
Anomaly Detection
in

Cloud Computing Environments

vorgelegt von
M. Sc.

Florian Johannes Schmidt

an der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. David Bermbach
Gutachter: Prof. Dr. Odej Kao
Gutachter: Prof. Dr. Johan Tordsson
Gutachter: Prof. Dr. Jan Nordholz

Tag der wissenschaftlichen Aussprache: 18. Juni 2020

Berlin 2020

Thank you!

{ Kathrin, Martina, Hartmut, Friederike, Maryse, Einstein, Felix, Fabian, Fiona,
Marion, Thomas, Susanne, Heino, Hildegard, Ella, Harry, Helmut, Anton, Marcel,
Odej, Alex, Sören, Ilya, Lauritz, Sasho, Jana, Feng, Tobias, Jan, Kevin, Stefan, Steven,
Annika, Alexandra, Elisa, Eva, Paul, René, Sven, Vincent, Johannes, Yannick, Tim }

i

Zusammenfassung

Cloud Computing Paradigmen, werden in der modernen Softwareentwicklung bereits
von den meisten Unternehmen angewendet. Die Bereitstellung von digitalen Diensten
in einer Cloudumgebung bietet sowohl die Möglichkeit der kosteneffizienten Nutzung
von Ressourcen als auch die Möglichkeit auf Bedarf dynamisch die Anwendungen zu
skalieren. Basierend auf dieser Flexibilität werden immer komplexere Softwareanwen-
dungen entwickelt, welches zu anspruchsvollen Wartungsarbeiten der Gesamtinfras-
truktur führen. Ebenfalls werden immer höhere Ansprüche an die Verfügbarkeit von
Softwarediensten gestellt (99,999% im Industriekontext), was durch die Komplexität
moderner Systeme nur noch schwieriger und unter großer Mühe gewährleistet werden
kann. Aufgrund dieser Trends steigt der Bedarf an intelligenten Anwendungen, die
automatisiert Anomalien erkennen und Vorschläge erarbeiten, um Probleme zu erken-
nen, zu beheben oder zumindest zu mindern um keinen negativen Einfluss auf die
Servicequalität zu kaskadieren.

Diese Arbeit beschäftigt sich mit der Erkennung von degradierten abnormalen
Systemzuständen in Cloudumgebungen. Hierbei wird sowohl eine holistische Analy-
sepipeline und -infrastruktur beschrieben als auch die Anwendbarkeit von verschiede-
nen Strategien des maschinellen Lernens diskutiert, um möglichst eine voll automa-
tisierte Lösung bereitzustellen. Basierend auf den zugrunde liegenden Annahmen,
wird ein neuartiger unsupervised Anomalieerkennungsalgorithmus namens CABIRCH
vorgestellt und dessen Anwendbarkeit analysiert und diskutiert. Da die Wahl der Hy-
perparameter einen wichtigen Einfluss auf die Genauigkeit des Algorithmus hat, wird
zudem ein Hyperparameterauswahlverfahren mit einer neuartigen Fitness-Funktion
vorgestellt, welches zur Vollautomatisierung der Anomalieerkennung führen soll. Hi-
erbei ist das Verfahren generalisiert anwendbar für eine Vielzahl von unsupervised
Anomalieerkennungsalgorithmen, welche basierend auf jüngsten Veröffentlichungen
umfassend evaluiert werden. Dabei wird die Anwendbarkeit zur automatisierten Erken-
nung von degradierten abnormalen Systemzuständen gezeigt und mögliche Limitierun-
gen diskutiert. Die Ergebnisse zeigen, dass eine Erkennung der verschiedenen Anoma-
lien gewährleistet werden kann, jedoch mit einer Fehlalarmrate von über 1%.

ii

Abstract

Cloud computing is widely applied by modern software development companies. Pro-
viding digital services in a cloud environment offers both the possibility of cost-efficient
usage of computation resources and the ability to dynamically scale applications on
demand. Based on this flexibility, more and more complex software applications are
being developed leading to increasing maintenance efforts to ensure the reliability of
the entire system infrastructure. Furthermore, highly available cloud service require-
ments (99.999% as industry standards) are difficult to guarantee due to the complexity
of modern systems and can therefore just be ensured by great effort. Due to these
trends, there is an increasing demand for intelligent applications that automatically
detect anomalies and provide suggestions solving or at least mitigating problems in
order not to cascade a negative impact on the service quality.

This thesis focuses on the detection of degraded abnormal system states in cloud
environments. A holistic analysis pipeline and infrastructure is proposed, and the
applicability of different machine learning strategies is discussed to provide an auto-
mated solution. Based on the underlying assumptions, a novel unsupervised anomaly
detection algorithm called CABIRCH is presented and its applicability is analyzed and
discussed. Since the choice of hyperparameters has a great influence on the accuracy
of the algorithm, a hyperparameter selection procedure with a novel fitness function
is proposed, leading to further automation of the integrated anomaly detection. The
method is generalized and applicable for a variety of unsupervised anomaly detection
algorithms, which will be evaluated including a comparison to recent publications.
The results show the applicability for the automated detection of degraded abnormal
system states and possible limitations are discussed. The results show that detection
of system anomaly scenarios achieves accurate detection rates but comes with a false
alarm rate of more than 1%.

iii

Contents

1 Introduction 1
1.1 Research Objectives and Main Contributions 2
1.2 Publications . 3
1.3 Outline of the Thesis . 4

2 Background 6
2.1 Anomaly detection . 6

2.1.1 Types of Anomalies . 7
2.1.2 Failures and Degraded State Anomalies 7

2.2 Application Domain . 9
2.2.1 IP multimedia subsystem . 9
2.2.2 Video on demand . 10

2.3 Analytic Concepts . 10
2.3.1 Machine Learning Methodologies 12
2.3.2 BIRCH . 12
2.3.3 Autoencoder . 14
2.3.4 Variational Autoencoder . 15
2.3.5 Long Short Term Memory Networks 16
2.3.6 Dynamic Threshold Models . 17
2.3.7 Genetic Algorithm . 18

2.4 Evaluation Metrics . 19

3 Related Work 22
3.1 Characteristics of Service Anomalies 22
3.2 Anomaly Detection . 23
3.3 Concept Adapting Clustering . 28
3.4 Hyperparameter Optimization . 30

4 Framework for AI-based Anomaly Detection 33
4.1 ZerOps Framework . 33
4.2 Categorization of AI-based Anomaly Detection 35
4.3 Evaluation . 39

4.3.1 Supervised Learning Evaluation 39
4.3.2 Semi-supervised Evaluation . 42
4.3.3 Summary . 44

5 Concept Adapting BIRCH 46
5.1 Concept Adapting BIRCH . 46

5.1.1 Micro-cluster Aging . 47
5.2 Anomaly Detection using Concept Adapting BIRCH 53

5.2.1 Identity Function Threshold Model 54
5.3 Evaluation . 55

iv

v

5.3.1 Influence of Decay Rate Selection 56
5.3.2 CABIRCH-based Anomaly Detection 60

6 Cold Start-Aware Identity Function Threshold Models 67
6.1 Integration of Hyperparameter Optimization into IFTM Framework . 68
6.2 Automated Hyperparameter Optimization 70

6.2.1 Initialization, Crossover, Mutation, Termination 70
6.2.2 Fitness Function Definition . 71

6.3 Evaluation . 73

7 Evaluation 81
7.1 Evaluation Setup . 82

7.1.1 Resource Monitoring . 83
7.1.2 Anomaly Injection Framework 84

7.2 Evaluation Results . 86
7.3 Discussion . 93
7.4 Future Work . 96

8 Conclusion 98

Appendices 119

A Online Arima 120

B Intervals for Identity functions and Threshold models 123

C Detailed Evaluation Results 125

Chapter 1

Introduction

Digitalization transforms our world in various areas like Industry 4.0 (product line,
manufacturing automation, predictive maintenance, etc.), transportation (self-driving
cars, car-2-car communication, intelligent traffic control systems), smart home, medi-
cal assisted surgery, and many more. Gartner predicts that by 2020 there exist more
than 20 billion connected IoT-devices [1]. Cisco even forecasts 28.5 billion connected
devices by 2022 [2]. While the number of devices and sensors increases, the key net-
work technologies like 5G and virtualization of cloud computing and fog computing
change the business opportunities and enable flexibility for the infrastructure. The
improved flexibility and business opportunities come at a high cost, as the system
complexity increases significantly. It introduces the challenge of not only administer-
ing the complex IT-infrastructure but also adds the challenges of maintaining every
e.g. remote device, edge cloud, software service, and the heterogeneous networks in
between. Managing this complexity surpasses the ability of human experts to oversee
the entire system and react with quick responses to meet the promised Quality of
Service (QoS) parameters or even Service Level Agreements (SLA).

In application scenarios such as softwarization of dedicated hardware solutions to
virtualized environments, telecommunication providers hope to benefit from increased
flexibility and cost-effectiveness. Still, the given dedicated hardware components pro-
vide a reliability of 99.999% [3], which is therefore demanded for the virtualized com-
ponents. Due to the increased complexity of the computation model, which includes
hardware components and a stack of virtualized components, softwarized components
cannot cope with the high demand for reliability. Because of the fragility of such
system stacks, the expectations of system administrators increases to maintain the
continuous operation of the services [4]. With respect to this and the recent develop-
ments of artificial intelligence (AI), concepts are developed to analyze and automate
large portions of operational tasks for administrators. AI-based automation of in-
frastructure operation (AIOps) provides the vision of establishing a system able to
autonomously operate and remediate large IT environments.

The increased demand for qualified operation maintenance support reflects the es-
tablishment of creating new job positions like DevOps or Site Reliability Engineers
(SRE). The four pillars of effective DevOps within any company assume communica-
tion management among teams (Collaboration and Affinity), but also the introduction
and usage of helpful tools as well as scaling to the organization’s needs [5]. For exam-
ple, Google coined the term SREs with specific principles to strategically implement
the four pillars of DevOps, assuming the mindset that the developed code can provide
problems at any time [6]. Gartner also provides four phases of IT-operations [7] in-
cluding descriptive IT, anomaly detection and diagnostics, proactive operations, and
avoidance of high-severity outages. In order to provide DevOps and SREs helpful

1

2

guidance, machine learning can help to provide solutions to optimize such operational
workflows.

Nowadays, active and passive monitoring tools for measuring the system’s behav-
ior and QoS performance are widely used by administrators. As a consequence, au-
tomatic alerts are integrated and triggered by expert-based fixed thresholds for these
measurements in order to inform the administrators about failures and anomalies.
This helps to identify faster problematic system states, which may cause a decrease
in QoS. Even though these tools already support the administrators, it often remains
time-consuming to find the correct root causes of problems as well as determining the
correct counter measurements in order to avoid a drop of the QoS.

The dynamics of systems additionally increase complexity. Nowadays, systems
are quickly scaled up and down due to load changes by e.g. increase of user activ-
ity through the day, as well as the agile development of software introducing changes
in e.g. microservice behavior. Especially for maintaining service specific thresholds,
which meet the border between abnormal and normal behavior, it gets increasingly
more difficult. On the one hand, it depends on the individual service or operating sys-
tem’s resource usages and on the other hand on the environmental influences (system
load caused or introduced by users or surrounding virtualized infrastructure). Further-
more, not only the determination of a suitable threshold is difficult, but as the system
behavior changes over time, the change of such thresholds has to be performed con-
tinuously in order to provide anomaly alerts as soon as possible to provide the chance
to react before a component fails. Thus, automated mechanisms have to be developed
to enable such support and, in the best case, further give valuable information to the
administrator in real-time.

Finding an anomaly, before it causes a component to fail, is a challenging task
as it is highly dependent on the system’s individual behavior. Human administrators
therefore need a lot of time to investigate large amounts of historic data to gain detailed
insights to find the actual root cause. Then, they are able to start effective remediation
counter actions, keeping the system highly reliable. Therefore, we proposed a holistic
AIOps platform together with a self-healing analytics pipeline to automatically detect
and remediate anomalous system components, helping current administrators to detect
problems more efficiently and give recommendations to select accurate counter actions
[8].

1.1 Research Objectives and Main Contributions
Main research objective: Investigate, develop and apply anomaly detection
techniques to a holistic AIOps platform enhancing zero-touch administration for highly
dependable IT-infrastructures. The objective concentrates on resource monitoring of
black-box services, which can run on different levels within the IT environment.

The term black-box already indicates that the solution should be aware of any
cloud service being monitored. Thus, the algorithmic component must cope with
unknown services.

• RO-1: Formulate requirements for anomaly detection approaches to be applica-
ble in productive environments and easily integrable into existing IT-infrastructure.

• RO-2: Investigate the applicability of supervised, semi-supervised, unsuper-
vised techniques for productive usage within IT-infrastructures.

• RO-3: Develop, implement, and evaluate strategies for anomaly detection to
meet the requirements towards a zero-touch administration.

This thesis concentrates on the definition and implementation of the anomaly
detection component within a self-healing analytics pipeline, which is necessary for
automated anomaly detection for data streams. As the anomaly detection component

3

is based on the holistic AIOps framework [8], we focus on the evaluation of the proposed
methodologies on the domain of black-box service resource monitoring deployed on a
replicated virtualized cloud infrastructure.

The key contributions of this thesis are focused on the following points:

• We describe the overall framework ZerOps, which is capable of decentralized exe-
cution of AI approaches in productive system cloud environments. Requirements
and assumptions are defined to meet industry standards towards zero-touch
administration. We analyze and discuss the applicability of different learning
strategies for AI-based models and how they can be incorporated into the sys-
tem design. Additionally, we present results of supervised anomaly detection as
baseline results for the given domain.

• As supervised and semi-supervised detection approaches do not meet zero-touch
requirements, we continue to develop an unsupervised detection capable of alert-
ing e.g. unknown anomalies, adapting to concept changes, while learning and
predicting in an online manner. We propose a novel concept adapting clustering
algorithm, called CABIRCH, which can be applied to unsupervised anomaly
detection and provides the required properties. The impact of hyperparameter
settings as well as the applicability towards specific types of anomaly patterns
are investigated.

• We define a generalized anomaly detection methodology, called IFTM. Based
on the generalized IFTM methodology, we develop and evaluate a strategy to
cope with the cold start problem. The cold start problem arises when newly
monitored system components are deployed and further IFTM models must be
initialized. In order to increase the quality of prediction results right from the
beginning, a hyperparameter optimization is proposed utilizing a novel objective
function for automated IFTM model configuration.

• Lastly, an extensive evaluation of several IFTM-based anomaly detection models
is presented and discussed. The evaluation includes qualitative results from a
production-ready cloud environment as well as quantitative runtime benchmarks
in order to enable decision support when applying different methods in hetero-
geneous environments like IoT gateways or Edge-Cloud environments enabling
decentralized computing.

1.2 Publications
Parts of this thesis and related contributions have been published in the following list
of peer-reviewed articles:

[1] René Wetzig, Anton Gulenko, and Florian Schmidt. Unsupervised Anomaly
Alerting for IoT-Gateway Monitoring using Adaptive Thresholds and Half-
Space Trees. In 2019 IEEE International Conference on Internet of Things:
Systems, Management and Security (IOTSMS), pages 161–168. IEEE, 2019.

[2] Florian Schmidt, Florian Suri-Payer, Anton Gulenko, Marcel Wallschläger,
Alexander Acker, and Odej Kao. Unsupervised anomaly event detection for
cloud monitoring using online arima. In 2018 IEEE/ACM International Con-
ference on Utility and Cloud Computing Companion (UCC Companion), pages
71–76. IEEE, 2018.

[3] Alexander Acker, Florian Schmidt, Anton Gulenko, and Odej Kao. Online
density grid pattern analysis to classify anomalies in cloud and nfv systems.
In 2018 IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), pages 290–295. IEEE, 2018.

4

[4] Florian Schmidt, Florian Suri-Payer, Anton Gulenko, Marcel Wallschläger,
Alexander Acker, and Odej Kao. Unsupervised anomaly event detection for vnf
service monitoring using multivariate online arima. In 2018 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), pages
278–283. IEEE, 2018.

[5] Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Alexander Acker, and
Odej Kao. Anomaly detection for black box services in edge clouds using
packet size distribution. In 2018 IEEE 7th International Conference on Cloud
Networking (CloudNet), pages 1–6. IEEE, 2018.

[6] Dora Szücs and Florian Schmidt. Decision tree visualization for high-
dimensional numerical data. In 2018 Fifth International Conference on So-
cial Networks Analysis, Management and Security (SNAMS), pages 190–195.
IEEE, 2018.

[7] Florian Schmidt, Anton Gulenko, Marcel Wallschläger, Alexander Acker, Vin-
cent Hennig, Feng Liu, and Odej Kao. Iftm-unsupervised anomaly detection for
virtualized network function services. In 2018 IEEE International Conference
on Web Services (ICWS), pages 187–194. IEEE, 2018.

[8] Anton Gulenko, Florian Schmidt, Alexander Acker, Marcel Wallschläger, Odej
Kao, and Feng Liu. Detecting anomalous behavior of black-box services mod-
eled with distance-based online clustering. In 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), pages 912–915. IEEE, 2018.

[9] Florian Schmidt and Yannick Ehrenfeld. Vimec: Interactive application for
micro-cluster visualizations. In Proceedings of the Eurographics/IEEE VGTC
Conference on Visualization: Posters, pages 29–31, Eurographics Association,
2018.

[10] Marcel Wallschläger, Anton Gulenko, Florian Schmidt, Odej Kao, and Feng
Liu. Automated anomaly detection in virtualized services using deep packet
inspection. Procedia Computer Science, 110:510–515, 2017.

[11] Alexander Acker, Florian Schmidt, Anton Gulenko, Reinhard Kietzmann, and
Odej Kao. Patient-individual morphological anomaly detection in multi-lead
electrocardiography data streams. In 2017 IEEE International Conference on
Big Data (Big Data), pages 3841–3846. IEEE, 2017.

[12] Anton Gulenko, Marcel Wallschläger, Florian Schmidt, Odej Kao, and Feng
Liu. A system architecture for real-time anomaly detection in large-scale nfv
systems. Procedia Computer Science, 94:491–496, 2016.

[13] Anton Gulenko, Marcel Wallschläger, Florian Schmidt, Odej Kao, and Feng
Liu. Evaluating machine learning algorithms for anomaly detection in clouds.
In 2016 IEEE International Conference on Big Data (Big Data), pages 2716–
2721. IEEE, 2016.

The full list of publications can be visited at http://www.user.tu-berlin.de/
flohannes/florianschmidt/.

1.3 Outline of the Thesis
The rest of this thesis is structured as follows:

• Chapter 2 describes the background needed to understand key concepts of this
thesis, including definitions about e.g. anomalies, key machine learning method-
ologies, and evaluation approaches.

http://www.user.tu-berlin.de/flohannes/florianschmidt/
http://www.user.tu-berlin.de/flohannes/florianschmidt/

5

• Chapter 3 presents related work of types of system anomaly patterns, anomaly
detection methodologies, as well as an overview of online clustering methods
and hyperparameter optimization.

• Afterwards, Chapter 4 provides further information about the holistic AIOps
framework ZerOps, the inclusion of the anomaly detection within the self-healing
pipeline. Furthermore, the chapter explains different supervised and semi-
supervised anomaly detection approaches and discusses the applicability for pro-
ductive usage. These results narrow down the expected requirements a holistic
anomaly detection solution should be capable of.

• Based on these results, Chapter 5 presents the Concept Adapting BIRCH ap-
proach, showing necessary adaptations to the clustering technique BIRCH by
Zhang et al. [9] in order to meet the proposed requirements for unsupervised
anomaly detection.

• Chapter 6 provides solutions to cope with the cold start problem including a
concept of autonomous hyperparameter optimization and applicability to several
existing unsupervised anomaly detection models.

• Based on the existing methodology, Chapter 7 presents an evaluation for the
evaluation setup with the black-box service use case and discusses qualitative
and quantitative results as well as states future research, which can be con-
ducted.

• Lastly, Chapter 8 summarizes and concludes the thesis.

Chapter 2

Background

2.1 Anomaly detection
There exist many different definitions for the term anomaly detection [10–17]. In this
thesis, we refer to the definition by Chandola et al. [18]. Chandola et al. distinguish
with their definition of normal and abnormal behavior through probability regions
within a stochastic model.

Definition 2.1.1 (Anomaly detection [18])
Normal data instances occur in high probability regions of a stochastic model, while
anomalies occur in the low probability regions of the stochastic model.

For providing a clearer understanding of Definition 2.1.1 of anomalies with respect
to data stream capabilities, we extend Chandola et al. definition by:

Definition 2.1.2 (Anomaly detection extension)
The stochastic model is context-dependent and can vary over time. Thus, anomalies
are defined over the current context, which at least includes in the case of time series
the context parameter time.

This extension is necessary due to the dynamics of a monitored system environ-
ment.

Through internal and external changes, the data stream behavior can change,
which is referred to as concept drift. Jiang and Gruenwald [19] serve a suitable defi-
nition for this:

Definition 2.1.3 (Concept drift [19])
The data distribution in a data stream changes over time.

Anomaly detection algorithms should be robust to concept drifts if these model
the normal behavior. Furthermore, it is challenging to the machine learning algorithm
to distinguish accordingly between normal concept drifts and anomalies.

As Definition 2.1.1 suggests, for normally behaving data a stochastic model can
be learned. Such a semi-supervised approach is related to an One-class classification
task.

Definition 2.1.4 (One-class classification [20])
The task in One-class classification is to define a classification boundary around the
positive (or target) class, such that it accepts as many objects as possible from the pos-
itive class, while it minimizes the chance of accepting non-positive (or outlier) objects.

6

7

As Khan and Madden [20] describe, the main challenge within this task is the
definition of boundary around the learned class. The boundary should be compact to
provide a proper border between normal and abnormal data points. This concept is
used for anomaly detection as well as the definition of hyperparameter optimization
for this work.

2.1.1 Types of Anomalies
Many publications suggest the three different types of anomalies: point, contextual
and collective [21,22]. We follow the definition by Hodge and Austin [13] and Chandola
et al. [18], who defined the three types as follows:

Definition 2.1.5 (Types of anomalies [13, 18])

1. Isolated individual point in a dataset.

2. A data point that is isolated with respect to other data points in the context.
Contextual attributes might be time, location, etc. Barnett and Lewis [11] define
type 2 outliers as the additive outliers for time series data. The good thing about
additive outliers is that they do not influence the other data points in context.

3. A particular group of data points with respect to the entire dataset. Barnett and
Lewis [11] called them Innovations Outliers for time series data. The bad thing
about innovations outliers is that they influence other data points of the same
context and try to hide.

Sadik and Gruenwald [23] state that for data streams, just type 2 or 3 anomalies
can surface, but never type 1, because a time series has a temporal context with each
data point. As the data streams are considered as a possibly infinite number of time-
dependent data points. Their processing is therefore considered to be online as we
cannot expect to store all data points. Therefore, at any particular moment, only a
subset of the entire dataset is available like a group of an entire dataset. With respect
to type 1, a data point cannot be described as an isolated individual point with respect
to the entire dataset as the data points are connected through the context of time.

Ramchandran and Sangaiah [22] and Goldstein and Uchida [17] define furthermore
global and local outliers. Global outliers are data points, which are abnormal compared
to the complete (global) dataset. On the other hand, local outliers are data points
within a local context of a subset of data.

While Sadik and Gruenwald [23] argue that there cannot exist the entire dataset
at any point in time, they assume, that it is never possible to detect global anomalies.
As just a subset of data from the latest temporal context are available, local anomalies
can be detected, which we consider also as type 1 anomalies with respect to the local
context.

2.1.2 Failures and Degraded State Anomalies
Within the IT-infrastructure context, there exist multiple meanings and wordings with
respect to the term anomaly like faults, errors, failures, etc.

Avizienis et al. [24] define service faults to be the root cause of an error, while
errors represent a deviation of the correct internal service component state. Errors
may propagate to further internal service components through e.g. API calls and
cause a service failure. Service failures are lastly defined by the presence of incorrect
service state expectations to external service requests. The main focus of this thesis
are errors on component-level, which are considered as anomalies in the following.

Failures can be caused by either hardware modules or software components. Hard-
ware failures relate to specific hardware components of a computer system like hard

8

disks, memory modules, network cards, processors [25]. Gray [26], Barroso, and Höl-
zle [27] showed in their studies that hardware failures cause less than 10% of total
service failures. Oppenheimer et al. [28] also indicated that the smallest number of
contributing failures relate to hardware (10–25%).

In Gray’s [26] study (more than 5 years of field data of highly fault-tolerant Tandem
servers), 60% of fault events relate to software errors and 20% refer to maintenance
and operations faults. Similar measurements are presented by Oppenheimer et al. [28],
who studied service-level failures of three internet services consisting of more than 1500
servers. They concluded misconfiguration of service components, as well as operator-
caused errors, are the largest portion contributing to service failures.

Barroso and Hölzle [27] presented the distribution of disruption events of Google’s
main services (6 weeks of field data) to be consistent with the above described studies.
Service faults are mainly caused by 60% software and configuration errors and 20%
due to human error and networking issues.

In addition, Barroso and Hölzle [27] introduced four categories for distinguishing
service-level failures representing the severity (with respect to the QoS) in decreasing
order:

• Corrupted : Stored state of the service is lost, corrupted and cannot be regener-
ated.

• Unreachable: The service is unreachable and does not respond to requests.

• Degraded : The service is available but operates in some degraded state.

• Masked : Faults occur in service components but are completely hidden to the
entity using the service.

Masked failures are related to and caused by fault-tolerant operation and design
of software and hardware components. With respect to the QoS, masked failures do
not influence the QoS negatively, in contrast to the other categories.

Within this work, we consider degraded failures as well as masked failures as the
aimed anomalies to be detected due to the following two reasons:

1. We assume that unreachable services and corrupted failures are easy to detect
through e.g. active probing etc., while failures causing degraded state issues or
even without any influence on the QoS are more difficult to detect.

2. In cases of degraded state and masked failures, we assume a larger impact of
possibilities to remediate such problems before failures lead to unreachability or
corruption.

Cotroneo et al. [29] described that system components operating in anomaly states
suffer from performance degradation, whereby the degradation severity depends on the
severity of the anomaly state. In order to provide self-healing capabilities, degraded
state anomalies are the focus of this work as those anomalies allow the pipeline to
react.

Additionally, we consider detecting not only anomalies on the larger service-system
level but on a finer granular service-component level. This enables to alert adminis-
trators presenting at component-level anomalies.

In addition to failures, there exists the phenomenon of software aging [30], which
has to be considered for anomaly detection. Over time, the failure rate increases for
software due to the increasing chance that errors happen by e.g. unbounded resource
consumption, data corruption, accumulation of numerical errors [31]. Avritzer and
Weyuker [32] describe software aging for telecommunication switching software, which
leads to gradual performance degradation. Software aging may cause aging-related
failures [33], but also provides concept shift behavior when applying anomaly detection
approaches as errors might be masked.

9

Figure 2.1: Clearwater service components and their connection between each
other. Source: [36].

2.2 Application Domain
The application domain derives from the rapid digitalization transformations happen-
ing in the area of the telecommunication sectors. Telecommunication providers are
facing several different aspects of change in technology as well as shifts in business
opportunities today. For example, dedicated hardware solutions are moved to the
cloud. This phenomenon is described as softwarization, meaning to transform mostly
hardware related mechanisms to the virtualized environment through software [34,35].
As described in Chapter 1, this arises with more flexibility, energy advantages, and
cost-effectiveness, but also with more complexity and problems regarding the high
reliability of the new services (as previous hardware solutions provided 99.999% avail-
ability [3]).

This thesis focuses on the two VNF productively applied IMS and video streaming
as service use cases for evaluation purposes.

2.2.1 IP multimedia subsystem
The Project Clearwater 1 is considered as one of the first examples for Virtual Network
Functions. Project Clearwater is an open-source software, which provides an imple-
mentation of the IP multimedia subsystem (IMS). IMS is an emerging architecture for
IP-based telecommunication services, such as voice-, video calls or messaging.

The core implementation of Clearwater consists of several microservices (see Figure
2.1), allowing users to register, authenticate, and initiate the connection for calls within
the system. There exist the services named Bono, Sprout, Homestead, and Ellis, which
are considered within the experiments in this thesis.

• Bono: This service functions as edge proxy, handling client’s connections. Clients
can register via the SIP protocol in order to initiate calls. The requests are then
routed to the Sprout service.

• Sprout: This service manages the different communications to the other internal
services, e.g. requesting authentication.

1https://www.projectclearwater.org/

https://www.projectclearwater.org/

10

Load
balancerClients

Video
backend
server

Figure 2.2: Structure of web service components for the video-on-demand ser-
vice.

• Homestead: This service contains the client profile information, which is needed
to authenticate clients.

• Homer: This service contains user-specific service settings documents.

• Ellis: This service obtains the information for the management unit. It functions
as an account management system.

Project Clearwater concentrates on the IMS core, such that the focus is the initi-
ating process of calls between users. Calls itself are not handled within the Clearwater
service. Clearwater handles mostly user management procedures as well as call man-
agement related tasks.

2.2.2 Video on demand
As the increase in network usage is highly influenced by video streaming nowadays
[37,38], the thesis applies a reference implementation of a video-on-demand service.

As described in our work [39], we also used the video-on-demand service as a web
service use case in this thesis. The video-on-demand service consists of a setup of three
individual web service components (see Figure 2.2):

1. The video backend server holds a local copy of the video content and is imple-
mented using the RTMP module2 of the Nginx service3.

2. Furthermore, a loadbalancer connects clients and replicated backend servers
through round robin based DNS balancing.

3. Lastly, there exist user clients, hosted on a separated hypervisor. Clients are
streaming available video content using the ffmpeg4 command line tool.

Both service use cases describe the current leading focuses in softwarization of
hardware solutions as VNFs as well as network utilization, which the large telecom-
munication providers need to cope with.

2.3 Analytic Concepts
Resource monitoring data are the aimed data source of this thesis. These are contin-
uously collected and provided to the data analysis component. The monitored data
is considered as an incoming data stream. We consider the following properties of a
data stream as a definition by Babcock et al. [40].

2https://github.com/arut/nginx-rtmp-module
3https://nginx.org/
4https://www.ffmpeg.org/

https://github.com/arut/nginx-rtmp-module
https://nginx.org/
https://www.ffmpeg.org/

11

Definition 2.3.1 (Data stream [40])

• The data elements in the stream arrive online.

• The system has no control over the order in which data elements arrive to be
processed, either within a data stream or across data streams.

• Data streams are potentially unbounded in size.

• Once an element from a data stream has been processed it is discarded or archived
— it cannot be retrieved easily unless it is explicitly stored in memory, which
typically is small relative to the size of the data streams.

Furthermore, the monitoring data will be considered within this thesis as time
series data stream. A proper definition, which we will use in this thesis, has been
defined by Sadik and Gruenwald [23]. Instead of the term time series, they consider
the nomenclature of the data stream, which is going to be switched within this thesis
to provide consistent names to the reader. Thus, the modified version, which is mainly
based on Sadik and Gruenwald [23], is:

Definition 2.3.2 (Time series [23])
A time series is an infinite set of data points P “ txt|0 ď tu, where a data point xt is
a set of attribute values with an explicit or implicit timestamp. Formally, a data point
is xt “ pv, τtq where v is a p-tuple, each value of which corresponds to one attribute,
and τt is the timestamp for the t-th data point.

Albers [41,42] provided a general definition for online algorithms:

Definition 2.3.3 (Online algorithm [41,42])
Formally, an online algorithm receives a sequence of requests σ “ σp1q, ..., σpmq. These
requests must be served in the order of occurrence. When serving request σptq, an online
algorithm does not know requests σpt1

q with t1
ą t. Serving requests incur cost and the

goal is to minimize the total cost paid on the entire request sequence.

Definition 2.3.3 describes that online algorithms have to provide point-wise anal-
ysis properties. Thus, arriving data points have to be computed in the incoming
sequence. In order to ensure that each data point can be computed, the computation
of the previous data point must be completed. Such demands on the computation
time are described as real-time processing and just-in-time processing with respect to
the flexibility on the exact time needed for computation. Nelson and Wright [43] de-
scribed that the time to decision is the crucial objective to be considered in such time
demanding applications. In this thesis, we distinguish between real-time processing
and just-in-time processing as follows.

We consider the term real-time processing to provide hard and fixed bounds on
computation steps with respect to computation time. By this, the computation must
follow an exact number of instructions, which are all bound in time. Thus, the answer
of a given analysis step will always provide an answer after a specific amount of time.
Such hard constraints are needed in many applications regarding human safety, e.g.
assisted surgery, inflation of airbags, ABS systems in cars, etc. Therefore, the time to
decision is fixed by a defined time.

In contrast to this, just-in-time processing provides more flexibility with respect to
the time to decision. As the name indicates, the computation has to be finished just
in time, before a defined scenario happens. For the data stream processing use case,
we consider that computation must finish before a new data point arrives. Thus, the
time to decision is bounded by the monitoring frequency. Within this thesis, we first
concentrate on the just-in-time processing definition.

12

2.3.1 Machine Learning Methodologies
The key indicator for machine learning algorithms is the need of a performance cri-
terion and the need for data to be learned [44]. The performance criterion mostly
focuses on the aimed goal of computation like classification, clustering, regression,
etc. With respect to the availability of training data for the learning process, ma-
chine learning models can be categorized into the following three types: supervised,
semi-supervised, unsupervised. Landauer et al. [45], Ramchandran and Sangaiah [22],
Hodge and Austin [13], and Goldstein and Uchida [17] all describe these three types
for anomaly detection, dependent on the information available for learning, as follows:

• Supervised learning requires labeled information for the given data points. All
different types of anomalies as well as normal behaving data must be present to
the learning approach.

• Semi-supervised learning instead consumes a limited subset of labeled informa-
tion about the normal system state, while abnormal behavior is not provided as
labeled information.

• Unsupervised learning can cope with non-prior knowledge about labels. In order
to determine decisions, this type of learner tries to determine patterns within the
given data but also needs further defined requirements in order to distinguish
between normality and abnormal data.

Another type of characterization between learners is the number of available train-
ing data in time. These are mainly differentiated into offline learning and online
learning [46].

• Offline learning (also mentioned as batch learning) provides the learning algo-
rithm for the complete dataset. Some machine learning algorithms require the
complete set as they are optimized to use random input of training data or com-
pute model updates of the model by multiple repeated runs over such data. To
ensure such availability of the complete dataset, the data has to be stored or
held in memory, which might not be applicable for many use cases.

• Online learning on the other hand does not use the entire dataset at once; it is
based on iterative learning of new incoming data points one after another. As
a data stream might be endless, online learning is the aimed type of learning
method within this thesis.

In the following, we describe different machine learning approaches, which are
frequently used within anomaly detection algorithms to model the normal system
state and are further considered as baseline approaches for evaluation.

2.3.2 BIRCH
BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) [9] is an online
clustering algorithm, aiming to cluster data points within big datasets through iterative
computation. BIRCH applies the concept of micro-clusters as a key methodology in
order to aggregate distribution information of the given data points. This concept
enables the possibility of fixed size memory usage and logarithmic time for iterative
updates. Thus, BIRCH is efficient in computation also for big datasets but is not
considered to be used for time series analysis. The main purpose for BIRCH is the
clustering of big datasets, such that data are randomly inserted into the clustering
algorithm in order to train an optimized model.

There exist many different clustering algorithms using the concept of micro-clusters
in order to summarize data points [9, 47–50]. Micro-clusters are defined as tuple
containing three entries: pN,L, Sq, where

13

Figure 2.3: Structural overview of a CF-tree.

• N is the number of multi-dimensional data points xi represented by the micro-
cluster,

• L the linear sum
řN

i“1 xi of data points and

• S the squared sum
řN

i“1 x
2
i .

This notation allows maintaining an aggregated summary of data point sets in an
online manner by adding new data points to the three components. Thus, the summary
is fixed in memory consumption. Furthermore, clusters can be easily combined by
adding the single components.

Furthermore, they proved the additivity property [51,52] to merge micro-clustering
tuples by:

CF1 `CF2 ` ...`CFb “ pN1 `N2 ` ...`Nb, L1 `L2 ` ...`Lb, S1 `S2 ` ...`Sbq (2.1)

Zhang et al. [9] introduced a hierarchical tree-based model for BIRCH through
defining the nodes of the tree storing Clustering Features (CF) within the height
balanced CF-tree. CFs internally store such micro-clustering information. Each CF is
related to a node within the CF-tree. Furthermore, they use the additivity property
2.1 to define the micro-clustering tuples for parent nodes.

The nodes are stored in the data structure of a height balanced B+-tree, inter-
connecting leaf nodes with each other as illustrated in Figure 2.3. Figure 2.4 showing
a CF-tree containing two CFs in each node on the left side. On the right side, the
data points are represented by colored information about the CFs of the leaf nodes.
Furthermore, the root node information will be based on the additivity property (see
2.1): Root.CF1 “ Leaf1.CF1 ` Leaf1.CF2 and Root.CF2 “ Leaf2.CF1 ` Leaf2.CF2

respectively.
Based on the three values stored within the CF, it is possible determining

• a centroid L
N

and

• radius
b

N ¨ L
N

2
`S´2¨ L

N
2

¨L

N
representing an n-sphere.

Zhang et al. [9] define four phases for BIRCH:

1. Initialize model by loading data : This phase represents the training of the CF-
tree.

2. (Optional) Condense model into a desired size : This phase considers to aggre-
gate the clustering model to be fixed e.g. in height.

14

Figure 2.4: Exemplary CF-tree, representing clusters on the right side.

3. Apply clustering : BIRCH considers first to build the complete tree and then
applying the prediction on the dataset again.

4. (Optional and Offline) Refine clustering : Refine clustering: Zhang et al. [9]
present the possibility to use offline clustering techniques like k-means when
searching a defined number of k clusters. Thus, k-means can be applied to the
centroids of the leaf’s CFs and therefore be grouped.

The insertion of a new data point can be also described in four phases:

1.1 Identify appropriate leaf node: This phase identifies the closest leaf node by
comparing the distance between CFs and the given data point. This can be
achieved by applying the Euclidean distance between the centroid and the data
point. Another possibility can be to check whether the data point fits into the
n-sphere of a CF.

1.2 Modify the leaf node: Given the leaf node, check whether the leaf can absorb
the data point without violating a user-defined threshold, which represents the
maximum size of a leaf cluster. When the condition is not violated, the point
can be added to the corresponding CF. When the condition is violated, the new
point is added to a new CF.

1.3 Modify the path to the leaf: As we created a new CF, it is possible that the leaf
cannot store that many CFs, so the node needs to be split. Thus, the leaf node
is replaced with a new node, which again has new leaf nodes as children.

1.4 Rebuilding: This phase can be applied when multiple splits have already ap-
peared. The goal is to group the closest CFs into the same nodes, which might
be separated by previous splits. This improves the overall structure of the tree.

2.3.3 Autoencoder
An autoencoder is a neural network consisting of the two parts encoding η and decoding
ζ as illustrated in Figure 2.5. They are used in several different contexts e.g. speech
recognition [53], image processing [54] and intrusion detection [55]. Autoencoders are
designed to be applied on dimension reduction tasks [56] due to their construction of
an internal bottleneck. The encoding function projects the incoming data to a smaller
dimension, while the decoding function approximates the encoded version back to the
original dimensions. In detail, autoencoders consist of multiple neural network layers,
split into η : X Ñ Y and ζ : Y Ñ X. Basically, the number of nodes decreases to a
bottleneck in the encoding, while the number nodes in the decoding section increase
again to their original number of dimensions.

15

Encoder Decoder

CPU

Mem

Disk

Net

CPU’

Mem’

Disk’

Net’

𝑥" 𝑥"#

Error

Figure 2.5: Abstract illustration of an autoencoder network with four input and
output layers and a bottleneck of two dimensions.

Figure 2.6: VAE model. Source: [58]

Using an autoencoder as an identity function for a given data stream, each data
point is learned by simple backpropagation iteratively. Given a data point x, applying
both η˝ζ : X Ñ X results in an approximation of the same data point x1 for computing
the reconstruction error.

Most autoencoders use either simple feedforward neurons or restricted Boltzmann
machines as layers.

2.3.4 Variational Autoencoder
In contrast to the defined autoencoder network, there exists an adapted version map-
ping the encoded values into predefined distributions, called variational autoencoders
(VAE) [57,58]. A VAE is a neural network architecture that is based on the structure
of an autoencoder but including distribution models within the bottleneck. The input
vector from the encoding network is mapped to a predefined distribution instead of
mapping it onto a vector in a traditional feedforward autoencoder. Hereby, the vector
of the traditional autoencoder is replaced by two vectors. One of them represents the
mean and the other capturing the variance of the predefined distribution. The decod-
ing network is fed through providing such mean and variance from the distribution,
which represent the low-dimensional latent space.

Figure 2.6 shows the dependencies of the generative process by illustrating the
latent variable z and known variable x, both assume an underlying distribution N
(usually a multivariate Gaussian distribution N pµ, σ2

q). The solid lines describe the
generative model pθpx, zq “ pθpx|zqpθpzq, while the dashed lines approximate the
variational value qϕpz|xq for the posterior, where N pµϕpxq, σ2

ϕpxqq derive from the
neural network.

16

Figure 2.7: LSTM cell visualization. Source: [64], part of the image is taken
from the original visualization.

2.3.5 Long Short Term Memory Networks
Traditional feedforward neural networks have no notion of order in time, as they do
not consider data from previous iterations. This issue is solved by introducing recur-
rent loops within the neural network model, making historic decisions from previous
iterations available to the current calculation. Such networks are also known as Recur-
rent Neural Networks (RNNs) [59]. Due to their construction, RNNs capture a fixed
number of previous states, so that the concept of Long short-term neural networks
gains attention.

In more detail, many RNNs are not able to learn long time lags between relevant
input events due to the backpropagated error, which either exponentially increases or
decreases, thus effectively getting lost. This vanishing error problem was tackled by
introducing several gating units combined as Long Short Term Memory (LSTM) cell
[60]. LSTMs are widely used in several different application areas, e.g. stock market
price predictions [61], patient diagnosis prediction based on patient’s history [62] and
video classification [63].

Figure 2.7 by [64] presents a LSTM cell (here called block), consisting of the three
gates: input gate, output gate and forget gate. The image also shows the dependencies
between the different states and whether there exist weights, computational operators,
and usage of activation functions (with the usual usage indication in the legend).
Besides the gates, the input and output blocks are shown, which are also present in
the RNN context. The incoming value to an LSTM cell is firstly multiplied by the
activation of the input gate. The resulting value is further multiplied by the forget
gate, which captures the output values of all previous cell values. Lastly, the value
is multiplied by the output gate and provided as cell output to the next layers of
the network. The gates use element-wise multiplication by sigmoids, so they decide
when data is allowed to enter, leave, or be removed. Their own set of weights is
also adjusted with the recurrent networks learning process, so over time, the unit
learns when to forget information or ignore certain input. So, a state will not impact
the network’s output. Each LSTM layer consists of a set of these units, which are
recurrently connected.

17

This vanilla version of LSTM cell is also used within this work with the proposed
activation functions. The concrete formulas integrated into the framework are de-
scribed by Griff et al. [64] and defined by Hochreiter and Schmidhuber [60].

2.3.6 Dynamic Threshold Models
Recent works apply dynamic thresholding models in order to differentiate anomaly
scores in an online manner [65–67]. A valuable threshold T has to be selected in order
to differentiate between normal and abnormal scores.

The following four different models for calculating a threshold are investigated:
Gaussian Cumulative Aggregation (CA), Sliding Window Aggregation (SWA), Expo-
nential Moving Model (EMM), and Double Exponential Moving Model (DEMM). All
of these methods are well known approaches either calculating statistical values, which
are used for building a threshold or are used for smoothing time series data [68].

Gaussian Cumulative Aggregation For the cumulative aggregation based
threshold learning, we assume that the reconstruction error ∆ is normally distributed,
also assumed by [65–67]. Consequently, we define a threshold based on the mean µp∆q

and standard deviation σp∆q of the complete historic values of ∆. Based on this as-
sumption, we define a threshold of T “ µp∆q ` c ¨ σp∆q. The parameter c reflects a
sensitivity value, as the false alarms can be approximated through T . Obtaining the
mean and standard deviation iteratively over time is straightforward and computed in
constant time.

Over longer periods of time, new data does not have a great impact on T any-
more. This makes this approach difficult to adapt to dynamic and concept changing
situations. In order to avoid this behavior, there exist further methods tackling this
problem.

Sliding Window Aggregation Sliding windows are a concept of storing the
latest historic values. The window has a fixed size, so that for new incoming data, older
data points need to be removed. For this purpose, we store the latest reconstruction
errors in a sliding window. Based on these errors, the mean and standard deviation are
calculated and the same threshold T can be computed as described above. Obtaining
these information is also possible iteratively by applying the same mechanism like used
in CA with subtracting the older values, which are removed from the window.

A major disadvantage is that an expert has to define the size of the window and
may be highly dependent on the current situation of the monitored system. In order
to automatically give newer data more impact, the following methods are defined.

Exponential Moving Model The exponential moving model is used for smooth-
ing values or calculating a running moving average and variance. Basically, the latest
data has exponentially more impact to the current value than the older data. We use
the weighted version of EMM [69], where the user can influence the factor of impact
of new data by defining a weight α, also called as learning rate. For a new incoming
data point x at time t, the mean µ and variance v can be calculated as:

µt “ p1 ´ αq ¨ µt´1 ` α ¨ x

v2t “ p1 ´ αq ¨ pvt´1 ` αpx ´ µt´1q
2
q,

(2.2)

where σt “
?
vt. For the initial configuration we use the first incoming data point as

initial µ.
Based on this concept, advanced smoothing models are developed capturing further

time series behaviors.

18

Double Exponential Moving Model The DEMM [68] consists of two func-
tions for the overall trend m of data and the non-trend function, also called baseline
n. For a new incoming data point x, the resulting smoothing value x1 combines both
functions by simply adding the results x1

“ mpxq ` npxq. For DEMM, we use again a
weighted model, such that the user can define its own learning rate for both functions,
weight α for n, and weight β for m.

Exemplary, we show how the calculations are performed for the mean. The stan-
dard deviation can be calculated respectively like shown in EMM.

nt “ p1 ´ αq ¨ pnt´1 ` mt´1q ` α ¨ x

mt “ p1 ´ βq ¨ mt´1 ` β ¨ pnt ´ nt´1q

µt “ nt ` mt

(2.3)

.
There exist further advanced models like the Holt-Winters model [70, 71], which

additionally includes the seasonality of regularly upcoming changes within the data
stream. Here, the user needs to define the exact seasonal length. As we currently do
not consider seasonal data, we did not integrate this method to our evaluation and
propose this evaluation with other datasets for future work.

2.3.7 Genetic Algorithm
Within this thesis, we concentrate on genetic programming to be used as basis for
hyperparameter optimization [72–75]. Genetic programming is also applied in differ-
ent domains like medical image processing [76–78], feature engineering in stock price
prediction [79,80], electricity load analysis [81] and rainfall forecasting [82,83].

Algorithm 1 Basic Genetic Algorithm based on [84]

1: population Ð random generation of initial pool of chromosomes
2: while terminationCriterion is not met do
3: Evaluate fitness for each chromosome
4: Select parents to breed new generation
5: population Ð Crossover parents
6: Mutate population

Algorithm 1 shows the general process of a typical genetic program as defined
in [84]. It consists of the following main steps:

• Initial population : Genes are considered as entities to be optimized (e.g. sin-
gle hyperparameter). Those genes form a chromosome, which represents the
combination of specific genes into an algorithmic solution. The population is a
selection of chromosomes and is initiated by this first step.

• Fitness function: The fitness function provides a scoring value of which the in-
dividual chromosome’s performances can be differentiated. This score functions
as optimization criterion and for ranking the individuals to distinguish between
promising individuals from those, which do not provide good results.

• Selection: Based on the fitness scores, the selection of individuals describes
which selected individuals will pass their genes to the next generation. These
selected individuals are also called parents.

• Crossover : When breeding the new generation, we crossover two parents of
the set of selected individuals. The crossover describes how the genes of the
individual parents are selected to form the child.

19

predicted
anomaly normal

actual anomaly TP FN
normal FP TN

Table 2.1: Binary classification possible outcomes with respect to the ground
truth value.

• Mutation: This step describes whose crossover genes are mutated with some
probability. This evolves the population to break out of local optima, thus
gaining the possibility to find the global optimum or a better local optimum.

• Termination: This phase is optional, but needed when a selection has to termi-
nate. The termination criterion provides the exit case when this optimization
technique should stop being performed. For example, when there is no increase
detected in the average fitness score, the population has reached an equilibrium.

There exist multiple more complex extensions to optimize the general structure
of genetic programming like [85–88]. We refer the interested reader to the survey by
Lim [84] providing an extensive overview of different genetic programming adaptations.

2.4 Evaluation Metrics
Evaluations are performed throughout the thesis. In order to provide the reader with
a better understanding of the given evaluation metrics, we next define the metrics
used.

Pointwise evaluation As anomaly detection is a binary classification task, the
output results are expected to be binary (normal or anomaly). Consequently, a posi-
tive (anomaly detected) and negative class (normality) can be used for labeling. The
assignment of correct and incorrect class labels causes four different possible outcomes
regarding the correctness of the prediction compared to the actual state. Table 2.1
illustrates the ground truth values of the given data (actual), which can of cause be
labeled as one of the both classes normal and anomaly, while the prediction also pro-
vides both possible outcomes. This results into the four possible states of true positive
(TP), true negative (TN), false positive (FP, also type-I error) and false negative (FN,
also type-II error). With respect to anomalies, the ground truth of the positive state
can be true or false with respect to the prediction, resulting in TP and TN, respec-
tively. The same holds for the negative state representing the normal indicator. Table
2.1 is also known as confusion matrix, where TP, TN, FP, FN represent the counts of
appearances. The sum of all these four cells is the number of total observations.

The perfect prediction model contains exclusively counts for true positives and
true negatives within the confusion matrix, while false positives and false negatives
did not appear at all. In practice, prediction models produce errors and misclassify
instances. While the confusion matrix gives an intuition for the quality of the pre-
diction model, there exist further evaluation metrics capturing the quality aspects to
compare classification results.

Accuracy “
TP ` TN

TP ` TN ` FP ` FN
(2.4)

Equation 2.4 represents an overall score, which describes the proportion of cor-
rectly classified instances versus all data points, named accuracy. For imbalanced
datasets, this score is also imbalanced [89]. Consequently, TP-rate (sensitivity) and

20

TN -rate (specificity) can be investigated showing whether abnormality or normality,
respectively, are captured more precisely (see Eq. 2.5 and 2.6). Accordingly, FP -rate
and FN -rate represent the complement representing the error rates for abnormal and
normal behavior (see Eq. 2.7 and 2.8).

TP-rate (recall) “
TP

TP ` FN
(2.5)

TN -rate “
TN

TN ` FP
(2.6)

FP -rate “
FP

TN ` FP
(2.7)

FN -rate “
FN

TP ` FN
(2.8)

The recall (TP-rate) covers how much of the predicted anomalies are actual anoma-
lies, while the precision (see Equation 2.9) covers the proportion of anomalies correctly
classified in contrast to all anomalies. The F1 score (see Equation 2.10) represents the
harmonic mean of the precision and recall as a combination.

precision “
TP

TP ` FP
(2.9)

F1 “ 2 ¨
precision ¨ recall

precision ` recall
(2.10)

For imbalanced datasets, which are common for anomaly detection, there exist
further metrics representing an overall score like the Matthews Correlation Coefficient
[90] and the more conventional evaluation metric the area under curve (AUC) of a
receiver operating characteristic (ROC) curve [91]. The ROC curve represents the
TP-rate (sensitivity) in contrast to the FP-rate (1 ´ specificity “ 1 ´ TN-rate). The
area under the convex hull of the multipoint-curve represents the AUC value including
both type-I as well as type-II errors. The optimum is the area under the simple
trapezoid defined by the TP -rate and TN -rate of the model [91]:

AUC “
pTP -rate ` TN -rateq

2
(2.11)

The AUC value is also referred to as balanced accuracy as it captures the TN-rate
and TP-rate without encountering the dataset’s imbalance [89].

Time-based event evaluation The point-wise evaluation metrics do not cap-
ture time-dependent metrics. There exist point anomalies, but also anomalies lasting
for longer periods of time. Thus, the anomalies appear as continuous sequence of
anomalous observations. Let us call such sequences anomaly events, where the self-
healing pipeline can try to solve the problem. Anomaly events capture degraded state
anomalies and provide consequently the possibility to react.

Figure 2.8 illustrates the key measurements, which are important for arriving at
the evaluation metrics. Let us assume that at first there is a normal behavior until
the point in time marked by anomaly injection started, representing the start of the
anomaly event. Identifying the first following observation in time as an anomaly would
be the most beneficial for the further analysis and selection of appropriate remediation
actions. This time difference, between the start of an anomaly event until it is actually
detected (as shown as ∆time in the image), is investigated for the time-based event
evaluation for the different anomaly types.

21

time
m

em
or

y
Start anomaly injection Anomaly detected

Δ𝑡𝑖𝑚𝑒

False alarms

Figure 2.8: Time-based event evaluation principles and key metrics.

As a consequence, we measure the percentage of events, which are correctly de-
tected (TP -rateevent) and the average (and standard deviation) of the time differences.
In addition, the false alarms in the normal signal are measured to provide relevant
metrics for production environments. Furthermore, such false alarms may appear as
phases. Thus, we also consider the average (and standard deviation) of such false
alarms in time as an evaluation metric.

Chapter 3

Related Work

3.1 Characteristics of Service Anomalies
There exist several possibilities grouping anomaly scenarios for services on common
properties like severity, impact, or component type or origin of cause [27,92]. Section
2.1.2 provided a definition of severity based order of anomaly classes. We concentrate
on degraded and masked anomalies.

Indication patterns in monitored resource consumption of a system can be grouped
into the following categories:

• Temporal evolution : The time-dependent change of resources varies in different
anomaly scenarios.

• Signal variance changes : Resource metrics change in fluctuation over time.

• Propagation to correlated signals : Single resource metrics cause propagation to
further resource metrics.

With respect to the temporal evolution, we distinguish mainly between successive
change (increase or decrease) over time or rapid changes. While rapid changes always
need a preceding event as a trigger, the former can develop over time without an
obvious cause [29]. Such triggering events can be e.g. software bugs or hardware
failures leading to instant drops or jumps of the system’s resource utilization causing
degraded system performance. Jim Grey [93] introduced the terminology of Heisenbugs
describing the phenomena of occurring anomalies during productive runtime, which are
unable to be detected with modern approaches of automated software testing [29, 94]
and bug detection techniques [95]. Grottke and Trivedi [96] described Mandelbugs as
a subset of Heisenbugs influencing the execution environment with respect to timing,
ordering of inputs, operations, and the time lag between bug activation and failure
occurrence [29]. Mandelbugs as well as the generalized Heisenbugs are considered to
be examples for triggering events causing rapid changes.

System components can also develop a progressively increasing or decreasing re-
source utilization over time due to software aging [97] (see Section 2.1.2). For example,
Garg et al. [98] evaluated the resource leakage behavior of nine UNIX workstations’
operating systems over a total of 53 days and showed the presence of memory leaks
and successive increase of file table entries. More recent studies show that software
aging is a common part of today’s complex and distributed systems infrastructure.
The presence of software aging was shown for cloud environments [99], web servers
and service oriented applications [100,101], application server environments [102], and
e-commerce applications [101].

22

23

Signal variance changes describe the volatility of resource consumption of a system
over time. We differentiate between constant changes (small variance) and fluctuating
changes (high variance). While rapid changes usually alternate constantly around a
value, progressive anomaly scenarios are indicated by a certain trend, which can vary
in fluctuation due to its intensity and deviation from the trendline during runtime.
Cassidy et al. [103] illustrate the existence of resource fluctuation due to software
aging for memory shared database servers and Grottke et al. [104] provide pattern
models of resource utilization changes for software aging including variance.

Propagation to correlated signals indicates the instant correlation of a single mon-
itored metric to another resource metric. Zhang et al. [105] showed the existence of
correlation of network traffic datasets covering a wide range of link types such as back-
bone, internal, edge, and wireless. Mestres et al. [106] show for VNF experiment the
presence of correlation between network packets and the CPU utilization.

In productive environments, combinations of the indication patterns are likely to
happen, combining temporal changes in evolution, variance, and propagation to the
multivariate resource data. Analyzing such hybrid indicators is complex and time
consuming for administrators. Thus, AI-based methods are hoped to help users sig-
nificantly.

Based on these categorizations, we included resource-based anomaly injections
applied to cloud services, providing emulation of degraded state anomalies (see Section
7.1.2).

3.2 Anomaly Detection
Supervised Anomaly Detection General classification algorithms can be uti-
lized for anomaly detection as anomaly detection is a binary classification problem.
A collection of classification algorithms are available by the WEKA machine learning
framework [107], which are presented in the following.

J48 is based on the implementation of the C4.5 decision tree learning algorithm
by Quinlan [108]. The C4.5 algorithm constructs a decision tree by splitting up nodes
on the metric with the highest normalized information gain. Starting from the root
node (first node in the tree), the tree is split up until the information gain falls below a
predefined threshold. In an optional pruning phase, the resulting tree is optimized from
the leaf nodes upwards to decrease overfitting effects. J48 is applied in many different
anomaly detection scenarios like network intrusion detection [109, 110], breast cancer
detection [111], credit card fraud [112].

Logistic Model Tree (LMT) [113] uses the C4.5 decision tree splitting criterion, but
works with logistic regression models in the tree nodes, instead of the constant values
used in simple decision trees. The LogitBoost algorithm [114] is used to efficiently
compute the regression models for the internal decision nodes. A point to be analyzed
is classified by traversing the tree from the root node and testing the input sample
against each contained regression model to decide which path should be followed down
the tree. LMT is recently applied to e.g. Intrusion detection [115] and anomaly
detection for industrial control systems [116].

Hoeffding Tree is an online decision tree learning algorithm, which was proposed by
Hulten et al. [117]. As the online scenario accepts a potentially endless data stream to
learn, the authors use the Hoeffding bound [118] to predict the number of data points
needed to be learned for a new decision criterion in order to approximate the deviation
of the unbounded data stream for single features. Taking the number of samples into
account, the Hoeffding Tree algorithm operates on a window of data. The splitting
criterion is the information gain, as used in the C4.5 algorithm. Hoeffding Trees are
applied also for intrusion detection [119, 120] and surveys show the applicability of
Hoeffding Trees and adapted versions of them for anomaly detection [121,122].

24

The Random Tree classifier constructs a decision tree by randomly choosing the
features evaluated for each decision node [123]. The Random Forests classifier [123]
extends the Random Tree algorithm by applying a multitude of Random Tree models,
each trained with a random subset of the total of available features. Random Tree
and Random Forest are applied recently in anomaly detection tasks like credit card
fraud [112], insurance fraud [124], database query access [125].

Naive Bayes [126] learns a Bayesian network as an underlying model. A Bayesian
network consists of a graph-based model indicating dependencies between values with
associated conditional probabilistic tables. Naive Bayes uses a strong conditional inde-
pendence assumption, which states that all attributes of a data point are independent,
in order to efficiently learn the model. The applicability of applying Naive Bayes to
anomaly detection tasks was shown by Sebyala et al. [127] and Muda et al. [128] for
intrusion detection as well as for breast cancer [129] and lung cancer detection [130].

Further classification algorithms, which WEKA provides, are summarized as fol-
lows. The Reduced Error Pruning Tree (Rep Tree) applies additional reduced-error
pruning [131] as a post-processing step of the C4.5 algorithm. The Decision Stump
classification algorithm is based on the C4.5 decision tree learning algorithm but uses
only one layer for decisions [132]. The algorithm stops learning when the best fea-
ture with the most information gain is added. Decision Table maps rules to learned
classes [133]. In general, decision tables divide up the large hypothesis space to smaller
areas, where an optimal feature subset is chosen for the decision table representation.
JRip is a classification algorithm learning a set of rules and was proposed by Co-
hen [134]. JRip uses incremental pruning to reduce the error by finding core rules
describing a class to be learned. ONER [135] is a rule-based classification algorithm
using minimum-error attributes for prediction. Frank and Witten [136] proposed the
PART algorithm, which utilizes lists of decision rules as a prediction model. For each
class, a C4.5 decision tree is created and leaves represent a rule for the class. Sequential
Minimal Optimization (SMO) [137] is an optimized version of Support Vector Machines
(SVMs). As SVMs need to solve large quadratic programming problems, SMO divides
it into smaller quadratic programming subproblems in order to efficiently learn large
sets of data.

Saibharath and Geethakumari [138] propose an architecture for anomaly detection
in cloud environments through applied log analysis for VMs, network behavior metrics
etc., applying WEKA-based the described classification approaches. Chavan et al.
[139] and Krishna and Rao [140] investigated malware detection utilizing the classifiers
Random Forest Random Tree, LMT, J48, SVM.

Rezvani [141] proposed a framework to evaluate machine learning algorithms in
a simulation environment, running different cloud-based services and security-related
attacks. Rezvani applied J48, Naive Bayes, Decision Table, and Random Forest on
various intrusion detection tasks and showed their applicability. Garcia-Teodoro et
al. [142] provided a survey for anomaly-based intrusion detection systems including
the description of reviewed supervised machine learning approaches like Bayesian Net-
works, neural networks, and statistical approaches to classify types of attacks.

Sauvanaud et al. [143] applies the supervised Random Forest [123] approach on
individual service-components. Through aggregation by weighted voting, the ensem-
bler predicts anomalies for the overall service. The evaluation is based on the VNF
scenario Clearwater likewise to our setup as presented in this work. The results show
the applicability of supervised approaches in order to detect degraded state anomalies.

Adamova et al. [144] evaluate anomaly detection approaches to a combination
of network attacks on service migration in cloud environments. They show that
Expectation-Maximization (EM) clustering applied as a supervised technique pro-
vides high AUC values. Clusters are generated for individual normal and abnormal
behaviors. Huang et al. [145] also investigate anomaly detection approaches for ser-
vice migrations in virtualized environments by applying the clustering techniques EM-

25

clustering and proposed an adapted version of LOF with abnormal feature reasoning.

Semi-supervised Anomaly Detection For anomaly detection in time series, a
lot of works apply statistical methods to analyze the underlying behavior and predict
deviations of its statistical distribution. Statistical parameters like k-sigma [146,147],
statistical hypotheses testing [148, 149], Multivariate Adaptive Statistical Filtering
[150], Holt-winter method [151], exponentially smoothing [152], window based PCA
[153], robust PCA [154,155], relative entropy [156], Kolmogorov-Smirnov test [157] are
applied to find anomalies.

One-class Support Vector Machines (OSVM) is trained with normal training data
[158]. It creates decision boundaries (frontier) through hyperplanes as a kind of convex
hulls around the normal data in order to differentiate the abnormal data points. OSVM
utilizes a kernel (e.g. RBF kernel) and a scalar parameter to define the frontier. The
margin of the OSVM is configurable as a parameter corresponding to the probability
of finding abnormal observations outside the frontier.

Isolation Forest [159] utilizes the mechanisms of Random Forests to create multiple
random trees through selecting features and the split value randomly. As an assump-
tion, the algorithm assumes the knowledge about the maximal and minimal values for
selected features, while Random Forest applies splitting conditions like information
gain. The tree is built up until samples are isolated. The path length from root to
the isolated sample is measured and reported as anomaly score and averaged over the
multiple trees. Abnormal samples are indicated with a short path length compared to
normal data points.

Local Outlier Factor (LOF) [160] measures the local density of data points with
respect to its neighbors. The LOF score reflects the ratio of the average local density
of a data point’s k-nearest neighbors and its own local density. Abnormal data points
are expected to have a smaller local density in contrast to its k-nearest neighbors,
while normal data points should be represented by similar local density.

Gaussian Mixture Models (GMM) [161] are able to build clusters from trained
normal data. Each cluster is represented through a Gaussian probabilistic density
function. Thus, probabilistic regions can be defined where normal data are expected,
while abnormal points are expected in regions with low probability. Reddy et al.
[162] show the applicability of GMM for anomaly detection of security-related issues
in network traffic, likewise to Bahrololum and Khaleghi [163] providing results to
intrusion detection.

The BIRCH [52] (see Section 2.3.2) clustering algorithm was also proposed for
anomaly detection in various papers for money laundry detection [164] and KDD’99
datasets [165]. Normal data is fitted to clusters by BIRCH, providing border definitions
through the micro-clusters in order to differentiate abnormal data, which is assumed
to be outside such micro-clusters [165].

The applicability of neural networks are investigated for anomaly detection in re-
cent years (e.g. surveys by Chalapathy and Chawla [166] and Chandola et al. [18]).
Autoencoders (see Section 2.3.3) are for example recently applied to anomaly de-
tection tasks like credit card fraud detection [167], malware detection [168], intru-
sion detection [55], and anomaly detection for indoor wireless sensor network as IoT-
application [169]. Through training normal data, the Autoencoder is able to capture
the behavior of the normal signal resulting in a low reconstruction error. By user-
defined thresholds or statistical analysis, differentiation of normal data and abnormal
data is possible as abnormal data is expected to have higher reconstruction values.
Anomaly detection through VAE networks (see Section 2.3.4) can be utilized in the
same way as Autoencoders and is applied for example for mechanical vibration signals
of a motor [170]. LSTM-based neural networks (see Section 2.3.5) are as well applied
for anomaly detection in automotive systems [171] and medical ECG signal analy-
sis [172], which also show the advantages for time-series analysis. AELSTM combines

26

LSTM cells within an Autoencoder neural network structure. These hybrid models
are aimed to provide the capability to add time-based information to the Autoencoder
structure, which has no notion of time modeled. An example of an anomaly detector
is the recent usage for detecting abnormal behavior of robot-assisted feeding [173].

Self-organizing maps (SOM) are a type of neural network, which provides compet-
ing features due to its network topology. Thus, features can distinguish to be different
in importance to map a given e.g. data stream. This behavior is for example applied
to intrusion detection [119] and for anomaly detection for IT-system monitoring [174].
For the latter case, the SOM is configured to represent the overall IT-infrastructure
in order to predict the overall performance of the system. Liu et al. [174] show that
anomalies within virtual machines can be detected in related regions of the infras-
tructure. In contrast to our work, we do not aggregate data from several hosts in a
single model but create models per individual component in order to capture its own
behavior.

Unsupervised Anomaly Detection Unsupervised anomaly detection does not
assume the existence of any labeled data. The key difference in semi-supervised learn-
ing is the absence of normal labels.

Laptev et al. [147] developed a framework for unsupervised anomaly detection for
univariate time-series data called EGADS. EGADS includes several different anomaly
detection approaches. The first group of anomaly detection techniques learns a recon-
struction of the time series (e.g. Arima, Exponential smoothing), where the prediction
error (Euclidean distance) or the relative error xt

ut
is applied and a threshold selected

through modeling these errors to a Gaussian distribution and T “ µ ` 3 ¨ σ. The
second class of anomaly detection techniques decompose the time-series into trend,
seasonality, and noise. Whenever the noise component exceeds a threshold defined
limit, the data point is reported as anomaly. The threshold is again defined by the
threshold function described above. The open source implementation1 assumes the
existence of the complete dataset although the methods can be partially applied in an
online manner.

Hundman et al. [65] provided an unsupervised anomaly detection based on LSTM
and dynamic thresholding for data streams. From a multivariate time series, a se-
quence of a fixed number of data points is selected and feed into the model. The
presented model applies an LSTM neural network for every single dimension and
predicts the following data point. Based on the prediction, the prediction error is
calculated by dimension-wise euclidean distance. They apply exponentially-weighted
moving average to smooth the errors. Based on the smoothed errors, the threshold is
calculated, which is based on the mean and standard deviation of the set of smoothed
historic errors by applying the Gaussian Tail. Furthermore, they propose mitigating
false positives through postprocessing and reclassification of data points by selecting
a sequence of errors, which produce the maximum smoothed errors but are labeled
as normal. Another approach would be to investigate the severity of the error and
select a border. Experiments showed that for two NASA datasets the approach can
be applied to telemetry data and provided a total recall of 90.3% for point anomalies
and 69% recall for contextual anomalies.

Malhotra et al. [66] also proposed anomaly detection through LSTMs. The model
is trained based on assumed normal data points based on a fully connected neural
network with two layers of recurrently connected LSTM cells. The model forecasts
the next l data points and computes an error based on the Euclidean distance of every
single dimension. Such vectors of errors are used to fit a multivariate Gaussian distri-
bution. Thus, for new arriving data points, a probability of normality can be predicted.
Based on a user-defined probability threshold, abnormal data points can be detected.

1https://github.com/yahoo/egads

https://github.com/yahoo/egads

27

For this study, the approach estimates this threshold based on an anomaly validation
set. The experiments were executed on four different datasets among ECG signal
analysis, Space shuttle data, engine sensor data, and power consumption dataset. The
results show a high precision (ą 71% ´ 98%), but low recall (ă 20%).

Oh and Yun [67] investigated anomaly detection for machine sound data. Here, the
sound signal is transformed through Short-time Fourier transform (STFT) [175] into
the frequency domain. The resulting spectrogram is further used to train a feedforward
autoencoder utilizing a U-net compression structure of hidden layers. Likewise to
Malhotra et al. [66], the reconstruction error is used to train a Gaussian distribution
representing the normal error behavior and to determine a fixed threshold based on a
validation set. The article shows the applicability for the machine sound use case with
more than 90% accuracy.

Xu et al. [176] propose the approach Donut for detecting abnormal behavior in
seasonal web application KPIs. The proposed approach utilizes a sliding window of
user-defined KPI observations and applies a variational autoencoder (VAE) to learn
the reconstruction of observations in a window. In contrast to the feedforward variant
of an autoencoder, a VAE encoded values into predefined distributions [57, 58]. Fur-
thermore, Donut uses the reconstruction probability [177] which includes, beside the
reconstruction error, also the variance parameter of the distribution function. They
stated the applicability of the approach by analyzing KPIs data of a top global internet
company achieving F-scores from 0.75 to 0.9.

Ibidunmoye et al. [178] also analyze the performance of IT-services, but also in-
frastructures, in order to detect anomalies. The two unsupervised methods Behavior-
based anomaly detection (BAD) and Prediction-based anomaly detection (PAD) are
presented. BAD analyses statistical properties of a tumbling window by applying ker-
nel density estimation [179]. Anomalies are predicted whenever the density estimation
deviates from the low side of the Shewharts control chart [180] compared to the lat-
est tumbling window. PAD applies forecasting based on the knowledge of the latest
data points in a sliding window. A cubic spline model is applied to forecast the next
data point. Based on the forecast and the actual observed data point, a prediction
error can be calculated. Again an adaptive threshold is applied to recognize anoma-
lies based on the errors. As a threshold, an exponentially weighted moving average
control chart [180] is applied to the errors of the recent sliding window. Based on the
threshold, provided by the control chart model, anomalies are triggered whenever the
prediction error exceeds these bounds.

Ahmad et al. [181] propose an anomaly detection based on Hierarchical Temporal
Memory (HTM) networks, which is a special type of artificial neural networks inspired
by sequential learning and sparse activity in the human cortical regions (thus does not
use fully connected layers, but sparse connections between nodes). HTMs are a rather
new sequence learning approach improving with modern neuroscience [182] compared
to longstanding LSTMs, which have been researched for nearly two decades [60]. The
HTM network’s core components consist at first of an encoder and a spatial pooler
creating a sparse representation of an incoming sequence. The resulting sparse binary
vector is used as one of the two outputs of the HTM network. The second output
is produced by the sequence memory cell of the HTM network reconstructing the
sparse input. Based on these two outputs the prediction error is calculated and an
anomaly alert is triggered whenever the prediction error exceeds a threshold based on
the mean and standard deviation of an assumed Gaussian distribution of the error and
a user-defined sensitivity parameter.

Cotroneo et al. [183] use statistical correlation analysis between system compo-
nents in order to automatically detect anomalies. Changes within these correlations
are predicted as anomalies. The focus of Cotroneo et al. [183] is to combine data
from different hosts. This approach suffers from scalability when applied to dynamic
service and infrastructure environments. Thus, we aim to create detection models for

28

individual hosts, which can be applied directly to the monitored entity.
Dean et al. [184] also utilize SOMs, but propose an unsupervised detection model.

They aim to predict failures within a cloud infrastructure, but do not consider degraded
state anomalies as a use case.

3.3 Concept Adapting Clustering
Chapter 5 develops a concept adapting online clustering approach based on BIRCH
[9, 52]. The corresponding related research is presented in the following. It consist of
an overview of different online clustering approaches and specific BIRCH variations.
As we provide a concept adaptable method, we also present decay methods, which are
applied to online clustering approaches.

Online Clustering BIRCH [9,52] is an agglomerative hierarchical clusterer storing
summarized cluster information as cluster features in a balanced tree structure. The
cluster features consist of a 3-tuple, called micro-cluster, capturing hyper-spherical
shapes represented by a centroid and radius. BIRCH provides iterative inserts of new
data points and therefore provides iterative updates of the model. Consequently, the
model can be applied in an online manner. Through rebalancing, cluster features are
able to be merged due to the additive property of micro-clusters [9]. The approach
assumes randomized input of a large, finite dataset and a fixed number of searched
clusters. The resulting centroids aim to represent the centroids provided by k-mean
clustering, but with efficient iterative computation by a fixed-sized tree data structure.

Likewise to BIRCH, scalable k-means [185] summarizes randomly chosen data
points from a large, finite dataset by a set of clustering features. The memory con-
sumption is continuously checked and clustering features are summarized when the
buffer size of the memory is exceeded. K-means clustering is applied to the com-
pressed information and terminated e.g. when centroids are not moving anymore.

Farnstrom et al. [186] analyzed the proposed compression techniques by Bradley et
al. [185] and suggested a simplified variant of a single-pass k-means algorithm. They
showed that the simplified variant outperforms any compression variant proposed by
Bradley et al., but still provided same qualitative results.

Ackermann et al. [187] developed the StreamKM++ clustering algorithm, which
combines coreset as data stream summary and k-means++ [188]. Like BIRCH, a tree
structure is built, but instead of using micro-clusters, coresets are utilized. Ackermann
et al. [187] showed that the runtime is significantly slower than BIRCH, but clustering
results outperform those of BIRCH.

Aggarwal et al. [189] investigated the problem of the influence of historic data of
single-pass summaries applied by online clustering approaches and proposed a time
window based approach, named CluStream. The time windows aim to capture differ-
ent lengths in historic time frames and therefore significant changes can be employed.
Different length of time windows are captured in a pyramidal structure with micro-
clusters. Kranen et al. [190] handles time frame summaries in a tree structure, called
ClusTree. The tree structure includes a self-adaptive index structure of micro-clusters.
Zhou et al. [191] give more recent data points higher impact on a cluster feature data
stream summary. They developed the SWClustering algorithm applying an exponen-
tial histogram of cluster features through sliding windows.

The online clustering approaches, described above, are mainly inspired by k-means
and provide a technique for summarizing the data stream. Consequently, such algo-
rithms are not capable of detecting arbitrary shapes as they use e.g. micro-clusters,
which provide spherical shapes. Density-based clustering like DBSCAN is therefore
applied in order to detect arbitrary shapes as they assume neighborhood dependencies
through e.g. Euclidean distance but not structural properties. Chen and Tu [192]

29

proposed D-Stream, a density-based online clustering approach. D-Stream applies
density grid mapping in an online manner while applying offline density clustering as
a secondary process on the resulting finite grid structure. Cao et al. [49] presented
DenStream, which applies data stream compression through micro-clusters, which rep-
resent core-points of the density structure. Additionally, they included a novel pruning
strategy to grow new emerging micro-clusters, while avoiding outliers.

Further online clustering techniques for multivariate time series data were inves-
tigated by Rodrigues et al. [193] maintaining a hierarchical tree structure of clusters.
By applying correlation-based dissimilarity measures, each node in the tree splits the
time series into the farthest neighbor pairs. Gama et al. [194] apply a distributed
stream clustering approach to a sensor network. It combines distribution mapping
for state representation, which are reported to a centralized component managing the
distribution mappings globally and can apply updates locally at the sensors.

BIRCH Variations Lorbeer et al. [195] introduced A-BIRCH. A-BIRCH provides
a solution for automatic estimation of an optimal threshold through Gap Statistics
[196]. In addition to the radius, the threshold decides whether nearby points of a cluster
are integrated into such. Thus, the threshold influences the structure of micro-clusters.
In the original paper of BIRCH, Zhang et al. [9] proposed using linear regression based
on the enlargement of the cluster radii of the tree as an approximation of the threshold.

Lorbeer et al. [195] additionally introduced the Multiple branch descent BIRCH
(MBD-BIRCH). MBD-BIRCH adds a mechanism to BIRCH, which assigns for a new
arriving data point multiple decent leaf clusters beside the closest by distance. They
propose to search for nearby clusters in a user-defined distance s around the closest
cluster’s centroid. Lorbeer et al. [195] showed, that the higher s, the less splitting is
applied in BIRCH, but it will also slow down the algorithm as the number of branches
to descend increases.

Fichtenberger et al. [47] describes a modification to BIRCH, which provides a
provable approximation of the trained cluster centroids compared to k-means cen-
troids. The modified version is referred to as BICO as it includes coresets into the
tree structure of BIRCH instead of using the original micro-clusters within a cluster
feature. Fichtenberger et al. [47] showed that the quality of results is higher compared
to BIRCH due to the provable bounded guarantee.

Guo et al. [197] proposed LBIRCH aiming to provide better results for non-
spherical cluster structures. They include a neighbor table (based on the ROCK
algorithm [198]) of data points, which does not fit directly any micro-cluster at first.
Based on the table, the merging of micro-clusters is identified. Guo et al. [197] showed
better results of arbitrarily shaped datasets compared to BIRCH.

Li et al. [199] provide a method to overcome the problem of arbitrary shape clus-
tering. They combine the fast computation of BIRCH with the Artificial Immune
Network Clustering algorithm (aiNet) [200]. At first, BIRCH is applied to summa-
rize data into the Cluster feature tree data structure. Afterwards, aiNet utilizes the
micro-clusters to learn arbitrary shaped clusters.

Concept Adapting in Online Clustering Being robust against concept changes
can be applied through different methods. SWClustering [191] keeps the recent data
as histograms in sliding windows. CluStream [189] applies a pyramidal structure in
order to capture different time windows.

Besides window-based separation of data points in time, Cao et al. [49] apply a
fading function based on exponential decay of fptq “ 2´λ¨t, where λ ą 0 represents
the rate of decay and t a successive increasing time value. They propose that the
user should define t, thus λ is calculated and adapted depending on the specified t.
Chen and Tu [192] also utilize an exponential decay, but applied on the grid density

30

coefficients just when updates are applied in case of newly arriving data points. Con-
sequently, the exponential decay is defined by λt´tc , where λ P p0, 1q, t defines the
time of the last update of density grid coefficient and tc represents the current time of
the newly arriving data point.

3.4 Hyperparameter Optimization
Hyperparameter optimization (tuning) aims to find suitable hyperparameters for a
given algorithm in order to perform at its best. In this work (see Chapter 6), we
concentrate on determining hyperparameters for the generalization of unsupervised
anomaly detection algorithms as defined in Chapter 5.

In general, changing the configuration of the hyperparameters of a given machine
learning algorithm also changes the functionality of the algorithm. For example, select-
ing the aimed number of searched clusters k in k-means forces a different categorization
of data points. When such parameters cannot be determined by experts, they need to
be decided by another process. Such selection processes can be performed automati-
cally, but assume the existence of an optimization criterion (also called objective). For
anomaly detection, one can choose as objective e.g. accuracy, TN-rate, TP-rate, or
similar qualitative metrics. Thus, the automatic process can try out a wide range of
different sets of hyperparameters and is able to rank those by its objective. This type
of hyperparameter optimization strategy is referred to as random search. Random
search evaluates a finite set of randomly chosen hyperparameters and consequently
might not be able to find the global optimum unless the finite set captures the com-
plete set of possible configuration options. Here, all different possible combinations
are tested in order to determine the global optimum, which is also referred to as ex-
haustive search. Of course, this comes with the cost of time complexity when aiming
to search the complete space [201].

Optimization Strategies With respect to the strategy of search (optimization
strategy), there exist several approaches, which apply greedy methods to the selection
process in order to avoid the evaluation of all possibilities.

Simulated annealing [202,203] applies a statistical model based on an energy func-
tion (e.g. Metropolis equation [204]) to model the probability to change hyperpa-
rameters in an improving direction. Depict changes in parameters, which improve
the objective, are always selected and new options are evaluated through iterative
hill-climbing. The best performing options are reported in the end. Simulated anneal-
ing is investigated in several different domains like chemical crystal structure predic-
tions [205], curriculum course planning [206], energy production optimization in water
supply networks [207], and performance improvement in learning conversational neural
networks [208].

Sequential model-based optimization (SMBO) [209] learns the past experience by
a surrogate model to approximate the expected objective. SMBO conducted with
Gaussian processes as surrogate model is called Bayesian optimization [210–212] and
is one of the most popular SMBO approaches.

F-race algorithms [213] incorporate also computational costs whether it is appropri-
ate to carry on with the search in order to find better parameters. The concept of racing
was first applied to solve model selection for machine learning algorithms [214,215] and
generalized as F-race by Birattari et al. [213] incorporating the Friedman’s two-way
analysis of variance by ranks [216]. A practical implementation is provided with the
irace package providing automatic hyperparameter configuration for the state of the
art machine learning algorithms [217].

Particle swarm optimization (PSO) [218] is inspired by the social behavior of bird
and fish colonies. Such groups of social organisms share information among the popu-

31

lation by interaction, which is emulated by the PSO [219]. The swarm describes hereby
the population’s decisions instead of individual optimization. All individual partici-
pants in a swarm optimize their own objective but contribute to the overall objective
through information exchange. Individuals capture their position and velocity and try
to optimize their individual objective, while such individual outcomes decide together
on the movement of the whole swarm to a new relative location [220]. Suggestions for
the particular implementation options are provided in the empirical study [221] and
survey [222,223]. Poli et al. [223] provide an overview of the different application areas
including investment portfolio selection [224,225], motor control in electric and hybrid
vehicles [226,227], cancer classification [228].

Inspired by genetic concepts of genes, mutations, and crossovers, genetic algorithms
[229] also use a population-based formulation for optimizing an objective. A random
set of start population is used to rank the best performing individuals. A parent set
is selected among the best individuals to grow a new population through a crossover.
Additionally, mutations are applied to model randomized changes to enable the option
to break out of local optima in order to find the global optimum. Genetic optimization
is also applied in different domains like medical image processing [76–78], feature
engineering in stock price prediction [79, 80] and medical SVM-based classification
[230], electricity load analysis [81], and rainfall forecasting [82,83].

Hyperparameter Optimization for Machine Learning Any of the above
presented optimization strategies can be used for the task of hyperparameter tuning
when defining suitable objective functions. For example, the F-race algorithms [213]
were developed with the aimed task of hyperparameter optimization, while the other
optimization approaches were developed for several different purposes and later applied
to the task of hyperparameter optimization.

Connolly et al. [231] showed the applicability of PSO for ensembler ranking of
machine learning models for video-based face recognition. The ranking procedure
can also be used for hyperparameter selection where the ranking score describes such
models, which are the best to be applied. Meissner et al. [232] and Lorenzo et al. [233]
show the applicability of hyperparameter selection for configuring deep neural network
architectures utilizing PSO. Furthermore, Lin et al. [234] applies PSO for the problem
of feature selection and hyperparameter selection for support vector machines.

Fischetti and Stringher [235] combined stochastic gradient descent with simulated
annealing for hyperparameter tuning of deep neural networks. Tsai et al. [72] focuses
also on hyperparameter tuning of deep neural networks but using a hybrid Taguchi-
genetic algorithm, while Nalçakan and Ensari [236] showed the applicability using a
general form of a genetic algorithm tuning the number of hidden layers, number of
neurons in hidden layers, and activation function. A non-traditional neural network
approach is called Hierarchical Temporal Memory (HTM) for unsupervised anomaly
detection in data streams. The continuously learning HTM network is reported to be
less sensitive to changes in its hyperparameters [181], but may need to be analyzed in
future work. A survey of neural network structure tuning approaches is provided by
Elsken et al. [237] including additionally advanced inter- and extrapolation strategies
for speedup mechanisms to find optimized objectives. Domhan et al. [238] extrapolate
learning curves as a performance estimation strategy to identify and discard slowly
learning models. Even more advanced, Liu et al. [239] train a surrogate model that
scores the performance of the neural network structure in order to forecast performance
behavior for deep convolutional neural networks.

Kiss et al. [240] propose a framework for hyperparameter tuning of black-box ma-
chine learning algorithms. Their focus is to provide an experimental and understand-
able UI for educational purposes. The black-box approach utilizes several different of
the above described search approaches and optimizes the objective of accuracy through
e.g. random search, genetic algorithms, PSO, simulated annealing. They additionally

32

included fish school search [241], differential evolution [242] and SMBO with Gaussian
processes (Bayesian optimization) [210]. The user is then allowed to select upon the
different approaches.

Hyperopt [243] is a python library providing hyperparameter optimization for
black-box machine learning models of the Scikit-learn library [244]. Bergstra et al. [243]
showed the applicability of Hyperopt utilizing Bayesian optimization as search strat-
egy.

Likewise to Hyperopt, Optuna [245] is a python library for hyperparameter op-
timization for black-box machine learning models, but enables the usage of several
different search strategies (e.g. evolutional optimization through covariance matrix
adaptation [246] and Bayesian optimization) as well as including performance strate-
gies (e.g. automated early stopping [247,248]).

Emerging frameworks provide automation for deciding on hyperparameter tuning
optimization tools and include as well feature selection, called AutoML [249–251].
Such AutoML frameworks apply also black-box machine learning model optimization
for classification tasks. Thus, they expect a labeled dataset capturing the ground truth
and normally run 10-fold cross-validation on the given dataset and use accuracy as
their objective. As main optimization approaches, Kotthoff et al. [249] and Feurer
et al. [250] apply Bayesian optimization, while Olson and Moore [251] utilize genetic
programming. Gijsbers et al. [252] evaluated these AutoML frameworks on 39 datasets
for solving classification problems. The results show, that the different frameworks
result in a significant difference in accuracy. The explanation of the difference for
the applied optimization strategies with respect to given data properties have to be
investigated in future work [252]. Tu et al. [253] introduced AutoNE, an AutoML
framework specialized for network embedding machine learning approaches.

Li and Malik [254] propose a meta-learning in order to learn the optimization of
algorithms through reinforcement learning. They showed the applicability for neural
network learning [255].

The above described state-of-the art hyperparameter optimization approaches train
and optimize the models offline [249,256]. For conducting the offline trained models in
a data stream setting, the training data requires to be stored in memory. Furthermore,
the optimization process is applied as batch processing combined with cross-validating
for ranking purposes [257], which requires at first a lot of time, resources, and labeled
data. Researchers acknowledge the demand for automatic hyperparameter optimiza-
tion for unsupervised models due to the problem of offline hyperparameter optimiza-
tion [181,258], but the previously described anomaly detection approaches rely on some
assumptions about the data distributions. However, it remains impractical to apply
for online arriving monitoring data. Thus, we aim to provide a solution, which can
be applied in an online scenario and applies a scoring function as objective, which can
be used with semi-supervised anomaly detection approaches. For supervised anomaly
detection, we assume that one applies the above described approaches as labeled data
are present.

Chapter 4

Framework for AI-based
Anomaly Detection

4.1 ZerOps Framework
In order to provide an overall self-healing analysis pipeline of multiple AI analysis
steps and the proposed scope and placement of the anomaly detection, we propose the
ZerOps framework. In [8], we defined the general structure of such an AIOps platform
with a closed-loop, which is presented in Figure 4.1. In the middle part (in green), the
image shows a typical cross-layer infrastructure setup consisting of (from bottom to
top) physical resources on which a hypervisor is deployed, managing virtual resources
(e.g. virtual machines), in which services (e.g. VNFs) are deployed. On all different
layers, we assume that monitoring data is collected in a stream-wise manner, which
sends the data to the self-healing pipeline.

At first, the self-healing pipeline transforms the incoming data into the same data
format in the Monitoring data sink. In order to do so, information about the system
architecture is assumed to aggregate information as well as provide information to the
analytics pipeline regarding e.g. normalization.

The data is being sent as a data stream to the self-healing analysis steps, which run
all necessary analytics for gaining insights about the system state. This Data analysis
can include further system knowledge about faults, which can be integrated with e.g.
a fault-catalog. As we like to provide a zero-touch solution, this information may also
not be included. Thus, our data analysis should be aware of also operating without this
prior knowledge. Furthermore, the data analysis triggers events when anomalies are
detected and aggregates all needed information to the event, which are needed for the
Self-stabilization engine, which is also called the Remediation engine later in the thesis.
This Self-stabilization engine selects and plans the executions of stabilization actions
(also referred to as remediation actions) through either cloud management interfaces
like OpenStack API for e.g. orchestration purposes or directly executes commands
within the different layers of the IT infrastructure. Of course, this depends on the
access rights and the scope on which this architecture operates. The proposed Figure
4.1 assumes a private cloud use case, where all layers can be accessed and operated by
the user of the AIOps platform. Through the execution of such stabilization actions,
the system is going to be continuously monitored, and hopefully, the anomalies will be
remediated. Otherwise, when actions do not have the aimed impact (anomalies are still
triggered), the self-healing system is capable of executing further actions, which might
be of a higher level of risk. Thus, the system provides a closed loop for zero-touch
administrating IT-infrastructure and provides high reliability to the system.

33

34

Figure 4.1: AIOps platform for zero-touch administrations. Source: [8]

Figure 4.2 provides more insights about the aimed components of the holistic
framework, named ZerOps. On the left (in red), the framework assumes, that there
exist virtual resource managers (for this thesis we built a testbed using OpenStack,
Docker, and Kubernetes) as well as monitoring services collecting data as a data
stream. These can be gathered by any external monitoring tool, but for simplicity, we
assume to collect data using the Bitflow collector [259]. Section 7.1.1 provides further
information about the metrics collected by the Bitflow collector.

These collected monitoring data are sent to the Data ingestion, while informa-
tion about the virtual resources is collected within a Topology discovery service, which
provides a dependency model to the data analysis. Given these different data informa-
tion, all are sent to the Data analyses orchestrator, which manages and orchestrates the
self-healing analysis pipelines. Those are needed, as the platform also aims to provide
decentralized execution of analysis components, for example for the anomaly detection.
Also, the orchestration is capable of automatic deployments of analysis pipelines when
e.g. services are newly deployed. The data analysis orchestrator also manages which
data is sent to which analysis component as not all analysis steps need information
about e.g. the topology. The self-healing analysis components are divided into three
main parts. First, for each monitored component an anomaly detection analysis is ap-
plied. When anomalies are detected, this analysis component sends events to the root
cause analysis, which gathers further topology information to determine the concrete
root cause of the problem as anomalies may propagate through many different compo-
nents, which then can be correlated. Based on this information about the root cause
and propagated abnormal components, the decision engine aims to determine suitable
remediation actions and has to plan its executions into the system. In order to close
the loop, an execution engine provides an automation solution to run the remediation
actions, which are dependent on the given infrastructure. Furthermore, results are
visualized and alarms are triggered. Thus, administrators can intervene when they
think it is needed. The focus in this thesis is the anomaly detection component within

35

Figure 4.2: ZerOps architecture design including main capabilities, input and
output components.

the self-healing pipeline, which is marked as red within Figure 4.2.
In summary, the focus of the thesis is a component-based AI solution for anomaly

detection for triggering local events. Such events are processed in higher-level stages
at the root cause analysis and remediation engine, which are out of scope of this thesis
as we concentrate on the anomaly detection.

4.2 Categorization of AI-based Anomaly Detec-
tion

Providing an AI-based solution for anomaly detection, we need to differentiate between
the learning phase and the prediction phase. While the learning phase is dependent
on the type of machine learning model (ML model), the prediction phase is applied
in the same online manner. Figure 4.3 illustrates the differentiation of both phases
and the connections and dependencies among the generalized structure of applied ML
models. From the data source, there is an incoming data stream of monitoring data,
which in the prediction phase is sent to an existing ML model, providing a binary
decision whether an anomaly was detected or not.

In the learning phase case, the ML model learning expects to provide hyperparam-
eters to the ML model. Based on the historic monitoring data and hyperparameter
settings an ML model is trained and provided to a model update function. The model
updater manages the replacement of the prediction model with the adapted ML model
from the learning phase. The model updater may rely on concept change detection of
the current data stream, degree of change of the predictive model, and newly trained
model or further evaluations, testing the accuracy of the predictive and learned models.
Furthermore, the updater can just apply frequent replacement intervals. For online
learning ML models, the model updates on every single incoming data point and is
exchanged constantly.

But machine learning models (ML models) have to be trained at first. As in-
troduced in Section 2.3.1, machine learning algorithms can be grouped based on the
availability of training data:

36

ML model learning
• Supervised
• Semi-supervised
• Unsupervised

Predictive model

Model updater

Prediction phase

Learning phase

Binary decision
(normal/anomaly)

Monitoring data source

Hyper-
para-
meter

Figure 4.3: General structure for machine learning model embedding into pro-
ductive system environments.

1. Supervised: There exist labeled information about all anomalies and normal
behavior.

2. Semi-supervised: There exist labeled normal data for training, but knowledge
of abnormal data is absent.

3. Unsupervised: There are no existing labels available, but assumptions are re-
quired about the structure of analyzed data.

Supervised Machine Learning Supervised behavior learning requires the ex-
istence of labeled data for both normal and abnormal behavior. There exist different
supervised machine learning algorithms with respect to their aimed task like regres-
sion and classification. While regression focuses on predicting a value, classification
aimed to provide classes as prediction results. For anomaly detection, we focus on
binary classification. Thus, the classification result consists of the two classes nor-
mal and anomaly, while the input of the algorithm aspects the monitoring data as a
multi-dimensional data point.

Figure 4.4 shows the general steps necessary to apply supervised machine learning
techniques into production in an online manner. The learning phase of supervised
models is separated and conducted as the first step. By gathering labeled data, a
machine learning model is learned, validated, and tested before applying the trained
model into production. As supervised models consume labeled training data, these
are mostly not obtained automatically, but through human labeling. Therefore, such
models should be very robust and consequently might not be updated in short in-
tervals. For most machine learning algorithms, training models are computationally
expensive. For this reason, the training data is expected to be collected together with
labeled fault scenarios and normal system behavior in different load levels from the
productive system or simulation environment. Given a trained supervised machine
learning model, the model can be applied in production. The classification should be
able to apply its computation just-in-time as those operations are mostly not compu-
tationally expensive. All in all, the training is conducted in an offline phase, while
prediction happens in an online mode.

Semi-supervised machine learning Semi-supervised learning aims to model
the normal behavior so that it can detect deviations from this behavior, which are
consequently identified as anomalies. This type of learning is especially applicable for
domains, where it is hard or even not possible to obtain abnormal data (e.g. nuclear
power plant) or artificial injections would harm the system. Thus, one-class learning
is applied to existing normal system data.

37

Supervised ML model learning

Monitoring
data source

ML
model

Hyper-
para-
meter

Label
provider

Normal
system
data

Anomaly
scenario
data

Data
splitting

Learning of
ML model

Test of
ML model

Training
set

Validation
set

Test
set

Figure 4.4: Learning phase of supervised machine learning models.

Semi-supervised ML model learning

Monitoring
data source

ML
model

Hyper-
para-
meter

Label
provider

Normal
system
data

Anomaly
scenario
data

Data
splitting

Learning of
ML model

Test of
ML model

Training
set

Validation
set

Test
set

Figure 4.5: Learning phase of semi-supervised machine learning models.

As Figure 4.5 shows, normal data has to be labeled in order to make sure, that
there does not exist any abnormal data for learning. In general, the semi-supervised
model does not expect to know any abnormal system scenarios, but when a label
provider is able to also create a database of anomaly scenario data, those can be used
for ML model testing. Still this is optional, thus the learning of an ML model relies on
a training and validation set of normal behaving data and provided hyperparameters.
One-class learners train a decision boundary, which can be inferred by the data as only
normal data is existing and sensitivity of the boundary is in general configurable by
the hyperparameters.

Based on this training set of normally behaving data, strategies like clustering are
among others utilized to capture this state. Due to the differentiation criterion, many
well-known clustering techniques cannot be used as they map the complete space to
clusters. For example, when learning a k-means clustering model (see Figure 4.6 left
image) on normal data (black dots), the model cannot distinguish between normal and
abnormal data points as for any data point a cluster can be assigned. This behavior is
represented by the additional red dots, which shall be distinguished between normal
and anomaly in Figure 4.6. In contrast to this, clustering models like BIRCH [52]
(right image) provide additional spherical boundaries (dotted lines) around centroids.
Thus, data points can be assigned to a cluster, indicating normal behavior, or not be
assigned to any cluster, indicating an abnormal behavior. Thus, models can be chosen,
which provide an estimation whether points belong to any cluster for binary decisions
or probabilities whether including them in a given distribution.

Unsupervised Machine Learning Compared to the first two learning strate-
gies, unsupervised learning does not rely on any labeled training data. ML models
consequently need further assumptions (in general provided by hyperparameters) to

38

normal

abnormal

= trained data points = data points of interest = cluster borders

normal

abnormal

k-means BIRCH

Figure 4.6: Example of three k-means clusters and clusters formed by applying
BIRCH.

Unsupervised ML model learning

Monitoring
data source

ML
model

Hyper-
para-
meter

Learning of
ML model

Training
set

Validation
set

Boundary
decision

assumptions

Data
splitting

Figure 4.7: Learning phase of unsupervised machine learning models.

create accurate models. Assumptions can be for example either percentage of expected
anomalies, percentage of the model, or signal changes. Still, the data can be split into
training and validation set for either offline learning or in the case of online learning
through seed learning with window-based storage of the latest data.

Recommendations for Applying Learning Strategies Supervised learning
promises highest accuracy rates for anomaly detection as it has the advantage of labeled
data. This technique is highly applicable when labels can be obtained automatically
or costs of expert-based labeling is neglectable. Cost-effective labeling is the case when
applied in a constrained set of software components where concept shifts rarely happen
(normal behavior is known) and there exists a finite set of monitored anomalies.

In complex systems, knowledge bases of normal and abnormal labeled data do
often not exist. Thus, semi-supervised and unsupervised learning strategies have to
be applied. Semi-supervised learning enables the detection of unknown anomalies
due to one-class learning the normal behavior. Still, labeling has to be performed as
border definitions of the ML models are inferred from the labeled normal behavior.
Likewise to supervised learning, semi-supervised learning should be advised to apply
when normal behavior labeling is cost-efficient. This is again the case for automatic
labeling strategies and when expert-based labeling is cost-efficient, which is the case
for finite sets of software components without concept shifts.

Unsupervised learning does not require the existence of any labeled data. Conse-
quently, unsupervised techniques can be applied at any times in order to differentiate

39

between normal and abnormal states. Likewise to semi-supervised learning, this type
of learning should be advised to be applied in cases where anomalies are unknown,
but concept shifts are also able to happen.

Providing an anomaly detection for black-box service monitoring for the ZerOps
framework, we cannot rely on the knowledge of anomalies and have to consider concept
shifts due to:

• service components may frequently change due to agile development,

• configuration of single service components and external service load varies in
each service environment setup.

Consequently, the main focus is unsupervised techniques for the rest of the thesis.
The main disadvantage still is the assumptions to be made in order to define a valu-
able border definition as well as the suffering of knowledge resulting in less accurate
detection results.

4.3 Evaluation
Next, we show the applicability of supervised learning approaches assumed complete
knowledge about anomaly situations and normal behavior patterns. Additionally, we
present how semi-supervised learning suffers already from the lack of labeled anomaly
information. Unsupervised learning is postponed to Chapter 7 for a larger evaluation.

4.3.1 Supervised Learning Evaluation
Evaluation Setup

The supervised machine learning algorithms J48, Random Forest, PART, REP TREE,
LMT, JRIP, ONER, Random Tree, Hoeffding Tree, Decision Stump, SMO, and Naive
Bayes (see Section 3.2) are included in the evaluation. We utilized the machine learn-
ing library WEKA [107], which consists of these algorithms from which we choose
predefined hyperparameters suggested by the WEKA library.

Ten-fold cross-validation is performed on the cloud monitoring dataset as described
in Section 7.1. The input for learning forms two datasets: the normal operation data
and the anomaly data obtained through anomaly injection. Both datasets are shuffled
and split into ten equally sized subsets. Randomly chosen pairs of normal operation
subsets and anomaly subsets then form the ten test datasets. Thus, each training set
consists of 28,610 data points.

Evaluation Results

Table 4.1 shows the results of this evaluation, sorted by accuracy. At the top, the
approaches achieving the highest accuracy score are presented. J48 reached the high-
est score with more than 99%, followed by six algorithms approaching more than
98%. As we utilized the suggested hyperparametrization by the WEKA library, even
more accurate results can be expected by applying hyperparameter tuning and feature
engineering techniques.

Table 4.1 additionally illustrates the time for learning tlearn and predicting tpred.
The prediction time tpred represents the time needed to apply the machine learning
algorithm in prediction mode. The time shows the average time in milliseconds for
an individual sample. The prediction results show the efficient computation as all
algorithms are able to provide prediction in less than a millisecond. This is expected
as the training phase is for most of the machine learning approaches computationally
more expensive, while the prediction is mostly indifferent between the approaches and
can be applied efficiently in an online manner.

40

Algorithm tlearn tpred precision recall F1 accuracy
[ms] [ms]

J48 3,030 0.0023 94.97% 99.81% 97.33% 99.05%
Random Forest 27,801 0.0984 93.21% 99.22% 96.12% 98.61%
PART 8,682 0.0039 93.41% 98.84% 96.05% 98.59%
REP TREE 1,943 0.0017 93.03% 99.11% 95.98% 98.56%
LMT 79,068 0.0039 93.16% 98.87% 95.93% 98.55%
JRIP 17,668 0.002 92.52% 99.15% 95.72% 98.46%
ONER 295 0.0015 92.37% 98.38% 95.28% 98.31%
Random Tree 755 0.0021 90.38% 97.91% 94.00% 97.83%
Hoeffding Tree 820 0.0036 87.29% 97.94% 92.31% 97.17%
Decision Stump 319 0.0018 86.26% 98.35% 91.91% 97.00%
SMO 18,796 0.0035 88.69% 75.03% 81.29% 94.02%
Naive Bayes 173 0.0129 92.83% 60.80% 73.48% 92.40%

Table 4.1: Quantitative and qualitative evaluation results for supervised learn-
ing.

Table 4.2 presents further details about the TP-rate, TN-rate, FP-rate, FN-rate,
and AUC value as the dataset is imbalanced. The best results are achieved when the
TP-rate and TN-rate reach 100%, while the FP-rate and FN-rate are consequently
0%. Given algorithms with above 95% accuracy also provide high rates as wished,
also resulting in high AUC values. For this subset of algorithms, the AUC values
are similar to the accuracy due to achieving such high accurate results. On the other
hand, SMO and NaiveBayes show high TN-rates indicating precise predictions for the
normally behaving data, while the TP-rate is lower (75.03% and 60.80% respectively)
compared to other classifiers (ą97.91%) and does therefore not realize as accurate
predictions for the abnormal data points. AUC values decrease therefore by a total of
7.5% (SMO) and 12.49% (NaiveBayes) compared to the accuracy.

The learning time tlearn represents the time (in milliseconds) needed to train a
batch of 28,610 data points. In order to provide more guidance in selecting an appro-
priate machine learning algorithm, Figure 4.8 shows the dependency between learning
time and accuracy. The x-axis represents the time, while the y-axis represents the
accuracy. Based on these indicators, the preferred algorithm achieves zero training
time, while reaching 100% accuracy. The upper left corner of the diagram represents
such an ideal case. The figure shows, that there exist many algorithms in the left and
upper part, marked as best choices surrounded by a zoom box. The zoom box (Fig.
4.9) illustrates further differentiation between the best options to chose a supervised
approach.

Figure 4.9 provides the paretofront (the red line connecting circled ML approaches)
recommending guidance on selecting the appropriate approach with respect to training
time and accuracy. The J48 classifier provides the highest accuracy, while ONER,
REP TREE, Naive Bayes provide respectively decreasing accuracy, but also de-
creasing learning time (preferred). As described above, NaiveBayes has the least
capabilities to provide accurate predictions to the abnormal cases in contrast to the
other algorithms in the paretofront. Thus, we recommend choosing one of the other
three approaches when applying to similar use cases.

41

Algorithm TP-rate TN-rate FP-rate FN-rate AUC

J48 99.81% 98.89% 1.11% 0.19% 99.35%
Random Forest 99.22% 98.49% 1.51% 0.78% 98.61%
PART 98.84% 98.54% 1.46% 1.16% 98.86%
REP TREE 99.11% 98.44% 1.56% 0.89% 98.78%
LMT 98.87% 98.48% 1.52% 1.13% 98.68%
JRIP 99.15% 98.32% 1.68% 0.85% 98.74%
ONER 98.38% 98.30% 1.70% 1.62% 98.34%
Random Tree 97.91% 97.82% 2.18% 2.09% 97.87%
Hoeffding Tree 97.94% 97.01% 2.99% 2.06% 97.48%
Decision Stump 98.35% 96.72% 3.28% 1.65% 97.54%
SMO 75.03% 98.00% 2.00% 24.97% 86.52%
Naive Bayes 60.80% 99.02% 0.98% 39.20% 79.91%

Table 4.2: Detailed evaluation results for supervised learning capturing the
different rates (TP,TN,FP,FN,AUC).

0 2 4 6 8

¨104

0.92

0.94

0.96

0.98

1

time learning [ms]

ac
cu

ra
cy

Random Forest
JRIP
LMT
SMO
PART
Best

Zoom Box

Figure 4.8: Performance of supervised approaches based on accuracy and run-
time.

42

0 500 1,000 1,500 2,000 2,500 3,000
0.92

0.94

0.96

0.98

time learning [ms]

ac
cu

ra
cy

Decision Stump
Random Tree
Hoeffding Tree

J48
REP TREE

ONER
Naive Bayes
Pareto Front

Figure 4.9: Zoom box showing the performance of supervised approaches in
contrast of accuracy and runtime for selected algorithms in the upper left part
of Figure 4.8.

4.3.2 Semi-supervised Evaluation
Evaluation Setup

We applied the following two clustering algorithms to the domain of anomaly detection
for cloud service monitoring BIRCH [52] and BICO [47] (see Section 3.2 for details).

For implementation, we utilized JBIRCH by Roberto Perdisci1 for BIRCH and the
Java-based MOA (Massive Online Analysis) library2 [260] for BICO.

The evaluation was performed on the cloud monitoring dataset as described in
Section 7.1. Table 4.3 shows the applied hyperparameters for BIRCH and BICO.

BIRCH initial threshold 0
maximum number of nodes 10

BICO initial threshold 0
maximum number of nodes 10

Table 4.3: Parameter definitions for the semi-supervised clustering approaches
BIRCH and BICO.

A random set of 1,200 data points (10min) is collected in order to meet the 1,200
data points on the basis of the complete knowledge of normally behaving data. For
this, 100x the experiment was repeated to evaluate many different possible settings
of choosing normal data points. The number of 1,200 data points was investigated
through grid search (interval of [100,10000] data points through applying steps of 100)
in order to find an appropriate number of data points, which does not cause the CF
tree to grow too much for the given hyperparameters of the tree. Thus, we show next

1https://github.com/perdisci/jbirch
2https://moa.cms.waikato.ac.nz/

https://github.com/perdisci/jbirch
https://moa.cms.waikato.ac.nz/

43

Algorithm tlearn tpred precision recall F1 accuracy
[ms] [ms]

BICO 2 0.1221 92.68% 64.02% 75.73% 91.65%
BIRCH 2 0.0074 48.25% 78.90% 59.88% 78.49%
J48 3030 0.0023 94.97% 99.81% 97.33% 99.05%

Table 4.4: Results for the first setup using randomized selection of training data
showing runtimes and qualitative prediction results.

Algorithm TP-rate TN-rate FP-rate FN-rate AUC

BICO 64.02% 98.71% 1.29% 35.98% 81.37%
BIRCH 78.90% 78.39% 21.61% 21.10% 78.65%
J48 99.81% 98.89% 1.11% 0.19% 99.35%

Table 4.5: Results for the first setup using randomized selection of training data
showing the different rates (TP,TN,FP,FN,AUC).

just the results for the most accurate solution, which we were able to find through the
grid search.

Evaluation Results

Table 4.4 shows the precision, recall, F1 score, and accuracy for the BICO and BIRCH
clustering algorithms applying the first setup with randomized training data input.
The results show, that the precision, accuracy as well as the F1 score is in those
cases higher for the BICO algorithm, which is expected as BICO is an optimized
version of BIRCH. Nevertheless, BIRCH shows higher recall indicating more precise
predictions for abnormal data points. The supervised learning algorithm J48 was
added to this table as comparison, outperforming both semi-supervised approaches.
This is of course expected as the semi-supervised algorithms lack complete knowledge
about any anomaly data.

The comparison for time to perform learning tlearn and prediction tpred shows a
clear differentiation between the semi-supervised and supervised approaches, although
the presented three algorithms all internally apply a tree as data structure. While
predicting tpred, a single data point is the quickest for the J48. BIRCH just uti-
lizes 0.0051ms more computation time. BICO shows the slowest computation with
0.1221ms, which is presumably quick enough when compared with a monitoring in-
terval of 500ms. When comparing the time for learning tlearn, the semi-supervised
algorithms outperform J48 as the incremental learning provides efficient computation.

Table 4.5 presents further details due to the imbalance of data. Again, J48 outper-
forms the semi-supervised approaches in all measurements. BICO shows higher TN-
rates indicating more accurate representation of the normal behavior, while BIRCH is
more precise in the detection anomalies.

Figure 4.10 illustrates the embedding of the supervised approaches compared with
the first setup with the semi-supervised approaches. Like the supervised learning algo-
rithms, the scatterplot aims to provide an overview of the most beneficial algorithms
for applying those for the given domain. The scatterplot shows that BIRCH does not
meet these requirements due to its lower accuracy, but BICO is placed within the
zoom box.

Figure 4.11 shows in more detail the approaches highlighted within the zoom box.

44

0 2 4 6 8

¨104

0.8

0.85

0.9

0.95

1

time learning [ms]

ac
cu

ra
cy

BIRCH
BICO

Supervised
Zoom Box

Figure 4.10: Comparison of the supervised and semi-supervised approaches with
respect to learning time and accuracy.

Furthermore, the paretofront is marked and shows that BICO is a valuable candidate
as it uses less learning time compared to any of the other approaches.

4.3.3 Summary
The supervised learning approaches provide the most accurate point-wise detection
for the normal and abnormal cases and therefore show the applicability of such ap-
proaches. Thus, machine learning techniques are capable of learning accurate models
even with further potential regarding hyperparameter optimization and feature engi-
neering. Tree-based and rule-based classifiers (e.g. J48, Random Forest) show most
accurate results, indicating that anomalies can be detected with deductive sets of
complex rules. As supervised learning assumes the representative knowledge about
the normal state as well as all different types of anomalies, these models should be
applied for data streams, where such assumptions can be foreseen and met (e.g. for
stateless functions with specificity defined usage patterns or for hard real-time services
for embedded systems).

As the assumption of knowing all possibly causing anomalies is mostly difficult or
not possible to ensure, semi-supervised approaches provide the possibility to model
the normal behavior including border definitions to distinguish between normal and
abnormal data points. Due to the absence of fault scenario catalogs and detection of
unknown anomalies, semi-supervised approaches are applicable to many production
scenarios. We showed, that when providing complete knowledge of the normal data to
the learner, BICO is able to perform an accuracy of 91.65%, while providing much less
learning time compared to the supervised algorithms. But still, there is a significant
drop in differentiating normal and abnormal behaviors with respect to the accurate
supervised approaches.

Both options are valid and applicable to the given problem, but the first option
introduces further computations through an algorithm running parallel to the anomaly
detection and therefore produces further overhead, which is not aimed with the goal
of decentralized anomaly detection for the AIOps platform. In the following chapter,
we develop an unsupervised anomaly detection approach based on the semi-supervised
BIRCH.

45

0 500 1,000 1,500 2,000 2,500 3,000

0.92

0.94

0.96

0.98

time learning [ms]

ac
cu

ra
cy

BICO
Supervised Pareto

Supervised Non-pareto
Pareto Front

Figure 4.11: Zoom box for Figure 4.10 showing the paretofront.

Chapter 5

Concept Adapting BIRCH

We aim to provide a solution for unsupervised anomaly detection enabling zero-touch
administration. This can be achieved through learning autonomously and continuously
the normal behavior of a system in order to provide concept adaptability to the system
domain.

5.1 Concept Adapting BIRCH
We introduce Concept Adapting BIRCH using the aging of clusters, making it possible
to adapt to future concept changes. As we aim to provide unsupervised normal behav-
ior learning on a possibly endless data stream of monitoring data, Concept Adapting
BIRCH can be used as it covers the positive properties of both efficient iterative up-
dating the internal model and adapting to the time series behavior.

We modified the order of the main four phases of BIRCH (see Section 2.3.2) and
introduced an additional phase. Furthermore, we do not consider the 2nd and 4th

phases as they are optional and use an offline approach. We consider the following
three phases:

1. Inserting a data point: As described in [9], new data points are added to the
CF-tree until the maximum number of nodes are reached, which are defined
by the user. Reaching the maximum triggers the rebuilding phase of the tree.
While rebuilding, the user-defined threshold is updated dynamically from then
on. As defined by Zhang et al. [9], the updated threshold is approximated based
on the size of the root CF entry using linear regression. The rebuilding phase is
also called when the decay of micro-clusters results in removing CFs.

2. Predicting corresponding cluster: The original BIRCH algorithm first trains the
clustering model with the complete dataset. After the trained model is prepared,
each data point from the set is used to fit the model, while not changing it
anymore. To use Concept Adapting BIRCH on a time series, we apply pointwise
predictions. Thus, after training the current data point to adapt the CF-tree,
we return the inserted cluster as a prediction.

3. Aging of micro-clusters: The new phase of decaying micro-clusters considers a
continuous forgetting of clusters over time, denoted as aging. The aging allows us
to forget older micro-clusters and strengthen the model adaptation to changing
concepts. Aging can cause the deletion of nodes. Consequently, the rebuilding
of the tree is applied to rebalance the tree structure. The aging procedure is
described in more detail in the following.

46

47

5.1.1 Micro-cluster Aging
We introduce micro-cluster aging by applying two steps, consisting of a decay step
followed by a removal step:

• Density decay: Let us assume to use the original BIRCH model to train a
CF-tree on a data stream. By continuously inserting new data points into the
CF-tree, the number of data points within CFs increases over time. Due to
the constant growing tuple entries of clusters, older entries still have the same
impact on the shape of the cluster. Thus, in the beginning, the data points have
a greater impact on the shape of the CFs, when compared to the changes later in
time. In order to keep the micro-clusters adaptable to concept changes, a decay
function is applied to the micro-cluster giving new data points more impact on
the cluster’s shape.

• Removal of clusters: Older and now irrelevant data should not impact a model as
much when considering concept adapting behavior over time. Therefore, BIRCH
needs the ability to remove older clusters. After removing CFs, a rebuild of the
CF-tree is performed to ensure the correctness of the micro-cluster entries for
parent nodes.

The aging process should be applied to forget the history of past behaviors, but
the model should be still fixed in memory and time. Storing historic data is not
considered as this assumes a higher resource usage in memory. How this can be
achieved is described next in detail.

Density Decay

Modifying the clustering method to provide concept adaptability to the change of data
over time, we introduce a density-based decay function fd. It defines the amount of
changing a CF in its density. The change is applied on each leaf node, in order to give
new incoming data points more influence on the shape of the cluster. The function fd
can be defined by the time, the number of points of the cluster or any other model or
time-related metric, to let the model evolve with the data. We focus on time-related
decays, such that at each time step, the number of points is decreased by ϵ and ϵ
points are removed from the center L

N
of the micro-cluster, where ϵ :“ fd, as defined

by Equation 5.1.

CFt “ CFt´1 ´ CFϵ “ pNt´1 ´ ϵ, Lt´1 ´ ϵ ¨
L

N
,St´1 ´ ϵ ¨

S

N
q (5.1)

Equation 5.1 provides concept adaptability. Thus, CABIRCH CFs remain the
same in their structure (centroid and radius remain the same, but the change for the
structure is larger for new incoming data points. Clusters are removed over time,
which are not updated frequently anymore.

Through Equation 5.1, the structure of the micro-cluster does not change in the
position of the centroid and the radius.

We show, that given the CFt´1 of time t´ 1, has the same centroid ct´1 “ L
N

and

radius rt´1 “

b

N ¨ L
N

2
`S´2¨ L

N
2

¨L

N
as after applying the decay step. Let the centroid

after the decay step be called ct and the radius rt . As defined by Equation 5.1, the
centroid after the decay results in:

ct “
L ´ ϵ ¨ L

N

N ´ ϵ
“

L ¨ p1 ´ ϵ
N

q

N ¨ p1 ´ ϵ
N

q
“

L

N
“ ct´1 (5.2)

48

For the radius:

rt “

g

f

f

e pN ´ ϵq ¨
pL´ϵ¨ L

N
q

N´ϵ

2

` pS ´ ϵ ¨ S
N

q ´ 2 ¨
pL´ϵ¨ L

N
q

N´ϵ

2

¨ pL ´ ϵ ¨ L
N

q

N ´ ϵ

“

g

f

f

e

Np1 ´ ϵ
N

q ¨
Lp1´ ϵ

N
q

Np1´ ϵ
N

q

2
` Sp1 ´ ϵ

N
q ´ 2 ¨

Lp1´ ϵ
N

q

Np1´ ϵ
N

q

2
¨ Lp1 ´ ϵ

N
q

N ¨ p1 ´ ϵ
N

q

“

d

Np1 ´ ϵ
N

q ¨ L
N

2
` Sp1 ´ ϵ

N
q ´ 2 ¨ L

N

2
¨ Lp1 ´ ϵ

N
q

N ¨ p1 ´ ϵ
N

q

“

d

N ¨ L
N

2
` S ´ 2 ¨ L

N

2
¨ L

N

“ rt´1

(5.3)

Through Equation 5.1, the density of a micro-cluster is changed, and inserting new
points into the micro-cluster results in a different structure after applying the decay
function than not applying it, when not inserting a centroid as a data point into the
micro-cluster.

We therefore show the change of the centroid with respect to applying decay against
without using the technique. Let therefore, the centroid using decay be ca while not
applying the decay cb. Let ca “ cb “ L

N
. The newly added data point is described

by x. Thus, cb “
pL`xq

pN`1q
and cb “

pL`x´ϵ¨ L
N

q

pN`1´ϵq
after also applying the decay, based on

the additivity property of Equation 2.1. Let the difference of change be described by
cb ` ∆ “ ca, where we show ∆ ‰ 0, when x ‰ L

N
:

∆ “
pL ` x ´ ϵ ¨ L

N
q

pN ` 1 ´ ϵq
´

pL ` xq

pN ` 1q

“ pL ` x ´ ϵ ¨
L

N
q ¨ pn ` 1q ´ pL ` xq ¨ pN ` 1 ´ ϵq

“ NL ` Nx ´ ϵL ` L ` x ´ ϵ
L

N
´ NL ´ L ` ϵL ´ Nx ´ x ` ϵx

“ ϵx ´ ϵ
L

N
.

(5.4)

If x “ L
N

then ∆ “ 0 and if x ‰ L
N

then ∆ ‰ 0. The change of radius can be
shown in the same way and shows the same implications for x ‰ L

N
and ∆ ‰ 0. Thus,

we showed that there is a difference in change of the structure when using Concept
Adapting BIRCH’s Equation 5.1 compared to applying just the BIRCH’s inserts.

Equation 5.1 is valid due to the additivity property of the micro-cluster tuple as
shown in Equation 2.1. It does not change the size and radius of the cluster but
only its density. Removing points from the hull of the n-sphere, or from somewhere
else other than the centroid, influence the shape of the cluster, which is not desired.
This results in an incorrect structure of the CF-tree as clusters are no longer correctly
placed within the CF-tree. By reducing the density of a micro-cluster, new data points,
which are inserted into the cluster, have a higher influence on the shape of the cluster.
Additionally, CFs that decay to a number of zero (or less) points in N are removed
from the node. Consequently, leaf nodes without any CFs are removed from the CF-
tree structure. Therefore, clusters require frequent insertion of new data points to
maintain their existence.

Through Equation 5.1, clusters, which are not updated frequently anymore, are
removed over time. The density decay is performed after inserting and predicting the
current data point, so that after the end of every time step micro-clusters decay. When
clusters have less or equal zero data points after decay inside their CF, those CFs are

49

removed, and the entire CF-tree is rebuilt. Assuming that a CF is not represented by
the current data stream anymore, such a cluster can only remain available when the
insertion of new incoming data points is larger than the decay of N . As we assume, that
there are no represented points anymore for this cluster, the cluster will be removed
when N is negative.

How constant updates of the micro-cluster influence the shape over time depends
on the concrete definition of fd. Therefore, we define the next different possible decay
functions.

Decay Functions

Next, we define four types of decay functions, which differently impact the aging of
micro-clusters over time:

• Decay based on thresholds

• Logarithmic decay

• Exponentially bounded decay

• Logistic decay

While the decay based on a threshold is configured through model parameters, the
logarithmic, exponential, and logistic decay are dependent on the time. After defining
the decay functions, we summarize and conclude the purpose for using these decay
functions in the context of normal state representation.

Decay based on Thresholds A straightforward approach for defining a decay
function is by specifying a single static value K ě 0 as decay independent from time.
Through constantly applying the decay, the cluster shrinks in its density. The defini-
tion of the value K is thereby crucial. For example, high values would lead to quick
removal of clusters, while too low values do not impact the aging process at all. As
such a value can be user-defined or based on initial model parameters, we introduce
possible options to automatically chose K.

For the density function fd, the probability of updating a single CF Pupdate can
be applied. Thus, assuming a uniform distribution for updating a single CF (just for
the leaf nodes) within the CF-tree, we can define Pupdate “ 1

L
, where L denotes the

number of leaves. As this number might change over time, we define L to be the
maximum expected number, defined by the branching factor b and maximum height
h of a given tree, which is defined by the user. Thus, L “ bh and

fd “ Pupdate “
1

bh
. (5.5)

As fd assumes uniform distribution, this form might not capture the realistic dis-
tribution of a given use case. Clusters with many inserts get concept change inflexible,
while clusters with a small number of inserts disappear quickly. Therefore, we intro-
duce time-dependent decay functions next.

Logarithmic Decay Decay through defining a value gives new emerging clusters
just chances of being not removed when the update frequency at the beginning is higher
than the average of a cluster. Otherwise, those clusters disappear quickly as initial
values of N are always small at creation time. In order to capture this starting behavior
of cluster variables, the decay function should capture such a behavior also. Let µ
denotes the average number of inserts into every CF, b the tree width, β the growth rate
and t the time after creating a cluster. A logarithmic function can be defined capturing
the structure (as the height h of a balanced tree is defined by h “ rlogbpLqs ` 1) and
time dependency of a tree:

50

0 10 20 30 40 50
0

1

2

3

4

5

t

d
ec
a
y

β “ 4.0
β “ 3.0
β “ 2.0
β “ 1.0

Figure 5.1: µ “ 1 and b “ e

dlog “ µ ¨ logbpβ ¨ pt ` 1qq (5.6)

As shown in Figure 5.1, different options for defining logarithmic decay functions
are illustrated. At t “ 0 all functions represent the initial behavior of an emerging
cluster with low values in both N and r. Thus, the decay is also small. Over time,
the decay increases constantly in logarithmic behavior.

The growth of the decay value is not bounded as the functions grow to infinity, so
that over time, the decay increases higher than a cluster can grow. Thus, old clusters
are always removed. In order to limit the growth, next we introduce the exponential
decay.

Exponentially Bounded Decay As the name already indicates, the logarithmic
decay function (see Equation 5.6) uses a logarithmic function as base function. The
exponentially bounded decay is shown in Equation 5.7 and relays on an exponential
function, which is often used to model economical [261] and biological growth [262]
as the function can be bounded in its maximum rate. For example, bacterial growth
shows that the replication of organisms is exponential, but due to bounded habitat,
the death rate of organisms increases, so that both replication and death stabilize at
a plateau as shown in Figure 5.2.

dexp “ µ ¨ p1 ´ b´β¨t
q (5.7)

Thus, we can define the maximal decay µ through Equation 5.5. Let b denotes the
branching factor, β the growth rate and t the time. Figure 5.2 illustrates the behavior
of an exponentially bounded function (Eq. 5.7) with different growth rates, but all
bounded by a same maximum of µ “ 1. The behavior shows, that after a few time
steps the maximum is already reached quickly as the function is based on a fixed basis
b and a changing exponent t. Thus, in the field of biological growth, there exists a
solution to provide a balanced increase in growth, which is also bounded by a defined
limit, called the logistic function, which is introduced next.

Logistic Decay Logistic functions are widely used in different fields like bacterial
growth cure predictions [263], Stock market analysis [264] and fish population modeling

51

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

t

d
ec
a
y

β “ 3.0
β “ 2.0
β “ 1.0
β “ 0.5

Figure 5.2: µ “ 1, b “ e

[265]. In order to define the logistic function, we use the generalized logistic function
[266] seen in Equation 5.8. Let K describe the maximal threshold for the decay, which
is again defined by µ through Equation 5.5, while the lower asymptote is set to zero.
Furthermore, let the parameters C “ 1 and v “ 1, which influences at which value
the maximum slope is reached. Lastly, as Q defines what the value of Y p0q is, we set
Q “ p´C `

pK´Aq

y0
q so we can directly define y0 “ 1 as shown in Equation 5.9.

Y ptq “ A `
K ´ A

pC ` Q ¨ e´β¨tq
1
v

(5.8)

Y p0q “
µ

1 ` p´1 `
µ
y0

q ¨ e´β¨0
“

µ
µ
y0

“ y0 (5.9)

dlogistic “
µ

1 ` pµ ´ 1q ¨ e´β¨t
(5.10)

This results in the function displayed in Equation 5.10, which decays micro-clusters
to the average inserts µ, while also taking the time t aged after their creation into
account. The rate of growth is dependent on the factor β as shown in Figure 5.3. In
the beginning, new emerging clusters have the chance to get established as the decay
value is small for low values of t. But later, when the decay increases due to the age
of the cluster, the growth rate equals the maximum decay rate of µ.

Decay Functions Overview Table 5.1 presents a summary of the four defined
decay functions in the two categories:

1. Impact of the decay on initial phase for emerging clusters

2. Impact of the decay on established clusters later in time

While the first threshold based decay functions cause quick removal of newly built
clusters due to the static behavior of the decay compared to the growing characteristic
of emerging clusters, the logarithmic, exponential and logistic decay functions provide
the option to give emerging clusters the chance to get established over time and not be
removed quickly after creation. In contrast to the logarithmic and logistic functions,
the exponential decay increases quickly, thus emerging clusters have just little time to
establish themselves. Of course, this behavior can be intentional, such that clusters

52

0 20 40 60 80 100

50

100

150

200

250

300

t

d
ec
a
y

β “ 1.0
β “ 0.5
β “ 0.2
β “ 0.1

Figure 5.3: µ “ 300 and b “ e

Impact on initial
phase for emerging
clusters

Impact on estab-
lished clusters later
in time

Decay based on
static thresholds

High impact (´) Limited decay (+)

Logarithmic decay Low impact (+) Unlimited decay (´)
Exponentially
bounded decay

Medium impact (o) Limited decay (+)

Logistic decay Low impact (+) Limited decay (+)

Table 5.1: Summary of decay function properties.

always are removed quickly to stay highly adaptable over time. But as we like to
model the normal behavior of a system over time, we also need to capture the cluster
for a longer time frame. Thus, logarithmic and logistic decay show a moderate impact
on emerging clusters.

Later in time, the behavior of the functions is different. While the threshold,
logistic, and exponential decays are limited in growth, the logarithmic function does
not bound the growth of the decay. Thus, older clusters will always be forced to be
removed, even when the cluster is frequently updated. Again, this can be intentional to
provide high adaptability for current context but is not favorable to be used for time
series based anomaly detection when older clusters might still influence the normal
behavior of a system.

All in all, the logistic decay provides the best options as the impact is low in
the initial phase and, later in time, the impact is limited. Thus, emerging clusters
can be established, while the rate of decay is bounded and it is not too drastic to
automatically remove old clusters later. In contrast, clusters with frequent inserts are
kept within the model.

53

Figure 5.4: 2D example of trained clusters and the principle of anomaly detec-
tion.

5.2 Anomaly Detection using Concept Adapting
BIRCH

Concept Adapting BIRCH is applicable for modeling the normal behavior of a system.
This can be achieved when assuming most data points are normal, so that we can
continuously train the model with the incoming data points. For anomaly detection,
we swap the first two phases of Concept Adapting BIRCH to predict, whether the data
point belongs to any cluster and then to insert the data point into the current CF-tree.
If the data point is not contained within any cluster, the data point is considered to
be an anomaly. Otherwise, the data point is considered to be normal. This enables
to detect anomalies at their beginning, but due to the concept adaptation, longer
running anomalies will be considered likely to be normal as they build new clusters
within the CF-tree. The differentiation between normal and abnormal data points by
the clustering result is illustrated in Figure 5.4.

As we try to remediate an anomaly after detection, we assume that anomalies
disappear after a while. We also assume that continuously appearing anomalies, which
are not remediated, can be considered as normal behavior. Such that after adapting
the model to the new concept, it is possible to discover further anomalies within the
signal.

Whether a data point is abnormal or normal, the approach can also quantify how
large the difference to the normal behavior is when having a non-fitting data point.
We define for this error distance an error-to-normal metric ϕ (Equation 5.11), which
calculates the Euclidean distance from a given data point x to the nearest cluster
border Pb.

ϕ “ ||Pb ´ x||
2 (5.11)

The border point is defined by Pb “ r
||x´c||2

¨ px´ cq, where c is the centroid and r the
radius of a given cluster and x any point outside the cluster. When data points are
normal and therefore the predicted point is placed within a cluster, ϕ is set to zero.
The error-to-normal metric ϕ can be used for further analysis steps, like anomaly
evolution prediction or root cause analysis as it captures valuable information when
specific dimensions have large prediction values and can indicate the concrete cause of
an anomaly.

54

5.2.1 Identity Function Threshold Model
The distance ϕ can be used for further differentiating nearby cluster points to be con-
sidered as normal even though they do not fit the cluster directly. Modeling such sen-
sitive borders, we introduced the generalized concept of Identity Function Threshold
Models (IFTM), published by us in [267]. It enables the modeling of complex normal
behaviors for unsupervised online anomaly detection techniques, which function with
prediction errors like Equation 5.11.

IFTM consists of two main stages in order to detect anomalies for degraded state
anomalies within a running system in a unsupervised manner:

1. The Identity function (IF) recommends a value representing the normality
of the current monitoring data stream. In order to do so, the IF learns the
reconstruction of the given data stream, without knowing future events. The IF
should be capable to learn online and compute point-wise decisions for a given
multivariate data stream.

2. The Threshold model (TM) is applied to the output of the IF, distinguishing
between normal and abnormal behavior by computing a threshold value. The
threshold computed by the TM is based on historic IF outputs and should be
also learned online and compute point-wise decisions.

Let function s : Rn
Ñ Rn, n P N perfectly represent a given data stream, so that

for a given data point x P Rn the prediction is always spxq “ x. The goal of the
identity function ξ : Rn

Ñ Rn is approximating s by not knowing future data points
as the stream might be endless. Thus, let g : Rn

Ñ Rn represents the approximation
error function. Thus, gpδ, xq “ δpspxq, ξpxqq, where δ : Rn

Ñ Rn represent an error
measurement and the function g aims to approach ÝÑ

0 .
Given a data point x P Rn, the identity function forecasts a value x1

t “ ξpxt´1q,
where x1

P Rn. Based on the prediction, the reconstruction error ∆ (also known as
prediction error) is computed using δ, as described above, which can be any kind of
error function (also called distance- or loss function). Different error functions like
the Jaccard index, root mean squared error, or Euclidean distance can be applied
depending on the considered identity function.

Assuming the IF reconstruction errors are performed, a valuable threshold T has to
be selected in order to differentiate normal and abnormal errors. We assume that the
identity function’s reconstruction error is low for normal behaving monitoring data,
while for abnormal data, which might not be known yet, the reconstruction error is
high. Thus, the IF precisely represents the normal behavior of the incoming data
stream through learning continuously as we assume that most of the available data
is normal. We assume that the reconstruction error ∆ is normally distributed, also
assumed by [65–67]. Consequently, we define a threshold based on the mean µp∆q

and standard deviation σp∆q of the complete historic values of ∆. Based on this
assumption, we define a threshold of T “ µp∆q ` c ¨ σp∆q. The parameter c reflects a
sensitivity value, as the false alarms can be approximated through T . Obtaining the
mean and standard deviation iteratively over time is straightforward and computed in
constant time.

Figure 5.5 illustrates the phases of applying an IFTM approach. Based on the
currently monitored data from the given data stream, the IF ξ reconstructs the given
time series. The reconstruction error is computed based on the prediction and mon-
itored values. Combined with the threshold, a binary decision can be made whether
the current data point is abnormal or not. The calculated reconstruction error is
further used to optimize the IF as well as the threshold model. In both cases, the
functions can adapt to the current context, thus concept shifts can be captured as
well as chronic problems. This can be helpful, as concept shifts might happen fre-
quently and the IF should be adapted accordingly. Furthermore, the threshold model
can adapt its threshold, when high errors occur for a long period in time (in case of

55

𝑥"𝑥"#$𝑥"#%… IF
ξ

𝑥"

𝑥"'𝑥"#$'𝑥"#%'…

Threshold
𝑇

Error
Δ" = 𝛿(𝑥", 𝑥"')

Binary
decision

Δ⨁𝑇

Δ"#$Δ"#%Δ"#0…
prediction
update

Source

anomaly
normal

Figure 5.5: Input and output behavior of IFTM models.

chronic problems), where the anomaly impacts the system but does not cause a failure
and remediations are not existing. For such cases, the anomaly detection is expected
to adapt accordingly, but this is highly dependent on the monitored domain. In the
case of IT-service monitoring, the anomaly detection should be aware of high frequent
change of user behaviors, but should also accept chronic diseases when a lot of different
remediation actions do not perform as wished. Through learning rate adaptions, both
functions can be influenced to influence the rate of change. Thus, high rates can adapt
very drastically to the current data and low rates do not influence the behavior at all
anymore.

Due to the concept of updating the model based on a single data point, the method
can be applied as online learning. How the IFs update their internal models is highly
dependent on the machine learning model used and investigated in several of our
papers [267–269].

Embedding CABIRCH into IFTM

Incoming data points are predicted by CABIRCH to return the error-to-normal metric
ϕ, which is considered as a reconstruction error. In order to use the defined error
function, CABIRCH does not need to return ϕ directly, but the border point for the
nearest cluster, such when applying the Euclidean distance as error function would
result in returning ϕ directly, but fitting the IFTM model. As a threshold function,
one could then use a fixed threshold to be zero. This would imply the same approach
of testing whether a data point fits into any cluster (ϕ ď 0) or not (ϕ ą 0), respectively
whether a point is abnormal or not.

Equation 5.11 provides a metric, describing the Euclidean distance to the normal
behavior of a component of interest. In order to provide more precise information of
single dimensions, Equation 5.11 can be also applied to the single dimension values
within the vector, resulting in distances for individual metrics. Both, the overall dis-
tance and the metric specific distances can then be forwarded to the analysis steps
like RCA and the remediation component. These analysis steps can use this as addi-
tional information as these distances provide data about distances to expected normal
behaviors, but are out of scope for this thesis and referred to as future work.

5.3 Evaluation
The evaluation aims to show at first the impact and suggested configuration options
for CABIRCH and provides results for anomaly detection on the basis of the cloud
monitoring dataset as described in Section 7.1.

56

5.3.1 Influence of Decay Rate Selection
Selecting a valuable growth rate parameter β is crucial for providing an accurate model
of normal behavior. It highly depends on the reflected normal behavior. Consequently,
a sequence of 20min of initial normal load from each monitored component is evaluated
on which CABIRCH is continuously trained.

Table 5.2 presents the hyperparameter configuration for CABIRCH. The decay
rate β is investigated in the range between 0.0 and 0.08 corresponding to 0 not applied
decay (therefore same as BIRCH).

CABIRCH

initial threshold 0
maximum number of nodes 20
logistic function decay - max decay 1
logistic function decay - β r0, 0.08s, step size: 1 ¨ 10´3

Table 5.2: Parameter configurations for CABIRCH decay rate evaluations.

Figure 5.6 illustrates different β values compared to the average size of micro-
clusters within a CF-tree and false alarm rate. The false alarm rate reflects the
percentage of data points, which do not fit any cluster compared to all given data
points. BIRCH (β “ 0) achieves a micro-cluster size of 0.43, while the false alarm rate
is 0.8%. Increasing β values cause the constant shrinking of clusters, while the false
alarm rate rises. This is expected as the chance of smaller coverage of space causes
a higher chance that the following data points do not fit any cluster due to a smaller
radius. At β “ 0.077, the false alarm rate rises to 100% due to the cluster size of
close to zero. At this point, the decay value causes the forgetting of micro-clusters at
such a high rate, that the CF-tree is unstable and clusters are not able to build up.
Any further increase of β results in the same results from then on. At which point
this change in stability happens is dependent on the maximal decay value set and the
fluctuation of the captured signal. For example, when increasing the maximal decay
value in this experiment, the β value has to be decreased in order to provide the same
curve characteristics as the decay would otherwise be too drastic. At β “ 0.076, the
smallest cluster sizes (0.11) are achieved before the instability happens. In contrast,
the false alarm rate rose until that point to a value of 25.4%.

The relationship between the cluster sizes and false alarm rate is presented in
Figure 5.7. The illustration reflects a nonlinear behavior, but rather an exponential
increase of false alarms with decreasing cluster sizes. By decreasing the cluster sizes
by more than half (from 0.43 to 0.21), the false alarm rate increases by less than 3.6%.

In order to provide a further illustration of the impact of clustering result, we
present in Figures 5.8 and Figure 5.9 a time-based side-by-side comparison between
BIRCH and CABIRCH applied on a weather observation dataset from the CityPulse
EU FP7 Project [270,271] representing concept shifting levels of carbon monoxide and
ozone through the year. Overall, these three Figures show the expected behavior of
providing smaller sized clusters, which are adapted to the data stream (having nearer
distances to clusters). As clusters of BIRCH constantly grow until they cover large
areas of space, the false alarm rate decreases over time. As the clusters for BIRCH
remain on similar positions later in time, they never can cover the complete space as
the n-spheres are not allowed to overlap. Thus, spaces between n-spheres exist and
cannot cover new drifted data points due to inflexibility of adaption later in time.
This behavior is shown through selected representations of BIRCH and CABIRCH
over time from Figure 5.8 to Figure 5.9. Especially Figure 5.9 in subfigure (c), while
subfigure (d) covers better the current data distribution with smaller clusters.

57

0 2 4 6 8

¨10´2

0

0.2

0.4

0.6

0.8

1

β

a v
g.

m
ic

ro
-c

lu
st

er
ra

di
us

fa
ls

e
al

ar
m

ra
te

Figure 5.6: CABIRCH applied on cloud monitoring data under normal load
situations and different β values.

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

avg. micro-cluster radius

fa
ls

e
al

ar
m

ra
te

Figure 5.7: Comparison between false alarm rate and average micro-cluster size.

58

(a) BIRCH (b) CABIRCH

(c) BIRCH (d) CABIRCH

(e) BIRCH (f) CABIRCH

Figure 5.8: Illustration of BIRCH and CABIRCH micro-clusters (blue) and
latest 20 data points (green) over time for the dimensions carbon monoxide and
ozone of the pollution dataset. (a) and (b) at time t “ 100. (c) and (d) for time
t “ 1, 000. (e) and (f) for time t “ 2, 000.

59

(a) BIRCH (b) CABIRCH

(c) BIRCH (d) CABIRCH

Figure 5.9: Illustration of BIRCH and CABIRCH micro-clusters (blue) and
latest 20 data points (green) over time for the dimensions carbon monoxide and
ozone of the pollution dataset. (a) and (b) at time t “ 10, 000. (c) and (d) for
time t “ 100, 000.

60

0 µ

µ
`
0.
5σ

µ
`
1.
0σ

µ
`
1.
5σ

µ
`
2.
0σ

µ
`
2.
5σ

µ
`
3.
0σ

0

5 ¨ 10´2

0.1

0.15

0.2

0.25

threshold configuration

fa
ls

e
al

ar
m

ra
te

Figure 5.10: Relationship between the false alarm rate and configuration of the
threshold model.

5.3.2 CABIRCH-based Anomaly Detection
The false alarm rate is decreased by applying the proposed IFTM procedure due to the
dynamic threshold model. The threshold model provides a captured boundary between
the border of the n-spherical micro-clusters and the threshold to be considered as
normal. Figure 5.10 presents the impact of applying Gaussian distribution as threshold
model with different parameters for the factor of σ when configuring CABIRCH with
β “ 0.07 and the rest of hyperparameters described in Table 5.2.

The first bar shows the relationship of the standard configuration of CABIRCH
without making use of the dynamic threshold. This configuration realizes a false alarm
rate of 23.5%. The following bars present a constant decrease of false alarm rate, as the
threshold model constantly more incorporates the fluctuation of the prediction error
of misclassified instances. The second bar µ does not incorporate the fluctuations, but
the running average of prediction errors. The false alarm rate drops therefore by a
total of 6.8%. Applying a factor of 2.0 to σ forces the false alarm rate to drop below
1%. The selected factor for σ reflects the sensitivity as it also increases the boundary
to avoid potential anomalies to be recognized. Configuration with respect to abnormal
data and normal data is of course recommended, but out of scope for unsupervised
applicability. Thus, we consider a factor of 2.0 for the following experiments.

Figures 5.11 - 5.14 present the prediction error behavior when applying IFTM-
based CABIRCH to a continuously simulated data stream. At first, the normal signal
is simulated for 10,000 data points, followed by a presented (as blue signal) anomaly
pattern consisting of 200 data points as presented in the x-axis. The anomaly pat-
terns follow the characteristics of real-world anomaly patterns for cloud services as
described in Section 3.1. Error A (red signal) represents point-wise continuous learn-
ing of CABIRCH, while error B (gray signal) shows the prediction error when applying
the latest prediction model on basis of the first 10,000 data points. Anomalies are ex-
pected to be detected when the errors reflect increases in their values.

Figure 5.11 presents on the upper left diagram a rapid jump of the signal. The

61

0.2

0.3

0.4

0.5

0.6

sig
na

l

0.2

0.3

0.4

0.5

0.6

sig
na

l
0

0.2

0.4

er
ro

r
A

0

0.1

0.2

0.3

er
ro

r
A

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

time

er
ro

r
B

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

time

er
ro

r
B

Figure 5.11: Prediction error behavior of CABIRCH for rapid changes with
static increased or decreased anomaly pattern.

corresponding error A and error B are presented below, showing that error A detects
the point of change, while error B captures the complete series after the anomaly
pattern has started. The same behavior of errors is shown and expected for rapid
drops as presented on the right side. Error A is capable of change point detection
and adapts to the anomaly state quickly. Triggering those change points with high
errors to remediate the anomaly relies on the always correct detection of such events.
Error B captures the complete sequence of the anomaly state but does not adapt to
the signal when this captures a chronic, normal state.

Leakage anomalies are represented by Figure 5.12. The signal successively increases
(left) or decreases (right) over time. As the signal continuously changes, Error A
shows higher error values for the phase of increase and decrease, while adapting again
quickly when the signal follows a static behavior. Aggregating high spikes in a sliding
window would ensure the chance to capture those phases of high fluctuating errors.
In case of error B, the error values increase in intensity as the monitored signal moves
away from the trained normal scenario. Error B represents therefore also a degraded
phase capturing the degree of anomaly intensity, which might be beneficial for the
remediation engine to select appropriate actions based on the severity.

In the case of fluctuation change within the signal (see Figure 5.13), we consider
an increase of fluctuation around a base signal (left) and correspondingly a decrease
of fluctuation (right). Error A reflects the change point when the fluctuation pattern
changes with increased error intensities. After the pattern of the signal has changed,
error A adapts to the signal and the error value decreases. Likewise to the rapid change
of the anomaly signal, error A can be used for change point detection in fluctuation
changes. Error B shows again a drastically increase in the error intensity when the
anomaly pattern starts to change.

Figure 5.14 presents a sinus signal including two anomaly patterns within the sig-
nal in order to describe context-based anomalies within a seasonal behavior. Error
A reflects both change points, when the anomaly starts and ends, while error B pro-

62

0.2

0.3

0.4

0.5

0.6

sig
na

l

0.2

0.3

0.4

0.5

0.6

sig
na

l
0

0.1

er
ro

r
A

0

0.1

er
ro

r
A

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

time

er
ro

r
B

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

time

er
ro

r
B

Figure 5.12: Prediction error behavior of CABIRCH for successive increasing
and decreasing anomaly pattern.

1 ¨ 10´1

2 ¨ 10´1

3 ¨ 10´1

4 ¨ 10´1

5 ¨ 10´1

6 ¨ 10´1

7 ¨ 10´1

8 ¨ 10´1

sig
na

l

1 ¨ 10´1

2 ¨ 10´1

3 ¨ 10´1

4 ¨ 10´1

5 ¨ 10´1

6 ¨ 10´1

7 ¨ 10´1

8 ¨ 10´1

9 ¨ 10´1

sig
na

l

0

1 ¨ 10´1

2 ¨ 10´1

3 ¨ 10´1

er
ro

r
A

0

5 ¨ 10´2

1 ¨ 10´1

er
ro

r
A

0 20 40 60 80 100 120 140 160 180 200

0

1 ¨ 10´1

2 ¨ 10´1

3 ¨ 10´1

time

er
ro

r
B

0 20 40 60 80 100 120 140 160 180 200

0

5 ¨ 10´2

1 ¨ 10´1

time

er
ro

r
B

Figure 5.13: Prediction error behavior of CABIRCH for changing fluctuations
as anomaly pattern.

63

0

2 ¨ 10´1

4 ¨ 10´1
si

gn
al

0

2 ¨ 10´1

4 ¨ 10´1

er
ro

r
A

0 20 40 60 80 100 120 140 160 180 200

0

1 ¨ 10´1

2 ¨ 10´1

time

er
ro

r
B

Figure 5.14: Prediction error behavior of CABIRCH for anomaly patterns within
a sinus wave.

Algorithm TP-rate TN-rate FP-rate FN-rate AUC

BIRCH-10fold 78.90% 78.39% 21.61% 21.10% 78.65%
CABIRCH 54.27% 96.69% 3.31% 45.73% 75.48%

Table 5.3: Results of CABIRCH compared with semi-supervised learning results
of BIRCH.

vides high error values for the complete time frame of the anomaly. Furthermore, the
intensity of error A and error B provide insights in the order of anomaly intensity.

Based on these findings, the anomaly detection is considered to be carried out in
a tumbling window approach whenever it is aimed to capture the whole sequence of
an anomaly. Anomaly detection is applied using a pretrained model from the previous
tumbling window, while continuous training is performed for the next window. In
cases, where anomaly detection is expected to provide change points, we recommend
applying CABIRCH without tumbling window adaption.

Anomaly Detection Applied at Monitored Cloud Environment

We applied grid search to CABIRCH in order to determine optimal results with respect
to the AUC value for anomaly detection on the cloud monitoring dataset (see Section
7.1). The search space for CABIRCH is described in Appendix B. We applied the
step size 1 ¨ 10´3 for the decay function and 1 ¨ 10´2 for the maximum decay value and
r100, 200, ..., 1000s for the tumbling window size.

Table 5.3 shows, that CABIRCH reaches more than 96% in the TN-rate. Respec-
tively, this describes a precise cover of the normal behavior. On the other hand, the
TP-rate is small (54.27%) and therefore predicts roughly more than half of all abnormal
data points correctly. Compared to results of BIRCH-10fold in the semi-supervised
evaluation, the results show a drop of 3.17% in AUC value, which is expected due
to the absence of complete knowledge of the normal behavior (CABIRCH is executed
and trained online-wise).

64

100.00CPU stress
100.00Increasing CPU
100.00CPU fluctuations
100.00Memory leak
100.00Bandwidth stress
100.00Increasing fork flooding
100.00Fork flooding fluctuations
100.00Memory fluctuations
100.00Memory stress
100.00Disk pollution
100.00Disk pollution tmp
100.00Disk stress

51.04File pointer wasting
96.23Overall anomaly
96.69Normal

0 10 20 30 40 50 60 70 80 90 100
Detection rate [%]

Figure 5.15: Event-based detection rates for the individual anomalies and nor-
mal data points.

As point-wise predictions are a hard indicator of accurate results, this evaluation
metric does not represent the needs of an anomaly detection algorithm for self-healing
purposes in production environments. For this, we investigate in more detail the event-
based evaluation metrics. Due to the behavior rapid adaption of CABIRCH to the
signal, tumbling window sizes have to perfectly represent the length of the abnormal
sequences in order to reach high point-wise results, which is difficult in production.
For each anomaly event, metrics are collected to show the rates of detecting anomaly
events and times are compared when the anomaly was detected compared to the start
of the anomaly.

Figure 5.15 presents the percentages of detected events for the different types of
anomalies (gray) and the overall anomaly detection rate (black) for CABIRCH. Except
the anomaly type file pointer wasting, all events were successfully detected, resulting
in a 96.23% TP-events rate. In white, the normal detection rate is presented, which
is point-wise and indicates a false alarm rate of 3.31% within the normal behaving
phases.

In addition, the time difference from the start of the anomaly until it is actually
detected by CABIRCH is represented in Figure 5.16. The average length of a false
alarm is represented in white, which is less than 4 seconds. Again, the different
anomaly types are represented in gray and are sorted based on Figure 5.15. Figure
5.16 shows that there are high differences when an anomaly is detected by the given
algorithm. Successive increasing anomalies show larger detection times than rapid
changing or fluctuating anomalies. This behavior can be explained by the adaption
by CABIRCH.

Furthermore, Figure 5.17 shows the dependency between the average detection
time for the different anomaly types, compared to the standard deviation from those.
The plot shows a correlation of 0.893 (Pearson’s correlation coefficient), which indi-
cates a high linear dependency between the detection time and standard deviation.
This means there does not exist a high difference in detection time for short average
detection times, while for a larger average detection time, the fluctuation increases.

65

0.01CPU stress
15.85Increasing CPU

0.77CPU fluctuations
17.54Memory leak

9.39Bandwidth stress
31.80Increasing fork flooding

2.60Fork flooding fluctuations
1.52Memory fluctuations

6.72Memory stress
55.28Disk pollution

58.32Disk pollution tmp
26.45Disk stress

41.23File pointer wasting
3.99Normal

0 10 20 30 40 50 60
Avg. detection time [s]

Figure 5.16: Event-based average detection times for the individual anomalies.

Based on these findings that such differences in detection time are described for suc-
cessive increasing anomalies, the results indicate that the intensity of such anomaly
types is relevant. Thus, non-intensive successive changes cannot be recognized.

The results show the applicability using CABIRCH for event-based anomaly de-
tection with 96.23% TP-event rate and 3.31% false alarms. While 96.23% of anomaly
events are going to be detected, point-wise TP-rate and detection times of anomaly
types show the limitations of this approach. Successive changing anomalies are de-
tected late, but accurate causing a small TP-rate. In the worst case, this might result
in less options for risk-aware remediation action selection for productive environments
due to late detection times. For the anomaly type of file pointer wasting, there exists
further room for improvement. The next chapter continues to automatize for applying
AI-based models by investigating the cold start problem of providing a valuable ma-
chine learning model from the beginning. For zero-touch administration, automatized
optimization for selecting optimal hyperparameters is crucial as administrators are
usually not AI experts, which is investigated in detail in the following chapter.

66

0 10 20 30 40 50 60

0

20

40

60

80

avg. detection time [s]

st
d.

de
te

ct
io

n
ti
m

e
[s

]

Figure 5.17: Comparison of average detection times and standard deviation of
detection times.

Chapter 6

Cold Start-Aware Identity
Function Threshold Models

This chapter focuses on the phase of initializing an IFTM-based anomaly detection
model. The initial phase is referred to as cold start problem capturing the hyperparam-
eter configuration and initial learning for machine learning models. As determining
the best hyperparameters is crucial for achieving high accuracy for anomaly detection,
it is difficult to find those beforehand in a productive system. This is due to the prob-
lem of collecting valuable data, which are not outdated and can be used for building
robust models in dynamic environments.

In general, there exist two key aspects to approach to mitigate the cold start
problem:

1. Selecting an already pretrained model (or generalized parts of pretrained models)
from e.g. similar already deployed service, which is widely investigated in the
context of robust models and transfer learning.

2. Optimizing the hyperparameters, if there does not exist a valuable pretrained
model in the first place (see Section 6.2).

As shown in Algorithm 2, a suggested approach first checks the existence of a
stored model for its particular component. In case of existence, this model is applied
or otherwise continued with checking whether a similar model is available for usage.
In case that there is no existing model of the component nor a similar model available,
we propose a hyperparameter optimization methodology.

Algorithm 2 Cold start-aware approach for IFTM models
Input: component: component to be initiated
Output: model: IFTM model for anomaly detection
1: if Trained model exists for starting component then
2: return model Ð load existing model
3: else if Trained model exists for similar component then
4: models Ð load similar models
5: return model Ð select best similar model out of loaded models
6: else
7: return model Ð initiate model through hyperparameter optimzation

The definition of the term similar component refers to the consideration of models,
which are either robust and therefore independent of any monitored component or are

67

68

applicable to transfer learning [272–274]. With the absence of any model, we still
have to consider training an ML model from scratch, where the ML model has to be
configured.

Hyperparameter configuration changes the functionality of the given machine learn-
ing algorithm. Determining beneficial hyperparameters for the aimed problem domain
is crucial as it influences the method’s quality of results. Even when applying the
algorithm to a new component (this might be the change to another monitored ser-
vice component), such hyperparameters must often be re-tuned [275]. Non-experts in
machine learning require off-the-shelf solutions to configure hyperparameters as the
degrees of freedom of choosing such are too high. Therefore, automatic approaches
are required to evaluate and configure the machine learning algorithms, without the
need for detailed knowledge about the exact machine learning algorithms.

The main problem for hyperparameter tuning is the complexity of the size of the
search space. Let p1, p2, p3 be hyperparameters for which the four values ta, b, c, du can
be chosen. Consequently, for this setup there exist 34 “ 27 possibilities. In general,
there is an exponential coherence pn for a given number of parameters p and number
of possible values n, assuming that all parameters have the same number of possible
values. It gets even more problematic if there is not a finite number of values to choose
from for a parameter, but e.g. an interval containing an infinite number of possible
values, like choosing a real number between 0 and 1. Often interval ranges and step
widths are defined in order to discretize such parameters and allowing to operate with a
wide range of search approaches, like grid search, but in general this is not mandatory.
Bergstra and Bengio [201] show that random search over non discretized features is
more variable as through discretization the global optimum might not be reachable.

Due to the exponential complexity of enumerating all different possible param-
eters, there exist different methods beyond exhaustive search to determine the best
parameters. For example, grid search is a form of exhaustive search, where the possible
values are discretized and the range of values is finite. As grid search also performs a
complete search on this set of defined discretized values, the optimum with respect to
the given values can be found. Thus, the user has to shrink the set of values very much
to provide a feasible search as the complexity is still exponential. Random selection
of parameters and exhaustive search has a very positive property. It is possible to
determine the global optimum but this comes with the cost of time complexity when
aiming to find the global optimum [201].

When relaxing the problem to find local optimums - not guaranteeing to find
the global optimum - there exist several computation-efficient strategies. We like to
highlight, that applying a local optimum is still better than randomly selecting values.
For example, random search provides the best option of hyperparameters by testing
multiple randomly initialized hyperparameter settings. This mechanism does not even
ensure that one finds a local optimum, but enlarges the probability to find on average
a better performing set of parameters than just simply applying a single randomized
initiated model. In order to find local optima, more sophisticated techniques need to
be utilized, which guide e.g. the random search more intelligently.

In the following, we concentrate on defining an automated hyperparameter op-
timization technique for IFTM models. The proposed hyperparameter optimization
approach is based on genetic programming [84] (see Section 2.3.7) introducing a novel
scoring function by us.

6.1 Integration of Hyperparameter Optimization
into IFTM Framework

The proposed hyperparameter optimization approach should be applicable to the on-
line scenario, as the anomaly detection is applied in the same way. We therefore

69

Sliding window

Tumbling window

Figure 6.1: Representation of sliding window and tumbling window concepts.

Population 1
train & predict

Population 1
predict

Population 2
train

Population 2
predict

Population 3
train

…

Time
Tumbling window 0 Tumbling window 1 Tumbling window 2

Figure 6.2: Applying training and prediction models to the data stream.

propose the integration of a tumbling window to define the number of steps until a
new population is bred. In more detail, a tumbling window represents a set of col-
lected data points. When the set reaches the sufficient size, the window is flushed and
collects again new data points. This behavior is illustrated in Figure 6.1 representing
the difference to sliding windows. While the sliding window removes the oldest from
the queue for each incoming data point, the tumbling window removes the complete
window and starts from scratch, which is the aimed approach for determining the
points in time to perform the creation of the new breed of population.

Figure 6.2 depicts the different phases in time when populations are point-wise
trained and predicted. At first, the models have to be initialized and trained in
Tumbling window 0 iteratively as well as point-wise prediction. After reaching the full
size of the tumbling window, the trained models are further used for online prediction
but are not trained anymore. A new breeding population is trained on the given data
stream. Thus, training and prediction are performed in parallel on the same data,
but with different models. The models used for prediction are based on the previous
tumbling window phase, while the training is performed on the latest models.

Prediction results are based on a population of the latest IFTM models. This
population functions as ensembler, providing individual predictions, which are further
aggregated to an overall result. Applying multiple ML models as ensemblers is a well-
established solution to increase the robustness of the models and lower the number of
false alarms [276–279].

For this work, we introduce an ensembler mode for IFTM models as shown in
Figure 6.3. Given the set of n IFTM models S “ pm1,m2, ..,mnq, we also have the
information about the fitness score for each such model. Thus, we define the aggregated
prediction based on the weighted sum of the fitness scores for each model. Based on
the performance of the fitness score compared to the other models, the impact of the
different IFTM models within a single population may vary and provide therefore
different influence on the overall result. The binary decisions of the single models
are aggregated, and predicted as normal or abnormal when there are more than 50%
of weighted votes (based on the fitness score) from each model are achieved. This
decision boundary is configurable to the user and functions as a sensitivity parameter.

70

𝑥"𝑥"#$𝑥"#%…

IFTM1

IFTM2

IFTMn

… …

PredictionsEnsemble

Aggregated
result

𝑥"𝑥"#$𝑥"#%…

anomaly
normal

Legend

Timeseries

Figure 6.3: Ensemble provides n prediction results, which have to be merged
into an aggregated overall prediction result.

Choosing a lower rate to differentiate abnormal reports, results in higher sensitivity
when a smaller subset of IFTM models reports an abnormal behavior.

6.2 Automated Hyperparameter Optimization

6.2.1 Initialization, Crossover, Mutation, Termination
Genetic optimization performs a fixed set of methods, which are defined next.

Randomized Initialization and Mutation

At first, an initial population of models is created by randomly choosing hyperparam-
eters (see Appendix B). The random initialization step is performed once at the be-
ginning when creating a novel population of models. Afterward, the crossover phase is
applied based on the available population. The crossover consists of a mutation phase,
where the randomized selection process is applied to individual hyperparameters when
selected for mutation. The mutation takes place with a user-defined probability. New
values for parameters thereby have the change to be tested, which may not be available
from the crossover phase of initialization.

Parent selection and Crossover

The parent selection as well as the crossover phase are conducted in order to create
the new generation of the population (as shown in Figure 6.4). At first, a set of
subpopulation is selected from the current population from which the new population
for the next iteration is created. The creation is implemented by selecting A models
with the highest fitness score in order to create the new population by using the fittest
among the population. Furthermore, other B models are selected randomly from
the rest of the population in order to provide more diversity of genes (differences in
hyperparameters) to the new population. Both of these sets are combined and copied
to the new population, but also are used as the parent set from which the crossover is
performed in order to generate the rest of the models.

This generation is performed through the crossover phase. For each missing model
for reaching again the initial population size, a new model is created on the basis of
the parent set. For creating a single new model, two parent models are selected with

71

Highest
score A

B

A ⨂ BR
an

do
m

se

le
ct

io
n

Cross-
over

Population
at time t

Population
at time t+1

Figure 6.4: Illustration of the crossover from a given population to the next
population.

the probability based on uniform distribution from the parent set. Based on these
two selected parent models, for every single hyperparameter the parent is randomly
(equal probability) chosen and the model parameters are copied. Thus, the resulting
new model consists of the hyperparameters from the parents.

Termination criteria

As defined by the Algorithm 1 in step 2, we have to define the termination of the
optimization. In general, it is possible to never let the optimization end, but the
technique approaches at some point a local optimum. The local optimum is detected
when the average fitness score does not significantly change any more. We consider
the termination when there is no improvement in the average fitness function score
compared to the previous tumbling window at all anymore.

6.2.2 Fitness Function Definition
The fitness function is a crucial component of the optimization algorithm as it defines
the optimization criterion on which the hyperparameters are optimized. When this
defined criterion is not representative - when this criterion does not correlate with the
aimed high accuracy - the optimized set of hyperparameters is not going to perform
appropriately as well. A valid candidate is the accuracy of a validation dataset, but
this assumes labeled data for normal and abnormal cases. For providing an automated
optimization process, the fitness function cannot rely on supervised knowledge and
should consequently function under the same constraints of IFTM approaches. The
constraints capture the assumption that most data is normal, which provides the
option to define the scoring function based on the false alarm rate. When optimizing
this criterion, the problem of overestimating the threshold arises. The model detects
in this case all data points as normal due to a too large threshold value as the model
is optimized towards providing a low false alarm rate.

Further parameters should therefore be investigated to estimate a good fitting
model. Figure 6.5 illustrates three different models, which are different in their thresh-
old computation considering that the IF predicts the same reconstruction error (indi-
cated by dots). Threshold 1 does not produce any false alarms but has a large distance
to the errors, which could be problematic as anomalies, which produce higher errors,
may still remain beneath the threshold and will therefore be misclassified. Threshold
3 is much smaller but produces a high number of false alarms. Threshold 2 produces

72

Time

Er
ro

r /
 th

re
sh

ol
d

Legend
Error
Threshold 1
Threshold 2
Threshold 3

Figure 6.5: Examples of different performing IFTM models.

Time

Er
ro

r /
 th

re
sh

ol
d

Legend
Error
Threshold

𝚫
𝐓

|𝐓 − 𝚫|f

Figure 6.6: Illustration of different indicators for selecting good IFTM models.
The dots in the gray area are stated as abnormal data points, consequently
increasing the false alarm rate when expected that all such data points are
normal.

instead no false alarms but captures precisely normal instances. Thus, small deviations
above the threshold would trigger an anomaly, which is the aimed goal. The balance
between fluctuations of the reconstruction errors, which are produced through normal
data points, and the distance to the threshold has to be optimized. Furthermore, the
identity function should be able to provide an accurate prediction for the normal data
and therefore low errors are expected.

Based on these properties, we define the compactness of an IFTM model by a fitness
score s. For normal behaving signals, we expect that a suited identity function can
reconstruct the signal almost perfectly. Consequently, we expect a low reconstruction
error ∆. When also given a low threshold T , the model can react to changes and
report those as anomalies. The threshold T is also expected to be represented by a
small value. Accordingly, the distance between the reconstruction error and threshold
value should be small in order to represent compactly the given normal data. The
false alarm rate is incorporated and functions as an antagonist. A rise of false alarms
is expected as small spikes of the reconstruction error occur when having a small
threshold. The false alarm rate f is aimed to penalize too high thresholds. Figure 6.6
presents these four different aspects of f , ∆, T and |T ´ ∆| with respect to a given
IFTM output.

A number of latest n data points from the last tumbling window are used to
calculate the fitness score s as defined by:

73

y “ tanhx

0.5 1 1.5 2 2.5

0.5

1

1.5

x

y

Figure 6.7: Illustration of tanh function in a positive interval.

argmax s “ 1 ´ argmin pw1 ¨
1

n

n
ÿ

i“1

fi ` w2 ¨ tanhp
1

n

n
ÿ

i“1

∆iq

` w3 ¨ tanhp
1

n

n
ÿ

i“1

Tiq ` w4 ¨ tanhp
1

n

n
ÿ

i“1

|Ti ´ ∆i|qq

(6.1)

The weights w1,...,4 P r0, 1s define the importance of the single terms. Thus, user-
defined configuration can be applied reflecting the sensitivity of IFTM models, which
quickly allow the detection of anomalies, but might rise a higher number of false
alarms. In the case of non-sensitive configuration, anomalies might not be recognized.
These terms are recommended to be configured as w1 “ w2 ` w3 ` w4 in order to
provide a balanced configuration between false alarms and compact fitting to the
data stream behavior of the IFTM model. As IFTM models are used to represent
the normal behavior, the reconstruction function should approach zero (2. term w2 ¨

tanhp 1
n

řn
i“1 ∆iq) as this means that the identity function almost perfectly captures

the normal state. Furthermore, the threshold should also be near zero (3. term
w3 ¨ tanhp 1

n

řn
i“1 Tiq). This causes a small distance between error and threshold (4.

term w4 ¨ tanhp 1
n

řn
i“1 |Ti ´ ∆i|q), such that the model is highly representative, but

might lack a high number of false alarms, as the error might easily get above the
threshold. Thus, we also consider to have a low false alarm rate as antagonist for
normal data, in the best case also approaching zero (1. term w1 ¨ 1

n

řn
i“1 fi). The

function tanh, as shown in Figure 6.7, is applied to normalize the distances between
r0, 1s as they shall approach zero. The fitness score s P r0, 1s is aimed to be maximized
by the genetic optimization.

6.3 Evaluation
Fitness Function Evaluation The applicability of the defined fitness function
(see. Equation 6.1) is shown through conducting an experiment based on the cloud
monitoring data as described in Section 7.1. The dataset consists of 952 quantums,
which are tested individually and produce their own results. For evaluation purposes, a
single quantum is split in separate parts: the first 2:30min of data were used as training
set of each quantum, the following 30s of normal data as validation set and the last
2min (1min normal and 1min abnormal data) were used as test data as illustrated in

74

2:30min 0:30min 1:00min1:00min

normal abnormal

train validate test

Figure 6.8: Separation of data of a single quantum.

Algorithm Parameters

CABIRCH
max node entries: [2,20]

logistic decay max value: [0,1]
logistic decay learning rate: [0,1]

VAE
encoding layers: [1,4]
decoding layers: [1,4]
learning rate: [0,1]

MArima mk: [10,200]
d: [1,8]

AELSTM
encoding layers: [1,4]
decoding layers: [1,4]
learning rate: [0,1]

Gaussian threshold σ: [0,5]

Table 6.1: Table of IFTM model configurations.

Figure 6.8. The separation of the quantum into the three phases of training, validation
and test set are based on a time-wise split. The IFTM model trains in the first
phases, but it will not be changed for the two upcoming test phases. This enables the
evaluation whether fitness score calculations (based on the validation set) reflect the
accuracy of the test set.

Furthermore, we applied several different IFTM models based on CABIRCH, Vari-
ational autoencoders (VAE), multivariate online Arima (MArima) and an Autoencoder
with LSTM cells (AELSTM) as identity functions (see Section 2.3) and Gaussian dis-
tribution model as dynamic threshold using randomized initialization through the
following uniform distributed hyperparameters as shown in table 6.1. Based on this
configuration, a set of 1,000 randomly initiated models for the different IFTM models
per quantum is initialized.

Exemplary, we present detailed results through applying first random CABIRCH
models. Figure 6.9 shows the Euclidean distance between the reconstruction error
and threshold. The image illustrates that models, which have a larger distance in
the validation set, represent the same behavior for the normal section of the test set
indicated by a Pearson correlation coefficient of 0.9935. The same correlated behavior
describes the false alarm rate from the validation set compared to the normal part of
the test set with a correlation coefficient of 0.9211 (see Figure 6.10).

Figure 6.11 presents boxplots showing the distribution of reconstruction error for
the validation set and test set. The illustration shows that the validation set as well
as the first part of the test set show similar distributions, while the abnormal part
of the test set shows larger reconstruction errors. This is expected as the training is

75

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

|T
 -
Δ|

 t
es
t

|T - Δ| validation

Figure 6.9: Comparison between validation and test set (normal) of Euclidean
distance between reconstruction error and threshold. Pearson correlation coef-
ficient: 0.9935.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6

fa
ls
e
al
ar
m
s t
es
t

false alarms validation

Figure 6.10: Comparison between validation and test set (normal) of false alarm
rates. Pearson correlation coefficient: 0.9211.

76

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

re
co
ns
tr
uc
tio

n
er
ro
r
Δ

validation (normal) test (normal) test (anomaly)

Figure 6.11: Boxplot of reconstruction errors of the validation and both test
sets (normal and anomaly).

w1 w2 w3 w4

0.5 0.125 0.125 0.25

Table 6.2: Weights used for the fitness function.

performed on normal data and should therefore represent more precisely the normal
data in the validation set and normal behaving part of the test set.

The behavior of the given data is therefore expected and indicates, that the time
horizon of prediction does not underlie too much change in the normal state in the vali-
dation set and normal test set, while the abnormal test set shows higher reconstruction
errors.

Table 6.2 shows the individual weightings of the fitness function. Half of the score
value is contributed by the false alarm rate, while the other half is defined up to the
three further score’s metrics. This is intended to weight the antagonists equally as
suggested above. The rest of the three values are also split up into two groups. While
w4 represents the distance between threshold and reconstruction error is weighted as
high as the actual largeness of the threshold and reconstitution error, resulting in the
weights is presented in Table 6.2.

Figure 6.12 presents the dependency between the distance of the reconstruction
error and the threshold compared to the false alarm rates for the anomaly case and
normal case using the test set data. The black points represent the normal data of the
test set, where a low distance between the reconstruction error and threshold (here
after referred to as distance) shows an increase in the false alarm rate, while a large
distance shows a preferred low false alarm rate (near zero). This is expected as a large
distance compensates too much the fluctuations in the error and therefore all data
points will be detected as normal. A small distance in contrast shows higher false
alarms as the model may over-fit the signal and does not compensate the noise in the
error.

The brighter points illustrate the dependency between the distance with the ab-

77

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
|T - Δ| test

false alarms - normal (test)

false alarms - anomaly (test)

Figure 6.12: Illustration of false alarms within the normal and anomaly test sets
compared with the distance between error and threshold.

0

0.2

0.4

0.6

0.8

1

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

ac
cu
ra
cy

score

Figure 6.13: Scatterplot showing the comparison of the score based on the
validation set and resulting accuracy of the test set. The resulting Pearson
correlation is: 0.73.

normal data, showing that small distances indicate a low false alarm rate and higher
distances misclassify the anomalies more, represented by a high false alarm rate for the
abnormal data. This is again expected, as a high distance is going to classify data as
normal leading to high false alarms for abnormal data, while small distances provide
the chance to jump above the threshold causing a trigger for an anomaly. Figure 6.12
presents the problem of choosing a robust model, which provides a balance between a
small distance and the false alarm rate.

The scatter plot (Figure 6.13) shows the relationship between calculated scores
based on the validation set and the accuracy based test set. The plot shows, that
there exists almost a nonchanging behavior of accuracy of 0.5 for scores below 0.4
representing models, which are able to just detect abnormal or just normal behavior
and those which produce perfectly balanced misclassifications. Higher larger scores
of the fitness function show an increase in accuracy. This results in a correlation
coefficient of 0.73 using the Pearson correlation for the complete dataset.

The above described figures showed detailed behaviors for a CABIRCH based
anomaly detection model. Table 6.3 describes the overall correlation in the last column
C(s, a), where a denotes the accuracy, s the score and C the correlation function
applied, for the different IFTM models (MArima, VAE, AELSTM). All those models
show high correlations with respect to the score and accuracy. In addition, the table
presents the correlation of the individual values used within the fitness function with

78

C(∆, a) C(T ,a) C(|T ´ ∆|,a) C(f ,a) C(s, a)

CABIRCH -0.45 -0.73 -0.65 0.34 0.73
MArima -0.28 -0.44 -0.45 -0.04 0.70
VAE -0.03 -0.07 -0.07 0.14 0.68
AELSTM -0.08 -0.09 -0.09 0.19 0.65

Table 6.3: Pearson correlation of individual scoring metrics with respect to the
accuracy for different IFTM models.

Parameter hyperoptimization Default values

Mutation rate 5%
Tumbling window size 100
Initial population size 100
Parent selection: Best percentage 20%
Parent selection: Random percentage 20%

Fitness score weightings
w1, w2, w3, w4

w1 “ 0.5
w2 “ w3 “ 0.125
w4 “ 0.25

Table 6.4: Default values for the hyperoptimization for IFTM models.

respect to the accuracy. For each of the individual metrics, there does not exist a high
correlation for any of the applied approaches. This reflects that the individual metrics
do not provide enough information to approximate the accuracy a model can reach.
Therefore, the combination of the individual metrics through the fitness function is
necessary and applicable.

Cloud Monitoring Evaluation Table 6.4 presents the configuration of our hy-
perparameter approach. Combined with the IFTM model specific configurations (see
Appendix B), anomaly detection is applied to the cloud monitoring dataset (see Sec-
tion 7.1).

The four plots of Figure 6.14 show the results when applying the different IFTM
models (CABIRCH (a), MArima (b), VAE (c), and AELSTM (d) as described above)
to the sequence of 20min of the initial normal load of the monitoring data. The plots
represent the behavior of the population’s score developing over time. After each
tumbling window (described as iterations - x-axis of the plots), the average score (red)
and the average of the best performing 20% of scores (blue) are reported. Each IFTM
model was applied 100 times to provide representative behaviors to the randomized
internal processes of the hyperparameter optimization. The diagrams show an increase
in both scores over time for all individual models. The best scores reach high scores
(above 0.8) in a short period of time (ca. 5 iterations), while the overall population’s
average approaches high scores later in time and depend on the applied IFTM model.
CABIRCH and MArima show in the average case (red) quicker response to increasing
scores, while the neural network-based approaches increase slower. All plots illustrate
a converging behavior to improving scores over time, which reflects the effectiveness
of applying hyperparameter optimization.

In the previous Chapter 5, the optimal result for CABIRCH was determined
through grid search with respect to the AUC. Table 6.5 presents these results and
adds the results when applying hyperparameter optimization-based CABIRCH. The

79

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

iteration

sc
or

e

(a) CABIRCH

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

iteration

sc
or

e

(b) MArima

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

iteration

sc
or

e

(c) VAE

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

iteration

sc
or

e

(d) AELSTM

Figure 6.14: Behavior of score development over time. Blue: Average of 20%
population’s highest scores. Red: Average over the complete set of population’s
scores.

80

Algorithm TP-rate TN-rate TP-event AUC

Hyperopt CABIRCH 56.04% 85.82% 94.84% 70.93%
Best CABIRCH 54.27% 96.69% 96.23% 75.48%
Difference +1.77% -10.87% -1.39% -4.55%

Table 6.5: Comparison between hyperparameter optimized model and overall
best CABIRCH model.

table shows a drop of 4.55% in AUC value, which relates to the large difference in
representing the normal state. This is represented by the TN-rate, where the hyper-
parameter optimized version provides 10.87% more false alarms (14.18% false alarms
in total), while detecting 1.77% better anomalies. Reflecting the production near
parameter for detecting anomaly events, the TP-event rate is decreased by 1.39%.

Applying hyperparameter optimization to CABIRCH combined with the Gaussian
threshold model leaves room for improvements due to its high TN-rate. In the fol-
lowing Chapter 7, we compare 27 combinations of identity functions and threshold
models investigating the potential for unsupervised anomaly detection when applying
CABIRCH and further state of the art techniques as identity functions together with
hyperparameter optimization.

Chapter 7

Evaluation

For elaborating unsupervised anomaly detection for detecting online abnormal behav-
iors in cloud monitoring data streams, we apply 28 IFTM algorithms, including state
of the art anomaly detection methods. IFTM generalizes the applicability between
such reconstruction or forecasting methods as identity functions and enables applying
different types of dynamic threshold models.

Table 7.1 presents all integrated IFTM approaches, seven identity functions and
four threshold models.

Besides the proposed anomaly detection based on CABIRCH and Gaussian thresh-
old modeling (CA), we apply further dynamic threshold models: Sliding window ag-
gregation (SWA) , Exponential moving model (EMM) [69] and Double exponential
moving model (DEMM) [68]. In addition, we evaluate the further identity functions:
Autoencoders (AE), Variational Autoencoder (VAE), Univariate Arima (UArima),
Multivariate Arima (MArima), LSTM-based network (LSTM) and Autoencoder with
LSTM cells (AELSTM). For all of these approaches, we provided details in Section
2.3.1 and in case of Arima in Appendix A.

Laptev et al. [147] proposed to apply Arima together with a Gaussian threshold for
univariate time-series anomaly detection. Due to applying online learning, we utilized
an optimized form of Arima, called Online Arima, and showed its applicability with
a Gaussian threshold to the cloud monitoring domain [268, 269]. Whether further
improvements are possible with other threshold models, is evaluated in this thesis.

Hundman et al. [65] applied an LSTM network as identity function together with
EMM as threshold model to multivariate time-series anomaly detection for mars rover
data. In contrast, Malhotra et al. [66] utilized a Gaussian threshold, while applying
also an LSTM network, and showed its applicability to a wider range of domains like
ECG signal analysis, engine sensor data and power consumption monitoring. In both
cases, they did not investigate the applicability to cloud anomalies.

Oh and Yun [67] illustrated the applicability of AE and Gaussian threshold as a
key model for machine sound signal anomaly detection, while Xu et al. [176] applied
a VAE together with a Gaussian threshold to analyze web application KPIs. Again,
both of these papers did not evaluate the applicability to cloud monitoring data and
did not investigate further dynamic threshold choices.

AELSTM combines the structure of AE with employing LSTM cells. Such a struc-
ture was proposed by Park et al. [173] to detect abnormal behaviors in robot-assisted
feeding settings, but applied in a semi-supervised manner without automatically in-
ferred thresholds.

Based on these findings of recent work in unsupervised anomaly detection, we
integrated all these different methods into IFTM. The neural network architecture
of integrated autoencoders (AE, VAE, AELSTM) creates for each layer a decreased

81

82

Identity function Threshold model

CABIRCH
Autoencoder

Variational Autoencoder
Univariate Arima

Multivariate Arima
LSTM network

Autoencoder with LSTM cells

Gaussian aggregation
Sliding window aggregation
Exponential moving model

Double exponential moving model

Table 7.1: List of integrated IF and TM models in the IFTM framework.

number of neurons by ni`1 “ r
ni
2

s, where Ni are the number nodes from the previous
layer i, for the encoding network. The decoding network is symmetrically copied and
increases with the number of neurons. The network structure for LSTMs as an identity
function is kept straight forward: the number of nodes in the input and output layer
are the same as the number of dimensions given through the multivariate data point.
Further hyperparameters are optimized based on out optimization approach with the
base configurations seen in Table 6.4 and the interval selections presented in Appendix
B.

7.1 Evaluation Setup
For evaluation purposes, we built an extensive private cloud testbed running the cloud
services Clearwater and Video-on-demand.

Cloud Infrastructure

The infrastructure used within these experiments are based on a homogeneous cluster
setup of 13 physical servers, where each server has the following properties:

• Intel Xeon X3450 (4 cores @ 2.66GHz)

• 16GB Ram

• 3x 1TB disks

• 2x 1GBit Ethernet interfaces

On these servers, a highly available OpenStack installation is deployed, which func-
tions as private cloud [280]. Since OpenStack consists of management services itself,
OpenStack occupies a subset of physical hosts. Thus, 9 physical hosts are used as
compute nodes for evaluation. Through OpenStack, it is possible to create virtual
machines through KVM as virtualization engine, in which we deploy the services de-
scribed above. For each service installation, we created its own virtual machine. The
virtual machines run Ubuntu 16.04 and use 2 vCPU cores, 2GB memory and 20GB
disk.

Clearwater

Section 2.2.1 described the open source Project Clearwater and its internal compo-
nents. Based on these components, we deployed a replicated version which is load
balanced. The key services Bono and Sprout are deployed three times each, while
single deployments are used for Homer, Homestead, and Ellis. In order to provide
realistic results, we simulate the usage of the IMS by changing the number of client
registrations and call initiations randomly between 20 and 40 users every minute.

83

The system was monitored under normal load behavior for the first 20 minutes.
Afterwards, the anomaly injections started injecting with a duration of 5 minutes
followed by a cooldown phase of 1 minute normal data. Execution of anomalies is
switched round robin, first through the hosts and then the anomaly type.

The complete execution plan runs for 96h. Data was collected with a monitoring
interval of 500ms and collected in parallel on all the given service components. In order
to provide a clean dataset for evaluation, phases when anomaly executions run on
different hosts are removed as they may influence the result due to propagation, which
is out of scope for the anomaly detection and referred to the root cause analysis. The
resulting dataset for each monitored service consists of 286,108 data points containing
24 resource metrics.

Video-on-demand

Section 2.2.2 describes the Video-on-demand service use case. A replicated version of
the load balancer and video backend servers are deployed, with four clients producing
the service load. The distribution upon the physical servers has been carried out
through the different parts of the service to consequently distributed among three
servers.

The system was monitored again under normal load behavior for the first 20 min-
utes. Afterwards, the anomaly injections started injecting with a duration of 1 minute
followed by a cooldown phase of 4 minutes normal data. Execution of anomalies are
switched round robin, first through the hosts, and then the anomaly type.

The complete execution plan runs for 96h. Data was collected with a monitoring
interval of 500ms and collected in parallel on all the given service components. In
order to provide a clean dataset for evaluation, in phases when anomaly executions
run on different hosts, they are removed as they may influence the result due to
propagation, which is out of scope for the anomaly detection and referred to the root
cause analysis. The resulting dataset for each monitored component consists of more
than 280,000 data points containing 24 resource metrics.

7.1.1 Resource Monitoring
The Bitflow collector1 is applied for monitoring the cloud infrastructure on different
layers. The collector is implemented in Go and aims to monitor resource metrics in
user-defined frequent intervals, which are sent through a TCP connection in a unified
format to a given destination. The Bitflow collector retrieves monitoring information
from different interfaces, which are mainly from the proc-file system, libvirt [281], and
ovsdb [282].

Table 7.2 shows the different layers and metrics on which the collector can aggre-
gate information. The left column shows the different types of metrics collected and
the following columns define on which level those are collected. The proc-filesystem is
being used for the system-wide and process-wise collection of metrics, while libvirt is
used for virtual machine monitoring from the hypervisor level and ovsdb for further
information of the network layer.

In addition, preprocessing is conducted by the monitoring agent. Based on historic
data it applies min-max scaling:

x1
“

x ´ xmin

xmax ´ xmin
(7.1)

Where x1 denotes the normalized value and xmin the minimum value and xmax the
maximum value of a given metric.

1https://github.com/bitflow-stream/go-bitflow-collector/

https://github.com/bitflow-stream/go-bitflow-collector/

84

Metric Description system-
wide

per
process

libvirt
per VM

ovsdb
per bridge

CPU CPU utilization x x x

RAM RAM utilization x x x

Disk IO Hard disk access in
bytes and times x x x

Disk space Disk space usage
per partition x x

Network IO Network utilization
in bytes and packets x x x x

Network protocol Protocol specific counters
for IP, UDP, TCP, ICMP x

Num. of processes x

Num. of threads x

Table 7.2: Interfaces of resource metrics monitored by the Bitflow collector.

Successive increase Rapid change Fluctuations

CPU x x x
Memory x x x
Hard disk x x x
Network x

Table 7.3: Types of degraded state anomalies compared to aimed metrics.

7.1.2 Anomaly Injection Framework
For simulating degraded state anomalies, we developed an injection framework. It
consists of three main components: the experiment controller, the load controller, and
the injection agent as depicted in Figure 7.1. The experiment controller is a centralized
service, which is deployed once and manages triggering of anomalies. Likewise, the
load controller is a centralized component for managing the load changes within the
system.

The load controller component contains a SIP load generator module, which ini-
tiates sessions for a certain number of users per a defined temporal period for the
Clearwater IMS system. This load generator is a sip-stress component provided by
Clearwater itself, which is deployed within a separate virtual machine and used to
generate defined system loads. For the Video-on-demand VNF service, the same prin-
ciples are deployed, where the load controller initiates the streaming of videos through
clients simulating users.

The anomaly injection agent is deployed inside each component, which is moni-
tored and where the user wants to execute anomalies. The agent is controlled through
a RESTful API, providing the options to trigger or stop anomalies, set anomaly exe-
cution time plans, or get the status of all or certain specifically injected anomalies.

The integrated anomalies execute through dedicated processes the simulations of
different resource usage patterns based on the defined patterns in Section 3.1. These
provide different stationary change types within different metrics like CPU, memory,
disk and network. The main differences are realized to provide either instant changes,
which are run by the Stress-ng service2, or by slowly progressing anomalies like mem-
ory leaks. Furthermore, there are also differences in either constant behavior of the
anomalies versus fluctuating anomalies. Table 7.3 summarizes the main differences in
type compared to the metric types included in the anomaly injection framework.

2https://wiki.ubuntu.com/Kernel/Reference/stress-ng/

https://wiki.ubuntu.com/Kernel/Reference/stress-ng/

85

Figure 7.1: Distributed experiment controller and placement of injection agents
and collector agents.

86

The complete list of integrated degraded state anomalies consists of:

1. Disk pollution, temporary disk pollution are both writing data into a log-file.
For the temporary case, the files are deleted after execution, while in the other
case the file will still be available.

2. HDD stress describes an excessive hard disk utilization by writing a file. Stress-
ng spawns between 1 and 4 workers executing this task.

3. CPU stress immediately consumes excessively much CPU. CPU leakage de-
scribes an anomaly increasing in its intensity over time by consuming more and
more CPU. The fluctuation of CPU constantly increases and decreases the CPU
usage in order to provide a fluctuation behavior.

4. Like the CPU, memory anomalies are also modeled with the same behaviors:
immediately consuming high amounts of memory (memory stress), growing con-
sumption over time (memory leakage) and fluctuating allocation of memory
(memory fluctuations).

5. For the anomalies fork flooding leak and fork flooding fluctuation, a process starts
the creation of child processes over time. For the leakage variant, those child
processes are again creating more processes, while in the fluctuation variant
children are also removed partly.

6. Large file download applies downloading a large file, resulting in a high network
traffic.

7. File pointer wasting requests file pointers without releasing them, creates a
leakage of the pointer IDs over time.

7.2 Evaluation Results
Figure 7.2 presents the TP-rate for the detected anomaly events and TN-rate for
describing the portion of false alarms. Most algorithmic combinations (19 out of 28)
produce a 100% TP-event detection rate, which is the highest value, while 9 do not
detect all the given events. The TN-rate is shown, indicating further differentiation.
Whether the model is appropriate to capture the normal state is reflected by the TN-
rate. Consequently, the preferred approach reaches high rates for TP-even as well as
for the TN. The best options are shown by combining AE & DEMM achieving 100%
TP-event rate and 96.14% TN-rate.

Events might not be detected directly when they are initiated. This is expected
as anomalies like memory leaks start with very little change at the beginning and
grow slowly over time. Due to the small changes at the beginning, it is hard to
differentiate to normal changes in the signal. In Figure 7.3, we show the times for
this detection delay for these approaches achieving 100% TP-event rates (for the rest
see Figure C.2). As the monitoring interval is 500ms, at the first or second monitored
instance most of the detection approaches alert the anomaly correctly. There exist
still further techniques utilizing a few seconds in time in order to detect the anomalies
correctly. This behavior is especially visible for IFTM models achieving higher TN-
rates. This can be explained due to compactness of the model as those which reach a
smaller number of false alarms provide larger distances between the prediction error
and threshold. Consequently, the chance of detecting small changes is smaller.

The correlation between average times and the standard deviation correlates for
the anomaly events as shown in Figure 7.4. The correlation results in a high Person
correlation coefficient of 0.93 for the abnormal detection times, but as well for the
normal false alarm phase duration with 0.94. This behavior was also shown in Chapter
5 (see Figure 5.17). The complete and detailed list of combination’s correlations is
provided in the Appendix C Figure C.3.

87

100.00AbnormalAE & DEMM
98.27Normal
100.00LSTM & EMM

96.14
100.00CABIRCH & EMM

94.57
100.00MArima & EMM

94.36
100.00VAE & SWA

93.41
100.00CABIRCH & DEMM

90.16
100.00UArima & DEMM

88.10
100.00CABIRCH & SWA

87.95
100.00AE & EMM

86.23
100.00VAE & EMM

83.20
100.00VAE & DEMM

78.04
100.00AELSTM & SWA

77.78
100.00LSTM & DEMM

76.75
100.00LSTM & SWA

76.62
100.00AELSTM & DEMM

76.14
100.00AE & SWA

75.51
100.00MArima & CA

64.29
100.00UArima & SWA

57.85
100.00MArima & SWA

52.62
99.35AELSTM & EMM

94.65
98.06AE & CA

82.97
97.42MArima & DEMM

91.52
97.41VAE & CA

82.54
95.48AELSTM & CA

87.16
95.48LSTM & CA

84.67
94.84CABIRCH & CA

85.82
74.19UArima & CA

91.09
64.52UArima & EMM

95.44

0 10 20 30 40 50 60 70 80 90 100
Detection rate [%]

Figure 7.2: Anomaly event detection rate (TP-event) and TN-rates for all 28
IFTM models.

88

31.4256AE & DEMM
6.8294LSTM & EMM

0.8357CABIRCH & EMM
20.4236MArima & EMM

5.9589VAE & SWA
0.1864CABIRCH & DEMM

5.9891UArima & DEMM
0.3482CABIRCH & SWA

3.9135AE & EMM
2.0494VAE & EMM

0.7006VAE & DEMM
0.6841AELSTM & SWA
0.2344LSTM & DEMM
0.5594LSTM & SWA
0.5010AELSTM & DEMM
0.2986AE & SWA
0.78172619MArima & CA

0.0385UArima & SWA
0.0313MArima & SWA

0 3 6 9 12 15 18 21 24 27 30
Avg. Detection times in [s]

Figure 7.3: Avg. Detection times in [s] for all above 100% detection rate.

0 10 20 30 40 50

0

10

20

30

40

avg. detection time [s]

st
d.

de
te

ct
io

n
ti
m

e
[s

]

Figure 7.4: Comparison of average detection times and standard deviation of
detection times.

89

FN-alarm phase
0.00

0.10

0.20

0.30

0.40

0.50

0.60

tim
e [

s]

Figure 7.5: Normal false alarm duration.

In case of false alarms, the duration (time in seconds) of those phases is represented
in Figure 7.5 as a box-plot. The plot is based on the individual results for all 28
combinations of IFTM models. Individual results per IFTM combination are shown
in Appendix C in Figure C.1. As the individual results show similar behavior, we
show here an aggregated diagram. The results illustrate small false alarm duration of
at most half a second. This means, that on average the false alarm duration consists
of between one and two misclassified samples.

When comparing the quality of the given 28 different combinations of IFTM mod-
els, we first have to define what the best-aimed approach should be capable of. As
described above, the approach should be capable of detecting all anomaly events.
Therefore, we show next just those with 100% event detection rate. The rest of the
aimed achievements can be described by the following three metrics. At first, the
TN-rate should be as high as possible, which means that the false alarms within the
normal signal are close to zero. Secondly, the computation time for a single sample
should be as low as possible (when aimed at a resource limit of 3% and a monitoring
interval, the result should run at most 15ms). The last metric represents the detection
delay describing the average time needed until an anomaly alert was proposed.

Figure 7.6 presents these three key indicators, from which the reader can choose
appropriate algorithms from its individual requirements. The y-axis presents the TN-
rate and the x-axis captures the runtime. The 19 different combinations are presented
as dots, showing the dependency between those two metrics. The numbering of the 19
approaches is based on the TN-rate, helping to distinguish the differences. The results
show, that there exist several approaches with a small runtime (below the aimed 15ms),
but also a high diversity in the TN-rate. Thus, there exist the approaches 3, 4 and
6 with above 90% TN-rate and lower runtime than 15ms. When including addition-
ally the detection delay of anomaly events, we can provide even more differentiation
between the quality of results. This is presented as well in this plot by providing a
coloring based on the delay time, from near zero (blue) over yellow (ca. 10s) to 30s
(red).

As it is problematic to visualize the differentiation, as a lot of values are presented
as blue dots, in Figure 7.7 we show the same three metrics from a different angle. This
time, the x-axis represents the detection delay for the anomaly events, while the y-axis
represents again the TN-rate. As for colors, the runtime is represented. The plot shows

90

0 10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1 1
234 5

6
78

9
10

11 12 1314 1516

17

18

19

Runtime [ms]

T
N

-r
at

e

10

20

30

A
no

m
al

y
de

te
ct

io
n

de
la

y
[s

]

1 AE & DEMM
2 LSTM & EMM
3 CABIRCH & EMM
4 MArima & EMM
5 VAE & SWA
6 CABIRCH & DEMM
7 UArima & DEMM
8 CABIRCH & SWA
9 AE & EMM
10 VAE & EMM
11 VAE & DEMM
12 AELSTM & SWA
13 LSTM & DEMM
14 LSTM & SWA
15 AELSTM & DEMM
16 AE & SWA
17 MArima & CA
18 UArima & SWA
19 MArima & SWA

Figure 7.6: Relationship between TN-rate and delay for average runtime per
sample for all IFTM models achieving 100% event-detection rate.

that the approach AE & DEMM with the highest TN-rate also produces the highest
delay of a little more than 30 seconds on average. The plot also illustrates, that with
decreased TN-rate, the time of the delay reduces as well. This is expected as these
models provide a higher number of FPs and consequently the chance of excellently
detecting the anomaly event increases. Such details about the point-wise detection
results are presented in Table C.1 and Table C.2 in Appendix C. Six IFTM models
achieve above 90% TN-rate, but the models’ AE & DEMM and LSTM & EMM reach
more than 30 seconds and 20 seconds detection delays respectively, which might not be
acceptable depending on the complexity of remediation actions. On the other hand, a
single anomaly event runs for up to 5 minutes. Consequently, when assuming that the
anomaly would end up into a failure, the selection process and execution of remediation
has still more than 4 minutes.

Combining these two plots, Figure 7.8 illustrates a 3D plot of the given three key
indicator metrics. The axes accordingly represent one of the three metrics, while the
color of the point describes the detection delay to provide additional help to show the
three dimensions in a more readable way. The same findings hold as described above.
While the IFTM model AE & DEMM shows the highest TN-rate, there exist more
efficient models with respect to the computation time and anomaly event delay. The
perfect model would have a TN-rate of 100%, near-zero computation time and near-
zero detection delay. Encountering this and the requirements of the AIOps platform,
we recommend to apply one of the three combinations:

• Option 1: AE & DEMM show the highest TN-rate, but also the highest detection
delay and the computation time might be too high with respect to given resource
limits.

• Option 2: LSTM & EMM show a significantly lower detection delay, but the
computation time increased by 4 seconds. Still, the TN-rate is at the second-
highest.

91

0 10 20 30
0.5

0.6

0.7

0.8

0.9

1 1
23 45

6
78

9
10

111213141516

17

18

19

Anomaly detection delay [s]

T
N

-r
at

e

10

20

30

40

50

R
un

ti
m

e
[m

s]

1 AE & DEMM
2 LSTM & EMM
3 CABIRCH & EMM
4 MArima & EMM
5 VAE & SWA
6 CABIRCH & DEMM
7 UArima & DEMM
8 CABIRCH & SWA
9 AE & EMM
10 VAE & EMM
11 VAE & DEMM
12 AELSTM & SWA
13 LSTM & DEMM
14 LSTM & SWA
15 AELSTM & DEMM
16 AE & SWA
17 MArima & CA
18 UArima & SWA
19 MArima & SWA

Figure 7.7: Relationship between TN-rate and delay for detecting an anomaly
event for all IFTM models achieving 100% event-detection rate.

• Option 3: CABIRCH & EMM show almost zero detection time and almost zero
computation time, but the false alarms in the normal signal increased to more
than 5%.

There exist further models, which provide better results in one of the metrics and
therefore lie on the paretofront, but do not provide relevant impact compared to those
three options.

Besides the overall anomaly event detection rates for a given model, we show in
Figure 7.9 how accurate the individual anomaly types were detected throughout all
the given approaches. Thus, the bar plot shows in its y-axis the TP-event rate as
average over all the detection approaches. The results show, that the anomaly type
Bandwidth stress is detected by all 28 approaches, which indicates that this anomaly
is easy to detect. On the other hand, the anomaly type File pointer wasting has the
lowest rate, below 90%, and indicates the most problematic event to be detected.

Lastly, Figure 7.10 shows the computation time for the IFTM combinations sepa-
rated by IF and TM. The bar plot shows, that all evaluated deep learning models show
more than 10ms computation time per sample, but when using LSTM cells, the com-
putation time increases to more than 30ms. In comparison, the runtimes of UArima,
MArima, and CABIRCH are far below 10ms computation time. Furthermore, through
the discussed optimization in the Arima computation, the multivariate version com-
putes samples more efficiently than the univariate version. This can be caused due
to the capturing of linear interdependencies between the monitored metrics, resulting
in a decrease in the size of capturing large internal windows or high differentiation
depth. These white box details about the Arima models should be investigated in
future work.

92

0

20

40

60
0.6

0.8

1

0

20

1

2

3

4

5
678
9

10
11

12

13

14
15

1617
1819

Runtime [ms] TN-rate

A
no

m
al

y
de

te
ct

io
n

de
la

y
[s

]

1 AE & DEMM
2 LSTM & EMM
3 CABIRCH & EMM
4 MArima & EMM
5 VAE & SWA
6 CABIRCH & DEMM
7 UArima & DEMM
8 CABIRCH & SWA
9 AE & EMM
10 VAE & EMM
11 VAE & DEMM
12 AELSTM & SWA
13 LSTM & DEMM
14 LSTM & SWA
15 AELSTM & DEMM
16 AE & SWA
17 MArima & CA
18 UArima & SWA
19 MArima & SWA

Figure 7.8: 3D scatter plot illustrating the three dimensions of TN-rate, average
execution runtime per sample and average detection time after the anomaly
event started.

0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

CPU str
ess

Inc
rea

sin
g C

PU

 CPU flu
ctu

atio
ns

 Band
widt

h s
tre

ss

 Inc
rea

sin
g f

ork
 flo

od
ing

 Fork
 flo

od
ing

 flu
ctu

atio
ns

Mem
ory

 str
ess

 Mem
ory

 lea
k

 Mem
ory

 flu
ctu

atio
ns

 Disk
 str

ess

 Disk
 po

llu
tio

n

Disk
 po

llu
tio

n t
mp

File
 po

int
er

wast
ing

TP
-e

ve
nt

 r
at

e

Figure 7.9: Results of TP-event rate per anomaly type.

93

0

10

20

30

40

50

60

LSTM AELSTM VAE AE UArima MArima CABIRCH

Ru
nt

im
e

[m
s]

CA
SWA
EMM
DEMM

Figure 7.10: Runtimes seperated for IF and TM.

7.3 Discussion
Summarizing aimed needs and requirements for applicable anomaly detection for cloud
computing environments are:

1. Near-zero human labeling: Human labeling of data arrives with costs, time,
and requires high expertise for the individual monitored services. The solution
requires to bound the labeling of data by humans, which also increases the
automation process of the overall ZerOps platform.

2. Near-zero configuration efforts for applying ML models: DevOps engineers and
administrators of cloud computing environments are in general no ML experts,
but need to apply ML models in order to keep companies being profitable. Users
should therefore be able to apply ML models without extensive ML knowledge
like approach specific hyperparameter selection.

3. Near-zero learning time: When applying AI-based approaches, the key challenge
remains the computation complexity for training a model (for most types of ML
algorithms).

4. Accurate detection results: Industry demands 99.999% in accuracy [3].

5. Just-in-time processing: Computation time for a sample should be less than the
monitoring interval to ensure just-in-time computation for the continuous data
stream.

6. Online (point-wise) predictions: The anomaly detection should provide an in-
dividual recommendation for each recorded data point, whether an anomaly
appeared.

7. Detect anomaly as soon as it appears: The detection mechanism should be able
to detect abnormal behavior as soon as it appears in order to provide the chance
for the remediation engine to apply suitable actions. Detecting anomalies too
late may impact the service quality or causes a failure of the component without
the possibility to mitigate the anomaly.

8. Detect unknown anomalies: The anomaly detection should be also capable of
detecting unforeseen problems, thus also handling unknown anomalies.

These requirements provide a broad overview of the desired properties of the
anomaly detection algorithm. For this evaluation, we utilized unsupervised models.
Due to the construction and design of IFTM models, no human labeling is required
as it runs unsupervised. Consequently, the 1st property is fulfilled. Additionally, the

94

IFTM model provides by design an internal border definition by utilizing dynamic
thresholds. This helps to differentiate between the normal system state and abnormal
behavior. Thus, the 8th property is captured when assuming that anomalies do not
appear for long periods of time, and too often as the detection algorithm would adapt
to this behavior. IFTM models provide iterative learning and prediction for point-wise
inputs. Therefore, all evaluated models meet the 6th property of streaming analysis
capabilities.

In Chapter 6, we introduced the hyperparameter optimization approach applicable
to any IFTM model aiming to provide a solution for the 2nd property. Due to its
construction, individual hyperparameter configurations of models are automatically
optimized. The hyperparameter optimization strategy has its own hyperparameters,
but these are generalized and enable ML inexperienced users to apply a wide range of
different anomaly detection techniques.

The rest of the requirements focus on the quantitative and qualitative performance
of the operated detection approach. These provide further discrimination between the
different IFTM approaches. We showed the overall runtime (see Figure 7.10), which
captures the learning time as well as the prediction time for a single data point. The
results illustrate that there exist roughly three levels of order in execution time. At
first, there exist the Arima models and CABIRCH, which show near-zero execution
time (less than 1ms). Secondly, AE and VAE, show higher execution times between
10ms and 30ms. Third, AELSTM and LSTM show the highest times with more than
30ms execution time, but still lower than 60ms. With an expected sampling rate
of 500ms, all the given approaches provide just-in-time processing capabilities (5th

property). As the computation highly depends on the sampling rate, on the number
of metrics monitored and on the hardware itself, applying of selected methods should
be revised based on the defined three levels of the algorithm.

The 3rd property was introduced to reflect the problems of supervised learning
approaches when applying them on continuous data streams. But the 3rd property
helps to differentiate among the algorithms by reflecting the three levels of runtime
and combining the meaning with respect to the sampling rate. The first level with the
least execution time finishes its calculations faster than 1ms

500ms
“ 0.2% of time com-

pared to the sampling rate. The second level needs roughly between 2% and 6% of
time, while the third level utilizes up to 12%. Such results can vary depending on the
utilized hardware. As the above described hardware was used for these experiments
(see Section 7.1), we expect that currently more powerful, modern hardware solutions
are established and the relation consequently shows beneficial results. We suggest that
all given approaches provide suitable results to be placed in several different hardware
components. The computational overhead is approximated by ratio of execution time
needed with respect to the sampling rate as this provides the key indicator of CPU
usage compared to the rest of available time from the monitoring interval, where the
CPU is free to execute the actual cloud computing component. The results show,
that UArima, MArima, and CABIRCH provide the best ratio. Especially, when plan-
ning capacities when applying several component analysis on a single physical device.
For example, public cloud providers can monitor their services running in VMs in-
directly from the hypervisor layer (e.g. via libvirt). Thus, multiple IFTM models
run in parallel to analyze the different VMs. Public cloud providers may provide VM
images in the future, which collect further detailed information, enabling the analysis
to provide white-box information and consequently the possibility to benefit from e.g.
increased analysis accuracy. This holds also for private cloud providers, which are able
to influence the software usage within virtual machines. With respect to IoT-gateway
monitoring or edge clouds, software components can be analyzed but currently suffer
from computational power compared to dedicated servers. The anomaly detection al-
gorithms should consequently also cope with lower computational power. We expect
that UArima, MArima as well as CABIRCH are able to provide beneficial computa-

95

tional properties for such devices. Utilizing small-sized neural networks on IoT-devices
may also be applicable and we expect that in future the computational power grows
and therefore larger models are going to be applicable to be deployed on such devices
soon.

Besides the computational overhead, the 4th property also describes the demand for
high accuracy with aimed 99.999%. For point-wise evaluation (see Table C.1 and Table
C.2 in Appendix C), all given approaches do not meet the aimed 99.999% accuracy.
As the evaluation captures unsupervised approaches, this high demanded accuracy
cannot be met for point-wise predictions due to the lack of labeled knowledge. On
the other hand, the unsupervised approaches provide flexibility for the applicability as
industrial providers do not specialize in labeling large amounts of data. Unsupervised
approaches can cope with the lack of labeled training data and can therefore be applied.
Figure 7.2 showed the overall results of the different IFTM models with respect to the
event detection rates and the TN-rates. Both values are crucial to consider as machine
learning models are able to either overfit (FN-rate increases) the problem or generalize
too much (FP-rate increases). The best algorithm to consider provides a balance
between those tendencies. Therefore, applicable anomaly detection approaches should
be capable of detecting all given events and provide high TN-rates. The selection of
an appropriate algorithm is dependent on the user’s attitude to risk and whether the
impact to the system is at higher risk for higher FN-rates or FP-rates.

For this work, we expect that at least all events have to be able to be detected.
Building a model to predict each single data point to be abnormal is easy to be realized,
it would provide high FP-rates and therefore should not be considered. The TN-rate
is presented in Figure 7.2. Considering the top three approaches with respect to 100%
detection rate and then sorted by the TN-rate, the user should consider the approaches
AE & DEMM (98.27% TN-rate), LSTM & EMM (96.14% TN-rate) and CABIRCH
& EMM (94.57% TN-rate).

Besides the demand of a high TN-rate and that all abnormal events should be de-
tected, it is also important to consider when the event was detected. This requirement
is captured by the 7th property, which states that the anomaly should be detected as
soon as possible with respect to the start of the anomaly event. The early detection
gives the opportunity to provide more time to choose an appropriate remediation ac-
tion in order to solve the anomaly. Furthermore, when there is a lot of time until a
failure is expected, different actions can be considered e.g. by taking risk impact to
the system into account.

Figure 7.7 illustrates the detection delay with respect to the TN-rate. The scatter
plot shows that with decreasing TN-rate (unwanted behavior), the delay also decreases
(wanted behavior). The user can select an appropriate detection algorithm based on
its own preferences and needs based on the plot. The user should therefore consider
on the one hand how much reaction time is needed to ensure low-risk impact of false
alarms. On the other hand, the user might not expect high risks or is able to cope
with higher false alarms by applying false alarm reduction mechanisms through e.g.
intelligent analysis algorithms or human expert knowledge. In this case, one can benefit
by selecting an anomaly detection algorithm with smaller TN-rate (e.g. ă 90%), but
ensuring also a smaller detection delay (ă 10s respectively).

Including the above described runtime to the selection process, Figure 7.8 depicts
the dependent information of those three key aspects. The best performing algorithms
are described in the previous section, but we like to highlight the recommendation of
selected algorithms next. Focusing on the detection rate and TN-rate, we recommend
applying AE & DEMM as this IFTM model performs the lowest number of false alarms.
In contrast, this model produced the highest detection delay, which still might provide
applicable usage. Furthermore, the execution time is in the second level of order (as
described above) compared to all other approaches and should be applicable to any
modern server setup, but might be problematic when transferring this task to e.g.

96

IoT devices. When there exist enough computation resources and small requirements
towards the detection delay, AE & DEMM should be recommended.

In case that high TN-rates as well as a smaller detection delay are important (com-
pared to AE & DEMM), but the runtime is not required to provide best performance,
the user should apply LSTM & EMM. But as the runtime and detection delay is much
higher compared to CABIRCH & EMM and the difference in TN-rate is smaller than
2%, we recommend choosing the option CABIRCH & EMM when low detection times
are assumed for higher-level analysis.

7.4 Future Work
Based on the given contribution towards a zero-touch anomaly detection solution for
resource monitoring in cloud environments, there exist different aspects where this
work contributes to new starting points to establish new research directions as well as
a basis to include further aspects, which were out of scope in this thesis.

As the results showed, one of the key problems for unsupervised anomaly detection
are false alarms in the normal signal. In order to increase the quality of results, there
exist three options to focus on:

• The preprocessing phase provides the opportunity to apply feature engineering
techniques changing the multivariate signal in that way to capture larger amount
of discriminatory information. Consequently, the anomaly detection can distin-
guish more easily based on the incoming data stream. This process includes e.g.
filtering of duplicated metrics with respect to the information carried, smoothing
of the signal, noise reduction, feature construction.

• White box in-depth analysis of the individual algorithmic functionality and its
behavior in the applied domain can be investigated in detail. Especially the
combination between the preprocessing and the model characteristics are going
to provide helpful insights about the possibility to model more specialized AI
models for concrete services. This might be possible as e.g. databases and load
balancers provide different normal behavior patterns.

• After receiving the results, postprocessing analysis steps can be applied like
smoothing techniques, state analysis algorithms, and root cause analysis to fore-
see and avoid false alarms.

In the case of false alarm reduction, future work may concentrate also on the
extension of the analytics pipeline conducted in the ZerOps design. For example, by
introducing feedback mechanisms, the following analysis steps may provide further
information to the anomaly detection algorithm like system load changes in order to
provide adaptations to e.g. the hyperparameters to enable higher learning rates to
adapt the AI model to the load change. In addition, the feedback loops provide the
opportunity of whether anomalies were correctly detected to distinguish data points
to be learned for the representation of the normal system state.

Generalization of the AI models can be investigated in future in order to develop
a database of AI models for e.g. groups of similar models. When a new microservice
instance is deployed, existing models can then be loaded and used without the need to
provide hyperparameter tuning, mitigating the cold start problem even more. Through
federated learning [283], generalized models for even different types of microservices
might be developed in future.

The IFTM framework can be extended to provide unsupervised anomaly detection
for additional types of monitored system data. This includes for example tracing data
as well as log data. Combining these different types of data into a single AI model can
improve the quality of results due to the additional information as well as providing

97

the chance to detect further types of anomalies, which are not recognizable by resource
metrics.

Besides including further information sources to the algorithm, the IFTM model
provides by design the opportunity to apply forecasting algorithms as identity func-
tions. When utilizing e.g. Arima models to forecast not only the next value, but
Arima can forecast further data points into the future. These resulting residuals can
be investigated and analyzed on whether the data stream is going to be abnormal in
the near future. This could provide additional information to the remediation engine
about timing values until when degraded state anomalies might cause crash failures
and provide hints about implications towards severity in order to select appropriate
actions with respect to risk and time.

Lastly, IFTM can be applied to other domains of multivariate anomaly detection in
data streams. We showed the applicability of IFTM models for morphological anomaly
detection in medical ECG signals [284]. Besides other interdisciplinary domains, there
exist within the computer science domain further opportunities to apply IFTM. For
example, for IT-security threats like DDoS attacks can be also seen as a type of
anomaly.

Chapter 8

Conclusion

The major aim of the thesis is the investigation, development and evaluation of the
applicability of anomaly detection techniques to a holistic AIOps platform enhancing
zero-touch administration for highly dependable IT-infrastructures. The objective
concentrates on resource monitoring as a data source.

Chapter 4 described the holistic AIOps platform ZerOps, which provides a decen-
tralized execution of monitoring agents and anomaly detection agents. The applicabil-
ity and integration possibilities of supervised, semi-supervised and unsupervised ma-
chine learning techniques were discussed. In the case of supervised and semi-supervised
learning, extensive evaluations on a cloud monitoring dataset were applied. The re-
sults showed the applicability of supervised approaches in order to detect the different
types of system anomalies. The decision tree classifier J48 reached the highest score
with more than 99% accuracy. The results show the potential for AI models to be
applied in this domain, but supervised models suffer from unrealistic assumptions of
the existence of labeled data as these have to be maintained by e.g. experts. Further-
more, supervised models assume to have knowledge about all possible anomalies as
they differentiate to a finite number of classes.

In order to overcome this problem, we showed how semi-supervised one-class learn-
ing provides the opportunity to model labeled normal behavior. Any differentiation to
the normal behavior is reported as an anomaly. The evaluation illustrated the applica-
bility of semi-supervised approaches but also showed a drop in accuracy with respect
to supervised learners, which was expected because of the lack of information about
abnormal behavior. Semi-supervised learning still assumes labeled data of the normal
system behavior, which is in general widely available, but still needs the selection and
labeling by e.g. experts.

In Chapter 5, we propose CABIRCH to provide a valuable solution towards zero-
touch administration. CABIRCH is an unsupervised anomaly detection approach
based on the semi-supervised clusterer BIRCH. CABIRCH is capable of adapting its
CF-tree to the current data stream through micro-cluster aging. Assuming that most
of the signal is normal, CABIRCH continuously trains the signal and forgets older clus-
ters over time. For anomaly detection, we employed CABIRCH into IFTM applying
dynamic thresholding for distinguishing abnormal data. We showed the applicability
of CABIRCH to detect anomalies and provided detailed behavior analysis to several
different anomaly patterns. CABIRCH provides change point detection capabilities for
rapid changes and fluctuation changes, while constant change detection for successive
patterns when applied to constant learning. In the case of applying CABIRCH in a
tumbling window setting, as described in Chapter 5, sequences of abnormal behavior
can be detected for all of the anomaly patterns. This of course, is highly dependable on
the tumbling window size as too short windows would provide adaption to long-lasting

98

99

anomaly patterns, while too large windows might lead to too slow concept adaption
to the normal signal behavior.

Although CABIRCH is capable of unsupervised anomaly detection, hyperparam-
eters have to be configured in order to provide accurate detection results. For a zero-
touch solution, we introduce a hyperparameter optimization approach with a novel
fitness function definition (see Chapter 6). The hyperparameter optimization applies
genetic programming to infer suitable values to optimize the fitness function. The
fitness score captures IFTM specific parameters, which do not require the need for
labeled information. We showed that the fitness function correlates to the accuracy
and we illustrated the convergence towards high fitness scores over time. Through
this approach, we are able to provide a wide range of unsupervised anomaly detection
algorithms hyperparameter optimization enabling non-expert usage of ML models to
cloud monitoring.

Based on these findings, we conducted an evaluation of 28 different IFTM models
including combinations of anomaly detection approaches from the related work. The
evaluation results show the applicability to the domain with high detection rates of
abnormal events and a low number of false alarms in the normal signal (high TN-
rate). The top three identified approaches are: AE & DEMM (98.27% TN-rate),
LSTM & EMM (96.14% TN-rate) and CABIRCH & EMM (94.57% TN-rate). The
selection depends on the demand of the user’s system requirements and further analysis
algorithms contained in the self-healing pipeline, which were discussed in Chapter 7.

With respect to the research objectives (see Section 1.1): RO-1 defines upon the
challenges and available strategies general requirements for ML-based anomaly detec-
tion in this application domain in Chapter 4. RO-2 aims to provide further guidance
to narrow down applicable solutions meeting the requirements, which are also dis-
cussed in Chapter 4). Lastly, a solution is developed, implemented in Chapters 5-6
and evaluated in Chapter 7 towards a solution for zero-touch administration (RO-3).

Limitations When applying CABIRCH with continuous learning, it is capable of
detecting change points, which recognize the beginning and the ending of e.g. abnormal
behavior. As such change points are mostly referred to single data points, it is difficult
to differentiate those to false alarms. We therefore provided the option of running
CABIRCH in a tumbling window, but the tumbling window is highly dependable on
the window size.

To overcome this limitation, our proposed hyperparameter optimization approach
can be applied to determine suited window sizes. When applying the hyperparameter
optimization, the technique suffers from the same problem as it also utilizes a tumbling
window. Here, the problem arises that for long-lasting anomalies as the ML models
are going to be adapted towards hyperparameters for covering this abnormal behavior
best. This can be intentional, as long-lasting anomalies can be seen as chronic behavior,
where remediation processes could not determine mitigating actions, but the anomaly
stays in a degraded state without failure.

To overcome the cold start problem with fast converging optimal hyperparameter
optimization, a wide range of different values should be applied in order to enhance
the probability to find the global optimal values, resulting in a high population of ML
models. Due to resource limitations, the population size is also limited. Consequently,
local optima might be converged, which are far away from the global optimum. The
genetic algorithm encounters this problem by applying mutations to find not yet seen
values. Still, this process might be time demanding. On the other hand, the search
space can be reduced by limiting the search intervals of the individual hyperparameters.
As this requires domain-specific knowledge as well as knowledge about the specific ML
model, automatic methods should be investigated. Crowd source approaches might
help to build up databases of ML models for similar system configurations and services
in the future.

100

Unsupervised approaches arrive with problematic drawbacks due to the lack of
pre-labeled training data. The point-wise detection results show that such techniques
suffer from higher false alarm rates. On the other hand, unsupervised techniques can
be applied out of the box. In order to approach the problem of false alarms, we
provided options for future work in Chapter 7.

In conclusion, this work showed the applicability of anomaly detection approaches
for cloud monitoring and provides guidance for selecting appropriate detection ap-
proaches with respect to demanded requirements. Especially the aspects towards a
zero-touch solution for a holistic AIOps platform were presented and discussed. The
results of the anomaly detection will be a starting point for future higher-level analysis
techniques providing holistic self-healing capabilities.

Bibliography

[1] Mark Hung. Leading the iot, gartner insights on how to lead in a connected
world. Gartner Research, pages 1–29, 2017.

[2] VNI Cisco. Cisco visual networking index: Forecast and trends, 2017–2022.
White Paper, 1, 2018.

[3] Eric Bauer, Xuemei Zhang, and Douglas A Kimber. Practical system reliability.
John Wiley & Sons, 2009.

[4] Mohammad Hossein Ghahramani, MengChu Zhou, and Chi Tin Hon. Toward
cloud computing qos architecture: Analysis of cloud systems and cloud services.
IEEE/CAA Journal of Automatica Sinica, 4(1):6–18, 2017.

[5] Jennifer Davis and Ryn Daniels. Effective DevOps: building a culture of collab-
oration, affinity, and tooling at scale. " O’Reilly Media, Inc.", 2016.

[6] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. Site Re-
liability Engineering: How Google Runs Production Systems. " O’Reilly Media,
Inc.", 2016.

[7] Inc. Gartner. AIOps Market Guide, 2019. Available online:
https://www.bmc.com/blogs/gartner-aiops-market-guide/ (Accessed 30-10-
2019).

[8] Anton Gulenko, Marcel Wallschläger, Florian Schmidt, Odej Kao, and Feng Liu.
A system architecture for real-time anomaly detection in large-scale nfv systems.
Procedia Computer Science, 94:491–496, 2016.

[9] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data
clustering method for very large databases. In ACM Sigmod Record, volume 25,
pages 103–114. ACM, 1996.

[10] Frank E Grubbs. Procedures for detecting outlying observations in samples.
Technometrics, 11(1):1–21, 1969.

[11] Vic Barnett and Toby Lewis. Outliers in statistical data. Wiley, 1974.
[12] Douglas M Hawkins. Identification of outliers, volume 11. Springer, 1980.
[13] Victoria Hodge and Jim Austin. A survey of outlier detection methodologies.

Artificial intelligence review, 22(2):85–126, 2004.
[14] Mia Hubert and Ellen Vandervieren. An adjusted boxplot for skewed distribu-

tions. Computational statistics & data analysis, 52(12):5186–5201, 2008.
[15] Charu C Aggarwal. High-dimensional outlier detection: The subspace method.

In Outlier Analysis, pages 135–167. Springer, 2013.
[16] Leonid Kalinichenko, Ivan Shanin, and Ilia Taraban. Methods for anomaly de-

tection: A survey. In CEUR Workshop Proceedings, 2014.
[17] Markus Goldstein and Seiichi Uchida. A comparative evaluation of unsupervised

anomaly detection algorithms for multivariate data. PloS one, 11(4):e0152173,
2016.

101

102

[18] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[19] Nan Jiang and Le Gruenwald. Research issues in data stream association rule
mining. ACM Sigmod Record, 35(1):14–19, 2006.

[20] Shehroz S Khan and Michael G Madden. A survey of recent trends in one class
classification. In Irish conference on artificial intelligence and cognitive science,
pages 188–197. Springer, 2009.

[21] Markus Goldstein and Seiichi Uchida. Behavior analysis using unsupervised
anomaly detection. In The 10th Joint Workshop on Machine Perception and
Robotics (MPR 2014). Online, 2014.

[22] Anitha Ramchandran and Arun Kumar Sangaiah. Unsupervised anomaly de-
tection for high dimensional data—an exploratory analysis. In Computational
Intelligence for Multimedia Big Data on the Cloud with Engineering Applica-
tions, pages 233–251. Elsevier, 2018.

[23] Shiblee Sadik and Le Gruenwald. Research issues in outlier detection for data
streams. Acm Sigkdd Explorations Newsletter, 15(1):33–40, 2014.

[24] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic con-
cepts and taxonomy of dependable and secure computing. IEEE transactions
on dependable and secure computing, 1(1):11–33, 2004.

[25] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. Characterizing cloud
computing hardware reliability. In Proceedings of the 1st ACM symposium on
Cloud computing, pages 193–204, 2010.

[26] Jim Gray. A census of tandem system availability between 1985 and 1990. IEEE
Transactions on reliability, 39(4):409–418, 1990.

[27] Luiz André Barroso and Urs Hölzle. The datacenter as a computer: An introduc-
tion to the design of warehouse-scale machines. Synthesis lectures on computer
architecture, 4(1):1–108, 2009.

[28] David Oppenheimer, Archana Ganapathi, and David A Patterson. Why do
internet services fail, and what can be done about it? In USENIX symposium
on internet technologies and systems, volume 67. Seattle, WA, 2003.

[29] Domenico Cotroneo, Roberto Pietrantuono, Stefano Russo, and Kishor Trivedi.
How do bugs surface? a comprehensive study on the characteristics of software
bugs manifestation. Journal of Systems and Software, 113:27–43, 2016.

[30] Yennun Huang, Chandra Kintala, Nick Kolettis, and N Dudley Fulton. Software
rejuvenation: Analysis, module and applications. In Twenty-fifth international
symposium on fault-tolerant computing. Digest of papers, pages 381–390. IEEE,
1995.

[31] Vittorio Castelli, Richard E Harper, Philip Heidelberger, Steven W Hunter,
Kishor S Trivedi, Kalyanaraman Vaidyanathan, and William P Zeggert. Proac-
tive management of software aging. IBM Journal of Research and Development,
45(2):311–332, 2001.

[32] Alberto Avritzer and Elaine J Weyuker. Monitoring smoothly degrading systems
for increased dependability. Empirical Software Engineering, 2(1):59–77, 1997.

[33] Michael Grottke, Rivalino Matias, and Kishor S Trivedi. The fundamentals of
software aging. In 2008 IEEE International conference on software reliability
engineering workshops (ISSRE Wksp), pages 1–6. Ieee, 2008.

[34] Massimo Condoluci, Fragkiskos Sardis, and Toktam Mahmoodi. Softwarization
and virtualization in 5g networks for smart cities. In International Internet of
Things Summit, pages 179–186. Springer, 2015.

103

[35] Ibrahim Afolabi, Tarik Taleb, Konstantinos Samdanis, Adlen Ksentini, and
Hannu Flinck. Network slicing and softwarization: A survey on principles, en-
abling technologies, and solutions. IEEE Communications Surveys & Tutorials,
20(3):2429–2453, 2018.

[36] Clearwater Service Architecture, 2019. Available online:
https://www.daitan.com/wp-content/uploads/2015/08/clearwater.png (Ac-
cessed 31-10-2019).

[37] CORD Design Notes. Central office re-architected as a datacenter (cord), 2016.

[38] Larry Peterson, Ali Al-Shabibi, Tom Anshutz, Scott Baker, Andy Bavier, Saurav
Das, Jonathan Hart, Guru Palukar, and William Snow. Central office re-
architected as a data center. IEEE Communications Magazine, 54(10):96–101,
2016.

[39] Anton Gulenko, Florian Schmidt, Alexander Acker, Marcel Wallschläger, Odej
Kao, and Feng Liu. Detecting anomalous behavior of black-box services mod-
eled with distance-based online clustering. In 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), pages 912–915. IEEE, 2018.

[40] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and issues in data stream systems. In Proceedings of the twenty-
first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 1–16. ACM, 2002.

[41] Susanne Albers. Online algorithms: a survey. Mathematical Programming, 97(1-
2):3–26, 2003.

[42] Susanne Albers. Online algorithms. In Interactive Computation, pages 143–164.
Springer, 2006.

[43] Greg Nelson and Jeff Wright. Real time decision support: creating a flexible
architecture for real time analytics. DSSResources. COM, 11:18, 2005.

[44] Ethem Alpaydin. Introduction to machine learning. MIT press, 2009.

[45] Max Landauer, Markus Wurzenberger, Florian Skopik, Giuseppe Settanni, and
Peter Filzmoser. Time series analysis: unsupervised anomaly detection beyond
outlier detection. In International Conference on Information Security Practice
and Experience, pages 19–36. Springer, 2018.

[46] Shan Suthaharan. Machine learning models and algorithms for big data classi-
fication. Integr. Ser. Inf. Syst, 36:1–12, 2016.

[47] Hendrik Fichtenberger, Marc Gillé, Melanie Schmidt, Chris Schwiegelshohn, and
Christian Sohler. Bico: Birch meets coresets for k-means clustering. In European
Symposium on Algorithms, pages 481–492. Springer, 2013.

[48] Charu C Aggarwal and Chandan K Reddy. Data clustering: algorithms and
applications. CRC press, 2013.

[49] Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou. Density-based clus-
tering over an evolving data stream with noise. In Proceedings of the 2006 SIAM
international conference on data mining, pages 328–339. SIAM, 2006.

[50] Irene Ntoutsi, Arthur Zimek, Themis Palpanas, Peer Kröger, and Hans-Peter
Kriegel. Density-based projected clustering over high dimensional data streams.
In Proceedings of the 2012 SIAM International Conference on Data Mining,
pages 987–998. SIAM, 2012.

[51] Tian Zhang. Data clustering for very large datasets plus applications. Techni-
cal report, University of Wisconsin-Madison Department of Computer Sciences,
1997.

104

[52] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: A new data clus-
tering algorithm and its applications. Data Mining and Knowledge Discovery,
1(2):141–182, 1997.

[53] D. T. Grozdic and S. T. Jovicic. Whispered speech recognition using deep de-
noising autoencoder and inverse filtering. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 25(12):2313–2322, Dec 2017.

[54] Kun Zeng, Jun Yu, Ruxin Wang, Cuihua Li, and Dacheng Tao. Coupled deep
autoencoder for single image super-resolution. IEEE transactions on cybernetics,
47(1):27–37, 2017.

[55] Ahmad Javaid, Quamar Niyaz, Weiqing Sun, and Mansoor Alam. A deep learn-
ing approach for network intrusion detection system. In Proceedings of the 9th
EAI International Conference on Bio-inspired Information and Communications
Technologies (formerly BIONETICS), pages 21–26. ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engineering), 2016.

[56] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality
of data with neural networks. science, 313(5786):504–507, 2006.

[57] P Kingma Diederik, Max Welling, et al. Auto-encoding variational bayes. In Pro-
ceedings of the International Conference on Learning Representations (ICLR),
2014.

[58] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[59] LR Medsker and LC Jain. Recurrent neural networks. Design and Applications,
5, 2001.

[60] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[61] David MQ Nelson, Adriano CM Pereira, and Renato A de Oliveira. Stock mar-
ket’s price movement prediction with lstm neural networks. In Neural Networks
(IJCNN), 2017 International Joint Conference on, pages 1419–1426. IEEE, 2017.

[62] Jung-Woo Ha, Adrian Kim, Dongwon Kim, Jeonghee Kim, Jeong-Whun Kim,
Jin Joo Park, and Borim Ryu. Predicting high-risk prognosis from diagnostic
histories of adult disease patients via deep recurrent neural networks. In Big
Data and Smart Computing (BigComp), 2017 IEEE International Conference
on, pages 394–399. IEEE, 2017.

[63] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep
networks for video classification. In Computer Vision and Pattern Recognition
(CVPR), 2015 IEEE Conference on, pages 4694–4702. IEEE, 2015.

[64] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen
Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural
networks and learning systems, 28(10):2222–2232, 2016.

[65] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and
Tom Soderstrom. Detecting spacecraft anomalies using lstms and nonparametric
dynamic thresholding. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 387–395. ACM, 2018.

[66] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long
short term memory networks for anomaly detection in time series. In Proceedings,
page 89. Presses universitaires de Louvain, 2015.

[67] Dong Oh and Il Yun. Residual error based anomaly detection using auto-encoder
in smd machine sound. Sensors, 18(5):1308, 2018.

105

[68] Valeriy Zakamulin. Market Timing with Moving Averages: The Anatomy and
Performance of Trading Rules. Springer, 2017.

[69] J Stuart Hunter. The exponentially weighted moving average. Journal of quality
technology, 18(4):203–210, 1986.

[70] Peter R Winters. Forecasting sales by exponentially weighted moving averages.
Management science, 6(3):324–342, 1960.

[71] Charles C Holt. Forecasting seasonals and trends by exponentially weighted
moving averages. International journal of forecasting, 20(1):5–10, 2004.

[72] Jinn-Tsong Tsai, Jyh-Horng Chou, and Tung-Kuan Liu. Tuning the structure
and parameters of a neural network by using hybrid taguchi-genetic algorithm.
IEEE Transactions on Neural Networks, 17(1):69–80, 2006.

[73] Stefan Lessmann, Robert Stahlbock, and Sven F Crone. Optimizing hyperpa-
rameters of support vector machines by genetic algorithms. In IC-AI, pages
74–82, 2005.

[74] Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and
Robert M Patton. Optimizing deep learning hyper-parameters through an evo-
lutionary algorithm. In Proceedings of the Workshop on Machine Learning in
High-Performance Computing Environments, page 4. ACM, 2015.

[75] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic pro-
gramming approach to designing convolutional neural network architectures. In
Proceedings of the Genetic and Evolutionary Computation Conference, pages
497–504. ACM, 2017.

[76] Stefano Cagnoni, Andrew B Dobrzeniecki, Riccardo Poli, and Jacquelyn C
Yanch. Genetic algorithm-based interactive segmentation of 3d medical images.
Image and Vision Computing, 17(12):881–895, 1999.

[77] Markus Gudmundsson, Essam A El-Kwae, and Mansur R Kabuka. Edge detec-
tion in medical images using a genetic algorithm. IEEE transactions on medical
imaging, 17(3):469–474, 1998.

[78] Payel Ghosh and Melanie Mitchell. Segmentation of medical images using a
genetic algorithm. In Proceedings of the 8th annual conference on Genetic and
evolutionary computation, pages 1171–1178. ACM, 2006.

[79] Kyoung-jae Kim and Ingoo Han. Genetic algorithms approach to feature dis-
cretization in artificial neural networks for the prediction of stock price index.
Expert systems with Applications, 19(2):125–132, 2000.

[80] Franklin Allen and Risto Karjalainen. Using genetic algorithms to find technical
trading rules. Journal of financial Economics, 51(2):245–271, 1999.

[81] Ping-Feng Pai and Wei-Chiang Hong. Forecasting regional electricity load based
on recurrent support vector machines with genetic algorithms. Electric Power
Systems Research, 74(3):417–425, 2005.

[82] Mohsen Nasseri, Keyvan Asghari, and MJ Abedini. Optimized scenario for rain-
fall forecasting using genetic algorithm coupled with artificial neural network.
Expert systems with applications, 35(3):1415–1421, 2008.

[83] A Sedki, Driss Ouazar, and E El Mazoudi. Evolving neural network using real
coded genetic algorithm for daily rainfall–runoff forecasting. Expert Systems with
Applications, 36(3):4523–4527, 2009.

[84] Ting Yee Lim. Structured population genetic algorithms: a literature survey.
Artificial Intelligence Review, 41(3):385–399, 2014.

106

[85] JD Da Silva and PO Simoni. The island model parallel ga and uncertainty
reasoning in the correspondence problem. In IJCNN’01. International Joint
Conference on Neural Networks. Proceedings (Cat. No. 01CH37222), volume 3,
pages 2247–2252. IEEE, 2001.

[86] Enrique Alba, Hugo Alfonso, and Bernabé Dorronsoro. Advanced models of
cellular genetic algorithms evaluated on sat. In Proceedings of the 7th annual
conference on Genetic and evolutionary computation, pages 1123–1130. ACM,
2005.

[87] Gregory S Hornby. Alps: the age-layered population structure for reducing the
problem of premature convergence. In Proceedings of the 8th annual conference
on Genetic and evolutionary computation, pages 815–822. ACM, 2006.

[88] Reza Akbari, Vahid Zeighami, and Koorush Ziarati. Mlga: A multilevel co-
operative genetic algorithm. In 2010 IEEE Fifth International Conference on
Bio-Inspired Computing: Theories and Applications (BIC-TA), pages 271–277.
IEEE, 2010.

[89] JB Brown. Classifiers and their metrics quantified. Molecular informatics, 37(1-
2):1700127, 2018.

[90] Brian W Matthews. Comparison of the predicted and observed secondary struc-
ture of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Struc-
ture, 405(2):442–451, 1975.

[91] David Martin Powers. Evaluation: from precision, recall and f-measure to roc,
informedness, markedness and correlation. 2011.

[92] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang, Yuanyuan Zhou, and Chengx-
iang Zhai. Bug characteristics in open source software. Empirical software
engineering, 19(6):1665–1705, 2014.

[93] Jim Gray. Why do computers stop and what can be done about it? In Sympo-
sium on reliability in distributed software and database systems, pages 3–12. Los
Angeles, CA, USA, 1986.

[94] George Candea, Stefan Bucur, and Cristian Zamfir. Automated software testing
as a service. In Proceedings of ACM Symposium on Cloud Computing, pages
155–160. ACM, 2010.

[95] Michael Pradel and Thomas R Gross. Leveraging test generation and specifica-
tion mining for automated bug detection without false positives. In Proceedings
of Intl. Conference on Software Engineering, pages 288–298. IEEE Press, 2012.

[96] Michael Grottke and Kishor S Trivedi. Fighting bugs: Remove, retry, replicate,
and rejuvenate. Computer, 40(2):107–109, 2007.

[97] Domenico Cotroneo, Roberto Natella, Roberto Pietrantuono, and Stefano Russo.
A survey of software aging and rejuvenation studies. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 10(1):1–34, 2014.

[98] Sachin Garg, Aad Van Moorsel, Kalyanaraman Vaidyanathan, and Kishor S
Trivedi. A methodology for detection and estimation of software aging. In
Proceedings Ninth International Symposium on Software Reliability Engineering
(Cat. No. 98TB100257), pages 283–292. IEEE, 1998.

[99] Jean Araujo, Rubens Matos, Paulo Maciel, Rivalino Matias, and Ibrahim Be-
icker. Experimental evaluation of software aging effects on the eucalyptus cloud
computing infrastructure. In Proceedings of the Middleware 2011 Industry Track
Workshop, pages 1–7, 2011.

[100] Carlos Melo, Jean Araujo, Vandi Alves, and Paulo Romero Martins Maciel. In-
vestigation of software aging effects on the openstack cloud computing platform.
JSW, 12(2):125–137, 2017.

107

[101] João Paulo Magalhães and Luis Moura Silva. Prediction of performance anoma-
lies in web-applications based-on software aging scenarios. In 2010 IEEE second
international workshop on software aging and rejuvenation, pages 1–7. IEEE,
2010.

[102] Hai-Ning Meng, Yong Qi, Di Hou, and Ying Chen. A rough wavelet network
model with genetic algorithm and its application to aging forecasting of ap-
plication server. In 2007 International Conference on Machine Learning and
Cybernetics, volume 5, pages 3034–3039. IEEE, 2007.

[103] Karen J Cassidy, Kenny C Gross, and Amir Malekpour. Advanced pattern
recognition for detection of complex software aging phenomena in online trans-
action processing servers. In Proceedings international conference on dependable
systems and networks, pages 478–482. IEEE, 2002.

[104] Michael Grottke, Lei Li, Kalyanaraman Vaidyanathan, and Kishor S Trivedi.
Analysis of software aging in a web server. IEEE Transactions on reliability,
55(3):411–420, 2006.

[105] Jun Zhang, Yang Xiang, Yu Wang, Wanlei Zhou, Yong Xiang, and Yong Guan.
Network traffic classification using correlation information. IEEE Transactions
on Parallel and Distributed systems, 24(1):104–117, 2012.

[106] Albert Mestres, Alberto Rodriguez-Natal, Josep Carner, Pere Barlet-Ros, Ed-
uard Alarcón, Marc Solé, Victor Muntés-Mulero, David Meyer, Sharon Barkai,
Mike J Hibbett, et al. Knowledge-defined networking. ACM SIGCOMM Com-
puter Communication Review, 47(3):2–10, 2017.

[107] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H Witten. The weka data mining software: an update. ACM
SIGKDD explorations newsletter, 11(1):10–18, 2009.

[108] J. R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[109] Shailendra Sahu and Babu M Mehtre. Network intrusion detection system using
j48 decision tree. In 2015 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pages 2023–2026. IEEE, 2015.

[110] Shadi Aljawarneh, Muneer Bani Yassein, and Mohammed Aljundi. An enhanced
j48 classification algorithm for the anomaly intrusion detection systems. Cluster
Computing, 22(5):10549–10565, 2019.

[111] R Delshi Howsalya Devi and P Deepika. An automated diagnosis of breast
cancer using farthest first clustering and decision tree j48 classifier. Advances in
Natural and Applied Sciences, 10(10 SE):161–167, 2016.

[112] John Richard D Kho and Larry A Vea. Credit card fraud detection based
on transaction behavior. In TENCON 2017-2017 IEEE Region 10 Conference,
pages 1880–884. IEEE, 2017.

[113] Niels Landwehr, Mark Hall, and Eibe Frank. Logistic model trees. Machine
learning, 59(1-2):161–205, 2005.

[114] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic
regression: a statistical view of boosting (with discussion and a rejoinder by the
authors). The annals of statistics, 28(2):337–407, 2000.

[115] Bayu Adhi Tama and Kyung-Hyune Rhee. Hfste: Hybrid feature selections and
tree-based classifiers ensemble for intrusion detection system. IEICE TRANS-
ACTIONS on Information and Systems, 100(8):1729–1737, 2017.

[116] Kyriakos Stefanidis and Artemios G Voyiatzis. An hmm-based anomaly detec-
tion approach for scada systems. In IFIP International Conference on Informa-
tion Security Theory and Practice, pages 85–99. Springer, 2016.

108

[117] Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data
streams. In Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 97–106. ACM, 2001.

[118] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. In The Collected Works of Wassily Hoeffding, pages 409–426. Springer,
1994.

[119] Kajal Rai, M Syamala Devi, and Ajay Guleria. Decision tree based algorithm
for intrusion detection. International Journal of Advanced Networking and Ap-
plications, 7(4):2828, 2016.

[120] Mrudula Gudadhe, Prakash Prasad, and Lecturer Kapil Wankhade. A new
data mining based network intrusion detection model. In 2010 International
Conference on Computer and Communication Technology (ICCCT), pages 731–
735. IEEE, 2010.

[121] Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. Fast anomaly detection for
streaming data. In Twenty-Second International Joint Conference on Artificial
Intelligence, 2011.

[122] Asmah Muallem, Sachhin Shetty, Jan W Pan, Juan Zhao, and Biswajit Biswal.
Hoeffding tree algorithms for anomaly detection in streaming datasets: A survey.
Journal of Information Security, 8(4), 2017.

[123] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[124] Yaqi Li, Chun Yan, Wei Liu, and Maozhen Li. Research and application of
random forest model in mining automobile insurance fraud. In 2016 12th In-
ternational Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery (ICNC-FSKD), pages 1756–1761. IEEE, 2016.

[125] Charissa Ann Ronao and Sung-Bae Cho. Anomalous query access detection in
rbac-administered databases with random forest and pca. Information Sciences,
369:238–250, 2016.

[126] George H John and Pat Langley. Estimating continuous distributions in bayesian
classifiers. In Proceedings of the Eleventh conference on Uncertainty in artificial
intelligence, pages 338–345. Morgan Kaufmann Publishers Inc., 1995.

[127] Abdallah Abbey Sebyala, Temitope Olukemi, Lionel Sacks, and Dr Lionel Sacks.
Active platform security through intrusion detection using naive bayesian net-
work for anomaly detection. In London Communications Symposium, pages 1–5.
Citeseer, 2002.

[128] Z Muda, W Yassin, MN Sulaiman, and NI Udzir. Intrusion detection based
on k-means clustering and naïve bayes classification. In 2011 7th International
Conference on Information Technology in Asia, pages 1–6. IEEE, 2011.

[129] Shweta Kharya, Shika Agrawal, and Sunita Soni. Naive bayes classifiers: A prob-
abilistic detection model for breast cancer. International Journal of Computer
Applications, 92(10):0975–8887, 2014.

[130] George Dimitoglou, James A Adams, and Carol M Jim. Comparison of the c4. 5
and a naïve bayes classifier for the prediction of lung cancer survivability. arXiv
preprint arXiv:1206.1121, 2012.

[131] W Nor Haizan W Mohamed, Mohd Najib Mohd Salleh, and Abdul Halim Omar.
A comparative study of reduced error pruning method in decision tree algo-
rithms. In 2012 IEEE International conference on control system, computing
and engineering, pages 392–397. IEEE, 2012.

[132] Wayne Iba and Pat Langley. Induction of one-level decision trees. In Machine
Learning Proceedings 1992, pages 233–240. Elsevier, 1992.

109

[133] Ron Kohavi. The power of decision tables. In European conference on machine
learning, pages 174–189. Springer, 1995.

[134] William W Cohen. Fast effective rule induction. In Machine learning proceedings
1995, pages 115–123. Elsevier, 1995.

[135] Robert C Holte. Very simple classification rules perform well on most commonly
used datasets. Machine learning, 11(1):63–90, 1993.

[136] Eibe Frank and Ian H Witten. Generating accurate rule sets without global
optimization. 1998.

[137] John C Platt. Fast training of support vector machines using sequential minimal
optimization, advances in kernel methods. Support Vector Learning, pages 185–
208, 1999.

[138] S Saibharath and G Geethakumari. Cloud forensics: evidence collection and pre-
liminary analysis. In 2015 IEEE International Advance Computing Conference
(IACC), pages 464–467. IEEE, 2015.

[139] Neeraj Chavan, Fabio Di Troia, and Mark Stamp. A comparative analysis of
android malware. arXiv preprint arXiv:1904.00735, 2019.

[140] PSS Siva Krishna and P Venkateswara Rao. An analysis of malware classifica-
tion technique by using machine learning. International Journal of Computer
Applications, 975:8887.

[141] Mohsen Rezvani. Assessment methodology for anomaly-based intrusion detec-
tion in cloud computing. Journal of AI and Data Mining, 6(2):387–397, 2018.

[142] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández, and En-
rique Vázquez. Anomaly-based network intrusion detection: Techniques, sys-
tems and challenges. computers & security, 28(1-2):18–28, 2009.

[143] Carla Sauvanaud, Kahina Lazri, Mohamed Kaâniche, and Karama Kanoun.
Anomaly detection and root cause localization in virtual network functions. In
Software Reliability Engineering (ISSRE), 2016 IEEE 27th International Sym-
posium on, pages 196–206. IEEE, 2016.

[144] Kirila Adamova, Dominik Schatzmann, Bernhard Plattner, and Paul Smith.
Network anomaly detection in the cloud: The challenges of virtual service mi-
gration. In 2014 IEEE International Conference on Communications (ICC),
pages 3770–3775. IEEE, 2014.

[145] Tian Huang, Yongxin Zhu, Yafei Wu, Stéphane Bressan, and Gillian Dobbie.
Anomaly detection and identification scheme for vm live migration in cloud
infrastructure. Future Generation Computer Systems, 56:736–745, 2016.

[146] Zakia Ferdousi and Akira Maeda. Unsupervised outlier detection in time se-
ries data. In 22nd International Conference on Data Engineering Workshops
(ICDEW’06), pages x121–x121. IEEE, 2006.

[147] Nikolay Laptev, Saeed Amizadeh, and Ian Flint. Generic and scalable framework
for automated time-series anomaly detection. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1939–1947. ACM, 2015.

[148] Christopher Kruegel and Giovanni Vigna. Anomaly detection of web-based at-
tacks. In Proceedings of the 10th ACM conference on Computer and communi-
cations security, pages 251–261. ACM, 2003.

[149] Chengwei Wang, Krishnamurthy Viswanathan, Lakshminarayan Choudur, Van-
ish Talwar, Wade Satterfield, and Karsten Schwan. Statistical techniques for on-
line anomaly detection in data centers. In 12th IFIP/IEEE International Sym-
posium on Integrated Network Management (IM 2011) and Workshops, pages
385–392. IEEE, 2011.

110

[150] Jeffrey P Buzen and Annie W Shum. Masf-multivariate adaptive statistical
filtering. In Int. CMG Conference, pages 1–10, 1995.

[151] Maciej Szmit and Anna Szmit. Usage of modified holt-winters method in the
anomaly detection of network traffic: Case studies. Journal of Computer Net-
works and Communications, 2012, 2012.

[152] He Yan, Ashley Flavel, Zihui Ge, Alexandre Gerber, Dan Massey, Christos Pa-
padopoulos, Hiren Shah, and Jennifer Yates. Argus: End-to-end service anomaly
detection and localization from an isp’s point of view. In 2012 Proceedings IEEE
INFOCOM, pages 2756–2760. IEEE, 2012.

[153] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-
wide traffic anomalies. In ACM SIGCOMM computer communication review,
volume 34, pages 219–230. ACM, 2004.

[154] Wei Xiao, Xiaolin Huang, Fan He, Jorge Silva, Saba Emrani, and Arin Chaud-
huri. Online robust principal component analysis with change point detection.
IEEE Transactions on Multimedia, 22(1):59–68, 2019.

[155] Mostafa Rahmani and Ping Li. Outlier detection and robust pca using a convex
measure of innovation. In Advances in Neural Information Processing Systems,
pages 14200–14210, 2019.

[156] Yu Gu, Andrew McCallum, and Don Towsley. Detecting anomalies in network
traffic using maximum entropy estimation. In Proceedings of the 5th ACM SIG-
COMM conference on Internet Measurement, pages 32–32. USENIX Association,
2005.

[157] JBD Caberera, B Ravichandran, and Raman K Mehra. Statistical traffic model-
ing for network intrusion detection. In Proceedings 8th International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Sys-
tems (Cat. No. PR00728), pages 466–473. IEEE, 2000.

[158] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and
Robert C Williamson. Estimating the support of a high-dimensional distri-
bution. Neural computation, 13(7):1443–1471, 2001.

[159] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth
IEEE International Conference on Data Mining, pages 413–422. IEEE, 2008.

[160] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof:
identifying density-based local outliers. In Proceedings of the 2000 ACM SIG-
MOD international conference on Management of data, pages 93–104, 2000.

[161] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[162] Aarthi Reddy, Meredith Ordway-West, Melissa Lee, Matt Dugan, Joshua Whit-
ney, Ronen Kahana, Brad Ford, Johan Muedsam, Austin Henslee, and Max Rao.
Using gaussian mixture models to detect outliers in seasonal univariate network
traffic. In 2017 IEEE Security and Privacy Workshops (SPW), pages 229–234.
IEEE, 2017.

[163] M Bahrololum and M Khaleghi. Anomaly intrusion detection system using
gaussian mixture model. In 2008 Third International Conference on Convergence
and Hybrid Information Technology, volume 1, pages 1162–1167. IEEE, 2008.

[164] Rui Liu, Xiao-long Qian, Shu Mao, and Shuai-zheng Zhu. Research on anti-
money laundering based on core decision tree algorithm. In 2011 Chinese Control
and Decision Conference (CCDC), pages 4322–4325. IEEE, 2011.

[165] Santosh Kumar, Sumit Kumar, and Sukumar Nandi. Multi-density clustering
algorithm for anomaly detection using kdd’99 dataset. In International Confer-
ence on Advances in Computing and Communications, pages 619–630. Springer,
2011.

111

[166] Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly detec-
tion: A survey. arXiv preprint arXiv:1901.03407, 2019.

[167] Apapan Pumsirirat and Liu Yan. Credit card fraud detection using deep learning
based on auto-encoder and restricted boltzmann machine. International Journal
of advanced computer science and applications, 9(1):18–25, 2018.

[168] Alessandra De Paola, Salvatore Favaloro, Salvatore Gaglio, Giuseppe Lo Re,
and Marco Morana. Malware detection through low-level features and stacked
denoising autoencoders. In ITASEC, 2018.

[169] Tie Luo and Sai G Nagarajan. Distributed anomaly detection using autoen-
coder neural networks in wsn for iot. In 2018 IEEE International Conference on
Communications (ICC), pages 1–6. IEEE, 2018.

[170] Shen Zhang, Fei Ye, Bingnan Wang, and Thomas G Habetler. Semi-supervised
learning of bearing anomaly detection via deep variational autoencoders. arXiv
preprint arXiv:1912.01096, 2019.

[171] Adrian Taylor, Sylvain Leblanc, and Nathalie Japkowicz. Anomaly detection
in automobile control network data with long short-term memory networks. In
2016 IEEE International Conference on Data Science and Advanced Analytics
(DSAA), pages 130–139. IEEE, 2016.

[172] Sucheta Chauhan and Lovekesh Vig. Anomaly detection in ecg time signals via
deep long short-term memory networks. In 2015 IEEE International Conference
on Data Science and Advanced Analytics (DSAA), pages 1–7. IEEE, 2015.

[173] Daehyung Park, Yuuna Hoshi, and Charles C Kemp. A multimodal anomaly
detector for robot-assisted feeding using an lstm-based variational autoencoder.
IEEE Robotics and Automation Letters, 3(3):1544–1551, 2018.

[174] Jun Liu, Shuyu Chen, Zhen Zhou, and Tianshu Wu. An anomaly detection algo-
rithm of cloud platform based on self-organizing maps. Mathematical Problems
in Engineering, 2016, 2016.

[175] Jont B Allen and Lawrence R Rabiner. A unified approach to short-time fourier
analysis and synthesis. Proceedings of the IEEE, 65(11):1558–1564, 1977.

[176] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li,
Ying Liu, Youjian Zhao, Dan Pei, Yang Feng, et al. Unsupervised anomaly
detection via variational auto-encoder for seasonal kpis in web applications. In
Proceedings of the 2018 World Wide Web Conference, pages 187–196. Interna-
tional World Wide Web Conferences Steering Committee, 2018.

[177] Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection
using reconstruction probability. Special Lecture on IE, 2(1), 2015.

[178] Olumuyiwa Ibidunmoye, Ali-Reza Rezaie, and Erik Elmroth. Adaptive anomaly
detection in performance metric streams. IEEE Transactions on Network and
Service Management, 15(1):217–231, 2017.

[179] Charu C Aggarwal. Outlier analysis. In Data mining, pages 237–263. Springer,
2015.

[180] Douglas C Montgomery. Introduction to statistical quality control. John Wiley
& Sons, 2007.

[181] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised
real-time anomaly detection for streaming data. Neurocomputing, 262:134–147,
2017.

[182] Subutai Ahmad and Jeff Hawkins. Properties of sparse distributed represen-
tations and their application to hierarchical temporal memory. arXiv preprint
arXiv:1503.07469, 2015.

112

[183] Domenico Cotroneo, Roberto Natella, and Stefano Rosiello. A fault correlation
approach to detect performance anomalies in virtual network function chains. In
Software Reliability Engineering (ISSRE), 2017 IEEE 28th International Sym-
posium on, pages 90–100. IEEE, 2017.

[184] Daniel Joseph Dean, Hiep Nguyen, and Xiaohui Gu. Ubl: Unsupervised behavior
learning for predicting performance anomalies in virtualized cloud systems. In
Proceedings of the 9th international conference on Autonomic computing, pages
191–200. ACM, 2012.

[185] Paul S Bradley, Usama M Fayyad, Cory Reina, et al. Scaling clustering algo-
rithms to large databases. In KDD, volume 98, pages 9–15, 1998.

[186] Fredrik Farnstrom, James Lewis, and Charles Elkan. Scalability for clustering
algorithms revisited. SIGKDD explorations, 2(1):51–57, 2000.

[187] Marcel R Ackermann, Marcus Märtens, Christoph Raupach, Kamil Swierkot,
Christiane Lammersen, and Christian Sohler. Streamkm++: A clustering algo-
rithm for data streams. Journal of Experimental Algorithmics (JEA), 17:2–4,
2012.

[188] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of care-
ful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 1027–1035. Society for Industrial and Applied Math-
ematics, 2007.

[189] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. A framework
for clustering evolving data streams. In Proceedings of the 29th international
conference on Very large data bases-Volume 29, pages 81–92. VLDB Endowment,
2003.

[190] Philipp Kranen, Ira Assent, Corinna Baldauf, and Thomas Seidl. The clustree:
indexing micro-clusters for anytime stream mining. Knowledge and information
systems, 29(2):249–272, 2011.

[191] Aoying Zhou, Feng Cao, Weining Qian, and Cheqing Jin. Tracking clusters
in evolving data streams over sliding windows. Knowledge and Information
Systems, 15(2):181–214, 2008.

[192] Yixin Chen and Li Tu. Density-based clustering for real-time stream data. In
Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 133–142. ACM, 2007.

[193] Pedro Pereira Rodrigues, João Gama, and Joao Pedroso. Hierarchical clustering
of time-series data streams. IEEE transactions on knowledge and data engineer-
ing, 20(5):615–627, 2008.

[194] Joao Gama, Pedro Pereira Rodrigues, and Luís Lopes. Clustering distributed
sensor data streams using local processing and reduced communication. Intelli-
gent Data Analysis, 15(1):3–28, 2011.

[195] Boris Lorbeer, Ana Kosareva, Bersant Deva, Dženan Softić, Peter Ruppel, and
Axel Küpper. Variations on the clustering algorithm birch. Big data research,
11:44–53, 2018.

[196] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the num-
ber of clusters in a data set via the gap statistic. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 63(2):411–423, 2001.

[197] Dongwei Guo, Jingwen Chen, Yingjie Chen, and Zhiyu Li. Lbirch: An improved
birch algorithm based on link. In Proceedings of the 2018 10th International
Conference on Machine Learning and Computing, pages 74–78. ACM, 2018.

[198] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: A robust clustering
algorithm for categorical attributes. Information systems, 25(5):345–366, 2000.

113

[199] Yangyang Li, Guangyuan Liu, Peidao Li, and Licheng Jiao. A large-scale data
clustering algorithm based on birch and artificial immune network. In Interna-
tional Conference on Swarm Intelligence, pages 327–337. Springer, 2018.

[200] Leandro Nunes de Castro and Fernando J Von Zuben. ainet: an artificial immune
network for data analysis. In Data mining: a heuristic approach, pages 231–260.
IGI Global, 2002.

[201] James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[202] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization by sim-
ulated annealing. science, 220(4598):671–680, 1983.

[203] Samuel Xavier-de Souza, Johan AK Suykens, Joos Vandewalle, and Désiré Bollé.
Coupled simulated annealing. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics), 40(2):320–335, 2009.

[204] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller. Equation of state calculations by fast computing
machines. The journal of chemical physics, 21(6):1087–1092, 1953.

[205] Jake Graser, Steven K Kauwe, and Taylor D Sparks. Machine learning and
energy minimization approaches for crystal structure predictions: A review and
new horizons. Chemistry of Materials, 30(11):3601–3612, 2018.

[206] Ruggero Bellio, Sara Ceschia, Luca Di Gaspero, Andrea Schaerf, and Tommaso
Urli. Feature-based tuning of simulated annealing applied to the curriculum-
based course timetabling problem. Computers & Operations Research, 65:83–92,
2016.

[207] Irene Samora, Mário J Franca, Anton J Schleiss, and Helena M Ramos. Simu-
lated annealing in optimization of energy production in a water supply network.
Water resources management, 30(4):1533–1547, 2016.

[208] L.M. Rasdi Rere, Mohamad Ivan Fanany, and Aniati Murni Arymurthy. Simu-
lated annealing algorithm for deep learning. Procedia Computer Science, 72:137
– 144, 2015. The Third Information Systems International Conference 2015.

[209] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In International conference on
learning and intelligent optimization, pages 507–523. Springer, 2011.

[210] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global
optimization of expensive black-box functions. Journal of Global optimization,
13(4):455–492, 1998.

[211] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-
itas. Taking the human out of the loop: A review of bayesian optimization.
Proceedings of the IEEE, 104(1):148–175, 2015.

[212] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian opti-
mization of machine learning algorithms. In Advances in neural information
processing systems, pages 2951–2959, 2012.

[213] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle. F-race
and iterated f-race: An overview. In Experimental methods for the analysis of
optimization algorithms, pages 311–336. Springer, 2010.

[214] Oded Maron and Andrew W Moore. Hoeffding races: Accelerating model selec-
tion search for classification and function approximation. In Advances in neural
information processing systems, pages 59–66, 1994.

[215] D Anderson and K Burnham. Model selection and multi-model inference. Sec-
ond. NY: Springer-Verlag, 63, 2004.

114

[216] WJ Conover. Practical nonparametric statistics, john wiley & sons. INC, New
York, 1999.

[217] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Bi-
rattari, and Thomas Stützle. The irace package: Iterated racing for automatic
algorithm configuration. Operations Research Perspectives, 3:43 – 58, 2016.

[218] Russell Eberhart and James Kennedy. A new optimizer using particle swarm
theory. In MHS’95. Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, pages 39–43. Ieee, 1995.

[219] Clara Marina Martínez and Dongpu Cao. 2 - integrated energy management
for electrified vehicles. In Clara Marina Martínez and Dongpu Cao, editors,
Ihorizon-Enabled Energy Management for Electrified Vehicles, pages 15 – 75.
Butterworth-Heinemann, 2019.

[220] Peter Wilson and H. Alan Mantooth. Chapter 10 - model-based optimization
techniques. In Peter Wilson and H. Alan Mantooth, editors, Model-Based En-
gineering for Complex Electronic Systems, pages 347 – 367. Newnes, Oxford,
2013.

[221] Y. Shi and R. C. Eberhart. Empirical study of particle swarm optimization. In
Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat.
No. 99TH8406), volume 3, pages 1945–1950 Vol. 3, July 1999.

[222] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm optimization.
Swarm intelligence, 1(1):33–57, 2007.

[223] Riccardo Poli. An analysis of publications on particle swarm optimization ap-
plications. Essex, UK: Department of Computer Science, University of Essex,
2007.

[224] Wei Chen, Run-tong Zhang, Yong-ming Cai, and Fa-sheng Xu. Particle swarm
optimization for constrained portfolio selection problems. In 2006 International
Conference on Machine Learning and Cybernetics, pages 2425–2429. IEEE, 2006.

[225] Fasheng Xu and Wei Chen. Stochastic portfolio selection based on velocity
limited particle swarm optimization. In 2006 6th World Congress on Intelligent
Control and Automation, volume 1, pages 3599–3603. IEEE, 2006.

[226] Zhancheng Wang, Bufu Huang, Weimin Li, and Yangsheng Xu. Particle swarm
optimization for operational parameters of series hybrid electric vehicle. In 2006
IEEE International Conference on Robotics and Biomimetics, pages 682–688.
IEEE, 2006.

[227] AS Elwer, SA Wahsh, MO Khalil, and AM Nur-Eldeen. Intelligent fuzzy con-
troller using particle swarm optimization for control of permanent magnet syn-
chronous motor for electric vehicle. In IECON’03. 29th Annual Conference of
the IEEE Industrial Electronics Society (IEEE Cat. No. 03CH37468), volume 2,
pages 1762–1766. IEEE, 2003.

[228] Rui Xu, Georgios C Anagnostopoulos, and Donald C Wunsch. Multiclass can-
cer classification using semisupervised ellipsoid artmap and particle swarm opti-
mization with gene expression data. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 4(1):65–77, 2007.

[229] David E Goldberg and John H Holland. Genetic algorithms and machine learn-
ing. Machine learning, 3(2):95–99, 1988.

[230] B. Sahmadi and D. Boughaci. Hybrid genetic algorithm with svm for medical
data classification. In 2018 International Conference on Applied Smart Systems
(ICASS), pages 1–6, Nov 2018.

115

[231] Jean-François Connolly, Eric Granger, and Robert Sabourin. Evolution of het-
erogeneous ensembles through dynamic particle swarm optimization for video-
based face recognition. Pattern Recognition, 45(7):2460–2477, 2012.

[232] Michael Meissner, Michael Schmuker, and Gisbert Schneider. Optimized par-
ticle swarm optimization (opso) and its application to artificial neural network
training. BMC bioinformatics, 7(1):125, 2006.

[233] Pablo Ribalta Lorenzo, Jakub Nalepa, Michal Kawulok, Luciano Sanchez
Ramos, and José Ranilla Pastor. Particle swarm optimization for hyper-
parameter selection in deep neural networks. In Proceedings of the genetic and
evolutionary computation conference, pages 481–488. ACM, 2017.

[234] Shih-Wei Lin, Kuo-Ching Ying, Shih-Chieh Chen, and Zne-Jung Lee. Particle
swarm optimization for parameter determination and feature selection of support
vector machines. Expert systems with applications, 35(4):1817–1824, 2008.

[235] Matteo Fischetti and Matteo Stringher. Embedded hyper-parameter tuning by
simulated annealing. arXiv preprint arXiv:1906.01504, 2019.

[236] Yağız Nalçakan and Tolga Ensari. Decision of neural networks hyperparameters
with a population-based algorithm. In International Conference on Machine
Learning, Optimization, and Data Science, pages 276–281. Springer, 2018.

[237] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture
search: A survey. Journal of Machine Learning Research, 20(55):1–21, 2019.

[238] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up auto-
matic hyperparameter optimization of deep neural networks by extrapolation of
learning curves. In Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015.

[239] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia
Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive
neural architecture search. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 19–34, 2018.

[240] P. Kiss, D. Fonyó, and T. Horváth. Blaboo: A lightweight black box optimizer
framework. In 2018 World Symposium on Digital Intelligence for Systems and
Machines (DISA), pages 213–218, Aug 2018.

[241] Carmelo JA Bastos Filho, Fernando B de Lima Neto, Anthony JCC Lins, Anto-
nio IS Nascimento, and Marilia P Lima. A novel search algorithm based on fish
school behavior. In 2008 IEEE International Conference on Systems, Man and
Cybernetics, pages 2646–2651. IEEE, 2008.

[242] Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. Journal of global opti-
mization, 11(4):341–359, 1997.

[243] James Bergstra, Brent Komer, Chris Eliasmith, Dan Yamins, and David D Cox.
Hyperopt: a python library for model selection and hyperparameter optimiza-
tion. Computational Science & Discovery, 8(1):014008, 2015.

[244] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal
of machine learning research, 12(Oct):2825–2830, 2011.

[245] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. Optuna: A next-generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2623–2631. ACM, 2019.

116

[246] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary computation, 9(2):159–195,
2001.

[247] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John
Karro, and D Sculley. Google vizier: A service for black-box optimization. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1487–1495. ACM, 2017.

[248] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez,
and Ion Stoica. Tune: A research platform for distributed model selection and
training. arXiv preprint arXiv:1807.05118, 2018.

[249] Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-
Brown. Auto-weka: Automatic model selection and hyperparameter optimiza-
tion in. Anteil EPB, page 81, 2019.

[250] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Springen-
berg, Manuel Blum, and Frank Hutter. Auto-sklearn: Efficient and robust au-
tomated machine learning. In Automated Machine Learning, pages 113–134.
Springer, 2019.

[251] Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization
tool for automating machine learning. In Automated Machine Learning, pages
151–160. Springer, 2019.

[252] Pieter Gijsbers, Erin LeDell, Sébastien Poirier, Janek Thomas, Bernd Bischl,
and Joaquin Vanschoren. An open source automl benchmark. In 6th ICML
Workshop on Automated Machine Learning, 2019.

[253] Ke Tu, Jianxin Ma, Peng Cui, Jian Pei, and Wenwu Zhu. Autone: Hyper-
parameter optimization for massive network embedding. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2019.

[254] Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint
arXiv:1606.01885, 2016.

[255] Ke Li and Jitendra Malik. Learning to optimize neural nets. arXiv preprint
arXiv:1703.00441, 2017.

[256] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyper-
parameter optimization through reversible learning. In International Conference
on Machine Learning, pages 2113–2122, 2015.

[257] Sylvain Arlot, Alain Celisse, et al. A survey of cross-validation procedures for
model selection. Statistics surveys, 4:40–79, 2010.

[258] Tomáš Pevnỳ. Loda: Lightweight on-line detector of anomalies. Machine Learn-
ing, 102(2):275–304, 2016.

[259] Bitflow collector, 2019. Available online: https://github.com/bitflow-stream/go-
bitflow-collector/ (Accessed 31-10-2019).

[260] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa:
Massive online analysis. Journal of Machine Learning Research, 11(May):1601–
1604, 2010.

[261] G a Padmanabhan and Prem Vrat. An eoq model for items with stock dependent
consumption rate and exponential decay. Engineering Costs and Production
Economics, 18(3):241–246, 1990.

[262] Christopher C Moser, Jonathan M Keske, Kurt Warncke, Ramy S Farid, and
P Leslie Dutton. Nature of biological electron transfer. Nature, 355(6363):796,
1992.

117

[263] MH Zwietering, Il Jongenburger, FM Rombouts, and K Van’t Riet. Modeling of
the bacterial growth curve. Appl. Environ. Microbiol., 56(6):1875–1881, 1990.

[264] Stasys Girdzijauskas and Dalia Štreimikiene. Application of logistic models for
stock market bubbles analysis. Journal of Business Economics and Management,
10(1):45–51, 2009.

[265] Daniel Pauly. Fish population dynamics in tropical waters: a manual for use
with programmable calculators, volume 8. WorldFish, 1984.

[266] FJ Richards. A flexible growth function for empirical use. Journal of experi-
mental Botany, 10(2):290–301, 1959.

[267] Florian Schmidt, Anton Gulenko, Marcel Wallschläger, Alexander Acker, Vin-
cent Hennig, Feng Liu, and Odej Kao. Iftm-unsupervised anomaly detection for
virtualized network function services. In 2018 IEEE International Conference
on Web Services (ICWS), pages 187–194. IEEE, 2018.

[268] Florian Schmidt, Florian Suri-Payer, Anton Gulenko, Marcel Wallschläger,
Alexander Acker, and Odej Kao. Unsupervised anomaly event detection for
cloud monitoring using online arima. In 2018 IEEE/ACM International Con-
ference on Utility and Cloud Computing Companion (UCC Companion), pages
71–76. IEEE, 2018.

[269] Florian Schmidt, Florian Suri-Payer, Anton Gulenko, Marcel Wallschläger,
Alexander Acker, and Odej Kao. Unsupervised anomaly event detection for
vnf service monitoring using multivariate online arima. In 2018 IEEE Inter-
national Conference on Cloud Computing Technology and Science (CloudCom),
pages 278–283. IEEE, 2018.

[270] Ralf Tönjes, P Barnaghi, M Ali, A Mileo, M Hauswirth, F Ganz, S Ganea,
B Kjærgaard, D Kuemper, Septimiu Nechifor, et al. Real time iot stream pro-
cessing and large-scale data analytics for smart city applications. In poster
session, European Conference on Networks and Communications. sn, 2014.

[271] Muhammad Intizar Ali, Feng Gao, and Alessandra Mileo. Citybench: A config-
urable benchmark to evaluate rsp engines using smart city datasets. In Interna-
tional Semantic Web Conference, pages 374–389. Springer, 2015.

[272] Steven CH Hoi and Rong Jin. Semi-supervised ensemble ranking. 2008.

[273] Furu Wei, Wenjie Li, and Shixia Liu. irank: A rank-learn-combine framework for
unsupervised ensemble ranking. Journal of the American Society for Information
Science and Technology, 61(6):1232–1243, 2010.

[274] Thomas G Dietterich. Ensemble methods in machine learning. In International
workshop on multiple classifier systems, pages 1–15. Springer, 2000.

[275] James Bergstra, Daniel Yamins, and David Cox. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vision ar-
chitectures. In International Conference on Machine Learning, pages 115–123,
2013.

[276] Lior Rokach. Ensemble-based classifiers. Artificial Intelligence Review, 33(1-
2):1–39, 2010.

[277] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,
Aditya Nori, and Antonio Criminisi. Measuring neural net robustness with con-
straints. In Advances in neural information processing systems, pages 2613–2621,
2016.

[278] Valentina Timčenko and Slavko Gajin. Ensemble classifiers for supervised
anomaly based network intrusion detection. In 2017 13th IEEE International
Conference on Intelligent Computer Communication and Processing (ICCP),
pages 13–19. IEEE, 2017.

118

[279] Juan Vanerio and Pedro Casas. Ensemble-learning approaches for network se-
curity and anomaly detection. In Proceedings of the Workshop on Big Data
Analytics and Machine Learning for Data Communication Networks, pages 1–6.
ACM, 2017.

[280] Saeed Haddadi Makhsous, Anton Gulenko, Odej Kao, and Feng Liu. High avail-
able deployment of cloud-based virtualized network functions. In 2016 Inter-
national Conference on High Performance Computing & Simulation (HPCS),
pages 468–475. IEEE, 2016.

[281] Matthias Bolte, Michael Sievers, Georg Birkenheuer, Oliver Niehörster, and An-
dré Brinkmann. Non-intrusive virtualization management using libvirt. In 2010
Design, Automation & Test in Europe Conference & Exhibition (DATE 2010),
pages 574–579. IEEE, 2010.

[282] Ben Pfaff and Bruce Davie. The open vswitch database management protocol.
2013.

[283] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine
learning: Concept and applications. ACM Transactions on Intelligent Systems
and Technology (TIST), 10(2):1–19, 2019.

[284] Alexander Acker, Florian Schmidt, Anton Gulenko, Reinhard Kietzmann, and
Odej Kao. Patient-individual morphological anomaly detection in multi-lead
electrocardiography data streams. In Big Data (Big Data), 2017 IEEE Interna-
tional Conference on, pages 3841–3846. IEEE, 2017.

[285] Paolo Burlando, Renzo Rosso, Luis G Cadavid, and Jose D Salas. Forecasting of
short-term rainfall using arma models. Journal of Hydrology, 144(1-4):193–211,
1993.

[286] Patrik Gustavsson and Jonas Nordström. The impact of seasonal unit roots
and vector arma modelling on forecasting monthly tourism flows. Tourism Eco-
nomics, 7(2):117–133, 2001.

[287] Wim van Drongelen. Signal Processing for Neuroscientists: An Introduction to
the Analysis of Physiological Signals. Elsevier, 2006.

[288] James Douglas Hamilton. Time series analysis, volume 2. Princeton University
Press, 1994.

[289] Edward James Hannan. Multiple time series, volume 38. John Wiley & Sons,
2009.

[290] Chenghao Liu, Steven C. H. Hoi, Peilin Zhao, and Jianling Sun. Online arima
algorithms for time series prediction. In Proceedings of AAAI Conference on
Artificial Intelligence, AAAI’16, pages 1867–1873. AAAI Press, 2016.

[291] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for
online convex optimization. Machine Learning, 69(2-3):169–192, 2007.

[292] Martin Zinkevich. Online convex programming and generalized infinitesimal
gradient ascent. In Proceedings of International Conference on Machine Learning
(ICML-03), pages 928–936, 2003.

[293] Jack Sherman and Winifred J Morrison. Adjustment of an inverse matrix cor-
responding to a change in one element of a given matrix. The Annals of Math-
ematical Statistics, 21(1):124–127, 1950.

[294] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international con-
ference on artificial intelligence and statistics, pages 249–256, 2010.

Appendices

119

Appendix A

Online Arima

The background and variations applied to UArima and MArima are described in the
following and were published by us in [268,269].

Univariate Online Arima

Forecasting on time series is applied for many years [285–287] by using the Autore-
gressive Moving Average Model (ARMA) [288,289] and focus on univariate time series
forecasting. The ARMA model can identify latent correlation within the time series,
allowing forecasting future data points. Based on ARMA, the model was modified to
use a differentiation to capture more fine granular changes than linear dependencies,
called ARIMA [288, 289]. But both ARMA and ARIMA assume that we know the
complete time series in advance, so that there is no missing data. This is problematic
when predicting on a potentially endless data stream.

To overcome this limitation, Liu et al. [290] proposed a game-theoretic framework
for online learning to forecast values, called online ARIMA model. In their setting,
an online player sequentially commits to a decision by forecasting the next value and
consequently suffers a loss. Liu et al. assume that coefficient vectors are set by an
adversary and are not disclosed to the learner at any time. Since the learning part has
no ability to infer the actual noise term εt of a time step t, this is generated by the
adversary, while remaining undisclosed to the learner. The learner predicts a value xt̃

and learns the monitored value xt, subsequently suffering a loss lt at time t:

ltpxt, xt̃q “ ltpxt,∇dxt̃ `

d´1
ÿ

i“0

∇ixt´1q (A.1)

Liu et al. [290] showed that the original model ARIMA(k, d, q) can be approxi-
mated by the model ARIMA(k ` m, d, 0). The noise term is dropped and is com-
pensated by extending the window size of k to regress upon by m. A new pk ` mq-
dimensional coefficient vector γ weights past observations, formulating the model:

xt̃pγq “

k`m
ÿ

i“1

γi∇dxt´i `

d´1
ÿ

i“0

∇ixt´1 (A.2)

and subsequently the loss:

ltpxt, xt̃q “ ltpxt,
k`m
ÿ

i“1

γi∇dxt´i `

d´1
ÿ

i“0

∇ixt´1q (A.3)

120

121

Furthermore, Liu et al. [290] described two suitable online convex optimization
solvers to iteratively learn γ. The Online Newton Step (ONS) procedure [291] and
Online Gradient Descent (ODG) [292] are discussed and both implemented within
the IFTM framework. While the ODG variant is computationally more efficient, the
ONS approach provides a more favorable regret boundary that entails more accurate
predictions. Moreover, choosing a suitable learning rate is harder in the gradient
descent setting, yet crucial to achieve a good model approximation. Nevertheless, the
ODG approach might be favorable when the lag-window is large. Thus, we consider
in the following the ONS model to be used.

In contrast to Liu et al. [290], we denote no discrete feature space for the coef-
ficients and assume them to be continuous. We therefore randomly initialize γi P

r´0.5, 0.5s, @i P r1, . . . , ws and update them ensuing each observation. Further adap-
tion made in the implementation for the IFTM framework compared to Liu et al. [290]
proposal, within ONS, the inversion of the pseudo-Hessian Matrix A has to be com-
puted, which is computationally expensive. Thus, we utilize the Shermann Morrison
formula [293], which leads to more efficient computation of the inverse.

As ARIMA is usually investigated for univariate time series forecasting, we employ
for an incoming multivariate data point an individual model (Model 1, 2, . . . , n), with
respect to each dimension of the incoming multivariate data points. Thus, the forecast
xt̃ of an observed data point xt is given by:

xt̃ “

¨

˚

˚

˚

˝

x̃1
t

x̃2
t

...
x̃n
t

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

řw
i“1 γ

t
i∇dx1

t´i `
řd´1

i“0 ∇ix1
t´1

řw
i“1 γ

t
i∇dx2

t´i `
řd´1

i“0 ∇ix2
t´1

...
řw

i“1 γ
t
i∇dxn

t´i `
řd´1

i“0 ∇ixn
t´1

˛

‹

‹

‹

‚

(A.4)

where ∇xi “ xi ´ xi´1 and xi
t denotes the datum corresponding to metric i (i P

r1, . . . , ns) at time step t.
For each discrete model ensuing schema holds: Upon receiving the ground truth

data value xt, we incur the prediction loss for our forecast xt̃. Thus the loss is ljt pxj
t , xt̃

j
q

(loss corresponding to model j in time step t):

ljt pxj
t , xt̃

j
q “ pxj

t ´ xt̃
j
q
2

“ pxj
t ´ p

w
ÿ

i“1

γt
i∇dxj

t´i `

d´1
ÿ

i“0

∇ixj
t´1qq

2 (A.5)

Given the loss, we update our model according to the previously discussed methods.
Thus, the loss gradient is for updating the model’s coefficients:

∇ljt rγt
spxj

t , xt̃
j
q “

¨

˚

˚

˚

˝

´2 ¨ pxj
t ´ xt̃

j
q ¨ ∇dxj

t´1

´2 ¨ pxj
t ´ xt̃

j
q ¨ ∇dxj

t´2

...
´2 ¨ pxj

t ´ xt̃
j
q ¨ ∇dxj

t´w

˛

‹

‹

‹

‚

As the model progresses through time, the historical data columns drop out of
the window’s tail, while the future data will be added to the head of the window.
For an observed data point xt, its differenced values are computed prior to being
integrated into the window. The computation can be performed in an iterative manner,
following the formula ∇ixt “ ∇i´1xt˘∇i´1xt´1, i ą 0. Thus, the model provides
online computation, which is required for our use case. As this approach focuses on
univariate processing of values, inter-dependencies between the dimensions are not
captured. Next, we describe shortly how to capture those inter-dependencies and
consequently establish multivariate computation through a single Online Arima model.

122

Multivariate Online Arima

As the ARIMA computation formulas are indifferent to the dimensionality of the
input data (see Equation A.2), the model can provide also a multivariate forecast
xt̃. The Autoregressive part of the model is a linear combination of vectors, weighed
by our model coefficients γ. The differenced vectors are given by ∇xt “ xt ´ xt´1,
where standard vector subtraction is performed. The consequent differences follow:
∇ixt “ ∇i´1xt ´ ∇i´1xt´1.

Again, upon receiving the observed data point xt, we compute the prediction loss
for our forecast xt̃. The incurred loss is defined also by the squared Euclidean distance
between the two vectors but captures now all the multivariate n dimensions. Let
ltpxt, xt̃q denote our incurred loss in time step t:

ltpxt, xt̃q “

n
ÿ

i“j

pxj
t ´ p

w
ÿ

i“1

γt
i∇dxj

t´i `

d´1
ÿ

i“0

∇ixj
t´1qq

2 (A.6)

Thus, through the sum over the given dimensions the interdependencies are cap-
tured, and the loss gradient is consequently for the ONS procedure:

∇ltrγ
t
spXt, Xt

˜ q “

¨

˚

˚

˚

˚

˝

´2 ¨
řn

j“1pxj
t ´ xt̃

j
q ¨ ∇dxj

t´1

´2 ¨
řn

j“1pxj
t ´ xt̃

j
q ¨ ∇dxj

t´2

...
´2 ¨

řn
j“1pxj

t ´ xt̃
j
q ¨ ∇dxj

t´w

˛

‹

‹

‹

‹

‚

The adaptions made to the original paper are the same as described above for the
univariate Online Arima model.

Appendix B

Intervals for Identity
functions and Threshold
models

The following default intervals are integrated into the IFTM framework on which the
hyperparameter optimization is applied (see Table B.1 and B.2). When not stated dif-
ferently, the standard configurations of the Deeplearning4j1 (version: 1.0.0-beta4) are
used. Furthermore, for weight initialization the function Xavier [294], mean squared
error as loss function and the output layer utilizes as activation function the linear
identity.

1https://deeplearning4j.org/

Method Hyperparameter Parameter
intervals

Gaussian aggregation σ multiplier c [0,10]

Exponential moving model α [0,1]
σ multiplier c [0,10]

Double exponential moving model
α [0,1]
β [0,1]
σ multiplier c [0,10]

Sliding window aggregation window size {2,3,...,500}
σ multiplier c [0,10]

Table B.1: Intervals for hyperparameter optimization for threshold models.

123

https://deeplearning4j.org/

124

Method Hyperparameter Parameter
intervals

CABIRCH

initial threshold 0
number of nodes {2,3,...,100}
logistic function decay - β [0,1]
logistic function decay - max decay [0,1]

Univariate Arima d {1,2,...,10}
mk {2,3,...,500}

Multivariate Arima d {1,2,...,10}
mk {2,3,...,500}

Autoencoder
Encoding layers {1,2,...,5}
Decoding layers {1,2,...,5}
Learning rate [0,1]

Variational Autoencoder
Encoding layers [1,5]
Decoding layers [1,5]
Learning rate [0,1]

LSTM network
Layers {1,2,...,10}
Learning rate [0,1]

Autoencoder with LSTM cells
Encoding layers {1,2,...,5}
Decoding layers {1,2,...,5}
Learning rate [0,1]

Table B.2: Intervals for hyperparameter optimization for Identity functions.

Appendix C

Detailed Evaluation Results

125

126

Identity
function

Threshold
model

TP-
rate [%]

TN-
rate [%]

FP-
rate [%]

FN-
rate [%]

AUC
[%]

CABIRCH DEMM 58.12 90.16 9.84 41.88 74.14
CABIRCH EMM 51.36 94.57 5.43 48.64 72.97
CABIRCH SWA 56.14 87.95 12.05 43.86 72.05
CABIRCH CA 56.04 85.82 14.18 43.96 70.93
AE SWA 53.61 75.51 24.49 46.39 64.56
AELSTM SWA 50.48 77.78 22.22 49.52 64.13
LSTM SWA 51.33 76.62 23.38 48.67 63.98
MArima CA 63.56 64.29 35.71 36.44 63.93
VAE EMM 44.25 83.20 16.80 55.75 63.73
AE CA 44.16 82.97 17.03 55.84 63.57
UArima SWA 63.60 57.85 42.15 36.40 63.41
LSTM DEMM 49.81 76.75 23.25 50.19 63.28
AE EMM 39.75 86.23 13.77 60.25 62.99
AELSTM DEMM 48.34 76.14 23.86 51.66 62.24
VAE DEMM 46.42 78.04 21.96 53.58 62.23
AELSTM CA 34.20 87.16 12.84 65.80 60.68
VAE CA 37.15 82.54 17.46 62.85 59.85
LSTM CA 34.34 84.67 15.33 65.66 59.51
UArima CA 26.66 91.09 8.91 73.34 58.88
AELSTM EMM 21.91 94.65 5.35 78.09 58.28
MArima SWA 68.20 52.62 47.38 31.80 55.83
UArima DEMM 21.85 88.10 11.90 78.15 54.98
MArima DEMM 14.77 91.52 8.48 85.23 53.15
UArima EMM 9.02 95.44 4.56 90.98 52.23
LSTM EMM 7.20 96.14 3.86 92.80 51.67
MArima EMM 8.17 94.36 5.64 91.83 51.27
AE DEMM 1.72 98.27 1.73 98.28 50.00
VAE SWA 5.88 93.41 6.59 94.12 49.65

Table C.1: Point-wise evaluation results showing the different rates
(TP,TN,FP,FN) as well as the AUC value.

127

Identity
function

Threshold
model Precision Recall F1

Accuracy
[%]

CABIRCH EMM 71.03 51.36 59.61 85.67
CABIRCH DEMM 60.52 58.12 59.30 83.56
CABIRCH SWA 54.73 56.14 55.43 81.40
CABIRCH CA 50.62 56.04 53.19 79.69
AELSTM EMM 51.49 21.91 30.74 79.66
AE DEMM 20.44 1.72 3.17 78.38
LSTM EMM 32.60 7.20 11.79 77.82
UArima CA 43.69 26.66 33.11 77.82
UArima EMM 33.91 9.02 14.24 77.64
AE EMM 42.82 39.75 41.23 76.66
MArima EMM 27.30 8.17 12.57 76.61
AELSTM CA 40.86 34.20 37.23 76.25
MArima DEMM 31.13 14.77 20.04 75.72
VAE SWA 18.79 5.88 8.96 75.38
VAE EMM 40.58 44.25 42.34 75.17
AE CA 40.21 44.16 42.09 74.98
UArima DEMM 32.27 21.85 26.06 74.46
LSTM CA 36.75 34.34 35.50 74.30
VAE CA 35.56 37.15 36.34 73.20
AELSTM SWA 37.08 50.48 42.75 72.15
VAE DEMM 35.42 46.42 40.18 71.53
LSTM SWA 36.28 51.33 42.52 71.41
LSTM DEMM 35.72 49.81 41.60 71.20
AE SWA 36.22 53.61 43.23 71.00
AELSTM DEMM 34.44 48.34 40.22 70.41
MArima CA 31.58 63.56 42.19 64.14
UArima SWA 28.13 63.60 39.01 59.03
MArima SWA 27.18 68.20 38.87 55.83

Table C.2: Point-wise evaluation results presenting precision, recall, F1 score,
and the accuracy.

128

Identity function Threshold function C(time.avg, time.std)

AELSTM DEMM 0.9999
AE CA 0.9991
CABIRCH DEMM 0.9989
MArima CA 0.9982
CABIRCH SWA 0.9952
AELSTM CA 0.9946
CABIRCH EMM 0.9936
UArima SWA 0.9935
MArima SWA 0.9934
LSTM CA 0.9914
VAE CA 0.9850
LSTM EMM 0.9820
LSTM DEMM 0.9812
UArima DEMM 0.9797
LSTM SWA 0.9792
VAE DEMM 0.9766
AELSTM SWA 0.9766
AE SWA 0.9727
AE EMM 0.9710
CABIRCH CA 0.9643
UArima CA 0.9493
AELSTM EMM 0.9470
VAE EMM 0.9347
MArima DEMM 0.8943
UArima EMM 0.8627
MArima EMM 0.8243
VAE SWA 0.6805
AE DEMM 0.6704

All normal 0.9380

Table C.3: Correlations of the average time and standard deviation for all 28
IFTM models.

129

0.0881AE & DEMM
0.1695LSTM & EMM
0.1654CABIRCH & EMM

0.2101MArima & EMM
0.0551VAE & SWA

0.3375CABIRCH & DEMM
0.4999UArima & DEMM

0.3074CABIRCH & SWA
0.2396AE & EMM

0.2640VAE & EMM
0.2689VAE & DEMM
0.2728AELSTM & SWA

0.2550LSTM & DEMM
0.2220LSTM & SWA
0.2332AELSTM & DEMM
0.2510AE & SWA

0.2052MArima & CA
0.3307UArima & SWA

0.1691MArima & SWA
0.2165AELSTM & EMM

0.2844AE & CA
0.2633MArima & DEMM

0.1132VAE & CA
0.2346AELSTM & CA
0.2559LSTM & CA

0.0044CABIRCH & CA
0.2275UArima & CA
0.2384UArima & EMM

0 0.2 0.4 0.59999
False alarm duratio [s]

Figure C.1: False alarm duration for the 28 IFTM combinations.

9.9418AELSTM & EMM
2.8598AE & CA

22.0754MArima & DEMM
2.3922VAE & CA

9.1268AELSTM & CA
4.3455LSTM & CA
6.0102CABIRCH & CA

20.5932UArima & CA
50.3422UArima & EMM

0 5 10 15 20 25 30 35 40 45 50
Avg. Detection times in [s]

Figure C.2: Avg. Detection times in [s]. For lower than 100% detection rate.

	Title page
	Zusammenfassung
	Abstract
	Contents
	1 Introduction
	1.1 Research Objectives and Main Contributions
	1.2 Publications
	1.3 Outline of the Thesis

	2 Background
	2.1 Anomaly detection
	2.1.1 Types of Anomalies
	2.1.2 Failures and Degraded State Anomalies

	2.2 Application Domain
	2.2.1 IP multimedia subsystem
	2.2.2 Video on demand

	2.3 Analytic Concepts
	2.3.1 Machine Learning Methodologies
	2.3.2 BIRCH
	2.3.3 Autoencoder
	2.3.4 Variational Autoencoder
	2.3.5 Long Short Term Memory Networks
	2.3.6 Dynamic Threshold Models
	2.3.7 Genetic Algorithm

	2.4 Evaluation Metrics

	3 Related Work
	3.1 Characteristics of Service Anomalies
	3.2 Anomaly Detection
	3.3 Concept Adapting Clustering
	3.4 Hyperparameter Optimization

	4 Framework for AI-based Anomaly Detection
	4.1 ZerOps Framework
	4.2 Categorization of AI-based Anomaly Detection
	4.3 Evaluation
	4.3.1 Supervised Learning Evaluation
	4.3.2 Semi-supervised Evaluation
	4.3.3 Summary

	5 Concept Adapting BIRCH
	5.1 Concept Adapting BIRCH
	5.1.1 Micro-cluster Aging

	5.2 Anomaly Detection using Concept Adapting BIRCH
	5.2.1 Identity Function Threshold Model

	5.3 Evaluation
	5.3.1 Influence of Decay Rate Selection
	5.3.2 CABIRCH-based Anomaly Detection

	6 Cold Start-Aware Identity Function Threshold Models
	6.1 Integration of Hyperparameter Optimization into IFTM Framework
	6.2 Automated Hyperparameter Optimization
	6.2.1 Initialization, Crossover, Mutation, Termination
	6.2.2 Fitness Function Definition

	6.3 Evaluation

	7 Evaluation
	7.1 Evaluation Setup
	7.1.1 Resource Monitoring
	7.1.2 Anomaly Injection Framework

	7.2 Evaluation Results
	7.3 Discussion
	7.4 Future Work

	8 Conclusion
	Appendices
	A Online Arima
	B Intervals for Identity functions and Threshold models
	C Detailed Evaluation Results

