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Abstract

The High Efficiency Video Coding (HEVC) standard provides a higher compres-
sion efficiency than other video coding standards but at the cost of an increased
computational load, which makes hard to achieve real-time encoding/decoding
for ultra high-resolution and high-quality video sequences. Graphics Processing
Units (GPUs) are known to provide massive processing capability for highly
parallel and regular computing kernels, but not all HEVC decoding procedures
are suited for GPU execution. Furthermore, if HEVC decoding is accelerated
by GPUs, energy efficiency is another concern for heterogeneous CPU+GPU
decoding. In this paper, a highly parallel HEVC decoder for heterogeneous
CPU+GPU system is proposed. It exploits available parallelism in HEVC de-
coding on the CPU, GPU, and between the CPU and GPU devices simulta-
neously. On top of that, different workload balancing schemes can be selected
according to the devoted CPU and GPU computing resources. Furthermore, an
energy optimized solution is proposed by tuning GPU clock rates. Results show
that the proposed decoder achieves better performance than the state-of-the-art
CPU decoder, and the best performance among the workload balancing schemes
depends on the available CPU and GPU computing resources. In particular,
with an NVIDIA Titan X Maxwell GPU and an Intel Xeon E5-2699v3 CPU, the
proposed decoder delivers 167 frames per second (fps) for Ultra HD 4K videos,
when four CPU cores are used. Compared to the state-of-the-art CPU decoder
using four CPU cores, the proposed decoder gains a speedup factor of 2.2×.
When decoding performance is bounded by the CPU, a system wise energy re-
duction up to 36% is achieved by using fixed (and lower) GPU clocks, compared
to the default dynamic clock settings on the GPU.
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1. Introduction

The HEVC [42] standard represents the current state of the art in video
coding technology. It provides 50% bitrate reduction with the same subjective
quality when compared to H.264/MPEG-4 AVC (H.264) [37]. However, such
improvement in bitrate compression is achieved at the cost of an increase in the
computational requirements. Furthermore, the main applications of HEVC are
delivery of Ultra High Definition (UHD) videos, including 4K and 8K. Emerging
video quality enhancements on those UHD videos, such as High Dynamic Range
(HDR) [39], Wide Color Gamut (WCG) [28], and High Frame Rate (HFR) [47],
add even more computing requirements. Fortunately, HEVC has been designed
with parallelism in mind. Coding tools such as Wavefront Parallel Processing
(WPP) [20] and Tiles [30] have been added in order to take advantage of parallel
architectures. Parallel processing for HEVC decoding has been analyzed and
implemented in several homogeneous architectures. For example, the state-of-
the-state CPU decoder [4] exploiting SIMD instructions and advanced multi-
threading is able to decode 4K UHD video on contemporary desktop CPUs.

In addition to CPUs, modern computer systems often include GPUs, result-
ing into a class of heterogeneous architectures. Such heterogeneous CPU+GPU
systems can potentially provide the computing capability needed for the next
generation of UHD HEVC decoding. In order to extract the maximum per-
formance, HEVC decoding has to be mapped appropriately onto such hetero-
geneous architectures. First, the decoding sub-modules need to be distributed
properly between the CPU and GPU according to their computing characteris-
tics. Second, the assigned decoding tasks on both the CPU and GPU sides have
to be parallelized and optimized. Besides, the decoding operations between the
CPU and GPU requires efficient communication and pipeline consideration. Fi-
nally, multiple load balancing schemes are desired when the available computing
resource changes on the CPU and GPU devices.

In this paper, a highly parallel design of the HEVC decoding for hetero-
geneous CPU+GPU systems is proposed. The HEVC procedures have been
redesigned so that the sequential entropy decoding stage is executed on the
CPU, while the remaining parallel kernels are offloaded onto the GPU. In ad-
dition to the data parallelism exploited on the GPU, the available wavefront
parallelism for the CPU task is also exploited. Furthermore, the decoding tasks
on the CPU and GPU have been designed to execute in a pipelined fashion, with
an efficient one-direction data transfer. On top of the parallel design, different
workload balancing strategies have been developed, in order to deliver the best
performance according to the exploited set of computation resources. Finally,
an energy measurement solution has been integrated within the heterogeneous
CPU+GPU decoder, with which the energy efficiency of the proposed decoder
is evaluated and analyzed. To summarize, the contributions of this paper are
the following.
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• A highly parallel HEVC decoder for heterogeneous CPU+GPU systems is
proposed, where multiple levels of parallelism are exploited simultaneously.
On the CPU, it exploits both the intra- and inter-frame parallelism. On
the GPU, it allows concurrent kernel execution, in addition to the data-
level parallelism within a frame. Between the CPU and GPU devices,
pipelining is also exploited at the frame level.

• On top of the proposed design, different workload balancing schemes are
implemented, in order to find the most efficient workload distribution de-
pending on the available CPU and GPU computing resources. In particu-
lar, with an NVIDIA Titan X Maxwell GPU and an Intel Xeon E5-2699v3
CPU, average frame rates of 167 fps and 60 fps are achieved for 4K and
8K videos, respectively.

• An energy efficiency analysis is performed for the proposed CPU+GPU
decoder with the integrated energy measurement module. Compared to
the default clock settings of the GPU, the energy efficiency of the hetero-
geneous decoding can be further optimized by tuning GPU clocks, with a
system wise energy reduction up to 36%.

This paper is organized as follows. Section 2 discusses the related work.
Section 3 provides a parallelism analysis for the HEVC decoding. Section 4
elaborates on the proposed decoding design. Section 5 describes the energy
measurement module for the CPU and GPU devices. In Section 6, the perfor-
mance and energy efficiency results of the proposed heterogeneous CPU+GPU
decoding are presented and analyzed. Finally, the conclusions are drawn in
Section 7.

2. Related Work

This section provides a review of HEVC decoding implementations on differ-
ent architectures, such as CPUs, GPUs, and dedicated hardwares. Furthermore,
a brief review of energy optimized GPU computing and video decoding is pre-
sented.

On the general-purpose CPU processor, the open-source HEVC Test Model
(HM) [26] is often used as a baseline. However, HM was developed mainly for
validation of the HEVC standard, being not optimized for real-time decoding. In
contrast, an optimized decoder with Single Instruction, Multiple Data (SIMD)
and multi-threading was developed in [15]. On an Intel i7-2600 3.4 GHz quad-
core CPU, the optimized decoder delivers 40-75 fps for 4K videos. Another
SIMD and multi-threaded decoder with additional memory optimizations was
proposed in [4]. This decoder delivers 134.9 fps on an Intel i7-4770S 3.1 GHz
quad-core CPU for 4K videos.

Regarding software-based GPU acceleration for video decoding, most of pre-
vious work targets only single HEVC decoding modules, such as Inverse Trans-
form (IT) in [14, 19], Motion Compensation (MC) in [9], Intra Prediction (IP)
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in [11], Deblocking Filter (DBF) in [16, 25], and in-loop filters in [10]. In par-
ticular, Souza et al. [13] presented a set of optimized GPU kernels, where they
optimized and integrated individual HEVC modules. The set of GPU kernels,
however, did not cover all HEVC decoding modules, i.e., the Entropy Decod-
ing (ED) is excluded. Experimental results show these GPU-based kernels (i.e.
excluding ED) deliver a frame rate of 145 fps for the 4K videos using an NVIDIA
TITAN X Maxwell GPU.

Apart from the above software approaches, hardware implementations of
HEVC decoding have been proposed as well. Abeydeera et al. [1] presented
an HEVC decoder based on Field-Programmable Gate Array (FPGA). With a
Xilinx Zynq 7045 FPGA, their decoder delivers 30 fps for 4K videos. Tikekar
et al. [43] implemented an Application-Specific Integrated Circuit (ASIC) in
40nm CMOS technology with a set of architectural optimizations. Their ASIC
decoder is also able to decode at 30 fps for 4K videos. In addition, modern
commercial GPUs often provide dedicated hardware accelerators for video de-
coding, such as NVIDIA’s PureVideo [31], Intel’s Quick Sync Video [22], and
AMD’s Unified Video Decoder [2]. Most of the hardware-based HEVC acceler-
ators, however, are limited to specific architectures and further constrain their
support to certain HEVC profiles. For example, NVIDIA adds complete HEVC
hardware acceleration until GM206 architectures, and constrains its decoding
capability to HEVC Main profile up to Level 5.1 [36]. In contrast, the set of
software-based solutions that are adopted by this paper can provide HEVC real-
time decoding capabilities for nowadays heterogeneous systems, even when the
considered GPUs are not equipped with HEVC hardware acceleration.

When considering energy optimized GPU computing/video decoding, Mei
et al. [29] exploited the impact of up-to-date GPU Dynamic Voltage and Fre-
quency Scaling (DVFS) [41] techniques on the application performance, power
consumption, and energy conservation. Their results showed that the energy
saving not only depends on GPU architectures but also characteristic of GPU
applications. For video decoding application, two approaches were exploited
in [6] for achieving low-power and high-efficiency real-time video decoding on
different CPU architectures. Results showed that the “exploiting slack” ap-
proach is more power efficient than the “race to idle” strategy on all evaluated
CPUs. However, both of the above studies investigated energy optimization
strategies only on homogeneous architectures, either on CPUs or on GPUs.

Compared to the software-based approaches, in this paper a complete HEVC
decoder for heterogeneous system consisting of CPU and GPU devices is pre-
sented. We exploit available parallelism on the CPU, GPU and between the
CPU and GPU devices simultaneously. Furthermore, different workload distri-
butions between the CPU and GPU devices are implemented, and hence the
proposed decoder can achieve the best performance under different computing
resource configurations. Finally, we analyze the energy efficiency of HEVC de-
coding on heterogeneous architectures. By tuning clocks of the more power
hungry GPU device, a system wise energy consumption is reduced by up to
36%, when compared to the default GPU clock settings.
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Figure 1: Intra- and inter-frame parallelism exploited in HEVC decoding. Each cell
in the grid of a frame represents a CTU.

3. Parallelism Analysis for the HEVC Decoding

This section starts with the discussion of the parallelization opportunities
within the HEVC decoding that were exploited in the proposed design. After-
wards, an analysis of the parallelism within all decoding tasks is performed by
considering GPU architectures.

3.1. Parallel Decoding in the HEVC standard

There are two forms of parallelism available in the HEVC decoding: intra-
and inter-frame parallelism. The intra-frame parallelism is available when WPP
[20] is enabled at the encoder side. WPP allows multiple threads to decode
several lines of Coding Tree Units (CTUs) in parallel, as shown in Fig. 1. Each
decoding thread processes CTUs in the same row from left to right. Due to data
dependencies, each CTU can only be decoded if its top right CTU is decoded,
which leaves a distance of two CTUs between neighboring threads. To fulfill
this dependency, WPP suffers from a low thread utilization at the start and the
end of each frame, when only a single frame’s decoding task is considered.

Such inefficiency can be relieved by also exploiting inter-frame parallelism
when multiple frames-in-flight (FiF) are available, where CTUs from different
frames can be decoded in parallel. As it is shown in Fig. 1, the decoding
thread (T4) no longer remains idle as the workload from the next frame can
be scheduled. In addition, the decoding task for CTUs in the next frame does
not have to wait for the completion of the reference frame, but it can start as
long as its dependent area in the previous frame is decoded. This strategy that
exploits the inter-frame parallelism and relieves the WPP inefficiency was firstly
proposed in [5], termed as the Overlapped Wavefront (OWF) approach.

In addition to WPP, slices and tiles are the other two parallel coding tools in
HEVC that can increase the intra-frame parallelism. By dividing a frame into
multiple independent slices/tiles, the decoding task for each slice/tile can be
processed in parallel. Comparing all methods, WPP (OWF) has been proven
the most efficient way to exploit the parallelism in the HEVC decoding, as
evaluated in [5]. When WPP, tiles, and slices are all disabled, only inter-frame
parallelism can be exploited.
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3.2. Suitability of GPU Acceleration for HEVC Decoding

HEVC decoding can be divided into six steps: Entropy Decoding (ED), In-
verse Transform (IT), Motion Compensation (MC), Intra-Prediction (IP), De-
blocking Filter (DBF), and Sample Adaptive Offset (SAO) filter. However, not
all of these decoding kernels are suitable for GPU architectures. Only kernels
that exhibit a high degree of data level parallelism and a low degree of branch
divergence can lead efficient GPU execution.

Table 1 presents a qualitative analysis for the HEVC decoding kernels, when
they are performed at the frame level. In particular, the ED exposes little data
level parallelism and is highly divergent due to its bit-level dependency in the
decoding path. The IT can be performed independently for each transform block
in a frame, where thousands of transform blocks are available. Such independent
block processing can also be applied for the decoding procedures of MC, DBF,
and SAO. However, the IP cannot be applied in parallel for all blocks within
a frame, due to its block-level data dependency. For one block’s prediction,
depending on its prediction mode, the samples of other blocks from the top-
right, top, top-left, left, and bottom-left directions might need to be predicted
first, as exemplified by one 4×4 block’s prediction in Fig. 2. Hence, the number
of blocks that can be predicted in parallel in IP is reduced. Meanwhile, the IP
has a total of 35 prediction modes, while other kernels, except ED, in general
exhibit a low execution divergence.

Table 1: Qualitative analysis of the HEVC decoding stages in terms of data paral-
lelism and branch divergence.

Decoding stage features
HEVC decoding stages

ED IT MC IP DBF SAO

Data parallelism very low high high medium high very high
Branch divergence very high low low medium low very low

Predicted Samples

Predicting Samples

Prediction mode

top-left

left

bottom-left

top top-right

Figure 2: The potential dependent samples in HEVC intra prediction, exemplified
by a 4×4 block with one prediction mode.
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Figure 3: Work flow overview of task based partition for CPU+GPU decoding on one
specific frame. The entropy decoding module is assigned on the CPU and the remaining
kernels are offloaded onto the GPU. Thread block level mapping is presented at the
bottom, within the GPU block.

4. Proposed Decoding Design for Heterogeneous systems with CPU
and GPU

In this section, a general design for parallel HEVC decoding on heterogeneous
platforms is presented first. After that, different workload balancing schemes
on top of the proposed design is elaborated. With them, a more balanced
workload distribution can be achieved for different input sequences, according
to the available computing resources on the CPU and GPU devices.

4.1. HEVC Decoding Task Distribution for Heterogeneous CPU+GPU Systems

Based on the decoding procedure analysis in Section 3.2, a purely task-based
workload distribution between CPU and GPU is proposed, as shown in Fig. 3.
For every frame, the ED task is executed on the CPU, due to its sequential
and irregular processing pattern, while the remaining decoding procedures are
offloaded onto the GPU. The tasks targeted for the GPU are sometimes referred
to together as reconstruction kernels, since they are responsible for reconstruct-
ing the frames.

Among the reconstruction kernels, the IP has a medium level of data par-
allelism and branch divergence, which can be executed either on the CPU or
the GPU. Executing IP on the CPU, however, will introduce two extra data
transfers between the CPU and the GPU, which are a well-known source of
bottleneck for heterogeneous CPU+GPU computing. Due to data dependency,
the reconstructed samples derived from the IT and MC on the GPU have to
be firstly transferred back to the CPU, as the input for the IP. After the IP
is processed on the CPU, the reconstructed samples from the intra-predicted
blocks need to be uploaded to the GPU again, as the input for the DBF per-
formed on the GPU. In contrast, we assign the IP on the GPU to reduce the
data dependency between the CPU and GPU devices. As a result, the data
transfer between the CPU and the GPU is minimized to once only, as shown in
Fig. 3.
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In our baseline multi-core CPU decoder [4], all decoding procedures are
applied at block-level in order to exploit data locality. In the herein proposed
CPU+GPU decoding, however, reconstruction kernels are applied at frame-
level, in order to increase the data parallelism for GPU execution. Hence, from
a high-level perspective, three steps are performed based on the baseline decoder
to achieve the workload distribution in Fig. 3. First, the ED is decoupled from
the decoding loop that fuses all decoding procedures. Second, the reconstruction
kernels are changed from the block-level processing to the frame-level processing.
Third, all reconstruction kernels are parallelized for GPU execution.

After this redesign for heterogeneous CPU+GPU processing, the decoding
task for a single frame is performed as follows. First, while the ED is executed
on the CPU, the input data for the reconstruction kernels is collected at the
frame level. The collected data includes the coefficients (Coeff.) and block
control flags for IT, the motion vector (MV) and the reference index (RefIdx)
for MC, the prediction modes (P. Modes) for IP, the boundary strength (BS)
for DBF, and the offset types for SAO, as shown on the top in Fig. 3. After an
entire frame is processed by the ED, the collected data is transferred from the
Host to Device (labeled as H2D). As soon as such data is transferred to GPU
Global Memory, the reconstruction kernels are launched in the following order
to fulfill the HEVC standard specifications: IT, MC, IP, DBF, and SAO. Along
with prediction kernels (i.e., MC and IP), the suffix “+” indicates that the
reconstruction output (predicted samples + residual data) is computed within
the GPU kernel. After all GPU kernels have been executed, the decoding task
for one frame is complete. The decoded frames can remain in the GPU global
memory as the reference frame for the MC, which is also performed on the
GPU. In this way, the data dependency of MC is addressed completely on the
GPU, and the decoded frames do not have to be transferred back to the CPU,
as shown in Fig. 3.

4.1.1. Parallel Decoding on the CPU and GPU Devices

On the CPU side, when WPP and multiple FiFs are available, the ED task
exploits both intra- and inter-frame parallelism with the OWF approach, as
shown in Fig. 1. For the entropy decoding of one frame, multiple threads are
allowed to process the frame in parallel, each corresponding to one row of CTUs.
Meanwhile, the ED task can start across multiple frames. The motion vector
prediction that integrated within the ED stage can start as long as its reference
area (instead of the complete frame) is ready. When the CTU rows from the
same frame and other frames are both available, the ED processes the CTU
lines that come from the same frame first, in order to minimize the frame-level
decoding latency.

On the GPU side, all reconstruction kernels have been parallelized using
Compute Unified Device Architecture (CUDA) [34]. In CUDA, the threads are
organized in three bottom-up levels: thread, thread block, and grid. Moreover,
the threads are executed in groups of 32 threads, termed as warps. Hence, the
thread block size is usually configured as multiple warps to avoid thread waste.
Herein, all kernels are applied on the frame basis, and the thread mapping at
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the thread block level is summarized per kernel at the bottom of Fig. 3. The
selected thread block configurations are derived either by tuning thread block
sizes (such as MC and IP, as presented in [13]), or by further optimizing data
mapping of the thread block (such as DBF and SAO, as presented in [45]).

For the IT, 8 warps are configured for processing a block of 32×32 samples.
When there are multiple transform blocks within the mapped thread block,
the warps are assigned according to the transform block partition. The thread
block for MC is composed of 4 warps, and they are assigned to perform the
inter prediction of a block consisting of 64×32 samples. In MC, the on-chip
shared memory is used to buffer the reference samples that will be further used,
thus reducing the required memory bandwidth to the global memory. The IP
kernel is performed after the MC due to the intrinsic data dependencies on its
neighboring predicted samples. In total 8 warps are allocated for one thread
block in IP, and they are responsible for an area in a frame width with a
height of 64 samples (FW×64), thus accomplishing a wavefront approach for
the whole frame. For the in-loop filters, the DBF and SAO, each thread block
contains 2 warps, but they are assigned to a block of 256×8 and 64×64 samples,
respectively. The more detailed parallelization strategies for the IT, MC, IP,
and the in-loop filters (i.e. DBF and SAO) have been elaborated in [14],[9], [12],
and [45], respectively.

Time

stream 1 frame 1

stream 2 frame 2

H2D IT MC+ IP+ DBF SAO

H2D IT MC+ IP+ DBF SAO

GPU

Figure 4: Parallel decoding on the GPU with two independent frames in flight (and
hence two cuda streams), assuming that the considered GPU has enough resources to
execute multiple kernels concurrently.

For the decoding tasks on the GPU, besides the frame-level data parallelism
exploited by CUDA kernels, inter-frame parallelism is also exploited when mul-
tiple FiFs are configured. Figure 4 presents an example with two independent
FiFs. For each frame, its corresponding GPU kernels are issued in the same
CUDA stream: a sequence of GPU operations that execute in issue order. In
the proposed design, one CUDA stream is created per each frame and all GPU
operations are issued asynchronously, which allows a concurrent execution on
the GPU for different CUDA streams [32]. Two types of concurrency are ex-
ploited on the GPU. First, the host to device memory copy (H2D) is performed
by the copy engine on the GPU, which can be overlapped with the kernel ex-
ecution from other frames. Second, if the GPU has idle computing resources
when executing one given kernel, the kernels from other streams can be con-
currently executed. For example, the execution of IP is overlapped with one
other kernel for most of the time, since its limited amount of parallelism leads
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to a low utilization of the GPU resources. Kernel concurrency is also observed
in the execution of SAO (from stream 1) and DBF (from stream 2), but for
another reason. Both SAO and DBF expose massive parallelism but they are
lightweight for a powerful GPU, and hence can be concurrently executed.

4.1.2. Pipelined Decoding between the CPU and the GPU

Besides the parallelism exploited on the CPU and GPU devices, pipelining
is exploited as well in the proposed design. Figure 5 presents an example of
pipelined execution between the CPU and the GPU when multiple FiFs and
WPP are available. In total three threads are configured, together with three
FiF, each labeled with a different color that represents the associated frame
buffer. For each frame, the task assigned to the CPU is labeled in the form Frame
No.: ED, while the reconstruction kernels assigned to the GPU are labeled as
Frame No.: Rec. For the sake of easier explanation, it is assumed that every two
frames (Frame 1 and 2, 3 and 4, etc.) can be decoded independently. Moreover,
the first frame in the independent frame pair is assumed as the one (and the
only one) reference frame of the second frame. Hence, the MC of Frame 2 shall
wait until Frame 1 is completely decoded, Frame 4 shall wait for Frame 3, and
so on.

Time

Threads

stream 1

stream 2

stream 3

F1: ED

F2: ED

F3: ED

F1: Rec

F2: Rec

F3: Rec

F4: ED

F5: ED

F6: ED

F4: Rec

CPU

GPU

Figure 5: Pipelined decoding between the CPU and the GPU with three frames in
flight and three threads, assuming that the considered GPU has enough resources to
execute multiple kernels concurrently.

The entire decoding process starts on the CPU, with entropy decoding of
Frame 1 (F1: ED). Since the decoding task within the same frame has a higher
priority, each thread on the CPU takes a row of CTUs in Frame 1 and decodes
the frame in a wavefront scheme. When they are approaching the end of the
frame, the CTU rows of Frame 2 are scheduled for these CPU threads. Hence,
the ED tasks at the end of Frame 1 and the beginning of Frame 2 are decoded in
parallel. If the WPP is disabled, then the configured three threads will spread
over the available FiF, and hence the decoding of Frame 2 and Frame 3 will

10



start sooner. After the CPU accomplishes all the entropy decoding of Frame 1,
the reconstruction kernel inputs are transferred to the GPU side, and hence the
GPU kernels of Frame 1 can be executed. Meanwhile, the ED task of Frame
2 is also processed on the CPU side in a wavefront approach. When the CPU
complete the decoding of Frame 2, however, due to the motion compensation
data dependency, GPU kernels cannot start until Frame 1 is completed decoded.
Therefore, no concurrent GPU execution is observed between Frame 1 and 2.
However, the GPU kernels on Frame 2 and 3 are independent of each other,
and hence concurrent execution is exploited between them. When Frame 2 is
completely decoded on the GPU, the frame buffers for Frame 2 and its reference
frame (Frame 1) are freed. The freed frame buffers can accommodate new frames
(Frame 4, 5), and the overall process is repeated.

The synchronization between the CPU and the GPU is performed as follows.
When the decoding task on the CPU is completed for a given frame, a flag is
set for this frame’s GPU decoding task. GPU kernels will not be scheduled
without this flag set. Furthermore, all reference frames of the current frame are
checked before launching its GPU kernels, to assure that its motion compensa-
tion dependency is fulfilled. Finally, after all GPU kernel launches of one frame,
the callback function cudaStreamAddCallback is appended in the same CUDA
stream. As soon as all kernels are complete, this callback function is activated
by the CUDA runtime, informing the CPU to start decoding a new frame.

4.2. Different Workload Balancing Schemes

Depending on the ratio of computational power between the CPU and the
GPU (e.g., the number of CPU cores/the number of GPU cores), different work-
load distribution must be employed in order to achieve better performance. If
more GPU than CPU computing resources are available, it is better to submit
all frames to the GPU for reconstruction kernels’ execution. However, if more
CPU than GPU computing resources are available, the GPU might not be able
to process all the frames at the desired rate and can become the bottleneck. In
this case, it is better to send fewer frames for reconstruction to the GPU and
reconstruct more in the CPU.

The presented decoding scheme in Section 4.1, termed as scheme I after-
wards, divides the workload between the CPU and the GPU based only on
the decoding procedures. For a given video with lightweight entropy decoding
workload, this task-based distribution can lead to workload imbalance when
a high number of CPU cores are employed. To mitigate this problem, fewer
frames shall be sent to the GPU for the reconstruction tasks. Instead, these
reconstruction tasks are executed on the CPU, and hence a better workload
balancing between the CPU and GPU devices is achieved.

However, one pending issue is the selection of frames that do not offload
the reconstruction kernels onto the GPU anymore. One option to accomplish
the new frame distribution is based on reference and non-reference frames. A
reference frame is used by other frames as the input for motion compensation,
while a non-reference frame is not used by any other frames. Figure 6 presents
an example of reference and non-reference frames in a Group Of Pictures (GOP)
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Figure 6: Inter-frame dependency in a Group Of Pictures (GOP) with a size of 8
frames.

with a size of 8 frames. The numbers labeled within the frames represent their
displaying order, and the the frame-level dependencies between these frames are
indicated by the arrows. For example, frame 4 can only be decoded after the
completion of frame 0 and 8.

In the newly proposed workload distribution scheme, termed as scheme II
afterwards, all decoding tasks for the reference frames are preserved on the CPU,
and the corresponding GPU kernels are disabled. Meanwhile, the CPU decodes
these reference frames at the CTU line level, in order to exploit both inter- and
intra-parallelism, as presented in Fig. 1. The workload distribution for non-
reference frames remains the same as presented in Fig. 3, i.e., ED is assigned on
the CPU and other kernels are assigned on the GPU. In this way, no memory
transfer from the GPU to the CPU is required because the dependency between
the reference frames on the CPU are self-contained, and dependency between
the reference frames and non-reference frames can be addressed by transferring
the decoded reference frames from the CPU to the GPU. The main differences
in the considered workload distributions of the decoding scheme I and II are
summarized in Table 2. The proposed decoding scheme II applies for all input
sequences using hierarchical GOP structures, which is a common choice when
encoding videos for consumer applications.

Table 2: Workload distribution in decoding scheme I and II.

Scheme I Scheme II

Frame types Entropy Others Entropy Others

non-reference frames
CPU GPU CPU

GPU
reference frames CPU

In addition to avoiding extra direction of memory copy (from the GPU to
the CPU), the decoding scheme II also brings other benefits. First, the inter-
frame parallelism exploited by the GPU is usually limited by the frame-level
motion compensation dependencies. However, under the new decoding scheme,
such dependency will not occur, since non-reference frames are independent
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of each other and can be processed in parallel by the GPU. Moreover, the
tasks on the GPU are synchronized at the frame level, while the tasks on the
CPU are synchronized at the CTU line level. Hence, the GPU can start a new
decoding task only when the entire reference frame is completed. In contrast, the
finer synchronization granularity on the CPU allows the decoding task to start
without the completion of the entire reference frame, thus improving overall
performance scalability.

5. Energy Measurement for Heterogeneous CPU+GPU Decoding

In order to analyze the energy efficiency of heterogeneous CPU+GPU de-
coding, an energy measurement module is developed and integrated within the
proposed decoder. The energy measurement module consists of two parts: the
one used for measuring energy of Intel CPUs using the Running Average Power
Limit (RAPL) [38] interface, and the other for measuring NVIDIA GPUs using
the NVIDIA Management Library (NVML) [35].

5.1. Energey Measurement of Intel CPUs

Since Sandy Bridge microarchitecture, RAPL interface is implemented to
monitor and control the power consumptions of Intel CPUs. Its internal cir-
cuitry can estimate current energy usage based on a model driven by hardware
counters, temperature, and leakage information [46]. The results of this power
model have been validated with high accuracy [40] and are available to users via
a set of Machine Specific Registers (MSRs). For fine grained report and control,
RAPL interface provides sensors that allow measuring energy of the CPU-level
components, referred to as a RAPL domain. In total there are four RAPL do-
mains, namely, package, pp0, pp1, and DRAM. Package domain reports power
consumption of the whole CPU package, pp0 and pp1 domains respectively refer
to the power consumed by the core and uncore devices, and DRAM domain pro-
vides the power consumption of memory controller. These domains, however,
are not always available. The domain availability depends on the processor
models [21]. The server processor used in this paper (i.e. Haswell-EP Xeon
E5-2699v3), for instance, only supports the package and DRAM domains [18].

For package domain, the energy usage can be read from the MSR register
MSR PKG ENERGY STATUS, and the energy usage of DRAM domain is read
from the MSR DRAM ENERGY STATUS register. These two registers are
read-only and the energy value stored in them is updated every 1 ms [21]. The
raw energy values from these two registers are counted in energy units, which
are defined in register MSR RAPL POWER UNIT.

The energy of CPU is measured by putting two reads for the package and
DRAM domains at the beginning and the end of the decoding process. The con-
sumed energy for each domain is then obtained by subtracting the value from
the two reads, with overflow taken into account. The subtracted energy val-
ues for package and DRAM domain are then multiplied by their corresponding
energy units, and finally added together.
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5.2. Energey Measurement of NVIDIA GPUs

The NVML library provides C-based Application Programming Interfaces
(APIs) for monitoring and managing various states of NVIDIA GPUs [35].
These states include power, clocks of memory and Streaming Multiprocessors
(SMs), performance state, temperature, fan speed, etc.

In contrast to RAPL interface, the NVML library does not provide a direct
interface to read the energy usage of GPUs. To address this issue, the energy
of the GPU device is estimated by the multiplication of power and execution
time. A power sampling thread is forked at the beginning and joined at the end
of the decoding process. It reads the current power consumption by nvmlDe-
viceGetPowerUsage API at a frequency of 62.5 Hz, which is the maximum power
measurement frequency according to [27]. Then, the sampled power values are
averaged and multiplied by the execution time. In order to understand the
power management of NVIDIA GPUs better, we also query the performance
state and clocks of memory and SM within the sample thread.

In addition to APIs to query state of GPUs, NVML also provides APIs
to modify the settings of GPU execution, such as the clocks of graphics and
memory. These APIs provide a way to limit the GPU power consumption by
changing its operating clocks. The GPU power includes static and dynamic
components. The static power is due to current sources and to leakage current
when a transistor is nominally off. The dynamic power conventionally accounts
for the majority of the total power, and can be determined by Equation 1:

Pdynamic = aCV 2f (1)

where a represents the activity factor, C denotes the total capacitance, V is
the supply voltage, and f stands for the operating frequency [17]. The higher
clock rates of graphics and memory allow GPU to consume more power, and
vice versa.

The default power management approach of NVIDIA GPUs is auto boost
mode with DVFS, namely, changing the clock/voltage dynamically during the
applications’ runtime. This strategy, however, might not be the optimal choice
of power management in the scenario of heterogeneous CPU+GPU HEVC de-
coding. To exploit the optimization opportunities of energy efficiency, the GPU
clock setting utility is implemented and integrated within the decoder, with
which the GPU can perform at the specified clocks. The clock setting utility is
achieved in two steps. First, the auto boost mode needs to be disabled by calling
nvmlDeviceSetAutoBoostedClocksEnabled with NVML FEATURE DISABLED
as the parameter. Second, the memory and graphic clocks can be set by calling
nvmlDeviceSetApplicationsClocks, with the desired memory and graphic clocks.

6. Experimental Results

To evaluate the performance and energy efficiency of the proposed CPU+GPU
decoder, it was executed on a system equipped with an Intel Xeon CPU and
an NVIDIA GTX Titan X Maxwell GPU. The host CPU Xeon E5-2699v3
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Table 3: Summary of the test platform hardware specifications.

CPU: Intel Xeon E5-2699v3 (Haswell) Host Memory

Cores Clock $L1/core (I/D) $L2/core $L3 TDP Size Bandwidth

18 2.3 GHz 32 KB/32 KB 256 KB 45 MB 145 W 32 GB 68 GBps

GPU: NVIDIA GTX TITAN X (Maxwell) Device Memory

Cores Clock Compute Capability $L2 TDP Size Bandwidth

3072 1(1.2) GHz 5.2 3 MB 250 W 12 GB 336 GBps

Connection bus: PCIe 3.0×16

integrates 18 physical cores and has a Thermal Design Power (TDP) of 145
Watt (W). It was configured with both turbo boost and hyperthreading dis-
abled. The device GPU GTX TITAN X has 3072 CUDA cores that work be-
tween 1 to 1.2 GHz when auto boost is enabled. It has a power limit of 250
W and is configured with auto boost enabled unless stated otherwise. The host
and the deivce are connected via a PCIe bus 3.0×16. Table 3 summarizes the
specifications of the test platform. The proposed CPU+GPU decoder was com-
piled with GCC 4.8.4 compiler with -O3 optimization level and ran on Kubuntu
14.04 Linux distribution using kernel 3.16. GPU kernels were developed using
CUDA Toolkit 7.5, with graphic driver version 352.63.

The proposed heterogeneous decoder fully supports the HEVC Main10 pro-
file [24]. Five 4K sequences from EBU UHD-1 sequence set [44] and two 8K
sequences from NHK [8] were encoded with four distinct QP values. Their cor-
responding bitrates are presented in Table 4. Each 4K sequence consists of 500
frames with a GOP size of 8 frames, while the 8K sequences are 3600 frames each
and with a GOP size of 16 frames. Both 4K and 8K videos were encoded with
random access 10-bit configuration under 4:2:0 chroma sub-sampling format,
with WPP enabled. For a given set of videos (e.g., belonging to the same QP or
the same resolution, such as 4K and 8K), the frame rate was measured as the
total number of frames of the test video sequences divided by the corresponding
decoding time. Unless otherwise stated, the results that will be presented below
are based on this set of videos (encoded with random access configuration, GOP
size 8, rate control off).

The experimental results are presented in two sub-sections, with performance
results presented first and then the energy efficiency evaluation. Moreover, the
proposed CPU+GPU decoder was compared against the CPU decoder in [4],
since it presents complete HEVC decoding performance and represents the state-
of-the-art software decoder.

6.1. Performance results

A comprehensive performance evaluation has been conducted for the pro-
posed decoding schemes. Firstly, the single-threaded CPU+GPU decoding per-
formance is presented to evaluate the impact of the GPU kernel acceleration.
Afterwards, the multi-threaded CPU+GPU decoding performance is evaluated,
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Table 4: Bitrates in Megabit per second [Mbps] of the main encoded video sequences
with random access configuration.

Random Access 4K, 10-bit, 4:2:0 Random Access 8K, 10-bit, 4:2:0

QP Fountain Lupo Rain Studio Waterfall QP Helicopter Berlin
Lady Confetti Fruit Dancer Pan

22 51.1 52.2 28.0 41.5 64.0 22 1164.5 250.1
27 23.3 18.5 11.7 11.7 25.6 26 341.9 140.4
32 10.7 9.5 5.9 6.0 10.3 30 95.5 86.4
37 5.0 5.5 3.2 3.3 4.2 34 39.7 52.1

followed by an evaluation of the potential peak performance and a bottleneck
analysis.

6.1.1. CPU+GPU decoding time profiling

The decoding time breakdown per frame of the baseline CPU decoder and
of the proposed CPU+GPU decoding scheme I (CPU-GPU-I ) are presented in
Fig. 7. Only a single CPU core is employed in both decoders, and they are
compared against each other across different QP values. Their decoding time is
divided into seven stages: ED, H2D, IT, MC, IP, DBF, and SAO.

For both 4K and 8K videos, the CPU-GPU-I implementation outperforms
the baseline CPU decoder across all QP values. When compared to CPU, the
reconstruction kernels represented with green bars shrink dramatically in the
CPU-GPU-I implementation. This reduction of the decoding time is achieved
even in the presence of two unavoidable overheads in the CPU-GPU-I decoder.
First, the H2D time penalty occurs due to the required data transfer between
the CPU and the GPU. Second, the ED part grows because it also includes
the time to collect the inputs for the GPU kernels. Moreover, a larger speedup
factor is achieved at higher QP values, where the reconstruction kernels in the
CPU decoder account a higher fraction of the total decoding time. Overall, the
fraction of execution time for the reconstruction kernels in 4K is 67% and in 8K
is 51%. Although 4K has a higher fraction of reconstruction kernels than 8K,
a same (total) speedup of 1.6× is achieved for both of them at the applications
level. Due to the 4× more data volume per frame, the 8K setup has a higher
acceleration factor of 8.4× for the reconstruction kernels, while for the 4K the
acceleration factor is reduced to 4.9×.

6.1.2. Parallel CPU+GPU decoding performance

The proposed decoding schemes allow parallel decoding with multiple CPU
cores, allied with the CPU+GPU pipelining, as presented in Section 4. Fig-
ure 8 depicts the overall performance of the proposed decoding schemes when
executing on multiple CPU cores with the Titan GPU. The performance of the
baseline CPU decoder is also included for comparison purposes.

In general, the performance of all considered decoders improves by increas-
ing the number of CPU cores. When a greater number of CPU cores is used,
however, the performance of the proposed CPU+GPU decoding scheme I stops
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Figure 7: Decoding time breakdown for 4K and 8K per QP value, where CPU
stands for the state-of-the-art CPU decoder and CPU-GPU-I the CPU+GPU decoding
scheme I, both with a single CPU core.

scaling. In particular, for 4K sequences (Fig. 8a), the CPU-GPU-I implemen-
tation saturates from 8 cores. This is justified by the fact that most decoding
computations have been migrated to the GPU. As a result, the increased num-
ber of CPU cores can hardly be efficiently exploited by this decoding scheme I,
despite of being faster than the CPU -only implementation. The performance
of the baseline CPU decoder, on the other hand, scales continuously. As a con-
sequence, the CPU-GPU-I implementation is eventually outperformed by the
CPU decoder when more than 12 CPU cores are employed. Nevertheless, when
only 4 CPU cores are used, which is one of the most common configurations in
desktop PCs, the CPU -only implementation achieves 77 fps, while CPU-GPU-
I achieves a performance of 167 fps, resulting into a speedup of 2.2× at the
application level.

To address the GPU overloading issue when a high number of CPU cores are
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Figure 8: Performance of the proposed CPU+GPU decoding scheme I, scheme II,
and the baseline CPU decoder for 4K and 8K videos, with all QP values considered.

employed, the decoding scheme II offloads less workload onto the GPUs. Table 5
presents the workload distribution between the CPU and the GPU under the
two proposed decoding schemes for 4K and 8K videos, when considering all QP
values. The presented percentage is obtained by including the execution time of
the entropy decoder and the remaining kernels using the baseline CPU decoder
executing on a single CPU core.

For 4K videos, only 29% of workload is offloaded onto the GPU in decoding
scheme II, while in scheme I the corresponding workload is 67%. As a result,
the performance of scheme II is significantly improved at high number of CPU
cores for 4K videos (see Fig. 8a). For example, CPU-GPU-II achieves 303 fps
with 16 CPU cores, while CPU-GPU-I only attains 239 fps. Hence, by selecting
appropriate decoding schemes, the proposed decoder is able to stride the work-
load balance between CPU and GPU according to their available computational
resources. For 8K sequences (see Fig. 8b), the decoding scheme I outperforms
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scheme II even with more CPU cores because the workload distribution is more
balanced between the CPU and the GPU for scheme I, with 49% vs. 51%,
respectively. Compared to 4K, the heavier workload on CPU requires more
CPU cores to match the computational capability of the GPU, and thus the
performance of CPU-GPU-I scales well, even when 16 CPU cores are used. It
outperforms CPU across all core configurations except 18, where both CPU
and CPU-GPU-I achieve 60 fps.

Table 5: Decoding workload distribution in two task partitions of CPU+GPU de-
coding for 4K and 8K videos, with all QP values considered.

Videos 4K 8K

Workload Fraction CPU vs. GPU CPU vs. GPU

decoding scheme I 33% 67% 49% 51%

decoding scheme II 71% 29% 80% 20%

6.1.3. Decoding performance on videos with more encoding configurations

The previously presented results only consider videos configured in random
access mode (GOP size 8 and rate control off). To evaluate the performance of
proposed decoders for a wider range of encoding modes, the five considered 4K
sequences were further encoded with three more encoding configurations: the
low-delay P (IPPP) encoding mode, the random access with rate control turned
on, and the random access encoding mode with various GOP sizes.
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Figure 9: CPU vs. CPU+GPU decoding, 4K videos encoded with low-delay P
(IPPP) configuration.

Figure 9 presents the obtained performance of the proposed decoders when
applied on the IPPP videos. Compared to the results of the random access mode
in Figure 8a, the performance scalability of the three decoders is rather similar.
However, the acceleration effect of CPU-GPU-I is lower than that in Figure 8a,
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mainly because the workload for GPUs in the IPPP video encoding mode is
lighter. Kernels targeted for GPUs account for 57% of the overall decoding
time when using a single core CPU, while in the random access configuration
the corresponding fraction reaches 67%, as presented in Table 5.
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Figure 10: CPU vs. CPU+GPU decoding, 4K videos encoded with random access
mode and rate control turned on. All three decoders use 8 CPU cores.

The performance of the proposed decoders for random access videos en-
coded with rate control turned on is presented in Figure 10. All three decoders
are executed using eight CPU cores. Compared to the CPU-only decoder, the
proposed decoding schemes CPU-GPU-I and CPU-GPU-II both deliver higher
frame rate when covering the whole range of the bitrate. Furthermore, it can
be observed that CPU-GPU-I achieves better decoding performance than CPU-
GPU-II, since reconstruction kernels of all frames are accelerated in CPU-GPU-
I, while CPU-GPU-II only exploits GPU-acceleration for non-reference pictures.
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Figure 11: Decoding order that addresses the inter-frame dependency in a GOP with
a size of 8 frames.

By default, all previous 4K bitstreams with random access configurations
are encoded with a GOP size of 8. If each frame is assumed to be decoded
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in a fixed time slot, defined as a cycle, Figure 11 depicts that at least five
cycles are required to complete a GOP with a size of 8 frames, since the GPU
operates at frame level and some of the frames have to be serially processed,
e.g., 0→8→4. To evaluate the performance impact when GOP size changes, the
five 4K considered videos were encoded with GOP sizes of 2, 4, 8, 16, and 32,
using a QP value of 32.
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Figure 12: CPU vs. CPU+GPU decoding, 4K videos encoded with random access
mode and with GOP size of 2, 4, 8, 16, 32. All three decoders use 8 CPU cores.

Figure 12 presents the decoding performance of proposed decoders using
eight CPU cores when changing the GOP size configuration. In general, the
decoding performance of the proposed decoders remain constant across different
GOP sizes. Naturally, with a smaller GOP size, the number of cycles that is
required to resolve the frame-level dependency inside a GOP decreases. For a
given number of frames, however, the frame-level dependencies between GOPs
increases. Taking the GOP size 2 as an example (which is not shown in Fig. 11),
frame-level dependency across GOPs exists between frames 2→4→6→8 when
considering four GOPs. As a result, changing the GOP size lays little influence
on the decoding performance.

6.1.4. Performance gap to potential peak performance and bottleneck analysis

Taking into account that interconnection networks can be easily bandwidth-
bound for parallel processing [3], the peak performance of the proposed CPU+GPU
decoder is potentially limited by the host to device data transfer. Since the
transferred data size for the kernel inputs and the decoded frames can be calcu-
lated, the potential peak performance of the proposed decoding schemes can be
quantified based on the available bandwidth between the CPU and the GPU.
Assuming i) the peak bandwidth between the CPU and the GPU is BWpeak

bytes per second, ii) the amount of data that is transferred from the CPU to the
GPU is Sizeframe bytes per frame, and iii) the required time for transferring
the data of one frame is δt, then the potential peak frame rate FPSpeak can be
derived as:
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FPSpeak =
1

δt
=

BWpeak

Sizeframe
(2)

BWpeak is fixed for each specific connection between the CPU and the GPU.
For PCIe bus 3.0×16, the theoretical peak bandwidth is 16 GB/s [23]. In
practice, however, a maximum bandwidth of 12 GB/s is eventually achieved
using benchmarking [33]. On the other hand, the Sizeframe value depends on
the resolution of the input videos, the kernel input data structures, and the
selected decoding schemes.

Table 6 summarizes the data volume that is transferred per frame under
the proposed decoding schemes I and II for the considered 4K (3840×2160)
and 8K (7680×4320) video sequences. The transferred data size is independent
of bitrates because the kernel input data structure is static for a given frame
size. The peak performance for scheme I is straightforwardly estimated with
Equation 2, while scheme II needs to take into account the distribution of the
reference and non-reference frames. For both 4K and 8K videos, the reference
and non-reference frames are evenly distributed (50% each) for the chosen en-
coding configurations. Therefore, the data transferred per frame is the average
of the reference and non-reference frame sizes. According to Table 6, the pro-
posed decoder can achieve 75% of the peak performance for 4K (with scheme
II) and 59% for 8K (with scheme I).

Table 6: Transferred data size per frame in Megabytes [MB] and the corresponding
peak frame rate of 4K and 8K videos for the decoding schemes I and II.

4K, 10-bit, 4:2:0 8K, 10-bit, 4:2:0

Scheme I Scheme II Scheme I Scheme II
Each frame Reference Non-Ref. Each frame Reference Non-Ref.

Sizeframe 29.43 MB 28.30 MB 29.43 MB 117.70 MB 106.28 MB 117.70 MB

FPSpeak 408 fps 415 fps 102 fps 107 fps

When a high number of CPU cores are used, the main bottlenecks of the GPU
execution are the intra-prediction and motion compensation procedures. The
low degree of wavefront parallelism in intra-prediction leads to a low resource
utilization on GPU. The inter-frame dependency introduced by the motion com-
pensation reduces the frame-level parallelism, which compromises the concur-
rency on the kernel execution from different CUDA streams. When CPU+GPU
decoding scheme I is executed without an individual GPU kernel (but with all
other GPU kernels on), switching off intra-prediction leads to the most signifi-
cant performance gain, with a speedup factor of 1.38× compared to the decoding
scheme I with all GPU kernels on. The second most significant speedup factor
1.27× comes from disabling motion compensation.

6.2. Energy Efficiency Results
With the help of energy measure module presented in Section 5, we firstly

compare the energy efficiency of the baseline CPU decoder and the proposed
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CPU+GPU decoder. Afterward, we show how to use the clock setting utility
to exploit energy optimization opportunities.
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Figure 13: Energy efficiency results of CPU only and CPU+GPU decoding, com-
pared with energy per frame in Joules.

6.2.1. Energy Analysis of CPU+GPU decoding

Figure 13 illustrates the average energy consumed per frame of the proposed
decoding schemes when using a different number of CPU cores (C1-C18). The
energy consumption of baseline CPU decoder is also presented for comparison
purpose. For all decoding configurations (CPU baseline, decoding scheme I and
II), the energy consumption per frame is reduced with the increase of CPU
cores, but stops reducing approximately beyond 12 cores. In particular, the
baseline CPU decoder consumes the least energy at 12 cores, with 0.24 J for 4K
and 1.22 J for 8K. The proposed decoding scheme I consumes significantly more
energy than the CPU baseline. Although its energy consumption is reduced on
the CPU side, due to offloaded decoding workload, the energy consumed on GPU
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is higher than the reduction. The optimal CPU core configuration consuming
the least energy for scheme I is 8 for 4K and 16 for 8K, with an energy of 0.92 J
and 3.76 J, respectively. When compared to decoding scheme I, the decoding
scheme II’s energy consumption on the GPU is reduced significantly at high
CPU cores for 4K but not for 8K. Such a difference occurs mainly due to the
decoding time, as for 4K decoding scheme II has a significant better performance
than scheme I while for 8K not.

The GPU energy efficiency for HEVC decoding is compromised by its high
power consumption and the constrained performance due to the PCIe bus band-
width. The energy per frame of GPU can be derived with power (joule per
second) divided by performance (frames per second). This approach is used
because the performance in heterogeneous CPU+GPU decoding is potentially
bounded by the data transfer. The least GPU energy per frame is obtained with
the maximum frame rate and the minimum power consumption. The maximum
potential frame rate of the proposed decoder has been identified in Table 6, and
the minimum power consumption of the GPU can be estimated by measuring
the power when executing a benchmark with extremely lightweight workload.
We design a benchmark with only one thread assigned in each SM, and each
thread performs a single addition to represent the lightweight workload. By run-
ning this benchmark repeatedly for five seconds, the power consumption queried
by the nvmlDeviceGetPowerUsage API keeps at 90 W. This measured power
corresponds to a minimum energy per frame of 0.22 J (90 W/408 fps) for 4K
and 0.88 J (90 W/102 fps) for 8K under decoding scheme I. In contrast, even
with the decoding workload, the respective minimum energy of the CPU using
the CPU only decoder is merely 0.24 J for 4K and 1.22 J for 8K.

6.2.2. Energy Optimized Decoding by Tuning GPU Clocks

The previous results show that the high GPU power consumption hinders
the energy efficiency of the proposed decoder. Hence. the GPU power reduction
shall be our prime concern. On the other hand, the proposed decoder sometimes
provides a higher frame rate than required by a target application, when the auto
boost mode is enabled on the GPU. Decoding scheme I, for instance, provides
167 fps with 4 CPU cores for 4K videos, while in practice 120 fps is sufficient for
envisioned UHD HFR applications [7]. In such cases, it is possible to trade the
performance with power so that eventually a lower energy per frame is achieved.
We exploit the power reduction opportunities on the more power hungry GPU
device by setting its memory and graphics clocks to different clock rates.

With NVML APIs, the GPU clocks of memory and graphics have to be
set together, and each memory clock associates with a set of allowed graphics
clocks. Table 7 presents the available values of memory and graphics clocks of
the used Titan X GPU, in which the selected clock rates are labeled in boldface.
The first two memory clocks associate with a same set of 64 graphics clocks.
Additional 21 lower graphics clocks are available for memory clock 810 MHz.
The lowest memory clock 405 MHz has the smallest number of graphics clocks,
with only six values available. In particular, tests show that when the graphics
clock is set larger than 1215 MHz, the queried graphics frequency is always
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Table 7: Allowed clocks for memory and graphics of NVIDIA GTX Titan X in [MHz].
The selected clocks are in boldface.

Memory Graphics (64 clocks for 3505 for 3304, 85 clocks for 810, and 6 clocks for 405)

3505 1392 1380 1367 1354 1342 1329 1316 1304 1291 1278 1266 1253 1240 1228 1215 1202
1190 1177 1164 1152 1139 1126 1114 1101 1088 1076 1063 1050 1038 1025 1013 1002
987 975 962 949 937 924 911 899 886 873 861 848 835 823 810 797 785 772 759 747
734 721 709 696 683 671 658 645 633 620 608 595. Allowed 64 clocks.3304

810 64 clocks above plus 582 570 557 544 532 519 507 494 482 469 457 444 432 419 407 405
324 270 202 162 135. Allowed 85 clocks. Selected:1215 1114 1013 911 810 709 608

405 405 324 270 202 162 135. Allowed 6 clocks.

1215 MHz. Based on this test, we pick up seven graphics clocks (with a step of
100 MHz) that cover most of allowed graphics clock ranges for the first three
memory clocks. For the lowest memory clock, all associated six graphics clocks
are selected. In this way, a total of 27 different clock settings are chosen to
exploit the energy optimization space.

Two particular decoding configurations are selected for GPU clock tuning
experiments, because their performance are close to standard frame rates, such
as 60 fps and 120 fps [7]. By average, the first configuration (4K, decoding
scheme I, 4 CPU cores) has a frame rate 167 fps and the second (8K, decoding
scheme I, 16 CPU cores) has a frame rate 60 fps, as shown in Fig. 8. With GPU
clocks set at different fixed rates, Figure 14 illustrates the energy consumption
per frame as well as the corresponding frame rates under the optimal mode (i.e.
the clock settings leading to the least energy consumption) and the auto boost
mode with the two configurations.

For 4K videos (see Fig 14a), an obvious gap of energy is observed between
the auto boost and optimal modes, thus showing the energy can be further op-
timized by using fixed clock rates. The energy reduction is mainly achieved by
the reduced power consumption on GPU using lower operating clocks. Although
reducing clock rates decreases the GPU performance, it has an insignificant im-
pact on the overall decoding performance, since the heterogeneous decoding is
CPU-bound with a configuration of only four CPU cores. For example, when
compared to auto boost mode, an energy reduction of 36% is achieved at 64.0
Mbps by setting memory and graphics clocks to 810 MHz and 709 MHz, re-
spectively. By contrast, in the auto boost mode, the GPU memory clock works
at 3304 MHz and the graphic clock varies from 1001 MHz to 1202 MHz. The
decoding performance at 64.0 Mbps, on the other hand, is merely reduced from
84.7 fps in auto boost mode to 78.9 fps in optimal mode.

In general, the energy reduction in high-bitrate videos (from 28.0 to 64.0
Mbps) is more obvious than in the low-bitrate videos (from 3.2 to 25.6 Mbps),
for two reasons. First, the optimal clocks for high bitrate videos can be set at
lower rates (memory: 810 MHz; graphics: 709 or 810 MHz) than that of the low
bitrate videos (memory: 3304 MHz; graphics: 911 or 1013 MHz), thus resulting
into a more significant power reduction. Second, the decoding time for high-
bitrate videos are longer than low-bitrate videos. In fact, all low-bitrate videos
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(b) CPU+GPU decoding scheme I with 16 CPU cores for 8K.

Figure 14: Energy efficiency when changing GPU memory and graphics clocks, com-
pared to the default auto boost mode.

are decoded at higher frame rates than 120 fps, while the high-bitrate videos
are above 60 fps only. It is worth noting that even in optimal mode with lower
clock rates, the decoding performance of low-bitrate and high-bitrate videos still
exceeds the standard frame rates of 120 fps and 60 fps, respectively.

For 8K videos, because 16 cores are employed most of the input sequences’
decoding is GPU-bound, and thus boosting GPU to high clocks is the optimal
choice for overall performance. Therefore, the optimal clock settings with the
minimum energy are mostly aligned with the auto boost mode, except the video
with the highest bitrate at 1164.5 Mbps. The frame rate of this video is below 60
fps and represents an extraordinary encoding configuration. Entropy decoding
of this video accounts for 66.1% and therefore the heterogeneous decoding is
still CPU-bound. By setting both memory and graphics clocks to 810 MHz, an
energy reduction of 23% is achieved for this video’s decoding.

To visualize the power reduction in optimal mode, the real-time GPU power
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Figure 15: GPU Power consumption under clock settings with minimal energy con-
sumption and default auto boost configuration for two 4K videos, where a high-bitrate
video is presented in Fig. 15a and a low-bitrate video in Fig. 15b.

profiling of two representative 4K videos in high-bitrate and low-bitrate cate-
gories are depicted in Fig. 15a and Fig. 15b, respectively. The GPU power is
obtained using a power sampling thread querying power consumption at the
frequency of 62.5 Hz. For the high-bitrate sequence (Fig. 15a), there is a clear
ramp-up phase for the power consumption at the beginning in auto boost mode.
Initially, the GPU waits for kernel execution and thus the power stays at the
lowest level (78 W). With more and more reconstruction kernels are prepared by
the CPU, the GPU increases its power to adapt the heavier workload, and satu-
rates at around 150 W. At the end, an average power of 138 W is consumed. In
contrast, the power consumption under the optimal mode is constrained below
85 W, and with an average power of 72 W only. Although auto boost achieves
a slightly shorter decoding time, its power consumption compromises its energy
efficiency to a great extent.
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For the low-bitrate video (Fig. 15b), a higher average power consumption
in auto boost mode (158 W) is observed than that of the high-bitrate video
(138 W), because the decoding of the low-bitrate video is less CPU-bound due
to its lower fraction of entropy decoding (see Fig 7). In this case, the overall
decoding performance is more sensitive to the GPU performance, and thereofore
its optimal clocks (memory: 3304 MHz; graphics: 911 MHz) are higher than
that of the high-bitrate video (memory: 810 MHz; graphics: 709 MHz). As a
result, the average power consumption in optimal mode (126 W) is much higher
than that of the high-bitrate video (72 W). The average power reduction from
the auto boost mode to the optimal mode, on the other hand, shrinks to 32
W (158 W - 126 W) only, compared to 66 W (138 W - 72 W) in high-bitrate
video. The less significant power saving as well as the shorter decoding time for
low-bitrate videos results into less energy reduction.

7. Conclusions and Future Work

A highly parallel design for the HEVC decoding on heterogeneous architec-
tures consisting of the CPU and GPU devices has been presented. It allows
exploiting multiple levels of parallelism on the CPU, GPU, and between the
CPU and GPU devices simultaneously, for achieving maximum performance.
On top of that, different workload balancing schemes were proposed, in order
to exploit the best performance depending on the employed CPU and GPU
computing resources. In addition, we implemented an energy measurement ap-
proach for the heterogeneous CPU+GPU decoder with the RAPL interface and
NVML library. Furthermore, the performance and energy efficiency of the pro-
posed decoder were evaluated on a workstation desktop and compared to the
state-of-the-art CPU decoder.

The obtained experimental results show that the offloaded kernels are accel-
erated significantly by the GPU device, with a factor of 4.9× for 4K and 8.4×
for 8K. Moreover, the proposed CPU+GPU decoder provides application-level
acceleration when compared to the state-of-the-art CPU decoder. In particular,
when a low number of CPU cores are used, it is better to offload the recon-
struction kernels of all frames. For example, the proposed decoder with four
CPU cores under this task-based workload partition achieves 167 fps for Ultra
HD 4K videos, suggesting a speedup of 2.2× at the application level. When a
higher number of CPU cores are employed, only the reconstruction kernels of
the non-reference frames are offloaded, in order to achieve a better workload
balance. This new decoding scheme delivers 303 fps for 4K when 16 CPU cores
are used, in contrast to 239 fps under the task-based partition. Overall, to
achieve a better performance, the selection of the proposed decoding schemes
depends on the ratio of the CPU and GPU computing resource, as well as the
workload distribution within the input videos. Finally, we show that energy
optimization can be applied by setting fixed and lower GPU clocks when the
CPU+GPU decoding performance is bounded by the CPU, cases often observed
in high bitrate videos. In particular, an energy reduction up to 36% is achieved
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when compared to the auto boost mode. Energy wise, however, GPU architec-
ture is not as efficient as the CPU for HEVC decoding, due to its high power
consumption and the constrained performance from the PCIe data transfer.

Under the current implementation, the proposed decoding schemes and GPU
clocks are selected statically for a given hardware and video configuration. In
future, a dynamic workload allocator can be developed as the next step to deal
with the input variations.
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