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Abstract: Microplastics (MPs) of varying sizes are widespread pollutants in our environment. The 
general opinion is that the smaller the size, the more dangerous the MPs are due to enhanced uptake 
possibilities. It would be of considerably ecological significance to understand the response of biota 
to microplastic contamination both physically and physiologically. Here, we report on an area 
choice experiment (avoidance test) using Enchytraeus crypticus, in which we mixed different 
amounts of high-density polyethylene microplastic particles into the soil. In all experimental 
scenarios, more Enchytraeids moved to the unspiked sections or chose a lower MP-concentration. 
Worms in contact with MP exhibited an enhanced oxidative stress status, measured as the induced 
activity of the antioxidative enzymes catalase and glutathione S-transferase. As plastic polymers per 
se are nontoxic, the exposure time employed was too short for chemicals to leach from the 
microplastic, and as the microplastic particles used in these experiments were too large (4 mm) to 
be consumed by the Enchytraeids, the likely cause for the avoidance and oxidative stress could be 
linked to altered soil properties. 

Keywords: microplastic; Enchytraeus crypticus; enchytraeids; avoidance test; toxicity; oxidative 
stress; catalase; glutathione S-transferase 

 

1. Introduction 

The contamination of terrestrial ecosystems and aquatic water bodies with plastics debris has 
become the so-called chemical footprint of our society. The European MSFD Working Group on Good 
Environmental Status (WG-GES) classifies plastic pollution as macroplastics (>25 mm), mesoplastics 
(5 to 25 mm), large microplastics (1 to 5 mm), and small microplastics below the 1 mm size [1]. 
Nevertheless, the particles do not remain static within these classification brackets, and due to 
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weathering effects and mechanical actions, plastics will continue to degrade into microplastics (MPs) 
and further, as degradation does not reach a static end-point [2]. The smaller the particles are, the 
higher the uptake possibilities in organisms, plausibly even allowing the crossing of membranes [3]. 

Terrestrial ecosystems are on the forefront of MP contamination and are affected conceivably 
earlier than aquatic ecosystems [4,5]. Our cultivation industry not only uses plastic in the fields, but 
sludge from wastewater treatment plants that collect MP is used as fertilisers. Changes in soil 
structure and terrestrial geochemistry (water holding capacity, hydraulic conductivity, soil 
aggregation, and microbial activity) due to MP pollution have been demonstrated [4,5] which could, 
in turn, affect species distribution. This creates a toxic environment for the resident biota, which most 
concerns worms, which are essential in soil turnover and fertilisation. Other reported effects of MP 
in biota include internal damage due to the consumption or leaching of the additives contained in the 
plastics [6,7]. Amongst these additives are, e.g., bio-stabilisers, antimicrobials, antioxidants, antistatic 
agents, blowing agents, fillers/extenders, flame-retardants, fragrances, heat stabilisers, light 
stabilisers, pigments, and process aids [7]. The leached additives can accumulate in the soil, water, 
sediment, food, or even body tissues [8]. This could result in an ecosystem that causes severe adverse 
effects in the native biota. It would be of ecological importance, therefore, to understand if MP 
pollution could have an influence on the distribution of biota in an ecosystem, as this will contribute 
to the environmental crisis of decreasing biodiversity. If worm populations would avoid 
contaminated soils, this, in turn, would affect and alter the soil structure. Therefore, we investigated 
whether the distribution of biota could be affected by MP pollution in causing mortality or by 
migration. We selected the oligochaete Enchytraeus crypticus as a model organism, due to its 
abundance in soils globally, and as a likely candidate to be affected by the ubiquitous MP pollution. 
Enchytraeids are often used as model indicator organisms [9] for various kinds of chemical stressors 
in terrestrial ecosystems such as lindane, heavy metals, or phenmediphan [10–12]. The oligochaete E. 
crypticus was previously used to estimate the role of pH and PCB No 52 (2,2′,5,5′-
Tetrachlorobiphenyl) as well as the effect of soil from former irrigation fields [13,14]. 

In the present study, mortality tests (using 0%, 2%, 4%, and 8% MP (w/w)) and avoidance tests 
(area choice test) were set up. For the avoidance tests, in each case, two choices of either soil void of 
MP or spiked with 2%, 4%, or 8% of MP (six combinations in total) were presented. The worms could 
move freely between the soil in two sections of the exposure vessels. To assess the responses of the 
worms to MP contamination in their environment, we used high-density polyethylene, as it is one of 
the most widespread plastic materials used today [15]. The MPs (4 mm particles) used were high-
density polyethylene (HDPE) (confirmed by Fourier-transform infrared (FTIR) and Raman spectra) 
produced from threaded bottle caps—common trash seen globally. The MP type, size, and 
concentration were selected based on monitoring studies which reported on MP pollution in 
sediments, considering the most commonly detected MPs and their abundance and size distribution 
[16,17]. In addition, the size used (4 mm) was explicitly selected by selective sieving, so that the pieces 
would be too large to be consumed by the Enchytraeids. Thus, we could investigate effects other than 
consumption. We hypothesised that the worms would avoid MP-contaminated areas or would 
choose the lower MP concentration of the two options presented. After three days, the number of 
surviving worms in each section was evaluated, assessing mortality and distribution. Possible 
adverse effects on E. crypticus due to the roaming behaviour at a physiological level was assessed by 
determining the oxidative stress status measuring catalase and glutathione S-transferase activity as 
indicators. 

2. Materials and Methods  

2.1. Enchytraeus Crypticus Culture 

Enchytraeus crypticus was continuously cultured at the University of Helsinki under the 
conditions outlined by Kobeticova et al. [18] and Castro-Ferreira et al. [9]. Briefly, the permanent 
culture of E. crypticus was maintained in the commercially available turf-free soil substrate 
(MeinWoody, Grub am Forst, Germany), pH 6–7, at a temperature of 18 ± 2°C. The cultures were fed 



Toxics 2020, 8, 10 3 of 10 

 

with oatmeal once a week by mixing the food into the soil substrate. Adults with a well-developed 
clitellum were used for the tests.  

2.2. Microplastic 

Plastic from new threaded bottle caps (green colour only) was used for all experiments. 
However, only caps with the Resin Identification Code (RIC) No. 2 or 02, indicating high-density 
polyethylene (HDPE)—one of the two most commonly used polymer types [19]—were selected. The 
caps were washed with tap water to remove possible adherent dirt or dust particles and dried at 
room temperature before shredding into MP. A desktop plastic recycler (SHR3D IT, 3devo B.V. 
Utrecht, Netherlands) with a sieve size of 4 mm was used to prepare MP granulate from threated 
bottle caps. To reach a homogenous granulates size of precisely 4 mm, the material was applied to 
the shredder five times and then sieved with a series of sieves (Test Sieve ASTM E11 containing steel 
oven wire) with a different mesh sizes to retain only the 4.00 mm particles (Endecotts Ltd, London, 
UK) (ISO 3310) and to achieve a homogenous MP sample material. During all stages, caution was 
taken not to self-contaminate the experimental set-up with other MP particles [20]. 

Confirmation of the type of the plastic from the bottle caps used was performed using Fourier-
transform infrared spectroscopy (FTIR) on a PerkinElmer, Spectrum One (ATR-unit) for IR-spectra, 
using eight scans with a resolution of 4 cm-1 in a range of 4000–650 cm−1. Raman spectroscopy was 
applied as well using a Renishaw Invia Qontor confocal microscope at 785 nm, grating 1200 I/mm, 
exposure time 1s, 30 accumulations and 100% laser power, centre 1300 Raman shift/cm-1 and a 50-
times objective. 

2.3. Experimental Set-Up 

The same turf-free soil (MeinWoody, Grub am Forst, Germany) used for cultivation was used 
for experimentation and consisted of 20% lingo fibres, 35% cocopeat washed, 10% spelt fermented, 
and 35% substrate compost. The soil had a pH ranging between 6 and 7 and was watered to 60% 
water holding capacity and kept at 18 ± 2 °C for a week. 

For the avoidance experiments, a modified protocol based on that described by Amorim et al. 
[21] was followed. Round paperboard forms with a diameter of 180 mm and a height of 35 mm were 
used as exposure vessels. To assess acute toxicity, the control vessels were filled with 600 g soil 
containing no MP (0%) or the respective MP concentration 2%, 4% or 8% mixed as homogeneously 
as possible (Figure 1). The exposure vessels were divided with a durable paper, adapted to the shape 
of the vessel, into two parts. For the avoidance tests, one-half was filled with 300 g of MP-free soil 
(0%) or either 2%, or 4% and the other half was filled with 300 g soil containing the respective MP 
percentage (2%, 4%, or 8%) (Figure 1).  

 

Figure 1. A schematic representation of the experimental setup. CAT: catalase; GST: glutathione S-
transferase. 
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The dividing paper was then removed, and the worms were placed in the middle of the exposure 
vessel; i.e., the contact line of both soil sides. The avoidance experiments were conducted for 72 h to 
allow the worms enough time to roam around and make their choice. As the exposure vessels used 
were larger than those reported by Amorim et al. [21], the longer exposure time was set based on 
extrapolation and preliminary tests, which assessed the time needed for the worms to travel the 
longer distances. When terminating the experiment, the soil was separated at the contact using a 
metal spatula, and the living worms were counted in the separated soil samples. The counted worms 
were shock-frozen in liquid nitrogen and stored at -80°C until the extraction of the antioxidative stress 
enzymes. Mortality was assessed after 72 h of exposure to 0%, 2%, 4%, and 8% MP to assess acute 
toxicity. 

2.4. Oxidative Stress 

The worms from the avoidance tests were analysed to assess their oxidative stress status. 
Enzyme extracts were prepared by homogenising the worms in 0.1 M potassium phosphate buffer 
pH 6.5 containing 2.17 M glycerol, 1 mM ethylene-diamine-tetra acetic acid (EDTA), and 1.4 mM 
dithioerythritol (DTE). Cell debris was removed by centrifugation (10 min at 13,000 × g), and the 
supernatant was used for enzyme measurements [22]. Catalase activity (CAT, E.C. 1.11.1.6) was 
measured on a Tecan Infinite F Nano+ plate reader at 240 nm with the decrease of absorbance 
correlating to the disappearance of H2O2 [23]. The reaction mixture contained 50 mmol/L sodium 
phosphate buffer, 10 mmol/L H2O2 and 10 µL enzyme extract. The enzyme activity of CAT was 
defined as 1 mmol of H2O2 oxidised over 1 min at 25 °C and expressed as µkat/mg protein. Soluble 
(cytosolic) glutathione S-transferases (E.C. 2.5.1.18) were determined using the standard model 
substrate 1-chloro-2,4-dinitrobenzene (CDNB), according to Habig et al. [24]. Enzyme activities are 
given in katal per milligram protein (kat/mg protein); where katal (kat) is the conversion rate of one 
mol substrate per second. The protein content of each sample was determined according to the 
method of Bradford [25] using the Bradford protein-dye reagent (Sigma). Bovine serum albumin 
(98%, Sigma.Aldrich, St. Louis, Missouri, United States) was used as a standard protein for calibration 
of the assay method.  

2.5. Statistical Analysis 

SPSS software (IBM SPSS Statistics, Version 20) was used to perform a descriptive analysis based 
on the mean of the different endpoints chosen. Normality and homogeneity of variance were tested 
using Shapiro–Wilk and Levene’s test, respectively. When data proved to be normally and 
homogenously distributed, the data were submitted to the one-way analysis of variance (ANOVA) 
followed by Tukey post hoc in SPSS. When tests for normality and homogeneity were not satisfied, 
the non-parametric Mann–Whitney-U Test together with pairwise comparisons was employed. We 
set the alpha value as 0.05 level for significance [26]. All data are graphically expressed as mean ± 
standard deviation (SD).  

3. Results and Discussion 

3.1. Toxicity and Avoidance Tests 

An avoidance test is defined as an organism’s active selection between two samples exhibiting 
different properties [27]. Therefore, in the present study, Enchytraeus sp. worms were placed in 
exposure vessels containing two non-obstructed halves, which consisted of soil mixed with different 
percentages of MP ranging from 0% to 8% (w/w) to determine their preference, if any. FTIR and 
Raman spectroscopic analyses of the bottle cap plastics confirmed that they were indeed HDPE 
(Figure A1). To assess the acute toxicity (mortality), the two halves consisted of the same MP 
percentages; i.e., with no MP on both sides, or 2%, 4%, or 8% on both sides, respectively. In all these 
mortality tests, where the exposure percentages were equal throughout the exposure vessel, E. 
crypticus distributed equally between the two halves (Table. 1). 
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Table 1. Acute toxicity and area preference in pairings with the same percentage of microplastic (MP) 
in both halves (n = 15, at 50 worms per independent replicate). Significance was tested by pairwise t-
tests after normality and homogeneity tests were satisfied. 

%MP in Soil 
Halves (w/w) 

Worms 
in 

Worms 
out 

Mortality 
Distribution in the Two 
Exposure Vessel Halves 

Distribution 
Comparison (P-

Value) 
0% 50 ± 0 49 ± 1 2% 25 ± 3 24 ± 3 0.328 
2% 50 ± 0 46 ± 2 8% 23 ± 2 23 ± 3 0.618 
4% 50 ± 0 45 ± 1 10% 23 ± 3 22 ± 2 0.186 
8% 50 ± 0 43 ± 1 14% 22 ± 2 21 ± 2 0.340 

An increased percentage of HDPE MP in the soil (0% to 8%) resulted in the E. crypticus mortality 
increasing from 2% to 14% (Table 1). However, the properties of the monomer ethylene used to 
produce HDPE were previously reported not to cause toxicity nor to exhibit estrogenic activity [28]. 
Consumption leading to internal obstruction and damage is unlikely due to the size of the particles 
used. However, due to the manufacturing process, all plastics can contain residual chemicals, 
including catalysts necessary for the polymerisation reactions, which could quickly leach from new 
plastics. Additives such as stabilisers, UV-blockers, plasticisers, antioxidants, and colourants are 
added to the plastic formulation to provide the final product with the necessary properties. These 
additives are retained in the plastic bound to the polymer matrix through van der Waals forces [29]. 
The leaching of those chemicals due to the breakage of these weak bonds during the degradation of 
plastics might therefore occur [7,30] and affect our environment [28,31]. The toxicity observed here 
could be due to leaching additives from the shredded bottle caps [4,5]. However, it is more likely that 
the MP particles could have caused changes in the soil structure [4,5], which resulted in undesirable 
conditions for the Enchytraeids [21]. 

In all avoidance test pairings, where non-spiked soil was presented against MP spiked soil (0% 
to 2%, 0% to 4%, and 0% to 8%), more E. crypticus (avg. 60% ± 4%) moved to the non-spiked half 
(Figure 2). The Enchitraeids’ preference was higher by factors of 1.6 to 1.8 in favour of the non-spiked 
side. The average survival rates in the pairings with an unspiked side ranged from 80% to 96%. 
Following the experimental set-up from Kerekes and Feigl [32], all MP concentrations were paired 
against each other for the avoidance tests; i.e., 2% to 4%, 2% to 8%, and 4% to 8%. In these pairings 
offering a lower and a higher MP concentration as a choice, E. crypticus also preferred the lower MP 
concentration in all pairings (Figure 2). The worms favoured the lower MP concentration side by 
factors of 1.7 to 2.7 with increasing MP percentages. Thus, in the avoidance tests, Enchytraeids 
showed a clear preference for the MP-free sides or less polluted sides, most likely due to altered soil 
properties, such as decreased bulk soil density and decreased microbial activity [5] as the MP particles 
were too large to consume. The possibility of leaching cannot be completely excluded as a potential 
reason for the avoidance; however, this is unlikely as the exposure time was too short for leaching 
and exposure was carried out at room temperature (18 ± 2°C) and not under solar irradiation [33–35].  
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Figure 2. Worms counted in non-spiked and MP-spiked areas of the avoidance test vessel. Data 
represent mean worm count per area ± standard deviation (n = 15, at 50 worms per independent 
replicate). The average percentage mortality per pairing is given under each section as M. Differences 
between the treatments were tested by one-way ANOVA and Tukey post hoc when the data were 
normally and homogeneously distributed. When data were not homogenously distributed, even after 
transformation, the non-parametric Kruskal–Wallis test with pairwise comparisons was used. 

3.2. Oxidative Stress 

As exposure to MP is correlated to oxidative stress [36], we measured the activity of catalase 
(CAT) and glutathione S-transferase (GST) in the worms after exposure to different HDPE MP 
percentages in soil. Exposure to the HDPE MP caused the CAT activity of the Enchytraeids to increase 
dose-dependently (Figure 3A). In the pairings consisting of 0% to 8% as well as 2% to 8% MP, the 
worms exhibited higher CAT activity (Figure 3C), suggesting that 8% (w/w) MP in soil induced 
oxidative stress in these worms.  

GST is known as a biotransformation enzyme; however, it is also involved in the antioxidative 
stress defence as it metabolises end-products such as malondialdehyde and 4-hydroxynonenal 
derived from lipid-peroxidation [22]. As with CAT, the increasing HDPE MP percentages in the soil 
resulted in a dose-dependent increase of the GST enzyme activity in the Enchytraeids (Figure 3B). All 
pairings, except 0% to 2% HDPE MP, resulted in elevated GST activity (Figure 3D).  

In most of the cases presented here, exposure to MP in the soil led to an increase in enzyme 
activity, indicating the elicitation of an antioxidative stress response. For nanoparticles and 
microbeads with a size range between 0.05 and 6 µm, it is known that the toxicity is closely correlated 
to the uptake into organisms and the generation of reactive oxygen species (ROS) [36–38]. An increase 
of ROS will lead to oxidative-stress-induced signalling pathways. However, the MP particles used 
here were specifically selected to have a size of 4 mm; therefore, they are too large to be taken up by 
the oligochaetes used. As leaching is implausible, altered soil properties may have induced oxidative 
stress in agreement with the findings reported by Howcroft et al. [39]. 
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Figure 3. (A) Catalase activity in the 0% MP on both sides pairing, as well as in pairings with the same 
MP concentration on both sides. (B) GST activity in a 0% to 0% pairing, as well as in pairings with the 
same MP percentage on both sides. Data represent mean enzyme activity ± standard deviation (n = 9, 
at 50 worms per independent replicate). (C) Catalase activity in worms from soil containing 0% to 2%; 
4%, and 8% MP, as well as worms from the avoidance experiment from clean and MP-spiked sides of 
different MP concentrations. (D) Glutathione S-transferase activity in control worms from soil 
containing 2%, 4% and 8% MP, as well as worms from the avoidance experiment from clean and MP-
spiked sides of different MP concentrations. Data represent mean enzyme activity ± standard 
deviation (n = 3, at 50 worms per independent replicate). When data were not homogenously 
distributed, even after transformation, the non-parametric Kruskal–Wallis test with pairwise 
comparisons were used. 

In conclusion, the results show that the oligochaetes preferred an MP-free environment and that, 
in the presence of MP, their antioxidative stress response was elevated. As uptake and leaching under 
the experimental conditions used here are unlikely, altered soil properties due to the presence of MP 
may be the cause for the results observed. More research is needed to investigate long-time exposure 
and the toxicity of the compounds leaching from MP in our environment to better understand the 
adverse effects of MP in our ecosystems. This is the first study to show an area choice test for 
Enchytraeids avoiding MP spiked sites. 
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Appendix A 

 

Figure A1. Confirmation of the MP type as high-density polyethylene (HDPE) with A) Fourier 
transform infrared (FTIR) spectra and B) Raman spectra. 
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