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Abstract. Motivated by the analysis of passive control systems, we undertake a detailed perturbation
analysis of Hamiltonian matrices that have eigenvalues on the imaginary axis. We construct minimal Hamil-
tonian perturbations that move and coalesce eigenvalues of opposite sign characteristic to form multiple ei-
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1. Introduction. In this paper we discuss the perturbation theory for eigenvalues
of Hamiltonian matrices and the explicit construction of small perturbations that move
eigenvalues from the imaginary axis. With Fk;l denoting the vector space of real (F ¼ R)
or complex ðF ¼ CÞ k× l matrices, a matrix H ∈ F2n;2n is called Hamiltonian if

ðHJ Þ⋆ ¼ HJ , where J ¼
h

0
−I n

I n
0

i
and I n is the n× n identity matrix (we suppress

the subscript n if the dimension is clear from the context). In order to simplify the pre-
sentation and to treat the real and the complex cases together, we use ⋆ to denote T in
the real case and � in the complex case.

1.1. The distance to bounded-realness. It is well-known [22], [26] that the spec-
trum of Hamiltonian matrices is symmetric with respect to the imaginary axis; i.e., ei-
genvalues occur in pairs ðλ;−λ̄Þ in the complex case or quadruples ðλ;−λ; λ̄;−λ̄Þ in the
real case. This eigenvalue symmetry degenerates if there are eigenvalues on the imagin-
ary axis. The existence of purely imaginary eigenvalues typically leads to difficulties for
numerical methods in control [7], [26]. If purely imaginary eigenvalues occur, then in
some applications (see, e.g., section 1.2) one perturbs the Hamiltonian matrix in such
a way that the eigenvalues are moved away from the imaginary axis. We formulate this
as our first problem.

PROBLEM A. Given a Hamiltonian matrix H that has purely imaginary eigenvalues,
determine (in some norm to be specified) the smallest Hamiltonian perturbation ΔH
such that for the resulting perturbed matrix Hþ ΔH an arbitrary small Hamiltonian
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perturbation will generically move all the eigenvalues off the imaginary axis. (By
“generically” it is meant that those small Hamiltonian perturbations which do not move
the imaginary eigenvalues away from the axis lie in a subset of zero measure within the
set of Hamiltonian matrices.)

Since checking the existence of purely imaginary eigenvalues of a Hamiltonian ma-
trix is used in the context of the bounded real lemma [4], we call this distance the dis-
tance to bounded-realness. The converse of this problem of determining the smallest
Hamiltonian perturbation of a Hamiltonian matrix so that all eigenvalues of the result-
ing perturbed matrix are purely imaginary (i.e., the distance to nonbounded-realness)
has recently been studied on the basis of so-called μ-values and spectral value sets
in [18].

While the distance to bounded-realness is an important quantity that has to be
determined in order to characterize whether it is possible to find a perturbation that
moves all eigenvalues off the imaginary axis, in applications (see, e.g., section 1.2) often
a modified question is more important.

PROBLEM B. Given a Hamiltonian matrix H that has purely imaginary eigenvalues,
determine (in some norm to be specified) the smallest Hamiltonian perturbation ΔH
such that the resulting perturbed matrix Hþ ΔH has all eigenvalues robustly bounded
away from the imaginary axis; i.e., all eigenvalues ofHþ ΔH lie outside an open vertical
strip Sτ ¼ fz ∈ Cj− τ < ℜz < τg ðτ ≥ 0Þ along the imaginary axis.

If a numerically backward stable method is used (and we will propose such a meth-
od), then we just have to choose the width of the strip so that perturbations on the order
of the round-off errors cannot move eigenvalues on the imaginary axis again. We will
discuss such choices below.

In this paper we discuss numerical procedures for the solution of both Problems A
and B. We mention that determination of minimal perturbations is in general a difficult
nonconvex optimization problem; see [10]. Instead, we construct suboptimal perturba-
tions and hence obtain upper bounds for the smallest perturbations.

1.2. Passivation. The main motivation for studying the perturbation problems
that we have discussed in the previous subsection is the following. Consider a linear
time-invariant control system

_x ¼ Axþ Bu; xð0Þ ¼ 0;

y ¼ CxþDu;ð1:1Þ

with matrices A ∈ Fn;n, B ∈ Fn;m, C ∈ Fp;n, and D ∈ Fp;m. Here u is the input, x the
state, and y the output.

Suppose that the homogeneous system is asymptotically stable; i.e., all eigenvalues
of A are in the open left half complex plane and that D is square and nonsingular. Then
(see, e.g., [4]) the system is called passive if there exists a nonnegative scalar valued
function Θ such that the dissipation inequality

Θðxðt1ÞÞ− Θðxðt0ÞÞ ≤
Z

t1

t0

ðu⋆yþ y⋆uÞdt

holds for all t1 ≥ t0; i.e., the system absorbs supply energy.
In real world applications the system model (1.1) is typically subject to several ap-

proximations. Often the real physical problem (e.g., the determination of the electric or
magnetic field associated with an electronic device) is infinite dimensional and is
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approximated by a finite element or finite difference model [17], or the system is non-
linear and the linear model is obtained by a linearization. The system may also be ob-
tained by a realization or system identification [8], [16], [35], or it may be the result of a
model reduction procedure [4].

If one uses an approximated model, then it is in general not clear that the property of
passivity will be preserved, and typically it is not; i.e., the approximation process makes
the passive system nonpassive. Since passivity is an important physical property (a pas-
sive system does not generate energy), one then approximates the nonpassive system by
a (hopefully) nearby passive system by introducing small (minimal) perturbations of A,
B, C , D; see [8], [10], [15], [35], [36].

Typically, one has an estimate or even a bound for the approximation error in the
original system approximation, and then one tries to keep the perturbations within these
bounds. So from the application point of view it may not be necessary to really determine
the minimal perturbation; a perturbation that stays within the range of the already
committed approximation errors is sufficient. But from a system theoretical point of
view, it is also interesting to find a value or a bound for the smallest perturbation that
makes a nonpassive system passive. In general it is an open problem to determine this
minimal perturbation explicitly. Instead one uses optimization methods [8], [10], [11] or
ad hoc perturbation methods [14], [15], [35], [34]; see also [36] for a recent improvement of
the method in [15].

The converse problem of computing the smallest perturbation that makes a passive
system nonpassive has recently been studied in [29], again using optimization tech-
niques.

At first sight the passivation problem does not seem to be related to the perturba-
tion problem for Hamiltonian matrices. However, it is well-known [4], [15] that one can
check whether an asymptotically stable system is passive by checking whether the
Hamiltonian matrix

H ¼
�
F G
H −F⋆

�
≔

�
A− BR−1C −BR−1B⋆

−C⋆R−1C −ðA− BR−1CÞ⋆
�

ð1:2Þ

has no purely imaginary eigenvalues, where we have set R ¼ D þ D⋆. Thus one can use
the distance to bounded-realness (i.e., perturbations that solve Problems A and B) to
construct perturbations that make the system passive. This topic will be discussed in a
forthcoming work.

The paper is organized as follows: In section 2 we introduce the notation and briefly
present some preliminary results. The perturbation theory for eigenvalues, in particular
purely imaginary eigenvalues of Hamiltonian matrices, is reviewed in section 3. Hamil-
tonian perturbations moving purely imaginary eigenvalues of a Hamiltonian matrix to
specific points in the complex plane are discussed in section 4. The minimal perturba-
tions or bounds of minimal perturbations are discussed in section 5. A numerical method
to compute approximate solutions of Problems A and B for the spectral norm k · k2 is
discussed in section 6.

2. Preliminaries. By Cþ and C−, respectively, we denote the positive right half
and negative left half complex plane. For X ∈ Fn;m of full column rank, we denote by
Xþ ≔ ðX⋆XÞ−1X⋆ the Moore–Penrose inverse of X ; see, e.g., [13]. For A ∈ Fn;n, the
spectrum is denoted by ΛðAÞ. A subspace X ⊆ Fn is said to be A-invariant if
Ax ∈ X for any x ∈ X . In this case we denote by ΛðAjXÞ the spectrum of the restriction
of the linear operator A to the subspace X . Let X ∈ Fn;d be a full column rank matrix
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such that X ¼ rangeðXÞ. Then X is A-invariant if AX ¼ XR for some R ∈ Fd;d, and
then we have ΛðAjXÞ ¼ ΛðRÞ.

It is well-known [28], [31], [32] that the Hermitian form

ðx; yÞ ↦ ix⋆J y; x; y ∈ F2n;ð2:1Þ

plays an important role in the perturbation theory of Hamiltonian eigenvalues. If
x⋆J y ¼ 0, then x and y are said to be J -orthogonal. Subspaces X ;Y ⊆ F2n are said
to be J -orthogonal if x⋆J y ¼ 0 for all x ∈ X , y ∈ Y. A subspace X ⊆ F2n is said to
be J -neutral if x⋆J x ¼ 0 for all x ∈ X . X is said to be J -nondegenerate if for any x ∈
X \ f0g there exists y ∈ X such that x⋆J y ≠ 0.

Nondegenerate invariant subspaces for Hamiltonian matrices are characterized by
the following theorem, where for a set of complex numbers Ξ ¼ fξ1; : : : ; ξkg we denote
by Ξ̄ the set of conjugates of the elements of Ξ.

THEOREM 2.1 (see [12]). Let X 1 and X 2 be invariant subspaces of the Hamiltonian
matrix H ∈ F2n;2n. Suppose that ΛðHjX 1Þ ∩ ð−ΛðHjX 2ÞÞ ¼ ∅. Then x⋆1J x2 ¼ 0 for all
x1 ∈ X 1, x2 ∈ X2.

Suppose, additionally, that X1

L
X 2 ¼ F2n. Then X1 and X 2 are J -nondegenerate.

Proof. LetXk ∈ F2n;pk be a matrix whose columns form a basis ofX k, k ¼ 1; 2. Then
HXk ¼ XkRk, and the matrix Rk ∈ Fpk;pk satisfies ΛðRkÞ ¼ ΛðHjXkÞ. Consider the Syl-
vester operator SðZÞ ¼ R⋆

1 Z þ ZR2, Z ∈ Fp1;p2 . We have

SðX⋆
1JX2Þ ¼ R⋆

1X
⋆
1JX2 þX⋆

1JX2R2

¼ −ðJX1R1Þ⋆X2 þ X⋆
1 ðJX2R2Þ

¼ −ðJHX1Þ⋆X2 þX⋆
1 ðJHX2Þ

¼ −X⋆
1 ðJHÞ⋆X2 þ X⋆

1 ðJHÞX2

¼ 0:

Furthermore, by assumption 0 ∈= ΛðR⋆
1 Þ þ ΛðR2Þ and thus the Sylvester operator S is

nonsingular [23]. Hence we have X⋆
1JX2 ¼ 0, and this completes the proof of the first

claim.
For the second part, suppose that X 1

L
X 2 ¼ F2n and that X 1 is degenerate. Then

there exists x1 ∈ X1 \ f0g such that x⋆1J x ¼ 0 for all x ∈ X 1. However, we also have
x⋆1J x ¼ 0 for all x ∈ X 2. This yields x⋆1J ¼ 0, contradicting the nonsingularity of
J . ▯

We immediately have the following corollary; see, e.g., [12].
COROLLARY 2.2. Let H ∈ F2n;2n be Hamiltonian. Let iα1; : : : ; iαp ∈ iR be the purely

imaginary eigenvalues of H, and let λ1; : : : ; λq ∈ C be the eigenvalues of H with negative
real part. Then the H-invariant subspaces ker ðH− iαkI Þ2n and ker ðH− λjI Þ2n

L
ker ðHþ λjI Þ2n are pairwise J -orthogonal. All these subspaces are J -nondegenerate.
The subspaces

X−ðHÞ ≔
Mq

j¼1

ker ðH− λjI Þ2n;

XþðHÞ ≔
Mq

j¼1

ker ðHþ λ̄jI Þ2n

are J -neutral.
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There are several viewpoints that can be taken to perform the perturbation analysis
for Hamiltonian matrices. We will mostly work with the quadratic form (2.1). Another
approach would be to use the normal and condensed forms for Hamiltonian matrices
under symplectic or unitary symplectic transformations, respectively [24], [26]. Recall
that a matrix S is called symplectic if S⋆JS ¼ J and it is called unitary (orthogonal
in the real case) symplectic if S is symplectic and S⋆S ¼ I .

The normal form under symplectic transformations forms the basis for the compu-
tation of eigenvalues, eigenvectors, and invariant subspaces of Hamiltonian matrices.
But since the group of symplectic matrices is not compact, to obtain backward stable
numerical methods it is important to use unitary (orthogonal) symplectic matrices for
the transformations. In this case, in general, we cannot get the complete spectral infor-
mation but only a condensed form—the (partial) Hamiltonian Schur form.

LEMMA 2.3 (see [25], [26]). Given a Hamiltonian matrix H ∈ F2n;2n, there exists a
unitary symplectic (real orthogonal symplectic if F ¼ R) matrix Q ∈ F2n;2n such that

T ¼ Q⋆HQ ¼

2
6664
F11 F12 G11 G12

0 F22 G21 G22

0 0 −F⋆
11 0

0 H 22 −F⋆
12 −F⋆

22

3
7775;ð2:2Þ

where F11 is upper triangular (quasi-upper triangular in the real case) and has only ei-
genvalues in the open left half-plane, while the submatrix

�
F22 G22

H 22 −F⋆
22

�

has only purely imaginary eigenvalues. If there are no purely imaginary eigenvalues, then
this latter block is void, and this becomes a Hamiltonian Schur form.

Under further conditions (see [9], [24], [25]) a Hamiltonian Schur form also exists if
purely imaginary eigenvalues occur.

It is worth mentioning that if 0 is an eigenvalue, then it is treated differently for real
and nonreal Hamiltonian matrices. Indeed, for nonreal Hamiltonian matrices 0 is con-
sidered to be purely imaginary. In contrast, for real Hamiltonian matrices the eigenvalue
0 plays a special role, and in some of the literature (see, e.g., [12]) it is even considered to
be not on the imaginary axis. For us, however, 0 will be treated as purely imaginary.

We now discuss the perturbation theory for purely imaginary eigenvalues of Hamil-
tonian matrices.

3. Perturbation theory for Hamiltonian matrices. In this section we discuss
perturbation results for Hamiltonian matrices. In particular, we analyze how purely ima-
ginary eigenvalues of Hamiltonian matrices behave under Hamiltonian perturbations,
and then we characterize when small perturbations allow one to move purely imaginary
eigenvalues away from the imaginary axis; see also [21], [28], [30], [31], [32]. To be more
precise, given a Hamiltonian matrix H ∈ F2n;2n with a purely imaginary eigenvalue iα,
our primary aim is to determine a minimal Hamiltonian perturbation ΔH such that iα
moves away from the imaginary axis to some specified location in the complex plane
when H is perturbed to Hþ ΔH. By minimal perturbation we mean that ΔH has
the smallest norm, either in the Frobenius or in the spectral norm.
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It is well-known that the spectral perturbation theory for Hamiltonian matrices
[28], [30], [31], in particular for the purely imaginary eigenvalues, is substantially dif-
ferent from the well-known classical perturbation theory for eigenvalues and eigenvec-
tors of unstructured matrices; see, e.g., [37].

Let H ∈ F2n;2n be Hamiltonian, and suppose that iα is a purely imaginary eigenva-
lue of H. Let X be a full column rank matrix such that the columns of X span the right
invariant subspace ker ðH− iαI Þ2n associated with iα so that

HX ¼ XR and ΛðRÞ ¼ fiαgð3:1Þ

for some square matrix R. By using the fact that H is Hamiltonian, we also have

X⋆JH ¼ −R⋆X⋆J :ð3:2Þ

Since Λð−R⋆Þ ¼ fiαg, it follows that the columns of the full column rank matrix J ⋆X
span the left invariant subspace associated with iα. Hence ðJ⋆XÞ⋆X ¼ X⋆JX is
nonsingular and the matrix

Z ¼ iX⋆JXð3:3Þ

associated with the Hermitian form (2.1) is nonsingular. This leads to the following
perturbation result for the spectral norm k · k2.

THEOREM 3.1 (see [28]). Consider a Hamiltonian matrix H ∈ F2n;2n with a purely
imaginary eigenvalue iα of algebraic multiplicity p. Suppose that X ∈ F2n;p satisfies

rankX ¼ p and (3.1), and that Z as defined in (3.3) is congruent to
h
Iπ
0

0
Iμ

i
(with

πþ μ ¼ p).
If ΔH is Hamiltonian and kΔHk2 is sufficiently small, then Hþ ΔH has p eigen-

values λ1; : : : ; λp (counting multiplicity) in the neighborhood of iα, among which at least
jπ− μj eigenvalues are purely imaginary. In particular, we have the following cases.

1. If Z is definite (i.e., either π ¼ 0 or μ ¼ 0), then all λ1; : : : ; λp are purely
imaginary with equal algebraic and geometric multiplicity, and satisfy

λj ¼ iðαþ δjÞ þOðkΔHk22Þ;

where δ1; : : : ;δp are the real eigenvalues of the pencil λZ − X⋆ðJΔHÞX .
2. If there exists a Jordan block associated with iα of size larger than 2, then gen-

erically for a given ΔH some eigenvalues among λ1; : : : ; λp will no longer be
purely imaginary.
If there exists a Jordan block associated with iα of size 2, then for any ϵ > 0,
there always exists a Hamiltonian perturbation matrix ΔH with jjΔHjj2 ¼ ϵ such
that some eigenvalues among λ1; : : : ; λp will have nonzero real part.

3. If iα has equal algebraic and geometric multiplicity and Z is indefinite, then for
any ϵ > 0, there always exists a Hamiltonian perturbation matrix ΔH with
kΔHk2 ¼ ϵ such that some eigenvalues among λ1; : : : ; λp will have nonzero real
part.

We now revisit the perturbation results in Theorem 3.1 and present them in a form
that we can directly use in the construction of small perturbations. In what follows, we
show that an imaginary eigenvalue of H can be moved off the imaginary axis by an
arbitrary small Hamiltonian perturbation if and only if H has a J -neutral eigenvector
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corresponding to the imaginary eigenvalue. We then describe how to construct such a
Hamiltonian perturbation.

Suppose that we wish to construct a Hamiltonian perturbation matrix E of smallest
norm such that an eigenvalue ofHmoves toμ whenH is perturbed toHþ E. For such a
perturbation then there exists a vector u such that ðHþ EÞu ¼ μu. This means that
Eu ¼ μu−Hu ¼ r. Thus the resulting E is a solution of the following structured map-
ping problem (see [1], [2]):Given x; b ∈ F2n find a Hamiltonian matrix G of smallest norm
kGk such that Gx ¼ b. Here k · k is either the spectral norm or the Frobenius norm.

To solve this problem in a more general framework, for X ∈ F2n;p and B ∈ F2n;p, we
introduce

ηðX;BÞ ≔ inffkHk∶H ∈ F2n;2n; ðJHÞ⋆ ¼ JH andHX ¼ Bg;ð3:4Þ

denoting ηðX;BÞ by ηF ðX;BÞ for the Frobenius norm and by η2ðX;BÞ for the spectral
norm. The following result, taken from [1], [2], provides a complete solution of the
Hamiltonian structured mapping problem.

THEOREM 3.2 (see [1], [2]).
(a)
1. Let x ∈ F2n and b ∈ F2n. Then there exists a Hamiltonian matrix H ∈ F2n;2n

such that Hx ¼ b if and only if x⋆J b ∈ R.
2. If x⋆J b is real, then

ηFðx; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kbk22 ∕ kxk22 − jx⋆J bj2 ∕ kxk42

q
;

η2ðx; bÞ ¼ kbk2 ∕ kxk2:

Furthermore, the matrix

Gðx; bÞ ≔ bx⋆ þ J xb⋆J
kxk22

þ ðx⋆J bÞJ xx⋆

kxk42
is the unique Hamiltonian matrix satisfying Gðx; bÞx ¼ b and kGðx; bÞkF ¼
ηFðx; bÞ.

3. If kxk2kbk2 ≠ jx⋆J bj, then form the Hamiltonian matrix

F ðx; bÞ ≔ Gðx; bÞ− x⋆J b

kbk22kxk22 − jx⋆J bj2 J
�
I −

xx⋆

x⋆x

�
J bb⋆J

�
I −

xx⋆

x⋆x

�
;

otherwise, set Fðx; bÞ ≔ Gðx; bÞ. Then Fðx; bÞx ¼ b and kFðx; bÞk2 ¼
η2ðx; bÞ.

(b)
1. Let B ∈ F2n;p and X ∈ F2n;p. Suppose that rankX ¼ p. Then there exists a

Hamiltonian matrix H ∈ F2n;2n such that HX ¼ B if and only if X⋆JB is
Hermitian.

2. If X⋆JB is Hermitian, then

η2ðX;BÞ ¼ kBðX⋆XÞ−1∕ 2k2;

ηF ðX;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBðX⋆XÞ−1∕ 2k2F − kðX⋆XÞ−1 ∕ 2X⋆JBðX⋆XÞ−1∕ 2k2F

q
:

3. Let Xþ denote the Moore–Penrose inverse of X . Then
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GðX;BÞ ≔ BXþ þ J ðXþÞ⋆B⋆J þ JXXþJBXþð3:5Þ
is the unique Hamiltonian matrix satisfying GðX;BÞX ¼ B and
kGðX;BÞkF ¼ ηF ðX;BÞ.

4. Set Z ≔ ðX⋆XÞ−1∕ 2X⋆JBðX⋆XÞ−1∕ 2 and ρ ≔ η2ðX;BÞ. If ρ2I − Z2 is
nonsingular, then consider the Hamiltonian matrix

F ðX;BÞ ≔ GðX;BÞ þ J ðI − XXþÞKZK⋆ðI − XXþÞ;
where K ≔ JBðX⋆XÞ−1 ∕ 2ðρ2I − Z 2Þ−1 ∕ 2. Then F ðX;BÞ is a Hamiltonian
matrix such that F ðX;BÞX ¼ B and kF ðX;BÞk2 ¼ η2ðX;BÞ.

In order to construct a real Hamiltonian matrix H satisfying HX ¼ B we need the
following lemma.

LEMMA 3.3. Let A;B ∈ Cn;p. Then ½A Ā �½B B̄ �þ is a real matrix.

Proof. Let P ¼
h
0
I

I
0

i
∈ R2p;2p. Then ½A Ā �P ¼ ½ Ā A �. Since P−1 ¼ P⋆ ¼ P,

we have P½B B̄ �þ ¼ ð½B B̄ �PÞþ ¼ ½ B̄ B �þ. Hence ½A Ā �½B B̄ �þ ¼
½A Ā �P2½B B̄ �þ ¼ ½A Ā �½B B̄ �þ. ▯

We then have the following minimal real perturbations.
COROLLARY 3.4. Let B ∈ C2n;p, X ∈ C2n;p, and suppose that rank½X X̄ � ¼ 2p.

Then there exists a real Hamiltonian matrix H ∈ R2n;2n such that HX ¼ B if and only
if X⋆JB is Hermitian and X⋆J B̄ is symmetric, i.e., ðX⋆J B̄Þ⊤ ¼ X⋆J B̄.

If the latter two conditions are satisfied, then with G as defined in (3.5), the matrix
GR ≔ Gð½X X̄ �; ½B B̄ �Þ is a real Hamiltonian matrix with GRX ¼ B. Furthermore,
among all real Hamiltonian matrices H with HX ¼ B the matrix GR has the smallest
Frobenius norm.

Proof. If H is any real matrix with HX ¼ B, then also HX̄ ¼ B̄. Hence
H½X X̄ � ¼ ½B B̄ �. By Theorem 3.2 a Hamiltonian matrix H satisfying this relation
exists if and only if ½X X̄ �⋆J ½B B̄ � ≕ Z is Hermitian. It is easily verified that Z is
Hermitian if and only ifX⋆JB is Hermitian andX⋆J B̄ is symmetric. If these conditions
are satisfied, then by Theorem 3.2 the matrix GR is Hamiltonian and GR½X X̄ � ¼
½B B̄ �. Moreover, among all Hamiltonian matrices H with H½X X̄ � ¼ ½B B̄ �
the matrix GR has the smallest Frobenius norm. The realness of GR follows from
Lemma 3.3. ▯

In this section we have discussed the structured mapping theorem for Hamiltonian
matrices and used it to construct solutions of minimal Frobenius and spectral norms. In
the next section we use these results to construct Hamiltonian perturbations that move
eigenvalues away from the imaginary axis.

4. Moving eigenvalues by small perturbations. We now discuss in detail how
to move an eigenvalue (resp., a group of eigenvalues) of a Hamiltonian matrix by a small
Hamiltonian perturbation to a specific location (resp., locations) in the complex plane.
We construct Hamiltonian perturbations under the assumption that a J -neutral eigen-
vector (resp., J -neutral invariant subspace) exists corresponding to the eigenvalue
(resp., group of eigenvalues).

THEOREM 4.1. Let σ be a set of eigenvalues of a Hamiltonian matrixH ∈ C2n;2n, and
let X ∈ C2n;d be a full column rank matrix such that X⋆JX ¼ 0 andHX ¼ XR for some
R ∈ Cd;d with ΛðRÞ ¼ σ. Then for any D ∈ Cd;d, the matrix E ¼ GðX;XDÞ, where Gð·; ·Þ
is defined by (3.5), has the following properties.

(i) The matrix E is Hamiltonian and satisfies E ¼ XDXþ þ J ðXþÞ⋆D⋆X⋆J ,
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EX ¼ XD, kEk2 ¼ kXDðX⋆XÞ−1 ∕ 2k2, and kEkF ¼ ffiffiffi
2

p kXDðX⋆XÞ−1∕ 2kF .
Further, we have

ðHþ tEÞX ¼ XðRþ tDÞð4:1Þ

for all t ∈ R, i.e., ΛðRþ tDÞ ⊂ ΛðHþ tEÞ for all t ∈ R.
(ii) Suppose thatH is real and σ ⊂ R. Then the matrix X can be chosen to be real

so that E is a real Hamiltonian matrix when D is real.
(iii) Suppose that H is real and σ ⊄ R. Set σ̄ ≔ fλ̄∶λ ∈ σg, and assume that σ ∩

σ̄ ¼ ∅ and σ ∩ ð−σÞ ¼ ∅. Then the matrix K ¼ Gð½X X̄ �; ½XD ¯XD �Þ is
real Hamiltonian and satisfies KX ¼ XD. Further, for all t ∈ R we have

ðHþ tKÞX ¼ XðRþ tDÞ;ð4:2Þ

i.e., ΛðRþ tDÞ ⊂ ΛðHþ tKÞ for all t ∈ R.
Proof. Since X⋆J ðXDÞ ¼ 0 is Hermitian, by Theorem 3.2, E is a well defined Ha-

miltonianmatrix, E ¼ XDXþ þ J ðXþÞ⋆D⋆X⋆J , EX ¼ XD, kEk2 ¼ kXDðX⋆XÞ−1 ∕ 2k2,
and kEkF ¼ ffiffiffi

2
p kXDðX⋆XÞ−1 ∕ 2kF . This proves (i).

The assertion in (ii) is obvious. So, suppose thatH is real and σ ⊄ R. Then we have
HX ¼ XR and HX̄ ¼ X̄ R̄ with ΛðRÞ ∩ ΛðR̄Þ ¼ ∅. Hence rank½X X̄ � ¼ 2d. Since
σ ∩ ð−σÞ ¼ ∅, by Theorem 2.1 the spaces spanned by the columns of X and X̄ are
J -orthogonal. Thus X⋆J X̄ ¼ 0. As X⋆JXD ¼ 0 is Hermitian and X⋆JXD ¼ 0 is
symmetric, by Corollary 3.4, the matrixK is real and Hamiltonian withKX ¼ XD. This
proves (iii). ▯

Theorem 4.1 shows that an eigenvalue (resp., a group of eigenvalues) of a Hamil-
tonian matrix H can be moved by a small Hamiltonian perturbation if the eigenvalue
(resp., group of eigenvalues) is associated with a J -neutral eigenvector (resp., J -neutral
H-invariant subspace).

Remark 4.2. First, observe that if σ ⊂ iR, then σ̄ ¼ −σ and hence the second as-
sumption in Theorem 4.1(iii) is redundant. Second, if λ ∈ C \ iR is a nonimaginary ei-
genvalue ofH and v is an associated eigenvector, then v is J -neutral, that is, v⋆J v ¼ 0.
Thus by Theorem 4.1, a nonimaginary eigenvalue ofH can be moved in any direction in
the complex plane by a small Hamiltonian perturbation. More generally, let σ be a set of
eigenvalues of H such that σ ⊂ C− (or equivalently σ ⊂ Cþ). Then by Corollary 2.2,
there is a full column rank matrix X such that X⋆JX ¼ 0 and HX ¼ XR with ΛðRÞ ¼
σ for some matrix R. Hence by Theorem 4.1, the group of eigenvalues σ can be moved en
block by a small Hamiltonian perturbation. Moreover, when H is real and σ ∩ σ̄ ¼ ∅,
then the Hamiltonian perturbation can be chosen to be real.

In view of Remark 4.2 we conclude that a nonimaginary eigenvalue (that is, an ei-
genvalue with nonzero real part) of a Hamiltonian matrix can be moved in any direction
in the complex plane by a small Hamiltonian perturbation. However, this property does
not hold in the same generality for purely imaginary eigenvalues. Indeed, suppose that
iα is an imaginary eigenvalue of H and v is an associated eigenvector, i.e., Hv ¼ iαv.
Then by the Hamiltonian eigenvalue symmetry, J v is a left eigenvector of H
corresponding to iα, i.e., ðJ vÞ⋆H ¼ iαðJ vÞ⋆. Thus if v is J -neutral, then ðJ vÞ⋆v ¼
−v⋆J v ¼ 0. Hence it follows that the algebraic multiplicity of iα must be at least 2.
However, the algebraic multiplicity being at least 2 is not enough to remove an imagin-
ary eigenvalue iα from the imaginary axis by a small Hamiltonian perturbation. By “re-
moving” we mean that the perturbed matrix has no imaginary eigenvalue in a vicinity of
iα. The crux of the matter is that the existence of a J -neutral eigenvector is both a
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necessary and sufficient condition for moving an eigenvalue of a Hamiltonian matrix in
any direction in the complex plane by a small Hamiltonian perturbation. More gener-
ally, we have the following result.

THEOREM 4.3. Let σ ≔ fλ1; : : : ; λdg be a set of distinct eigenvalues in the closed left
half-plane of a Hamiltonian matrix H ∈ C2n;2n, and let Sσ denote the generalized eigen-
space Sσ ¼ L

d
k¼1 ker ðH− λkI Þ2n. Let p be any integer with d ≤ p ≤ dim Sσ. Then there

exists a Hamiltonian matrix E such that HðtÞ ≔ Hþ tE has a p-dimensional HðtÞ-
invariant subspace XðtÞ with σðtÞ ≔ ΛðHðtÞjXðtÞÞ ⊂ C− for 0 < t ≤ 1 and σðtÞ → σ

as t → 0 if and only if the subspace Sσ contains a p-dimensional J -neutral H-invariant
subspace X with ΛðHjXÞ ¼ σ.

Proof. Suppose thatHX ¼ XR with ΛðRÞ ¼ σ and X⋆JX ¼ 0, where X ∈ C2n;p is
a full column rank matrix. Then the desired result follows from Theorem 4.1.

Conversely, suppose that there exists a Hamiltonian matrix E such that HðtÞ ≔
Hþ tE has a p-dimensional HðtÞ-invariant subspace XðtÞ with σðtÞ ≔ ΛðHðtÞjXðtÞÞ ⊂
C− for 0 < t ≤ 1 and σðtÞ → σ as t → 0. Let XðtÞ ∈ C2n;p be a matrix with orthonormal
columns such that spanðXðtÞÞ ¼ XðtÞ. Then HðtÞXðtÞ ¼ XðtÞRðtÞ for some RðtÞ with
ΛðRðtÞÞ ¼ σðtÞ. By multiplying the former equation from the left with XðtÞ⋆, it follows
that RðtÞ ¼ XðtÞ⋆HðtÞXðtÞ. Since for t > 0, the set σðtÞ contains no purely imaginary
eigenvalue of HðtÞ, the invariant subspace XðtÞ is J -neutral by Corollary 2.2. Thus
XðtÞ⋆JXðtÞ ¼ 0 for t > 0. Since the set of 2n-by-p matrices with orthonormal columns
is compact, the limit X ¼ limk→∞ XðtkÞ exists for some sequence ftkg with tk → 0. By
continuity, it follows that X⋆JX ¼ 0 and HX ¼ XR, where R ¼ limk→∞ RðtkÞ.
Furthermore, ΛðRÞ ¼ lim σðtkÞ ¼ σ. Hence X ≔ spanðXÞ is a J -neutral H-invariant
p-dimensional subspace of Sσ with ΛðHjXÞ ¼ σ. ▯

COROLLARY 4.4. An eigenvalue λ of a Hamiltonian matrix H can be removed from
the imaginary axis by an arbitrarily small Hamiltonian perturbation if and only ifH has a
J -neutral eigenvector corresponding to λ.

We mention that an imaginary eigenvalue of a Hamiltonian matrix may or may not
have a J -neutral eigenvector associated with it. The case when an imaginary eigenvalue
does not have an associated J -neutral eigenvector is addressed in section 5. In our al-
gorithmic construction we remove one imaginary eigenvalue at a time. Therefore, we
first briefly discuss the removal from the imaginary axis of an imaginary eigenvalue
by a Hamiltonian perturbation under the assumption that a J -neutral eigenvector ex-
ists, and then we discuss how to achieve this property. We have the following result
which follows from Theorem 4.1.

THEOREM 4.5. Let iα be an imaginary eigenvalue of a Hamiltonian matrix
H ∈ C2n;2n. Let v be a normalized and J -neutral eigenvector of H corresponding to
iα, i.e., kvk2 ¼ 1, v⋆J v ¼ 0, and Hv ¼ iαv. For any μ ∈ C, consider the matrices

Eμ ¼ Gðv;μvÞ and Kμ ¼ Gð½ v v̄ �; ½μv μv �Þ;

where Gð·; ·Þ is defined by (3.5). Then Eμ and Kμ have the following properties.
(i) The matrix Eμ is Hamiltonian and satisfies Eμ ¼ μvv⋆ þ μ̄J vv⋆J ,

kEμk2 ¼ jμj, and kEμkF ¼ ffiffiffi
2

p jμj. Furthermore, ðHþ tEμÞv ¼ ðiαþ tμÞv
for all t ∈ R, i.e., iαþ tμ ∈ ΛðHþ tEμÞ for all t ∈ R.

(ii) If H is a real matrix and α ¼ 0, then the vector v can be chosen to be real in
which case Eμ is real for all μ ∈ R.

(iii) Suppose that H is a real matrix and α ≠ 0. Then Kμ is a real Hamiltonian
matrix satisfying ðHþ tKμÞv ¼ ðiαþ tμÞv and ðHþ tKμÞv̄ ¼ ð−iαþ tμ̄Þv̄.
Hence fiαþ tμ;−iαþ tμ̄g ⊂ ΛðHþ tKμÞ for all t ∈ R.
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For a purely imaginary eigenvalue with an associated J -neutral eigenvector, the
perturbations Eμ and Kμ constructed in Theorem 4.5 move the imaginary eigenvalue
away from the imaginary axis. Note, however, that these perturbations may also move
the other eigenvalues of H to unspecified positions. For our algorithmic construction, it
is desirable to move eigenvalues one-by-one without affecting the other eigenvalues. The
following result provides Hamiltonian perturbations which move only the specified ei-
genvalue and leave the other eigenvalues unchanged.

THEOREM 4.6. Let iα be an imaginary eigenvalue of a Hamiltonian matrix
H ∈ C2n;2n. Let v be a normalized and J -neutral eigenvector of H corresponding to
iα, i.e., kvk2 ¼ 1, v⋆J v ¼ 0, and Hv ¼ iαv. Let w ∈ ker ðH− iαI Þ2n be such that
w⋆J v ¼ 1. For any μ ∈ C, consider the matrices

Êμ ¼ ðμvw⋆ þ μ̄wv⋆ÞJ and K̂μ ¼ Êμ þ Êμ:

Then Êμ and K̂μ have the following properties.
(i) The matrix Êμ is Hamiltonian and ðHþ tÊμÞv ¼ ðiαþ tμÞv for all

t ∈ R. Furthermore, ðHþ tÊμÞx ¼ Hx for any x ∈ ker ðH− λI Þ2n and λ ∈
ΛðHÞ \ fiαg.

(ii) Suppose that H is a real matrix and α ¼ 0. Then the vectors v and w can be
chosen to be real in which case Êμ is real for all μ ∈ R.

(iii) Suppose that H is a real matrix and α ≠ 0. Then the matrix K̂μ is a real
Hamiltonian matrix satisfying ðHþ tK̂μÞv ¼ ðiαþ tμÞv, ðHþ tK̂μÞv̄ ¼
ð−iαþ tμ̄Þv̄, and ðHþ tK̂μÞx ¼ Hx for any x ∈ ker ðH− λI Þ2n and λ ∈
ΛðHÞ \ fiα;−iαg.

Proof. Since the Hermitian form ðx; yÞ ↦ −ix⋆J y is nondegenerate on

ker ðH− iαI Þ2n, there exists w ∈ ker ðH− iαI Þ2n such that w⋆J v ¼ 1. Hence Êμ is well

defined. Obviously, Êμv ¼ μv, whence ðHþ tEμÞv ¼ ðiαþ tμÞv. Since ker ðH− iαI Þ2n
is J -orthogonal to the other generalized eigenspaces of H, we have v⋆J x ¼ w⋆J x ¼ 0

for any x ∈ ker ðH− λI Þ2n and λ ∈ ΛðHÞ \ fiαg. Thus Êμx ¼ 0. This completes the

proof of (i). Assertion (ii) is obvious, and (iii) follows from the identity ker ðHþ iαI Þ2n ¼
ker ðH− iαI Þ2n and the J -orthogonality of the generalized eigenspaces. ▯

For the construction of Hamiltonian matrices that move eigenvalues off the ima-
ginary axis, we need a J -neutral eigenvector. We now address the issue of existence
of J -neutral eigenvectors corresponding to an imaginary eigenvalue of a Hamiltonian
matrix. First, we show that a J -neutral eigenvector ofH corresponding to an imaginary
eigenvalue exists if the eigenvalue is defective.

PROPOSITION 4.7. Suppose that v1; v2; : : : ; vl, l ≥ 2, is a Jordan chain of the Hamil-
tonian matrixH associated with an imaginary eigenvalue iα, i.e.,Hvk ¼ iαvk þ vk−1 for
k ¼ 1; : : : ;l, where v0 ≔ 0. Then the subspace spanfv1; : : : ; vbl ∕ 2cg is J -neutral. In
particular the eigenvector v1 is J -neutral.

Proof. We have J ðH− iαI Þ ¼ −ðH− iαI Þ⋆J , vk ¼ ðH− iαI Þl−kvl for
k ¼ 1; : : : ;l, and ðH− iαI Þqvl ¼ 0 for q ≥ l. Hence if kþ j ≤ l, then v⋆j J vk ¼
vl⋆ððH− iαI Þ⋆Þl−jJ ðH− iαI Þl−kvl ¼ ð−1Þl−jvl⋆J ðH− iαI Þ2l−k−jvl ¼ 0. ▯

Proposition 4.7 shows that the first vector in a Jordan chain of length at least 2 is a
J -neutral vector, but this may or may not be true for semisimple purely imaginary
eigenvalues. To characterize when this is the case, we need the sign characteristic of
the purely imaginary eigenvalue, which allows us to classify the purely imaginary eigen-
values into three distinct groups.
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DEFINITION 4.8. Let iα be a purely imaginary eigenvalue of a nonrealH ∈ C2n;2n or a
nonzero purely imaginary eigenvalue of H ∈ R2n;2n. Let X be a full column rank matrix
such that spanðXÞ ¼ kerððH− iαI Þ2nÞ. Consider the matrix Z ≔ −iX⋆JX . Then iα is
said to have positive sign characteristic, negative sign characteristic, or mixed sign char-
acteristic, depending on whether Z is positive definite, negative definite, or indefinite,
respectively.

Remark 4.9. Note that the eigenvalue 0 of a real Hamiltonian matrix is excluded in
Definition 4.8 because in such a case the definition of sign characteristic does not make
sense. Indeed, if 0 is an eigenvalue of a real Hamiltonian matrix and x is an associated
eigenvector, then obviously xTJ x ¼ 0. This shows that there always exists a J -neutral
eigenvector of a real Hamiltonian matrix associated with the eigenvalue 0.

The following result characterizes the existence of a J -neutral eigenvector of a Ha-
miltonian matrix corresponding to an imaginary eigenvalue; see also [12] in the context
of H -self-adjoint matrices.

PROPOSITION 4.10. Let iα be a purely imaginary eigenvalue of a nonreal H ∈ C2n;2n

or a nonzero purely imaginary eigenvalue of H ∈ R2n;2n. Then H has a J -neutral eigen-
vector corresponding to iα if and only if iα has mixed sign characteristics.

Proof. Recall that the Hermitian form ðx; yÞ ↦ −ix⋆J y is nondegenerate on
ker ðH− iαI Þ2n and hence the matrix Z ¼ −iX⋆JX in Definition 4.8 is nonsingular.
Suppose that there exists a J -neutral eigenvector associated with iα. Then clearly Z
is indefinite. Hence iα has mixed sign characteristics.

Conversely, suppose that iα has mixed sign characteristics; i.e., Z is indefinite. By
Proposition 4.7, a J -neutral eigenvector exists if the eigenvalue iα is defective. So, sup-
pose that iα is semisimple. Since Z is indefinite, there exist eigenvectors v0 and v1 such
that −iv⋆0J v0 > 0 and −iv⋆1J v1 < 0. Hence by continuity there exists an eigenvector v
of the form v ¼ cosðtÞv0 þ sinðtÞv1, for some t ∈ R, such that v⋆J v ¼ 0. ▯

Note that if a purely imaginary eigenvalue of a nonreal Hamiltonian matrix or a
nonzero purely imaginary eigenvalue of a real Hamiltonian matrix is simple, then it
has either positive or negative sign characteristic. Hence if iα has mixed sign character-
istics, then iα is necessarily multiple. Note, further, that if iα is defective, then by
Proposition 4.7, iα has mixed sign characteristics. However, when iα is a nondefective
multiple eigenvalue, it may or may not have mixed sign characteristics; see
[28, Example 6].

Remark 4.11. We have shown that only eigenvalues of mixed sign characteristics
can be removed from the imaginary axis by an arbitrarily small Hamiltonian perturba-
tion. A related result is well-known for symplectic perturbations of eigenvalues of
symplectic matrices on the unit circle; see [39, p. 196].

5. Minimal Hamiltonian perturbations. In this section we investigate how to
move purely imaginary eigenvalues which are neither defective nor have mixed sign
characteristics off the imaginary axis by suitable Hamiltonian perturbations. We begin
with the problem of moving an eigenvalue of a Hamiltonian matrix to a specified point in
the complex plane by a minimal Hamiltonian perturbation. This will play an important
role in moving eigenvalues to specific points outside a strip Sτ as required in Problem B.

By the previous discussion, in order to move a purely imaginary eigenvalue having
either positive or negative sign characteristic from the imaginary axis by a Hamiltonian
perturbation, we first need to coalesce it with another purely imaginary eigenvalue of
opposite sign characteristic.

Thus in this case we split the construction of perturbations that move the eigen-
values off the imaginary axis into two steps. First, we construct a minimal Hamiltonian
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perturbation that coalesces two eigenvalues having negative and positive sign charac-
teristics into an imaginary eigenvalue having mixed sign characteristics. This moves the
eigenvalues on the boundary of the set required in Problem A. Second, we move the
resulting imaginary eigenvalue with mixed sign characteristics off the imaginary axis
by a small Hamiltonian perturbation as required in Problem B.

Since we have already addressed the second stage of the problem in the previous
section, we now address the first step of the construction.

For this purpose, we make use of both the backward error for the Hamiltonian
eigenvalue problem and Hamiltonian pseudospectra. These quantities are introduced
and discussed in the following subsections. In the third subsection we then determine
perturbations of minimum norm which remove a pair of eigenvalues from the imagin-
ary axis.

5.1. Backward errors. We begin with the construction of backward errors for
eigenvalues of a Hamiltonian matrix. The Hamiltonian backward error associated with
a complex number λ ∈ C is defined by

ηHamðλ;HÞ ≔ inffkEk∶E ∈ F2n;2n Hamiltonian; λ ∈ ΛðHþ EÞg:ð5:1Þ

Note that in general ηðλ;HÞ will be different for F ¼ C and for F ¼ R. We use the nota-
tion ηHam

F ðλ;HÞ and ηHam
2 ðλ;HÞ when the norm in (5.1) is the Frobenius norm and the

spectral norm, respectively.
THEOREM 5.1. Let H ∈ C2n;2n be a Hamiltonian matrix, and let λ ∈ C be such that

Re λ ≠ 0. Then we have

ηHam
F ðλ;HÞ ¼ min

kxk2¼1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðH− λI Þxk22 − jx⋆JHxj2

q
∶x ∈ C2n; x⋆J x ¼ 0

�
;ð5:2Þ

ηHam
2 ðλ;HÞ ¼ min

kxk2¼1
fkðH− λI Þxk2∶x ∈ C2n; x⋆J x ¼ 0g:ð5:3Þ

In particular, we have ηHam
2 ðλ;HÞ ≤ ηHam

F ðλ;HÞ ≤ ffiffiffi
2

p
ηHam
2 ðλ;HÞ.

Suppose that the minima in (5.2) and (5.3) are attained for u ∈ C2n and v ∈ C2n,
respectively. Let E ≔ Gðu; ðλI −HÞuÞ and K ≔ F ðv; ðλI −HÞvÞ, where G and F are as
in Theorem 3.2. Then

kEkF ¼ ηHam
F ðλ;HÞ and ðHþ EÞu ¼ λu;

kKk2 ¼ ηHam
2 ðλ;HÞ and ðHþKÞv ¼ λv:

Proof. Let x ∈ Cn be nonzero. Then by Theorem 3.2 there exists a Hamiltonian
matrix E ∈ C2n;2n such that ðHþ EÞx ¼ λx if and only if x⋆J x ¼ 0. Indeed, setting
r ¼ λx−Hx, it follows that x⋆J r is real if and only if x⋆J x ¼ 0. So, suppose that
x⋆J x ¼ 0 and w.l.o.g. that x⋆x ¼ 1. Then by Theorem 3.2, E ≔ Gðx; rÞ is the unique
Hamiltonian matrix such that ðHþ EÞx ¼ λx and E has minimal Frobenius norm
given by

kEkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðH− λI Þxk22 − jx⋆J ðH− λI Þxj2

q
:

Similarly, by Theorem 3.2, K ≔ Fðx; rÞ is a Hamiltonian matrix such that
ðHþKÞx ¼ λx and K has minimal spectral norm given by
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kKk2 ¼ kðH− λI Þxk2:

The claim follows by taking the minimum over all x ∈ C2n such that x⋆J x ¼ 0. ▯
Note that it is a nontrivial task to determine the minimal values ηHam

2 ðλ;HÞ and
ηHam
F ðλ;HÞ when λ ∈ C and Re λ ≠ 0. In contrast, it is relatively simple to determine

these minimal values for purely imaginary values λ ¼ iω with ω ∈ R. The construction
in Proposition 5.3 below is based on the following observation.

Observation 5.2. LetH ∈ C2n;2n be Hamiltonian, and let λ1; : : : ; λ2n ∈ R denote the
eigenvalues of the Hermitian matrix JH. Let v1; : : : ; v2n ∈ C2n be an orthonormal basis
of eigenvectors of JH such that JHvk ¼ λkvk. Then jλ1j; : : : ; jλ2nj are the singular va-
lues ofH, and the vectors vk are the associated right singular vectors. The associated left
singular vectors are uk ¼ −signðλkÞJ vk. Indeed, the matrices V ¼ ½v1; : : : ; v2n�,
U ¼ ½u1; : : : ; u2n� are unitary, and from JHV ¼ Vdiagðλ1; : : : ; λ2nÞ it follows that
H ¼ Udiagðjλ1j; : : : ; jλ2njÞV⋆.

In the following we denote the smallest singular value of a matrix M by σminðMÞ.
PROPOSITION 5.3. Let H ∈ F2n;2n be Hamiltonian and ω ∈ R. Let v be a normalized

eigenvector of the Hermitian matrix J ðH− iωI Þ corresponding to an eigenvalue λ ∈ R.
Then jλj is a singular value of the Hamiltonian matrix H− iωI , and v is an associated
right singular vector.

Further, the matrices

E ¼ λJ vv⋆;ð5:4Þ
K ¼ λJ ½vv̄�½vv̄�þð5:5Þ

are Hamiltonian, K is real, and we have ðHþ EÞv ¼ ðHþKÞv ¼ iωv. Furthermore,
kEkF ¼ kEk2 ¼ kKk2 ¼ jλj and kKkF ¼ jλj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rank½ v v̄ �p
.

Moreover, suppose that λ is an eigenvalue of J ðH− iωI Þ of smallest absolute value
and let σminðH− iωI Þ be the smallest singular value of H− iωI . Then jλj ¼
σminðH− iωI Þ, and we have

ηHam
F ðiω;HÞ ¼ ηHam

2 ðiω;HÞ ¼ jλj ¼ kEk2 when F ¼ C;

ηHam
F ðiω;HÞ ≤ kKkF ≤

ffiffiffi
2

p
ηHam
2 ðiω;HÞ ¼

ffiffiffi
2

p
jλj ¼

ffiffiffi
2

p
kKk2 when F ¼ R:

Proof. The first assertion follows by applying Observation 5.2 to the Hamiltonian
matrix H− iωI . By construction, H and K are Hamiltonian and ðHþ EÞv ¼
ðHþKÞv ¼ iωv. Note that by Lemma 3.3,K is real. Obviously, we have kEkF ¼ kEk2 ¼
kKk2 ¼ jλj and kKkF ¼ jλj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rank½ v v̄ �p
.

If λ has the smallest absolute value, then σminðH− iωI Þ ¼ jλj by Observation 5.2.
Since 1ffiffi

2
p kKkF ≤ kKk2 ¼kEkF ¼kEk2 ¼σminðH− iωI Þ and ηHam

F ðiω;HÞ≥ ηHam
2 ðiω;HÞ≥

σminðH− iωI Þ, the desired result follows. ▯
Proposition 5.3 in particular states that a Hamiltonian perturbation ofH of smallest

norm that moves an eigenvalue to the point iω can be constructed from an eigenpair
ðv; λÞ of J ðH− iωI Þ, where λ has the smallest absolute value. Our next result shows that
the eigenpair ðv; λÞ can be chosen as a piecewise analytic (but not necessarily continu-
ous) function of ω.

PROPOSITION 5.4. Let H ∈ C2n;2n be Hamiltonian, and let FðωÞ ¼ J ðH− iωI Þ and
f ðωÞ ¼ σminðH− iωI Þ for ω ∈ R. There exist a finite number l of real values γ1 < γ2 <
· · ·< γl and functions λmin∶R → R, v∶R → C2n which are analytic on R \ fγ1; : : : ; γlg
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and have the following properties.
(a) FðωÞvðωÞ ¼ λminðωÞvðωÞ, jλminðωÞj ¼ minfjλj∶λ ∈ ΛðFðωÞÞg, and, moreover,

kvðωÞk2 ¼ 1 for all ω ∈ R.
(b) For each k ∈ f0; 1; : : : ;lg either λminðωÞ ¼ f ðωÞ for all ω ∈ ðγk; γkþ1Þ or

λminðωÞ ¼ −fðωÞ for all ω ∈ ðγk; γkþ1Þ, where we set γ0 ¼ −∞ and γlþ1 ¼ ∞.
(c) The vector vðωÞ is a right singular vector of the matrixH− iωI associated with

the smallest singular value.
(d) The derivative of λminð·Þ at ω ∈ R \ fγ1; : : : ; γlg satisfies

λ 0minðωÞ ¼ −ivðωÞ⋆J vðωÞ:

(e) At each of the (exceptional) points γk the left and the right limits of λminð·Þ and
vð·Þ exist. Suppose that λminð·Þ is continuous at γk. Then the left and the right
side derivative of λminð·Þ at γk both exist and satisfy

lim
ω→γk�

λminðωÞ− λminðγkÞ
ω− γk

¼ lim
ω→γk�

λ 0minðωÞ:

Proof. Note that FðωÞ ¼ J ðH− iωI Þ, ω ∈ R, is a Hermitian matrix. By
[33, pp. 29–33] there exist analytic functions ω ↦ v1ðωÞ; : : : ; v2nðωÞ ∈ C2n and
ω ↦ λ1ðωÞ; : : : ; λ2nðωÞ ∈ R such that for each ω the vectors vjðωÞ form an orthonormal
basis of C2n and FðωÞvjðωÞ ¼ λjðωÞvjðωÞ. The derivative of λj at ω satisfies

λ 0jðωÞ ¼
d

dω
ðvjðωÞ⋆FðωÞvjðωÞÞ

¼ vjðωÞ⋆F  0ðωÞvjðωÞ þ v 0jðωÞ⋆FðωÞvjðωÞ þ vjðωÞ⋆FðωÞv 0jðωÞ
¼ −ivjðωÞ⋆J vjðωÞ þ λjðωÞðv 0jðωÞ⋆vjðωÞ þ vjðωÞ⋆v 0jðωÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ d
dωkvjðωÞk2¼0

¼ −ivjðωÞ⋆J vjðωÞ:ð5:6Þ

For each pair of indices j, k the analytic functions λjð·Þ, λkð·Þ either are identical or meet
in a discrete set Pj;k ⊂ R. Analogously, the functions −λjð·Þ, λkð·Þ either are identical or
meet in a discrete set Qj;k ⊂ R. Since the union of the graphs of the functions �λjð·Þ
equals the algebraic curve fðω; λÞ ∈ R2j detððFðωÞ− λI ÞðFðωÞ þ λI ÞÞ ¼ 0g, both of
the sets Pj;k and Qj;k are finite [3]. Let fγ1; : : : ; γrg, γk < γkþ1, denote the union of
the sets Pjk and the sets Qjk. By the third claim of Proposition 5.3, we have that f ðωÞ ¼
minj¼1; : : : ;2njλjðωÞj. It follows that to each interval Ik ¼ ðγk; γkþ1Þ there exists an index j
such that either λjðωÞ ¼ f ðωÞ for all ω ∈ I k or λjðωÞ ¼ −f ðωÞ for all ω ∈ Ik. Define
λminðωÞ ≔ λjðωÞ; vðωÞ ≔ vjðωÞ for ω ∈ I k and λminðγkÞ ≔ λjðγkÞ, vðγkÞ ≔ vjðγkÞ. Then
the functions λminð·Þ and vð·Þ have the required properties. ▯

Example 5.5. The left diagram of Figure 1 shows the eigenvalue curves ω ↦ λjðωÞ
of the Hermitian matrix function ω ↦ J ðH1 − iωI Þ for ω ∈ ½−16; 16� and

H1 ≔
h

0
H 1

G1
0

i
, where
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G1 ≔

2
666664

7 −4 2 −11 0
−4 −37 31 −8 0
2 31 −28 4 0

−11 −8 4 28 0
0 0 0 0 −3

3
777775; H 1 ≔

2
666664

11 16 16 5 0
16 21 30 8 0
16 30 48 8 0
5 8 8 −1 0
0 0 0 0 3

3
777775:

The spectrum of H1 is ΛðH1Þ ¼ f�3i;�5i� 10i;�15ig, and the eigenvalues �10i have
multiplicity 2, while the other eigenvalues are simple. At the real parts of the eigenvalues
ofH1 the eigenvalue curves λjð·Þ cross the real axis. Observe that, according to (5.6), the
sign characteristics of the eigenvalues ofH1 can be read off from the slopes of the curves
λjð·Þ. The λj-curves crossing the real axis at −15, −3, and 5 have positive slope; i.e., the
eigenvalues−15i,−3i, and 5i have positive sign characteristic. The λjð·Þ-curves crossing
the real axis at −5, 3, and 15 have negative slope; i.e., the eigenvalues −5i, 3i, and 15i
have negative sign characteristic. At the points �10 there are two λj-curves crossing the
real axis with positive and negative slopes. Thus the eigenvalues �10 both have mixed
sign characteristic. The graph of the function ω ↦ λminðωÞ ¼ λminðJðH1 − iωI ÞÞ from
Proposition 5.4 is depicted by thick curves. Note that this function is piecewise analytic
but discontinuous. The right diagram of Figure 1 shows the singular value curves of the
pencil ω ↦ H1 − iωI . The graph of the continuous function ω ↦ σminðH1 − iωI Þ is
depicted as a thick curve. Note that σminðH1 − iωI Þ ¼ jλminðωÞj.

The following proposition characterizes the existence of J -neutral eigenvectors in
terms of the local extrema of the eigenvalue curves.

PROPOSITION 5.6. Suppose the function λmin∶R → R of Proposition 5.4 is continuous
at ω0 ∈ R and attains a local extremum at ω0. Then there exists a J -neutral normalized
eigenvector v0 of the Hermitian matrix J ðH− iω0I Þ corresponding to the eigenvalue
λminðω0Þ.

Proof. If ω0 ∈ R \ fγ1; : : : ; γrg, then the derivative of λminð·Þ at ω0 satisfies 0 ¼
λ 0minðω0Þ ¼ −ivðω0Þ⋆J vðω0Þ. Hence v0 ≔ vðω0Þ is J -neutral if λmin attains a local ex-
tremum at ω0. Now suppose that ω0 ∈ fγ1; : : : ; γrg. Assume w.l.o.g. that ω0 is a local
maximum. Then the left sided derivative of λminð·Þ at ω0 is nonnegative, and the right
sided derivative is nonpositive. Hence it follows from claim (e) of Proposition 5.4 that

0 ≤ lim
ω→ω0−

λ 0minðωÞ ¼ lim
ω→ω0−

ð−ivðωÞ⋆J vðωÞÞ ¼ −iv⋆−J v−;

0 ≥ lim
ω→ω0þ

λ 0ðωÞ ¼ lim
ω→ω0−

ð−ivðωÞ⋆J vðωÞÞ ¼ −iv⋆þJ vþ;

where v� ¼ limω→ω0� vðωÞ. Suppose that vþ and v− are linearly dependent. Then
−iv⋆−J v− ¼ −iv⋆þJ vþ ¼ 0; i.e., v0 ≔ vþ has the required properties. If vþ and v−
are linearly independent, then let ut ¼ tvþ þ ð1− tÞv−. In this case for all t ∈ R, ut ≠
0 and J ðH− iω0I Þut ¼ λminðω0Þut. Furthermore, −iu⋆

0Ju0 ≤ 0 and −iu⋆
1Ju1 ≥ 0. By

continuity there exists t0 ∈ ½0; 1� such that −iu⋆
t0
Jut0 ¼ 0, and hence v0 ≔ ut0 ∕ kut0k

has the required properties. ▯

FIG. 5.1. Eigenvalue and singular value curves for Example 5.5.
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5.2. Pseudospectra. LetA ∈ Cn;n, and let ϵ ≥ 0. Then the ϵ-pseudospectrum ofA
is defined as

ΛϵðA;FÞ ¼
[

kEk2≤ϵ

fΛðAþ EÞ∶E ∈ Fn;ng:

It is well-known [38] that in the complex case when F ¼ C, we have

ΛϵðA;CÞ ¼ fz ∈ C∶σminðA− zI Þ ≤ ϵg;

where, as noted above, σminð·Þ denotes the minimum singular value. Since we are inter-
ested in structured perturbations, we also consider the Hamiltonian ϵ-pseudospectrum
defined by

ΛHam
ϵ ðH;FÞ ¼

[
kEk2≤ϵ

fΛðHþ EÞ∶E ∈ F2n;2n and ðJEÞ⋆ ¼ JEg:

It is obvious that

ΛHam
ϵ ðH;CÞ ¼ fz ∈ C∶ηHam

2 ðz;HÞ ≤ ϵg;

where ηHam
2 ðz;HÞ is the Hamiltonian backward error as defined in (5.1). Note that the

pseudospectra so defined will in general be different for F ¼ C and for F ¼ R; however,
for purely imaginary eigenvalues, the following result is an immediate consequence of
Proposition 5.3.

COROLLARY 5.7. Let H ∈ C2n;2n be Hamiltonian. Consider the pseudospectra
ΛϵðH;FÞ and ΛHam

ϵ ðH;FÞ. Then

ΛHam
ϵ ðH;CÞ ∩ iR ¼ ΛHam

ϵ ðH;RÞ ∩ iR ¼ ΛϵðH;CÞ ∩ iR ¼ ΛϵðH;RÞ ∩ iR

¼ fiω∶ω ∈ R; σminðH− iωI Þ ≤ ϵg
¼ fiω∶ω ∈ R; jλminðJ ðH− iωI ÞÞj ≤ ϵg;

where λminð·Þ denotes the eigenvalue function from Proposition 5.4.
In Definition 4.8 we have associated sign characteristics to the purely imaginary

eigenvalues of a Hamiltonian matrix. We now associate sign characteristics to the
connected components of a Hamiltonian pseudospectrum.

DEFINITION 5.8. LetH ∈ F2n;2n. A connected component CϵðHÞ of ΛHam
ϵ ðH;FÞ is said

to have positive (resp., negative) sign characteristic if for all Hamiltonian perturbations
E with kEk2 ≤ ϵ each eigenvalue of Hþ E that is contained in CϵðHÞ has positive (resp.,
negative) sign characteristic.

Observe that if a component CϵðHÞ of ΛHam
ϵ ðH;FÞ has positive (resp., negative) sign

characteristic, then CϵðHÞ ⊂ iR and all eigenvalues of H that are contained in CϵðHÞ
have positive (resp., negative) sign characteristic. We now show that the sign charac-
teristic of CϵðHÞ is completely determined by the sign characteristic of the eigenvalues of
H that are contained in CϵðHÞ.

THEOREM 5.9. Let H ∈ F2n;2n, and let CϵðHÞ be a connected component of
ΛHam
ϵ ðH;FÞ. For a Hamiltonian matrix E ∈ F2n;2n with kEk2 ≤ ϵ, let XE be a full column

rank matrix whose columns form a basis of the direct sum of the generalized eigenspaces
ker ðHþ E − λI Þ2n, λ ∈ CϵðHÞ ∩ ΛðHþ EÞ. Set ZE ≔ −iX⋆

E JXE. Then the following
conditions are equivalent.
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(a) The component CϵðHÞ has positive (resp., negative) sign characteristic.
(b) All eigenvalues of H that are contained in CϵðHÞ have positive (resp., negative)

sign characteristic.
(c) The matrix Z0 associated with E ¼ 0 is positive (resp., negative) definite.
(d) The matrix ZE is positive (resp., negative) definite for all Hamiltonian matrix E

with kEk2 ≤ ϵ.
Proof. Now w.l.o.g. suppose that CϵðHÞ has positive sign characteristic. Then ob-

viously all eigenvalues ofH that are contained in CϵðHÞ have positive sign characteristic.
This proves ðaÞ ⇒ ðbÞ.

Next, suppose that ΛðHÞ ∩ CϵðHÞ contains p distinct eigenvalues iα1; : : : ; iαp each
of which has positive sign characteristic. Let Xk be a full column rank matrix whose
columns form a basis of ker ðH− iαkÞ2n for k ¼ 1; : : : ; p. Then the columns of JXk form
a basis of the left generalized eigenspace ofH corresponding to the eigenvalue iαk. Hence
X⋆

kJXl ¼ −ðJXkÞ⋆Xl ¼ 0 for l ≠ k. Since iαk has positive sign characteristic, the ma-
trix −iX⋆

kJXk is positive definite for k ¼ 1; : : : ; p. Now considering X ≔ ½X1; : : : ; Xp�
it follows that −iX⋆JX ¼ diagð−iX⋆

1JX1; : : : ;−iX⋆
pJXpÞ is positive definite. Since

X0 ¼ XM for some nonsingular matrix M ,it follows that Z0 is congruent to −iX⋆JX .
Hence Z0 is positive definite. This proves ðbÞ ⇒ ðcÞ.

Now suppose that Z0 is positive definite. Since CϵðHÞ is a closed and connected com-
ponent of ΛHam

ϵ ðH;FÞ, there is a simple closed rectifiable curve Γ such that
Γ ∩ ΛHam

ϵ ðH;FÞ ¼ ∅ and such that the component CϵðHÞ lies inside the curve Γ. Let
E be a Hamiltonian matrix with kEk2 ≤ ϵ. Consider the matrix HðtÞ ≔ Hþ tE for
t ∈ C. Then by [20, Chapters II.3–II.4, pp. 66–68] there exists a matrix XEðtÞ such that
XEðtÞ is analytic in DΓ ≔ ft ∈ C∶jtjkEk2 < minz∈Γ σminðH− zI Þg. Further, for each t ∈
DΓ the matrix XEðtÞ has full column rank and the columns form a basis of the direct sum
of the generalized eigenspaces ker ðHðtÞ− λI Þ2n, λ ∈ ΛðHðtÞÞ ∩ CϵðHÞ ≕ σEðtÞ. Since
kEk2 ≤ ϵ and minz∈Γ σminðH− zI Þ > ϵ, it follows that ½0; 1� ⊂ DΓ. Hence the matrix
XEðtÞ is smooth on ½0; 1�. Set ZEðtÞ ≔ −iXEðtÞ⋆JXEðtÞ for t ∈ ½0; 1�. Then ZEðtÞ is con-
tinuous and, by Corollary 2.2, ZEðtÞ is nonsingular for t ∈ ½0; 1�. Indeed, since σEðtÞ is
symmetric with respect to the imaginary axis, the columns of XEðtÞ form a basis of the
direct sum of the J -nondegenerate and pairwise J -orthogonal subspaces ker ðHðtÞ−
iαI Þ2n, iα ∈ σEðtÞ, and ker ðHðtÞ− λI Þ2n L ker ðHðtÞ þ λ̄I Þ2n, λ ∈ σEðtÞ \ iR; see
Corollary 2.2. It follows that spanðXEðtÞÞ is J -nondegenerate. Thus ZEðtÞ is nonsingular
for all t ∈ ½0; 1�. Since ZEð0Þ is positive definite and ZEðtÞ is nonsingular for all t in the
connected set ½0; 1�, it follows that ZEðtÞ is positive definite for all t ∈ ½0; 1�. This shows
that ZE is positive definite. Since E is arbitrary, we conclude that the assertion in (d)
holds. This proves ðcÞ ⇒ ðdÞ.

Finally, suppose that the assertion in (d) holds. Then obviously for all Hamiltonian
matrices E with kEk2 ≤ ϵ, the eigenvalues in ΛðHþ EÞ ∩ CϵðHÞ are purely imaginary
and have positive sign characteristic. In other words, CϵðHÞ has positive sign character-
istic. This completes the proof. ▯

The following result is an immediate consequence of the proof of Theorem 5.9.
COROLLARY 5.10. Let H ∈ F2n;2n, and let CϵðHÞ be a connected component of

ΛHam
ϵ ðH;FÞ. For a Hamiltonian matrix E ∈ F2n;2n with kEk2 ≤ ϵ, let XE be a full column

rank matrix whose columns form a basis of the direct sum of the generalized eigenspaces
ker ðHþ E − λI Þ2n, λ ∈ CϵðHÞ ∩ ΛðHþ EÞ. Set ZE ≔ −iX⋆

E JXE. Then the following
assertions hold.

(i) The rank of XE is constant for all Hamiltonian matrices E with kEk2 ≤ ϵ.
(ii) If CϵðHÞ∩ iR ¼ ∅, then ZE ¼ 0 for all Hamiltonian matrices E with kEk2 ≤ ϵ.
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(iii) If CϵðHÞ ∩ iR ≠ ∅, then CϵðHÞ ¼ −CϵðHÞ and ZE is nonsingular for all
Hamiltonian matrices E with kEk2 ≤ ϵ. Furthermore, the matrix ZE has
the same inertia for all such E.

(iv) If ZE is positive (resp., negative) definite for some Hamiltonian matrix E with
kEk2 ≤ ϵ, then CϵðHÞ ⊆ iR and CϵðHÞ has positive (resp., negative) sign
characteristic.

The results in Theorem 5.9 and Corollary 5.10 provide important insight into the
evolution of purely imaginary eigenvalues of a Hamiltonian matrix subject to Hamilto-
nian perturbations. With a desire to further understand this evolution, we now analyze
the coalescence of pseudospectral components.

5.3. Coalescence of pseudospectral components. Consider the Hamiltonian
pseudospectrum ΛHam

ϵ ðH;FÞ of a Hamiltonian matrix H ∈ F2n;2n. Then obviously the
set valued map ϵ ↦ ΛHam

ϵ ðH;FÞ is monotonically increasing; i.e., if ϵ < δ, then
ΛHam
ϵ ðH;FÞ ⊂ ΛHam

δ ðH;FÞ. Furthermore, for ϵ > 0, the pseudospectrum ΛHam
ϵ ðH;FÞ

consists of at most 2n connected components, and each component contains at least
one eigenvalue of H. Thus when ϵ is sufficiently small, then each component of
ΛHam
ϵ ðH;FÞ contains exactly one eigenvalue of H and as ϵ increases, these components

expand in size and at some stage coalesce with each other. So, let iα be a purely ima-
ginary eigenvalue ofH, and let CϵðH; iαÞ denote the connected component ofΛHam

ϵ ðH;FÞ
which contains iα. Then for a sufficiently small ϵ, CϵðH; iαÞ ∩ ΛðHÞ ¼ fiαg. Thus if iα
has either positive or negative sign characteristic, then by Theorem 5.9 we have
CϵðH; iαÞ ⊂ iR. This means that the eigenvalue iα cannot be removed from the imagin-
ary axis by a Hamiltonian perturbation E of H such that kEk2 ≤ ϵ.

Next, let iβ be another purely imaginary eigenvalue of H with α < β, and suppose
that CϵðH; iβÞ is a component of ΛHam

ϵ ðH;FÞ containing iβ such that CϵðH; iβÞ ∩
ΛðHÞ ¼ fiβg. Suppose further that iβ has either positive or negative sign characteristic
so that by Theorem 5.9 we have CϵðH; iβÞ ⊂ iR. Assume that H does not have an ei-
genvalue iγ with γ ∈ ðα;βÞ and that the component CϵðH; iαÞ coalesces with the com-
ponent CϵðH; iβÞ at iω0 as ϵ tends to ϵ0, i.e., CϵðH; iαÞ ∩ CϵðH; iβÞ ¼ ∅ for ϵ < ϵ0 and
Cϵ0ðH; iαÞ ∩ Cϵ0ðH; iβÞ ¼ fiω0g. We now investigate the geometry of the connected
component Cϵ0þδðH; iαÞ ¼ Cϵ0þδðH; iβÞ of ΛHam

ϵ0þδðH;FÞ in a neighborhood of iω0 for a
small δ > 0. In particular, we show that when iα and iβ have opposite sign character-
istics, then the pseudospectrum ΛHam

ϵ0þδðH;FÞ contains a disk centered at iω0. Further-
more, in this case we show that there exists a Hamiltonian matrix E with kEk2 ¼ ϵ0 such
that when H is perturbed to Hþ E, then the eigenvalues iα and iβ coalesce at iω0 to
form an eigenvalue of Hþ E of mixed sign characteristics. This multiple eigenvalue can
then be removed from the imaginary axis by an arbitrarily small Hamiltonian perturba-
tion of Hþ E.

We say that two purely imaginary eigenvalues iα and iβ ofH are adjacent ifH does
not have an eigenvalue iγ with minfα;βg < γ < maxfα;βg.

THEOREM 5.11. Let iα and iβ be adjacent imaginary eigenvalues of a Hamiltonian
matrix H ∈ F2n;2n with α < β. Let f ðωÞ ≔ σminðH− iωI Þ for ω ∈ R, and let ω0 ∈ ðα;βÞ
be such that f ðω0Þ ¼ maxffðωÞ∶ω ∈ ½α;β�g. Set ϵ0 ≔ fðω0Þ. Suppose that the following
conditions are satisfied.

(i) For ϵ < ϵ0 the connected components CϵðH; iαÞ and CϵðH; iβÞ of ΛHam
ϵ ðH;FÞ

containing the eigenvalues iα and iβ, respectively, have either positive or
negative sign characteristic.

(ii) If ω ∈ ½α;β�, then iω ∈ CfðωÞðH; iαÞ ∪ Cf ðωÞðH; iβÞ.
Then the following assertions hold.
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(a) The function f is strictly increasing in ½α;ω0� and strictly decreasing in ½ω0;β�.
For ϵ < ϵ0, we have iω0 ∈= ΛHam

ϵ ðH;FÞ, CϵðH; iαÞ ∩ CϵðH; iβÞ ¼ ∅, and iω0 ∈
Cϵ0ðH; iαÞ ¼ Cϵ0ðH; iβÞ ¼ Cϵ0ðH; iαÞ ∪ Cϵ0ðH; iβÞ.

(b) Let λminð·Þ be the function given in Proposition 5.4. If iα has positive sign char-
acteristic and iβ has negative sign characteristic, then λminðωÞ ¼ fðωÞ for all
ω ∈ ½α;β�. On the other hand, if iα has negative sign characteristic and iβ
has positive sign characteristic, then λminðωÞ ¼ −fðωÞ for all ω ∈ ½α;β�. In both
cases there exists a J -neutral normalized eigenvector v0 of J ðH− iω0I Þ
corresponding to the eigenvalue λminðω0Þ.

(c) Suppose that the eigenvalues iα and iβ have opposite sign characteristic. Then
for any δ > 0 we have fz ∈ C∶jz − iω0j ≤ δg ⊂ ΛHam

ϵ0þδðH;FÞ when F ¼ C. When
F ¼ R and ω0 ≠ 0, then for any δ > 0 there exists an η > 0 such that
fz ∈ C∶jz − iω0j ≤ ηg ⊂ ΛHam

ϵ0þδðH;FÞ. Further, for any δ > 0 the interval
½−δ;δ� is contained in ΛHam

ϵ0þδðH;FÞ when F ¼ R and ω0 ¼ 0.
(d) Suppose that the eigenvalues iα and iβ have the same sign characteristic. Then

for ϵ ≥ ϵ0, CϵðH; iαÞ is a connected component of ΛHam
ϵ ðH;FÞ containing the

eigenvalues iα and iβ. If Cϵ0ðH; iαÞ contains no other eigenvalues of H except
iα and iβ, then Cϵ0ðH; iαÞ ⊂ iR and has the same sign characteristic as that of
iα. Moreover, in such a case, there is a δ0 > 0 such that Cϵ0þδðH; iαÞ ⊂ iR for
all 0 ≤ δ < δ0.

Proof. (a) Observe that if ϵ < ϵ0 ¼ f ðω0Þ, then iω0 ∈= ΛHam
ϵ ðH;FÞ, and hence by

assumption (i) and Corollary 5.10 we have that CϵðH; iαÞ ∩ CϵðH; iβÞ ¼ ∅ and that
CϵðH; iαÞ ⊂ iR and CϵðH; iβÞ ⊂ iR. By assumption (ii) it follows that Cϵ0ðH; iαÞ ∪
Cϵ0ðH; iβÞ is a connected component of ΛHam

ϵ0 ðH;FÞ and hence iω0 ∈ Cϵ0ðH; iαÞ ¼
Cϵ0ðH; iβÞ.

First, we show that f is strictly increasing in ½α;ω0�. Let γ1, γ2 ∈ ½α;ω0� be such that
γ1 < γ2. Then by assumption (ii), we have iγ2 ∈ Cf ðγ2ÞðH; iαÞ ∪ Cfðγ2ÞðH; iβÞ. Now,
suppose that f ðγ2Þ < ϵ0 ¼ fðω0Þ. Then, as we have just seen, Cfðγ2ÞðH; iαÞ ∩
Cf ðγ2ÞðH; iβÞ ¼ ∅, and hence iγ2 ∈ Cf ðγ2ÞðH; iαÞ ⊂ iR. Let E ∈ F2n;2n be a Hamiltonian
matrix such that kEk2 ¼ f ðγ2Þ and iγ2 ∈ ΛðHþ EÞ. Setting HðtÞ ≔ Hþ tE, it follows
that ΛðHðtÞÞ ⊂ ΛHam

f ðγ2ÞðH;FÞ for t ∈ ½0; 1�. Since iα ∈ ΛðHð0ÞÞ and iγ2 ∈ ΛðHð1ÞÞ, by the
continuity of eigenvalues it follows that ΛðHðtÞÞ ∩ Cf ðγ2ÞðH; iαÞ ≠ ∅ for t ∈ ½0; 1� and
that iγ1 ∈ ΛðHðt0ÞÞ for some t0 ∈ ð0; 1Þ. Hence f ðγ1Þ ≤ kt0Ek2 < kEk2 ¼ fðγ2Þ.

Next, suppose that fðγ2Þ ¼ ϵ0 ¼ f ðω0Þ. If γ2 ¼ ω0, then there is nothing to prove.
So, suppose that γ2 < ω0. Then there exists γ3 ∈ ðγ2;ω0Þ such that fðγ3Þ < f ðω0Þ ¼ ϵ0.
Since γ2, γ3 ∈ ½α;ω0� with γ2 < γ3 and f ðγ3Þ < ϵ0, as we have just proved above, we
have that ϵ0 ¼ f ðγ2Þ < f ðγ3Þ, which is a contradiction. Hence we conclude that f is
strictly increasing in ½α;ω0�. By similar arguments, it follows that f is strictly decreasing
in ½ω0;β�. This concludes the proof of (a).

(b) Note that fðαÞ ¼ fðβÞ ¼ 0 and that for any ω ∈ ½α;β� \ fω0g the connected
components Cf ðωÞðH; iαÞ and Cf ðωÞðH; iβÞ are disjoint, and

i½α;ω� ⊆ Cf ðωÞðH; iαÞ if ω ∈ ½α;ω0Þ;
i½ω;β� ⊆ Cf ðωÞðH; iβÞ if ω ∈ ðω0;β�:ð5:7Þ

Now consider the functions λminð·Þ and vð·Þ given in Proposition 5.4. There exist finitely
many numbers −∞ ¼ γ0 < γ1 < · · · < γr < γrþ1 ¼ ∞ and signs sk ∈ f−1; 1g such that
λminð·Þ is analytic on ðγk; γkþ1Þ and f ðωÞ ¼ skλminðωÞ for ω ∈ ðγk; γkþ1Þ. Then
EðωÞ ¼ λminðωÞJ vðωÞvðωÞ⋆ is Hamiltonian, kEðωÞk2 ¼ fðωÞ, and ðHþ EðωÞÞvðωÞ ¼
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iωvðωÞ. Let ω ∈ ðα;ω0Þ. Then by (5.7) the eigenvalue iω of Hþ EðωÞ lies in the
connected component Cf ðωÞðH; iαÞ which has the same sign characteristic as that
of iα.

Suppose that iα has positive sign characteristic. Then CfðωÞðH; iαÞ has positive sign
characteristic. Thus iω has positive sign characteristic and therefore −ivðωÞ⋆J vðωÞ >
0. Analogously we have −ivðωÞ⋆J vðωÞ < 0 for all ω ∈ ðω0;β�. Now, for ω ∈
½α;β� \ fγ1; : : : ; γrg, we have

−skiv
⋆ðωÞJ vðωÞ ¼ skλ

 0
minðωÞ ¼ f  0ðωÞ

�
≥ 0 if ω ∈ ½α;ω0� ∩ ðγk; γkþ1Þ;
≤ 0 if ω ∈ ½ω0;β� ∩ ðγk; γkþ1Þ:

The latter inequalities are consequences of (a). It follows that sk ¼ 1 and hence f ðωÞ ¼
λminðωÞ for all ω ∈ ½α;β�. Our derivation of the latter identity was based on the assump-
tion that iα has positive sign characteristic and iβ has negative sign characteristic. In
the opposite case an analogous argument leads to the conclusion that fðωÞ ¼ −λminðωÞ
for all ω ∈ ½α;β�. Since f is a continuous function, it now follows from Proposition 5.6
that there exists a J -neutral unit vector v0 such that J ðH− iω0I Þv0 ¼ λminðω0Þv0. This
concludes the proof of (b).

(c) Let μ ∈ C and consider E ≔ λminðω0ÞJ v0v
⋆
0 þ Gðv0;μv0Þ when F ¼ C, where

Gð·; ·Þ is defined as in Theorem 3.2. Then E is Hamiltonian, ðHþ EÞv0 ¼
ðiω0 þ μÞv0, and kGðv0;μv0Þk2 ¼ jμj. Hence the desired result follows when F ¼ C.

Note that v0 is real when F ¼ R and ω0 ¼ 0. Hence E is real and Hamiltonian for
μ ∈ R. Consequently, we have ½−δ;δ� ⊂ ΛHam

ϵ0þδðH;FÞ when F ¼ R and ω0 ¼ 0.
Now, suppose that F ¼ R and ω0 ≠ 0. Let μ ∈ C. Then it is easily seen that

rank½ v0 v̄0 � ¼ 2 and ½v0 v̄0�⋆J ½μv0 μ̄v̄0� ¼ 0. Consider

K ≔ λminðω0ÞJ ½v0 v̄0�½v0 v̄0�þ þ Gð½v0 v̄0�; ½μv0 μ̄v̄0�Þ;

where Gð½v0 v̄0�; ½μv0 μ̄v̄0�Þ ¼ ½μv0 μ̄v̄0�½v0 v̄0�þ þ J ½μv0 μ̄v̄0�½v0 v̄0�þJ is defined as
in Theorem 3.2. Then K is real and Hamiltonian, ðHþKÞv0 ¼ ðiω0 þμÞv0, and
kGð½v0 v̄0�; ½μv0 μ̄v̄0�Þk2 ≤ 2jμjk½v0 v̄0�k2k½v0 v̄0�þk2 Hence for δ > 0, setting η ≔
δ ∕ ð2k½v0 v̄0�k2k½v0 v̄0�þk2Þ, it follows that the disk fiω0 þμ∶μ ∈ C∶jμj ≤ ηg is con-
tained in ΛHam

ϵ0þδðH;RÞ. This proves (c).
(d) Finally, w.l.o.g. suppose that both the eigenvalues iα and iβ have positive sign

characteristic. Then both components CϵðH; iαÞ and CϵðH;βÞ have positive sign char-
acteristic for all ϵ < ϵ0. Hence CϵðH; iαÞ ∪ CϵðH; iβÞ ⊂ iR for all ϵ < ϵ0. Recall that
Cϵ0ðH; iαÞ ¼ Cϵ0ðH; iβÞ is a connected component of ΛHam

ϵ0 ðH;FÞ. Since Cϵ0ðH; iαÞ ∩
ΛðHÞ ¼ fiα; iβg, by Theorem 5.9 the component Cϵ0ðH; iαÞ has positive sign character-
istic. Hence by Corollary 5.10, we have Cϵ0ðH; iαÞ ⊂ iR.

Note that the map ϵ ↦ ΛHam
ϵ ðH;FÞ is continuous and monotonically increasing and

that the components of ΛHam
ϵ ðH;FÞ are closed connected sets. Hence there is a δ0 > 0

such that the component CϵðH; iαÞ remains disjoint from the rest of the components of
ΛHam
ϵ ðH;FÞ for all ϵ0 ≤ ϵ < ϵ0 þ δ0. This shows that Cϵ0þδðH; iαÞ ∩ ΛðHÞ ¼ fiα; iβg for

all 0 ≤ δ < δ0. Consequently, by Theorem 5.9, Cϵ0þδðH; iαÞ has positive sign character-
istic and hence Cϵ0þδðH; iαÞ ⊂ iR for all 0 ≤ δ < δ0. This completes the proof. ▯

Observe that the assumptions in Theorem 5.11 make sure that components of the
Hamiltonian pseudospectrum ΛHam

ϵ ðH;FÞ do not coalesce at a point iω, for some
ω ∈ ½α;β� \ fω0g, for all ϵ < ϵ0.

We now consider the special case when all eigenvalues of a Hamiltonian matrix H
are purely imaginary and each eigenvalue has either positive or negative sign character-
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istic. Then by Theorem 5.11 we conclude that a purely imaginary eigenvalue ofH can be
moved off of the imaginary axis only after the eigenvalue is made to coalesce with an
imaginary eigenvalue of H of opposite sign characteristic. In order to analyze this issue
further, we proceed as follows.

LetH ∈ F2n;2n be a Hamiltonian matrix whose eigenvalues are all purely imaginary,
and define

ρFðHÞ ≔ inffkEk2∶E ∈ F2n;2n; ðJEÞ⋆ ¼ JE;

Hþ E has a nonimaginary eigenvalueg;
RFðHÞ ≔ inffkEk2∶E ∈ F2n;2n; ðJEÞ⋆ ¼ JE;

Hþ E has aJ -neutral eigenvectorg.

Obviously, ρFðHÞ ≥ RFðHÞ. The following result shows equality and how to compute
either using the singular value function ω ↦ σminðH− iωI Þ, ω ∈ R.

THEOREM 5.12. Let H ∈ F2n;2n be a Hamiltonian matrix whose eigenvalues are all
purely imaginary, and let f ðωÞ ¼ σminðH− iωI Þ, ω ∈ R. Then the following assertions
hold.

(i) If at least one eigenvalue of H has mixed sign characteristic, then RFðHÞ ¼
ρFðHÞ ¼ 0.

(ii) Suppose that each eigenvalue of H has either positive or negative sign char-
acteristic. Let iI1; : : : ; iI q ⊂ iR denote the closed intervals on the imaginary
axis whose end points are adjacent eigenvalues of H with opposite sign char-
acteristics. Then we have

RFðHÞ ¼ ρFðHÞ ¼ min
1≤k≤q

max
ω∈Ik

f ðωÞ:ð5:8Þ

Consider an interval I ∈ fI1; : : : ; Iqg satisfying

min
1≤k≤q

max
ω∈I k

fðωÞ ¼ max
ω∈I

f ðωÞ ¼ fðω0Þ; ω0 ∈ I :ð5:9Þ

Suppose that iI is given by iI ¼ ½iα; iβ�. Then the claims (a) and (b) of The-
orem 5.11 hold. For the J -neutral unit vector v0 of claim (b) in Theorem 5.11,
consider the matrices

E0 ≔ λminðω0ÞJ v0v
⋆
0 ;

K0 ≔ λminðω0ÞJ ½ v0 v0 �½ v0 v̄0 �þ;
Eμ ≔ Gðv0;μv0Þ;
Kμ ≔ Gð½ v0 v̄0 �; ½μv0 ¯μv0 �Þ; μ ∈ C;ð5:10Þ

where Gð·; ·Þ is defined as in Theorem 3.2. Then E0 is Hamiltonian, K0 is real
and Hamiltonian, ðHþ E0Þv0 ¼ ðHþK0Þv0 ¼ iω0v0, and kE0k2 ¼ kK0k2 ¼
f ðω0Þ. For any μ ∈ C the matrix Eμ is Hamiltonian, and ðHþ E0 þ EμÞv0 ¼
ðiω0 þ μÞv0. If ω0 ¼ 0 and H is real, then v0 can be chosen as a real vector.
Then E0 þ Eμ is a real matrix for all μ ∈ R. If ω0 ≠ 0 and H is real, then for
any μ ∈ C, Kμ is a real Hamiltonian matrix satisfying ðHþK0þ
KμÞv0 ¼ ðiω0 þ μÞv0.
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Proof. Part (i) is obvious.
For part (ii), let ν denote the right-hand side of (5.8), let ωk ∈ I k be such that

f ðωkÞ ¼ maxω∈I k
fðωÞ, and let the numbering be such that ω1 < ω2 < · · · < ωq.

Then for 0 ≤ ϵ < ν and all k we have ϵ < f ðωkÞ, and hence ΛHam
ϵ ðH;FÞ ∩

fiω1; : : : ; iωqg ¼ ∅. Furthermore, by the definition of the intervals Ik, the numbers
iωk separate the eigenvalues of H of different sign characteristic. More precisely, for
any k, all eigenvalues of H that are contained in the interval iðωk−1;ωkÞ ⊂ iR have
the same sign characteristic (here we use the notation ω0 ¼ −∞, ωqþ1 ¼ ∞). Let
HðtÞ ¼ Hþ tE, where t ∈ R and E is Hamiltonian with kEk2 ≤ ϵ. Furthermore, let
t0 ¼ supfθ ∈ ½0; 1�jΛðHðtÞÞ ⊂ iR for all t ∈ ½0; θ�g, and let Λ0 ¼

S
t∈½0;t0� ΛðHðtÞÞ. Sup-

pose that t0 < 1. Then by Theorem 4.3 the matrix Hðt0Þ has a J -neutral eigenvector.
However, we have Λ0 ⊆ ΛHam

ϵ ðH;FÞ and hence Λ0 ∩ fiω1; : : : ; iωqg ¼ ∅. Thus each
connected component C ⊂ iR ofΛ0 does not contain eigenvalues ofH ¼ Hð0Þ of opposite
sign characteristic. Hence each connected component C of Λ0 has either positive or ne-
gative sign characteristic. This contradicts the assumption that Hðt0Þ has a J -neutral
eigenvector. Thus t0 ¼ 1. It follows that ν ≤ RFðHÞ, ν ≤ ρFðHÞ, and ΛHam

ϵ ðH;FÞ ⊂ iR
for all ϵ < ν. Furthermore, each connected component of ΛHam

ϵ ðH;CÞ, ϵ < ν, has either
positive or negative sign characteristic.

Now, let ω0 and I be as in (5.9). Since iI ¼ ½iα; iβ� and the eigenvalues iα and iβ
have opposite sign characteristic, the assumptions (i) and (ii) of Theorem 5.11 are auto-
matically satisfied, and hence the assertions (a), (b), and (c) of Theorem 5.11 hold. The
statements about the matrices E0, Eμ, K0, Kμ imply that RFðHÞ ≤ ν and ρFðHÞ ≤ ν

which follows from Theorem 4.5 and Proposition 5.3.
Example 5.13. The eigenvalues �10i of the matrix H1 from Example 5.5 have

mixed sign characteristics. Thus RFðH1Þ ¼ ρFðH1Þ ¼ 0.
Example 5.14. Consider the Hamiltonian matrices

H3 ¼

2
6664

0 0 1 0
0 0 0 1
−1 0 0 0
0 −4 0 0

3
7775; H4 ¼

2
6664

0 0 1 0
0 0 0 −1
−1 0 0 0
0 4 0 0

3
7775:

Both matrices have the same spectrum ΛðHkÞ ¼ f�i;�2ig, k ¼ 3, 4, and their eigen-
value curves ω ↦ λjðJ ðHk − iωI ÞÞ and singular value curves ω ↦ σjðHk − iωI Þ are
depicted in Figure 5.2.

Here the singular value curves for H3 and H4 coincide, and the graphs of the func-
tions ω ↦ σminðHk − iωI Þ and ω ↦ λminðHk − iωI Þ are depicted as thick curves. From
the slopes of the λj-curves at their crossing points with the real axis we can again read off
the sign characteristics of the eigenvalues �i,�2i, and we see that for the matrixH3 the
eigenvalues −2i and −i have negative sign characteristic, while the eigenvalues i and 2i
have positive sign characteristic. Thus the only pair of adjacent eigenvalues of H3 with
opposite sign characteristic is ð−i; iÞ. The maximum of the function f ðωÞ ¼ σminðH3 −
iωI Þ in the corresponding interval ½−1; 1� is 1. Thus RFðH3Þ ¼ ρFðH3Þ ¼ 1.

For the matrixH4 the eigenvalues −2i and i have positive sign characteristic, while
the eigenvalues −i and 2i have negative sign characteristic. The pairs of adjacent
eigenvalues of H4 of opposite sign characteristic are ð−2i;−iÞ, ð−i; iÞ, ði; 2iÞ, and the
maxima of the function fðωÞ ¼ σminðH3 − iωI Þ in the corresponding intervals
½−2;−1�, ½−1; 1�, ½1; 2� are ν, 1, ν, respectively, where ν ≈ 0.43. Thus RFðH4Þ ¼
ρFðH4Þ ¼ ν.
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In this section we have discussed the process of constructing the perturbations that
move the eigenvalues off the imaginary axis. These will be used in the algorithm of the
next section.

6. An algorithm to compute a bound for the distance to bounded-
realness. In this section we discuss a numerical method to approximately solve Pro-
blems A and B, i.e., to compute an upper bound for the smallest perturbation that moves
all eigenvalues of a Hamiltonian matrix off the imaginary axis or outside a strip Sτ

parallel to the imaginary axis. We cover both Problems A and B by different choices
of τ; i.e., Problem A is the case when τ ¼ 0.

In general it is an open problem to analytically classify the smallest perturbation
that solves these two problems. Instead, we determine an upper bound for the smallest
perturbation by solving small problems of size 2× 2 or 4× 4 in the real case. We also
discuss only the special case that the Hamiltonian matrix has only purely imaginary
eigenvalues. Numerically we can restrict ourselves to the latter case because we can first

FIG. 5.2. Eigenvalue and singular value curves for Example 5.14.
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use the methods in [7], [27] to compute a partial Hamiltonian Schur form of the matrixH
as in (1.2); i.e., we determine an orthogonal (unitary) and symplectic matrix Q0 such
that for the transformed Hamiltonian matrix

Q⋆
0HQ0 ¼

2
6664
F11 F12 G11 G12

0 F22 G21 G22

0 0 −F⋆
11 0

0 H 22 −F⋆
12 −F⋆

22

3
7775;

we have that F11 is upper triangular in the complex case or quasi-upper triangular in the
real case and contains those eigenvalues ofH which lie (within the perturbation analysis
of Hamiltonian matrices [28]) outside of the strip Sτ ¼ fz ∈ Cj− τ < ℜz < τg.

By restricting the perturbations to the Hamiltonian submatrix

~H 2 ¼
�
F22 G22

H 22 −F⋆
22

�

which contains all the eigenvalues that lie within the strip Sτ, we determine an upper
bound for the smallest perturbation to the full matrix. A reason why it may not be the
smallest perturbation is that it may be possible that the smallest perturbation moves
two eigenvalues of F11 that lie outside the strip Sτ into Sτ and then combines them with
other eigenvalues in Sτ to get the globally smallest perturbation; see [28]. But since we
are treating eigenvalues in badges of two or four at a time, there may be a more global
small perturbation that moves all the eigenvalues together at the same time.

There are several possibilities for the parameter τ that describes the width of the
strip Sτ. It can either be preassigned to achieve a robust bounded-realness margin, or if
we want only to make sure that the eigenvalues are robustly off the imaginary axis,
within the usual round-off error analysis, then, since an OðϵÞ perturbation to a 2× 2
Jordan block can produce an Oðϵ1 ∕ 2Þ change in the eigenvalue, it seems reasonable
to choose τ ¼ Oðu1 ∕ 2Þ, where u is the round-off unit. If there is reason to think that
some of the nonimaginary eigenvalues close to the imaginary axis are the effect of
round-off errors on a k× k Jordan block, then one should choose τ ¼ Oðu1∕ kÞ.

Since, due to round-off errors, we cannot be sure whether eigenvalues of ~H 2 are on or
off the imaginary axis, in view of the discussed perturbation analysis we first regularize
the problem by perturbing ~H 2 to H 2 ¼ ~H 2 þ ΔH 2 with

ΔH 2 ¼
� ΔF22 ΔG22

ΔH 22 −ΔF⋆
22

�

so that all eigenvalues ofH 2 ¼ ~H 2 þ ΔH 2 are on the imaginary axis. This can be done by
reversing the perturbations that we have introduced in Proposition 5.3.

In this way the following approach, which combines nearest purely imaginary ei-
genvalues of opposite sign, is not restricted, and we do not have to make a preliminary
decision as to which eigenvalues are purely imaginary and which are not.

For each eigenvalue pair that the partial Hamiltonian Schur form produces outside
the imaginary axis, a minimal perturbation E2 that performs this task is given by Pro-
position 5.3. In the following we recursively work on the matrixH2 and perturb one pair
of purely imaginary eigenvalues at a time. Again this may have the effect of increasing
the bound for the minimal perturbation since there may be a smaller perturbation that
moves several pairs at the same time.
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For each chosen pair of purely imaginary eigenvalues with opposite sign character-
istic (which pair of purely imaginary eigenvalues is to be chosen is discussed below) we
first compute the smallest perturbation that leads to a coalescence of the pseudospectral
components as described in Theorem 5.12. In this way we produce an eigenvalue of
mixed sign characteristic at a point iγ. If we want to solve Problem A, then this per-
turbation is sufficient. If we want to solve Problem B, then we move this pair of eigen-
values to the pair�τþ iγ on the boundary of Sτ. In both cases we save the perturbation
E2. By taking a direct sum with an appropriate 0 matrix we generate a perturbation E to
the matrix H as well as its norm δ. Since in both cases the perturbed eigenvalue belongs
to the part where a Hamiltonian Schur form exists, we can deflate this eigenvalue
pair from H2 and continue with a smaller problem H2 for which we proceed as
before.

ALGORITHM 1.
Input: A Hamiltonian matrixH ∈ F2n;2n that has only purely imaginary eigenvalues

and a value τ > 0 for the width of the strip Sτ around the imaginary
axis.

Output: AHamiltonian matrix E ∈ F2n;2n such that at least one pair (quadruple in the
real case) of eigenvalues of Hþ E is outside the open strip Sτ.

Step 1: Compute the eigenvalues iαk, αk ∈ R, k ¼ 1; : : : ; 2n, and associated eigen-
vectors vk ∈ C2n ofH. By using the reordering of the Hamiltonian Schur form
[5], order the eigenvalues such that the eigenvalues arise in the order
αk ≤ αkþ1 on the diagonal. Then compute the eigenvectors. (For multiple
eigenvalues, consider the invariant subspace spanned by the columns of a
matrix V associated with this eigenvalue.)

Step 2: Compute the sign characteristics of the eigenvalues (i.e., the signs of iv⋆kJ vk,
k ¼ 1; : : : ; 2n, or the inertia of the matrix iV⋆JV in the case of multiple
eigenvalues).

Step 3: If there is a multiple eigenvalue of mixed sign characteristic (i.e., αk ¼ αkþ1)
and signðiv⋆kJ vkÞsignðiv⋆kþ1J vkþ1Þ < 0, then let v− ≔ vk, vþ ≔ vkþ1, and go
to Step 6.

Step 4: For each pair of adjacent eigenvalues iαk, iαkþ1 with opposite sign charac-
teristic compute the maximum mk ≔ maxω∈½αk;αkþ1� f ðωÞ, where f ðωÞ
¼ σminðH− iωI Þ ¼ jλminðJ ðH− iωI ÞÞj, ω ∈ R.
Remark. Since f satisfies jf ðωÞ− f ð ~ωÞj ≤ jω− ~ωj, the maxima can be found
by evaluating f on a coarse grid.

Step 5: From the eigenvalues found in Step 4 select an eigenvalue iαk0 such that
mk0 ¼ min mk. By Theorems 5.11 and 5.12 there is an ω0 ∈ ½αk0 ;αk0þ1� such
that the function f is strictly increasing in ½αk0 ;ω0� and strictly decreasing in
½ω0;αk0þ1� (hence fðω0Þ ¼ mk0). By using a trisection method, determine a
small interval ½ω−;ωþ� that contains ω0. Let v� be eigenvectors to the eigen-
values λminðJ ðH− iω�I ÞÞ. The real numbers −iv⋆�J v� are the slopes of the
curve ω ↦ λminðωÞ ≔ λminðJ ðH− iωI ÞÞ at ω ¼ ω�. Again by Theorems 5.11
and 5.12 either f ðωÞ ¼ λminðωÞ for all ω ∈ ½αk0 ;αk0þ1� or f ðωÞ ¼ −λminðωÞ for
all ω ∈ ½αk0 ;αk0þ1�. Thus signðiv⋆þJ vþÞsignðiv⋆−J v−Þ < 0.

Step 6: Compute t ∈ ½0; 1� such that u⋆
t Jut ¼ 0, where ut ¼ tvþ þ ð1− tÞv−, and let

v0 ¼ ut ∕ kutk. Then v0 is an approximate J -neutral eigenvector to the eigen-
value λminðJ ðH− iω0I ÞÞ.

Step 7: Let μ ¼ τ.
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Step 8: Let ~E ¼ E0 þ Eμ in the complex case, and ~E ¼ K0 þKμ in the real case, where
E0, Eμ, K0, and Kμ are defined by (5.10). Then by Theorem 5.12, Hþ ~E has
(approximately) the two eigenvalues iω0 � μ in the complex case and the
four eigenvalues �iω0 �μ in the real case. Due to rounding errors ~E may
have a slight departure from being Hamiltonian. A Hamiltonian matrix close
to ~E is E ¼ − 1

2J ðJ ~E þ ðJ ~EÞ⊤Þ.
Step 9: Check whether at least two eigenvalues of Hþ E are outside the strip Sτ. If

this is not the case, increase μ and return to Step 8.

Applying this algorithm recursively we obtain (as a sum of all the single perturba-
tion matrices) a perturbation matrix ΔH such that, at least in theory, all eigenvalues of
the perturbed Hamiltonian matrixH←H þ ΔH lie outside the strip Sτ. Due to round-off
errors in the computations, however, it may happen that some eigenvalues of H have
moved back towards the imaginary axis. Therefore, as in Step 9, it is advisable to check
the spectrum ofH to see whether the eigenvalues are safely removed from the imaginary
axis in the sense that a Hamiltonian perturbation up to the size of the round-off error
cannot move the eigenvalues back to the imaginary axis.

So, suppose that H is the Hamiltonian matrix obtained by a successive application
of Algorithm 1 until all eigenvalues have been moved off the imaginary axis. Then for a
given tolerance τ we would like to test that the eigenvalues ofH are robustly away from
the imaginary axis in the sense that Hþ E does not have an imaginary eigenvalue for
any Hamiltonian perturbation E such that kEk2 ≤ τ. Given a Hamiltonian matrix
H ∈ F2n;2n, define

βFðHÞ ≔ minfkEk2∶E ∈ F2n;2n; ðJEÞ⋆ ¼ JE; and ΛðHþ EÞ ∩ iR ≠ ∅g:
Then βFðHÞ is the distance from H to the Hamiltonian matrices having a purely
imaginary eigenvalue. Moreover, it follows from Corollary 5.7 that βFðHÞ ¼
minfϵ∶ΛHam

ϵ ðH;FÞ ∩ iR ≠ ∅g ¼ ΛϵðH;CÞ ∩ iR ≠ ∅. This shows that βFðHÞ is the same
for F ¼ R and F ¼ C and that it can be read off from the unstructured pseudospectrum
ΛϵðH;CÞ of H.

For the Hamiltonian matrixH computed by this procedure, we need to test whether
or not βFðHÞ > τ. This can be done by computing the Hamiltonian pseudospectrum
ΛτðH;CÞ with the method of [19] and testing whether or not ΛτðH;CÞ ∩ iR ¼ ∅. Alter-
natively, we compute the eigenvalues of H− τJ and Hþ τJ . If these matrices do not
have a purely imaginary eigenvalue, then by Theorem 2 of [6] we have βFðHÞ > τ, and
hence the eigenvalues of H are robustly away from the imaginary axis.

The computational costs of Algorithm 1 can be significantly reduced by modifying
the choice of the nearest purely imaginary eigenvalues that are brought to coalescence
using the following idea which may, however, in some rare cases, lead to a larger per-
turbation than necessary. To choose the pair ðiγ1; iγ2Þ or in the real case a quadruple
ðiγ1;−iγ1; iγ2;−iγ2Þ of purely imaginary eigenvalues that are moved together at a point
�τþ iγ, we may proceed as follows. Assuming that the eigenvalues of H are all simple,
we choose a pair of purely imaginary eigenvalues ðiγj; iγlÞ of opposite sign characteristic
for which the ratio

jγj − γlj
κðγjÞ þ κðγlÞ

ð6:1Þ

is the smallest among all such pairs, where κðγjÞ is the condition number of the eigen-
value iγj. We arrive at this choice from the first order perturbation analysis of the
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eigenvalues. Indeed, by first order perturbation of eigenvalues, it follows that the com-
ponents of ΛHam

ϵ ðH;FÞ containing iγj and iγl are approximately the intervals
i½γj − κðλjÞϵ; γj þ κðγjÞϵ� and i½γl − κðλlÞϵ; γl þ κðγlÞϵ�, respectively, for all small ϵ.
Therefore, if the ratio (6.1) is the smallest, as ϵ increases gradually these two compo-
nents are likely to coalesce before the other components.

6.1. A numerical example. To illustrate our procedure, we apply Algorithm 1 to
the matrix

H ¼

2
666666666664

−73 −86 54 −99 93 −58 80 77
1 −4 59 54 −58 −61 4 1

−24 −31 −4 −86 80 4 27 26
−26 −24 1 −73 77 1 26 24
−24 −26 −1 −77 73 −1 24 26
−26 −27 −4 −80 86 4 31 24
−1 −4 61 58 −54 −59 4 −1
−77 −80 58 −93 99 −54 86 73

3
777777777775
:

The matrix H has the purely imaginary spectrum

ΛðHÞ ¼ f�4i;�10i;�16i;�18ig:

The intervals bounded by adjacent eigenvalues with opposite sign characteristic
are iI 1 ¼ ½−16i;−10i�; iI 2 ¼ ½−10i;−4i�; iI 3 ¼ ½−4i; 4i�; iI4 ¼ ½4i; 10i�; and iI 5 ¼
½10i; 16i�.

Algorithm 1 computes the maximum of the function ω ↦ f ðωÞ ¼ jλminðH− iωI Þj in
each of the intervals I k. The minimum of these maxima is attained in the interval I1 at
ω0 ≈ −13.9356. A corresponding normalized J -neutral eigenvector (see Step 6) is

v0 ¼

2
66666666664

0.5854− 0.2940i
−0.1559− 0.1188i
−0.1238− 0.0445i
−0.1145− 0.0459i
−0.1081− 0.0593i
−0.1130− 0.0673i
−0.1907− 0.0449i
−0.5988− 0.2655i

3
77777777775
:

For the width of the strip Sτ we choose τ ¼ 0.1. Then the output of the algorithm is
the matrix (for layout reasons displayed only with three digits)

E ¼ 10−2 �

2
666666666664

5.74 3.38 0.81 0.02 2.46 2.68 0.81 4.30
3.78 5.26 −0.21 −0.93 2.68 3.49 −4.74 0.10
0.61 −3.70 −2.21 −1.40 −0.81 −4.74 7.39 5.17
3.88 −1.13 −1.01 −3.48 4.30 0.10 5.17 7.27
−2.93 −0.61 −0.72 3.19 −5.74 −3.78 −0.61 −3.88
−0.61 −1.55 −2.75 0.19 −3.38 −5.26 3.70 1.33
−0.72 −2.75 2.35 1.88 −0.81 0.21 2.21 1.01
3.19 0.19 1.88 1.88 −0.02 0.93 1.40 3.48

3
777777777775
:
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The eigenvalues of Hþ E are

ΛðHþ EÞ ≈ f0.1000� 13.9356i;−ð0.1000� 13.9356iÞ;�17.6162i;�4.3627ig:

A Hamiltonian Schur decomposition of Hþ E yields

Q⋆
0 ðHþ EÞQ0 ¼

2
6664
F11 F12 G11 G12

0 F22 G21 G22

0 0 −F⋆
11 0

0 H 22 −F⋆
12 −F⋆

22

3
7775;

where Q0 is symplectic and orthogonal, and

F22 ¼
�
7.7958 −5.9178

7.3945 −3.3404

�
; G22 ¼

�−30.8492 −2.5331

−2.5331 0.8874

�
;

H 22 ¼
�
11.0658 −5.5371

−5.5371 −0.5170

�
:

These blocks correspond to the purely imaginary eigenvalues of Hþ E. By applying
Algorithm 1 again to the matrix

~H ¼
�
F22 G22

H 22 −F⋆
22

�

we obtain the output

~E ¼

2
6664

0.0707 1.2227 0.7015 0.0862
1.2227 0.0306 0.0862 0.6986
−2.1346 0.0862 −0.0707 −1.2227
0.0862 −2.1375 −1.2227 −0.0306

3
7775:

The computed eigenvalues of ~Hþ ~E are

Λð ~Hþ ~EÞ ¼ f0.1000� 10:7368i;−ð0.1000� 10.7368iÞg:

Thus all eigenvalues of ~Hþ ~E are outside the open strip Sτ. Hence there is a real Ha-
miltonian matrix ΔH with norm kΔHk2 ≤ kEk2 þ k ~Ek2 ≈ 3.005 such that all eigenva-
lues of Hþ ΔH are outside the strip Sτ.

7. Conclusion. We have presented a detailed perturbation analysis for eigenva-
lues of Hamiltonian matrices and discussed the construction of structured perturbations
to Hamiltonian matrices that move eigenvalues off the imaginary axis and thereby dis-
cussed the computation of upper bounds for the distance to (robust) bounded-realness.
The application of this new approach in the context of passivation problems will be
discussed in a forthcoming work.
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