Nadjib Mammeri, Markus Neu, Sohan Lal, Ben Juurlink

Performance Counters based Power
Modeling of Mobile GPUs using Deep
Learning

Conference paper | Accepted manuscript (Postprint)
This version is available at https://doi.org/10.14279/depositonce-9679

Mammeri, Nadjib; Neu, Markus; Lal, Sohan; Juurlink, Ben (2019): Performance Counters based Power
Modeling of Mobile GPUs using Deep Learning. Accepted for International Conference on High Performance
Computing & Simulation (HPCS 2019) - The 17th Annual Meeting; July 15 — 19, 2019; Dublin, Ireland.

Terms of Use
© © 2019IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or ll T .
i N echnische
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse WISSEN IM ZENTRUM Uni s't"t
niversiia

of any copyrighted component of this work in other works.

Berlin

Performance Counters based Power Modeling of
Mobile GPUs using Deep Learning

Nadjib Mammeri, Markus Neu, Sohan Lal, Ben Juurlink
Embedded Systems Architecture Group
Technische Universitdt Berlin
Email: {mammeri}, {m.neu}, {sohan.lal}, {b.juurlink} @tu-berlin.de

Abstract—GPUs have recently become important computa-
tional units on mobile devices, resulting in heterogeneous devices
that can run a variety of parallel processing applications. While
developing and optimizing such applications, estimating power
consumption is of immense importance as energy efficiency
has become the key design constraint to optimize for on these
platforms. In this work, we apply deep learning techniques in
building a predictive model for estimating power consumption of
parallel applications on a heterogeneous mobile SoC. Our model
is an artificial neural network (NN) trained using CPU and GPU
hardware performance counters along with measured power
data. The model is trained and evaluated with data collected using
a set of graphics OpenGL workloads as well as OpenCL compute
benchmarks. Our evaluations show that our model can achieve
accurate power estimates with a mean relative error of 4.47%
with respect to real power measurements. When compared to
other models, our NN model is about 3.3x better than a statistical
linear regression model and 2x better than a state-of-the-art NN
model.

Index Terms—Power, Modeling, Mobile, GPU, Neural Net-
work, Deep Learning, Performance Counter

I. INTRODUCTION

With the recent shift towards multicore designs and parallel
processing, Graphics Processing Units (GPUs) emerged as a
dominant platform for parallel computing thanks to their mas-
sively parallel architecture and general purpose programma-
bility [1]. This trend is observed in high performance and
cloud computing systems as well as in modern mobile com-
puting devices. Recent embedded and portable devices such
as smartphones and tablets contain heterogeneous system-on-
chips (SoCs) that include several high-end CPU and GPU
cores. Understanding and predicting power consumption of
these devices is of paramount importance because energy
efficiency is often considered the key parameter to optimise
for on these devices.

Power modeling and estimation is traditionally performed
at design-time using RTL power simulations or using archi-
tectural simulators such as GPUSimPow [2] and GPUWattch
[3]. The slow performance of these simulations, however,
makes such models inappropriate for real-time and online
analysis. Researchers often resort to building analytical power
models that are based on a variety of techniques ranging
from statistical [4] and linear regression techniques [5] to
static code analysis [6] and machine learning [7]. These
analytical models are orders of magnitude faster, making them
appropriate for real-time and online analysis. Examples of use

cases of such models include smart DVFS controllers [8] and
power-aware scheduling algorithms [9]. However, the accuracy
of these analytical models comes into question and is often the
determining factor in whether they are adopted or not. Hence
the challenge is to not only design a model with a reasonably
good performance, making it fit for online analysis, but to
achieve as higher accuracy as possible.

In this paper, we propose a highly-accurate power model
for estimating power consumption of parallel applications on
a heterogeneous mobile SoC. Our power model is an artificial
neural network that uses hardware performance counters as
inputs and provides a power estimate as output. We apply deep
learning techniques, which have shown success in improving
the accuracy of many applications such as image classification
and voice recognition, in developing our accurate power
model. In fact, we trained our model using CPU and GPU
performance counter data along with measured power. The
model was trained and evaluated with data collected using a set
of OpenGL graphics workloads as well as OpenCL compute
benchmarks. The measured power data was collected using a
real power measuring device, as described in Section III-B.

Although our model was developed for one particular
platform, the Intel Z3560 SoC employing an Imagination
PowerVR G6430 GPU, one of the main objectives of this
work is to come up with a methodology encompassing a model
topology and a set of benchmarks and techniques that can later
be used in developing similar models for other devices. One of
the techniques that we devised and contributed significantly to
improving the accuracy of our model, is the use of one of the
hardware performance counters as a data coverage measure
for the quality of our training data. This is described in detail
in Section III-C.

Our experimental evaluations show that our model can
achieve power estimates with mean relative error of 4.47%
with respect to real power measurements. To further evaluate
the effectiveness of our approach, we developed a linear
regression model and trained it using the same dataset. The
NN model resulted in about 3.3x better accuracy than that of
the linear regression model, indicating that the deep learning
approach is more effective. Similarly, if compared to prior
work utilising similar deep learning approach, our model is
2x better than a state-of-the-art NN based model that was de-
veloped for AMD GPUs [10]. This validates our methodology
towards improving the quality of the training data by using

a data coverage measure. We also performed further analysis
exploring how the model reacts to changes to its topology, by
varying the number of layers and number of neurons per layer,
and conducted analysis of the overhead and cost involved with
such modeling approach.

In particular we make following contributions:

« We propose an accurate performance counter based power
model for estimating power consumption of parallel ap-
plications on a heterogeneous mobile SoC. The model
is an artificial neural network trained with graphics and
compute applications.

e We detail our methodology encompassing the model
architecture, a set of training benchmarks and data quality
techniques with the aim of making it applicable for
creating similar models for other platforms.

« We evaluate the effectiveness of our approach by com-
paring our model to other analytical models and explore
further options on how it can be optimised.

II. RELATED WORK

Power modeling has been extensively studied in prior
literature. Different approaches were proposed ranging from
pure empirical and pure analytical to hybrid which combines
the bests of both approaches. The empirical approach is
entirely based on measurement data obtained from a partic-
ular device. Several works empirically modeled GPU power
consumption [11, 4, 12, 13]. Hong and Kim [11] propose
an integrated performance and power prediction model for a
GPU predicting the optimal number of active processors for
a given application. Unlike most previous empirical power
models which require measured execution time, hardware
performance counters, their model use predicted execution
time to estimate dynamic power events. The geometric mean
of the error between predicted and measured power is 2.5%
for microbenchmarks and 9.2% for GPGPU kernels. Ma et
al. [4] present a statistical scheme for analyzing and modeling
the power consumption of GPUs. Based on the measured
power consumption and runtime workload signals, they build a
statistical regression model to dynamically estimate the power
consumption of a GPU. The geometric mean of the prediction
error is 8.9%. Nagasaka et al. [14] also develop a statistical
power prediction model for GPUs by using performance
counters and report an average error of 4.7%. Wang and
Chen [12] also develop a statistical power model for GPU
and show that the power consumption is directly proportional
to the computational intensity and the number of active SMs.
The reported average relative error is less than 6%. A similar
work is done by Zhang et al. [13]. The empirical power models
have higher accuracy for the architecture they are built for, but
they lack the flexibility to make accurate predictions for GPUs
with different architectural parameters and designs. Wang [15]
build a high level, purely analytical power model for the main
functional units of GPUs by integrating the gpgpu-sim [16],
Wattch [17], and Orion [18]. Analytical power modeling is
parameterized and it has more flexibility than an empirical
power modeling. However, the analytical approach typically

TABLE I: Platform Specification

Google Nexus Player employing Intel Z3560 SoC

Operating System Andorid 7.1

CPU 1.8 GHz Intel Atom(TM) x4
GPU Imagination PowerVR Rogue G6430
APIs OpenGL 3.x, 4.x, OpenGL ES 3.0 & OpenCL 1.2

cannot provide reasonable absolute accuracy due to lack of
measured data.

Recently several researchers have combined empirical and
analytical approaches to deliver reasonable accuracy as well
as flexibility to model different architectures [2, 3]. Both
GPUSimPow [2] and GPUWattch [3] are designed using a
hybrid power modeling approach. Both simulators integrate a
cycle accurate architectural simulator called gpgpu-sim [16]
with a heavily modified variant of McPAT [19]. On average
GPUSimPow has a relative error of 10.8% for GTX580, while
GPUWattch has an average relative error of 9.9 % for GTX
480. Wattch [17] is another widely used CPU power simulator.
Compared to McPAT, Wattch only models dynamic power and
does not consider timing and area.

In contrast to previous works which are focused on power
modeling and estimation of desktop GPUs, our work targets
power modeling for mobile GPUs. Moreover, we use deep
learning techniques in developing our power model instead
of traditional approaches. The closest related work to our
approach is [10], which provide a deep learning model for
AMD desktop GPUs. Their power data is collected using
digital counters inside the hardware that estimate dynamic
power and excludes static power. The accuracy of these power
measuring counters can be put into question. One can argue
that they trained a deep learning model using another model.
Our work on the other hand uses a real power measuring
device, meaning that our model is able to predict both dynamic
and static power. Another major difference is that they trained
their model using GPGPU compute workloads only, making
their model not able to predict power for graphics workloads
because when training only with compute workloads, the
graphics sub-components of the GPU such as rasterisation
units are not exercised. In contrast, our model can predict both
compute as well graphics workloads because it was trained
using an extensive set of graphics and compute benchmarks.

III. METHODOLOGY

In this section, we describe the architecture of our NN
model and the process and methodology employed in its
design and training.

A. Platform

Although our methodology is not tied to a particular plat-
form, we mainly carried out our work on the Google Nexus
player representing a typical modern portable device powered
with a heterogeneous mobile SoC: the Intel Z3560, which is
also used in many other consumer devices such as the Asus
Zenpad S tablet. Table I provides a detailed specification of
the platform used in this work.

;' Device

Application !
3 under Test o
1 | Host PC E
| Data et . i
1 ADB ADB Alignment Raw Data
i | Collector v !

Power

X
@®
o
@
<
@®
B

Fig. 1: Data Collection Workflow

This particular SoC was chosen because it employs an
Imagination PowerVR GPU and provides access to different
GPU performance counters through Imagination’s PVRScope
APIL. In total, we used 26 hardware counters including 14 GPU
counters obtained using Imagination’s PVRScope API and 12
CPU counters obtained using the Perf API. Full list of the
hardware counters used in this work is provided in Figure 4.

The power consumption of the SoC is measured using a
special device, depicted in Figure 1. This power measuring
device [20] was designed specifically for mobile and embed-
ded systems using high precision components and can provide
accurate real-time power measurements with sampling rates of
up to 125 KHz.

B. Data Collection

Training data collection requires running a set of bench-
marks and collecting performance counters data along with
power measurements. Figure 1 shows a diagram describing
this process. Both the Nexus player and the power measuring
device communicate to a host computer via USB. After every
data collection step, we perform a further processing step
to ensure proper alignment between the hardware counters
and the measured power. This is achieved by running a pre-
designed micro-benchmark that we know it would cause a
spike in power consumption before starting data collection for
the running benchmark. We later detect this spike and align
the data accordingly. Several Shell and Python scripts were
created to automate this process.

Unlike other previous works, we used both OpenGL graph-
ics workloads and OpenCL compute workloads as our training
benchmarks set. The OpenGL applications used are: 3DMark
1.7.35, AnTuTu 6.1.1, Vellamo 3.2.6, gl2jni, PowerVR SDK
appliactions (ParticleSystem, Bumpmap, Glass, Skinning). For
the OpenCL workloads we mainly used the Rodinia Suite
3.1 along with self-developed micro benchmarks. We gath-
ered about 16GB of raw data representing days of running
benchmarks on the device under test. The data was then post-
processed to exclude any zero or redundant samples.

C. Training Data Quality

By examining the initially collected data, we observed that
some benchmarks tend to under-utilise the GPU and some

Antutu Vellamo

100 4

o
o

80 1

60 1

N
o

40 1

N
o

Utilisation in %
Utilisation in %

201

01 04
0 250 500 750 1000 1250 0 500
Sample Number

1000 1500 2000

Sample Number

(a) Initial GPU Ultilisation Data of Antutu & Vellamo Benchmarks

100 4 71

o
L

80 1

v
L

60 q

IS

40 1

w

Utilisation in %
Power in Watt

201

N

04
0 25‘00 50‘00 7550 10(‘)00 1zéou 15(‘100 17;00 (I) 2‘0 4‘0 6‘0 8‘0 1(I)0
Sample Number Utilisation in %

(b) Training Data Coverage of the Antutu Benchmark

Fig. 2: Training Data Quality

benchmarks, in particular heavy OpenGL applications, tend to
fully-utilise the GPU. Figure 2a shows examples of initially
collected data of the GPU utilisation performance counter
obtained by running the Antutu and Vellamo benchmarks
respectively. It is evident that the model would not achieve
good coverage of the state space if we naively use this data as
our training dataset. To mitigate this, we decided to consider
the GPU utilisation counter as a measure of data coverage and
repeat running the benchmarks several times with different
input sizes under different load conditions with the aim of
obtaining good coverage of GPU utilisation values.

Figure 2b shows the GPU utilisation of our final dataset
for the Antutu benchmark as well as its power distribution
with respect to GPU utilisation. It can be seen that the data
represents a good spectrum of GPU utilisations ranging from
0 to 100% and a wide spread distribution of power values
for every utilisation percentage ranging from 0.5 to 7 Watts.
It is worth noting that the maximum power consumption of
our device is 7 Watts. We repeatedly run the benchmarks and
examined the GPU utilisation until good utilisation spectrum
was achieved. Most of our benchmarks were repeatedly run
400 times, whereas the PowerVR SDK applications required
to be repeatedly run 1000 times. On the other hand, for some
benchmarks in particular the OpenCL ones, full utilisation
coverage was not achieved. With this strategy, we managed
to gather a large dataset totaling 134k samples including 87k
samples from OpenGL applications and 47k from OpenCL
applications.

D. Training Data Validation

To validate our final dataset, we performed correlation
analysis on all the collected counter samples including power.
Figure 4 shows the dataset’s correlation matrix as a heatmap

TABLE II: Different model configurations

Learning Number of Neurons per Test Set Error
Rate Hidden Layers Layer Size (%) (MSE)
0.001 2 24 20 0.045856
0.001 2 24 50 0.05068
0.001 2 5 5 0.043573
0.001 2 5 20 0.057422

0.0002 2 50 5 0.045971
0.0004 1 50 5 0.045657
0.0004 2 50 5 0.042244
0.0004 3 50 5 0.042798
0.0004 2 5 5 0.049604
0.0008 2 24 5 0.043661
0.0008 2 5 20 0.046521
0.0008 2 5 5 0.058982
0.0008 2 50 5 0.046737
0.0008 2 500 5 0.057934
0.0008 2 1000 5 0.04523
0.0008 2 1500 5 0.04964

on the lower left of the figure and its mirrored correlation
coefficients on the upper right of the figure.

By analysing Figure 4, several observations can be made. In
general there is very low correlation between different groups
of counters. None of the CPU counters depend on any of the
GPU counters and vice versa. This is expected because these
counters are collected independently capturing the behaviour
of two completely different components, CPU and GPU in this
case.

When looking at the CPU counters, there is a very strong
positive correlation between the number of hardware instruc-
tions and their corresponding number of CPU cycles for every
core. This is again expected because the number of CPU cycles
taken by a certain core depends on the number instructions
executed by that core.

When examining the GPU counters on the other hand, we
observe two strong negative correlations between the Compute
Active counter and the Renderer Active and frames per second
counters. The Compute Active is set whenever the GPU is
performing a compute workload and similarly the Renderer
Active counter is set whenever the GPU is rendering graphics.
This reveals information about our process of collecting data,
meaning that the GPU was either performing compute or
graphics. In fact, this is true because when collecting data,
we did not mix running compute and graphics workloads.

All of these observations and interpretations give us confi-
dence in our dataset, however the most important observation
that we can make is by examining the power data. It can
be seen that all correlation coefficients between power and
other counters are lower than 0.5 with a mean of 0.21. This
means that there is no strong correlation or in other words
no linear relationship between power and any of the other
counters. Hence, our deep learning approach using a non-
linear activation function is necessary in trying to learn the
correlations between the different counters and power. On the
top of this, our problem is clearly non-linear and building a
linear model with this dataset would not yield good results.

Hidden_50_Neurons

Hidden_50_Neurons

(

7
32 Output
e I Y
RS
K _——

)

Fig. 3: NN Model Topology

E. NN Power Model Architecture

Determining the right architecture of a neural network
upfront is a hard task. Based on initial investigations, we made
our model a fully connected one with 4 layers (1 input, 2
hidden layers and 1 output). Since we have a limited number
of features 26, making a deeper network would probably result
in overfitting. For the hidden layers, sigmoid was chosen as
the activation function to be able to represent the inherent
non-linear relationships between the measured power and the
counter values as concluded in Section III-D.

Our model was implemented using the Keras framework
running Google Tensorflow [21] as its backend. Training the
model with our dataset takes time in the order of days when
running on a CPU machine but the training time can be
reduced to the order of hours by executing our training runs
on a GPU accelerated cluster.

To determine other configuration parameters, we repeated
the model training several times varying one parameter at a
time and comparing the mean squared error (MSE) of the
prediction results. Before training the model, the collected
dataset was divided into training set and test set and the
samples in each set are then shuffled to ensure that the model
does not learn a very specific pattern. Table II shows the
obtained MSE error by varying the learning rate, number of
layers, number of neurons per layer and the size of of the test
dataset.

It can be seen that the best configuration is the one with 2
hidden layers, a learning rate of 0.0004, 50 neurons per layer
and a test dataset size of 5%. Having only one hidden layer
results in less accuracy and similarly increasing the number
of layers above 2 does not yield best accuracy. Increasing the
number of neurons per layer, improves accuracy but a bigger
change in the number of neurons per layer does not seem to
affect the MSE that much. Large numbers of neurons per layer
above 500 result in worst performance. Changing the learning
rate on the other hand variably affects the MSE. A learning
rate of 0.0004 being the best and both smaller and higher
learning rates results in less accurate model. Increasing the
test dataset size negatively affects the model accuracy, which
is expected because the model is trained with less data. The
best configuration was achieved with 5% test dataset size,
corresponding to 127.3k samples for training data and 6.7k

2D active - 1.0 0.57-0.150.02-0.02-0.11 0.03 -0.08-0.01 0.07 0.06 0.1 0.11 0.26 0.1 0.29 0.3 0.22-0.03 0.23 0.26 -0.2 -0.01-0.16-0.02 0.14 0.16
2D time per frame -l 1.0 -0.1 0.02 0.03-0.12-0.04-0.08-0.07 0.05 0.04 0.06 0.07 0.16 0.05 0.14 0.15 0.15-0.03 0.13 0.15-0.14 0.01-0.09 0.01 0.03 0.06

Compute active

Compute time per frame

Frame time -

Frames per second (FPS)

GPU clock speed

GPU memory read words per second
GPU memory write words per second
PERF_COUNT_HW_CACHE_REF0
PERF_COUNT_HW_CACHE_REF1
PERF_COUNT_HW_CACHE_REF2

1.0 0.06-0.04-0.46 -0.2 0.07-0.21-0.13-0.15-0.08 -0.1 -0.22 0.49 -0.13-0.17-0.18 0.62 -0.09-0.13-0.53-0.02-0.23-0.03 0.18 0.05

1.0 0.0 -0.020.02 0.08 0.03-0.01-0.01-0.01-0.01-0.02 0.01 -0.0 -0.01-0.01 0.03 -0.0 -0.01-0.03 -0.0 0.0 -0.0 0.06 0.01
1.0 -0.06-0.13-0.06-0.09 0.02 0.02 0.0 0.0 0.06 0.02 0.01 0.01 0.04-0.02-0.0 0.0 0.01 0.85-0.010.62-0.08-0.03

1.0 048 0.21 0.55 0.1 0.12 0.09 0.13 0.18-0.150.12 0.15 0.06 -0.21 0.05 0.07 0.43-0.03-0.05-0.04 0.01 0.13

1.0 0.48 0.62 -0.0 0.04-0.07-0.02-0.01-0.33-0.18-0.11-0.04-0.35-0.18-0.11 0.3 -0.06 0.29-0.03 0.56 0.2

1.0 0.77-0.05-0.07-0.03 0.01 -0.12-0.11-0.12-0.11-0.11-0.03-0.11-0.11 0.46 -0.03 0.1 -0.02 0.63 0.25

[1.0 -0.01-0.03 0.0 0.05 0.02 -0.2 -0.05-0.01-0.04-0.19-0.08-0.05 0.56 -0.04 0.11-0.03 0.52 0.28

1.0 0.03 0.02 0.03 0.38 0.13 0.22 0.24 0.47-0.040.08 0.1 0.01 0.01-0.07 0.0 -0.09 0.19

1.0 -0.02-0.010.29 0.11 0.18 0.2 0.1 -0.010.06 0.06 0.01 0.01-0.05 0.0 -0.09 0.15

1.0 0.04 0.28 0.19 0.41 0.33 0.11 0.14 0.45 0.14 0.0 -0.0 0.12-0.01 -0.1 0.24

0.8

04

PERF_COUNT_HW_CACHE_REF3
PERF_COUNT_HW_CPU_CYCLESO -
PERF_COUNT_HW_CPU_CYCLES1 -
PERF_COUNT_HW_CPU_CYCLES2
PERF_COUNT_HW_CPU_CYCLES3 -

PERF_COUNT_HW_INSTRUCTIONSO -

PERF_COUNT_HW_INSTRUCTIONS1

PERF_COUNT_HW_INSTRUCTIONS2 -

PERF_COUNT_HW_INSTRUCTIONS3

Renderer active -

Renderer time per frame -

1.0 0.27 0.16 0.31 0.41 0.13 0.1 0.15 0.46 0.04 -0.0 -0.12-0.01-0.06 0.25
1.0 0.25 0.43 0.48 0.76 0.01 0.24 0.28 0.02 0.03-0.21 0.01-0.18 0.44 0.0

1.0 0.410.37 0.09 0.9 0.28 0.22-0.41 0.0 -0.43-0.03-0.13 0.41

1.0 0.62 0.28 0.25 0.83 0.4 -0.05 -0.0 -0.32-0.03-0.23 0.47

I 1.0 0.310.19 0.41 0.82-0.01 -0.0 -0.31-0.03 -0.2 0.5

- 1.0 -0.08 0.15 0.17-0.02 0.02-0.15 0.0 -0.14 0.26
- 1.0 0.18 0.12-0.42-0.02-0.36-0.04-0.07 0.27 -04

|] 1.0 0.25-0.07-0.01-0.24-0.02-0.19 0.32

|] 1.0 -0.04 -0.0 -0.23-0.02-0.16 0.34

1.0 0.05 0.3 0.05 0.3 0.2

1.0 -0.0 0.61-0.04-0.02

Tiler active - 1.0 0.09 0.4 0.08 08
Tiler time per frame - [| 1.0 -0.0 -0.02
gpu_util - 1.0 0.36
power - 1.0
. Noal e s N e e o e @ ¢ @ & & &
& Qf‘g & & & F & F &S &S QO“’@
© @ & LT LT LSS S S S e ¢S
v RS AR AR 2 R PR PR DK SR CARC L R
« RS N P NP ol o P Sl «
o g FFEEEE s &
v Qﬁ* R AR O A A & Q
MIE IR R R RNV RR IR K
&7 &7 &7 &2 X XX FQ
\)é Qé Qé \,e V\1\/ é&/ ‘\{\/ ‘\{\/
O O O O N & S D
[> & O
L S S
EE ELCEEE L

Fig. 4: Correlation Matix of the Entire Dataset

samples for test data.

Beyond these parameters, we also studied the effects of
using different activation functions (linear, relu, selu, tanh,
softsign softmax, softplus). For the sake of brevity the results
are not included but sigmoid resulted in better accuracy. Based
on the above results, our final model consists of one input
layer, two hidden layers and one output layer. We used sigmoid
as the activation function for our hidden layers. The topology
of the network is depicted in Figure 3.

IV. EVALUATION RESULTS

To determine the effectiveness of our approach we evaluated
our model in two different ways. The first using the measured
power as a baseline and the second comparing our model to
a linear regression model trained with the same dataset.

A. Model Evaluation

To be able to determine how well our model performs, we
implemented a new metric in Keras calculating the relative
mean error of the predicted power with respect to measured
power. The builtin MSE metric is good for comparisons but
it does not give an indication of the model’s accuracy with
respect to real power measurements.

Figure 5a shows the power predicted by our NN model
versus the actual measured power of the first 500 samples of
the test dataset and Figure Sc shows the corresponding squared
errors of these samples. For brevity, we limited both figures to
500 samples but the average error values are calculated for the
entire test dataset. Figure 5a clearly shows that the predicted
power represented by the red line is pretty well aligned to

the actual measured power represented with the green line.
This signifies that our model has a good prediction accuracy
with a relative mean error of 4.47% over the entire test data
set of 6.7k samples. This is confirmed by the corresponding
squared errors of individual samples depicted in Figure Sc.
Most squared errors are very small with a couple of peaks all
less than 1 and a mean squared error of 0.04222.

To give these number a perspective, our model is 2x better
than a state-of-the-art deep learning based model reported
in [10], which has a relative mean error of 10%. Although
the latter model was developed for desktop AMD GPUs, it
gives an indication of the effectiveness of our approach. We
attribute the good results obtained in this work to our strict
methodology and the quality of our training dataset.

Despite these good results, our model suffers from a cou-
ple of limitations. Although we tried to develop a general
methodology, our model was only implemented and tested
for one particular platform. It would be easier to port the
model to other platforms employing an Imagination GPU
because we would have access to the same GPU counters.
However, developing a model for a platform with a different
GPU requires significant work. We believe that the type of
techniques and analysis described in this work can be applied
in developing other models as long as there is a way to access
some GPU and CPU counters.

B. Linear Regression Model Comparison

To determine the effectiveness of using deep learning tech-
niques in building such predictive power models, we developed
a linear regression model and compared its results with our NN

]

Ll R Y TR
P Al iy i

L.ﬂ

it

6.0 —— Predicted Power
Measured Power

M | I
v "frJL”wr‘\‘«'hvkww"‘uuv,»w“mv‘“w

|
SN e o 1 o o 11

w n
oLl T

0 100 200 300 400 500
Sample Number

(a) NN Model Predicted Power

Mean Relative Error: 0.0447

0 100 200 300 400 500
Sample Number

(b) Linear Regression Model Predicted Power

Mean Relative Error: 0.149

ZWM. A A,—L#J:M_LA

0 100 200 300 400 500
Sample Number

(c) NN Model Squared Errors

0 100 200 300 400 500
Sample Number

(d) Linear Regression Model Squared Errors

Fig. 5: NN Power Model Evaluation Results. Only 500 samples are shown but the average error values are calculated for the

entire test dataset of 6.7K samples.

model. The linear regression model can be represented using
the following equation:

k
Power:wo—&—an*cn (D

n=1

where k is the total number of hardware counters and w,,
represents the weight of the nth counter c,,. Assuming we
make m data samples including power measurements, we can
write the model as an mxk system of linear equations. Then
the £+ 1 weights can be calculated by finding the approximate
solution that gives the best fit for the mak system of liner
equations minimising the sum of squared errors, as stated by
the following equation:

min) v)
i=1

wehere 7 is the error of the predicted power of the ith sample.

The linear regression was trained with the same dataset
used in training the NN model. Figure 5b shows the power
predicted by the linear model versus the measured power and
Figure 5d shows the corresponding squared errors of individual
samples. Again both figures were limited to 500 samples only.
In contrary to the NN model results, Figure 5b depicts that
the linear model predicted power represented by the red line
is not well aligned to the measured power represented by the
green line. There is a significant vertical shift of about 1.2
watts between the predicted and measured power values for
the first 200 samples then some good alignment for about 50
samples and after that another big discrepancy followed by
better alignment for the last 150 samples. This results in a
mean relative error of 14.9%. Looking at the squared errors
depicted in Figure 5d, they are much larger than those of the
NN model resulting in peaks reaching 5 and a mean squared
error of 0.5751.

Clearly the NN model is 3.3x better than the linear re-
gression model, implying that the deep learning approach is
more effective than linear regression for building such models.
These results confirm our findings made in Section III-D
stating that the problem in not linear and requires somehow
a non-linear solution, which in the case of the NN model is
provided by the sigmoid activation function.

C. Overhead Analysis

When deploying a predictive model, it is often necessary
to consider the overhead involved with its execution. One
advantage of the linear regression model is its simplicity
and its low execution overhead. It requires only about 24
MAC operations whereas our proposed NN model with 2
hidden layers and 50 neurons per layer requires 3.85k MAC
operations. This number of MAC operations is dependent on
the network’s number of weights and biases which in turn
are dependent on the number of neurons present within the
network. On the top of this execution overhead, the number
of weights and biases also adds extra memory and storage
requirements.

In this section, we try to find the best configuration for our
model considering both accuracy and overhead represented
by the network’s number of weights and biases. Figure 6
shows how the model’s mean relative error (MRE) changes by
varying the number of neurons per layer and the corresponding
changes in the number of weights and biases. It can be seen
that there is an exponential decrease in the mean relative error
as we increase the number of neurons per layer stabilizing
at around 60 neurons with an MRE of 4.4%. Strangely,
for 75 neurons the MRE increases to 4.45%. This can be
attributed to a bad training run because our training and
test data sets are randomly chosen at the beginning of every
training run. In the contrary, the number of weights and biases
exponentially increases as we increase the number of neurons

0.0600 12000

0.0575

)
S
S
3

0.0550
8000

o
o
&
o
&

6000
0.0500

Mean Relative Error
Amount of Weights/Biases

4000
0.0475

0.0450 2000

0.0425
10 20 30 40 50 60 75 100
Neuron Amount

Fig. 6: NN Model Cost Analysis

from 161 parameters for 5 neurons and rapidly reaching 12.7k
parameters for 100 neurons.

The intersection point of 30 neurons per hidden layer rep-
resents the optimum configuration resulting in mean relative
error of 4.62% and 1.7k weights and biases. This represents
a 3.35% drop in accuracy and 55% less overhead, implying
that the less overhead achieved comes at cost manifested in a
drop in accuracy.

V. CONCLUSION

This paper presented a power model for estimating power
consumption of parallel applications on a heterogeneous mo-
bile SoC that has several CPU and GPU cores. Our power
model is an artificial neural network that is based on hard-
ware performance counters. We demonstrated that the model
is highly accurate with mean relative error of 4.47% and
about 2x better than a state-of-the-art model built for desktop
GPUs. We also demonstrated that power modeling using deep
learning can improve upon statistical techniques such as linear
regression by a factor of 3.3x.

As with most machine learning techniques, the model
accuracy highly depends on the data used in training. Indeed,
we demonstrated that our model accuracy was a result of
the quality of our training data, and the methodology and
techniques employed in acquiring such data. The type of
techniques and analysis applied in this work can be applied in
developing power models for other platforms as long as there
is a way to access some GPU and CPU counters.

As future work, this power model can be extended for cross-
platform prediction or can be utilised in applications such
as power-aware task scheduling algorithms on heterogeneous
SoCs.

REFERENCES

[1] J. D. Owens, D. Luebke, N. Govindraju, M. Harris,
J. Kruger, A. E. Lefohn, and T. J. Purcell, “A Survey of
General Purpose Computation on Graphics Hardware,”
Computer Graphics Forum, vol. 26, pp. 80-113, 2006.

[2] J. Lucas, S. Lal, M. Andersch, M. Alvarez-Mesa, and
B. Juurlink, “How a single chip causes massive power
bills GPUSimPow: A GPGPU power simulator,” in 2013
IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), 4 2013, pp. 97-106.

[3] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S.
Kim, T. M. Aamodt, and V. J. Reddi, “GPUWattch:
Enabling Energy Optimizations in GPGPUs,” in
Proceedings of the 40th Annual International Symposium
on Computer Architecture, ser. ISCA ’13. New York,
NY, USA: ACM, 2013, pp. 487-498. [Online]. Available:
http://doi.acm.org/10.1145/2485922.2485964

[4] X. Ma, M. Dong, L. Zhong, and Z. Deng, “Statistical
Power Consumption Analysis and Modeling for GPU-
based Computing,” in Proc. of ACM SOSP Workshop
on Power Aware Computing and Systems (HotPower).
Citeseer, 2009.

[5] T. Jin, S. He, and Y. Liu, “Towards Accurate GPU Power
Modeling for Smartphones,” in Proceedings of the 2nd
Workshop on Mobile Gaming - MobiGames ’15. New
York, New York, USA: ACM Press, 2015, pp. 7-11.

[6] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp,
W.-m. W. Hwu, S. S. Baghsorkhi, M. Delahaye, S. J.
Patel, W. D. Gropp, and W.-m. W. Hwu, “An adaptive
performance modeling tool for GPU architectures,” in
Proceedings of the 15th ACM SIGPLAN symposium
on Principles and practice of parallel programming -
PPoPP 10, vol. 45, no. 5. New York, New York, USA:
ACM Press, 2010, p. 105.

[7] J. Lucas and B. Juurlink, “ALUPower: Data Dependent
Power Consumption in GPUs,” in 2016 IEEE 24th
International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 9 2016, pp. 95-104. [Online].
Available: http://ieeexplore.ieee.org/document/7774570/

[8] M. J. Walker, S. Diestelhorst, A. Hansson, A. K.
Das, S. Yang, B. M. Al-Hashimi, and G. V. Merrett,
“Accurate and Stable Run-Time Power Modeling for
Mobile and Embedded CPUs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 36, no. 1, pp. 106119, 1 2017. [Online].
Available: http://ieeexplore.ieee.org/document/7464834/

[9] R. Barik, N. Farooqui, B. T. Lewis, C. Hu, and T. Shpeis-

man, “A black-box approach to energy-aware scheduling

on integrated CPU-GPU systems,” in Proceedings of the

2016 International Symposium on Code Generation and

Optimization - CGO 2016. New York, New York, USA:

ACM Press, 2016, pp. 70-81.

G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena,

and D. Chiou, “GPGPU performance and power esti-

mation using machine learning,” in 2015 IEEE 21st In-
ternational Symposium on High Performance Computer

Architecture (HPCA). 1EEE, 2 2015, pp. 564-576.

S. Hong and H. Kim, “An Integrated GPU Power

and Performance Model,” in Proceedings of the

37th Annual International Symposium on Computer

Architecture, ser. ISCA ’10. New York, NY, USA:

ACM, 2010, pp. 280-289. [Online]. Available: http:

//doi.acm.org/10.1145/1815961.1815998

H. Wang and C. Qingkui, “Power Estimating Model and

Analysis of General Programming on GPU,” Journal of

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Software, vol. 7, 2012.

Y. Zhang, Y. Hu, B. Li, and L. Peng, “Performance and
Power Analysis of ATI GPU: A Statistical Approach,” in
2011 IEEE Sixth International Conference on Network-
ing, Architecture, and Storage, 7 2011, pp. 149-158.

H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and
S. Matsuoka, “Statistical power modeling of GPU kernels
using performance counters,” in International Conference
on Green Computing. 1EEE, 8 2010, pp. 115-122.

G. Wang, “Power analysis and optimizations for GPU
architecture using a power simulator,” in 2010 3rd Inter-
national Conference on Advanced Computer Theory and
Engineering(ICACTE), vol. 1, 8 2010, pp. 1-619.

A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong,
and T. M. Aamodt, “Analyzing CUDA workloads using
a detailed GPU simulator,” in 2009 IEEE International
Symposium on Performance Analysis of Systems and
Software, 4 2009, pp. 163-174.

D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a
framework for architectural-level power analysis and op-
timizations,” in Proceedings of 27th International Sympo-
sium on Computer Architecture (IEEE Cat. No.RS00201),
6 2000, pp. 83-94.

A. B. Kahng, B. Li, L. Peh, and K. Samadi, “ORION
2.0: A fast and accurate NoC power and area model for
early-stage design space exploration,” in 2009 Design,
Automation Test in Europe Conference Exhibition, 4
2009, pp. 423-428.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “McPAT: An Integrated Power,
Area, and Timing Modeling Framework for Multicore
and Manycore Architectures,” in Proceedings of the
42Nd Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 42. New York, NY,
USA: ACM, 2009, pp. 469-480. [Online]. Available:
http://doi.acm.org/10.1145/1669112.1669172

B. Juurlink, J. Lucas, N. Mammeri, M. Bliss, G. Kerami-
das, C. Kokkala, and A. Richards, “The LPGPU2
Project,” in Proceedings of the 20th International
Workshop on Software and Compilers for Embedded
Systems - SCOPES ’17. New York, New York, USA:
ACM Press, 2017, pp. 76-80. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3078659.3078672
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system
for large-scale machine learning,” 5 2016.

