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Sensorless force control for dielectric
elastomer transducers

Thorben Hoffstadt and Jürgen Maas

Abstract
Multilayer stack-transducers made of dielectric elastomers generate considerable tensile forces and deformations when
they are electrically stimulated. Thus, due to their capacitive behavior, they are for example energy efficient substitutes
for conventional electromagnetic drives and enable various further completely new applications. Within this contribu-
tion, we present a sensorless force control for dielectric elastomer stack-transducers driven by a bidirectional flyback-
converter. This force control for example can be used as interface for superimposed application-oriented controls. First
of all, the properties of dielectric elastomer stack-transducers and the flyback-converter as well as its control structure
are summarized. Due to the characteristic behavior of the power converter, the design of a sliding mode force controller
is carried out based on an analytical model of the coupled electromechanical system containing the transducer and driv-
ing electronics. Using this model, the transducer force can be determined with the measured driving voltage and defor-
mation so that an explicit force measurement is not required. In a first step, a two-point controller is developed for the
variable structure control that is afterward extended in order to improve the control quality, for example, by adapting
the inner power converter control. Finally, the experimental validations with a prototype stack-transducer and bidirec-
tional flyback-converter demonstrate the feasibility as well as the precision and dynamics of the developed force control.
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Introduction

Smart materials offer various opportunities to realize
scalable, efficient, and easy to integrate transducers.
They have unique mechanical as well as electrical prop-
erties that enable advantageous features for a wide
range of applications as actuators, sensors, and genera-
tors. Hence, beside completely new applications, these
transducers are often superior substitutes for conven-
tional electromechanical actuators, with extensively
improved power consumption, force density, and flexi-
bility. However, depending on the kind of application,
the transducers are part of a control loop, so that a cer-
tain control interface has to be provided. For this pur-
pose, Maas and Soetebier (2012) have proposed a force
control interface realized under consideration of the uti-
lized smart material and its driving power electronics.
With this interface, the novel transducer system can be
integrated in a superimposed application-oriented con-
trol loop, for example, a motion or impedance control.

Within this contribution, transducers based on
dielectric elastomer (DE) are considered consisting of a
hyperelastic, incompressible elastomer coated with
compliant electrodes on its surfaces. By applying an

electric field strength E to the DE, the resulting electro-
static pressure sel depending on the material’s permit-
tivity e= e0 � er describes the electromechanical
coupling

sel = e0 � er � E2 = e0 � er �
v2

p

d2
=

2

Ve

� Uc, diel ð1Þ

It also can be expressed by the energy Uc, diel stored
in the DE capacitance obtained by the elastomer mate-
rial covered with electrode resulting in the active vol-
ume Ve.

Based on this, electromechanical coupling actuators
(Giousouf and Kovacs, 2013; Price and Ask, 2014),
generators (Maas and Graf, 2012; Pelrine et al., 2001)
as well as sensors (Anderson et al., 2012; Hoffstadt
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et al., 2014) can be realized and were investigated in sev-
eral publications, see for example Rosset et al. (2016),
Hodgins et al. (2013), and Zhang et al. (2006). Since
very thin polymer films with thickness d are used to
achieve high electric field strength E with considerable
low voltages vp, multilayer technologies are meaningful
for DE actuators to either increase the deformation or
force of the actuator. Thus, these actuators are predes-
tined among other for positioning applications like in
pneumatic valves or electrical switches, see Price and
Ask (2014), or for haptic feedback applications, for
example, as proposed by Biggs et al. (2013).

For different DE transducer topologies and applica-
tions, control concepts have been published previously.
Kaal and Herold (2011) have compensated the non-
linear static voltage–strain behavior of a DE actuator
by implementing an inverted feed-forward structure to
obtain a linear static behavior. This scheme was used
to realize an active vibration control. However, by this
approach, only the static behavior can be compensated.
In the higher frequency range, a sufficient control qual-
ity is only obtained when the viscous material proper-
ties are almost negligible.

For a circular single-layer DE actuator, Dubois
et al. (2008) propose a model-based approach to con-
trol the resonance frequency of the DE membrane. As
a possible application of such a device, also a tunable
attenuator is mentioned. Sarban and Jones (2012)
developed a model-based feed-forward control for a
DE roll-actuator used for active vibration damping. In
contrast, Zou et al. (2016) present a feed-forward con-
trol for the creep compensation of a membrane actua-
tor, while Gu et al. (2015) use a comparable structure
for the open-loop deformation control of a planar DE
actuator.

In addition, position control designs have been car-
ried out using the aforementioned static linearization
by implementing a square-root function in the forward
path. In particular, Rizzello et al. (2016) designed a
proportional-integral-derivative (PID) controller for a
DE membrane actuator, while Jones and Sarban (2012)
developed an internal model position control for a DE
roll-actuator. The control scheme suggested by Wilson
et al. (2016) uses a cerebellar-based adaptive-inverse
model control especially to improve the behavior in
case of DE materials with dominant creep.

However, due to the very fast and powerful labora-
tory high-voltage amplifiers used within the aforemen-
tioned publications, it was sufficient to neglect the
dynamics of this amplifier when designing the control,
although silicone-based DE materials with very low vis-
coelastic time constant have been used. Furthermore,
the referenced controllers were realized within one sin-
gle control loop. In contrast, it is also possible to estab-
lish an inner force control interface. Subsequently,
comparable to conventional drive systems, this control
interface can be used to realize the application-oriented

control within superimposed control loops as already
mentioned above. Force control interfaces are also very
common in terms of the control of (soft) robotics, for
example, for rehabilitation devices (Maciejasz et al.,
2014) or artificial muscles (Tomori et al., 2013) under
particular consideration of the utilized actuator
principles.

In the conference proceedings (Hoffstadt and Maas,
2015b), an open-loop force control for a DE stack-
actuator was proposed that calculates the required ter-
minal voltage to obtain the set-point force. Based on a
simplified linearelastic model of the DE stack-actuator
and the measured terminal voltage, the elastic deforma-
tion as well as viscous material tensions was estimated
and compensated by a feed-forward control. Using this
estimation, a measurement of the actuator force, that
is, the control variable, was not necessary.

Within this contribution, this approach is extended
to a sensorless closed-loop force control taking into
account the nonlinear DE stack-actuator dynamics as
well as the characteristics of the feeding power electro-
nics. The utilized bidirectional flyback-converter sup-
plies an almost constant but adaptable feeding power
over the whole operating range. While DE stack-
actuators can be modeled with similar approaches as
used for other topologies, for example, a membrane
actuator, the mentioned converter behaves completely
different than the usually used high-voltage amplifiers.
Due to this, a PID controller as used by Rizzello et al.
(2016) and Chuc et al. (2011) is not sufficient if high
dynamics and accuracy should be obtained. The
strongly nonlinear behavior of the control plant with
the flyback-converter and the DE stack-actuator
requires a particular control strategy to ensure high
dynamics, robustness, and sufficient accuracy. Thus,
here a sliding mode controller (SMC) according to
DeCarlo et al. (1988) is designed for the intended force
control. To our best knowledge, it is the first time that
both the properties of the DE actuator and the predes-
tined power electronics are taken into account for the
design of the transducer control.

In the following section, first of all, the considered
system comprising a DE stack-transducer and a bidir-
ectional flyback-converter is introduced and an electro-
mechanically coupled model (Hoffstadt and Maas,
2015a) for their dynamics is presented. One of the state
variables in this model is assigned to the electrical field
energy in the elastomer capacitance as an equivalent
quantity. This energy results in the electrostatic pres-
sure, see equation (1), and thus causes the actuator
force. Hence, by controlling the energy, the force is
controlled, too. The design of the sliding mode force
control or corresponding energy control is carried out
based on the holistic electromechanical model, after-
ward. In this content, the focus is also given on the
optimization of the control with respect to minimized
losses by reducing the switching frequency of the
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flyback-converter as well as an improved control accu-
racy by adapting the inner control of the power converter.

Due to the nonlinear system dynamics, an extended
Kalman filter (EKF) is used here to estimate all
required states for the control based on the measured
terminal voltage and the deformation of the stack-
transducer. Overall, this results in the structure of the
closed-loop force control schematically depicted in
Figure 1. Finally, the obtained force control is experi-
mentally validated using an in-house developed proto-
type of the converter and an automatically
manufactured prototype of the DE stack-transducer.

Overall system model for DE stack-
transducers driven by bidirectional
flyback-converters

Before the design of the proposed force control is car-
ried out, first of all the utilized DE stack-transducer
and driving power electronics are briefly introduced.
Both parts result in an electromechanically coupled
model of the overall system that is afterward used for
the control design.

Multilayer DE stack-transducer

The design and fabrication of the considered multilayer
DE stack-transducers are described in detail by Maas
et al. (2015). In general, this transducer consists of N
single DE actuator films with initial thickness d0

stacked on top of each other. Hence, these films are
mechanically connected in series while the electrical
supply is ensured via a connection in parallel. Centrally
on the DE transducer films, electrodes with area
Ae =we � le are applied. In order to prevent electrical
arcing, this area is surrounded by an insulating area,
that is, the transducer films have a total cross-sectional
area of A0 = l0 � w0, see Figure 2. By stacking N films,
the active volume Ve =Ae � N � d0 and overall transdu-
cer volume V =A0 � N � d0 can be distinguished.

Due to the mechanical connection in series, the
deformations of the single films sum up, while
the transducer force is scaled by the active area Ae of
the stacked transducer films. Considering a quasi-static
operation, a stack-actuator generates a tensile force
Fact depending on the electrostatic pressure sel applied
on the active area Ae and the elastic deformation ten-
sion selast on the overall area A

Fact =A � sact =Ae � sel � A � selast ð2Þ

This tensile force can be transmitted if mechanical
interfaces are applied on the top and bottom layers of
the stack-actuator for the integration into the intended
application, see Figure 3(a). Since a part of the electro-
static pressure is used to elastically deform the actua-
tor, the actuator force is decreased with increasing
deformation as can be seen in the strain–force charac-
teristics in Figure 3(b). However, adapting the electro-
static pressure sel by the applied electrical field
strength E0 = vp=d0, the force Fact can be adjusted in a
certain range for a given deformation. Assuming an
almost homogeneous deformation, these characteristics
can be modeled analytically as subsequently explained
and experimentally validated for the use of the intended
force control, while the dashed lines in Figure 3(b) rep-
resent results of a finite element analysis (FEA) under
consideration of constraints due to the actuator design
published by Kuhring et al. (2015).

Bidirectional flyback-converter

From an electrical point of view, a DE transducer rep-
resents a capacitive load, given by the DE films electri-
cally connected in parallel, with additional resistances
in series and parallel to take into account the non-ideal
behavior of the utilized electrode and the dielectric
loss, respectively. Thus, in order to control the
voltage across the DE, a controlled current source is
required as power electronics, see Maas and Graf
(2011). Among others, for moderate output powers, a

Figure 1. Structure of the sensorless closed-loop force control for DE stack-transducers fed by a bidirectional power electronics.
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flyback-converter as schematically depicted in Figure 4
provides this capability with output voltages in the
kilovolt-range. Furthermore, a bidirectional energy
flow can be enabled by including switches S1 and S2 on

the primary and secondary side, respectively. For
charging a DE transducer solely S1 is modulated while
S2 is opened. Vice versa, for discharging S2 is used, see
Hoffstadt and Maas (2016).

Here, the magnetizing inductance Lm of the flyback
transformer is used as an energy storage element analog
to the inductor in a buck–boost converter (Venkatesan,
1989). By adjusting a certain peak value I�m, max of the
magnetizing current im = i1 + i02, the energy increment
DUmax stored in Lm is given by

DUmax=
1

2
� Lm � I�2m, max ð3Þ

This characteristic behavior results in a mean output
power �p per switching period TS given by three discrete
states

�p=
+ �pmax= + DUmax

TS
, charging

0, off� state
��pmax= � DUmax

TS
, discharging

8<
: ð4Þ

As shown by Sokal and Redl (1997), this energy
increment is transferred from primary to secondary side
or vice versa in the shortest possible time TS if the
flyback-converter is operated in boundary conduction
mode (BCM). In case of the BCM, the magnetizing cur-
rent im alternates between zero and its maximum value
I�m, max. The next switching period starts right in the
moment when im becomes zero. Therefore, to operate
the flyback-converter in this BCM sensors are required
to detect whether the magnetizing current has reached
these thresholds. Then the triggering signal Ec can be
generated for the primary and secondary switches S1

and S2, respectively. Beside measuring the current for
this purpose, a sensorless hysteresis current control
based on the model of the bidirectional flyback-
converter depicted in the dashed box in Figure 4 and
the measured output voltage vDE of the DE transducer
can be implemented, as proposed in Hoffstadt and
Maas (2016). This sensorless current control solely
requires a measurement of the output voltage but not
of the current, that is, the measurement effort can be
significantly reduced.

Using this control with a superimposed voltage con-
trol loop, the measurement results in Figure 5 are
obtained with a prototype of the bidirectional flyback-
converter. As can be seen in the two plots in the middle
showing the magnetizing current im = i1 + i02, the
switching period TS in BCM decreases with increasing
output voltage vDE. However, as TS only changes signif-
icantly for voltages below 500 V, the mean output
power �p in equation (4) is almost constant for a chosen
I�m, max during charging and discharging, as can be seen
in the bottom plot. This results in the characteristic
change in voltage that approximately can be described
by a square-root function for a capacitive load

Figure 2. Schematic design and dimensions of the considered
DE stack-transducer (a) and relevant tensions to model the
strain–force behavior (b).

Figure 3. Prototype of a silicone-based DE stack-transducer
with two interfaces (a) and its strain–force characteristics (b).

Figure 4. Bidirectional flyback-converter with sensorless
hysteresis current control operating the driving electronics in
boundary conduction mode (BCM).
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(Hoffstadt and Maas, 2016). Furthermore, by varying
I�m, max according to equation (3), the feeding power in
equation (4) can be continuously adjusted, too. In case
of a smaller I�m, max, it takes longer to charge the capaci-
tance of Cp, 0 = 100nF to 2.5 kV. By reducing I�m, max,
the resolution of the sliding mode control can be
increased. As explained in the control section in detail,
this will be used for the adaptation of the control.

Holistic transducer model

The subsequent design of the sensorless force control is
based on a holistic model of the DE stack-transducer
that was published previously (Hoffstadt and Maas,
2015a) and is illustrated in Figure 6. While in the previ-
ous publication, the stretch lz, defined as the ratio of
the actual transducer height z to its initial value
z0 =N � d0, was used to describe the deformation state;
here, the strain ez =Dz=z0 in positive z-direction of
actuation is considered (see Figure 2) depending on the
compression Dz because this quantity is more common
in control engineering. Nevertheless, the stretch and
strain can be related as follows

lz =
z

z0

=
z0 � Dz

z0

= 1� Dz

z0

= 1� ez ð5Þ

As already depicted in Figure 1, the model of a DE
transducer comprises a mechanical (green box) and an
electrical domain (red box) that influence each other
due to the electromechanical coupling (yellow box).
Within the mechanical domain, the nonlinear

viscoelastic behavior is modeled by a generalized
Kelvin–Maxwell model with the corresponding ten-
sions already depicted in Figure 2(b). Depending on
the applied electrostatic pressure sel and an external
load tension sload , the strain ez is obtained. In case of
strains smaller than 20%, the Neo–Hookean approach
is sufficient to model the quasi-static hyperelastic mate-
rial behavior (Hoffstadt and Maas, 2015a). Under con-
sideration of the DE stack-transducer design in Figure
2, the almost equi-biaxial in-plane deformation is given
by

selast =
Y

3
� 1

1� ez

� 1� ezð Þ2
� �

ð6Þ

depending on the material’s Young’s modulus Y.
Viscoelasticity is considered by a linear viscosity hE

resulting in

svisc =hE � _ez ð7Þ

and one additional Maxwell element. In contrast to the
hyperelastic behavior depending on the strain ez, the
viscoelastic tension of the Maxwell element is deter-
mined with the strain ek1 of its spring k1 since it is
assumed to be linear and connected in series to the
dashpot h1

_ek1 = _ez �
k1

h1

� ek1 ! sMW = k1 � ek1 ð8Þ

Hence, the overall actuator tension can be modeled
by

sact =b � sel � selast � svisc � sMW ð9Þ

Here, b=Ae=A takes into account that the electro-
static pressure sel only acts on the area Ae covered with
electrode, compare equation (2). Under consideration
of equation (1), the effective electrostatic pressure can
be expressed with the overall transducer volume V by

b � sel =
Ae

A
� 2

Ve
� Uc, diel =

2
V
� Uc, diel

withVe =Ae � z andV =A � z ð10Þ

The actuator tension sact works against an external
load tension sload and results in the acceleration in
direction of actuation

z0 � €ez =
A

macc

� sact � sloadð Þ= A0 � sact � sloadð Þ
macc � 1� ezð Þ ð11Þ

considering equi-biaxial in-plane extension for the
incompressible elastomer material by

A=
A0

1� ez

ð12Þ

Here, macc comprises the accelerated actuator mass
as well as the additional mass madd of components

Figure 5. Output voltage vDE , sections of the magnetizing
current iDE = i1 + i02, and mean power �p obtained when feeding
a DE capacitance of Cp = 100 nF with the bidirectional flyback-
converter using the BCM control.
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attached to the stack-actuator. According to Piersol
and Paez (2010), a third of the continuously distributed
transducer mass mDE is accelerated, resulting in

macc =
mDE

3
+madd ð13Þ

This finally yields the nonlinear action diagram in
Figure 6. As already mentioned above, the functional
principle of a DE actuator is given by the electrostatic
pressure sel in equation (1). Thus, the energy Uc, diel as
an output quantity of the electrical domain acts on the
mechanical domain by a linear relation. Although this
energy is stored in the active volume depending on the
area Ae covered with electrode, the overall volume V of
the DE stack-actuator is used here in order to take into
account that the electrostatic pressure has to deform
the whole actuator with its insulating and, thus, passive
volumes.

The electrical domain is derived based on a consider-
ation of a power balance. This balance is obtained
under consideration of the electrical equivalent circuit
in Figure 1 (red box). The model comprises a series
resistance Re representing losses of the electrode, a par-
allel resistance Rp of the non-ideally insulating polymer,
and its capacitance Cp. Due to the deformation under
actuation, the values of these parameters depend on the
stretch.

While Graf and Maas (2011) have derived analytical
expressions for the stretch dependency of the resistance
Rp and the capacitance Cp, a suitable relation for the
electrode resistance is difficult to find. The behavior of
the electrode strongly depends on the utilized electrode
material and its structure. However, concerning the
intended power balance, the electrode causes losses �pRe

during charging and discharging operation but not dur-
ing the off-state of the utilized converter. Thus, for the

further considerations, the output power �p in equation
(4) is reduced by the losses �pRe

resulting in the mean
feeding power

�p0= �p� �pRe
ð14Þ

The loss �pRe
=Re � i2

DE depends on the resistance Re

and the feeding current iDE. As the current is discontin-
uous and depending on the charging state, it is hard to
find an analytic approximation for this loss. However,
for the intended SMC, it is not necessary to exactly
determine this loss. As shown in the following section,
it has to be distinguished between charging, dischar-
ging, and off-state, so that �p0 can be used as control
input. In addition, the parallel resistance Rp causes
losses pRp

, too. A part of the power is converted into
mechanical power pmech that deforms the DE and works
against the load sload . Under consideration of all of
these quantities, the power balance can be derived by

_Uc, diel = �p0 � pRp
� pmech, with pmech = pact + pkin ð15Þ

Here, the losses pRp
are obtained by taking into

account the parallel connection of the DE capacitance
Cp and the resistance Rp that are obtained by connect-
ing the N single DE transducer films in parallel. By
defining the time constant tp, the losses linearly depend
on the energy Uc, diel

�pRp =
v2

p

Rp

=
2 � Uc, diel

Cp � Rp

=
2 � Uc, diel

tp

ð16aÞ

withUc, diel =
Cp

2
� v2

p

and tp = N � e0 � er �
A

d|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Cp

� 1

N
� rp �

d

A|fflfflfflfflffl{zfflfflfflfflffl}
Rp

= e0 � er � rp ð16bÞ

Figure 6. Holistic model of a DE stack-transducer driven by an averaged input power �p0 supplied for example by the bidirectional
flyback-converter.
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Hence, the inner feedback loop of the electrical
domain describes a first-order lag with a constant para-
meter 2=tp. To obtain an expression for the mechanical
power pmech and by this for the feedback of the mechan-
ical on the electrical domain, the force Fel =A � sel

using equations (1) and (12) as well as the velocity
_Dz= z0 � _ez has to be considered

pmech = 2
V
� Uc, diel � A0

1�ez
� z0 � _ez

= 2 � Uc, diel � _ez

1�ez
, with V =A0 � z0

ð17Þ

Thus, this feedback only depends on Uc, diel and the
strain state. As can be seen by this equation, the power
pmech occurs only for _ez 6¼ 0 and Uc, diel 6¼ 0. It describes
an actuation in case of _ez.0 and a harvesting of
mechanical energy for _ez\0 (generator mode).
Furthermore, typical materials used for DE applica-
tions have a high specific resistance rp. Due to the
resulting high time constant tp, �p0 and pmech are the
dominant parts in equation (15). For simplified control
designs, it might be sufficient to neglect pRp, while here
it is taken into account to obtain a general design.
Finally, this results in the overall nonlinear action dia-
gram of the DE stack-actuator in Figure 6 comprising
the coupled (yellow box) mechanical (green box) and
electrical domain (red box).

Furthermore, under consideration of the action dia-
gram, a state vector xDE can be defined consisting of the
strain ez, its velocity _ez, the strain ek1, and the energy
Uc, diel

xT
DE = ez _ez ek1 Uc, diel½ � ð18Þ

Here, Uc, diel is chosen instead of the voltage vp due to
the linear relation in equation (1).

Defining the input

u= �p0 ð19Þ

this yields the nonlinear differential equations

_xDE =

_ez

€ez

_ek1

_U c, diel

2
664

3
775=

f1,DE xDEð Þ
f2,DE xDEð Þ
f3,DE xDEð Þ
f4,DE xDEð Þ

2
664

3
775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
fDE xDEð Þ

+BDE � u

=

_ez
V

macc�z2
0

� sact�sload

1�ez

_ez � k1

h1
� ek1

�2 � Uc, diel � _ez

1�ez
+ 1

tp

� �

2
66664

3
77775+

0

0

0

1

2
664
3
775 � �p0,

with sact =
2
V
� Uc, diel � Y

3
� 1

1�ez
� 1� ezð Þ2

� �
�hE � _ez � k1 � ek1

ð20Þ

Force control design

As explained above, the input �p0 of the control plant
can vary between three discrete values only, that is, the
DE transducer is charged (�p0= + �pmax), held in its cur-
rent state (�p0= 0), or discharged (�p0= � �pmax), see
equation (4). Due to this property, a variable structure
control design is advantageous for the intended force
control that has to decide which of the input states is
required to reach the set-point F�act of the desired force.
The strongly nonlinear behavior of the control plant in
Figure 6 requires a particular control strategy to ensure
robustness and sufficient accuracy especially in combi-
nation with high dynamics. Thus, a sliding mode force
controller (SMC) as described by DeCarlo et al. (1988)
is chosen, since it fulfills these specifications and it is
predestined for the properties of the considered control
plant. The idea of this approach is to define a switching
surface in the state space of the system on which the
system state is led toward a desired steady-state set-
point value.

Design of a sliding mode force control

One of the key aspects of a SMC is the definition of a
switching function S(x). In case of a system of nth order
with p= 1 input usually a linear switching function
(DeCarlo et al., 1988) is chosen by

S Dxð Þ= cT � Dx, with cT = c1 � � � cn½ � ð21Þ

On the switching surface, the trajectory of the sys-
tem is moved toward the origin containing the set-point
values during the so-called sliding mode by ensuring
S(Dx)= 0. To conduct the system toward any arbitrary
point in the state space, the state variables are trans-
formed to Dx= x̂� x� as depicted in Figure 7, where
x� represents the set-point state vector and x̂ contains
all current state variables estimated with an EKF based
on the measured quantities as explained later on.
Furthermore, the utilized control law and an adaption
approach under consideration of the driving power
converter and limiting conditions are schematically
depicted in Figure 7 on the right-hand side and
explained in detail in the following section.

Under consideration of the model summarized in the
previous section, set-point values for all four state vari-
ables e�z , _e�z , e�k1, and U�c, diel, respectively, have to be
defined. While the velocity _e�z = 0 and the strain of the
spring in the Maxwell element e�k1 = 0 are zero at steady
state, the other two state variables are not equal to
zero. During steady state, the actuator force is in equili-
brium with the external load

Hoffstadt and Maas 1425



F�act = lim
t!‘

A � sact tð Þ =!
A � sload

with lim
t!‘

A � sact tð Þ=Ae � sel � A � selast

ð22Þ

With equation (10), a set-point energy U�c, diel is given
by

U �c, diel =
V

2
� F�act

A
+selast

� �
=

z

2
� F�act +A � selast

� �
ð23Þ

Beside the set-point force F�act this energy is influ-
enced by the elastic material tensions. Thus, they have
to be compensated in order to obtain a certain force
under deformation, compare Figure 2(b). The required
energy has to be adapted continuously depending on
the actual strain and the resulting elastic tension
according to equation (6). For this purpose, here the
estimated strain êz obtained from the EKF explained
afterward is used.

The intention of the proposed force control is to
adjust the set-point force independently of the actua-
tion strain. Nevertheless, depending on the kind of
load, for example, a spring, the DE stack-actuator will
deform when a certain force is adjusted by the control.
Then, according to equation (23), U�c, diel will change
during transient operation. Thus, as a starting point
either the current strain or for example the half of the
maximum strain achievable with the desired force F�act

can be chosen. Considering for example the dashed-
dotted spring load line in Figure 3(b), this statistical
mean strain might result in a faster convergence to the
steady-state energy improving the dynamics of the
control.

Finally, the definition of a set-point strain contra-
dicts the mentioned intention of the control of adjust-
ing a force independently of the strain. To solve this
issue, subsequently the strain is interpreted as a distur-
bance. This has the big advantage that the state vari-
ables for the force control design can be reduced by the
strain so that no set-point strain is required. Instead, its
influence is compensated by the adaptation of the set-
point energy according to equation (23). The resulting
reduced system of third order is given by

_x=
€ez

_eMW

_U c, diel

2
4

3
5=

f2,DE xDEð Þ
f3,DE xDEð Þ
f4,DE xDEð Þ

2
4

3
5

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
f xDEð Þ

+
0

0

1

2
4
3
5

|ffl{zffl}
B

�u ð24Þ

Under consideration of equation (23), the set-point
state vector x� is given in this case by

x�=

_e�z
_e�k1

U�c, diel

2
4

3
5=

0

0

f F�act, êz

� �
2
4

3
5 ð25Þ

The transformed state vector Dx for the calculation
of the switching function in equation (21) is calculated
with the current state vector x and the set-point
vector x�

Dx= x� x�

=

_ez

_ek1

Uc, diel

2
4

3
5� 0

0

U �c, diel

2
4

3
5=

_ez

_ek1

DUc, diel

2
4

3
5 ð26Þ

A comparable simple approach to determine the coeffi-
cients in cT is based on the controllable canonical form as
proposed by DeCarlo et al. (1988). In this form, the input
u affects one state variable only, while the others are inde-
pendent of the input. To transform the system into this
form, first of all the system has to be linearized described
by the matrix AOP of the reduced system in equation (24)
and calculated by the Jacobian matrix of f(x) with respect
to x for the current operating point (OP)

AOP =
∂f xð Þ
∂x

=

�g1 �
he

1�êz
�g1 � k1

1�êz
g1 � 2=V

1�êz

1 � k1

h1
0

� 2�Uc, diel

1�êz
0 � 2�̂ _ez

1�êz
� 2

tp

2
664

3
775

OP

with g1 =
V

macc�z2
0

ð27Þ

The controllability is given because the determinant
of the matrix Gc is not equal to zero for any arbitrary
operating point calculated by (Kalman, 1960)

det Gcð Þ= det B AOP � B A2
OP � B

	 
� �
=

4�g2
1

V 2� 1�êzð Þ2 6¼ 0, with êz\1
ð28Þ

Using the last row gc3 of Gc, the transformation
matrix TOP for a certain operating point is given by

TOP =
gc3

gc3 � AOP

gc3 � A2
OP

2
4

3
5

= � V
2
�

0 � 1�êz

g1
0

� 1�êz

g1

k1

h1
� 1�êz

g1
0

k1� 1�êzð Þ
g1�h1

+he
k1

h1
h1 �

k1� 1�êzð Þ
g1�h1

� �
� 2

V

2
664

3
775
ð29Þ

Figure 7. Structure of the SMC under consideration of the
bidirectional flyback-converter as control element.
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With this transformation matrix, the state vector Dx

defined in equation (26) can be transformed into the
controllable canonical form by

D�x=TOP � Dx=TOP � x� x�ð Þ ð30Þ

while with the system matrix �AOP =TOP � AOP � T�1
OP

and the input matrix �B= TOP � B=B, the transformed
dynamics result in

D _�x= �AOP � D�x+B � u ð31Þ

In order to lead the system along the switching sur-
face by S(D�x)= 0, the so-called equivalent input
u= ueq (DeCarlo et al., 1988) in equation (32) can be
derived. To remain on the switching surface during the
sliding mode the derivative of the switching function
_S(D�x)= 0 that has to be zero. This results in

ueq = � cT � B
	 
�1 � cT � �AOP � D�x ð32Þ

Using this input, the dynamics of the system during
the sliding mode are reduced by the number p of input
quantities (here p= 1). Furthermore, the dynamics only
depends on the chosen parameters of cT according to
equation (21) and is independent of any parameters of
the control plant

D _�x= I� B � cT � B½ ��1 � cT
h i

� �AOP � D�x

=

0 0 0

0 0 1

0 � c1

c3
� c2

c3

2
4

3
5 � D�x=

0 0T

0 ~A1

� �
� D�x

ð33Þ

By applying for example a pole placement for the
reduced system described by matrix ~A1, the coefficients
of the switching function in equation (21) can be deter-
mined by comparing the characteristic equation to an
arbitrary second-order polynomial defined in the s-
domain with cutoff frequency vc and damping ratio D

det s � I� ~A1

� �
= s2 + c2

c3
� s+ c1

c3

= s2 + 2 � D � vc � s+v2
c

with c3 = 1 ) c1 =v2
c , c2 = 2 � D � vc

ð34Þ

Due to the reduced order during the sliding mode,
one state variable, for example
DUc, diel =Uc, diel � U�c, diel, can be expressed by the oth-
ers under consideration of equations (25) and (29)

S D�xð Þ= cT � T � x� x�ð Þ= 0

with cT � T= �c1 �c2 �c3½ �
�c1 =

V
2
� 1�êz

g1
� 2Dvc � k1

h1

� �
� he

h i
�c2 =

V
2
� 1�êz

g1
� v2

c � k1

h1
� 2Dvc � k1

h1

� �� �
� k1

h i
�c3 = 1

) DUc, diel = � �c1 � _ez � �c2 � ek1

ð35Þ

This results in the exemplary switching surface
depicted in Figure 8, whose slope can be adjusted by
the chosen cutoff frequency vc in equation (34) defin-
ing the coefficients of the switching function. Here, the
material parameters of the silicone-based DE stack-
actuator, listed in the following validation section, have
been used.

While the behavior during the sliding mode is
already determined, the controller function has to be
parametrized ensuring that the sliding mode is reached
in a first step from any arbitrary starting point D�x(t0)
during the so-called reaching phase. For this purpose,
the Lyapunov stability for a single-input single-output
(SISO)-system is proven

_V D�xð Þ= S D�xð Þ � _S D�xð Þ\
!

0 ð36Þ

Thus, if the switching function S(D�x) with the cur-
rent state vector D�x for example is larger than zero, its
time derivative has to be negative in order to reach the
sliding mode and vice versa.

Due to the characteristic properties of the utilized
flyback-converter, it is possible to charge or discharge
the DE transducer with an almost constant power �p0. In
a first step, this behavior is taken into account by the
two-point controller in equation (37)

u D�xð Þ= sgn S D�xð Þð Þ � . ð37Þ

Here, . either equals the positive or negative feeding
power, respectively, and has to be chosen to fulfill con-
dition (equation (36)). For this purpose, the time deri-
vative of the switching function is determined

_S D�xð Þ= cT � T � AOP � Dx+B � u D�xð Þð Þ
= z1 � _ez + z2 � ek1 + z3 � Uc, diel + u D�xð Þ ð38Þ

The coefficients zi depend on material and design
parameters of the stack-transducer as well as on the

Figure 8. Exemplary illustrated sliding surface S(D�x)= 0 for
the considered system.
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damping ratio D and cutoff frequency vc according to
equation (34). Hence, these two design parameters of
the controller can be chosen in such a way that two
coefficients in equation (38) vanish. By choosing z1 = 0

and z2 = 0, equation (38) solely depends on the energy
DUc, diel =Uc, diel � U�c, diel and he input u(D�x). For the
operating point xOP = 0, the cutoff frequency vc and
damping ratio D in this case are given by

vc =
1

h1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 � k1 � h1 � h1 +hEð Þ

p
ð39aÞ

D=
1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 + g1 � h1 � hEð Þ2

g1 � k1 � h1 � h1 +hEð Þ

s
ð39bÞ

Substituting these into equation (38), the time deri-
vative of the switching function simplifies to

_S D�xð Þ= � 2

tp

� DUc, diel + u D�xð Þ ð40Þ

By carrying out the required case distinction for the
condition in equation (36) with equations (37) and (40),
it can be found out that .= � �pmax fulfills equation
(36) if the maximum feeding power �pmax is large enough
to compensate the dielectric loss in the utilized polymer,
compare equation (16). However, for a well-designed
smart actuator system, this condition should be fulfilled

�pmax.
2

tp

� DUc, dielj j ð41Þ

It can be numerically proven that equation (41) is
fulfilled for any arbitrary operating point xOP 6¼ 0.

Adaptation of the force control

Under consideration of the defined switching function
in equation (35)

S D�xð Þ=�c1 � _ez +�c2 � ek1 +DUc, diel ð42Þ

an adaption of the force control can be carried out to
reduce the switching frequency and to take into account
limitations of the control plant.

The latter have to be considered in order to not
exceed the dielectric breakdown strength of the utilized
elastomer material. Under consideration of the utilized
flyback-converter and the maximum allowable voltage
vp, max to prevent a breakdown, the voltage vp across
the polymer capacitance Cp has to be adjusted in the
range 0� vp� vp, max corresponding to the energy range
0�Uc, diel�Uc, diel, max according to equation (16b). If
the energy exceeds this range, the control is switched
off by the extension also depicted in Figure 7

S D�xð Þ= cT � D�x, Uc, diel�Uc, diel, max

0, else

�
ð43Þ

To avoid a permanent switching during the sliding
mode and steady state, the two-point controller can be
extended by a hysteresis in order to reduce switching
losses. Furthermore, the third state of the flyback-con-
verter, the off-state, can additionally be used to estab-
lish a three-point controller with hysteresis as depicted
in Figure 7. The hysteresis threshold dS results in two
switching functions in parallel above and below the
switching surface S(D�x)= 0 in Figure 8 with distance
dS , that is, the trajectory of the system does not move
exactly on the switching surface, but within the certain
space defined by jS(D�x)j\dS . However, during steady
state, this threshold results in a control deviation so
that it should be chosen carefully. Within one switching
period of the utilized flyback-converter, the energy
increment DUmax is transferred and charges or dis-
charges the DE actuator. In case of the steady state
with _ez = 0 and ek1 = 0, the switching function (equa-
tion (42)) only depends on the energy deviation DUc, diel.
With this, the threshold dS can be determined by insert-
ing DUc, diel = nds � DUmax into equation (42). Thus, the
threshold can be chosen as an integer multiple of the
transferred energy increment DUmax in equation (3)

dS = nds � DUmax= nds �
1

2
� Lm � I�2m, max ð44Þ

Here, nds should be as small as possible to obtain good
control accuracy, and in contrast as large as necessary
to sufficiently reduce the switching frequency.

These two modifications result in the trajectories
of the switching functions schematically depicted in
Figure 9 for a sectional view on the ek1�DUc, diel plane.

As can be seen in equation (44), the hysteresis thresh-
old dS that determines the control accuracy during
steady state depends on the peak value of the magnetiz-
ing current I�m, max. However, with the control of the
bidirectional flyback-converter presented in Figure 4, it
is possible to adjust this peak value, see Figure 5. In
terms of the force control, a high value of the current
should be chosen for high dynamics during transient
operation while a small quantity during steady state
improves the accuracy of the control.

During the reaching phase, where the trajectory is
led toward the switching surface, the error amount with
respect to the switching function S(D�x)j j is comparable
high, while during the sliding mode and steady state it
is comparable low. Thus, by defining an upper and
lower threshold Smin and Smax, respectively, the peak
value of the current I�m, max can be adjusted depending
on jS(D�x)j

I�m, max =

Imax, S D�xð Þj j.Smax
Imax�Imin

Smax�Smin
� S D�xð Þj j , else

Imin, S D�xð Þj j\Smin

8<
: ð45Þ

This current adjustment is finally used as set-point
for the inner current control of the flyback-converter as
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well as for the calculation of dS in equation (44) as
already depicted in Figure 7.

Estimation of the transducer states

To implement the developed force control, the state
variables of the DE stack-transducer must be known.
However, as measured quantities solely the terminal
voltage vDE,m and the compression Dzm of the stack are
available. Hence, a state estimator is used that estimates
the energy Ûc, diel in a first step. In a second step, the
mechanical states of the DE actuator are estimated.
This two-step procedure is used instead of an estimator
for the overall model in equation (20) since the observa-
bility of this system is not given for any arbitrary oper-
ating point.

The energy Ûc, diel stored in the strain-dependent
polymer capacitance Cp depends on the charge q̂p or
voltage v̂p, respectively

Ûc, diel =
q̂2

p

2 � Cp êzð Þ
, with q̂p =

Cp, 0

(1� êz)
2
� v̂p ð46Þ

Considering an equi-biaxial in-plane deformation of
the stack-transducer, the capacitance Cp =Cp, 0=
(1� ez)

�2 depends on its undeformed value Cp, 0 and
the strain ez. The electrode resistance Re marginally var-
ies within the possible deformation range so that it is
assumed to be constant. With the equivalent circuit dia-
gram in Figure 1 (red box), the change in charge is
described by the differential equation

_̂qp =
vDE,m

Re

� 1

tp

+
(1� êz)

2

Re � Cp, 0

� �
� q̂p ð47Þ

Here, the strain êz =Dzm=z0 =(z� z0)=z0 is calcu-
lated using the measured compression and initial trans-
ducer height Dzm and z0, respectively, as depicted in the
action diagram in Figure 10.

The estimated energy Ûc, diel is then used as input for
an EKF implemented according to Welch and Bishop
(2001) that observes the mechanical states of the DE
stack-actuator as well as the load tension ŝload as dis-
turbance (Hoffstadt and Maas, 2017). Although an
estimate of the load is not required for the control, it
has to be considered when designing the EKF to avoid
larger deviations of the other state quantities. Beside
the applied energy Uc, diel, this disturbance mainly influ-
ences the behavior of the DE actuator. Under consider-
ation of the corresponding differential equation (20)
and assuming the disturbance to be constant during
one sampling time T = 1=fDSP the estimated state vec-
tor x̂EKF is given by

x̂EKF = êz
_̂ez êMW ŝload

	 
T ð48Þ

Finally, the state vector x̂= ½ _̂ez êMW Ûc, diel �
T

required for the force control in Figure 7 comprises the
estimated velocity _̂ez, the strain êMW , and energy Ûc, diel.

Experimental validation

For the experimental validation of the proposed sliding
mode force control, the test–rig depicted in Figure 11
as well as a prototype of the bidirectional flyback-
converter and a DE stack-actuator is used. The para-
meters of the silicone-based stack-actuator with two
mechanical interfaces on its top and bottom surface to
transmit the actuator force are listed in Table 1. These
parameters result in a cutoff frequency of vc’3060 s�1

and damping ratio of D’1:08 when applying equations
(39a) and (39b), respectively. With the linear motor of
the test-rig, the stack-actuator can be deformed, while
the measurement of the force is solely recorded for the
validation but is not required for the force control
itself.

Before the validation of the proposed force control
is carried out, the open-loop behavior of a DE stack-
actuator is investigated. In the bottom plot of Figure
12, the blocking force (solid lines) as well as the no-load
strain (dashed lines) are compared for a charging

Figure 10. Based on the measured terminal voltage vDE,m and
deformation Dzm, the mechanical transducer states x̂ and a
disturbance ŝload are estimated.

Figure 9. Implemented switching function for the three-point
controller with hysteresis considering control output limitations.

Hoffstadt and Maas 1429



operation with I�m, max = 8A (blue) and I�m, max = 4A
(red), respectively. The blocking force represents the
actuator force Fact obtained when the deformation of
the actuator is blocked at ez = 0, while the no-load
strain characterizes the free deformation with Fact = 0.
As can be seen, the blocking force follows instanta-
neously the voltage signal, while in case of the strain a
very short delay caused by the viscosity of the DE
material can be observed.

For a first experimental investigation of the pro-
posed closed-loop control, one interface of the DE
actuator is attached to the force measurement system
of the test-rig and the second interface to the slider of
the linear motor. Fixing the slider of the linear motor
by an internal brake, the stack-actuator cannot deform
(ez = 0) even if a voltage is applied. With this config-
uration, the blocking force can be characterized. Due
to the constant deformation (ez = 0), the viscoelastic
material properties do not influence these investiga-
tions. Furthermore, this setup is used to compare the
two-point controller in equation (37) with the proposed
three-point controller with hysteresis, as shown in
Figure 7. The obtained measurement results are
depicted in Figure 13. By reducing the peak current
from I�m, max = 8A (blue) to I�m, max = 4A (green) with
the two-point controller (dS = 0), it takes longer to
adjust the set-point force F�act due to the reduced feed-
ing power �p according to equations (3) and (4).
However, as mentioned in the previous section during
steady state, the control accuracy is improved resulting
in a reduction of the standard deviation of the force,
for example, in the interval between 55 and 80 ms of
about 25% from 41 mN (I�m, max = 8A) to 31 mN
(I�m, max = 4A). Instead of the energy Uc, diel here the
corresponding voltage vDE is shown in the third subplot
that of course depends on the set-point force. Due to
blocking-force scenario where a deformation is pre-
vented, the set-point energy U�c, diel in equation (23)

utilized for the control only depends on the force F�act

and has not to be adapted.
Using two energy increments as hysteresis threshold

by nds = 2 according to equation (44) for the three-
point controller and choosing Imin = 4A, Imax = 8A,
Smin = 0:5mJ, and Smax= 5mJ, respectively, for the
adaption of the magnetizing current peak value I�m, max

in equation (45), the red dashed characteristics in
Figure 13 are obtained. As can be seen in the second
plot, immediately after the set-point step, the current is
set to I�m, max = Imax = 8A, while during the transient
response the current is reduced according to equation
(45) until the peak value reaches its minimum Imin at
steady state. By this adaption, both advantages—the
higher dynamics with Imax and better accuracy with
Imin—are achieved.

As illustrated in the bottom plot of Figure 13, the
steady state is maintained by permanently switching
between charging (�p=�pmax= 1) and discharging
(�p=�pmax= � 1) in case of the two-point controllers.
Here, the switching frequency equals almost the sample
rate fDSP = 20kHz of the real-time system on which the
force control is implemented. The hysteresis as well as
the off-state (�p=�pmax= 0) enabled by the proposed
three-point controller significantly reduce the switching

Table 1. Parameters of the utilized silicone stack-transducer.

Y (MPa) he (kPa s) k1 (MPa) h1 (kPa s)
1.08 6 5 1

Ae (mm2) A0 (mm2) d0 (mm) N
64 100 50 192

er Cp, 0 (nF) Re (kO) tp (s)
2.8 6.09 30 2670

Figure 12. Open-loop behavior of the blocking force (solid
lines) and no-load strain (dashed lines) of the DE stack-actuator
when operating the flyback-converter with different peak
currents I�m, max.

Figure 11. Overview of the test setup utilized for the
validation comprising a specifically developed prototype of the
bidirectional flyback-converter, a silicone-based DE stack-
transducer, and a test-rig with force measurement and electrical
linear motor.
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frequency of the power converter by approximately
84% compared to the two-point controller with
I�m, max = 8A, without having a considerable impact on
the control accuracy and dynamics.

Beside the adjustment of these constant set-points, a
tracking application is investigated to determine the
bandwidth of the force control. For this purpose, the
small signal control behavior is characterized by apply-
ing a sine sweep set-point force with an offset of 3 N
and an amplitude of 0.1 N as time varying reference
value. The estimated magnitude and phase of the trans-
fer function Fact=F�act are depicted in the Bode plot in
Figure 14. They are obtained using MATLAB� func-
tion tfestimate with the set-point force F�act as input and
the measured force Fact,m as output. Up to the 3 dB
cutoff frequency of approximately 500 Hz, the force is
accurately adjusted (Fact=F�act = 0dB). Two resonance
frequencies can be observed at about 700 and 900 Hz,
respectively, which are caused by mechanical eigen-
modes of the test-rig. Compared to other (PID-based)
control designs referenced in the introduction, for
example, Sarban and Jones (2012), the bandwidth of
the proposed controller is approximately one order of
magnitude higher. Beside the fact that the SMC is pre-
destined for the considered control plant, the band-
width represents another big advantage of the proposed
control enabling highly sophisticated applications, for
example, as human–machine interface.

In a second scenario, a spring with stiffness
kload = 7:5N=mm is emulated by the position control
of the linear motor, again. For this purpose, the set-
point position Dz� is determined depending on the
desired set-point force F�act by

Dz�=
F�act

kload

ð49Þ

Using the same parametrization for the three-point
controller with hysteresis the measurement results
depicted in Figure 15 are obtained. In addition to the
measurement results, a comparison with the quantities
estimated by the EKF is shown here. Different to the
blocking-force scenario with ez = 0 in Figure 13 now
the DE stack-actuator deforms when a voltage is
applied. This can be seen in the second subplot in
Figure 15. Depending on the estimated strain êz, the
energy U�c, diel is adapted according to equation (23) as
can be seen by the corresponding voltage in the third
subplot. Comparable to the previously investigated
blocking-force scenario, the set-point force is adjusted
in a few milliseconds. The dynamics of the strain are
mainly caused by the dynamics of the utilized linear
motor and its control to emulate the spring according
to equation (49).

In Figure 16(a), the trajectory of the three state vari-
ables defined in equation (24) and according to Figure
8 is shown for the set-point step from 0 N to

F�act = 1N. Starting from the initial control deviation
x0 � x� during the reaching phase, the trajectory is first
led to the switching surface and conducted toward the
origin during the sliding mode, afterward. Both phases
are clearly evident. Since the actuator is not activated
initially, all entries in the initial state vector x0 are zero.
The deviations during the sliding mode are caused by
the hysteresis of the three-point controller. As

Figure 13. Different force adjustments for ez = 0 using a two-
point controller with I�m, max = 8 A (blue) and I�m, max = 4 A
(green) in comparison with the proposed three-point controller
(red) with adaption of the peak current I�m, max = f (S(D�x)) and
hysteresis threshold dS = f (S(D�x)), respectively.

Figure 14. Bode plot of the small signal control behavior
obtained from a sine sweep set-point force varying between
3 N 6 0.1 N at constant strain ez = 0.
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mentioned above and shown in the section of the slid-
ing mode in Figure 16(b), the trajectory moves within
the space S(Dx)=6dS . However, the control hysteresis
mainly affects _ez and ek1. The influence on the overall
energy and the force Fact is comparable small.

With the obtained measurement results, the feasibil-
ity and accuracy of the proposed sensorless force con-
trol have been illustrated. In this context, a further
application of the control can be emphasized. In equa-
tion (23), a set-point energy U�c, diel is defined to adjust
an actuator force F�act. However, it is also possible to
control the voltage vp across the DE capacitance Cp by
choosing

U�c, diel =
1

2
� Cp ezð Þ � v�2p ð50Þ

Thus, with a simple modification of the set-point
energy also the voltage can be controlled by the set-
point energy of the designed sliding mode control.

Conclusion

Multilayer DE stack-transducer are lightweight, scal-
able, and energy-efficient transducers that generate
considerable tensile forces and deformations. To con-
trol their forces within this contribution, a force control
was designed based on a holistic model combining the
characteristic properties of the actuator and the driving
power electronics. The utilized bidirectional flyback-

converter supplies an almost constant feeding power
that can be adapted by its inner current control.
Considering this, extensions of the developed sliding
mode force controller were introduced to ensure high
dynamics during transient operation on one hand and
good accuracy during steady state on the other hand
by adapting the feeding power. Furthermore, using a
three-point controller with hysteresis the switching fre-
quency was significantly reduced by 84% without
affecting the control quality.

To operate the force control, the electrical energy
required to generate the desired transducer force has to
be specified under consideration of the elastic deforma-
tion of the stack-actuator. Since the terminal voltage as
well as the deformation of the stack-actuator are mea-
sured within our setup, a measurement of the force was
not required for the force control. However, the set-
point energy has to be adapted continuously to com-
pensate the current influence of the elastic deformation.

In a first setup, the developed sliding mode force
control was validated by a blocking-force scenario
where the deformation of the stack-actuator is pre-
vented. Afterward, the linear motor of the utilized test-
rig was used to emulate a spring load in order to proof
the force control quality in case of an arbitrary defor-
mation. Both measurements showed good dynamics
and accuracy of the proposed control as well as the
benefits obtained by the extension, like reduced switch-
ing frequencies and improved accuracy.

Compared to other DE transducer controls refer-
enced in the introduction, the main difference of the
proposed one is that here a completely different elec-
tronic interface is used. While other research groups
use a laboratory high-voltage amplifier, here the overall

Figure 15. Comparison of measured and estimated quantities
of the closed-loop behavior with the three-point force
controller when operating against a spring load with a constant
stiffness of kload = 7:5 N=mm.

Figure 16. Trajectory of the SMC for the set-point step from
0 N to F�act = 1 N (a) and detail of the sliding mode trajectory (b)
when operating against the emulated spring.
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system comprising the DE actuator and the driving
power electronics is modeled. For the overall system a
tailored control is designed. The utilized bidirectional
flyback-converter was specially designed for feeding
DE transducer and is a promising topology for various
commercial applications of DE actuators, for example,
in automation technology. In particular, the proposed
force control was designed using the constant output
power provided by the converter as control interface.
With this, an accurate and highly dynamic closed-loop
operation is enabled that reaches steady state in just a
few milliseconds. The overall system offers a wide range
of highly sophisticated applications like active force
feedback etc.
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