Loading…
Thumbnail Image

GMRES convergence analysis for a convection-diffusion model problem

Liesen, Jörg; Strakoš, Zdenek

When GMRES [Y. Saad and M. H. Schultz, SIAM J. Sci. Statist. Comput.}, 7 (1986), pp. 856--869] is applied to streamline upwind Petrov--Galerkin (SUPG) discretized convection-diffusion problems, it typically exhibits an initial period of slow convergence followed by a faster decrease of the residual norm. Several approaches were made to understand this behavior. However, the existing analyses are solely based on the matrix of the discretized system and they do not take into account any influence of the right-hand side (determined by the boundary conditions and/or source term in the PDE). Therefore they cannot explain the length of the initial period of slow convergence which is right-hand side dependent. We concentrate on a frequently used model problem with Dirichlet boundary conditions and with a constant velocity field parallel to one of the axes. Instead of the eigendecomposition of the system matrix, which is ill conditioned, we use its orthogonal transformation into a block-diagonal matrix with nonsymmetric tridiagonal Toeplitz blocks and offer an explanation of GMRES convergence. We show how the initial period of slow convergence is related to the boundary conditions and address the question why the convergence in the second stage accelerates.
Published in: SIAM Journal on Scientific Computing, 10.1137/S1064827503430746, Society for Industrial and Applied Mathematics