Loading…
Thumbnail Image

Amplifier design for EMG recording from stimulation electrodes during functional electrical stimulation leg cycling ergometry

Shalaby, Raafat; Schauer, Thomas; Liedecke, Wolfgang; Raisch, Jörg

Functional electrical stimulation leg cycle ergometry (FESLCE), which is often used as exercise for people with spinal cord injury (SCI), has recently been applied in the motor rehabilitation of stroke patients. Recently completed studies show controversial results, but with a tendency to positive training effects. Current technology is identical to that used in FES-LCE for SCI, whereas the pathology of stroke differs strongly. Most stroke patients with hemiparesis are able to drive an ergometer independently. Depending on the degree of spasticity, the paretic leg will partially support or hinder movements. Electrical stimulation increases muscle force and endurance and both are prerequisites for restoring gait. However, the effect of FES-LCE on improving impaired motor coordination is unclear. To measure motor coordination during FES-LCE, an EMG-amplifier design has been investigated which suppresses stimulation artifacts and allows detection of volitional or reflex induced muscle activity. Direct measurement of EMG from stimulation electrodes between stimulation pulses is an important asset of this amplifier. Photo-MOS switches in front of the preamplifier are utilized to achieve this. The technology presented here can be used to monitor the effects of FES-LCE to adapt the stimulation strategy or to realize EMG-biofeedback training.
Published in: Biomedical engineering = Biomedizinische Technik, 10.1515/bmt.2010.055, De Gruyter
  • Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
  • This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.