Funktionsgetriebene Konstruktion
als Grundlage
verbesserter Produktentwicklung

vorgelegt von

Diplom-Ingenieurin
Helen Leemhuis
aus Aschaffenburg

An der Fakultät V für Verkehrs- und Maschinensysteme
der Technischen Universität Berlin
zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs
genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. H. J. Meyer
Berichter: Prof. Dr.-Ing. F.-L. Krause
Berichter: Prof. Dr.-Ing. L. Blessing

Tag der wissenschaftlichen Aussprache: 14.09.04

Berlin 2005
D 83
Inhalt

1 Einleitung und Zielsetzung ... 1

2 Produktfunktion als elementare Komponente
 rechnerunterstützter Konstruktion .. 7
 2.1 Begriffsbestimmungen ... 7
 2.2 Die Bedeutung der Produktfunktion in der rechnerunterstützten
 Konstruktion mechanischer Bauteile .. 12
 2.2.1 Konstruktion mechanischer Bauteile 12
 2.2.2 Konstruktionstheorie und -methodik 13
 2.2.3 Grundlagen der Funktionsmodellierung 19
 2.2.4 Detaillierung des Funktionsbegriffs 22
 2.2.5 Nutzung der Produktfunktion im Qualitätsmanagement 25
 2.3 Repräsentation und Verarbeitung von funktionalen
 Produktbeschreibungen ... 28
 2.3.1 Semantische Datenmodelle für die Produktmodellierung 28
 2.3.2 Ansätze zur Wissensrepräsentation und –verarbeitung im
 Engineering .. 29
 2.3.3 Ontologiebasiertes Wissensmanagement in der
 Produktentwicklung .. 35
 2.3.4 Constraints zur Repräsentation und Verarbeitung von
 Modellzusammenhängen ... 38
 2.4 Stand der Technik des funktionsorientierten Entwurfs 44
 2.4.1 Methoden und Werkzeuge zum Entwurf eines funktionalen
 Modellschemas .. 44
 2.4.2 Systemunterstützung zur funktionsorientierten Konstruktion 45

3 Entwicklung eines Konzepts zur Verwendung von
 Produktfunktionen .. 48
 3.1 Produktfunktion als Führungsgröße des Informationsumsatzes in
 der Produktentwicklung ... 48
 3.2 Entwicklungsprozesse in frühen Phasen .. 54
 3.3 Informationen im Entwicklungsprozess ... 59
 3.3.1 Informationen in der Phase ’Planen und Klären der Aufgabe’ 59
 3.3.2 Informationen in der Phase ’Konzipieren’ 62
<table>
<thead>
<tr>
<th>Inhalt</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3 Informationen in der Phase 'Entwerfen'</td>
<td>63</td>
</tr>
<tr>
<td>3.3.4 Informationen in der Phase 'Ausarbeiten'</td>
<td>65</td>
</tr>
<tr>
<td>3.4 Erforderliche methodische und systemseitige Unterstützung in den frühen Produktentwicklungsphasen</td>
<td>66</td>
</tr>
<tr>
<td>4 Systemkonzept einer Entwicklungsumgebung zur funktionsgetriebenen Konstruktion</td>
<td>68</td>
</tr>
<tr>
<td>4.1 Eckpfeiler für eine geeignete Systemumgebung im Entwicklungsprozess</td>
<td>68</td>
</tr>
<tr>
<td>4.1.1 Eckpfeiler des Systemkonzeptes</td>
<td>68</td>
</tr>
<tr>
<td>4.1.2 Modellierung der Produktfunktion als Führungsgröße des Informationsumsatzes</td>
<td>69</td>
</tr>
<tr>
<td>4.1.3 Durchgängige Informationskette von den Produktanforderungen bis zum geometrischen Entwurf</td>
<td>71</td>
</tr>
<tr>
<td>4.1.4 Constraints im Konstruktionsprozess</td>
<td>73</td>
</tr>
<tr>
<td>4.2 Funktionsmodellierung für die Repräsentation und Verarbeitung von Konstruktionswissen</td>
<td>73</td>
</tr>
<tr>
<td>4.2.1 Detaillierung des Funktionsbegriffs im Kontext des Systemkonzeptes</td>
<td>73</td>
</tr>
<tr>
<td>4.2.2 Funktionsmodellierung in der funktionsgetriebenen Konstruktion</td>
<td>79</td>
</tr>
<tr>
<td>4.3 Anforderungsmodellierung in der funktionsgetriebenen Konstruktion</td>
<td>83</td>
</tr>
<tr>
<td>4.3.1 Anforderungsmodellierung vom Rahmenheft und Lastenheft bis zur Spezifikation von Systemkomponenten</td>
<td>83</td>
</tr>
<tr>
<td>4.3.2 Anforderungsparameter und ihre Bedeutung für die weitere Produktentwicklung</td>
<td>88</td>
</tr>
<tr>
<td>4.4 Konzeptmodelle und Bauteilstrukturen in der funktionsgetriebenen Konstruktion</td>
<td>89</td>
</tr>
<tr>
<td>4.4.1 Abstrakte Lösungselemente als Verknüpfungsglied zum CAD</td>
<td>89</td>
</tr>
<tr>
<td>4.4.2 Kopplung zum CAD</td>
<td>90</td>
</tr>
<tr>
<td>4.4.3 Aufbau von Produktstrukturen</td>
<td>92</td>
</tr>
<tr>
<td>4.5 Prozessmanagement in der funktionsgetriebenen Konstruktion</td>
<td>93</td>
</tr>
<tr>
<td>4.5.1 Der funktionsgetriebene Konstruktionsprozess</td>
<td>93</td>
</tr>
<tr>
<td>4.5.2 Funktionsmodellierung zur Steuerung der Systemlösung</td>
<td>98</td>
</tr>
<tr>
<td>4.5.3 Repräsentation von Alternativen im Konstruktionsprozess</td>
<td>99</td>
</tr>
<tr>
<td>4.5.4 Besonderheiten zur Repräsentation des Variantenmanagement</td>
<td>101</td>
</tr>
</tbody>
</table>
Inhalt

4.6 Wiederverwendung von Konzepten .. 103
 4.6.1 Aufbau und Nutzung von Bibliotheken ... 103
 4.6.2 Entwurfshistorie zur Dokumentation des Konstruktionsprozesses 104

4.7 Funktionsmodellierung als Mittel der Qualitätssicherung 104

5 Spezifikation der Ontologie des Konstruktionsprozesses 107
 5.1 Grafische Repräsentation der generischen Struktur des
 Wissensmodells unter Nutzung von UML .. 107
 5.2 Das generische Wissensmodell zur Repräsentation der
 Grundmechanismen funktionsgetriebener Konstruktion 112
 5.2.1 Produktfunktion als Führungsgröße zwischen
 Produktanforderungen und Bauteilgeometrie 112
 5.2.2 Dokumentation des schrittweisen Vorgehens im Entwurfsprozess 116
 5.2.3 Repräsentation von Alternativen im Konstruktionsprozess 117
 5.2.4 Repräsentation von Varianten ... 119
 5.3 Das generische Wissensmodell im Kontext des bestehenden
 Produktentwicklungssprozesses .. 120
 5.3.1 Aufbau von Bibliotheken .. 120
 5.3.2 Repräsentation der Entwurfshistorie im Wissensmodell 121
 5.3.3 Erweiterte Ontologie zum Testen der Produktfunktion 122

6 Modellierung und Verarbeitung von Modellen in der
 funktionsgetriebenen Konstruktion .. 126
 6.1 Funktionsgetriebener Entwurf mit dateibasierten Modell-
 Templates .. 126
 6.1.1 Grundkonzept zum Arbeiten mit dateibasierten Modell-
 Templates .. 126
 6.1.2 Komponenten der Systemlösung .. 128
 6.1.3 Arbeiten mit dateibasierten Modell-Templates 131
 6.2 Modellierung und Verarbeitung von Modellen in einer
 wissensbasierten Systemumgebung ... 134
 6.2.1 Das generische Wissensmodell als Klassenmodell in Protégé 2000 134
 6.2.2 Der Aufbau eines spezialisierten Wissensmodells am Beispiel des
 Wasserpumpenentwurfs ... 139
 6.2.3 Der Konstruktionsprozess unter Nutzung des Wissensmodells 146
 6.3 Die Schlussfolgerungskomponente in der Systemumgebung zur
 funktionsgetriebenen Konstruktion .. 147
6.3.1 Constraint-Repräsentation und -Verarbeitung im Applikationskontext ... 147
6.3.2 Repräsentation und Verarbeitung von Constraints unter Nutzung der dateibasierten Modelltemplates ... 149
6.3.3 Repräsentation und Verarbeitung von Constraints im Wissensmodell .. 151

7 Prototypische Realisierung einer Systemumgebung zur funktionsgetriebenen Konstruktion ... 156

7.1 System FOD (Function-Oriented Design) für die frühen Phasen der Produktentwicklung ... 156
 7.1.1 Systemarchitektur .. 156
 7.1.2 Anforderungs-Editor ... 158
 7.1.3 Funktions-Editor ... 161
 7.1.4 Bauteil-Editor .. 163
 7.1.5 Abhängigkeiten der Partialmodelle .. 164

7.2 Beispielszenario zum Arbeiten mit dem FOD-System 167
 7.2.1 Überblick .. 167
 7.2.2 Anforderungsmodellierung ... 168
 7.2.3 Funktionsmodellierung .. 169
 7.2.4 Bauteilmodellierung und Constraint Management 172

7.3 Kopplung mit einem CAD-System .. 175

8 Systemrealisierung mit wissensbasierter Systemumgebung 177

9 Zusammenfassung und Diskussion der Ergebnisse 180

10 Literatur .. 183
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange (Standardformat für alphanumerische Informationen)</td>
</tr>
<tr>
<td>BMBF</td>
<td>Bundesministerium für Bildung und Forschung</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CAx</td>
<td>Allgemeine Bezeichnung für rechnerunterstützte Methoden in der Produktion</td>
</tr>
<tr>
<td>CYC</td>
<td>Umfangreiche Ontologie der Computer Technology Corporation in Austin, Texas</td>
</tr>
<tr>
<td>CYCL</td>
<td>Syntax zum Aufbau der CYC Ontologie</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsches Institut für Normung e. V.</td>
</tr>
<tr>
<td>CSP</td>
<td>Constraint Satisfaction Programming</td>
</tr>
<tr>
<td>EAA</td>
<td>Ereignisablaufanalyse</td>
</tr>
<tr>
<td>EDM</td>
<td>Engineering Data Management</td>
</tr>
<tr>
<td>FBA</td>
<td>Funktionsbaumanalyse</td>
</tr>
<tr>
<td>FMEA</td>
<td>Fehlermöglichkeiten- und -Einflussanalyse</td>
</tr>
<tr>
<td>FOD</td>
<td>Function-Oriented Design (funktionsorientierter Entwurf)</td>
</tr>
<tr>
<td>GOE</td>
<td>GENIAL Ontology Editor</td>
</tr>
<tr>
<td>HoQ</td>
<td>House of Quality (zentrale Matrix der QFD-Methode)</td>
</tr>
<tr>
<td>HTML</td>
<td>Hypertext Markup Language (Formatierungssprache für Dokumente im World Wide Web)</td>
</tr>
<tr>
<td>JOE</td>
<td>Java Ontology Editor</td>
</tr>
<tr>
<td>KIF</td>
<td>Knowledge Interchange Format</td>
</tr>
<tr>
<td>NIAM</td>
<td>Nijssens Information Analysis Method</td>
</tr>
<tr>
<td>IDEF0</td>
<td>ICAM Definition Methodology 0</td>
</tr>
<tr>
<td>IICAD</td>
<td>Intelligent Integrated Interactive CAD</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standardization Organization</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>OMG</td>
<td>Object Management Group</td>
</tr>
<tr>
<td>OMT</td>
<td>Object Modeling Technique</td>
</tr>
<tr>
<td>OOSE</td>
<td>Object-Oriented Software Engineering</td>
</tr>
<tr>
<td>PIF</td>
<td>Process Interchange Formats</td>
</tr>
<tr>
<td>PDM</td>
<td>Produktdatenmanagement</td>
</tr>
<tr>
<td>QFD</td>
<td>Quality Function Deployment</td>
</tr>
<tr>
<td>RA-IQSE</td>
<td>System mit dem Namen: Revision Advisor-An Integrated Quality Support Environment</td>
</tr>
<tr>
<td>SADT</td>
<td>Structured Analysis and Design Technique (Modellbildungsmethode)</td>
</tr>
<tr>
<td>SFB</td>
<td>Sonderforschungsbereich</td>
</tr>
<tr>
<td>STEP</td>
<td>Standard for the Exchange of Product Model Data (Standard für den Austausch von Produktdaten)</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>TQC</td>
<td>Total Quality Control</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modeling Language (Notation für objektorientierte Modellierung)</td>
</tr>
<tr>
<td>WWW</td>
<td>World Wide Web</td>
</tr>
</tbody>
</table>
Einleitung und Zielsetzung

Produktionsunternehmen verzeichnen in Zeiten der Globalisierung von Märkten und der zunehmenden informationstechnischen Durchdringung aller industriellen und vermehrt auch privaten Bereiche eine immer größer werdende Marktttransparenz, unabhängig von regionalen Grenzen. Dies führt einerseits zu einem wachsenden Kosten- und Zeitdruck auf die Hersteller, andererseits zu einem verstärkten Qualitätsbewusstsein der Kunden [1, 2]. Unter dem zunehmenden Wettbewerbsdruck sind Unternehmen nur dann auf Dauer in der Lage erfolgreich zu agieren, wenn sie Waren oder Dienstleistungen anbieten können, die bei den potentiellen Konsumenten durch Beschaffenheit, Entwicklungs- und Lieferzeit sowie Preisgestaltung genügend Kaufanreiz auslösen [3].

Das Erreichen der ökonomischen Ziele stellt hohe Anforderungen an die Produktentwicklung eines Unternehmens und die zu generierenden innovativen Prozesse [4, 5]. Um den Anforderungen der Kaufanreizschaffung durch Differenzierung von Produkten zu entsprechen, muss die Produktentwicklung eine Fokussierung auf den Innovationsgrad des Produktes vornehmen. Ökonomisch sinnvoll ist insbesondere ein hoher Innovationsgrad bei geringen Kosten und ausgezeichneter Qualität. In diesem Kontext sind die frühen Konstruktionsphasen von entscheidender Bedeutung:

Insbesondere in der frühen Phase der Entwicklung, in der die Festlegung des Produktes und der produktionsrelevanten Größen und somit die größte Kostenverantwortung zur Schaffung des neuen Produktes liegt, ist die Bereitstellung der relevanten Informationen unzureichend, Abbildung 1-1.

Im Kontext der Realisierung von innovativen Produkten, kommt jedoch gerade der Bereitstellung und Auswertung von Wissen eine entscheidende Stellung zu. Der effiziente Umgang mit der Ressource Wissen ist eine zentrale wettbewerbsentscheidende Einflussgröße. In der Produktentwicklung gilt es insbesondere, mit interdisziplinärem
Einleitung und Zielsetzung

Wissen effizient umzugehen und durch fachbereichsübergreifenden Wissensmanagement Innovationsschübe zu erzielen.

In der aktuellen Praxis der mechanischen Konstruktion jedoch wird eine funktionsorientierte Entwicklung nicht durch Entwicklungsumgebungen unterstützt; zudem wird die Produktfunktion nicht in der Produktdokumentation festgehalten. Dies ist bemer-

Abbildung 1-1 Kostenverantwortung und Produktwissen in der Produktentwicklung [7].
Einleitung und Zielsetzung

kreiswert, da sowohl in der Konstruktionstheorie als auch in der Praxis die Konstruktion die Erfüllung einer Gesamtfunktion zum Ziel hat und die Zerlegung der Gesamtfunktion in Teilfunktionen sowie das Zuordnen der Produktanforderungen die Ausgangspunkte für die weitere Bearbeitung der Konstruktionsaufgabe darstellen.

Neben dem zu erzielenden Innovationssprung durch die interdisziplinäre Lösungsbereitstellung kommen weitere Vorteile der Wiederverwendung von konstruktiven Teillösungen zum Tragen, wie die geringeren Entwicklungs- und Produktionskosten und die gesicherte Qualität durch den Einsatz bereits getester Technologien. Die komplexen Teilaufgaben, die vom Auftragseingang bis zur Lieferung des Produktes erfolgen müssen, erfahren durch die Wiederverwendung erhebliches Kostensenkungspotential.

Einleitung und Zielsetzung

Das Ziel der vorliegenden Arbeit ist es, einen Beitrag zur Verbesserung der Produktentwicklung zu leisten, indem insbesondere in den frühen Phasen die Entwicklungsverfahren um die Handhabung der Produktfunktionen als zentrales Element erweitert sowie eine adäquate, für die Verarbeitung von Produktfunktionen dedizierte Entwicklungsumgebung zur Verfügung gestellt wird. Verbesserungen sollen insbesondere durch

Abbildung 1-2 Repräsentation der Produktfunktion entlang des gesamten Produktlebenszyklus

Abbildung 1-2 Repräsentation der Produktfunktion entlang des gesamten Produktlebenszyklus

Die Erfassung und Nutzung von Funktionsmodellen und die Repräsentation der Entwurfsschritte von der frühen Phase an ergeben für ein Unternehmen folgende Vorteile:

- eine durchgängig transparente Darstellung und Gestaltungsmöglichkeit des Entwicklungsprozesses,
- die Möglichkeit der Optimierung von Teil- und Gesamtfunktionen von Produkten durch Variation von Lösungsschritten,
- verbesserte Suchfunktionalitäten auf bestehende konstruktiven Lösungen anhand funktionaler Filter,
- eine schnellere Auffindbarkeit von bestehenden Teillösungen und die Adaption an neue Aufgabenstellungen,
- eine verbesserte Anpass- und Prüfbarkeit von Systemlösungen entsprechend der vorgegebenen Anforderungen durch Simulation der funktionalen Zusammenhänge zwischen Anforderung und Lösung,
• eine verbesserte Fehlermöglichkeiten- und -Einflussanalyse für die Rückkopplung aus allen Produktlebenszyklen durch die Repräsentation der Funktionsstruktur und der Funktionsflüsse.

Die Tragfähigkeit der entwickelten Konzepte funktionsgetriebener Konstruktion durch die Einführung der Produktfunktion als zentrale Komponente wird schließlich anhand umgesetzter Entwicklungsumgebungen nachgewiesen und mit beispielhaften Anwendungszenarien dargestellt. Hierbei wird zum einen ein Ansatz zur Validierung des Grundkonzeptes aufgezeigt, der sich zunächst auf die wesentlichen Aspekte der funktionsgetriebenen Konstruktionsumgebung beschränkt, zum anderen werden Systemlösungen vorgestellt, die basierend auf der semantischen Modellierung unter Nutzung einer wissensbasierten Systemumgebung Applikationen aufbauen.
2 Produktfunktion als elementare Komponente rechnerunterstützter Konstruktion

2.1 Begriffsbestimmungen

Zur einheitlichen Sprachregelung im weiteren Verlauf der Arbeit werden im Folgenden Begriffsbestimmungen diskutiert und präzisiert, die im Zusammenhang mit der Erfassung von Produktdaten und deren späterer Nutzung im Hinblick auf eine methodische und systemtechnische Unterstützung der Produktentwicklung relevant sind.

Produkt

Der Begriff Produkt, abgeleitet aus dem Lateinischen *produere* – hervorbringen, erzeugen, herstellen – wird inhaltlich sehr unterschiedlich verwendet. Im Rahmen der vorliegenden Arbeit wird der Begriff Produkt in Anlehnung an die von SPUR [8] erarbeitete Definition genutzt:

„Das Produkt ist das Ergebnis eines technologisch orientierten Systems bestehend aus einer Komposition von Materie, Energie und Information."

Produktentwicklung

Abbildung 2-1 Einordnung der Produktentwicklung in den Produktlebenszyklus, nach SPUR/KRAUSE [1]

Die Produktentwicklung ist beendet, wenn das neue Produkt nach Prototyp- und gegebenenfalls Vorserienerstellung und Tests produktionsreif ist.

Konstruktion

Produktanforderung

Eine Anforderung ist eine Aussage über eine zu erfüllende Eigenschaft oder eine zu erbringende Leistung eines Produktes, eines Prozesses oder der am Prozess beteiligten Personen (RUPP) [12]. Unter Produktanforderungen im Produktentwicklungsprozess werden in dieser Arbeit alle Bedingungen verstanden, die von dem zu entwickelnden Produkt erfüllt werden müssen. Diese Produktanforderungen werden beispielsweise in Rahmenheften, Lastenheften oder Pflichtenheften beschrieben und bilden somit die Spezifikation des Produktes.

Produktfunktion und Funktionsmodell

Als Funktionsmodellierung wird die Spezifikation von Modellen, welche die Funktion und die funktionalen Zusammenhänge als Objekte und Relationen des Entwicklungsprozesses beschreiben, verstanden. Darüber hinaus kann die Funktionsmodellierung genutzt werden, um die Vorgehensweise im Konstruktionsprozess zur Auslegung der Teilfunktionen zu beschreiben.

Produktmodell

Ein Produktmodell ist die Abbildung eines realen Produktes auf ein rechnerinternes Modell. Das Produktmodell wird unter der Zielsetzung der durchgängigen Informationsverarbeitung über alle Produktlebensphasen gesehen. Vor diesem Hintergrund deckt sich die im Rahmen dieser Arbeit gebrauchte Definition mit der Begriffsdefinition nach SUHM [14] und POLLY [15]:

\[\text{Produktmodell} = \]
Ein Produktmodell ist ein Informationsmodellschema, das alle relevanten Informationen über ein Produkt abbilden kann. Der abbildbare Informationsgehalt soll dabei das reale Produkt hinreichend genau repräsentieren, um Rückschlüsse auf die realen Produkt Eigenschaften ziehen zu können.

Wissen

Dieser Ansatz ist in die vorliegende Arbeit eingegangen und wurde auf den Konstruktionsprozess übertragen. Somit wird der Begriff Konstruktionswissen wie nachfolgend definiert:

Konstruktionswissen

Durch die Verknüpfung von Informationen im Konstruktionsprozess untereinander sowie im Problemlösungskontext wird Konstruktionswissen beschrieben, durch das eine Handlungsorientierung ermöglicht wird. In diesem Sinne ist der Begriff Wissen in dieser Arbeit synonym verwendet für die sinnvolle Bereitstellung von Konstruktionswissen. Konstruktionswissen repräsentiert insbesondere die Zusammenhänge zwischen den zu entwickelnden Produktfunktionen, einschränkenden und beschreibenden Anforderungen und auszuarbeitender Lösung.

Gepaart mit einem Zugriff auf das Konstruktionswissen durch geeignete Suchmecha-
2.2 Die Bedeutung der Produktfunktion in der rechnerunterstützten Konstruktion mechanischer Bauteile

2.2.1 Konstruktion mechanischer Bauteile

Zur Lösung der (Teil-)aufgaben lassen sich beim Konstruieren laut KOLLER [21] im Wesentlichen folgende Vorgänge unterscheiden:

- Synthesevorgänge, deren Ergebnisse alternative Lösungen sind,
- Analysevorgänge, welche die gefundenen Lösungsalternativen bezüglich gestellter Forderungen auf Brauchbarkeit prüfen,
- Bewerten und Selektieren von weniger geeigneten Lösungen oder Details und
- Verbessern nicht genügend tauglicher Lösungen oder Details durch erneute, rekursive Analyse- und Syntheseprozesse.

Somit ist nach KOLLER [21] eine technische Lösung L eine Funktion und Folge des
Zweckes Z, den es erfüllen soll sowie eine Funktion beziehungsweise Folge der Bedingungen $B_1, B_2, \ldots B_n$ und der Wichtigkeit (Gewicht oder Bedeutung) $g_1, g_2, \ldots g_n$ der jeweiligen Bedingung $B_1, B_2, \ldots B_n$. In Kurzform:

$$L = f (Z, g_1, B_1, g_2, B_2, \ldots g_n, B_n).$$

Koller hat somit Tätigkeiten der Konstruktion folgendermaßen definiert:

„Mit Konstruieren oder Entwickeln bezeichnet man alle Tätigkeiten, welche erforderlich sind, um für eine Aufgabe eine optimale technische Lösung angeben zu können. Als optimale oder günstigste Lösung ist in diesem Zusammenhang eine Lösung zu verstehen, welche den ihr zugedachten Zweck während einer bestimmten Zeitspanne (Lebensdauer) genügend zuverlässig zu erfüllen vermag sowie mit wirtschaftlich vertretbarem Aufwand hergestellt und betrieben werden kann.“

Koller hat hierbei den Begriff Zweck eines Produktes synonym mit dem Begriff Funktion eines Produktes gebraucht.

2.2.2 Konstruktionstheorie und -methodik

Eine allgemein anwendbare Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte ist Schwerpunkt zahlreicher Forschungsarbeiten und wurde

Es ist zweckmäßig im Planungs- und Konstruktionsprozess verschiedene Hauptphasen mit den zugehörigen Arbeitsergebnissen zu unterscheiden:

- **Planen und Klären der Aufgabe:** informative Festlegung
- **Konzipieren:** prinzipielle Festlegung
- **Entwerfen:** gestalterische Festlegung und
- **Ausarbeiten:** herstellungstechnische Festlegung.

Im rechten Teil der Abbildung 2-3 sind die Phasen des Konstruktionsprozesses nach VDI 2222 entsprechend den Arbeiten von PAHL/BEITZ angegeben [46, 10].

Die Ansätze der Arbeiten folgen unterschiedlichen Schwerpunkten und haben differierende Zugänge zur Konstruktionstätigkeit, so dass daraus keine einheitliche, allgemeingültige Konstruktionstheorie abgeleitet werden kann. Deutlich wird jedoch in allen Untersuchungen, dass ein konstruktionsmethodisches Vorgehen erhebliche synergetische und ökonomische Potentiale birgt.

Trotz verschiedener Nomenklatur hinsichtlich der Benennung der Konstruktionsschritte, -etappen und -tätigkeiten sind in allen Ansätzen vergleichbare Vorgehensweisen zu identifizieren, insbesondere bei einzelnen Schritten selbst, aber auch bei den Übergängen zu den nächsten Phasen. Dies gilt auch für die Arbeiten von SUH und YOSHIKAWA, die ausgehend von der mathematischen Theorie der Mengenlehre versuchen eine topologische Erfassung des konstruktiven Wissens mittels eines formalen Rahmens zu erreichen. SUH beschreibt als elementare Axiome:

- Axiom 2: Das „Information Axiom“ sagt aus, dass von mehreren Lösungsalternati-
ven diejenige die beste ist, die sich mit der geringsten Anzahl an Konstruktionsparametern beschreiben lässt.

<table>
<thead>
<tr>
<th>Phasen</th>
<th>Methode</th>
<th>Anforderungsanalyse</th>
<th>Funktionsstrukturen</th>
<th>Prinzipielle Lösung</th>
<th>Wirkgeometrien</th>
<th>Gestaltausarbeitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDI 2221 [46]</td>
<td>Anforderungsliste</td>
<td>Funktionsstrukturen</td>
<td>Physikalische Effekte</td>
<td>Wirkgeometrien</td>
<td>Gestaltausarbeitung</td>
<td></td>
</tr>
<tr>
<td>VDI 2222 [46]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pahl/Beitz [10]</td>
<td>Anforderungsliste</td>
<td>Funktionsstrukturen</td>
<td>Physikalische Effekte</td>
<td>Wirkgeometrien</td>
<td>Gestaltausarbeitung</td>
<td></td>
</tr>
<tr>
<td>Roth [23]</td>
<td>Aufgabenformulierungsphase</td>
<td>Funktionsstrukturen</td>
<td>Funktionelle Phase: logische, kybernetische, physikalische Funktionsstrukturen</td>
<td>Gestaltende Phase: Geometrische Wirkstruktur, prinzipielle Lösung, Detailierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rodenacker [45]</td>
<td>Festlegung logischer Zusammenhänge</td>
<td>Festlegung physikalischer Zusammenhänge</td>
<td>Festlegung konstruktiver Zusammenhänge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hubka [41]</td>
<td>Anforderungsanalyse</td>
<td>Funktion im Zentrum</td>
<td>Physikalische Effekte</td>
<td>Wirkgeometrie</td>
<td>Detaillierung</td>
<td></td>
</tr>
<tr>
<td>Suh [58]</td>
<td>Funktionale Domäne</td>
<td>Physikalische Domäne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoshikawa [60]</td>
<td>Funkt. Anforderungsliste</td>
<td>Funktionsstrukturen</td>
<td>Prinzipielle Lösung</td>
<td>Wirkgeometrie</td>
<td>Gestaltausarbeitung</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 2-4 Gegenüberstellung von Konstruktionsmethoden
Suh bezeichnet den Konstruktionsprozess als eine Überführung von funktionalen Anforderungen in ein physikalisches Bauteil. Die Menge der funktionalen Anforderungen (FRs) wird hierbei zum Anforderungsvektor FR zusammengefasst, die Menge der Design Parameter (DPs) zum Konstruktionsparametervektor (DP), Abbildung 2-5.

Unter Berücksichtigung der oben genannten Konzepte und Vorarbeiten, insbesondere
vom PAHL/BEITZ [10] und KOLLER [21], wird in der vorliegenden Arbeit von einem kombinierten methodischen Ansatz ausgegangen. Im weiteren Verlauf werden die methodischen Ablaufschritte in geeigneter Weise mit formalen Ansätzen untersetzt, um einerseits ein geschlossenes funktionsorientiertes Vorgehen, andererseits eine Umsetzbarkeit für die Rechnerunterstützung funktionsgetriebener Konstruktion zu erreichen, die in die bestehende Entwicklungsumgebung und Arbeitsweise integrierbar ist.

2.2.3 Grundlagen der Funktionsmodellierung

Analysiert man die technischen Systeme, so ist evident, dass sie einem technischen
Produktfunktion als elementare Komponente rechnerunterstützter Konstruktion

Prozess dienen, in dem Energien, Stoffe und Signale geleitet und/oder verändert werden:

- Der *Energieumsatz* betrifft zum Beispiel die Wandlung elektrischer in mechanische oder thermische Energie, oder die Wandlung chemischer Energie oder optischer oder Kernenergie, sowie die Wandlung von Kraft, Strom und Wärme.

- Der *Signalumsatz* betrifft die Informationen, die in jeder Anlage zu verarbeiten sind. Dies geschieht mittels Signalen. Sie werden eingegeben, gesammelt, aufbereitet, weitergeleitet, mit anderen verglichen oder verknüpft.

Abbildung 2-6 Funktionsstruktur nach PAHL/BEITZ [10]

Um für eine technische Aufgabe mit Energie-, Stoff- und Signalumsatz eine Lösung zu finden, muss die Gesamtaufgabe zunächst in Teilaufgaben untergliedert werden. Diesen Teilaufgaben sind Teilfunktionen zuzuordnen, die in einem System einen eindeutigen, reproduzierbaren Zusammenhang zwischen Eingang und Ausgang herstellen. Durch die
Aufspaltung der Gesamtfunction in Teilfunktionen und die Zuordnung der Eingangs- und Ausgangsgrößen auf die Teilfunktionen wird eine Funktionsstruktur gebildet, durch die unterschiedliche Abstraktionsstufen dargestellt werden können (Abbildung 2-6).

Die Funktionen eines Produktes müssen sich im Sinne eines Konkretisierungsschrittes aus den Anforderungen an ein Produkt ableiten lassen. Umgekehrt lassen sich Funktionen auch aus einem definierten oder sogar schon realisierten Produkt durch einen Abstraktionsschritt erkennen. Über das Abstrahieren sichtbar gemacht erfüllt ein Produkt oftmals eine Vielzahl von Funktionen, die von der ursprünglichen Aufgabenstellung her
gar nicht gefordert sind, die aber durch die Realisierung der gewünschten Funktionen in einem System unvermeidlich hinzukommen.

2.2.4 Detaillierung des Funktionsbegriffs

<table>
<thead>
<tr>
<th>Pahl/Beitz</th>
<th>Roth</th>
<th>Koller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speichern</td>
<td>Speichern</td>
<td>Speichern / Entspeichern</td>
</tr>
<tr>
<td>Leiten</td>
<td>Übertragen</td>
<td>Leiten / Isolieren</td>
</tr>
<tr>
<td>Ändern</td>
<td>Umformen</td>
<td>Vergrößern / Verkleinern</td>
</tr>
<tr>
<td>Wandeln</td>
<td>Wandeln</td>
<td>Wandeln/Rückwandeln</td>
</tr>
<tr>
<td>Verknüpfen</td>
<td>Verknüpfen</td>
<td>Fügen</td>
</tr>
<tr>
<td></td>
<td>summ-ativ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gleiche</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ungleiche</td>
<td>Verbinden</td>
</tr>
<tr>
<td></td>
<td>distributiv</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gleiche</td>
<td>Teilen</td>
</tr>
<tr>
<td></td>
<td>ungleiche</td>
<td>Trennen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Richtung ändern</td>
</tr>
</tbody>
</table>

Abbildung 2-7 **Vergleich unterschiedlicher Funktionsverben**

Zur visuellen Erkennung der Funktionen innerhalb graphischer Funktionsstrukturen

Die Ansätze zur Funktionsmodellierung der Universität Karlsruhe (RPK) basieren weitgehend auf den Modellen von ROTH und wurden in Dissertationen erweitert [81, 82]. So formuliert LANGLOTZ [83] eine Klassifikation von Funktionen als Nutzfunktionen, Störfunktionen, Folgefunktionen sowie Kompensationsfunktionen und nutzt diese Charakterisierung der Rolle einer Funktion und die semantische Festlegung der Bedeutung zur verbesserten Lösungsfindung. LANGLOTZ weicht das Funktionsmodell dahingehend auf, dass ein Funktionsobjekt gleichzeitig Materie-, Energie-, und Informationseigenschaften besitzen kann, wodurch eine realitätsnahe Modellierung begünstigt wird. Des Weiteren erweitert er die Funktionsstruktur um zeitliche Attribute, durch die zeitlichen Relationen zwischen Funktionen spezifiziert sowie Angaben über die Funktionsdauer und Übertragungscharakteristik gemacht werden können.

Weitere Arbeiten zur Funktionsmodellierung wurden von GIERSE [84] vorgenommen.
GIERSE nutzt Funktionen und Funktionsstrukturen, um hinsichtlich Kostenbewertungen unter Nutzung der Wertanalyse Aussagen treffen zu können.

Zur Modellierung von Produktfunktionen nach TOMOYAMA und YOSHIKAWA [86, 87] wurde ein sogenanntes Function/Behavior/State-Model (FBS-model) konzipiert. Kern dieses Modells ist die integrale Spezifikation von Funktion, Verhalten und Zustand eines Objektes. Die Unterscheidung von Funktion und Verhalten wird derart beschrieben, dass die Funktion angibt, wofür das Produkt genutzt wird; das Produktverhalten beschreibt, was das Produkt macht. Am Beispiel der Uhr: die Anzeige der Zeit ist somit die Funktion, die Rotation der Zeiger das Verhalten.

Am Georgia Institute of Technology wurde ebenfalls ein Funktionsmodell entwickelt, indem eine Unterscheidung zwischen Behavior/Functionmodell vorgenommen wird. Hier wurde ein so genanntes Structure/Behavior/Function-model (SBF-model) zur Funktionsmodellierung entwickelt, in dem abstrakte und realisierungsunabhängige Beschreibungen physikalischer Prinziplösungen spezifiziert werden können [88].

hängen erlauben. In dieser Modellierung sollten die Funktionsbenennung und die Verfeinerung vom Anwender frei zu wählen sein. Der Anwender sollte nicht gezwungen werden, nur vordefinierte bekannte Funktionen zu nutzen.

2.2.5 Nutzung der Produktfunktion im Qualitätsmanagement

Ausgangspunkt zum Ansetzen von Qualitätssicherungsmaßnahmen sind zum einen die

Die *Ereignisablaufanalyse* (EAA) ist eine Methode zur Untersuchung von Ereignissen, insbesondere von Störungen, die sich aus einem Anfangsereignis entwickeln können. Während bei der Fehlerbaumanalyse das unerwünschte Ergebnis vorgegeben wird und mögliche Ursachen und fehlervermeidende Anforderungen abgeleitet werden, wird in der Ereignisablaufanalyse (EAA) von der Fehlerursache ausgegangen und nach den unerwünschten Ereignissen gesucht, die aus dieser Ursache resultieren.

Die *Fehlermöglichkeits- und -Einflussanalyse* (FMEA) ist ebenfalls eine Methode, um in den frühen Phasen der Produktentwicklung mögliche Fehler aufzudecken und deren Anzahl und Schwere zu minimieren. Ihre Anwendung ist z. B. in der Automobilzuliefer-
Produktfunktion als elementare Komponente rechnerunterstützter Konstruktion

Abbildung 2-8: Nutzen der Repräsentation der Produktfunktion für Qualitätsmanagementmethoden

In allen aufgezeigten Methoden wird die Produktfunktion genutzt, um das gewünschte Produktverhalten, ein mögliches Fehlverhalten oder zusätzliche Anforderungen und Prüfkriterien zur Sicherung der gewünschten Produktqualität zu definieren. Durch die Repräsentation der Produktfunktion und der für die Auslegung relevanten Zusammenhänge können diese Informationen direkt zum Ansetzen der Qualitätsmanagementmethoden genutzt werden.
2.3 Repräsentation und Verarbeitung von funktionalen Produktbeschreibungen

2.3.1 Semantische Datenmodelle für die Produktmodellierung

In der rechnerunterstützten Produktentwicklung stehen zunehmend Modellkonzepte im Vordergrund, durch die Zusammenhänge im Entwurfsprozess repräsentiert werden. Produkt- und Prozessmodellierung, gemeint ist die Abbildung der Entwicklungsprozesse, dienten im Kern zunächst der Wiederverwendung von Lösungen und zur Entwicklung von Lösungsbibliotheken. Seit den 80er Jahren sind zahlreiche umfassende Forschungsaktivitäten im Gange, die eine Abbildung und die weitergehende anwendungsorientierte nutzbringende Verwendung von Produkt- und Prozessmodellen zum Gegenstand haben.

Neben den nationalen Aktivitäten zur Beschreibung von Produktmodellen ist das Thema in europäischen und internationalen Forschungsarbeiten gleichermaßen zentral und mündet in Ansätzen in Normungsaktivitäten. Speziell unter dem Anwendungsprotokoll 214 der STEP-Norm wird hier speziell ein Produktmodell genormt, welches Anforderungen von Automobilentwicklern und deren Zulieferern berücksichtigt [95]. Bei der Entwicklung von Produkt- und Prozessmodellen ist die Definition und Spezifikation der Modellschemata das Ziel. Die Modellierung basiert auf objektorientierten Beschreibun-
gen, wobei zwischen Schemavereinbarung und Schemausprägung unterschieden wird. Die Schemavereinbarung entspricht hier der Definition von Objekttypen. Die Schemausprägung wird mit Instanzen bezeichnet.

Parallel zur objektorientierten Beschreibung von Produkt- und Prozessmodellen werden insbesondere getrieben durch die KI-Fachbereiche Ontologien zur fachbereichsübergreifenden Nutzung von Wissensressourcen aufgebaut [96]. Dem Ontologieansatz liegt zu Grunde, dass durch die Erfassung und semantische Kopplung von kontextspezifischen Begriffswelten, in Form von formalen Ontologien, sämtliche Wissensressourcen aus einer Vielzahl an Disziplinen fachübergreifend durch die kontextabhängige Beschreibung verstanden und zugreifbar werden. Im Kapitel 2.3.3 werden die Intention von Ontologien und ihre Anwendung vertieft.

2.3.2 Ansätze zur Wissensrepräsentation und –verarbeitung im Engineering

Wissensbasierte Techniken entstammen der Forschung zur künstlichen Intelligenz, im englischen mit Artificial Intelligence (AI) bezeichnet. Die wesentlichen Definitionen von künstlicher Intelligenz werden in Abbildung 2-9 dargestellt [101].

<table>
<thead>
<tr>
<th>Systeme, die wie Menschen denken</th>
<th>Systeme, die rational denken</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Die erstaunlichen neuen Bemühungen, um Computer zum Denken zu bringen... Maschine mit einer Meinung, in der vollen und wörtlichen Bedeutung“(Haugeland,1985 [102])</td>
<td>„Die Studie von mentalen Fähigkeiten, durch die Nutzung von rechenbetonten Modellen“ (Charniak und McDermott, 1985 [106])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systeme, die wie Menschen handeln</th>
<th>Systeme, die rational handeln</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Die Kunst, Maschinen zu schaffen, die Funktionen ausführen, die Intelligenz erfordern, wenn sie von Menschen ausgeführt werden“ (Kurzweil, 1990 [104])</td>
<td>„Eine Forschungsrichtung, die versucht intelligentes Verhalten zu erklären und nachzubilden in Bezug auf berechenbare Prozesse“ (Schalkoff, 1990 [108])</td>
</tr>
</tbody>
</table>

Abbildung 2-9: Definitionen von „Künstlicher Intelligenz“

Für die Entwicklung von wissensbasierten Systemen sind die Arbeiten der KI im Sinne von rationalem Schlussfolgern und Handeln eine Grundlage und sollen deshalb kurz skizziert werden.

Hier sind zunächst die Arbeiten zum „Rationalen Denken“ zu nennen. Wesentlich ist die formale Logik, die bereits in der griechischen Philosophie von Aristoteles formuliert wurde. Die formale Logik basiert auf Aussagen, die Objekte oder Zustände der realen Welt beschreiben und auf der Rückführung auf allgemeine Prinzipien (Axiome), aus denen dann umgekehrt wieder Einzelerkenntnisse hergeleitet werden können (wie beispielsweise: Socrates ist ein Mann; alle Männer sind sterblich; also ist Socrates sterb-

Durch die first-order Logic können die zwei Quadranten, die mit rationalem Denken und rationalem Handeln überschrieben sind, zusammengeführt werden. Ihr Sprachumfang kann hierbei zur Repräsentation von wissensbasierten Agenten ausgenutzt werden. Wesentliche Sprachelemente der first-order Logic als Beispiel:

Die Welt besteht aus Objekten, mit individuellen Identitäten und Eigenschaften, die sie voneinander unterscheiden lassen. Zwischen diesen Objekten bestehen Relationen. Einige dieser Relationen sind funktionale Relationen, für die nur ein Wert als Eingabewert besteht. Beispiele für Objekte, Relationen, Eigenschaften und Funktionen sind:

- **Objekte:** Menschen, Häuser, Theorien, Farben, Städte usw.
- **Relationen:** Bruder von, größer als, Teil von, hat Farbe, besitzt
- **Eigenschaften:** rot, rund, flach,
- **Funktionen:** Beste Freund von, Rechtes Bein von

Unter Nutzung der first-Order Logic lassen sich Beziehungsnetze aufbauen und für Applikationen nutzen. Die nächste Stufe zur Wissensrepräsentation stellt die Description

\(^1\) Auch first-order predicate calculus mit der Abkürzung FOL oder FOPC genutzt
Produktfunktion als elementare Komponente rechnerunterstützter Konstruktion

Logic dar. Basierend auf der first-order Logic wird das Konzept um das Klassen-Instanzen und Klassen-Subklassenkonzept erweitert. Somit erfolgt eine Erweiterung um Inferenzmechanismen zur Klassifizierung. Die Description Logic bildet die Grundlage zur Repräsentation der Ontologiekonzepte.

Wissensbasierte Systeme basieren zum Teil auf den beschriebenen Formalisierungen und auf weiteren wissensbasierten Techniken. Einige Ansätze zur Erstellung wissensbasierter Systeme sind im Folgenden aufgeführt:

• Regelbasierter Ansatz: In dem regelbasierten Ansatz werden Wenn-dann-Regeln als universelles Mittel verwendet, Wissen jeder Art auszudrücken. Dies hatte zur Folge, dass verschiedene Wissenselemente in einer Regel zusammen gefasst und andere Wissenselemente auf mehrere Regeln verteilt wurden, was dazu führte, dass jede Änderung einer Regel eine Vielzahl von Änderungen an anderen Regeln notwendig machte. Infolgedessen stieg der Wartungsaufwand regelbasierter Systeme oft ins nicht mehr tragbare.

• Framebasierter Ansatz: Der framebasierter Ansatz basiert auf der Grundidee der semantischen Netze und erweitert diese um die Möglichkeit, in die Objektstrukturen prozedurale Elemente einzubringen. Frames repräsentieren gleichermaßen deklarativeres Objektwissen und prozedurales Objektverwendungswissen. Ein Frame besteht aus einer formularähnlichen Beschreibungsstruktur, die in Form so genannter Slots
die Attribute eines Objektes und die Werte enthält. Frames sind in Objektklassen organisiert und können durch Beziehungen miteinander verknüpft werden („gerichtete semantische Netze“). Sind diese Beziehungen hierarchisch strukturiert, so spricht man auch von „Hierarchischen Taxonomien“.

Einfluss der Entwicklungen in der KI auf die Gestaltung wissensbasierter Konstruktionssysteme

Als Kombination einerseits des ontologiebasierten Ansatzes zur Beschreibung von domänenspezifischen Konzepten und deren Verknüpfungen und andererseits der Constraint-Repräsentation zur Beschreibung und Auswertung quantitativer Zusammenhänge, stehen Werkzeuge zur Verfügung, die als Basis einer leistungsfähigen Sys-

2.3.3 Ontologiebasiertes Wissensmanagement in der Produktentwicklung

Wissensmanagement, der Umgang mit dem Produktionsfaktor Wissen, rückt zunehmend in den Mittelpunkt wissenschaftlichen und praktischen Interesses. Die wesentliche Zielsetzung im Wissensmanagement besteht darin, richtiges Wissen zur richtigen Zeit in praktikabler Form in bestehenden Prozessen zur Verfügung zu stellen. Um dieses Ziel erreichen zu können, sind Arbeiten zu den folgenden Fragen durchzuführen:

- Wie wird das Wissen aufgenommen, wie erfolgt der Wissenserwerb?
- Wie wird das Wissen strukturiert, verfeinert und systematisiert?
- Wie wird das Wissen wieder bereitgestellt und verteilt?

Es sind somit im Rahmen einer unternehmensweiten Wissensstrategie die Prozessgestaltung der Wissensbeschaffung, Speicherung und Verwertung vorzugeben und entspre-

“An Ontology is an explicit specification of a shared conceptualisation“.

Eine Ontologie ist eine explizite Spezifikation einer gemeinsam genutzten Begriffsbildung und zwar sowohl inhaltlich, den Konsens zwischen Menschen widerspiegelnde, als auch formale. Ontologische Konzepte beziehen sich auf einen abgegrenzten Kontext, beschreiben Begriffe und die Begriffsbeziehungen, sowie Merkmale, die der Begriffsbildung zugrunde liegen. Bei der Abbildung von ontologischen Konzepten ist zu berücksichtigen, dass aus der Sicht der Begriffsbildung sowohl die Identifizierung der zur Begriffsbildung relevanten Merkmale, als auch die Festlegung von relevanten Begriffsbeziehungen und die Methoden der Begriffsstrukturierung, als auch die sprachliche Benennung der Konzepte, der Subjektivität unterliegen [116].

Bestehende Ontologien und Ontologie-Editoren

Die bekannteste und umfangreichste Ontologie ist CYC. CYC wurde als ein For-
Produktfunktion als elementare Komponente rechnerunterstützter Konstruktion

schungsprojekt der Microelectronics and Computer Technology Corporation (MCC) in Austin, Texas 1994 gestartet und später kommerziell weitergeführt. Wissen wird in CYC deklarativ als Aussagen in einer Variante der Prädikatenlogik in der eigens entwickelten Syntax CYCL dargestellt. CYC hat das Ziel, Allgemeinwissen formal abzubilden, um eine Wissensbasis für automatisierte Textübersetzung, Spracherkennung und semantisches Data Mining bereitzustellen [117].

Weitere Sprachen zur Repräsentation neutraler Wissensaustauschformate zur Darstellung von Ontologien basieren auf der Prädikatenlogik, beispielsweise das Knowledge Interchange Format (KIF) und Conceptual Graph [118]. KIF ist als Interlingua konzipiert und kann somit idealerweise in jede beziehungsweise aus jeder Wissensbasis übersetzt werden. Es werden Anstrengungen zur Standardisierung dieser beiden Sprachen unternommen, um die Übersetzbarkeit und Interoperabilität zu gewährleisten.

gua wendet KIF als Repräsentationsformalismus an.

- Als weitere Software-Werkzeuge zur Erstellung von Ontologien sind *Ontosaurus*, von der „Artificial Intelligence Research Group“ der University of Southern California, der *GENIAL Ontology Editor (GOE)*, entstanden innerhalb der GENIAL Projekt, der *Java Ontology Editor (JOE)* des „Center of Information Technology“ der University of South Carolina sowie *Onto-edit und Ontopris* der Universität Karlsruhe zu nennen.

2.3.4 Constraints zur Repräsentation und Verarbeitung von Modellzusammenhängen

Constraint Programmierung [120-122] ist eine Software Technologie zur Beschreibung und effizienten Lösung von großen, bezüglich der Kombinatorik komplexen Aufgaben, insbesondere in den Bereichen Planung und Scheduling. Die Auflösung dieser komplexen Aufgaben erfolgt zunächst durch die Beschreibung der Zwangsbedingungen oder Forderungen mittels Constraints und dem Lösen dieser Zwangsbedingungen mit spezia-
lisierten Constraint Solvern. Constraint Programmierung wurde bereits in vielen Berei-
chen erfolgreich genutzt. In folgenden Anwendungen sind sie bereits oft anzutreffen: in
Bereichen der Künstlichen Intelligenz zur Lösung von kombinatorischen Problemla-
stungen, in der Elektrik/Elektronik zur Auslegung von Schaltplänen und zur Diagnose
und Fehlererkennung, in der Computergraphik zur Erkennung von geometrischen In-
konsistenzen sowie für unterschiedlichste Optimierungsaufgaben.

Constraints besitzen viele nützliche Eigenschaften, die ihre Nutzung im Engineering-
Kontext so interessant machen [123]:

• Constraints können partielle Informationen spezifizieren, einerseits Werte von
 Variablen als auch Beziehungen zwischen Variablen,

• Constraints können bidirektional genutzt werden. Ein Constraint zur Definition der
 Beziehung verschiedener Variablen kann durch Umstellung der Gleichung zur Be-
 rechnung der anderen Variablen genutzt werden. \(x=y+1, y=x-1 \)

• Constraints sind deklarativ, sie spezifizieren eine Beziehung, die aufrechterhalten
 werden muss, ohne dass die berechenbare Prozedur spezifiziert wird, um diese Be-
 ziehung aufzulösen.

• Constraints sind selten unabhängig, typischerweise benutzten Constraints im
 Constraint-Vorrat gleiche Variablen und bilden somit ein Constraintnetz.

In der Constraint-Programmierung werden die Bereiche Constraint Satisfaction und
Constraint Solving unterschieden.

Constraint Satisfaction Programming (CSP)

Constraint Satisfaction Programming (CSP) wird angewandt bei:

• einer begrenzten, endlichen Anzahl von Variablen, im englischen: finite domain z.B.
 Die Farbe kann die Werte: Blau, Rot oder Grün annehmen, oder Anzahl Verbindun-
 gen gleich: 1 oder 2,

• einer begrenzten, endlichen Anzahl von Constraints.

Jeder Constraint begrenzt die Kombinierbarkeit der Werte, die ein Set von Variablen
simultan annehmen können. Eine Lösung eines CSP-Problems wird verkörpert durch
die Zuweisung eines Wertes zu jeder Variablen, bei Erfüllung aller Zwangsbedingungen.
Je nach Aufgabenstellung sollen eine, mehrere oder alle Lösungen gefunden werden.

Im Entwurfskontext erfordert die Repräsentation der Wirkgrößen überwiegend reelle oder reellwertige Variablen. Zur Lösung von Constraints mit dem Ziel der Berechnung von Parametern in diesem Kontext ist somit die Constraint Satisfaction Methode nicht einsetzbar.

Constraint Solving

Im Constraint Solving wird das Lösen der Constraints und die Bestimmung der möglichen Werte der Variablen nicht wie im Constraint Satisfaction Verfahren durch kombinatorische Methoden, sondern durch Algorithmen der Mathematik durchgeführt. Es können neben den gestuften endlichen Variablen auch stufenlose Variablen im unendlichen Raum bestimmt werden:

- Nutzung von Variablen im unendlichen Raum, stufenlos (infinite domain)

In Abhängigkeit der zu verarbeitenden Größen und der Art der Constraints wurden unterschiedliche Constraint Solver entwickelt, die nur eine eingeschränkte Menge von Problemen lösen können, für diesen Bereich jedoch optimiert und somit leistungsstark hinsichtlich der Lösung, der Berechnungszeit oder der Anzahl der Lösungen sind. So unterscheidet man Constraint Solver beispielsweise:

- hinsichtlich der zu lösenden Constraints:
 - lineare Gleichungen und Ungleichungen,
 - nichtlineare Gleichungen und
 - geometrische Constraints,
- hinsichtlich der Beschreibbarkeit von
 - Operatoren und Funktionen wie `sum`, `mean`, `exp` oder
...Sets und Interval-Operatoren wie: \textit{in}, \textit{not in} z.B. (a \textit{not in} {„red“, „yellow“, „lila“}) oder

- Logische Operatoren wie: \textit{for all} oder Verknüpfungen \textit{(und, oder)},

oder hinsichtlich der zu verarbeitenden Parameterwerten wie beispielsweise

- finite domain insbesondere im Kontext Scheduling,
- Real, Integer und binäre Variablen,
- Intervalle, als zu verarbeitende Eingaben.

Weitere Unterscheidungen von Constraintsolvern können hinsichtlich der Lösungsgenerierung vorgenommen werden. So kann unterschieden werden zwischen

- „inkrementelle Gleichungslöser“: hier wird durch Ersetzen von Variablen ein richtungs-unabhängiges Lösen der Gleichung erreicht. Im oben angegebenen Fall, der Gleichungen mit jeweils mehreren unbekannten Größen, kann hier durch Eleminieren von Parametern eine Berechnung der Größen erreicht werden.

Eine weitere Unterscheidung wird hinsichtlich potenziellen Aufgaben eines Constraintlöasers vorgenommen. So wird die Ausgabe von:

- Konsistenz oder Nicht-Konsistenz des Constraintnetzes,
- Ausgabe eines minimalen Konflikts oder
- Ausgabe der berechneten Werte

unterschieden. Einige kommerziell verfügbare Constraint Solver Systeme sind im Folgenden aufgeführt:

- Optimisation Programming Language (OPL Studio): Dieses Modellierungswerkzeug der Fa. ILOG besteht aus einem Werkzeugkasten mit unterschiedlichen Visualisierungsflächen und verschiedenen applikationsabhängigen Constraint solvern wie...
der CPLEX Solver, der ILOG Solver und der ILOG Optimizer [124].

• A Modelling Language for Algebraic Programming (AMPL): Die benutzte Modellierungssprache ermöglicht die Interaktion verschiedener Solver. Der benutzte integrierte Solver ist MINOS [125].

• General Algebraic Modelling System (GAMS): Das GAMS-System wurde unter Nutzung unterschiedlicher Constraint Solver zur Lösung von algebraischen Problemstellungen entwickelt. Durch die Ankopplung der verschiedenen Solver kann in Abhängigkeit der Aufgabenstellung der geeignete Solver ausgewählt werden [126].

• UniCalc: Der UniCalc Solver ist ein leistungsfähiger Solver mit umfangreichen Eigenschaften, wie:
 • Gleichungen, Ungleichungen, logische Ausdrücke;
 • Überbestimmte und Unterbestimmte Constraints;
 • Interval-Algorithmik für nur Integer- oder nur Reel-wertige Variablen oder gemischte Variablen in einem Constraint-Netz;
 • direkte oder inverse Gleichungslösung.

Es ist ein System zur mathematischen Programmierung, das von dem Russischen Institut für künstliche Intelligenz in Novosibirsk entwickelt wurde [128].

Im Folgenden wird ein Constraint Solver vorgestellt, der grundlegende Anforderungen an das Lösen von Constraints im Engineering-Kontext erfüllt. Der Constraint-Solver RCS (Relational Constraint-Solver) basiert auf der Idee, dass jede Variable nur in einigen Constraints erscheint und durch eine Eliminierung von Variablen das Constraint-System schrittweise vereinfacht werden kann [129]. Der RCS wurde entwickelt, um eine große Bandbreite von Constraint-Problemen abzudecken. So wird ermöglicht

• sowohl Real-Variablen, als auch finite-domain-Variablen wie Number oder Symbol sowie String-Variablen zu berechnen.
• es sind Gleichungen und Ungleichungen lösbar sowie
• lineare und nicht lineare Constraints berechenbar.
• Eine weitere Stärke des RCS Solver ist die Fähigkeit der Verarbeitung von Unschärfe. Es wird ermöglicht, ein Set von Variablen einzugeben, die in einem Gültigkeitsbereich liegen, anstatt einen festen Wert anzunehmen, und mit Hilfe von Intervalarithmetik zu lösen.

Trotz der Heterogenität und der Unschärfe in der Constraintformulierung ermöglicht das System
• die Ausgabe einer Entscheidung über Konsistenz des Constraintnetzes,
• im Fall der Konsistenz die Ausgabe der Lösungen sowie
• im Fall der Inkonsistenz die Ausgabe der minimalen Konflikte.

2.4 Stand der Technik des funktionsorientierten Entwurfs

2.4.1 Methoden und Werkzeuge zum Entwurf eines funktionalen Modellschemas

Die Methode IDEF0, basiert auf der Grundidee, ein System beliebig tief zu detaillieren, indem die Funktionen in Teilfunktionen, so genannten Aktivitäten, hierarchisch zerlegt werden. Als Ergebnis der Anwendung von IDEF0 erhält man ein funktionales Modell, welches die Produktdatenverarbeitung in Form einer Hierarchie der verwendeten Aktivitäten und der zwischen diesen Aktivitäten liegenden Informationsflüssen wiedergibt.

Alle Funktionen und Aktivitäten werden durch ein von einem Rechteck umschlossenes Verb, das die Aktivität bezeichnet, dargestellt. Die Informationsflüsse zwischen und zu den Aktivitäten werden durch Pfeile repräsentiert. Hierbei gilt die so genannte ICOM-Notation, I für Eingabedaten (Input), C für Steuerdaten (Control), O für Ausgabedaten (Output) und M für Ressourcen (Mechanism), Abbildung 2.11.

Abbildung 2-11: Symbolik für Aktivitäten

\(^2\) SADT – Structured Analysis and Design Technique

Eine weitere Methode zum Entwurf von funktionalen Modellschemata stellt die Methode OMT\(^3\) dar. In [139] wird eine umfangreiche Darstellung dieser Methode vorgestellt. Das Ergebnis der Methode ist ein Datenflussdiagramm, in dem Beschrieben wird, wie sich Ausgabewerte der Operationen aus den Eingabewerten berechnen und ableiten lassen und wie Prozess, Daten und Datenspeicher zueinander in Beziehung stehen.

2.4.2 Systemunterstützung zur funktionsorientierten Konstruktion

\(^3\) Object Modelling Technique nach Rumbaugh et al. 1991

\(^4\) NIAM – Nijssens Information Analysis Method
lediglich nach definierten Kriterien möglich ist, die oft nicht den in der speziellen Applikation gewünschten Suchkriterien entsprechen.

In darüber hinausgehenden Arbeiten zum funktionalen Entwurf wurden CAD-Systeme mit wissensbasierten Entwurfsumgebungen wie beispielsweise ICAD oder Design ++ gekoppelt, die angepasst an domänespezifische Prozesse die Auslegung unterstützen. Dies stellt eine Erweiterung der gebräuchlichen Verwendung von Variantenprogram-

3 Entwicklung eines Konzepts zur Verwendung von Produktfunktionen

3.1 Produktfunktion als Führungsgröße des Informationsumsatzes in der Produktentwicklung

Abbildung 3-1: Anforderungsgetriebener Konstruktionsprozess

Durch die Einbeziehung der unterschiedlichen Anforderungen wird der sich aufspan-
nende Lösungsraum immer weiter reduziert, bis die Lösungsmenge ermittelt wird, die all den Anforderungen genügt und entsprechend den übergeordneten Zielen wie Qualität, Kosten und Zeit optimiert werden kann.

Entsprechend der Entwicklungsphasen im Konstruktionsprozess können die Anforderungen auf die Phasen herunter gebrochen werden und erzeugen in allen Phasen weitere Anforderungen, die in der Produktentwicklung Berücksichtigung finden müssen (Abbildung 3-2).

Abbildung 3-2: Produktanforderungen im Produktentstehungsprozess

Entwicklung eines Konzepts zur Verwendung von Produktfunktionen

In allen diesen Phasen bildet die Produktfunktion die Führungsgröße der konstruktiven Problemlösungsprozesse.

Dieser These folgend, dass die Produktfunktion die zentrale Führungsgröße des Informationsumsatzes im Produktentstehungsprozess ist, wird die grundlegende Bedeutung der Produktfunktion innerhalb der Entwicklungsphasen im Folgenden aufgezeigt. Zu unterscheiden sind hierbei einerseits die Prozesse bei der Neukonstruktion und andererseits bei der Anpassungs- oder Variantenkonstruktion. In allen Fällen ist die Hervorhebung der Produktfunktion als Prozessführungsgröße sinnvoll, es stehen jedoch bei den unterschiedlichen Konstruktionsarten andersartige Teilaufgaben des Konstruktionsprozesses im Vordergrund.

- Aufgabenformulierung

Definition des Konstruktionsauftrages: Im ersten Schritt der Entwurfsaufgabe steht die Analyse der Konstruktionsaufgabe im Vordergrund. Als übliche Aufgabenformulierung besitzt der Konstrukteur ein Lastenheft, das die Konstruktionsaufgabe beschreibt. Aus

Die Produktfunktion ist in diesem Prozess die Zielgröße, für die, geometrische Lösungen erarbeitet werden müssen. Unter Kenntnis der Produktfunktionen kann ein funktionaler Filter über die Gesamtanforderungen gelegt werden. Durch die Unterscheidung in Hauptfunktionen und Nebenfunktionen können die Anforderungen entsprechend der Funktionszugehörigkeit gewichtet werden. Wesentlich in dieser Phase ist, in Anlehnung an Koller, die Festlegung der Summe der vom zu entwickelnden Produkt zu erfüllenden Funktionen \(F_i \) und den dazugehörigen Bedingungen \(B_i \), die aus den Anforderungen abgeleitet werden können, mit den jeweiligen Gewichtungen der Bedingungen \(G_i \). Die hier definierten Größen sind im iterativen Entwurfsprozess in Anlehnung an Kosten- und Nutzen-Betrachtungen zu variieren.

\[\text{Konstruktionsaufgabe} = \sum (F_i (B_i, G_i)) \]

- Funktionsfindung

die Funktionen in der Funktionsstruktur spezialisiert und lösungsabhängig.

- Prinzipfindung

Abbildung 3-4: Zusammenhang zwischen Produktfunktionen und konstruktiven Ausführungen

Bei der Anpassungs- und Variantenkonstruktion steht die Suche nach bestehenden Teillösungen im Vordergrund, die durch Parametervariationen auf die Verträglichkeit mit den neuen Anforderungen geprüft werden. Führungsgröße in diesem Prozess ist ebenfalls die Produktfunktion, für die prinzipielle Lösungen gesucht und bewertet und dann in einer Gesamtlösung zusammengeführt werden, die wiederum zu bewerten ist.

- Gestaltausarbeitung und Detailkonstruktion

In der Neukonstruktion werden, wie in Abbildung 3.4 dargestellt, für die geforderten Produktfunktionen konstruktive Lösungen erarbeitet. Die gewählte Wirkgeometrie wird im Gesamtzusammenhang der konstruktiven Aufgabe weiter verfeinert und ausgeführt.
und die alternativen Lösungen anhand der Anforderungen beurteilt bis die Entscheidung für eine Ausführung getroffen wird, die in der weiteren Phase detailliert und ausgearbeitet wird.

In der Anpassungs- und Variantenkonstruktion wird direkt von der Phase der Aufgabenanalyse und Funktionsfindung in die Phase der geometrischen Ausprägung von bestehenden Lösungen übergegangen. Die Funktionsfindung steht hierbei nicht im Vordergrund; vielmehr die Zuordnung von Systemlösungen entsprechend den geforderten Teilfunktionen. Die funktionale Sicht stellt einen Filter auf die bestehenden Lösungen dar, durch den das Finden der Lösungen gesteuert wird.

In der Neukonstruktion wird entsprechend den auszuführenden Produktfunktionen die Wirkgeometrie zur Umsetzung der geforderten physikalischen Effekte in eine Gestalt gebracht und im Gesamtkonzept umgesetzt. Im Prozess des Abgleichs der Gestaltentwicklung für die unterschiedlichen Teilfunktionen ist es wichtig, die Zusammenhänge zwischen den geometrie- und den funktionsbestimmenden Parametern abzugleichen. Auch der Prozess der Gestaltausarbeitung und Detailkonstruktion ist ein iterativer Prozess, in dem eine Bewertung von Teillösungen anhand der Funktionserfüllung und der Anforderungen durchgeführt wird.

- Produktionsplanung

Nach der Entwicklung des Produktes folgt die Produktionsplanung. In dieser Phase kommen zu den aus der Konstruktionsaufgabe resultierenden Anforderungen, die Anforderungen, die eine reibungslose Fertigung ermöglichen, ebenfalls mit Blick auf Kosten, Qualität und Zeit. In dieser Phase werden prozessbezogene Anforderungen, soweit
sie noch nicht vorher bekannt waren, hinzugefügt. In der Varianten- oder Anpassungs-
konstruktionen sind prozessbezogene Restriktionen vielfach bereits im Lastenheft ent-
halten, so dass eine Berücksichtigung bereits in sehr frühen Konstruktionsphasen erfol-
gen kann.

Es erfolgt auch in dieser Phase ein Abwägen von Anforderungen und Restriktionen. Die
Kenntnis der Zusammenhänge, die die Anforderungen begründen, ist in allen Phasen
von großem Wert für die Nachvollziehbarkeit und Berücksichtigung im weiteren Pro-
zessabgleich. Durch die Zuordnung der Funktionen und den resultierenden Restriktio-
nen und Lösungsräumen wird der Spielraum für konstruktive Änderungen sichtbar.

Insbesondere die Gewährleistung und Prüfung von in der Konstruktion festgelegten
zulässigen Toleranzen stellt eine bedeutende Stellschraube zur Kostenreduktion dar.
Durch die Repräsentation der funktionalen Zusammenhänge kann der Produktionspla-
nung ein Mittel in die Hand gegeben werden, das eine differenziertere Betrachtung der
Qualität des Produktes bei abweichenden Toleranzmaßen erlaubt. Somit ist ein Prüfen
der Produktqualität in Hinsicht auf die Funktionserfüllung möglich und stellt ein zu-
sätzliches Prüfkriterium dar, durch das sonst unzulässige Toleranzen, bei nicht funkti-
onssbeeinträchtigtem Ausmaß toleriert werden können.

3.2 Entwicklungsprozesse in frühen Phasen

Zur Aufstellung der Anforderungen an eine Systemunterstützung für die frühen Phasen
der Produktentwicklung, werden zunächst ein Entwicklungsprozess beispielhaft illust-
riert und anschließend die zu verarbeitenden Informationen der einzelnen Phasen näher
daelliert.

Im Folgenden wird die Relevanz der Produktfunktion im Entwicklungsprozess am Bei-
spiel der Wasserpumpenentwicklung aufgezeigt (siehe Abbildung 3-5). Gewählt wurde
eine Applikation mit eingegrenztem Entwicklungsvolumen beginnend in der Phase der
Angebotserstellung vor Eingang des konkreten Entwicklungsauftrages.

Eine Anfrage zur Produktentwicklung geht in der Entwicklungsabteilung ein und hier-
zu soll ein Angebot erstellt werden. Um ein Angebot zu erstellen, erfolgt zunächst eine
Anforderungsanalyse, die entsprechend dem in Kapitel 3.1 beschriebenen Ablauf in den
Schritten: - Analyse der zu entwickelnden Produktaufgaben, - Abstrahierung der Pro-
Entwicklung eines Konzepts zur Verwendung von Produktfunktionen

- Aufstellen der Produktfunktionen und - dem Aufteilen dieser Produktfunktionen in Teilfunktionen durchgeführt wird.

- Ebenfalls elementar in dieser Phase sind die Unterscheidung in die Hauptfunktion und die Nebenfunktionen sowie die Zuordnung der funktionsbestimmenden Anforderungsparameter.

- Die geforderten Produktfunktionen werden hinsichtlich Kriterien analysiert wie:
 - ist bereits eine Lösung für diese Produktfunktion entworfen worden, auf die zurückgegriffen werden kann, und
 - wurde diese Lösung bis zum Bauteil umgesetzt.

- Basierend auf diesen Informationen können folgende Fragen beantwortet werden:
 - ist die Funktion erfüllbar?
 - wie ist die Funktion umsetzbar?
 - wie hoch werden die Kosten für die Entwicklung sein?
 - wie hoch werden die Kosten für die Serienfertigung sein?

Abbildung 3-5: Prozess-Schritte in der Entwicklung
Um diese Informationen zu erlangen, ist es erforderlich, die bestehenden Entwicklungsarbeiten hinsichtlich Produktfunktion und funktionsbeschreibender Merkmale für die Suche nach bestehenden Lösungen heranzuziehen.

Dieser Prototyp repräsentiert lediglich die Geometrien, die für die Förderung bedeutsam sind, wie beispielsweise ein Klotz mit innen liegender Spirale. Eine Verfeinerung der Geometrie und Nutzung der später in der Serie genutzten Materialien erfolgt erst in späteren Phasen.

Nach der Auslegung der Bauteile nach der Hauptfunktion wird nach Systemlösungen für die weiteren Funktionen wie Welle antreiben, Gehäuse abdichten oder Zusammen-
halt schaffen gesucht und entsprechend der bestehenden Lösungen Abschätzungen vorgenommen. Hierbei müssen die Teillösungen ständig auf Konsistenz zur Gesamtlösung überprüft werden.

Es wird deutlich, dass bereits in dieser frühen Phase im Entwurf, bis zur Erstellung des Angebots eine Vielzahl von Arbeiten notwendig sind, die bereits Kosten verursachen, die nicht über einen Auftrag abgedeckt werden können. Des Weiteren bleiben diese Entwicklungsarbeiten bei Nichterteilung eines Auftrages ungenutzt und fließen nur in Ausnahmefällen in spätere Entwicklungsarbeiten ein.

Ein weiterer wichtiger Gesichtspunkt dieser frühen Entwurfsphase ist, dass bereits ein Großteil des Entwurfs durch das Angebot vordefiniert wird und somit die später entstehenden Kosten für die Entwicklung und Serienproduktion bereits festgelegt sind. Diese Phase erfordert vom Konstrukteur ein umfassendes Know-how über die Zusammenhänge sich beeinflussender Geometrieparameter zur Erfüllung der Teilfunktionen, gepaart mit Fertigungs- und Kostenaspekten, und dies oft unter maximalem Kosten- und Zeitdruck.

Am Ende dieser Konzeptphase und Grobauslegung liegt ein Angebot für die Entwicklung und die Serie vor. Es basiert auf dem Know-how der Konstrukteure, beruht auf den vorangegangenen und getesteten Entwicklungen und berücksichtigt die aktuellen technischen und ökonomischen Abhängigkeiten.

Können Lösungen für Teilfunktionen aus unterschiedlichen Systemlösungen entnommen werden, beispielsweise für die Funktion Flüssigkeit fördern, Spirale und Flügelrad, wie in Pumpe A und für die Funktion Welle antreiben, Welle, Lagerung und Riemenscheibe wie in Pumpe B, so sind die Teilgeometrien in ein Bauteil zu kopieren und von

Nach der Detailkonstruktion erfolgt die Erstellung eines Prototyps an Hand dessen die geforderten Produktfunktionen in Versuchen getestet werden. Entsprechen die gemessenen Größen nicht den Anforderungsparametern der Teilfunktionen, so entsteht eine Iteration zwischen dem Entwurf und dem anschließenden Testen. Dieser Prozess wird lediglich in Form von Dokumenten gespeichert. Eine Nachvollziehbarkeit auf Parameterebene wird nicht unterstützt (Zum Beispiel: Ausgabeparameter Fördermenge im Versuch zu gering; welche Geometrieparameter können verändert werden damit die Fördermenge erhöht wird).

Nachdem im Versuch der Prototyp validiert wurde, wird ein Angebot für die Serienfertigung formuliert. Hierbei muss abgeschätzt werden, ob das Bauteil mit anderen Materialien und Fertigungsverfahren, zur kostengerechten Produktion, die gleichen Anforderungen erfüllen kann und wie hoch die Kosten der Serienfertigung sein werden. Auch hierbei ist eine enge Zusammenarbeit zwischen Entwicklung, Einkauf, Fertigung und Vertrieb nötig.

Der grob beschriebene Entwicklungsprozess illustriert beispielhaft heute praktizierte Entwicklungsprozesse und wird nachfolgend zur Anforderungsdefinition für ein System zur Unterstützung des Entwurfs in frühen Phasen herangezogen.

Im folgenden Kapitel steht nicht der Entwicklungsprozess sondern die zu verarbeitenden Informationen und die heute genutzte Systemumgebung in dieser Phase im Vordergrund. Um eine vollständige Dokumentation der Produkthistorie aufzuzeigen wird bei den ersten Produkt definierenden Daten mit der Beschreibung begonnen und der Einfluss auf den Produktfortschritt aufgezeigt.
3.3 Informationen im Entwicklungsprozess

3.3.1 Informationen in der Phase 'Planen und Klären der Aufgabe'

Die Phase, 'Planen und Klären der Aufgabe', ist durch die Analyse der Anforderungen gekennzeichnet. Somit sollen hier zunächst die Quellen der Anforderungen und ihre Repräsentationen analysiert werden (Abbildung 3-6).

![Diagramm der Einflussgrößen auf das Produkt]

Abbildung 3-6: Einflussgrößen auf das Produkt

Es werden Vergleiche herangezogen, dass das Produkt Anforderungen der Vorserie erfüllen soll, Normen und neue Standards werden referenziert. Somit müssen diese Information stark mit anderen Informationen verknüpft werden. Es werden schon in die-
ser Phase zur Beschreibung des Produktes Produktfunktionen beschrieben, die durch das zu entwickelnde Produkt erfüllt werden sollen.

Im nächsten Schritt wird basierend auf dem Lastenheft, als Beschreibung des Sollproduktes, ein Pflichtenheft erstellt, das das Istprodukt dokumentiert. Im Pflichtenheft wird das Produkt aus der Sicht des Produzenten unter Berücksichtigung von Fertigung, Montage, Prüfkriterien und weiteren Einflussgrößen beschrieben. Um eine lückenlose Dokumentation der Entwurfshistorie zu erhalten, sind Anforderungen, beginnend bei den ersten Produktdokumentationen optional zu repräsentieren.

Abbildung 3-7: Historie der Produktanforderungen

Was ist wesentlich bei der Beschreibung von Anforderungen?

• Anforderungen werden textlich beschrieben und mit Bildern verdeutlicht, sie enthalten starke Bezüge zu anderen Dokumenten wie Vorserienteilen, Normen, Funktionsvorschriften, Materialkennwerte und Testverfahren. In der frühen Phase sind die Anforderungen noch sehr unkonkret.

• Ab dem Lastenheft können die Anforderungen in die teilweise unkonkreten und textlich beschriebenen und die konkreten, durch Parameter und Parameterwerte spezifizierten, Anforderungen unterschieden werden.

• In den konkreten Anforderungen werden den Parametern Werte vorgegeben und
Beziehungen zwischen Parametern beschrieben. Diese Beziehungen können funktional in Gleichungen beschrieben werden. Beispiele sind: die Durchflussmenge soll 80 % der Durchflussmenge des Vorgängerproduktes betragen; die Wandstärke darf nicht unter 5 mm fallen.

 - Geometrie: Vorgabe von Maßen, Abständen
 - Kinematik
 - Kräfte: Gewichte, maximales Gewicht
 - Energie
 - Stoffe: Temperaturbereich, Luftfeuchtigkeit, Isolierung, Korrosionsbeständig
 - Sicherheit: Schutz des Bedienpersonals
 - Fertigung: Toleranzen
 - Gebrauch: Keine Verunreinigung im Inneren des Prüflings
 - Instandhaltung: Wartungsintervalle
 - Termin: Abgabe der Entwürfe, usw..

- Des Weiteren kann in Wunsch-Forderung und Fest-Forderung unterschieden werden sowie den Forderungen eine Gewichtung zugeordnet werden.

- Dies ermöglicht die Fokussierung, Gliederung und Gewichtung der Anforderungen entsprechend der Gewichtung der Funktion, dessen Lösungsraum durch die Anforderungen konkretisiert und eingeschränkt wird.
• Wesentlich ist, dass bei Klassifizierungen oder Gruppierungen von Anforderungen, einzelne Anforderungen mehreren Gruppen zuzuordnen sein müssen, ohne physisch mehrfach repräsentiert zu sein.

• Die Anforderungsparameter, die den Lösungsraum zur Erfüllung der geforderten Produktfunktionen einschränken, werden im Entwurfsprozess zu Auslegungsparametern der Produktfunktionen. Die Zuordnung dieser Auslegungsparameter erhält eine besondere Bedeutung, wenn es um die Wiederverwendung von Bauteilen geht.

• Eine effektive Suche von Lösungen erfolgt über die Auslegungsparameter. Hierbei werden nicht alle Parameter gleichbedeutend betrachtet, sondern der Anwender beginnt auch hier mit der Zerlegung der Produktfunktion in Teilfunktionen, bewertet die Teilfunktionen entsprechend ihrer Wichtigkeit und beginnt, Bauteile zu suchen, die die Hauptfunktion erfüllt. Die Suche erfolgt über die Auslegungsparameter, die als die primär wichtigen Parameter für die Hauptfunktion gelten. Die Hauptfunktion stellt hierbei die Funktion dar, die wesentlich für die Gesamtfunktionalität des Produktes ist.

3.3.2 Informationen in der Phase ‚Konzipieren’

Die Phase ‚Planen und Klären der Aufgabe’ und die Phase des Konzipierens gehen fließend ineinander über. Im Konzipieren wird ebenfalls wie in der Phase, Planen und Klärung der Aufgabenstellung Funktionsstrukturen aufgestellt und verfeinert. Hierbei erfolgt eine Modellbildung vom realen technischen Objekt über die Abstraktion in ein mentales Modell, dass durch Formalisierung schrittweise in ein Informationsmodell überführt wird.

Eine Aufstellung von Funktionsstrukturen begünstigt eine Vermeidung von Lösungsvorfixierungen und das Finden optimaler Lösungen. Die Aufgabe wird auf das Wesentliche reduziert und die Gesamtfunktion in Teilfunktionen geringerer Komplexität zerlegt. Die Entwicklung prinzipieller Lösungsvorstellungen für die Gesamtfunktion erfolgt
durch die Suche und Zuordnung geeigneter physikalischer Wirkprinzipien zu den einzelnen Funktionen durch entsprechende Lösungsfindungsverfahren (Brainstorming, Synkretik, Lösungskataloge [23, 73]) und deren Kombination in einer Wirkstruktur. Diese Wirkprinzipien werden in prinzipiellen Lösungsvarianten konkretisiert und anhand technischer und wirtschaftlicher Kriterien einerseits und den Anforderungen andererseits bewertet.

3.3.3 Informationen in der Phase 'Entwerfen'

Die nächste Phase im Konstruktionsprozess ist das Entwerfen. Entwerfen ist der Teil
Entwicklung eines Konzepts zur Verwendung von Produktfunktionen

Entwicklung eines Konzepts zur Verwendung von Produktfunktionen 64

CAD-Systeme erlauben je nach Auswahl der Informationsmittel eine unterschiedliche Modellbildung. Es werden 2-dimensionale und 3-dimensionale Systeme unterschieden, und in diesen Systemen werden unterschiedliche rechnerinterne Modelle verwendet: Körperorientierte Volumenmodell (CSG), Linien- (Draht-)Modell (Wire frame model) oder das flächenorientierte Volumenmodell (B-Rep). Je nach Geometrieobjekt ist die jeweilig günstigste Modellerstellung zu wählen. Die Überführung vom gedanklichen Modell der konstruktiven Lösung in ein rechnerverarbeitbares Informationsmodell erfordert die Transformation des Objektes in Flächen oder Körper aufgebaut durch Punkte, Linien, Kurven und Verbindungen.

Um eine Wiederverwendung von Geometrieelemente zu ermöglichen, die über eine Kopie zuvor erstellter Geometrieobjekte hinaus geht, wurde und wird heute in der gängigen Praxis noch die Makro- und Variantentechnik verwendet, die es ermöglicht Funktionsbauteile zu generieren und Berechnungsschritte in die Geometriegenerierung zu integrieren [151, 152]. Diese Technik wird zunehmend durch die Einführung parametrischer CAD-Systeme oder Featurebibliotheken abgelöst.
In der Phase des Entwurfs, die im CAD-System stattfindet, steht wie dargestellt die Modellierung der Geometrie unter Nutzung der zur Verfügung stehenden Mittel im Vordergrund. Hierbei tritt die funktionale Betrachtung in den Hintergrund. Um die funktionalen Vorgaben während des Geometriefindungsprozesses nicht zu verlieren, sind die Informationen der Produktfunktion, und somit die Konstruktionsabsicht mit der geometrischen Lösung zu koppeln, um somit eine geometrische Konstruktion unter Beachtung der funktionalen Vorgaben vornehmen zu können. Insbesondere bei der Einführung von parametrischen CAD-Systemen geht der Konstruktionsprozess von der reinen Geometriemodellierung über in die geometrische Gestaltung von Funktionsträgern. Durch die Definition der steuernden Größen im parametrischen Entwurf ist die Kenntnis der später zu variierenden Parameter, die vielfach die Produktfunktion bestimmen, notwendig. Somit erleichtert eine funktionale Betrachtung der Produktgeometrie die parametrische Modellierung, und letztlich fördert sie die Effizienz und Sinnfälligkeit des Einsatzes eines parametrischen CAD-Systems.

3.3.4 Informationen in der Phase ‚Ausarbeiten’

Die erläuterten Hauptphasen des Konstruierens sind in manchen Fällen nicht immer klar abgrenzbar, es bestehen auch Übergangsstadien, in denen die eine Phase noch nicht abgeschlossen ist, die nächste für Teilfunktionen jedoch bereits begonnen wird. Der Konstruktionsprozess ist ebenfalls durch ein iteratives Vorgehen geprägt, in dem ein Rückspringen in frühere Phasen die Regel ist. Die Medien, in denen der Konstrukteur in diesen Phasen arbeitet, wechseln und sind zumeist ungekoppelt, so dass der iterative Prozess des Konstruierens nicht optimal unterstützt wird. Eine Nachvollziehbarkeit dieses Prozesses für andere, was die Voraussetzung für eine Wiederverwendung
von konstruktiven Lösungen ist, wird dadurch erschwert.

3.4 Erforderliche methodische und systemseitige Unterstüt-
zung in den frühen Produktentwicklungsphasen

Aus den Analysen des Entwicklungsprozesses sowie der Analyse der zu verarbeitenden Informationen können einige Herausforderungen abgeleitet werden:

- Die Ergebnisse der Berechnungsprogramme sind meist nicht oder nur ungenügend an CAD-Systeme gekoppelt und stellen somit Insellösungen im Produktentwick- lungsprozess dar.

- Die Wiederverwendung von bestehenden Lösungen erfordert, dass der gesamte Baum der vorangegangenen Lösungen, Teillösungen oder verworfenen Lösungen er- neut durchgegangen werden können. Der Zugang zu diesen früheren Lösungen in noch unzureichend.

• Die Wiederverwendung von Entwicklungsleistungen erfordert eine gute Dokumentation der Entwicklungshistorie und der den Entwurfsprozess bestimmenden Parameterabhängigkeiten. Die Dokumentation sollte entwicklungsbegleitend erfolgen, sollte an die Lösung gekoppelt sein, damit ein leichtes Auffinden der Dokumentation und Zuordnen wichtiger Informationen gegeben ist und darf nicht zu viel Zeit binden.

All diese Herausforderungen bestehender Systemunterstützung in den frühen Entwicklungsphasen erfahren durch die Einführung der Repräsentation der Produktfunktion sowie der funktionalen Zusammenhänge ein großes Verbesserungspotential. Basierend hierauf, verbunden mit einer Entwicklungsumgebung, die die Auslegung und Simulation der funktionalen Lösungen erlaubt, und diese wieder auffindbar repräsentiert, kann eine große Verbesserung erreicht werden.
4 Systemkonzept einer Entwicklungsumgebung zur funktionsgetriebenen Konstruktion

4.1 Eckpfeiler für eine geeignete Systemumgebung im Entwicklungszusammenhang

4.1.1 Eckpfeiler des Systemkonzeptes

Das Grundkonzept einer Systemumgebung zur funktionsorientierten Entwicklung basiert auf drei Eckpfeilern:

- auf der Repräsentation der Produktfunktion als Führungsgröße innerhalb der am Entwicklungsprozess beteiligten Größen,
- auf der durchgängigen Informationsrepräsentation, insbesondere zwischen Anforderung, Funktion und Lösung, und
- auf der Abbildung der parametrischen Zusammenhänge durch Constraints, um eine Verarbeitbarkeit der formalen Beziehungen zu ermöglichen.

Die Eckpfeiler des Konzeptes werden im Folgenden detailliert.

Abbildung 4-1: Eckpfeiler für eine geeignete Systemumgebung
4.1.2 Modellierung der Produktfunktion als Führungsgröße des Informationsumsatzes

Der erste Eckpfiler einer verbesserten Entwicklungsumgebung, insbesondere für die frühen Phasen, stellt die Produktfunktion dar. Die Modellierung der Produktfunktion als wesentlicher Bestandteil der Konstruktionsmethodik der frühen Phasen der Produktentwicklung erweitert das Prozessverbesserungspotential durch eine effiziente Rechnernutzung. Vielfach erlaubt die Bereitstellung, Vernetzung und Verarbeitung von Informationen sowie Zusammenhängen erst jetzt die Nutzung der Methodiken in neuer Dimension rechnerunterstützter Produktentwicklung. Dies liegt darin begründet, dass erst jetzt Aufwand und Nutzen im richtigen Verhältnis zueinander stehen. Vorteile der rechnerintegrierten Methodik bezogen auf die Hervorhebung der Produktfunktion als Führungsgröße im gesamten Produktentwicklungsprozess sind:

- Die Produktfunktion repräsentiert die Aufgabe, die das Produkt unter Berücksichtigung der Randbedingungen erfüllen muss. Die Modellierung der Produktfunktion als Kern des Informationsumsatzes im Konstruktionsprozess ermöglicht die Konstruktionsabsicht und die Umsetzung in der entstehenden Entwicklung zu dokumentieren.

- Die Produktfunktion liefert eine abstrakte Sicht auf die konstruktive Ausarbeitung. Die Abstraktion mit Fokus auf der Funktion ist eine mögliche Form der Produktmodularisierung mit positivem Effekt auf das Komplexitätsmanagement und der Wiederverwendung von Konstruktionslösungen.

- Die Modellierung der Produktfunktion kann mit der funktionalen Gliederung der Produktanforderungen verbunden werden. Dies ermöglicht eine Überprüfung der konstruktiven Lösung hinsichtlich funktionaler Vollständigkeit und Konsistenz.

- Die Verknüpfung von Anforderungen mit den zu spezifizierenden Funktionen ermög-
licht ein qualitativ aussagekräftiges Anforderungsmodell.

- Die Produktfunktion ermöglicht die Simulation des Einflusses von Produktanforderungen auf die Lösung. Somit können beispielsweise die Auswirkungen einer Änderung von Anforderungsparametern auf das Produkt illustriert nachvollzogen werden und somit hinsichtlich Kosten, Qualität oder Zeit optimiert werden.

Somit spielt die Produktfunktion eine entscheidende Rolle in den frühen Phasen der Produktentwicklung (Abbildung 4-2).

Abbildung 4-2: Zentrale Bedeutung der Produktfunktion im Entwicklungsprozess

4.1.3 Durchgängige Informationskette von den Produktanforderungen bis zum geometrischen Entwurf

Ein weiterer Eckpfeiler funktionsgetriebener Konstruktion ist die Bildung einer durchgängigen Prozesskette auf der Basis der VDI2221 mit informationstechnischer Verknüpfung der Teilmodelle von der ersten Produktanforderung, abgeleitet aus Markanforderungen, bis hin zu Ausprägungen von Produktstruktur und Bauteilgeometrie. In Abbildung 4-3 sind die zentralen Informationsobjekte der einzelnen Stufen des Entwicklungsprozesses in Anlehnung an die VDI-Richtlinie 2221 dargestellt.

Langfristige Aufgabe muss es somit sein, die einzelnen Stufen und ihre wechselseitigen Abhängigkeiten zu modellieren und mit Hilfe dieser Modelle den Entwicklungsprozess schneller und kostengünstiger zu gestalten.
Das Ziel dieser Arbeit ist es, aufbauend auf der Beschreibung eines umfassenden semantischen Beziehungsmodells, entsprechend Abbildung 4-2, im zweiten Schritt eine Systemumgebung mit dem Fokus auf die Grundelemente Anforderung, Funktion und Geometrie zu konzipieren, die das Arbeiten und die Vorteile solch einer Entwicklungsumgebung illustriert. Die Repräsentation dieser Zusammenhänge ist das wesentliche Element einer funktionsorientierten Entwicklungsumgebung und sollte in einem Vordergrund stehen.

Abbildung 4-3: Stufenmodell abgeleitet aus der VDI 2222

Abbildung 4-4: Modellierung von Anforderungen, Funktionen und Komponentengeometrie
4.1.4 Constraints im Konstruktionsprozess

4.2 Funktionsmodellierung für die Repräsentation und Verarbeitung von Konstruktionswissen

4.2.1 Detaillierung des Funktionsbegriffs im Kontext des Systemkonzeptes

In Kapitel 2.2.3 wurde die Bedeutung der Produktfunktion im Entwicklungsprozessprozess und Ansätze zur Funktionsmodellierung aufgezeigt und in Kapitel 3 in der Analyse der industriellen Praxis der frühen Phase der Produktentwicklung bestätigt. Trotz der zentralen Stellung der Produktfunktion im Konstruktionsprozess konnten Systemlö-

Durch die Schaffung einer Systemumgebung die der Modellierung der Produktfunktion den benötigten Raum gibt, wird dem Konstrukteur ein Werkzeug in die Hand gegeben, das eine erhebliche Verbesserung des rechnerunterstützten Entwurfsprozesses erlaubt. Es ist festzuhalten:

- Die Produktfunktion ist Treiber im Entwurfsprozess.
- Durch die Produktfunktion erfolgt eine Abstraktion der Gesamtaufgabe.
- Die Gesamtaufgabe wird in Teilfunktionen verfeinert.
- Die Teilfunktionen werden entsprechend ihrer Bedeutung hinsichtlich Gesamtfunktionserfüllung, Kosten und ähnlichen gewichtet.
- Die Gewichtung hat Auswirkungen auf die Prioritätsvergabe im Entwurfsprozess und kann die Reihenfolge der Entwurfsschritte beeinflussen.
- Die Teilfunktionen können weitgehend unabhängig voneinander ausgelegt werden und im nächsten Schritt zusammengeführt werden.

Des Weiteren sollten die repräsentierten Zusammenhänge sich auf auslegungsrelevante Größen beschränken. So kann der Antrieb der Wasserpumpe beispielsweise durch einen Direktantrieb oder durch einen Riementrieb erfolgen; Die generelle Funktion lautet: *Energie wandeln*, von mechanischer Energie in mechanische Energie. Für die Auslegung sind in diesem Schritt die Drehmomentübertragung und das Übersetzungsverhältnis zwischen Antriebsdrehzahl und Nenndrehzahl der Pumpe von Bedeutung. Das Einwirken der Kräfte und die Dimensionierung von Riemenscheibe und Welle werden in der

Im Entwurfsprozess steht im Vordergrund, die Produktfunktion im Kontext der einzuhaltenden Anforderungen und Restriktionen und der Auslegung der Produktfunktion hinsichtlich der Auslegung der Funktionsträger zu betrachten. Die Repräsentation der Produktfunktion liefert hierbei die Information aller für die Auslegung relevanter Größen, und bei bestehenden arithmetisch beschreibbaren Parameterzusammenhänge die Information ihrer Zusammenhänge. Der Parameterfluss, der zwischen den modellierten Produktfunktionen beschrieben wird, kann hierbei im Sinne der Darstellung von Ursache und Wirkung ausgeführt sein oder aber die Auslegung widerspiegeln und somit als Eingangsgrößen die Anforderungsparameter und als Ausgangsparameter die Auslegungsparameter darstellen, Abbildung 4-5.

Bezogen auf die Modellierung hat dies zur Folge, dass die parametrischen Zusammenhänge zur Funktionserfüllung beschrieben und der Funktion zuzuordnen sind. Der Parameterfluss sollte zum einen widerspiegeln, welche Parameter Einfluss auf die Funktionserfüllung haben, und zum anderen visualisieren, welche Parameter in einem konkreten Auslegungsprozess Anforderungsparameter und somit vorgegebene Parameter sind, und welche Parameter ausgelegt werden.

Ist der Parameterzusammenhang der Produktfunktion in einer Gleichung funktionale beschrieben, bedingt dies, bezogen auf die Lösungsgenerierung eine richtungsunabhängige Berechnung der Parameter. Das Constraint-Lösungssystem muss also Constraints in Abhängigkeit der gesuchten Variablen auflösen und berechnen können. Ist die Auslegung der Produktfunktion nicht in Form einer Gleichung beschreibbar, ist ein Auslegungsprozess in Abhängigkeit der geforderten Eingangs- und Ausgangsgrößen zu starten. In diesem Fall fungiert die Modellierung der Produktfunktion als Schnittstelle zu einem Auslegungsprogramm mit prozessbezogenen Eingangs- und Ausgangsgrößen.

Besteht die Möglichkeit, den Auslegungsprozess von Lösungsparametern auf definierte parametrische Zusammenhänge von Anforderungsparametern zu geometrischen Auslegungsparametern abzubilden, so ist eine Berechnung von Parametern einerseits und ein Testen von Konsistenzen andererseits zu unterstützen. Des Weiteren kann die Repräsentation zur Dokumentation der Entwurfshistorie hinsichtlich der Repräsentation der Zusammenhänge zwischen der Ausgangssituation und den Lösungskomponenten ge-
nutzt werden.

Die Umkehrung des Prozesses ist in vielen Fällen nicht möglich, da die Zusammenhänge der funktionalen Parameter nicht durch mathematische Gleichungen beschrieben sind, sondern wie bereits erwähnt ein iterativer Entwurfsprozess vollzogen wurde, bei dem von technologischen Parametern ausgehend eine Geometrie bestimmt wurde, die die geforderte Funktion erfüllt. Bei der Funktion Förderung beispielsweise werden die Geometrien des Flügelrades und der Spirale iterativ bestimmt. Bei einer Verkleinerung des zur Verfügung stehenden Außenradius muss bestimmt werden, wie die Geometrie verändert werden muss, um die gleiche Förderleistung umzusetzen. Liegt zur Auslegung der Funktion hingegen ein mathematisch beschreibbarer Zusammenhang vor, wie beispielsweise bei der Kraftverstärkung das Hebelgesetz, so ist direkt die Auswirkung der Änderung des Hebelverhältnisses ableitbar.

Wesentlich in einer funktionsgetriebenen Konstruktionsumgebung ist es, dass die Produktfunktion als Strukturierungselement zwischen den Anforderungen und der Lösung zu nutzen ist. Die Auslegung der Produktfunktion kann auf der Verknüpfung von Funktionsparametern basieren die wiederum durch Anforderungsparameter eingegrenzt werden. Durch die Verknüpfung der Funktion mit den ausgeführten Lösungselementen ist die Konstruktionsabsicht mit der Lösung gekoppelt und dokumentiert. Folgende primäre, positive Aspekte ergeben sich für den Konstruktionsprozess und sind in einer Entwicklungsumgebung zu berücksichtigen:
• Produktfunktion als Strukturierungsmittel der Gesamtaufgabe
• Produktfunktion als Filter auf die Anforderungen und die Lösung
• Produktfunktionen und Funktionsdiagramm zur Abstraktion der Lösung und Dokumentation der Zusammenhänge
• Produktfunktion zur Wiederverwendung von Konzepten (Teilgeometrien)
• Produktfunktion zur Darstellung und Beurteilung von alternativen Konzepten
• Produktfunktion zur Diagnose von Systemen

4.2.2 Funktionsmodellierung in der funktionsgetriebenen Konstruktion

Um die aufgeführten Ziele zu erreichen, ist eine Systemumgebung vorzusehen, die die Modellierung der wesentlichen Elemente unterstützt und die Verarbeitung dieser Informationen vorsieht. Die Hauptelemente einer solchen Entwicklungsumgebung sind im Folgenden aufgeführt.

• Zunächst ist die Nennung und Nutzung der Produktfunktion entsprechend dem heute praktizierten Entwurfsprozess zu erlauben. Dies bedingt, dass die Modellierung der Produktfunktion nicht zu restriktiv sein darf, sondern dem jeweiligen Anwendungsfall entspricht.

• Die Strukturierung und Benennung der Produktfunktionen entsprechend der bekannten Vorgaben erhält eine größere Bedeutung bei der Erstellung von Funktionsbibliotheken. Jedoch sollte im Konstruktionsprozess in geläufiger Sprache und Strukturierung vorgegangen werden.

• Des Weiteren gibt es kein Gebot zur vollständigen funktionalen Beschreibung. Werden im heute praktizierten Entwurf nur Teilfunktionen betrachtet und ausgelegt, und andere Teilfunktionen sind zwar bekannt, sind aber auf Grund der Erfahrung nicht extra zu dimensionieren, so sollte der Anwender auch mit der neuen Systemumgebung gleichermaßen verfahren können.

• Eine Systemumgebung soll eine Hilfestellung bieten, dort wo es von Vorteil ist, den
Anwender jedoch nicht zu neuen Arbeiten anhalten, die nur der Vollständigkeit des Funktionsmodells dienen, jedoch dem Anwender sonst keinen direkten Vorteil bringt. Modellerweiterungen sollten auch zu einem späteren Zeitpunkt durchgeführt werden können.

<table>
<thead>
<tr>
<th>1. Funktionsfluss</th>
<th>2. Funktionshierarchie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Verknüpfung von Anforderungen, Produktfunktion und Lösung

<table>
<thead>
<tr>
<th>Anforderung</th>
<th>Funktion</th>
<th>Lösung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 4-6: Bausteine der Funktionsmodellierung im Konstruktionsprozess

Die wesentlichen Bausteine der Funktionsmodellierung im Konstruktionsprozess sind in Abbildung 4.6 dargestellt.

Baustein 1: Darstellung der Funktionsstruktur

Baustein 2: Verfeinerung von Produktfunktionen, Funktionshierarchie

Durch die Beschreibung der Produktfunktionen, die Unterteilung der Produktfunktion in Unterfunktionen und der Darstellung der Beziehungen einzelner Funktionen, z. B. unter Nutzung der Parameterbeziehungen wird eine Funktionsstruktur erstellt, die als Haupt-Strukturierungsmedium des Konstruktionsprozesses dienen kann.

Baustein 3: Produktfunktion als Bindeglied zwischen Anforderungen und Lösungen

Die auszuführenden Produktfunktionen werden in den Anforderungen spezifiziert und in der geometrischen Lösung umgesetzt. Die Verknüpfung zwischen Anforderung und Lösung stellt die Produktfunktion dar. Eine Entwicklungsumgebung muss es erlauben, Anforderungen, Funktionen und Lösungen zu beschreiben und die Abhängigkeiten zwischen ihnen zu definieren. Ebenso wie die Produktfunktion können Anforderungen, die

Um eine qualitative Aussage über die Art der Beziehung zwischen Anforderung, Produktfunktion und Lösungselement machen zu können, werden Parameter genutzt. Zur Auslegung und Dimensionierung einer Produktfunktion sind die Anforderungsparameter einerseits und die geometrischen Auslegungsparameter der Lösungsgeometrie andererseits das steuernde Element. Ein Beispiel einer parametrischen Kopplung von Anforderung, Funktion und Lösungselement wird im Folgenden gezeigt:

Die Kopplung des Funktionsmodells mit den Anforderungen auf der einen Seite und der erarbeiteten Lösung auf der anderen Seite stellt den dritten wesentlichen Baustein einer funktionsorientierten Entwicklungsumgebung dar. Im Folgenden wird auf die ein-
zubeziehenden Aspekte in einer Anforderungs- und einer Bauteilmodellierung in der Umgebung zum funktionsorientierten Entwurf eingegangen.

4.3 Anforderungsmodellierung in der funktionsgetriebenen Konstruktion

4.3.1 Anforderungsmodellierung vom Rahmenheft und Lastenheft bis zur Spezifikation von Systemkomponenten

Eine effiziente Systemumgebung zur funktionsorientierten Produktentwicklung ist erst gegeben, wenn neben der Produktfunktion auch die Systemanforderungen und die erstellte Systemlösung modelliert und darüber hinaus die Einflüsse der Systemparameter zueinander dargestellt und simuliert werden können. Die Anforderungen grenzen den Lösungsraum der geforderten Produktfunktionen ein und geben Restriktionen und Vorgaben für die Ausführung. Durch die Zuordnung der Anforderungen zu den Produktfunktionen wird eine Bündelung der Anforderungen vorgenommen, die die Aussagekraft der Anforderungen unterstützt. In Abhängigkeit der Gewichtung der geforderten Produktfunktion sind die Anforderungen, die die Lösung für die Produktfunktion eingrenzen, ebenfalls gewichtet. Es wird erkenntlich, dass die Aussagekraft des Anforderungsmodells, sei es in Form einer Anforderungsliste oder eines Lastenheftes, durch die Zuordnung der Produktfunktion stark zunimmt.

Der iterative Konstruktionsprozess mit seiner Vielzahl von Auswahl-, Optimierungs- und Entscheidungsvorgängen beginnt bei der Formulierung der Produktanforderungen, bei der parallel zur Verdeutlichung der Aufgabenstellung die Erstellung einer ersten groben Funktionsstruktur erfolgen sollte. Der Aufgabenklärung und Zielformulierung kommt in dieser Phase zur zielgerichteten und erfolgversprechenden Produktentwicklung eine zentrale Bedeutung zu. Die Erstellung einer Funktionsstruktur basiert auf dieser Analyse der Anforderungen unter Berücksichtigung der gegebenen Anforderungsparameter. Eine Systemumgebung, die eine Anforderungsmodellierung unterstützt, ermöglicht durch die Systematisierung der Entwicklungsanfrage:

- die strukturierte Repräsentation der Konstruktionsaufgabe,
- ist Voraussetzung für den Test der Produktspezifikation auf Vollständigkeit und Konsistenz,
• erleichtert die Prüfung der Konstruktionslösung auf Erfüllung der Anforderungen,
• ist Grundlage für die Nachvollziehbarkeit der Veränderung und Detaillierung der initialen Anforderungen in detaillierte Anforderungen im Entwicklungsprozess.

Anforderungshistorie

Die Modellierung der Anforderungen als einzelne Objekte ermöglicht diese Nachvollziehbarkeit. Es kann einerseits durch die Verlinkung, und das Anhängen einer URL, durch die Zusatzinformationen referenziert und angesehen werden können, erfolgen, oder andererseits, durch die Einfügung einer Objektrelation, die die Versionierung auf Objektebene übernimmt, und somit die Historie auf Objektebene erfüllt.

Zur Spezifikation einer geeigneten Systemumgebung zur Anforderungsmodellierung einerseits zur Nachvollziehbarkeit der Historie von Randbedingungen, andererseits als Quelle der die Produktfunktionen begrenzenden Randbedingungen werden zunächst die
zu unterscheidenden Begrifflichkeiten in der Anforderungsphase aufgezeigt.

Forderungen und Wünsche

Durch die bereits zur Differenzierung der Produktfunktion in Hauptfunktion und Nebenfunktion herangezogene Gewichtung kann die Gewichtung der Anforderungen eine Handhabung von Forderungen und Wünschen erlauben und bei der Beurteilung der Lösung mitwirken. Forderungen sind somit eine hohe lokale Gewichtung zuzuschreiben, Wünsche erhalten eine geringe Gewichtung.

Qualitative und quantitative Anforderungen

Auch unscharfe, nicht konkret in Parametern formulierter Anforderungen müssen mit Produktfunktionen assoziiert werden können und können somit die Entwurfsentstehung geschlossen darstellen.

Externe und interne Anforderungen

Die Unterscheidung in externe und interne Anforderungen macht kenntlich, ob diese vom Kunden formuliert sind oder es sich um Anforderungen handelt, die vom Konstrukteur zusätzlich definiert sind, die beispielsweise Randbedingungen der eigenen Firma beinhalten. Externe Anforderungen dürfen nicht geändert werden, wo hingegen interne Anforderungen unter Umständen durch Anpassungen geändert werden können. Auch zur Modellierung dieses Verhaltens kommt der Gewichtung eine große Bedeutung zu.

Implizite und explizite Anforderungen

Change Request von Anforderungen

Die Betrachtung der Anforderungstypen ergibt für eine Anforderungsmodellierung folgende Spezifikation:

- Anforderungen müssen vereinzelt werden können.
- Sie können textuell beschrieben oder als Anforderungsparameter ausgedrückt werden. Textuelle Anforderungen können durch die Zuordnung von Anforderungsparametern quantifiziert werden.
- Die Historie sollte durch das Hinzufügen eines Links auf weitere Informationen erfolgen können. Darüber hinaus sollte die Historie des Anforderungsobjektes auf sich selbst, im Hinblick auf wie hat sich die Anforderung verändert, wie wurde die Anforderung näher beschrieben, erfolgen.
- Es sollten Forderungen und Wünsche unterscheidbar sein und durch eine Gewichtung im Schlussfolgerungsprozess unterschieden werden.
- Es werden externe und interne Anforderungen sowie explizite und implizite Anforderungen unterschieden. Wichtig ist es, zu erkennen, ob eine Anforderung von außen vorgegeben war oder durch interne Randbedingungen oder Schlussfolgerungsprozesse abgeleitet wurde. Weitere interne Anforderungen sind die Anforderungen, die zur Qualitätssicherung hinzudefiniert wurden.
• Die Erfüllung der Anforderungen sollte durch die Zuordnung eines Testes beschrieben werden.

4.3.2 Anforderungsparameter und ihre Bedeutung für die weitere Produktentwicklung

Wie sehen diese Constraints aus?

Zunächst erfolgen Parameterdefinitionen zur Formalisierung der abhängigen Größen, die dann in Form von Constraints Parameterwerte oder Bereiche vorgeben oder Relationen unter verschiedenen Parametern beschreiben.

Zum Beispiel, „Drehzahlvorgaben“ in der Form:
• Drehzahl = 4000 U/min

Unscharfe Wertzuweisungen ausgedrückt in Intervallen:
• Drehzahl = (3500, 4000) U/min

Toleranzen:
• Drehzahl 3000 +/- 10 U/min

Ungleichungen:
• Maximale Drehzahl < 4500 U/min

Wertzuweisungen zur Quantifizierung der Anforderung „Bodenfarbe“ aus einer vorgegebenen Menge:
• Bodenfarbe = (Beige, Schwarz, Braun)

Weitere Constraints repräsentieren Abhängigkeiten zwischen unterschiedlichen Parametern, es können mathematische Gleichungen aufgestellt werden.
• Anforderung: „Einhaltung Durchmesservorgabe“
• DurchmesserBohrungL1 = DurchmesserBohrungL2
• Wandstärke = 2 * Bohrungsdurchmesser

Die Restriktionen können funktional begründet sein und wesentlich zur Erfüllung der Funktion beitragen und sollten somit erfüllt werden, oder lediglich zur Kostenreduktion, unter Berücksichtigung von fertigungstechnischen Bedingungen, wie beispielsweise: bei gleicher Seite kann der gleiche Bohrer mehrfach verwendet werden, formuliert sein. Die Unterscheidung der Wichtigkeit der Anforderungen erfolgt durch die Gewichtung, die Begründung wird textlich hinzugefügt oder ergibt sich aus dem Kontext.

4.4 Konzeptmodelle und Bauteilstrukturen in der funktionsgetriebenen Konstruktion

4.4.1 Abstrakte Lösungselemente als Verknüpfungsglied zum CAD

Die Produktfunktionen F_n werden durch geometrische Lösungselementen L_n umgesetzt. Die geometrische Umsetzung erfolgt zunächst aus der Generierung möglicher Wirkgeometrien W_n, in Abhängigkeit der physikalischen Effekte. Die Wirkgeometrien werden aus der Produktfunktion unter Einbeziehung der genutzten physikalischen Effekte abgeleitet, es besteht somit eine parametrische Beziehung zwischen Funktionsparametern und geometrischen Lösungsparametern. Sowohl Wirkgeometrie als auch die aus der Wirkgeometrie abgeleitete Lösungsgeometrie sollte hierarchisch beschreibbar sein. Darüber hinaus sind entsprechend der Funktionsmodellierung und Anforderungsmodellierung geometrische Parameter P_n den geometrischen Elementen L_n zuordnen, die wiederum in parametrischen Beziehungen C_n entweder innerhalb eines Elementes oder Element übergreifend zu beschreiben sind. Es gilt somit:
$L_1\ldots L_n = L_1(P_1\ldots P_n, C_1(P_1\ldots P_n), C_2(P_1\ldots P_n)\ldots L_n(P_1\ldots P_n, C_1(P_1\ldots P_n), C_2(P_1\ldots P_n))$

Für die Wirkgeometrien W_n gilt entsprechendes:

$W_1\ldots W_n = W_1(P_1\ldots P_n, C_1(P_1\ldots P_n), C_2(P_1\ldots P_n)\ldots W_n(P_1\ldots P_n, C_1(P_1\ldots P_n), C_2(P_1\ldots P_n))$

4.4.2 Kopplung zum CAD

Unterscheidung Wirkgeometrie und ausgeführte Geometrie

Zur Kraftverstärkung wurde das Hebelgesetz als Wirkprinzip gewählt und soll als Welle ausgeführt werden. Um die Information der Wirkgeometrie zu behalten, kann ein Wirkelement Hebel, mit den Parametern Hebel1 und Hebel2 sowie den Kräften F1 und F2 modelliert werden. Die Constraints C1: \(F1 \cdot \text{Hebel1} = F2 \cdot \text{Hebel2} \) und C2: \(\text{Hebel1} + \text{Hebel2} = \text{Hebelgesamtlänge} \) sind ebenfalls dem Wirkelement Hebel zuzuordnen. Bei der Übertragung des Wirkelementes Hebel in das CAD-System gibt es je nach Ausführung des CAD-Systems zwei Möglichkeiten:

- Übertragung der Wirkgeometrie Hebel mit den geometrischen Parametern, Assoziation der Parameter mit Geometrieelementen
- Übertragung der Wirkgeometrie Hebel mit den geometrischen Parametern und Constraints, Assoziation der Parameter mit Geometrieelementen

Systemkonzept einer Entwicklungsumgebung zur funktionsgetriebenen Konstruktion

für steuernde Größen zu wählen und somit sind auch keine Constraints ins CAD-System zu überführen. Die CAD-interne Constraintbeschreibung kann jedoch genutzt werden, um verfeinernde Geometrie in Abhängigkeit der Wirkgeometrie zu beschreiben.

Übergang von Gültigkeitsbereichen der Geometrieparameter und konkreten Ausprägungen

4.4.3 Aufbau von Produktstrukturen

Der Aufbau einer Hierarchie der geometrischen Lösungselemente ist vom Konstrukteur frei wählbar. Es kann der Baustruktur, also der üblichen Bauteilstruktur oder einer Funktionsstruktur entsprechen, die nicht immer gleich der Bauteilstruktur ist. Im Beispiel der Kühlmittelpumpe würde die Bauteilstruktur aufgeteilt werden in:

Durch eine funktionale Gliederung und das Hinzufügen von Kategorien kann die Bauteilstruktur die Information der auszuführenden Funktionen repräsentieren. Jedoch sind Bauteile häufig mehrfach Funktionsträger, sie unterstützen nicht nur eine Funktion sondern mehrere. Dies macht die Zuordnung der Bauteile schwierig und erfordert bei einer funktionalen Gliederung eine Mehrfachnennung eines Bauteiles bezüglich einer

4.5 Prozessmanagement in der funktionsgetriebenen Konstruktion

4.5.1 Der funktionsgetriebene Konstruktionsprozess

Die Produktentstehung ist in verschiedene Prozess-Schritte gegliedert, die zum reibungslosen Ablauf, zur Synchronisation und zur Steuerung des Gesamtprozesses Steuerungsmechanismen benötigen. Die im funktionsorientierten Konstruktionsprozess wesentlichen Steuerungsmechanismen, die in einer Entwicklungsumgebung und in der Modellierung Berücksichtigung finden sollten, sind im Folgenden aufgeführt.

Prozessmanagement

Der Produktentstehungsprozess ist in definierte Phasen unterteilt. Zur Planung und
Steuerung des Produktstandes werden so genannte Quality Gates vereinbart, in denen definiert wird, welche Bedingungen erfüllt werden müssen, um in die nächste Phase zu gelangen. Zu diesem Zeitpunkt werden die Fertigungsunterlagen eingefroren. Dieser dokumentierte Entwicklungsstand, repräsentiert in den Unterlagen, wird Baseline genannt.

Abbildung 4-7: Phasen der Konstruktion, mit den Entwicklungsständen und den zugehörigen Handlungen.

Zur Prozessverfolgung sollte eine Entwicklungsumgebung die Nennung von Entwicklungsphasen einerseits und die Speicherung eines definierten Entwicklungsstandes andererseits unterstützen. Neben den durch den Entwicklungsprozess vorgegebenen Phasen mit den zugehörigen Unterlagen sollen vom Anwender noch beliebige Unterteilungen der Phasen mit Ständen seiner Entwicklungsunterlagen hinzugefügt werden kön-
Systemkonzept einer Entwicklungsumgebung zur funktionsgetriebenen Konstruktion

Abbildung 4-8: Phase Planen und Klären der Aufgabe mit Entwicklungsständen

Das Ende der ersten Prozessphase kann durch einen definierten Zustand des Entwicklungsstandes der Fertigungsunterlagen (Baseline) gesichert werden. Alle Fertigungsunterlagen und somit auch der Modellstand werden zu diesem Zeitpunkt eingefroren, und die Entwicklung geht in die nächste Phase, die Phase der Konzeption über.

Im gesamten Entwicklungsprozess ist simultan an der Anforderungsdefinition und Modellierung, der Produktfunktion und der Produktstruktur und Gestalt zu arbeiten sowie eine Simulation und Verifikation der Entwicklungsstände vorzunehmen. Somit sind alle Teilmodule zu Anforderungen, Funktion und Gestalt gleichermaßen dem Entwicklungsstand einer Phase zuzuordnen und zum Konservieren des Entwicklungsstandes die Modelle zum Ende einer vorgegebenen oder gewählten Phase zu speichern.

Prozessmanagement bezogen auf Anforderungs- und Funktionsmodellierung

Abbildung 4-10: Anforderungsmanagement im Product-Life-Cycle

Änderungsmanagement von Anforderungen

forderung auf bereits durchgeführte Entwicklungsprozesse sind nachzuziehen.

4.5.2 Funktionsmodellierung zur Steuerung der Systemlösung

Entsprechend der Unterteilung der Gesamtaufgabe in Hauptfunktionen und Nebenfunktionen sind auch bei den Anforderungen und Lösungen zwischen Hauptfunktion spezifizierenden oder eingrenzenden Anforderungen und Hauptfunktion ausführenden geometrischen Ausprägungen zu unterscheiden.

Um diese Unterscheidung zu unterstützen, ist bei der Modellierung die Einführung einer Gewichtung vorzusehen. Die Hauptfunktionen erhalten eine hohe Gewichtung, alle Nebenfunktionen eine geringere Gewichtung. Durch die Übertragung dieser Gewichtung auf die Funktion spezifizierenden Anforderungen einerseits und die Funktion erfüllenden, geometrischen Elemente andererseits wird es ermöglicht, im Anforderungsmodell und Lösungsmodell wesentliche Intentionen zu repräsentieren.

Durch die Einführung einer Gewichtung werden folgende positiven Auswirkungen auf den Konstruktionsprozess erreicht:

- Steuernde Größe im Konstruktionsprozess: Beginn der Konstruktion bei der Hauptfunktion, Anforderungen mit höchster Gewichtung werden gefiltert.
- Variationssteuerung im Konstruktionsprozess: Werden geometrische Ausprägungen variiert, so können die Gewichtungen bei der Findung der besten Lösung beitragen.
- Suche nach vorhandenen Lösungen: Entsprechend den Hauptfunktion unterstützenden Anforderungen werden bereits ausgeführte Lösungen gesucht, diese Anforderungsparameter dienen als Suchparameter.
Bei der Wiederverwendung von bereits entwickelten Lösungen werden die geometrischen Ausprägungen der Hauptfunktion unterstützenden Parameter kenntlich.

Bei der Variation von Anforderungen oder geometrischen Ausprägungen kann die Gewichtung bei der Simulation zur Findung der besten Lösung beitragen.

Hierbei kann die Gewichtung genutzt werden, um die Hauptfunktion kenntlich zu machen. Sie kann jedoch auch genutzt werden, um kenntlich zu machen, welche Kosten die Änderung dieser Funktion verursacht. Um am Beispiel der Wasserpumpe zu bleiben ist die Hauptfunktion „Wasser fördern“, sie ist aber auch gleichzeitig die Funktion, die zur Auslegung bis zur Prototyp und Serienteilfertigung die höchsten Kosten verursacht. Die Förderung ist nach der Auslegung an Hand eines Prototypen zu testen und zu optimieren. Wurde eine Geometrie gefunden, die die Funktion hinsichtlich der Anforderungsparameterbereiche hinreichend unterstützt, so sollte die Geometrie nicht mehr geändert werden oder nur im Bereich der zulässigen angegebenen Bereichen geändert werden, da jede Änderung wieder umfangreiche Tests und somit Kosten verursachen würde.

Neben der Einführung von Gewichtungen auf Funktionsobjektebene ist die Einführung von Gewichtungen auf Parameterebene hinzuzufügen. Somit kann ausgedrückt werden, welche Parameter nach Möglichkeit nicht verändert werden sollen, da die Änderung aus funktionserfüllenden, fertigungstechnischen oder anderen Gründen vermieden werden soll.

Somit besitzt jeder einzelne Parameter eine zweidimensionale Gewichtung, an der ersten Stelle die hauptsächliche Gewichtung, erzeugt in Abhängigkeit der Gewichtung der abhängigen Funktion, und an der zweiten Stelle die lokale Gewichtung bezogen auf den Parameter selbst. Die Gewichtungen sind einerseits als Information im Konstruktionsprozess, andererseits bei einer Simulation der Parameterzusammenhänge zu berücksichtigen.

4.5.3 Repräsentation von Alternativen im Konstruktionsprozess

Der Konstruktionsprozess ist durch einen iterativen Prozess geprägt, in dem in jeder Phase Designalternativen formuliert, ausgearbeitet und bewertet werden, um entsprechend der Zielgrößen zur „optimalen Lösung“ zu gelangen. Dies erfordert in allen Phasen die Ausarbeitung von alternativen Teillösungen, die jeweils mit anderen Teillösungen zur Gesamtlösung verbunden werden, Abbildung 4-11.

Vielfach wird in der Literatur zwischen Funktion und Verhalten im Sinne von Ausführung unterschieden, was an Hand des Beispiels der Uhr verdeutlicht wurde. „Uhrzeit anzeigen“ als Funktion und „Rotation der Zeiger pro Zeit“ als Verhalten. Durch die Bereitstellung der Funktionalität Alternativen zu betrachten, wird eine Unterscheidung des Funktionsbegriffs an dieser Stelle nicht nötig. Um eine geforderte Funktion zu realisieren können unterschiedliche Funktionskonzepte umgesetzt werden. So wird beispielsweise am Beispiel der Funktion „Uhrzeit anzeigen“ diese Funktion durch die Funktion „Rotation der Zeiger pro Zeit“ ausgeführt. Wobei die Funktion „Uhrzeit anzeigen“ noch allgemein und Lösungs- unabhängig formuliert war, wird in der Funktion

4.5.4 Besonderheiten zur Repräsentation des Variantenmanagement

Der Betrachtung von Bauteilvarianten kommt im Entwicklungsprozess eine große Bedeutung zu. Zu unterscheiden sind die zwei Fälle, 1. dass eine zu konstruierende Lösung ausgeprägt in einem Teil für zwei unterschiedliche Bauteilvarianten als Lösung dienen soll und 2., dass die unterschiedlichen Anforderungsvarianten in zwei Teilvarianten ausgeprägt sind. Die zwei Fälle werden am Beispiel der Kühlmittelpumpe bezogen auf die Bauteilvarianten Dieselmotorausführung oder Benzinmotorausführung verdeutlicht. Die Fälle sind wie folgt:

<table>
<thead>
<tr>
<th>Anforderung</th>
<th>Funktion</th>
<th>Bauteil/Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vs1 pDiff1</td>
<td>Flüssigkeitsförderung</td>
<td>Lagergehäuse</td>
</tr>
<tr>
<td>Vs2 pDiff2</td>
<td></td>
<td>Flansch</td>
</tr>
</tbody>
</table>

Abbildung 4-12: Beispiel Fall 1: Zwei Motorvarianten werden in einer Ausführung einer Wasserpumpe berücksichtigt

Es erfolgt ein Anforderungsmodell, das zwei unterschiedliche Anforderungsparameter
als Eingangsgrößen für die Produktfunktion „Flüssigkeit fördern“ generiert. Die Wasserpumpe muss somit für zwei Fälle ausgelegt werden können. Wir müssen ausdrücken können:

\[P_{diff1} \cap V_{s1} \cup P_{diff2} \cap V_{s2} \]

Abbildung 4-13: Beispiel Fall 2: Zwei Nutzungsvarianten werden in zwei Varianten der Wasserpumpe umgesetzt

In diesem Fall werden für zwei Anforderungsvarianten auch zwei Lösungselemente vorgesehen. Die Anforderungsparameter sind beide Eingangsparameter der Funktion „Flüssigkeit fördern“. Da die Anforderungen nicht in einer Lösung umgesetzt und zwei Varianten mit unterschiedlichen Anforderungen erarbeitet werden, wird auch die Funktion zweifach als „Funktion hat Variante“ ausgeführt. Somit haben die zwei unterschiedlichen Varianten der Funktionsausführung zwei unterschiedliche Eingänge und führen auch zu zwei unterschiedlichen Lösungselementen, die über die Relation Lö sungselement hat Variante verbunden sein können.
4.6 Wiederverwendung von Konzepten

4.6.1 Aufbau und Nutzung von Bibliotheken

Der Aufbau von Bibliotheken sowohl für ausgeführte Lösungen als auch für Konzeptdaten wie Funktionsmodelle sollte angestrebt sein. Dazu sind geeignete Mechanismen vorzusehen.

4.6.2 Entwurfshistorie zur Dokumentation des Konstruktionsprozesses

4.7 Funktionsmodellierung als Mittel der Qualitätssicherung

Im vorangegangenen Kapitel wurde die Bedeutung der Produktfunktion im Entwurfsprozess beschrieben. Die größeren Möglichkeiten der Wiederverwendung von Systemlösungen, einerseits durch eine verbesserte Modularisierung von Systemen, andererseits

Abbildung 4-14: Entwicklungsstufen des Produktes
5 Spezifikation der Ontologie des Konstruktionsprozesses

5.1 Grafische Repräsentation der generischen Struktur des Wissensmodells unter Nutzung von UML

Für die UML-Spezifikation, die die grafische Notation und die Sprachelemente festlegt, existiert eine umfangreiche Dokumentation, derzeit in der freigegebenen Version 1.5 und 2.0 in Arbeit [158]. Im Folgendem werden einige der Elemente und Grundprinzipien für die grafische Modellierung von Objekten vorgestellt, die im weiteren Verlauf der Arbeit verwendet werden.

Klassen und Instanzen

Abbildung 5-1: Darstellung des Vererbungsmechanismus

Assoziationen

Abbildung 5-2: Assoziationen in UML-Notation

Nutzung der UML-Notation zur Beschreibung der Zusammenhänge der Objekte im Entwurfsprozess

Durch die in Kapitel 4 beschriebenen Merkmale der Funktionsmodellierung und ihrer Abhängigkeiten leitet sich direkt das notwendige OntologieModell zur Repräsentation der Zusammenhänge der Produktfunktion im Entwicklungsprozess her. In dieser Arbeit sollen Wissensmodelle entsprechend dem Beispiel zum Aufbau von Produktmodellen in drei Stufen aufgebaut werden.

- Stufe 1: das generische Modell, das die Produktfunktion und ihre semantischen Beziehungen beschreibt.
- Stufe 2: Das spezialisierte Modell, in dem spezialisierte Klassenstrukturen zu ge-
wählten Domänen definiert werden,

- Stufe 3: das Instanzenmodell, in dem die tatsächlichen physischen Bauteile mit den konkreten Ausprägungen hinsichtlich Anforderungen, Funktion und Bauteil dargestellt sind.

Abbildung 5-4: Ebenen zur Beschreibung des Ontologiemodells zur Funktionsgetriebenen Konstruktion
5.2 Das generische Wissensmodell zur Repräsentation der Grundmechanismen funktionsgetriebener Konstruktion

5.2.1 Produktfunktion als Führungsgröße zwischen Produktanforderungen und Bauteilgeometrie

Zur Herleitung eines generischen Modells wird bei der Beschreibung der Produktfunktion begonnen. Zum Modellieren der Produktfunktion benötigen wir zunächst die Möglichkeit der Funktionsbenennung und die Zuordnung von Funktionsparametern und Operationen. In einer Funktion „Drehzahl vergrößern“ sind die Größen Eingangsdrehzahl n_1, Ausgangsdrehzahl n_2 und Übersetzungsverhältnis von Bedeutung. Eine mögliche Operation, die auf Funktionsebene repräsentiert ist, könnte sein:

\[
\text{Ausgangsdrehzahl} = \text{Übersetzungsverhältnis} \times \text{Eingangsdrehzahl}
\]

Zur Modellierung des ersten Baustein der Funktionsmodellierung, des Aufbaus der Funktionsstruktur mit den gegenseitigen Abhängigkeiten, wird eine Relation benötigt, mit der der Einfluss einer Funktion auf eine andere beschrieben werden kann.

- **Beeinflusst; inverse Relation: wird beeinflusst** auf Funktionsebene

Diese Beziehung kann auf Funktionsebene genutzt werden, um zu repräsentieren, dass sich Funktionen beeinflussen oder auf Parameterebene, indem konkret Parameterbeziehungen unterschiedlicher Funktionen definiert werden, Abbildung 5-5.

Eine weitere wesentliche Relation zur Modellierung von Produktfunktionen ist die Relation:

- **Besteht aus; inverse Relation: ist Teil von**

Abbildung 5-5: Klasse Funktion mit Relationen

Abbildung 5-6: Klasse Funktion mit Referenz auf genutzten Effekt

Die Erzeugung einer konstruktiven Lösung stellt einen Abgleich von zu berücksichtigten Anforderungen der zu entwickelnden Produktfunktionen und der ausgeführten Produktgestalt mit den produktbeschreibenden Material- und Oberflächenkenngrößen dar. Die Produktfunktion muss somit einerseits mit den beschreibenden Anforderungen, an-
anderseits mit der geometrischen und technologischen Lösung in Beziehung gesetzt werden. Es wird zur Beschreibung dieser Abhängigkeit eine Relation

- **Beeinflusst, wird beeinflusst** zu Anforderungen und Lösungen

benötigt. Eine weitere Verfeinerung dieser Relation ist in Abbildung 5-7 dargestellt.

Abbildung 5-7: Klasse Funktion mit Referenz auf Anforderungen und Systemlösungen

Neben der Spezifikation der Produktfunktion besteht darüber hinaus eine direkte Spezifikation der geometrischen Lösung. Ebenso wie die Funktion in Unterfunktionen unterteilt werden und Funktionen andere Funktionen beeinflussen, können die Klassen Anforderungen und Lösung in Klassen und Unterklassen unterteilt werden, die einander beeinflussen können. Zur Repräsentation dieses Verhaltens wurde ein abstraktes Designobjekt erzeugt und als Spezialisierung die Klassen Anforderung, Funktion und Lösung erzeugt.

Anforderungen, Funktionen und Lösungsobjekte können in textlicher Form angegeben

Abbildung 5-8: Subklassen der Klasse Lösung

Bei der Repräsentation der Lösung ist es sinnvoll, neben der konkreten ausgearbeiteten Lösung, die Wirkgeometrie und ein geometrisches Bezugsmodell mit dem nicht zu überschreitenden Wirkraum zu unterscheiden. Das Bauteil wird in Abhängigkeit der Wirkgeometrie und des nicht zu überschreitenden geometrischen Raumes definiert und kann in Abhängigkeit der vorgegebenen geometrischen Grenzen variiert werden. In dem Objekt Funktion kann die funktionale Auslegung der Lösung erfolgen. Es werden funktionale Parameter generiert, die die Wirkgeometrie aufspannen. Der geometrische Lösungsraum kann einerseits über direkte Anforderungen oder über funktionale Auslegungen spezifiziert werden. Das generische Modell kann somit um die Subklassen von
Lösung, Wirkgeometrien, geometrischem Raum und tatsächlichem Bauteil erweitert werden (Abbildung 5-8).

5.2.2 Dokumentation des schrittweisen Vorgehens im Entwurfsprozess

Abbildung 5-9: Objekt zur Prozesseinstellung und Dokumentation

5.2.3 Repräsentation von Alternativen im Konstruktionsprozess

Die Gesamtaufgabe wird in Teilaufgaben verfeinert und entsprechend kann die Gesamtfunktion in Teilfunktionen untergliedert werden. Alternativen sind für die Produktfunktionen und die tatsächliche Lösung vorzusehen. Durch die Repräsentation der Relation „hat Alternative“ wird ermöglicht, unterschiedliche Alternativen in die Gesamtlösung einzubeziehen und diese zu beurteilen. Um eine geforderte Funktion zu realisieren, können unterschiedliche Funktionskonzepte umgesetzt werden. So wird beispielsweise am Beispiel der Funktion „Uhrzeit anzeigen“ diese Funktion durch die Funktion „Rotation der Zeiger pro Zeit“ ausgeführt. Weitere alternative Ausführungen können betrachtet werden. Darüber hinaus können die Alternativen als Dokumentation des Konstruktionsprozesses einerseits genutzt werden, andererseits können ausgeführte Lösungen in späteren Konstruktionsaufgaben erneut als Lösungselement in Erwägung gezogen wer-

- **hat Alternative**: zur Beschreibung von Alternativen und zum Übergang vom Funktionsbegriff hinsichtlich „was wird gemacht“ in „wie wird es gemacht“. In Abbildung 5-10 ist die Relation „hat Alternative“ im Ontologiemodell integriert.

Abbildung 5-10: Relation „hat / ist Alternative“ im Wissensmodell

Durch die Kopplung der Partialmodelle mit dem Objekt Prozess-Schritt können neben den Prozess-Schritten, die die unterschiedlichen Entwicklungsphasen benennen, auch Unterschritte benannt und zu vom Entwickler gewünschten Zeitpunkten Entwicklungsstände dokumentiert werden. Somit können auch unterschiedliche Alternativlösungen sowohl auf Funktions- als auch auf Lösungsebene einem Entwicklungsstand zugeordnet werden und auf diese Weise im richtigen Zusammenhang der Partialmodelle zueinander dargestellt werden.
5.2.4 Repräsentation von Varianten

Abbildung 5-11: Relation „Variante“ im Wissensmodell
5.3 Das generische Wissensmodell im Kontext des bestehenden Produktentwicklungssprozesses

5.3.1 Aufbau von Bibliotheken

Zur Definition und Strukturierung der Familien einer Teilebibliothek und ihrer Repräsentationen werden in der PLIB im Wesentlichen die Beziehungen:

- „is part of“ entsprechend der Beziehung „ist Teil von, besteht aus, “ und
- „is a“ entsprechend der Beziehung „ist ein“, bei der die Vererbung zum Aufbau von Taxonomie-Bäumen ausgenutzt wird.

Über die grundlegenden Beziehungen hinaus werden die Beziehungen:

- „is described by“,
- „is case of“ und
- „is view of“ definiert.

Die Relation „is described by“ entstand in Anlehnung an die heute übliche Clusterung von Lösungen anhand der beschreibenden Merkmale. Die Beziehung „is case of“ ermöglicht die Zuordnung unterschiedlicher Ausführungen von Lösungen. Hiermit wird insbesondere verwirklicht, über eine Referenzhierarchie unterschiedliche Teile von Zulieferern zu vergleichen. Die Beziehung „is view of“ realisiert unterschiedliche Repräsentationen von Familien in unterschiedlichen Softwaresystemen wie beispielsweise CAD und PPS. Mit dieser Beziehung können auch abstrakte, nicht-geometrische Sichten auf Familien unterstützt werden. Wesentlich zum Aufbau von Bibliotheken ist die Beziehung

- ist ein, „is a“, zum Aufbau von Teilebibliotheken von der generellen Beschreibung zur immer spezielleren Beschreibung.

Neben der Bibliotheksbeschreibung von Teilen können entsprechend auch Bibliotheken

Zentral genutzt wird diese Relation ebenfalls zur schrittweisen Modellierung entsprechend dem beschriebenen Ebenenkonzept, Abbildung 5-4. Beginnend bei einer generalisierten Beschreibung der prinzipiellen Zusammenhänge des Entwicklungsprozesses mit allen beteiligten Objekten, werden dann im nächsten Schritt die generalisierten Konzepte durch die Ausprägung in Klassen und Attributen zur Beschreibung der Klassen zur Repräsentation der domänenspezifischen Applikationen weiter spezifiziert und verfeinert. Im letzten Schritt wird das Modell zur Repräsentation eines konkreten Entwicklungsprozesses mit den tatsächlichen Werten der Attribute gefüllt, das Klassenmodell wird instanziert und das Systemverhalten simuliert.

5.3.2 Repräsentation der Entwurfshistorie im Wissensmodell

- **Wird ersetzt durch** zur Beschreibung der Historie des Konstruktionsprozesses. Bei der weiteren Ausführung einer Lösung kann eine bestehende Lösung gehalten werden und an einer Kopie dieser Ausführung weiter verfeinert werden.

Das erweiterte Wissensmodell ist in Abbildung 5-12 dargestellt. Diese Relation ist eben-
falls notwendig, um den Entwicklungsstand einer Prozessphase „einzufrieren“ wie in Kapitel 5.5.2 beschrieben.

Eine weitere Relation, der eine Bedeutung in der Praxis zukommt, ist die Relation „Funktion bedingt andere Funktion“. Mit dieser Relation kann beschrieben werden, dass durch die Umsetzung einer Funktion die Ausführung einer anderen Funktion notwendig wird. Sobald die Primärfunktion anders ausgeführt wird, wird die Sekundärfunktion auch nicht mehr benötigt. Auf diese Relation wurde verzichtet, da durch die gezielte Nutzung der Relation „hat / ist Alternative“ zur Repräsentation von Alternativen eine alternative Funktionsstruktur aufgebaut werden kann, die bei nicht Weiterverfolgung unberücksichtigt bleibt.

5.3.3 Erweiterte Ontologie zum Testen der Produktfunktion

Wesentlich für die Qualitätssicherung im Entwicklungsprozess ist die Validierung und Bewertung von Konzepten und Lösungen. Im Mittelpunkt der Qualitätssicherungsmethoden steht vielfach die Produktfunktion. Um diese Methoden im Entwicklungsprozess zu integrieren, ist die Ontologie um qualitätssichernde Größen zu erfordernlich. Folgende Beispiele illustrieren die Anwendung des Konzeptes.

Abbildung 5-13: Erweiterungen um QFD-Merkmale

Abbildung 5-14: Erweiterungen um Zielgrößen und Messverfahren

In der Fehlerbaumanalyse steht die Beschreibung der Produktfunktion ebenfalls im Mittelpunkt. Es werden zu allen Teilfunktionen Fehlerzustände ermittelt und entspre-
chend der Fehlerzustände fehlervermeidende Anforderungen abgeleitet. Diese Anforderungen werden ähnlich wie beim QFD als zusätzliche Anforderungen definiert. Die Ontologie ist um die Fehlerzustände zu erweitern, die mit einer Unterklassen von Anforderungen, den fehlervermeidenden Anforderungen, eine Beziehung beschreibt.

Abbildung 5-15: Erweiterungen um Elemente der Fehlerbaumanalyse

Abbildung 5-16: Erweiterungen um Elemente der FMEA

Abbildung 5-17: Relationen zur Integration von Qualitätssicherungsoptionen
6 Modellierung und Verarbeitung von Modellen in der funktionsgetriebenen Konstruktion

6.1 Funktionsgetriebener Entwurf mit dateibasierten Modell-Templates

6.1.1 Grundkonzept zum Arbeiten mit dateibasierten Modell-Templates

Abbildung 6-1: Reduziertes semantisches Modell zur Funktionsorientierten Konstruktion

Durch wiederkehrende Objektbeschreibungen und einheitliche Operationen für die Objekte Anforderung, Funktion und Bauteil wurde eine übersichtliche Benutzerführung erreicht. Abbildung 6-2 zeigt die Objekte Anforderung, Funktion und Lösung mit den zugeordneten Attributen. Zur Strukturierung der Informationen wird die Beziehung
„besteht aus / gehört zu“ zum Aufbau von Partonomien genutzt.

Jeder Parameter wird einheitlich durch die Attribute Name, Beschreibung, Einheit, Eingabewert und berechneter Wert beschrieben. Die dem Objekt zugehörigen Parameter und Constraints werden gekapselt zum Objekt repräsentiert, und können in einer Bibliothek gespeichert werden. Die Repräsentation der Parameter für die Objekte Anforderung, Funktion und Lösung ist entsprechend der unterschiedlichen Semantik dieser Objekte leicht unterschiedlich und wird im folgenden Kapitel beschrieben.

Es besteht die Möglichkeit, Einzelmodelle für Anforderungen, Funktion oder Bauteil einzeln zu laden und somit neu zu kombinieren. Es kann zu einem bestehenden Projekt ein neues Anforderungsmodell geladen werden und somit geprüft werden, inwieweit die

Abbildung 6-2: Objekte Anforderung, Funktion und Lösung mit Attributen

6.1.2 Komponenten der Systemlösung

Anforderungsmodellierung

Abbildung 6-3: Parameterliste zur Quantifizierung von Anforderungen

Funktionsmodellierung

Zur Beschreibung von Funktion und Lösung/Bauteil sind die Parameter einer konkreten Funktion oder einem konkreten Bauteil direkt zugeordnet und nicht wie bei der Anforderungsmodellierung als freie unabhängige Parameter zugänglich. So kann die Funktion Antrieb durch die Parameter Antriebsdrehzahl, Nenndrehzahl und Übersetzungsverhältnis beschrieben sein und das Bauteil Flügelrad durch die Parameter Außenradius, Nabenradius oder Höhe. Diese Parameter wiederum können, analog der dargestellten Vorgehensweise zur Definition der Anforderungen, über einen Constraint miteinander in Beziehung gesetzt werden oder ihnen Werte zugeordnet werden.

Zur Verbindung unterschiedlicher Funktionen und zur Repräsentation, dass ein Ausgangsparameter zum Eingangsparameter einer anderen Funktion wird, können diese Parameter über Constraints gleichgesetzt werden. Die Verfeinerung der Produktfunktion in Teilfunktionen und der Parameterfluss werden durch eine graphische Oberfläche visualisiert, die eine interaktive Definition unterstützt.

Bauteilmodellierung

Repräsentation teilmödellübergreifender Abhängigkeiten

Abbildung 6-5: Teilmödellübergreifende Abhängigkeiten

6.1.3 Arbeiten mit dateibasierten Modell-Templates

Die beschriebene Systemumgebung ermöglicht den funktionsorientierten Entwurf, die Simulation der abhängigen Größen als auch die Repräsentation und somit die Nachvollziehbarkeit des Entwurfsprozesses mit den Entwurfsentscheidungen. Es ist eine Systemumgebung, die sowohl zur Neukonstruktion als auch in der Anpassungs- oder Variantenkonstruktion große Vorteile bietet. Diese Vorteile können durch eine Verfeinerung
der Konstruktionsmethodik unter Einbeziehung der domänen- oder betriebsspezifischen Eigenheiten noch weiter gesteigert werden. Im Folgenden wird beispielhaft die Arbeitsweise in den unterschiedlichen Konstruktionsprozessen skizziert.

Neukonstruktion

Anpassungs- und Variantenkonstruktion

6.2 Modellierung und Verarbeitung von Modellen in einer wissensbasierten Systemumgebung

6.2.1 Das generische Wissensmodell als Klassenmodell in Protégé 2000

In Kapitel 5 wurde das generische Ontologiemodell des funktionsbasierten Entwicklungsprozesses dargestellt und in Kapitel 6.1 wurde eine Systemlösung beschrieben, die nur einen Teil der spezifizierten semantischen Beziehungen einer anzustrebenden Entwicklungsumgebung unterstützt und diese in der Systementwicklung als feste Relationen umsetzt. In dieser Umgebung wurde bereits ein großer Mehrwert zu der überwiegend in Unternehmen praktizierten Arbeitsweise in der Konstruktion aufzeigt.

In einer wissensbasierten Systemumgebung, die erlaubt:

- die semantischen Modelle zu beschreiben,
- durch Kopplung mit Inferenzmechanismen zu verarbeiten und
- durch Systemoberflächen, wie flexible Informationsportale oder an Applikationen angepasste Oberflächen, die Informationen anzuzeigen

kann das gesamte Systemkonzept (Abbildung 6-6) umgesetzt werden oder nur Teilbereiche näher spezifiziert und für Applikationen genutzt werden.

Die Hauptelemente zum Aufbau von Ontologien bilden die Klassen. Sie beschreiben die Konzepte der jeweiligen Domäne. Eine Klasse kann Subklassen besitzen, die eine Spezialisierung der Oberklasse darstellen. Slots beschreiben die Eigenschaften der Klassen und Instanzen. So wie die Slots die Eigenschaften der Klassen beschreiben, können die Eigenschaften der Slots durch die so genannten Facetten beschrieben werden.
Abbildung 6-6: Ontologie des Konstruktionsprozesses

Der Aufbau einer Ontologie basiert innerhalb dieser Arbeit auf den Schritten:

- Identifikation der Objekte, deren Attribute und Zusammenhänge,
- Definition von Klassen der Ontologie,
- Bildung der Relation zwischen Klassen,
- Bildung von Klassen in einer Klassenhierarchie (Subklasse-Superklasse), der Taxonomie,
- Definition von beschreibenden Attributen und der Gültigkeit der Attribute,
- Füllen der Attribute mit Werten, Bildung der physikalischen Teile, der Instanzen.

Durch die Nutzung einer Schnittstelle kann das generalisierte Ontologiemodell, das in UML modelliert wurde, in Protégé eingelesen werden und als Basis zum weiteren Aufbau von Klassenstrukturen dienen. Die Klassen, einschließlich der Klassen/Subklassen-Hierarchie und der Attribute der Klassen werden übernommen. Die Relationen der Klassen untereinander werden als spezialisierte Slots repräsentiert, die derart ausgeführt werden, dass die in Beziehung stehenden Klassen jeweils den Beziehungsslot oder
den inversen Beziehungsslot führen.

Eine auf Protégé 2000 basierende Benutzeroberfläche, die um Modellierungs- und Visualisierungselemente erweitert wurde, wird in Abbildung 6-7 dargestellt. Das angezeigte Modell entspricht dem aus UML konvertierten Ausgangsmodell zur funktionsbasierten Konstruktion. Zu unterscheiden sind Benutzeroberflächen zur Definition der Klassen „Tab Classes“, zur Definition der Attribute „Tab Slots“, zur Generierung der Eingabefenster „Tab Forms“ und zur Eingabe von Instanzenmodellen „Tab Instances“.

Abbildung 6-7: Generalisiertes Ontologiemodell zum funktionsbasierten Entwurf
Definition von spezialisierten Attributen zur Repräsentation physikalischer Größen

Eine Erweiterung der einfachen Taxonomie der physikalischen Größen stellt die Repräsentation der Relationen der physikalischen Größen untereinander dar. Um die physikalischen Größen durch die physikalischen Gesetze in Beziehung zueinander zu setzen, werden die in den so genannten SI-Einheiten (SI = Systeme International d’Unités) definierten Ausgangsgrößen zu Grunde gelegt. In diesem SI-Einheitssystem existieren sieben Basisgrößen, aus denen sich alle anderen physikalischen Größen zusammensetzen, wobei für jede Basisgröße die Definition der Normierung auf die Maßeinheit festgelegt ist. Diese Basisgrößen sind im Einzelnen:

- Zeit in Sekunden [s],
- Länge in Meter [m],
- Masse in Kilogramm [kg],
- Elektrische Stromstärke in Ampere [A],
- die Temperatur in Kelvin [K],
- die Lichtstärke in Candela [cd] und
- die Stoffmenge in Mol [mol].

Aus diesen Basisgrößen lassen sich alle anderen physikalischen Größen ableiten, die
ebenfalls als Attribute vordefiniert werden können. Somit werden die Attribute erweitert um beispielsweise

- Fläche, als Produkt aus zwei Längen in \([m^2]\),
- Winkel als Quotient aus Bogen (-länge) und Radius (Länge) in Radant \([\text{rad}]\),
- Frequenz, als Reziprok der Periodendauer (Zeit) in Hertz \([\text{Hz}]\),
- Geschwindigkeit als Quotient aus Wegintervall (Länge) und Zeitintervall in \([m/s]\),
- Beschleunigung als Quotient aus Geschwindigkeitsänderung und Zeitinterval in \([m/s^2]\),
- Kraft, als Produkt aus Masse und Beschleunigung in Newton \([\text{N}]\),
- Arbeit, Energie als Produkt aus Kraft und Weg in Joule \([\text{J}]\),
- Leistung als Quotient aus Arbeit und Zeitintervall in Watt \([\text{W}]\) und weitere.

Um den Zusammenhang der physikalischen Größen darzustellen, sind die Beziehungen der einzelnen Attribute zueinander zu repräsentieren. Hierzu wird eine Entwicklungs-umgebung benötigt, die erlaubt, Relationen zwischen Attributen zu repräsentieren. Dieses ist in Protégé nicht gegeben. Somit wurde lediglich die Repräsentation der Taxonomie der physikalischen Größen genutzt.

Abbildung 6-8: Repräsentation der Relationen von physikalischen Größen

6.2.2 Der Aufbau eines spezialisierten Wissensmodells am Beispiel des Wasserpumpenentwurfs

Das in Kapitel 5 beschriebene generische Modell (Abbildung 6-6) kann als Ausgangsmodell für zu spezialisierenden Klassenmodelle dienen. Ob spezialisierte Klassenmodelle als Konstruktionsvorlagen bereits vorab definiert werden können, um dann im Konstruktionsprozess genutzt zu werden, hängt zunächst davon ab, welche Konstruktionsart vorliegt.

In der Anpassungs- und Variantenkonstruktion ist der Konstruktionsrahmen, in dem sich der Konstrukteur bewegt, bekannt und begrenzt. Hier ist der Aufbau eines domänenspezifischen Klassenmodells zur Repräsentation der konstruktiven Zusammenhänge sinnvoll.

Durch die Klassifikation von bestehenden Lösungen und die Repräsentation der konstruktiven Zusammenhänge können diese Klassenmodelle für nachfolgende Entwicklungen als Basis genutzt werden. Die Taxonomie der Wasserpumpen kann in Protégé direkt oder durch die Entwicklung geeigneter Benutzeroberflächen aufgebaut werden.
In Abbildung 6-9 ist die Benutzeroberfläche von Protégé zur Definition von Klassenmodellen abgebildet. Im linken Fenster ist ein Ausschnitt der Taxonomie sichtbar. Im rechten Fenster werden die Eigenschaften der Klassen spezifiziert oder instanziiert, im rechten unteren linken Fenster können Relationen zu anderen Klassen instanziiert werden, und im rechten unteren rechten Fenster wird die Partonomie der selektierten Klasse angezeigt.

Abbildung 6-9: Aufbau eines spezialisierten Modells am Beispiel Wasserpumpe
Die Spezialisierung der Klassen oder Attribute erfolgt durch Selektion des Button \(c \) für „create/erzeuge“ oder \(v \) für „view/anzeige, ändern“. Es erscheint ein Fenster, das die Konkretisierung der zu erzeugenden Elemente erlaubt. Bei der Spezialisierung der vordefinierten Relationen erscheint ein Pop-up Fenster, das die Selektion der möglichen Klassen, zu der eine Relation definiert ist, ermöglicht, Abbildung 6-11.

Abbildung 6-10: Taxonomie und Partonomie der Klassen Funktion und Lösung

Abbildung 6-11: Selektion der Beziehung „Bauteil basiert auf Wirkgeometrie“
Im dargestellten Beispiel soll eine Relation zur Wirkgeometrie aufgebaut werden. Da die allgemeine Relation zwischen Klasse „Lösung“ und Klasse „Wirkgeometrie“ definiert ist, wird auch nur die Klasse Wirkgeometrie und ihre Subklassen zur Selektion angeboten.

Durch die Instanziierung der Relationen wird ein semantisches Netz erzeugt, das die Zusammenhänge der relevanten Objekte im funktionsorientierten Entwurf repräsentiert. In Abbildung 6-12 sind Teilausschnitte des über die Relationen beschriebenen semantischen Netzes dargestellt.

Abbildung 6-12: Semantisches Netz: Wasserpumpenentwurf

Die zur Verfügung gestellten Mechanismen können genutzt werden, um domänespezifische Ontologien aufzustellen, die alternative Funktionsausführungen, gegebenenfalls unter Nutzung von unterschiedlichen Wirkprinzipien repräsentieren, die zu alternativen Lösungen führen. Durch den Aufbau der Alternativen und die Verknüpfung der Relationen können Konzeptmodelle aufgebaut werden, die in Verbindung mit einer übersichtlichen Darstellung als Grundlage der Lösungsfinding dienen können. Darüber

Abbildung 6-13: Darstellung von Ausführungsalternativen in Form von Karten

Die Darstellung kann für die Klassen Wirkgeometrie und Lösung analog genutzt werden, sowie entsprechend der angezeigten Funktionsstruktur der Lösungsstruktur gegenüber gestellt werden, Abbildung 6-14.

Abbildung 6-14: Kartendarstellung von Funktion und Lösungsalternativen

Zur Unterstützung der Abwägung der Konzepte und Lösungen ist ein Attribut, als Rep-
räsentation der Lösungsgüte zu generieren, das als Werte 1 bis 3 annehmen kann.

Abbildung 6-15: Gegenüberstellung von Lösungskonzepten in Anlehnung an den morphologischen Kasten.

Neben den domänespezifischen Lösungskomponenten wie Funktion, Wirkprinzip, physikalischer Effekt und geometrische Lösung können auch Anforderungen als Klassen spezifiziert werden. Diese werden dann im konkreten Entwurfsprozess instanziert. So können beispielsweise der Funktion Förderung als eingrenzende Randbedingungen die Anforderungen DrehzahlVorgabe, FördermengenVorgabe, DifferenzdruckVorgabe definiert werden und als Spezifikation zugeordnet werden. Durch den Aufbau der Zusammenhänge zwischen den Produktfunktionen und den einschränkenden Randbedingungen kann der Informationsgehalt des Anforderungsmodells erhöht werden. In Abhän-
Modellierung und Verarbeitung von Modellen in der funktionsgetriebenen Konstruktion

145

Die Gewichtung der zu gestaltenden Produktfunktion erhalten diese funktions-
spezifizierenden Randbedingungen die der Funktion entsprechende Gewichtung. Am
Beispiel der Wasserpumpenentwicklung sieht diese Funktionalität wie folgt aus: Die
primäre Funktion einer Wasserpumpe besteht in der Förderung von Flüssigkeit zur
Kühlung des Motors. Somit wird der Funktion Flüssigkeit fördern die höchste Gewich-
tung zugeordnet. Die Funktionen Antreiben, Gehäuse bilden oder Lagern, erhalten nied-
rigere Gewichtungen, da sie erst im zweiten Schritt in Abhängigkeit der gefundenen
Lösung für die Wirkgeometrie der Förderung hierauf angepasst entwickelt werden. Die
für die Funktion bestimmenden Parametervorgaben erhalten die gleiche Gewichtung
wie die Funktion Förderung. Da die Fördermenge die bestimmende Größe für die Tem-
peraturabfuhr bildet, erhält sie gegenüber den anderen Vorgaben die höchste lokale
Gewichtung.

Zur Spezialisierung des Prozesses können die unternehmensspezifischen Prozess-
Schritte spezifiziert werden und die definierten Quality-Gates zugeordnet werden. Im
folgenden Entwurfprozess kann dann der aktuelle Prozess-Schritt gewählt werden und
eine Zuordnung der Fertigungsunterlagen zu den Prozess-Schritten erfolgen.

Abbildung 6-16: Beispielhafte Partonomie der Prozess-Schritte

Da die Fertigungsunterlagen in Abhängigkeit des Entwicklungsfortschritts ständigen
Änderungen und Erweiterungen unterliegen, ist die Zuordnung der Unterlagen zum
aktuellen Prozess-Schritt zur Nachvollziehbarkeit des Entwurfprozesses besonders
wichtig. Insbesondere die Entwicklung des Anforderungsmodells, das einerseits in Iter-
rationen in Abhängigkeit der Machbarkeit des Produktes unter Einhaltung der Anfor-
derungen und andererseits durch neue Kundenanforderungen einem Veränderungspro-
zess unterworfen ist, birgt großen Informationsgehalt bezüglich der Produkthistorie. So
cönnen beispielsweise Ausprägungen im Produkt enthalten sein, die von einer Anforde-
6.2.3 Der Konstruktionsprozess unter Nutzung des Wissensmodells

Der Konstruktionsprozess ist somit untergliedert in die abstrakte Beschreibung der Zusammenhänge von Funktion, Anforderung und Lösung, eventuell unter Nutzung von Vorlagen, und die Instanzierung der Vorlagen. Es werden also zunächst die Funktionen und Funktionsparameter, Anforderungen und Anforderungsparameter, sowie Lösungen und Lösungsparameter beschrieben und im zweiten Schritt die Werte der konkreten Aufgabenstellung eingegeben.

6.3 Die Schlussfolgerungskomponente in der Systemumgebung zur funktionsgetriebenen Konstruktion

6.3.1 Constraint-Repräsentation und -Verarbeitung im Applikationskontext

Zur Repräsentation der quantitativen, auswertbaren Abhängigkeiten werden, wie bereits teilweise aufgezeigt, Constraints verwendet. Das Überprüfen des Constraintnetzes auf Konsistenz und das Berechnen der beteiligten Parameter erfolgt unter Nutzung von „Constraint Lösern“ (Constraint Solvern). Im Folgenden werden die für die Applikation wesentlichen Gesichtspunkte und Vorteile der Constrainttechnik applikationsbezogen beschrieben:

- Die Beschreibung der Abhängigkeiten als Constraints dienen der Repräsentation und Auswertung von Abhängigkeiten zwischen Objekten.
- Durch Constraints können Zwänge, Beschränkungen oder Restriktionen zur Repräsentation von konstruktiven Zusammenhängen und im Lösungsprozess zur Findung der optimalen Lösung ausgedrückt werden.
- Ebenfalls zur Beschreibung von Funktionen und physikalischen Effekten werden die physikalischen Zusammenhänge durch Constraints beschrieben.
- Die Nutzung der Constraints zur Repräsentation von Zusammenhängen ist ebenfalls bei der Geometriebeschreibung das vorrangige Mittel. Geometrische Abhängigkeiten oder erste Dimensionierungen, die bei der funktionalen Auslegung als Entwurfsparameter erzeugt werden, können durch Constraints beschrieben werden. Im geometrischen Bereich werden die arithmetischen Constraints noch um die geometrischen Constraints wie beispielsweise: Parallelität, senkrechter Abstand oder konstanter Abstand von unterschiedlichen Elementen, ergänzt.
- Constraints eignen sich zur Darstellung lokaler Randbedingungen, welche eine gesuchte Lösung auf jeden Fall erfüllen muss, ohne jedoch eine konkrete Lösung vorzugeben.
- Formal wird durch einen „Constraint“ eine Relation zwischen Variablen erzeugt. Darüber hinaus können Vorschriften für die Wertebelieferung vorgegeben werden, die den Lösungsraum eingrenzen.
- Werden mehrere Constraints über ihre Variablen miteinander verknüpft, so ent-
steht ein Constraint-Netz. An dieses Netz angelegte Variablenwerte können ausgewertet werden, so dass eine, die einzelnen Constraints erfüllende, konsistente Wertebelegung resultiert.

- Die Auswertung von Constraintnetzen erfolgt über Constraintsolver, die in Abhängigkeit der Constrainttypen einerseits und der zu verarbeitenden Wertemengen andererseits auszuwählen sind.

Wichtige Eigenschaften zum Lösen von Constraints im Engineering-Kontext sind vielfach

- die Verarbeitung von heterogenen Constraints hinsichtlich
 - zu verarbeitendem Variablentyp,
 - Gleichungen und Ungleichungen,
 - Einzelwertberechnung oder Intervalalgorithmik,
 - lineare Gleichungen und Gleichungen höherer Ordnung,
 - trigonometrische Funktionen,
 - benutzerdefinierte Funktionen wie aus a folgt b, und
- die bidirektionale Verarbeitung von Constraints.

Die Bedeutung der bidirektionalen Verarbeitung von Constraints im Entwurfsprozess soll im Folgenden dargestellt werden.

Der Konstruktionsprozess ist dadurch gekennzeichnet, dass ein ständiger Iterationsprozess durchlaufen wird. Sobald Vorgaben gemacht werden, wird versucht, Lösungen zu generieren. Sind ähnliche Lösungen bereits durchgeführt worden, wird versucht, diese Lösungen wieder zu verwenden. Es wird also nach Lösungen gesucht. Sind diese Lösungen gefunden worden, muss überprüft werden, ob die gefundenen Lösungen, den vorgegebenen Anforderungen entsprechen. Sind die Produktfunktionen durch funktionale Parameterzusammenhänge repräsentiert, bei dem die Eingangsparameter überwiegend Anforderungsparameter und die Ausgangsparameter überwiegend Lösungsparameter sind, so wird im ersten Schritt bei der Generierung von Lösungen die Gleichung von links nach rechts durchlaufen, im zweiten Schritt bei der Lösungsvorgabe und Abprüfung, ob eine gefundene Lösung auch die Vorgaben erfüllt, wird die Lösung der Glei-
Es wird ersichtlich, dass es wünschenswert ist, ein Constraintsystem einzusetzen, das die Propagierung in unterschiedlichen Richtungen erlaubt.

Applikationsabhängige Wahl von Problemlösungsmethoden und -werkzeugen

In den folgenden Kapiteln wird der differenzierte Einsatz von Constraint-Solv tern an hand der zuvor beschriebenen Umgebungen zur funktionsorientierten Konstruktionsunterstützung aufgezeigt.

6.3.2 Repräsentation und Verarbeitung von Constraints unter Nutzung der dateibasierten Modelltemplates

Ebenfalls in der in Kapitel 6.1 dargestellten Systemumgebung, basierend auf dateibasierten Modell-Templates und Bibliotheken zur Wiederverwendung der Entwurfsunterlagen, wurde durch eine modulare Systemarchitektur eine Trennung der Repräsentation der Informationen, der Inferenzkomponente und des zu nutzenden Constraint-Solvers durchgeführt. Somit ist entsprechend der Applikation und des hieraus resultie-
renden proprietären Umfanges von Ausdrucksmöglichkeiten und Erfordernissen hinsichtlich der zu repräsentierenden Constrainttypen ein geeigneter Constraint-Solver zu wählen. Um dieses zu erreichen, ist das System entsprechend den Anforderungen über eine Schnittstelle mit einem geeigneten Constraint Solver zu koppeln.

Abbildung 6-17: System FOD mit koppelbarem Constraint-Solver

Wird kein externer Constraint-Solver gewählt, so steht ein interner Constraint Solver zur Berechnung zur Verfügung. Dieser Constraint-Solver deckt einen Grundleistungs-umfang in Engineering Applikationen ab. Es wird die Berechnung von Real-Werten in gerichteten Gleichungen unterstützt. Darüber hinaus kann die Konsistenz von Ungleichungen geprüft werden. Somit können Aussagen wie beispielsweise $Drehzahl > Drehzahl_{min} + 10$, die insbesondere wichtig zur Definition von Anforderungen sind, auf ihre Einhaltung überprüft werden, wenngleich die Werte nicht berechnet werden können.

<table>
<thead>
<tr>
<th>Anforderungen</th>
<th>Funktionen</th>
<th>Bauteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1.mitCL.Cn.mitLP.Fn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2.mitCL.Cn.mitLP.Fn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3.mitCL.Cn.mitLP.Fn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A4.mitCL.Cn.mitLP.Fn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Übergreifende Constraints C: (P_{i:n}(A), P_{i:n}(F), P_{i:n}(B))

Abbildung 6-18: Constraint-Konzept der FOD-Software

6.3.3 Repräsentation und Verarbeitung von Constraints im Wissensmodell

Phasen betrachtend ist die Schlussfolgerung wie folgt:

Eine weitere Fragestellung an die Ontologie im funktionsorientierten Konstruktionsprozess kann die Suche nach Ähnlichkeiten von Lösungen sein, um eine Wiederverwendung von Teillösungen für neue Produktanfragen zu finden. Hierfür sind andere Methoden und Verfahren der Schlussfolgerung notwendig. Im ersten Fall wurden die Abhängigkeiten eines konkreten Projektes propagiert, in diesem Fall wird ein Suchen von Ähnlichkeiten über die Taxonomien gefordert. Hierbei kommen insbesondere Methoden zum Zuge, bei denen Berechnungen und Such- und Vergleichsoperationen im Wechsel vorliegen, beispielsweise bei der Anforderung „Lösung mit möglichst kleinem Gewicht“. Hier wird eine Funktion benötigt, die die alternativen Lösungen vergleicht und entlang der Bauteilstruktur den Wert der Eigenschaft Gewicht sammelt und aufsummiert. Um häufig auftretende Fragestellungen zu unterstützen, können Constraints definiert werden, die wiederkehrende Zusammenhänge beschreiben und Parameter berechnen. So beispielsweise kann durch die Definition des Attributes Gewicht, bei bestehenden Subklassen immer die Summe der Gewichte der Subklassen gebildet werden. Um diese Funktionalität bereit zu stellen, sind zusätzliche Grundfunktionen wie „For all“, Summe, Produkt usw. zu unterstützen.

Abbildung 6-20: Die UPML Architektur für Wissensbasierte Systeme

Modellierung und Verarbeitung von Modellen in der funktionsgetriebenen Konstruktion

Die Problemlösungsmethoden (PSMs) von wissensbasierten Systemen (WBSs) zerlegen die Schlussfolgerungskomponente eines WBS in eine Anzahl von Einzelaufgaben und Inferenzaktionen die im Zusammenhang mit Regeln stehen. Durch die Definition einer Softwarearchitektur für die Beschreibung dieser Schlussfolgerungsmechanismen von WBSs durch PSMs wird beabsichtigt, heute vielfach verfügbare Bibliotheken von PSMs zur halbautomatischen Wiederverwendung zu nutzen. Beschriebene Aufgaben sollen, wie beispielsweise „Parametrischer Entwurf“, durch die Kopplung mit den PSMs, die für diese Aufgabe notwendig sind, in unterschiedlichen Applikationen, beschrieben im Domänenmodell, wieder verwendet werden können. Die Ontologie stellt die explizite Spezifikation einer Konzeptualisierung bereit, die von mehreren miteinander kommunizierenden Schlussfolgerungskomponenten während eines Problemlösungsprozesses parallel genutzt werden können.

7 Prototypische Realisierung einer Systemumgebung zur funktionsgetriebenen Konstruktion

7.1 System FOD (Function-Oriented Design) für die frühen Phasen der Produktentwicklung

7.1.1 Systemarchitektur

Durch die Realisierung von Softwarebausteinen einer Entwicklungsumgebung zum funktionsorientierten Entwurf basierend auf dateibasierten Modell-Templates, wie in Kapitel 6.1 und 6.3.2 beschrieben, wird der Nachweis für die Umsetzbarkeit des entwickelten Konzepts geführt, Abbildung 7-1.

Abbildung 7-1: Systemkonzept des FOD-Systems

5 Die Realisierung der Softwarebausteine wurde von der Firma CADsys und dem IWF durchgeführt
Im Rahmen des vom BMBF geförderten Projektes IVIP ist im Teilprojektes „Funktionsoorientierter Entwurf in frühen Phasen“ eine prototypische Realisierung von Systemkomponenten des beschriebenen Systemkonzeptes umgesetzt worden [161].

Die Software FOD (Function-Oriented Design) wurde so konzipiert, dass sie als eine Systemumgebung zur Unterstützung der frühen Entwurfsphasen genutzt werden kann und als eigenständiges System vor dem CAD-System Verwendung findet. Durch eine allgemeine Schnittstelle sind das FOD-System und beliebige CAD-Systeme unter Nutzung des allgemeinen Schnittstellenformates CAD-Services mit einander gekoppelt. Das FOD-System unterstützt die Modellierung von Anforderungen, Funktionen und Baustrukturen in Hierarchiebäumen und die Beschreibung von inneren oder äußeren Beziehungen der einzelnen Teilmodelle durch die Definition von Constraints. Entsprechend der zuvor beschriebenen Aufgaben besteht die prototypische Implementierung aus Software-Werkzeugen zur

- Anforderungsmodellierung,
- Funktionsmodellierung,
- Bauteilbeschreibung und der
- Beschreibung der Beziehungen von Anforderungen, Funktion und Bauteilgeometrie.

Die repräsentierten Objekte weisen ähnliche, wiederkehrende Objektbeschreibungen und Interaktionskonzepte auf. So sind die Editoren zur Definition von Anforderungen, Funktionen und Bauteilen gleichermaßen aufgebaut, Abbildung 7-2.
Im linken Bildbereich ist der Hierarchiebaum dargestellt, im rechten Bildbereich sind die näheren Informationen des im Hierarchiebaum selektierten Objektes angezeigt. Im oberen rechten Bildbereich sind die Verwaltungsdaten wie Name des Objektes, Autor und Datum der Erstellung dargestellt. Darunter befinden sich in Registerdarstellung Eingabefenster zur textlichen Beschreibung des Objektes, zur Eingabe von Verknüpfungen und zur Definition von Constraints. Im Panel Verknüpfung können zur weiteren Informationsbereitstellung Links zu Normen, Richtlinien oder Ausarbeitungen durch die Eingabe einer URL oder dem Speicherort einer Datei vorgenommen werden. Bei den Editoren zur Funktionsdefinition und Bauteilbeschreibung sind die Fenster noch um die Anzeige der objektbeschreibenden Parameter ergänzt. Im Folgenden werden die einzelnen Editoren und die Arbeitsweise kurz aufgezeigt.

7.1.2 Anforderungs-Editor

In der Anforderungsmodellierung werden die produktbeschreibenden Randbedingungen und Restriktionen aufgenommen. Durch die Vereinzelung der Anforderungen kann die

Abbildung 7-3: Parameterliste zur Quantifizierung von Anforderungen

Zur Konkretisierung und Verarbeitbarkeit der Information wird der Constraint \(n_{MotorMax} = 2700 \) 1/min formuliert und ein weiterer Constraint definiert, der sicherstellt, dass die Nenndrehzahl unter der Maximaldrehzahl liegt: \(n_{Motorauslegung} < n_{MotorMax} \).
Zur Definition der Constraints werden die zuvor definierten Parameter als Terme verwendet. Es wird unterschieden zwischen der Definition von zu prüfenden Constraints (\(n\text{Motorauslegung} < n\text{MotorMax} \)) und Constraints mit zu berechnenden Parametern (\(P1 = P2 / 2 \)) oder Wertzuweisungen (\(d\text{Motor} = 200 \)).

Abbildung 7-5: Fenster zur Definition von Constraints

Neben der Definition, Prüfung und Verarbeitung von Anforderungen wird der Prozessstand der Anforderungsmodellierung an Hand einer Status-Angabe repräsentiert.

7.1.3 Funktions-Editor

Analogen der Anforderungs- und Bauteilmodellierung wird die Funktionsmodellierung durch das Aufstellen von Funktionshierarchien in Baumdarstellung und durch die Beschreibung der Teilfunktionen durchgeführt. Der Kern der Funktionsmodellierung liegt darüber hinaus

• in der Beschreibung des Zusammenhangs zwischen Eingangs- und Ausgangsgrößen einer Produktfunktion unter Berücksichtigung von Randbedingungen und

• in der Beschreibung des Parameterzusammenhangs und des Parameterflusses der einzelnen Teilfunktionen einer Hierarchieebene.

Zur Visualisierung und graphisch interaktiven Definition von Funktionsstrukturen wurde eine Oberfläche implementiert, in der Funktionen als Blöcke und die Parameter-

Abbildung 7-6: Grafisch-Interaktive Oberfläche

Durch die Kapselung einzelner Teilfunktionen und die Parameterverknüpfung von Auslegungsparametern kann eine Auslegung von Teilfunktionen erfolgen. Ist der Auslegungsprozess nicht durch eine Verknüpfung von Auslegungsparametern berechenbar sondern unterliegt er einem Auslegungsprozess unter Nutzung anderer Hilfsmittel und Programme, so kann die Definition der Teilfunktion mit den Eingangs- und Ausgangsgrößen und dem Aufruf der externen Ausführungsfunktion als definierte Schnittstelle genutzt werden.

Die Wiederverwendung von Teilfunktionen einschließlich möglicher Verfeinerungen in Unterfunktionen kann durch die Nutzung einer Bibliotheksfunktion unterstützt werden. In der Bibliothek können die Teilfunktionen gespeichert und in anderen Applikationen zur Verfügung gestellt werden.

7.1.4 Bauteil-Editor

7.1.5 Abhängigkeiten der Partialmodelle

Die qualitativen Abhängigkeiten (Aussagen wie: welche Anforderung hat Einfluss auf eine bestimmte Funktion; oder: durch welche Bauteile wird eine vorgegebene Funktion unterstützt) werden durch Drag-and-Drop-Funktionen im Constraint Manager definiert und graphisch visualisiert. Diese Funktionalität ermöglicht eine schnelle Definition und übersichtliche Visualisierung der Zusammenhänge zwischen Anforderungen, Produktfunktionen und umgesetzter Lösungen.

Darüber hinaus wird die quantitative Beschreibung von Abhängigkeiten der Partialmodelle durch die Repräsentation von Parameterverknüpfungen unterstützt. Die Definition der Parameterverknüpfungen wird durch den Constraint Editor unterstützt, Abbildung 7-10.

Durch die Repräsentation der parametrischen Abhängigkeiten zwischen Anforderungen, Funktionen und Bauteilrepräsentation kann dann der Auslegungsprozess durch die Iteration zwischen Parameterwahl und Simulation der Auswirkungen unterstützt werden.
Abbildung 7-10: Constraint-Editor
7.2 Beispielszenario zum Arbeiten mit dem FOD-System

7.2.1 Überblick

Im folgenden Kapitel wird am Beispiel des Entwurfs einer Kühlmittelpumpe unter Nutzung der in Kapitel 7.1 beschriebenen Systemumgebung ein Anwendungsszenario dargestellt, in dem zum einen die Arbeitsweise im funktionsorientierten Entwurf erläutert wird, zum anderen Möglichkeiten zur verbesserten Wiederverwendung von bestehenden konstruktiven Lösungen und die Adaption an die neue Konstruktionsaufgabe aufgezeigt werden. Eine Kurzbeschreibung der Zuordnung der Anwendung von Systemkomponenten in Abhängigkeit der Phase des Entwicklungsprozesses soll einleitend dargestellt werden:

- Der Konstruktionsprozess beginnt mit der Analyse des Lastenheftes, um die zu entwickelnden Produktfunktionen mit den zu beachtenden Randbedingungen zu identifizieren sowie den organisatorischen Rahmen und weitere Restriktionen und Hinweise zu extrahieren. Bei dieser ersten Aufgabenanalyse soll der Anforderungs-Editor unterstützt.

- Zur Realisierung der geforderten Produktfunktion werden Bauteilgeometrien entworfen. Der Bauteil-Editor ermöglicht die Definition der Bauteilstruktur mit den geometriebestimmenden Parametern.

- Zur Definition der Relationen zwischen Anforderungen, Funktionen und Bauteilen wird der Constraint-Manager verwendet. Dies ermöglicht die Beschreibung der

Der genaue Ablauf wird im Folgenden beschrieben.

7.2.2 Anforderungsmodellierung

Die Beschreibung der Anforderungen beinhaltet die textliche Beschreibung, Links zu externen Dokumenten und Constraints zu Anforderungsparametern sowie eine Liste mit Anforderungsparametern. Für diese Parameter werden der Typ, der Name, die Einheit und eine optionale Beschreibung angegeben.

7.2.3 Funktionsmodellierung

Nach hinlänglicher Definition der Anforderungen kann der Konstrukteur mit der funktionalen Spezifikation der Kühlmittelpumpe fortfahren. Durch die Funktionsmodellierung werden die Funktionen mit ihren Unterfunktionen beschrieben. Der Funktionsedi-
tor unterstützt den Aufbau der Funktionsstruktur mit den Parameterverknüpfungen unter Nutzung des Drag' and Drop' Mechanismus. Das Ergebnis ist eine Graphstruktur (vg: Abbildung 7-6).

Zum Finden der Lösungen wird zunächst in der Bibliothek nach einer Funktion **Fördern** gesucht. Ist die Funktion **Fördern** in der Bibliothek repräsentiert, so kann zum einen die Repräsentation der Funktion **Fördern** mit seinen Parametern und Parameterverknüpfungen und wenn vorhanden auch Unterfunktionen in das gerade zu bearbeitende Funktionsmodell übernommen werden. Zum anderen wird ersichtlich, welche Parameter die Funktion **Fördern** beeinflussen und kennzeichnen. Durch die Kopplung der Parameter mit den nun aktuellen Anforderungsparametern wird ersichtlich, welche Anforderungsparameter die Hauptfunktion spezifizieren. Mit der Information der Hauptfunktion und der Anforderungsparameter kann die Bibliothek erneut auf konkrete Funktionsausprägungen mit den gesuchten Anforderungsparametern durchsucht werden. Wurde die Funktion **Fördern** bereits mit den gesuchten Anforderungsparametern ausgeführt, so kann die Funktionsauslegung übernommen werden.

Es besteht darüber hinaus die Möglichkeit, zu ausgeführten Funktionen, die hierbei entwickelten Bauteilmodelle in die Bibliothek zu stellen. Ist diese Information verfügbar, so kann die Bauteilstruktur mit den beschreibenden Parametern und Parameterverknüpfungen ebenfalls in das aktuelle Bauteilmodell eingeladen und auf Konsistenz mit den neuen Anforderungen geprüft werden. Ist kein Link zum Bauteilmodell in der
Bibliothek festgehalten, kann an Hand der Funktionsparameter und ihrer Ausprägungen nach (Teil-)Lösungen in gespeicherten Modellen im lokalen Dateisystem und im Intranet gesucht werden. Eine entsprechende Suchfunktionalität ist in der Systemumgebung vorhanden.

Werden keine Lösungen für die gesuchte Funktion mit den aktuellen Anforderungsparametern gefunden, so wird die Funktion unter Nutzung eines externen Prozesses ausgelegt und die sich hieraus ergebenden geometrischen Auslegungsparameter für die funktionsbestimmenden Geometrien für Flügelrad und Spirale an das System zurückgegeben.

7.2.4 Bauteilmodellierung und Constraint Management

Parallel zur Funktionsbeschreibung der Kühlmittelpumpe kann der Konstrukteur bestimmen, welche physischen Bauteile und Komponenten diese Produktfunktionalität ausführen werden. Zunächst wird die Bauteilstruktur, eine Hierarchie von Baugruppen, Unterbaugruppen, Bauteilen und Konstruktionsfeatures erstellt, die die Produktfunktionen unter Berücksichtigung der Anforderungen realisiert. Diese Bauteile fungieren als erste Konzeptmodelle für die spätere Geometriemodellierung im CAD.

In gleicher Weise wie bei der Funktionsmodellierung kann der Konstrukteur eine Bau-
teilbibliothek konsultieren und nach Features, Bauteilen und sogar kompletten Bau-
gruppen, sortiert in Funktionskategorien, suchen. Bei der Suche nach einem Bauteil,
das eine Produktfunktion genau erfüllt, sind dies Blätter in dem Funktionsbaum. Alternat-
viv können Bauteile gefunden werden, die zwei oder mehr Funktionen erfüllen, kor-
respondierend zu einem Funktionsblock auf einer höheren Ebene des Modellbaumes
(funktionale Integration), oder es können mehrere Komponenten notwendig sein, um
eine Funktion zu realisieren (funktionale Diversifikation). Für die Kühlmiedelpumpe
definiert der Konstrukteur einen Topknoten 'Kühlmittelmpumpe' und unterteilt die Bau-
gruppe in Antrieb, Fördereinheit, Lagerung und Gehäuse. Alternativ kann ebenfalls
eine im PDM-System beschriebene Bauteilstruktur importiert werden. Die Schnittstel-
le des FOD-Systems ermöglicht unter Nutzung der iViP PDM-Basisdienste eine Bau-
teilstruktur zu selektieren und eine Bauteilstruktur oder Baugruppenstruktur in das
FOD-Bauteilmodell zu importieren. Des Weiteren kann die Bauteilstruktur auch von
einer Baugruppe im CAD während der Laufzeit übernommen werden. Im Falle eines
parametrischen CAD-Systems können darüber hinaus auch die CAD-Parameter impor-
tiert werden.

Jede Komponente kann analog zur Anforderungs- und Funktionsmodellierung textuell
beschrieben werden und weitere Informationen können zu externen Dokumenten ver-
linkt sein. Die Bauteilgeometrie kann durch geometrische und nichtgeometrische Para-
meter beschrieben werden. Des Weiteren können Constraints innerhalb eines Bauteiles
oder zwischen mehreren Bauteilen definiert werden. Beispielsweise kann der Konstruk-
teur festlegen, dass der Außendurchmesser der Welle gleich dem Innendurchmesser der
Riemenscheibe, die aufgebracht wird zuzüglich eines Toleranzparameters sein soll.
Nach der Definition aller Bauteile kann die Bauteilstruktur durch die Gruppierung aller
Bauteile in einer Hierarchie erfolgen. Die Bauteilstruktur wird in Form eines Baumes
repräsentiert und ermöglicht somit das Navigieren in der Struktur. Diese Mechanismen
sind für die Anforderungs- und Funktionsmodellierung identisch.

Durch die Nutzung des Constraint Managers wird es ermöglicht, die logischen Abhän-
gigkeiten zwischen Anforderungen, Funktionen und Bauteilen zu beschreiben. Die Ab-
hängigkeiten können entweder quantitativ oder qualitativ repräsentiert werden. Unter
Nutzung dieser Funktionalität kann gezeigt werden, ob alle wesentlichen Anforderun-
gen berücksichtigt wurden, ob alle intendierten Funktionen durch Bauteile erfüllt wer-
den, beziehungsweise welche Bauteile welche Funktionen erfüllen. Die Abhängigkeiten
der Einzelmodelle können als Graphen visualisiert werden, Abbildung 7-13.

Abbildung 7-13: Graphische Darstellung der Abhängigkeiten

In unserem Beispiel wird gezeigt, dass die Anforderung \textit{Nenndrehzahl der Kühlmittelpumpe} mit der Funktion \textit{Antreiben} verbunden ist und die Funktion \textit{Antreiben} wiederum das Bauteil \textit{Flansch} bestimmt. Wie die Nenndrehzahl bei der Dimensionierung des Flansches Berücksichtigung findet, kann durch Nutzung des Constraint Managers beschrieben und später berechnet werden. Der Konstrukteur definiert in unserem Beispiel darüber hinaus, dass der Außendurchmesser der Riemenscheibe durch Parameter des Anforderungsmodells definiert wird (In gleicher Weise, wie bereits zuvor im Anforderungsmodell beschrieben: Abhängigkeit zwischen Riementscheibendurchmesser der Pumpe und des Riementscheibendurchmessers des Motors über das vorgegebene Übersetzungsverhältnis). Alle wichtigen Anforderungen, insbesondere Anforderungen, die einen direkten Einfluss auf die Dimensionierung des Produktgestalt haben, werden mit den korrespondierenden Bauteilparametern quantitativ mit Hilfe der \textit{Dependencies} oder qualitativ durch die Definition von \textit{modellübergreifenden Constraints} verbunden. Damit ist eine spätere Nachvollziehbarkeit des Design Intent sowie eine Möglichkeit der Analyse und Validierung des Design-Konzepts durch Simulationsläufe mit veränderten Pa-
rametern gegeben.

7.3 Kopplung mit einem CAD-System

- Neukonstruktion eines Bauteiles unter Dokumentation des Design Intent,
- Wiederverwendung von Bauteilen aus dem CAD und Überprüfung, ob das Bauteil die neuen Anforderungsparameter erfüllt,
- Adaption vorhandener Bauteile aus dem CAD an neue Anforderungen.

Im zweiten Fall möchte der Konstrukteur ein Bauteil, wie beispielsweise die Riemenscheibe, unverändert wiederverwenden. Es werden die Bauteilstruktur und die Parameter aus dem CAD-System übernommen, und im Abgleich der Parameter wird angegeben, dass die FOD-Parameter von den CAD-Parametern kontrolliert werden. Durch die Kopplung der FOD-Parameter mit Anforderungsparametern kann nun nachgeprüft werden, ob das Bauteil die Anforderungen erfüllt.

Durch die bidirektionale Kopplung wird der Entwurf von Bauteilen nachhaltig unterstützt. Eine Adaption vorhandener Bauteile an neue Anforderungen wird vereinfacht,
da die Einflüsse der Änderung von Anforderungsparametern auf die Geometrie und umgekehrt direkt sichtbar werden.

Die zugrunde liegende Schnittstelle zwischen dem FOD-System und den CAD-Systemen basiert auf der CAD-Services Spezifikation der OMG. Bis heute wurden die Systeme CADdy++ Maschinenbau, Autodesk Mechanical Desktop und Pro/ENGINEER angebunden.

Durch die Kopplung mit dem PDM-System besteht zusätzlich die Möglichkeit, im PDM-System nach relevanten Teilen zu suchen. Das Bauteil oder Assembly kann in das CAD-System geladen werden und von hier in das FOD-System mit den Parametern übernommen werden.
8 Systemrealisierung mit wissensbasiertem Systemumgebung

Abbildung 8-1: Ontologiebasiertes Systemkonzept

Basierend auf der Ontologie erfolgt die domänenspezifische Modellierung des Anwendungsfalles. Es werden die Anforderungen, Funktionen und Bauteilstrukturen definiert und die Zusammenhänge beschrieben sowie formalisierbare Zusammenhänge in Constraints innerhalb der Klassen abgelegt.

Im Bereich der Motorenentwicklung wurde eine Applikation modelliert und konnte zur Auslegung des Brennraumes genutzt werden. Fokus lag in dieser Applikation auf der Beschreibung der funktionalen Anforderungen und der Ausprägung der Geometrie bei veränderten Parameterwerten.

Abbildung 8-2; Schrittweises Vorgehen in der Auslegung

Abbildung 8-3: Anzeige im Konfliktfall

9 Zusammenfassung und Diskussion der Ergebnisse

Die Grundidee der Arbeit besteht in der Repräsentation der Produktfunktion als Bindeglied zur Repräsentation der Abhängigkeiten im Konstruktionsprozess, beginnend bei den Produktanforderungen bis hin zur geometrischen Umsetzung und der Wahrung der Design Rationals. Ebenso kann die Produktfunktion für die der Konstruktion nachgelagerten Bereiche wie Planung, Fertigung, Montage sowie für die Erprobungsphase als elementares Element zur Validierung des Produktes dienen. Insbesondere bei der Entwicklung von mechatronischen Systemen stellt die Produktfunktion und die Funktionsstruktur ein übergeordnetes Datenobjekt dar, das den Gesamtzusammenhang des Produktes dokumentiert und die Schnittstellen der unterschiedlichen Bereiche definiert.
Zusammenfassung und Diskussion der Ergebnisse

Durch die Integration eines solchen Grundmodells in den Entwicklungsprozess und die Aufnahme und Strukturierung dieser am Konstruktionsprozess beteiligten Wissenselementen bestehen zum einen große Vorteile für den Entwicklungsprozess selbst, zum anderen ermöglicht sie eine bessere Wiederverwendung von Teillösungen. Die wesentlichen Elemente des Systemkonzeptes sind:

- Die modulare Repräsentation der Produktfunktion mit ihrer Verfeinerung in Teilfunktionen und der abhängigen Parameter und Parameterverknüpfungen.
- Die Repräsentation der Zusammenhänge im Entwurfsprozess. Dies gilt insbesondere für die Zusammenhänge zwischen Anforderungen, umzusetzenden Produktfunktionen und ausgeführten Lösungen.
- Die Repräsentation, Verarbeitung und Simulation der Modellzusammenhänge durch die Parameterverknüpfung unter Nutzung von Constraints.

Durch die Umsetzung des Grundkonzeptes in einer Systemumgebung, und dessen Integration in bestehende CAD- und PDM-Systemlandschaften wird an Hand einer Beispielapplikation die strukturierte Vorgehensweise und deren Implikationen aufgezeigt. Durch die große Akzeptanz dieser Vorgehensweise und der entsprechenden Systemlösungen wurde das FOD-System von der Fa. CADsys zum marktfähigen Produkt weiterentwickelt und kann, nicht zuletzt durch inzwischen zahlreiche weitere marktgängige Applikationen die ökonomische Relevanz dieses Systemkonzeptes unter Beweis stellen.

Die Qualität dieser Unterstützung hängt dabei zum einen von der Qualität der Abbil-
Zusammenfassung und Diskussion der Ergebnisse

...ung von Produktfunktionen ab, zum anderen davon, wie geeignet der Zusammenhang zum Produktentwicklungsprozess und den individuellen Entwicklungstätigkeiten hergestellt werden kann. Die Grenzen der entwickelten Herangehensweise liegen vor allem darin, dass ein rationaler, strukturell und informationstechnisch fassbarer Ansatz gewählt wurde. Intuitive und nicht formalisierbare Schritte des Entwicklers auf dem Weg zu Lösungen können so nicht geeignet unterstützt werden.

Eine weitere Umsetzung der Konzepte wurde unter Nutzung eines integrierten Wissensmanagementprozesses in der Produktentwicklung beschrieben und an Hand von Anwendungsbeispielen illustriert.

Die mit der Umsetzung der vorgestellten Konzepte verbundenen Kosten hängen stark von der unternehmensindividuellen Situation ab und lassen sich nur nach einer genau en Analyse entsprechend quantifizieren. Die maßgebliche Einflussgröße ist hierbei nicht die systemtechnische Ausstattung des Unternehmens, sondern viel mehr Adaption der bisherigen Entwicklungstätigkeit an einen neuen oder erweiterten, durch ein Werkzeug unterstützten Entwicklungsprozess. Die wesentlichen Optimierungsparameter sind hierbei die Qualifikation der Mitarbeiter sowie die Art und Komplexität der betrachteten Produkte. Der Nutzen für das jeweilige Unternehmen resultiert direkt aus der Reduktion von Entwicklungszeiten und der verbesserten Produktqualität durch die Optimierung der Prozesse sowie der verbesserten Wiederverwendung von Entwicklungsleistungen und konstruktiven Lösungen, was wiederum eine Kostenreduktion bei der Entwicklung in nachgelagerten Bereichen zur Folge hat. Aufgrund der hohen Bedeutung des Bereichs Produktentwicklung für den Unternehmenserfolg sind die dargestellten Ansätze im Hinblick auf eine Verbesserung der Wettbewerbsfähigkeit zukünftig verstärkt in Betracht zu ziehen.
10 Literatur

75. Pahl, G.; Wallace, K.: Using the concept of functions to help synthesises solutions. In: Engineering Design Synthesis, Understanding, Approaches and tools, Chakra-

100. Grabowski, H. (Hrsg.): Sonderforschungsbereich 346: Rechnerintegrierte Konstruktion und Fertigung von Bauteilen. Integriertes Produkt-

113. VDI-Gesellschaft Entwicklung, Konstruktion, Vertrieb (VDI-EKV) und Gesellschaft für Informatik (GI) (eds.): Wissensbasierte Systeme für Konstruktion und

125. Internetreferenz: www.ampl.com

128. Internetreferenz: http://www.wolfram.com/products/mathematica/benefits/index-

159. ISO 13584, Parts Library Data, Part 10 „Conceptual Model of Parts Library“.

