same sign characteristic (here we use the notation wy, = —o0, @, = 00). Let
H(t) = H + t€, where t € R and £ is Hamiltonian with ||€]|; < e. Furthermore, let
to = sup{0 € [0, 1]|A(H(?)) C iRfor all ¢ € [0,0]}, and let Ag = Uyep,,) A(H(2)). Sup-
pose that ¢y < 1. Then by Theorem 4.3 the matrix H(#;) has a J-neutral eigenvector.
However, we have Ay C A (H,F) and hence A, N {iw, ...iw,} = @. Thus each
connected component C C iR of A does not contain eigenvalues of H = H(0) of opposite
sign characteristic. Hence each connected component C of A has either positive or ne-
gative sign characteristic. This contradicts the assumption that H(¢,) has a J-neutral
eigenvector. Thus ¢, = 1. It follows that v < Rp(H), v < pp(H), and AH™(H,F) C iR
for all € < v. Furthermore, each connected component of A (H, C), e < v, has either
positive or negative sign characteristic.

Now, let wy and Z be as in (5.9). Since iZ = [ic, if] and the eigenvalues ia and if
have opposite sign characteristic, the assumptions (i) and (ii) of Theorem 5.11 are auto-
matically satisfied, and hence the assertions (a), (b), and (c) of Theorem 5.11 hold. The
statements about the matrices £, £,, K°, K, imply that Rp(H) < v and pp(H) < v
which follows from Theorem 4.5 and Proposition 5.3.

Example 5.13. The eigenvalues £10¢ of the matrix H; from Example 5.5 have
mixed sign characteristics. Thus Rp(H;) = pr(H;) = 0.

FEzample 5.14. Consider the Hamiltonian matrices

0 0 1 0 0 01 0
0 0 0 1 0 0 0 -1
=14 0o 0 o Hy = -1 0 0 0
0 -4 0 0 0 4 0 0

Both matrices have the same spectrum A(H},) = {£4, £2i}, k= 3, 4, and their eigen-
value curves @ + A;(J(Hj, — iwl)) and singular value curves @ = o ;(H;, — iwl) are
depicted in Figure 5.2.

Here the singular value curves for H3 and H, coincide, and the graphs of the func-
tions w > o, (H), — iwl) and @ + Ay, (H; — iwl) are depicted as thick curves. From
the slopes of the 4;-curves at their crossing points with the real axis we can again read off
the sign characteristics of the eigenvalues +i, 24, and we see that for the matrix Hs the
eigenvalues —2¢ and —¢ have negative sign characteristic, while the eigenvalues 7 and 24
have positive sign characteristic. Thus the only pair of adjacent eigenvalues of Hz with
opposite sign characteristic is (—i, ¢). The maximum of the function f(w) = o, (Hs —
iwl) in the corresponding interval [—1,1] is 1. Thus Rp(Hs3) = pp(Hsz) = 1.

For the matrix H, the eigenvalues —2 and 7 have positive sign characteristic, while
the eigenvalues —¢ and 2¢ have negative sign characteristic. The pairs of adjacent
eigenvalues of H, of opposite sign characteristic are (—2i, —1), (—1, ¢), (i,21), and the
maxima of the function f(w)= 0, (Hs —iwl) in the corresponding intervals
[-2,-1], [-1,1], [1,2] are v, 1, v, respectively, where v & 0.43. Thus Rp(H,) =
pr(Hy) =v.
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eigenvalue curves w — X;(J (Hs — iwl))

eigenvalue curves w — A\ (J (Hq — iwl))

Fic. 5.2. Eigenvalue and singular value curves for Example 5.14.

In this section we have discussed the process of constructing the perturbations that
move the eigenvalues off the imaginary axis. These will be used in the algorithm of the
next section.

6. An algorithm to compute a bound for the distance to bounded-
realness. In this section we discuss a numerical method to approximately solve Pro-
blems A and B, i.e., to compute an upper bound for the smallest perturbation that moves
all eigenvalues of a Hamiltonian matrix off the imaginary axis or outside a strip S,
parallel to the imaginary axis. We cover both Problems A and B by different choices
of t; i.e., Problem A is the case when t = 0.

In general it is an open problem to analytically classify the smallest perturbation
that solves these two problems. Instead, we determine an upper bound for the smallest
perturbation by solving small problems of size 2 x 2 or 4 x 4 in the real case. We also
discuss only the special case that the Hamiltonian matrix has only purely imaginary
eigenvalues. Numerically we can restrict ourselves to the latter case because we can first
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use the methods in [7], [27] to compute a partial Hamiltonian Schur form of the matrix H
as in (1.2); i.e., we determine an orthogonal (unitary) and symplectic matrix @, such
that for the transformed Hamiltonian matrix

Fll F12 Gll G12

0 F22 G21 G22
QHQ, = L ,

0 0 | —Ff 0

0 Hy | —Ff —-F5

we have that F'; is upper triangular in the complex case or quasi-upper triangular in the
real case and contains those eigenvalues of H which lie (within the perturbation analysis
of Hamiltonian matrices [28]) outside of the strip S, = {z € C| — 7 < Rz < t}.

By restricting the perturbations to the Hamiltonian submatrix

7] F22 G22 :|
H, =
’ {Hm — I3,

which contains all the eigenvalues that lie within the strip S;, we determine an upper
bound for the smallest perturbation to the full matrix. A reason why it may not be the
smallest perturbation is that it may be possible that the smallest perturbation moves
two eigenvalues of F'j; that lie outside the strip S into S; and then combines them with
other eigenvalues in S, to get the globally smallest perturbation; see [28]. But since we
are treating eigenvalues in badges of two or four at a time, there may be a more global
small perturbation that moves all the eigenvalues together at the same time.

There are several possibilities for the parameter t that describes the width of the
strip S;. It can either be preassigned to achieve a robust bounded-realness margin, or if
we want only to make sure that the eigenvalues are robustly off the imaginary axis,
within the usual round-off error analysis, then, since an O(e) perturbation to a 2 x 2
Jordan block can produce an O(e!/?) change in the eigenvalue, it seems reasonable
to choose T = O(u!'/?), where u is the round-off unit. If there is reason to think that
some of the nonimaginary eigenvalues close to the imaginary axis are the effect of
round-off errors on a k x k Jordan block, then one should choose t = 0(u£/ k).

Since, due to round-off errors, we cannot be sure whether eigenvalues of H, are on or
off the imaginary axis, in view of the discussed perturbation analysis we first regularize
the problem by perturbing flg to Hy = fIQ + AH, with

AF AG
Am:[ » | m]

AH, | —AF%,

so that all eigenvalues of Hy = H 9 + AH, are on the imaginary axis. This can be done by
reversing the perturbations that we have introduced in Proposition 5.3.

In this way the following approach, which combines nearest purely imaginary ei-
genvalues of opposite sign, is not restricted, and we do not have to make a preliminary
decision as to which eigenvalues are purely imaginary and which are not.

For each eigenvalue pair that the partial Hamiltonian Schur form produces outside
the imaginary axis, a minimal perturbation &, that performs this task is given by Pro-
position 5.3. In the following we recursively work on the matrix H, and perturb one pair
of purely imaginary eigenvalues at a time. Again this may have the effect of increasing
the bound for the minimal perturbation since there may be a smaller perturbation that
moves several pairs at the same time.
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For each chosen pair of purely imaginary eigenvalues with opposite sign character-
istic (which pair of purely imaginary eigenvalues is to be chosen is discussed below) we
first compute the smallest perturbation that leads to a coalescence of the pseudospectral
components as described in Theorem 5.12. In this way we produce an eigenvalue of
mixed sign characteristic at a point 7y. If we want to solve Problem A, then this per-
turbation is sufficient. If we want to solve Problem B, then we move this pair of eigen-
values to the pair -t + 7y on the boundary of S,. In both cases we save the perturbation
&,. By taking a direct sum with an appropriate 0 matrix we generate a perturbation &€ to
the matrix H as well as its norm §. Since in both cases the perturbed eigenvalue belongs
to the part where a Hamiltonian Schur form exists, we can deflate this eigenvalue
pair from H, and continue with a smaller problem H, for which we proceed as
before.

ALGORITHM 1.

Input: A Hamiltonian matrix H € F?™2" that has only purely imaginary eigenvalues
and a value > 0 for the width of the strip S, around the imaginary
axis.

Output: A Hamiltonian matrix £ € F?»2" such that at least one pair (quadruple in the
real case) of eigenvalues of H + & is outside the open strip S,.

Step 1: Compute the eigenvalues iy, @), € R, k=1, ...,2n, and associated eigen-
vectors v, € C2" of H. By using the reordering of the Hamiltonian Schur form
[5], order the eigenvalues such that the eigenvalues arise in the order
aj, < o, on the diagonal. Then compute the eigenvectors. (For multiple
eigenvalues, consider the invariant subspace spanned by the columns of a
matrix V associated with this eigenvalue.)

Step 2: Compute the sign characteristics of the eigenvalues (i.e., the signs of iv} J v,
k=1, ...,2n, or the inertia of the matrix :V*J V in the case of multiple
eigenvalues).

Step 3: If there is a multiple eigenvalue of mixed sign characteristic (i.e., ) = o} 1)
and sign (ivy Jvy,)sign(ivy, 1 Jv1) < 0, then let v_ = vy, v, = v;44, and go
to Step 6.

Step 4: For each pair of adjacent eigenvalues io, i), ; with opposite sign charac-
teristic compute the maximum my = max,cy,q,,,] f(@), where f(w)
= 0pin(H — i0]) = |Apin(T(H — iw]))], ® € R.

Remark. Since f satisfies |f(w) — f(®)] < | — @|, the maxima can be found
by evaluating f on a coarse grid.

Step 5: From the eigenvalues found in Step 4 select an eigenvalue i such that
my, = min my. By Theorems 5.11 and 5.12 there is an wy € [ay, , @y 1] such
that the function f is strictly increasing in [er;, , @] and strictly decreasing in
(g, 1] (hence f(wy) = my,). By using a trisection method, determine a
small interval [w_, w, ] that contains w,. Let v be eigenvectors to the eigen-
values Ay (J(H — iw.I)). The real numbers —ivy J v, are the slopes of the
curve ® = i (@) = Apin (T (H — iwl)) at @ = w.. Again by Theorems 5.11
and 5.12 either f(®) = Ay (@) for all ® € [oy, . ay 1] or f(@) = =y, (@) for
all w € [ay, . oy, 1] Thus sign(ivy J v, )sign(iv: Jv_) < 0.

Step 6: Compute ¢ € [0, 1] such that u} Ju, = 0, where u, = tv, + (1 — t)v_, and let
vy = uy /|| us]]. Then vy is an approximate J-neutral eigenvector to the eigen-
value j’min(j(H - ZwOI))

Step 7: Let u = .
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Step 8: Let & =& + &, in the complex case, and E=K"+ KC,, in the real case, where
£, &,, K" and K, are defined by (5.10). Then by Theorem 5.12, H + £ has
(approximately) the two eigenvalues iw, £ p in the complex case and the
four eigenvalues +iwy + i in the real case. Due to rounding errors £ may
have a slight departure from being Hamiltonian. A Hamiltonian matrix close
to Eis €=~ 3T(TE+(TE)T).

Step 9: Check whether at least two eigenvalues of H + £ are outside the strip S,. If
this is not the case, increase p and return to Step 8.

Applying this algorithm recursively we obtain (as a sum of all the single perturba-
tion matrices) a perturbation matrix A such that, at least in theory, all eigenvalues of
the perturbed Hamiltonian matrix H+<—H + AH lie outside the strip S;. Due to round-off
errors in the computations, however, it may happen that some eigenvalues of H have
moved back towards the imaginary axis. Therefore, as in Step 9, it is advisable to check
the spectrum of H to see whether the eigenvalues are safely removed from the imaginary
axis in the sense that a Hamiltonian perturbation up to the size of the round-off error
cannot move the eigenvalues back to the imaginary axis.

So, suppose that H is the Hamiltonian matrix obtained by a successive application
of Algorithm 1 until all eigenvalues have been moved off the imaginary axis. Then for a
given tolerance T we would like to test that the eigenvalues of H are robustly away from
the imaginary axis in the sense that H + £ does not have an imaginary eigenvalue for
any Hamiltonian perturbation £ such that ||€]|; < 7. Given a Hamiltonian matrix
H € 272" define

Br(H) = min{||]l,:€ € F2n2n, (JE)* = JE. and A(H + &) N iR # @}

Then Br(H) is the distance from H to the Hamiltonian matrices having a purely
imaginary eigenvalue. Moreover, it follows from Corollary 5.7 that Bgr(H) =
min{e: A1 (H, F) N iR # @} = A.(H,C) N iR # @. This shows that B (H) is the same
for F = R and F = C and that it can be read off from the unstructured pseudospectrum
A(H,C) of H.

For the Hamiltonian matrix H computed by this procedure, we need to test whether
or not Br(H) > 7. This can be done by computing the Hamiltonian pseudospectrum
A, (H, C) with the method of [19] and testing whether or not A (H,C) N iR = @. Alter-
natively, we compute the eigenvalues of H — 77 and H + tJ. If these matrices do not
have a purely imaginary eigenvalue, then by Theorem 2 of [6] we have Sr(H) > 7, and
hence the eigenvalues of H are robustly away from the imaginary axis.

The computational costs of Algorithm 1 can be significantly reduced by modifying
the choice of the nearest purely imaginary eigenvalues that are brought to coalescence
using the following idea which may, however, in some rare cases, lead to a larger per-
turbation than necessary. To choose the pair (iy,, iys) or in the real case a quadruple
(iy1, —iy1, iye, —iy) of purely imaginary eigenvalues that are moved together at a point
41 + iy, we may proceed as follows. Assuming that the eigenvalues of H are all simple,
we choose a pair of purely imaginary eigenvalues (iy;, iy;) of opposite sign characteristic
for which the ratio

lv; — il

(6.1) K, T <0

is the smallest among all such pairs, where k(y;) is the condition number of the eigen-
value iy;. We arrive at this choice from the first order perturbation analysis of the
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eigenvalues. Indeed, by first order perturbation of eigenvalues, it follows that the com-
ponents of AM*M(H,F) containing iy; and iy; are approximately the intervals
ily; —k(4;)e.v; +k(y;)e] and iy, — k(4;)e. v, + k(y))e], respectively, for all small e.
Therefore, if the ratio (6.1) is the smallest, as € increases gradually these two compo-
nents are likely to coalesce before the other components.

6.1. A numerical example. To illustrate our procedure, we apply Algorithm 1 to
the matrix

-73 -8 54 -99 93 =58 80 77
1 -4 59 54 58 —61 4 1
-24 -31 -4 -86 80 4 27 26
-26 —-24 1 =73 77 1 26 24
-24 =26 -1 —-77 73 -1 24 26
-26 —-27 -4 -80 86 4 31 24
-1 -4 61 58 —-H54 =59 4 -1
—77 —80 58 =93 99 54 86 73

The matrix H has the purely imaginary spectrum
A(H) = {£4i, £104, +164, £18i}.

The intervals bounded by adjacent eigenvalues with opposite sign characteristic
are iZ, = [—164,—10i),iZ, = [—101¢, —4i], i3 = [—4i, 4i], i, = [41,104], and L5 =
[101, 164].

Algorithm 1 computes the maximum of the function  — f(®) = |Ayim(H — iwl)|in
each of the intervals 7). The minimum of these maxima is attained in the interval 7, at
wy ~ —13.9356. A corresponding normalized [J-neutral eigenvector (see Step 6) is

[ 0.5854 — 0.2940i |
—0.1559 — 0.1188i
—0.1238 — 0.0445i
—0.1145 — 0.0459i
—0.1081 — 0.0593i
—0.1130 — 0.0673i
—0.1907 — 0.0449i

| —0.5988 — 0.26551 |

Vg =

For the width of the strip S, we choose T = 0.1. Then the output of the algorithm is
the matrix (for layout reasons displayed only with three digits)

5.74 3.38 0.81 0.02 2.46 2.68 0.81 4.30
3.78 526 —-0.21 —-0.93 2.68 349 —474 0.10
0.61 -3.70 -221 -140 -081 —-4.74 7.39 5.17
388 —1.13 -1.01 -—-3.48 4.30 0.10 5.17 7.27
-293 -061 -072 319 574 -3.78 —-0.61 —-3.88
-0.61 -155 =275 019 =338 =526 3.70 1.33
—-0.72 =275 235 1.88 —-0.81 0.21 2.21 1.01

3.19  0.19

1.88

1.88

—0.02

0.93

1.40

3.48
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The eigenvalues of H + £ are

A(H 4 &) ~ {0.1000 £ 13.93564, —(0.1000 + 13.93564%), +17.61624, +4.36274}.
A Hamiltonian Schur decomposition of H + £ yields

Fll F12 ‘ Gll G12

0 F22 G21 G22
s (H+E)Q = :
Qi (H+€)Q o T =r o
0 Hy | —Ff —F5

where @) is symplectic and orthogonal, and

77958 —5.9178 ~30.8492 —2.5331

22:[7.3945 —3.3404}’ 22:[—2.5331 0.8874 |’
11.0658 —5.5371

22:[—5.5371 —0.5170}

These blocks correspond to the purely imaginary eigenvalues of H + £. By applying
Algorithm 1 again to the matrix

- F G
H _ |: 22 22* :|
Hyy —F3

we obtain the output

0.0707 1.2227  0.7015  0.0862
1.2227  0.0306  0.0862  0.6986
—2.1346  0.0862 —0.0707 —1.2227
0.0862 —2.1375 —1.2227 -0.0306

é:

The computed eigenvalues of H+ & are

A(H + &) = {0.1000 = 10.73684, —(0.1000 £ 10.73684)}.

Thus all eigenvalues of H + & are outside the open strip S;. Hence there is a real Ha-

miltonian matrix AH with norm [|[AH|, < [|€]ly + ||€]l, & 3.005 such that all eigenva-
lues of H + AH are outside the strip S;.

7. Conclusion. We have presented a detailed perturbation analysis for eigenva-
lues of Hamiltonian matrices and discussed the construction of structured perturbations
to Hamiltonian matrices that move eigenvalues off the imaginary axis and thereby dis-
cussed the computation of upper bounds for the distance to (robust) bounded-realness.
The application of this new approach in the context of passivation problems will be
discussed in a forthcoming work.
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