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4.1 Abstract 

δ-TaON was prepared by reaction of gaseous ammonia with an amorphous tantalum 

oxide precursor. As a representative of the anatase structure (aristotype) it crystallizes in 

the tetragonal crystal system with lattice parameters a = 391.954(16) pm and 

c = 1011.32(5) pm. At temperatures between 1073 and 1123 K an irreversible phase 

transformation to baddeleyite-type β-TaON is observed. While quantum-chemical calcu-

lations confirm the metastable character of δ-TaON, its transformation to β-TaON is 

kinetically controlled. The anion distribution of the anatase-type phase was studied theo-

retically. In agreement with previous studies, it was found that a configuration with max-

imal N–N distances is most stable. The calculated band edge energies indicate that 

δ-TaON is a promising photocatalytic material for redox reactions, e.g., water splitting. 

4.2 Introduction 

Transition metal oxide nitrides are a group of materials which attracted a lot of atten-

tion in recent years. In particular, tantalum-based compounds are, for example, suitable 

as nontoxic color pigments,1,2 can be considered as fast ion conductors,3 and are used as 

materials for photocatalytical water splitting under sunlight.4,5 From a thermodynamical 

point of view, the most stable polymorph of tantalum oxide nitride is the so-called 

β-phase, reported first by Brauer and Weidlein.6 It crystallizes in the well-known mono-

clinic baddeleyite-type structure also reported for ZrO2 and exhibits a bright yellow color 

(optical band gap of ca. 2.6 eV). A metastable polymorph (γ-TaON) was reported by 

Schilling et al.7 It shows an orange color (optical band gap of ca. 2.15 eV) and crystallizes 

similar to VO2(B) in the monoclinic crystal system. For both β- and γ-TaON, an ordered 

distribution of oxygen and nitrogen was found. Another polymorph, α-TaON, was sug-

gested by Buslaev et al.8 but disproved by quantum-chemical calculations.9 A possible 

high-pressure modification was predicted independently by two different groups.10,11 

Pressures of more than ca. 31 GPa should induce a phase transformation from β-TaON 

(7-fold coordination of Ta) to a cotunnite-type structure with 9-fold coordinated cations. 

In fact, this cotunnite phase has recently been found by high-pressure studies,12 just as 

predicted. In addition, the relative stabilities of various structure types (including the 

anatase, rutile, and fluorite type) were calculated by quantum-chemical methods a couple 

of years ago.13 Interestingly, and in clear contrast to TiO2, the anatase type is energetically 

favored compared to the rutile type. With the small calculated stability difference of only 
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ca. 20 kJ·mol–1 between baddeleyite (most stable) and anatase type,13 it is worth the effort 

trying to synthesize anatase-type TaON.  

It should be mentioned that anatase-type phases have previously been prepared by in-

corporating lower-valent cations such as Mg2+ 14 or Sc3+ 15 into TaON. In particular, sub-

stitution of 5% tantalum by magnesium leads to a phase-pure material with the composi-

tion Mg0.05Ta0.95O1.15N0.85. This was the first example of an anatase-type structure not 

containing the element titanium. Interestingly, the preparation of 30–45 nm thin films of 

undoped anatase-type TaON on (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 (LSAT) single crystals 

using nitrogen plasma-assisted pulsed laser deposition (NPA-PLD) was recently report-

ed by Suzuki et al.16 Epitaxial stress from the substrate stabilizes the anatase-type struc-

ture without additional elements such as magnesium or scandium. From a photocatalyti-

cal point of view, this material is of great interest due to its optical band gap of ca. 2.4 eV 

and its high charge carrier mobility which is comparable to that of anatase-type TiO2.16 

Unfortunately, the quality of the X-ray diffraction patterns of the films is insufficient for a 

real structural refinement including atomic positions, bond lengths, etc. In the present 

Article we report, for the first time, the synthesis and crystal structure of tantalum oxide 

nitride powder with anatase-type structure without any additional cations. From now on 

we call this the δ-TaON phase. 

4.3 Experimental Section 

Synthesis. Amorphous tantalum oxide precursors were prepared via a modified Pechi-

ni route.17 Tantalum chloride (99.999%, Alfa Aesar) was solved in an ethanol–citric acid 

solution. Citric acid was used in a molar excess of 12 times the TaCl5. Ethylene glycol in a 

molar excess of 17 times the tantalum chloride was added for the gelling process. Etha-

nol, HCl, and water, the latter formed during the esterification, are evaporated at ca. 

423 K. The polymerization can be finalized by heating the mixture to 473 K. The material 

was calcined at 673 K for 40 h. The products were colorless X-ray amorphous powders. 

The maximum yield of 43 wt % of anatase-type tantalum oxide nitride was obtained by 

ammonolysis of these amorphous precursors at 1033 K, a reaction time of 1 h, and flow 

rates of 12.50 L∙h–1 ammonia and 0.02 L∙h–1 oxygen. Additional phases were β-TaON, 

γ-TaON, and Ta3N5. Samples without γ-phase could be obtained using an increased 

ammonia flow rate of 23.75 L∙h–1, while the other parameters were unaltered. For the 

investigation of the high-temperature behavior in inert atmosphere the samples were 

heated at different temperatures for 1 h in closed copper capsules (nitrogen atmosphere). 
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After cooling down to ambient temperature the phase fractions were determined by 

X-ray diffraction. 

 

Characterization. A PANalytical X’Pert Pro powder diffractometer (Cu-Kα radiation) 

was used for XRD measurements. Rietveld refinements including quantitative phase 

analyses were carried out using the program FULLPROF 2000.18 Profiles were fitted with a 

pseudo-Voigt function. 

The contents of nitrogen and oxygen were determined by hot gas extraction using a 

LECO TC-300/EF-300 N/O analyzer. ZrO2 and steel were used as standard materials. 

The accuracy is ca. 2% of the N/O contents present. X-ray fluorescence spectrometry 

(XRF) was performed using a PANalytical Axios spectrometer with an Rh-tube. Crystal-

linity, phase composition (identification of δ-TaON, β-TaON, Ta3N5), and morphology 

of the particles were investigated by high-resolution transmission electron microscopy 

(HRTEM), selected area electron diffraction (SAED), and energy dispersive X-ray spec-

troscopy (EDX) analysis. For TEM analysis, powder samples were deposited on a holey 

carbon coated nickel grid. TEM and HRTEM measurements were performed at the De-

partment of Electron Microscopy of the TU Berlin (ZELMI) on a Tecnai G2 S-Twin 

transmission electron microscope (FEI Company, Eindhoven, Netherlands) equipped 

with a LaB6-source operated at 200 kV. Images were recorded with a GATAN MS794 P 

CCD-camera. EDX-analysis were carried out with an r-TEM SUTW Detector from 

EDAX (Si (Li)-detector). 

 

Quantum-Chemical Calculations. In order to investigate the thermodynamic proper-

ties of the TaON phases, periodic density functional theory (DFT) calculations were 

performed as implemented in the Vienna ab initio simulation package (VASP).19,20 Pro-

jectoraugmented waves (PAW)21 were used to separate the core and valence electrons. 

Exchange and correlation contributions were treated within the generalized-gradient-

approximation as described by Perdew, Burke, and Ernzerhof (GGA-PBE).22 An energy-

cutoff of 500 eV and a Monkhorst–Pack k-point mesh of 20 × 20 × 8 were used for struc-

ture optimization, and ensured convergence. 

Quasiharmonic phonon calculations were performed using the program PHONOPY.23 

In a first step, a supercell was constructed on the basis of the optimized crystal structure. 

All symmetry-inequivalent atoms of the previously created supercell were then slightly 
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shifted out of their equilibrium position to calculate the Hellman–Feynman forces. Sub-

sequently, the force constants and then the dynamical matrix were computed. With a 

combination of its eigenvalues (phonon frequencies) with Bose–Einstein statistics, the 

free phonon energy was obtained.24 Thermodynamic properties at finite temperatures are 

straightforwardly accessible from these data.  

For the investigation of the high-pressure behavior, the cell volume was varied by scal-

ing the cell parameters between 0.94 and 1.04 (with a fixed a:b:c ratio and rectangular 

cell angles). The resulting energy versus volume data were fitted to the Birch–

Murnaghan equation of state.25 Thus, the pressure and, eventually, reaction enthalpies as 

a function of the pressure were calculated. 

In order to investigate the dependence of the calculated properties on the basis set and 

functional, additional periodic calculations employing the PBE functional as well as the 

PBE026 DFT-Hartree–Fock hybrid method were conducted with the CRYSTAL program 

package (C09).27 We used atom-centered Gaussian basis sets of valence double-ζ quality 

that have been optimized especially for the use in solid-state calculations (exponents and 

coefficients are listed in the Supporting Information, Chapter 4.8). For tantalum an effec-

tive core potential was employed (SD60MWB28) so that a total number of 13 electrons 

were kept in the semicore and valence region of each Ta atom, while all-electron basis 

sets were used for oxygen and nitrogen. The default values for the integral accuracy in 

CRYSTAL 09 have been increased by a factor of 10, and Monkhorst–Pack and Gilat grids 

have been generated using the shrinking factors (8,8). In order to obtain the Gibbs ener-

gies of the TaON polymorphs we performed frequency calculations at the Γ point.29,30 

Furthermore, we calculated the bulk modulus for the new phase by fitting the results of 

constant volume optimizations against the third-order isothermal Birch–Murnaghan’s 

equation of state. 

For the determination of the absolute electronic band edge positions with respect to 

the vacuum we performed periodic slab calculations with the PBE as well as the PBE0 

functional. Since the Kohn–Sham gap as obtained from the PBE calculations is not a 

good approximation to the optical gap in solids,31 we will follow the approach of Caspary 

Toroker et al. and merely calculate the band gap center from the hybrid calculations.32 It 

has been shown that the band gap center is reproduced more reliably within the Kohn–

Sham approach than the valence band maximum.33  

In order to calculate the optical excitations, we employed the Bethe–Salpeter ap-

proach.34 Therefore, we first calculated the quasiparticle gap with the GW0 method using 
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the VASP code.35-38 The computational setup for these surface calculations has been de-

scribed in detail elsewhere.39 For these calculations, we used small-core PAWs developed 

for GW calculations as supplied with the VASP program package. In order to reduce the 

computational demands, a smaller Monkhorst–Pack k-point grid (6 × 6 × 6) has been 

chosen as well as a lower energy cutoff (400 eV) compared to the structure relaxations. 

Increasing these values in test calculations did not alter the results significantly. 

4.4 Results and Discussion 

 The synthetic conditions, described in the Experimental Section, had to be respected 

carefully. Slightly increased reaction temperatures (e.g., 1043 K instead of 1033 K) 

strongly preferred the formation of Ta3N5, while at lower temperatures (for example 

1023 K) large parts of the amorphous tantalum oxide precursor did not react with am-

monia but partially crystallized to β-Ta2O5. As mentioned above, we were successful in 

obtaining samples with a yield up to 43 wt % of the new δ-TaON polymorph as best re-

sult. With respect to the difficulties in refining the crystal structure of the disordered 

γ-phase,7 we decided to choose a sample with a slightly smaller fraction of δ-TaON but 

without any γ-TaON for the Rietveld refinement. The red color of all prepared samples is 

likely dominated by the presence of dark-red Ta3N5. The red color also points to the ab-

sence of significant amounts of reduced tantalum resulting in black samples. XRF analysis 

proved the absence of other elements than tantalum, oxygen, and nitrogen. 

Figure 4.1 presents the experimental powder XRD pattern with the results of the 

Rietveld refinement. Details are given in Table 4.1. The sample consists of three crystal-

line phases: anatase-type δ-TaON (35 wt %), Ta3N5 (45 wt %), and baddeleyite-type 

β-TaON (20 wt %). This is in good agreement with the results of chemical analysis 

(N = 7.6 wt %, O = 6.1 wt %), taking into account an additional content of amorphous 

tantalum oxide (assuming an overall content of 13 wt % amorphous Ta2O5 for the calcu-

lation gives the values from chemical analysis). 

Additional TEM-investigations revealed that the sample consists of agglomerated 

crystalline nanoparticles assembled in sponge-like structures (Figure 4.2). Electron dif-

fraction at those agglomerates as well as HRTEM analysis (see filtered images and corre-

sponding FFT) of single nanoparticles revealed the presence of homogeneously inter-

grown δ-TaON, Ta3N5, and β-TaON particles on the nanometer scale (20–50 nm parti-

cle size, Figure 4.3). While δ-TaON and Ta3N5 are present as rounded “sintered” parti-
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cles, β-TaON tends also to form angular aggregates. Unfortunately EDX analysis of single 

particles of identified phases could not be performed, due to intergrowth/overlapping of 

the nanoparticles. The observed overall ratio N/O of 1.23 is in very good agreement with 

the above-presented results of the chemical analysis (N/O = 1.24).  

In comparison to Mg0.05Ta0.95O1.15N0.85, the lattice parameters determined for δ-TaON 

have very similar values (see Table 4.1). This can be easily explained by the similar ionic 

radii and the small amount of Mg2+ in the doped phase. In contrast, the calculated density 

of the undoped material is significantly larger due to the low mass of magnesium. It is 

remarkable that the density of the more stable γ-TaON phase (8.64 g∙cm–3) is clearly 

smaller which comes from the special structural features of the VO2(B) type (huge tun-

nels, etc., ref. 7). 

 

 

 

 

Figure 4.1.  X-ray powder diffraction pattern (Cu-Kα radiation) with results of the 
Rietveld refinement (red: measured; black: calculated; blue: measured – 
calculated). The vertical bars indicate the reflection positions of anatase-
type δ-TaON (top, blue), Ta3N5 (middle, red), and β-TaON (bottom, 
green).* 
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Table 4.1.  Results of the Rietveld refinement for δ-TaON in comparison with selected 
results for Mg0.05Ta0.95O1.15N0.85. 

 δ-TaON Mg0.05Ta0.95O1.15N0.85
13 

Structure type Anatase Anatase 
Space group I 41/amd (No. 141) I 41/amd (No. 141) 
Crystal system Tetragonal Tetragonal 

a / pm 391.954(16) 391.986(6) 

c / pm 1011.32(5) 1011.19(3) 

c / a 2.58 2.58 

V / 106 pm3 155.367(12)  155.373(6)  

Z 4 4 

ρcalc / g∙cm–3 9.02 g∙cm–3 8.71 g∙cm–3 

Diffractometer PANalytical X’Pert Pro  
2θ / ° 10–120  
λ / pm 154.060, 154.443  
 I(λ2)/I(λ1) = 0.5  

Profile points 8839  
Rwp 0.0202  
Rexp 0.0115  
RBragg 0.0141  
S 1.75  

 

 

Figure 4.2.  TEM-images of the as synthesized sample containing δ-TaON, β-TaON 
and Ta3N5: a), b) porous sponge-like structure. SAED pattern given as inset, 
demonstrate the presence of multiple crystal phases. 
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Figure 4.3.  HRTEM-images (a,e) from the marked region in Figure 5.2 with corre-
sponding FFT patterns (b,f). Filtered HRTEM-images of (a) evidencing the 
presence of δ-TaON (c) and β-TaON (d) and filtered HRTEM-images of 
(e) evidencing the presence of δ-TaON (g) and Ta3N5 (h). 

The refined atomic parameters are presented in Table 4.2. The isotropic Debye-

Waller factors were fixed to the results acquired from neutron diffraction experiments on 

the Mg containing phase.14 Anatase-type TiO2, which is structurally characterized by 

TiO6-octahedra sharing four edges with neighboring octahedra and channels along the a- 

and b-axes, crystallizes in the tetragonal crystal system in space group I 41/amd 

(No. 141). Using this space group for the refinement of δ-TaON does not give the op-

portunity to respect an ordered arrangement of nitrogen and oxygen. In our case this is 

not a real problem because X-ray diffraction experiments do not allow distinguishing be-

tween these elements (ions with the same number of electrons).  

Table 4.2.  Refined atomic parameters for anatase-type TaON. 

Atom Wyckoff x y z S.O.F.a B iso / 104 pm2 

Ta 4b 0 ¼ ⅜ 1 1.3b 
O / Nc 8e 0 ¼ 0.5789(7) 0.5/0.5 1.4b 
a Site occupation factor.  
b Fixed to the results from neutron diffraction, ref. 14. 
c Not refined independently. 
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Figure 4.4.  Crystal structure of anatase-type TaON. Left: unit cell with coordination 
octahedra. Right: Ta–O/N bond lengths in pm.* 

Figure 4.4 depicts the crystal structure of anatase-type TaON with the above-

mentioned aristotype setting with just one kind of anion position. The calculated bond 

lengths of the octahedra are also presented in Figure 4.4 and are in good agreement with 

the ionic radii expected from the corresponding ions40 and that of Mg0.05Ta0.95O1.15N0.85.14 

Possible anion arrangements have already been studied theoretically on a quantum-

chemical level13 and experimentally using Mg0.05Ta0.95O1.15N0.85
14,41 with consistent re-

sults. There are three maximal non-isomorphic subgroups (all translationengleich) 

providing two nonequivalent anion sites: I 4̄m2 (No. 119), I 41md (No. 109), and Imma 

(No. 74). It was shown that space group I 41md is the most preferred for tantalum oxide 

nitrides with anatase-type structure. Unfortunately, the amount of material (ca. 100 mg) 

is hitherto not sufficient for a neutron diffraction investigation which is the method of 

choice for the experimental determination of the N/O distribution. Larger amounts of 

material and an increase of the fraction of the δ-phase are in the focus of our work in the 

near future. 

The effect of different N/O configurations in the conventional unit cell of δ-TaON 

has already been investigated using periodic quantum-chemical calculations.13 Since we 

used different density functionals in this work, we nevertheless performed structure re-
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laxations at the GGA (PBE) and DFT-HF hybrid (PBE0) level for different distributions 

of N and O atoms over the 8e Wyckoff position. With both functionals, almost identical 

results were obtained that confirm the previously found structure. In the most stable con-

figuration, N–Ta–N and O–Ta–O chains in a or b direction alter along the c direction 

(see Figure 4.5). This crystal structure can be described in the space group I 41md 

(No. 109) with all atoms residing on the Wyckoff position 4a (VASP/PBE: Ta: 0,0,0.5; 

O: 0,0,0.299; N: 0,0,0.701). 

The relative stability of the different anatase-type phases with respect to each other is 

linked to the N–N distance. In the most stable phase with I 41md symmetry, two N3– ions 

are separated by at least 323 pm. In all other configurations under consideration the 

smallest N–N distance was reduced by more than 8% compared to this value, which leads 

to energy differences up to 24 kJ∙mol–1 per TaON formula unit due to the larger Cou-

lomb repulsion between the N3– anions. Nevertheless a large number of anion configura-

tions were higher in energy by only 5–10 kJ∙mol–1 and might thus be accessible at the 

 

Figure 4.5. 
Supercell of δ-TaON with 
the most stable N/O dis-
tribution.* 
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applied conditions during the synthesis. The theoretical Ta–O/N bond lengths differ 

from the experimentally assigned values as the octahedral coordination is more strongly 

distorted due to the reduced symmetry. At the PBE0 level we found a single short Ta–N 

(d = 195 pm) and two Ta–O bond lengths (d = 197 pm), two N atoms (d = 205 pm) at 

intermediate distances, and one O atom with a greater displacement (d = 232 pm). The 

slightly shorter Ta–N bond lengths as compared to Ta–O nicely reflect the larger cova-

lency in the Ta–N combination, as also found in other studies.42  

In order to compare δ-TaON with the well-known β- and γ-phases, the energy per 

formula unit was plotted against the cell volume (Figure 4.6, VASP/PBE). Anatase-type 

TaON is energetically less favored than the thermodynamically stable baddeleyite-type 

by about 0.18 eV whereas the VO2(B)-type is less stable by only 0.07 eV. 

 

Figure 4.6. 
Energy per formula unit 
versus volume of the 
three known phases of 
TaON at ambient pres-
sure (top), and relative 
Gibbs energy versus 
temperature for the dif-
ferent TaON phases 
(VASP/PBE) (bottom). 
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From the constant volume optimizations, we calculated the bulk moduli for the three 

phases from the Birch–Murnaghan equation of state. The value for β-TaON 

(B PBE = 259 GPa, B PBE0 = 286 GPa) is in good agreement with the results from earlier 

theoretical work (G LDA = 280 GPa,43 B PW91 = 278 GPa44), whereas the previously calcu-

lated bulk modulus for the more open γ-TaON (B VASP-PBE = 181 GPa) is less well-

reproduced using atom-centered basis functions (B PBE = 210 GPa, B PBE0 = 227 GPa). For 

δ-TaON we find a lower value compared to the other TaON phases (B PBE = 186 GPa, 

B PBE0 = 216 GPa).  

 Metastable polymorphs, according to the Ostwald−Volmer rule, are usually charac-

terized by low densities and transform to stable modifications at elevated temperatures.45 

These empirical findings are apparent in Figure 4.6 where δ-TaON phase has a larger 

volume per formula unit than β-TaON. At the same time, γ-TaON which is more stable 

than the δ-phase has a slightly smaller density [C09/PBE0: ρ (γ-TaON) = 8.6 g∙cm–3, 

ρ (δ-TaON) = 8.9 g∙cm–3]. Both values are in good agreement with the experimental re-

sults [ρ (γ-TaON) = 8.6 g∙cm–3, ρ (δ-TaON) = 9.0 g∙cm–3].  

In air, all nitrogen-containing phases reacted to tantalum oxide at 773 K. In contrast, 

in nitrogen atmosphere anatase-type TaON undergoes a phase transition between 1073 

and 1123 K to the baddeleyite-type β-TaON with a density of 11.0 g∙cm–3. This phase is 

preserved after cooling to room temperature, indicating an irreversible phase transfor-

mation. No formation of γ-TaON was observed during these experiments.  

The calculated relative Gibbs energies as a function of the temperature (Figure 4.6, 

right, VASP/PBE results) clearly show that δ-TaON is thermodynamically unstable up 

to about 1600 K, and a phase transition to β-TaON should occur at lower temperatures. 

Experimentally, however, the δ to β phase transition is found between 1073 and 1123 K 

although ΔG is then much smaller compared to room temperature. Hence, kinetics is 

controlling the transition from δ to β. 

In order to investigate the dynamic stability of δ-TaON we calculated the phonon 

density of states (PDOS) at ambient pressure. As can be seen in Figure 4.7 the PDOS 

does not exhibit any imaginary modes. Hence, the dynamic stability of the phase is as-

sured, and anatase-type TaON is classified as a metastable solid-state material.  

For the calculation of absolute band positions with respect to the vacuum, it is neces-

sary to perform two-dimensional calculations of the TaON surface in order to circum-

vent the self-interaction problem in the Ewald summation. Therefore, several low-index 

surfaces have been investigated by performing periodic slab calculations (C09/PBE0) 
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which are treated as truly two-dimensional systems in CRYSTAL. By calculating the sur-

face energies ES it was found that the (100) surface is most stable (ES
PBE = 1.1 J∙m–2, 

ES
PBE0 = 1.2 J∙m–2). The surface energies were converged for slab models consisting of 

eight or more stoichiometric layers. In order to obtain a value for the optical gap, we first 

calculated the quasiparticle gap using the GW0 approach for the δ-TaON bulk system 

(VASP/PBE). After five iterations where only the single particle Green’s function was 

updated whereas the Coulomb interaction was kept fixed, we obtained a value of 

Eg = 3.2 eV for the quasiparticle gap which agrees very well with the PBE0 result for the 

bulk. The subsequent BSE calculation gave an excitation energy for the first optical tran-

sition of 2.7 eV which is in good agreement with the experimentally determined value for 

thin films of anatase-type TaON (2.4 eV). 

To predict the applicability of δ-TaON as a photocatalyst in redox reactions it is nec-

essary to determine whether tabulated redox potentials lie in between the material’s va-

lence and conduction band edges.32 Therefore, we calculated the absolute values for the 

valence band maximum (VBM) and the conduction band minimum (CBM) according 

to 

 

Figure 4.7. 
Phonon density of 
states of δ-TaON at 
ambient pressure cal-
culated via density-
functional theory. 
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 Here Eg
BSE is the optical band gap in contrast to ref. 32 where the quasiparticle gap 

was used. This way we obtained the band edge energies E VBM = –6.6 eV and  

E CBM = –3.9 eV with respect to the vacuum level. Thus, in a photocatalytical setup 

δ-TaON can possibly support redox reactions like the H2O/O2 couple (E = –5.7 eV, 

pH = 0) that have potentials in this range. 

4.5 Conclusions 

We were successful in synthesizing a new polymorph of tantalum oxide nitride with 

anatase-type structure by an ammonolysis reaction. The measured density is higher than 

the one of the thermodynamically more stable γ-TaON phase exhibiting the VO2(B) 

structure. δ-TaON is metastable and undergoes a phase transformation to baddeleyite-

type β-TaON between 1073 and 1123 K. The absolute band edge positions were calcu-

lated by combining the results from periodic slab calculations with the lowest optical ex-

citation energy for the bulk crystal, obtained with the BSE method. The resulting band 

edge energies (E VBM = –6.6 eV, E CBM = –3.9 eV) indicate that δ-TaON is a promising 

photocatalytic material for redox reactions, e.g., water splitting. With the enormous inter-

est in tantalum oxide nitride phases for solar fuel production via photo- or photoelectro-

chemical water splitting, additional work to prepare a phase-pure material is planned. 

Moreover, also the synthesis of a rutile-type metastable TaON phase, which is calculated 

to be at most 13 kJ·mol–1 (C09/PBE0, T = 0 K) less stable than the here presented ana-

tase-type phase, is ongoing work. 
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4.8 Supporting Information  

Table 4.3.  Gaussian-type basis sets for Ta, O, and N. 

Element Shell type Exponent Coefficient 

Ta (SD60MWB) 5s 13.92894522 -0.65530133 

  11.99334000 0.99999851 

  5.13783577 -0.75340391 

 6s 0.81369698 1.00000000 

 7s 0.20617834 1.00000000 

 5p 7.39668050 0.58299598 

  5.71622490 -0.99750066 

 6p 1.11480608 0.53922059 

  0.48684871 0.43278257 

 7p 0.20000020 1.00000000 

 5d 3.89501783 -0.07125693 

  1.54623255 0.18750222 

  0.78972687 0.33933435 

  0.39161871 0.46423064 

 6d 0.20001481 1.00000000 

 4f 0.69700000 1.00000000 

O 1s 17236.81829238 0.00074182 

  2751.75465497 0.00535982 

  644.13976274 0.02693106 

  186.54606980 0.10368114 

  62.05370174 0.30631113 

  22.40522705 0.63919506 

  8.63211071 0.69861249 

  3.43665812 0.23444923 

 2s 31.23086387 -0.03031382 

  8.75022651 -0.16427606 

  0.99708039 0.97908082 

 3s 0.29679220 1.00000000 

 2p 37.97017643 0.01498951 

  8.81023497 0.09235816 

  2.57513767 0.29875716 

  0.80224337 0.49916591 

 3p 0.23077580 1.00000000 
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Element Shell type Exponent Coefficient 

O 3d 0.28447631 1.00000000 

N 1s 19610.14142999 0.00067103 

  2918.28119664 0.00524937 

  662.82669961 0.02721870 

  188.48972830 0.10851369 

  61.86476194 0.33759047 

  22.40189484 0.75710716 

  8.70806179 1.04888702 

  3.43054032 0.59027045 

 2s 19.83643370 0.75107092 

  5.74154083 3.14684949 

  0.85051883 -14.22933913 

 3s 0.26704755 1.00000000 

 2p 40.95912588 0.01123324 

  9.12783302 0.08265355 

  2.53467765 0.31399797 

  0.78249957 0.62944112 

 3p 0.20016341 1.00000000 

  3d 0.51431751 1.00000000 

 


