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Abstract

The study of open quantum systems forms one of the main problems of modern physics.
This thesis aims at contributing to this field, and focuses on the investigation of non-
Markovian dynamics of open quantum systems. Here, as a special case, quantum many-
body systems provide for a rich field of research. With the ability to control them being
of essential importance for the development of quantum technologies, the characteriza-
tion of their dynamical properties has also drawn a lot of interest lately.
One of the main methodological tasks in the study of open quantum systems is to reduce
the infinite degrees of freedom of the total system. In order to achieve this, the thesis
makes use of the tensor network method matrix product states and combines it with the
picture of the quantum stochastic Schrödinger equation. However, when computing the
dynamics of many-body systems of system size N , even the reduced system dynamics
scale with 2N , making larger system sizes difficult to access. Therefore, especially when
computing non-Markovian time-dynamics where the information backflow from the reser-
voir has to be taken into account, efficiently constructed algorithms are required. This
thesis proposes these type of algorithms and demonstrates their application. They enable
an access to larger system sizes, thus making it possible to investigate non-equilibrium
steady-states of quantum many-body systems in a non-Markovian interaction for system
sizes up to N = 30.
This thesis consists of three parts. The first part provides an introduction to the theory
of open quantum systems and to the methodology for modeling them. The second part
examines many-body system-reservoir interaction in the non-Markovian regime by inves-
tigating the case of fully coherent self-feedback. It uses the one-dimensional Heisenberg
spin-1/2 chain as a paradigmatic and recently intensely studied many-body system. It is
demonstrated that this gives rise to new conditions for the feedback phase and to highly
non-trivial states within the system as well as to the possibility of partially characterizing
the system non-invasively and storing excitation within it. Next, a novel approach to the
boundary-driven Heisenberg chain is presented, where the chain is exposed to a coherent
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driving field, thus enabling a comparison to the well-studied incoherently driven model.
The third part demonstrates the use of an external pump to control the feedback phase of
a Λ-type three-level system, where the external pump pulse is shown to be a new control
parameter. The thesis concludes with the proposition to enhance the indistinguishability
of two photons by feedback control.
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Zusammenfassung

Die Untersuchung offener Quantensysteme ist eines der Hauptprobleme der modernen
Physik. Diese Dissertation möchte einen Beitrag zu diesem Gebiet leisten und konzentri-
ert sich auf die Untersuchung der nicht-Markovschen Dynamik offener Quantensysteme.
Hier bieten Quanten-Vielteilchensysteme als Sonderfall ein reichhaltiges Forschungsfeld,
und da ihre Kontrolle für die Entwicklung von Quantentechnologien von wesentlicher
Bedeutung ist, hat in letzter Zeit auch die Charakterisierung ihrer dynamischen Eigen-
schaften großes Interesse geweckt. Die Ergebnisse dieser Arbeit sind für dieses Gebiet
von besonderer Relevanz. Eine der wichtigsten methodischen Aufgaben bei der Unter-
suchung offener Quantensysteme ist die Reduzierung der großen Zahl von Freiheitsgraden
des Gesamtsystems. Um dies zu erreichen, wird in dieser Arbeit die Tensornetzwerk-
methode matrix product states verwendet und mit dem Bild der quantenstochastischen
Schrödingergleichung kombiniert. Bei der Berechnung der Dynamik von Vielteilchen-
systemen skaliert jedoch selbst die reduzierte Systemdynamik mit 2N , so dass größere
Systemgrößen schwer zugänglich sind. Daher sind insbesondere bei der Berechnung der
nicht-Markovschen Zeitdynamik, bei der der Informationsrückfluss aus dem Reservoir
berücksichtigt werden muss, effizient konstruierte Algorithmen erforderlich. In dieser
Arbeit werden solche Algorithmen vorgeschlagen und ihre Anwendung demonstriert.
Sie ermöglichen einen Zugang zu größeren Systemgrößen und damit die Untersuchung
von Nichtgleichgewichts-Zuständen von Quanten-Vielteilchen-Systemen in einer nicht-
Markovschen Wechselwirkung für Systemgrößen bis zu N = 30.
Diese Arbeit besteht aus drei Teilen. Der erste Teil bietet eine Einführung in die Theorie
der offenen Quantensysteme und in die Methodik zu deren Modellierung. Der zweite
Teil untersucht die Interaktion zwischen Vielkörper-System und Reservoir im nicht-
Markovschen Regime, indem er den Fall eines vollständig kohärenten Selbst-Feedbacks
in den Blick nimmt. Er verwendet die eindimensionale Heisenberg-Spin-1/2-Kette als
paradigmatisches und in der jüngsten Literatur intensiv untersuchtes quantenmechanis-
ches Vielkörper-System. Es wird gezeigt, dass sich daraus neue Bedingungen für die

iii



Feedback-Phase und nicht-triviale Nichtgleichgewichts-Zustände innerhalb des Systems
ergeben sowie die Möglichkeit, das System nicht-invasiv zu charakterisieren und Anre-
gung darin zu speichern. Im Anschluss daran wird ein neuartiger Ansatz für die rand-
getriebene Heisenberg-Kette vorgestellt, bei dem die Kette mit kohärent Feld getrieben
wird, wodurch ein Vergleich mit dem häufig untersuchten inkohärent getriebenen Mod-
ell möglich wird. Im dritten Teil wird die Verwendung eines externen Pumpfelds zur
Steuerung der Rückkopplungsphase eines Λ-Typ Dreiniveausystems gezeigt, wobei sich
der externe Pumpimpuls als neuer Steuerparameter erweist. Die Arbeit schließt mit dem
Vorschlag, die Ununterscheidbarkeit von zwei Photonen durch kohärente Feedbackkon-
trolle zu verbessern.
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1.

Introduction

1.1 Motivation

Studying open quantum systems ranges among the most important topics of current phys-
ical research. An open quantum system is generally described as a microscopic region
exhibiting quantum coherence, which is coupled to an external environment [1, 2, 3, 4],
where the interaction leads to dissipation and decoherence. Recently, rapid improvements
in the ability to control quantum coherence of single particles have been made that are
of fundamental importance for the storage and manipulation of quantum information [5].
Here, capturing the effect of the couplings of these systems to their environment is of
increasing importance, leading to growing attention for open quantum systems in a broad
range of fields of physics. Here, in solid state physics, for instance trapped atoms [6, 7],
molecules and ions [8, 9] have been studied, and the transport properties of quantum
dots or other mesoscopic devices has been explored [10]. In quantum optics, examples
include the investigation of photon modes in cavities [11] or impurities coupled to pho-
tonic crystals [12]. See [14, 15, 16, 10] for latest reviews on these topics.
In order to capture the flow of information between system and environment, an impor-
tant approach is the Markovian approximation. Here, it is assumed that the environment
recovers so quickly from the interaction with the system that the information backflow
may be neglected [1]. However, due to rapid technological advances in the possibilities of
observing and controlling quantum systems on more precise levels, new scenarios contin-
uously emerge where this approximation no longer captures the dynamics adequately, as
the information backflow from the environment is found to play a crucial role in the dy-
namics [17, 18, 19, 15, 6, 7]. By investigating the effects of a structured, non-Markovian
reservoir on quantum systems, the work presented in this thesis contributes to this re-
search field. Also, efficient but accurate descriptions of these systems are needed, and
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the thesis at hand provides for such a tool.
As a special case of open quantum systems, strongly interacting many-body systems
also have drawn increasing interest recently. In particular, quantum spin chains are
a paradigm to study quantum many-body physics out-of-equilibrium and their prop-
erties when interacting with an environment are currently intensely studies, for in-
stance quantum phase transitions [20, 21, 22, 23, 24, 25], quantum transport properties
[26, 27, 28, 29, 30, 31, 32, 33, 34] and entanglement structures [35, 36]. Among quantum
spin chains, the Heisenberg spin-1/2 chain [37] is of particular importance. It may be
solved analytically [38, 39] and offers a theoretical model to explain experiments in the
area of strongly-correlated many-body physics [40, 41, 42, 43, 44]. In the thesis at hand,
this paradigmatic model is investigated in different setups.
The observation and control of quantum coherence on a microscopic level of single parti-
cles has experienced rapid advance during the past years and has been realized in many
different physical systems [45, 8, 46] with the aim to store and manipulate quantum in-
formation [5, 47, 48, 49]. Thus, it has become increasingly important to characterize the
influence of a structured environment on these systems [15, 14, 50]. While a main goal is
to reduce the destruction of quantum coherence within the microscopic system, the last
years have also witnessed success in the use of a controlled coupling to the environment as
a means to enhance coherence or to bring desired quantum states into being [16, 51, 52].
Here, coherent feedback control already successfully uses the back-action on the quantum
state by the coupling to the environment for manipulating quantum states on the level
of single particles [53, 54, 55] with important applications in the field of quantum infor-
mation processing [56, 57, 58]. In particular, feedback control has been successfully used
to predict and generate population trapping in different setups [59, 60] of fundamental
importance for applications such as quantum memory, which relies on the storage and
release of qubits on demand [61, 49, 62, 63, 64].
An application of fundamental importance in the area of quantum many-body physics
is the realization and improvement of quantum simulators, where a controlled manipu-
lation of a many-body system is used to engineer it to a desired state [65]. With this,
a range of technological applications has been simulated using spin chains as a model,
for instance CNOT gates made of superconducting quantum interference devices [66],
quantum batteries [67] or new implementations of transistors [68].
Here, atomic and molecular systems - cold atomic and molecular gases and trapped ions
- are currently among the leading platforms [50, 69] and have been intensively used to
study many-body physics [40, 41, 42, 43, 44]. This makes the extension of the methods
from quantum optics onto many-body systems of high interest. By applying self-feedback
on a paradigmatic model for a quantum many-body system, a method developed in a
atom-molecular-optics and cavity-QED is used with the aim to contribute to the growing
possibilities of control over dissipative processes in quantum many-body systems, and
to the development of tools to prepare interesting and important states within them.
Here, going beyond the single excitation regime [70] provides for promising effects such
as anomalous population trapping [71] and is also investigated in this thesis.
In the theory of open quantum systems, one of the methodological tasks is to avoid
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the integration of the entire system which usually consists of large number of degrees of
freedom. A broad range of techniques has been developed for this purpose, among them
master equations - in particular the Lindblad–Kossakowski form [72], quantum Langevin
equations [73], the input-output formalism using the Heisenberg representation [74] or
continuous measurement theory [2]. Another widely used approach is the quantum tra-
jectories method [14, 3, 75, 76], which time-evolves pure states and captures the coupling
to the environment with stochastic quantum jumps.
However, in the case of a quantum many-body system, the reduced Hilbert space grows
exponentially with the number of particles involved, often making analytical solutions
difficult and numerical approaches very demanding, which imposes strong limits on the
size of the studied system. Clearly, to access larger system sizes, approximative methods
are needed which allow for an efficient reduction of the exponentially growing Hilbert
space, and this thesis aims at providing this kind of tool.
To this end, a powerful combination of two methods is used. The quantum stochastic
Schrödinger equation (QSSE) [77, 78, 79] is employed where similar to the master equa-
tion approach, the system state vector is evolved in time, while its interaction with the
environment is encoded in its dependence on an additional noise with certain statistical
properties. This approach is combined with a powerful numerical tensor network method
called matrix product states (MPS), which makes an efficient reduction of the Hilbert
space possible by truncating the eigenvalues of the decomposed state vector. While this
combination has been successfully applied on open few-level systems [80], its applica-
tion is extended onto many-body systems in this thesis, and efficient ways to structure
the MPS-architecture especially in the numerically demanding case of non-Markovian
interaction are presented.

1.2 Structure of the thesis

This thesis consists of three parts. The first part, Sec. I, describes the theoretical and
methodological background for the research employed. Here, Sec. 2, provides an overview
of the recent developments in the field of open quantum systems and describes theoret-
ical concepts of fundamental importance for it. Sec. 2.2 derives the quantum stochastic
Schrödinger equation (QSSE) [77, 78, 79] which captures the system-reservoir interaction
with a stochastic, time-stroboscopic description. Using it as a numerical basis enables
the computation of non-Markovian interaction. Afterwards, in Sec. 2.3, the derivation of
the quantum optical master equation as an important tool to describe Markovian effects
is presented, which serves as a benchmark model throughout this thesis. This is followed
by an introduction to the framework of MPS in Sec. 3.1, which is used for numerical
simulations throughout this thesis. The part concludes with an introduction to quantum
feedback control in Sec. 4, where dominant approaches and effects are reviewed.
The second part, Sec. II, is dedicated to quantum many-body system-reservoir interac-
tion. It presents investigations of multi-excitation dynamics of open quantum many-body
systems, and is organized as follows: after a brief introduction to many-body spin physics,
cf. Sec. 5, a method originally developed in a cavity-QED context and well studied for
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few-level emitter is extended on a many-body system, cf. Sec. 6. This is done by ap-
plying quantum coherent feedback control on a Heisenberg quantum spin chain with
nearest-neighbor interaction. Thus, the setup is changed from a spatial driving to a
temporal-driving scheme: Loss and driving take place at the same site but include two
different points in time separated by the roundtrip-time τ . It is demonstrated that this
gives rise to new conditions for the feedback phase and with this to highly non-trivial
states within the system as well as to the possibility of partially characterizing the sys-
tem non-invasively and store excitation within it. Following this, a novel approach to
the boundary-driven Heisenberg chain is presented, cf. Sec. 7, a setup which is intensely
studied in the Markovian regime in recent literature. In the setup in the present thesis,
the chain is exposed to a coherent driving field on one end while coupled dissipatively
to a reservoir on its other side, enabling for a comparison of coherent and incoherent
driving.
The third part, Sec. III, few-level systems are exposed to self-feedback with the aim to
further investigate the influence of the phase and to establish methods of controlling it.
Here, Sec. 8 demonstrates the possibilities of a microwave pump field used as an ad-
ditional control parameter to disentangle the intertwined feedback parameter and thus
to provide for further application methods. This is followed by presenting the aim to
enhance the visibility of two photons with coherent feedback control in Sec. 9.
The thesis concludes with a summary of the main results and an outlook of further work
and open questions in Sec. 10.
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Part I.

Theory and methodology





2.

The theory of open quantum systems

Studying open quantum systems ranges among the most important topics of current
physical research. Recently, rapid improvements in the ability to control quantum co-
herence of single particles have been made, while these developments are of fundamental
importance for the storage and manipulation of quantum information [5]. With this, cap-
turing the effect of the couplings of these systems to their environment is of increasing
importance, leading to growing attention for open quantum systems in a broad range of
fields of physics. Here, in solid state physics, for instance trapped atoms [6, 7], molecules
and ions [8, 9] have been studied, and the transport properties of quantum dots or other
mesoscopic devices has been explored [10]. In quantum optics, examples include the
investigation of photon modes in cavities [11] or impurities coupled to photonic crystals
[12]. See [14, 15, 16, 10] for latest reviews on these topics.
An open quantum system is generally described with a microscopic region S exhibiting
quantum coherence, which is coupled to an external environment R [1, 2, 3, 4], where the
interaction leads to dissipation and decoherence. The total Hamiltonian Htot(t) reads

Htot(t) = Hsys(t) +Hres(t) +Hint(t), (2.1)

where Hsys(t) describing the dynamics of the closed subsystem S, Hres(t) denotes the free
Hamiltonian of the environment R and Hint(t) represents the interaction between both
parts. Thus, the open quantum system represents a subsystem of the combined total sys-
tem S +R, where the latter is usually assumed to be closed, meaning that its dynamics
evolve unitary and are described through a (time dependent) Hamiltonian Htot(t) - this
will be the case throughout this thesis.
The interaction dynamics results in subsystem-environment correlations which induces
state changes of the subsystem. As a consequence, the state of the subsystem alone can
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no longer be described by unitary, Hamiltonian dynamics. Its dynamics - resulting from
the total unitary evolution of both subsystem and environment - are commonly called
reduced system dynamics [1].
In all cases investigated in this thesis, the environment will consist of an electromagnetic
field with its modes forming a continuum - thus, it contains an infinite number of de-
grees of freedom, which in many cases may be described as an environment consisting
of bosonic, independent harmonic oscillators. Due to its infinite degrees of freedom, the
environment is referred to as a reservoir in this thesis, as it is commonly the case. Note
that from now on, the subsystem S will be referred to as the system, as it is its dynamics
which is of central interest.
Due to this very large number of degrees of freedom, one of the main methodological tasks
in the theory of open quantum systems is to avoid the integration of the entire system,
as this would require to solve an infinite hierarchy of coupled equations of motion. How-
ever, as in most cases, the interest lies on the quantities related to the dynamics of the
reduced system, and thus a number of approximation techniques and analytical methods
for the description of its dynamics are concerned with gaining a simpler description of
the reduced Hilbert space describing the dynamics of some reduced system observables.
To this end, one way is to trace out the environment and evolve the reduced density ma-
trix of the system ρs(t). Here, master equations provide a way to compute this evolution -

Figure 2.1: Sketch of an open quantum system with Markovian type of interaction. The
total system consists of a microscopic region |ψ(t)〉sys which couples to its
surrounding environment or reservoir |ψ(t)〉res with a coupling strength Γ.
During time evolution for one time step ∆t, the Markov approximation re-
quires that the reservoir recovers instantly from the interaction and relaxes
again into its previous state, thus |ψ(t+∆t)〉res = |ψ(t)〉res.

in particular the Lindblad-Kossakowski form which may be applied for systems where the
Markov approximation holds [72]. Other important methods are for instance quantum
Langevin equations [73], the input-output formalism using the Heisenberg representation
[74], continuous measurement theory [2] or the quantum stochastic Schrödinger equation
(QSSE). Instead of tracing out the reservoir’s degrees of freedom, the approach in the lat-
ter case remains in the Schrödinger picture and uses a time discrete basis which includes
the interaction with the reservoir at one time step with a stochastic, time-stroboscopic
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description [81, 77, 80].
Another widely used approach is the quantum trajectories method [14, 3, 75, 76]. Instead
of propagating the density matrix, it relies on solving a Schrödinger equation under the
use of a non-Hermitian effective Hamiltonian for the time-evolution of the reduced sys-
tem, while the incoherent coupling to the bath is simulated by applying quantum jumps
at random times and then averaging over many of the obtained trajectories [15].
With regard to the applied approximations, two important scenarios have to be differed,
namely that of Markovian and non-Markovian type of interaction between system and
reservoir. In the first case, the interaction may be described as a Markov process, mean-
ing that in order to determine the future state of the total system, the knowledge only
of its present state is needed - past states do not have to be taken into account [82]. In
order for this approximation to be valid, the separation of timescales between system and
reservoir is required, meaning that the the frequency scale of the system is much smaller
than the one of the reservoir dynamics and the one induced by the system-reservoir
coupling, resulting in an instant recovery of the reservoir from the interaction with the
system. It thus holds for the correlation time τcorr,res of the reservoir that τcorr,res → 0.
This is illustrated in Fig. 2.1. In this limit, only very few parameters of the reservoir
remain of importance for the dynamics of the reduced system.
In many cases, however, the large separation of timescales between system and reser-
voir does not hold - thus, the past interaction between system and reservoir influences
the present state of the reservoir. Fig. 2.2 illustrates this process. This results in non-

Figure 2.2: Sketch of an open quantum system with non-Markovian type of interaction.
The total system consists of a microscopic region |ψ(t)〉sys which couples to
its surrounding environment or reservoir |ψ(t)〉res with a coupling strength Γ.
Contrary to the Markovian case, the state of the reservoir at the time t+∆t
remains influenced by the interaction with the system which has occured
during the time step ∆t, thus |ψ(t+∆t)〉res �= |ψ(t)〉res.

Markovian effects which occur in a broad range of contexts, for instance in quantum
optics, solid state physics, quantum chemistry and many more [6, 7, 13, 11, 12] - see [15]
for an excellent review on the topic.
In this thesis, both Markovian as well as non-Markovian scenarios will be considered. For
modeling their dynamics numerically, matrix product states as a state-of-the-art method
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will be employed and to this end, Sec. 3.1 provides an introduction to this framework.
Two important theoretical models - the formulation of the Lindblad-Kossakowski master-
equation and of the quantum stochastic Schrödinger equation (QSSE) - will be derived
in this chapter.
Three approximations are being made for both methods: the weak coupling limit, the
Markov approximation and the rotating wave approximation. The weak-coupling limit
assumes that the coupling between system and reservoir is sufficiently small so that the
influence on the reservoir density matrix ρres may be neglected. This means it may be
treated as constant and thus, the total density operator may be written as:

ρtot(t) = ρsys(t)⊗ ρres. (2.2)

The Markov approximation states that the time evolution of present state of the system
only depends on its present and not on its own past. The assumption behind this ap-
proximation is that the excitations created in the reservoir during the interaction decay
so quickly that the information backflow on the system cannot be resolved on the time
scales considered for the simulation of the system’s time evolution. Thus, the separation
of timescales explained above is a necessary condition for this approximation, which re-
sults in a vanishing correlation time of the reservoir.
The rotating wave approximation consists of neglecting the fast rotating terms in the in-
teraction Hamiltonian. In order for this approximation to hold, the weak-coupling limit
is required. Additionally, the narrow-bandwidth approximation must hold, meaning that
the system couples mainly to the reservoir at a small band of frequencies around its reso-
nance frequency. Due to its importance for the computations in this thesis, its derivation
is now demonstrated for the paradigmatic case of a single-electron atom in interaction
with an electromagnetic field.

2.1 Atom-field interaction Hamiltonian in full quantization

The total Hamiltonian for the interaction of a two-level atom at the position r with an
electromagnetic field E reads as

H = Hel +Hres − e r ·E, (2.3)

with Hel and Hres describing the free energies of respectively the atom and the field with

Hel =
∑
i

~ωiσii (2.4)

and
Hres =

∑
k

~ωk
(
b†kbk +

1

2

)
(2.5)

with σij the atom transition operator and b(†)k the creation and destruction operator of
a photon with the energy ~ωk and e the charge of the electron [83]. Note that it is
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in dipole approximation where the field is assumed to be uniform over the atom which
implies the assumption that the atom couples to the reservoir predominantly at a small
band of frequencies around its transition energy ~ω0.
Inserting the expressions er =

∑
i,j ξijσij with ξij = e 〈i| r |j〉 denoting the electric dipole

transition element and E =
∑

k ε̂kEk(bk + b†k) into Eq. (2.3), omitting the zero-point
energy and describing a two-level atom with the ground level |1〉 and the excited level
|2〉, from what it follows that ξ̂ = ˆξ12 = ˆξ21, it is obtained:

H =
∑
k

~ωkb†kbk + E1σ11 + E2σ22 + ~
∑
k

κk(σ
+ + σ−)(bk + b†k). (2.6)

with κk = − ξ·ε̂kEk
~ the coupling constant and the atomic transition operators σ+ = |2〉 〈1|

and σ− = |1〉 〈2|.
Note that Ek = (~νk/2ε0V )

1
2 , where for simplicity the polarization basis is assumed to

be linear and the polarization unit vectors to be real. In the following step, the ground
level energy of the atom will be set to zero, thus E1σ11 ≡ 0, while the energy of the atom
excited state is described by its resonance frequency ω0, E2 = ~ω0.
Next, Eq. (2.6) is transformed into the interaction picture. This means that it is trans-
formed into the rotating frame defined by its freely evolving part. Therefore, the unitary
transformation with the following properties is applied. The system dynamics obeys the
Schrödinger equation:

i~
d
dt
|ψ〉 = H |ψ〉 . (2.7)

where i is the imaginary unit, ~ the reduced Planck constant and |ψ〉 the wave vector
describing the combined system-reservoir dynamics. Let U be a unitary transformation
U with the property U †U = I where I is the unitary operator. With this, Eq. (2.7) may
be written as:

i~U
d
dt
U †U |ψ〉 = UHU †U |ψ〉 . (2.8)

Defining the wave function in the interaction picture as U |ψ〉 = |ψ〉I and regrouping
Eq. (2.8) yields

i~
d
dt
|ψ〉I = HI |ψ〉I (2.9)

with
HI = UHU † − iU d

dt
U † (2.10)

In order to transform into the rotating frame of the freely evolving part, the unitary
operator U is defined as:

U = exp

[
i

~
t
(∑

k

~ωkb†kbk + ~ω0σ22

)]
(2.11)

With this transformation, Eq. (2.6) reads as

H = ~
∑
k

κk(σ
+e−iω0tbke

iωkt + σ+e−iω0tb†ke
−iωkt + σ−eiω0tbke

iωkt + σ−eiω0tb†ke
−iωkt).

(2.12)
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In the weak coupling limit for the timescale of the dynamics being much slower than the
one of the coupling dynamics, thus ω0 � κk, the fast oscillating terms in Eq. (2.12) may
be neglected, as they average out in the integration. This approximation is called the
rotating wave approximation and is valid in many cases in quantum optics, and it will
be used in this thesis.
Transforming Eq. (2.6) back into the Schrödinger picture thus yields the Hamiltonian for
the atom-field interaction in the rotating wave approximation:

H =
∑
k

~ωk
(
b†kbk

)
+ E2σ22 + ~

∑
k

κk(σ
+bk + σ−b†k). (2.13)

2.2 System-reservoir interaction in the Schrödinger picture:
the quantum stochastic Schrödinger equation

In order to derive the quantum stochastic differential equations for an quantum me-
chanical wave function [81, 77, 80], a standard model of an open quantum system in
quantum optics is considered: a system where only a single transition of the frequency
ω0 is relevant for the coupling, interacting with a reservoir which consists of bosonic har-
monic oscillators, which may for instance represent an electromagnetic field. The total
Hamiltonian Htot consists of the system, reservoir and interaction parts. It reads:

Htot = Hsys +Hres +Hint, (2.14)

with the Hamiltonian of the free evolution of the electromagnetic field defined as

Hres =
∑
k

~ωkb†kbk. (2.15)

Here, b(†)k creates/annihilates a bosonic excitation, where the index k represents an ab-
breviation for the wave vector k and the polarization λ of the respective field mode, thus
k ≡ {k, λ}. They obey the canonical commutation relations:

[bk, b
†
k′ ] = δk,k′ . (2.16)

The reservoir is assumed to be in a vacuum state initially. For Hsys, no further specifi-
cations are being made except for the fact that it must be exactly solvable and defined
by its eigenfunctions and eigenvalues. It may for instance describe the free evolution of
a two-level or few-level system or of an harmonic oscillator.
Note that for simplicity, only one reservoir is assumed; however the derivation is easily
extended to the generalization of many reservoirs in interaction with a many-body sys-
tem.
The interaction part describes a linear system-field coupling in rotating wave approxi-
mation as derived in Sec. 2.1:

Hint = ~
∑
k

(
κkb
†
kc
− + h.c.

)
(2.17)
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Here, c is a system operator whose free evolution is assumed to be governed by the
resonance frequency ω0, and κk is the coupling constant. Therefore, the system operator
must satisfy the following commutation relation:

[H0
syst, c] = −~ω0c. (2.18)

Next, Eq. (2.14) is transformed into the interaction picture. This means that it is trans-
formed into the rotating frame defined by its freely evolving part. As the system obeys
the Schrödinger equation, cf. Eq. (2.7), a unitary transformation as defined in Eq. (2.8) -
Eq. (2.10) in the previous section is applied. To this end, the unitary operator U1 is
defined as:

U1 = exp

[
i

~
t
(
Hsys +

∑
k

~ωkb†kbk
)]

(2.19)

This yields the transformed Hamiltonian Hint,I(t), where the free energies have canceled
out:

Hint,I(t) = ~
∑
k

(
κkc
†bke

−i(ωk−ω0)t + h.c.
)

(2.20)

2.2.1 Time-dependent reservoir operators

Next, time-dependent reservoir operators b(†)(t) are defined with

b(t) =
∑
k

κkc
†bke

−i(ωk−ω0)t. (2.21)

Their commutation relation may be derived using the commutation relations in Eq. (2.16):

[b(t), b†(t′)] = γ(t− t′) (2.22)

with

γ(t− t′) =
∑

|ωk−ω0|<θ

|κk|2e−i(ωk−ω0)(t−t′) →
∫ ω0+θ

ω0−θ
dωg(ω)|κ(ω)|2e−i(ω−ω0)(t−t′) (2.23)

where in the last step, the reservoir is described as a continuum of modes and density of
states. Also, the narrow-bandwidth approximation is assumed to hold, thus only modes
whose frequencies are within a small range defined by θ around the resonance frequency
ω0 have to be included. Note that with k ≡ {k, λ} there may be a number of different k
corresponding to the same frequency ωk, thus |κ(ωk)|2 corresponds to the average value
of |κk|2 for all k with ωk = ω.
Next, the Markov approximation is made, hence it is assumed that the time scale of the
system is much slower than the coupling dynamics, thus it holds |t− t′| � 1

θ .
Also, a smooth coupling between system and field is assumed, meaning that within this
narrow bandwidth, the coupling g(ωk)|κ(ωk)|2 varies only very little, thus g(ωk)|κ(ωk)|2 ≡
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g0. The last assumption is also called the white noise approximation, as it allows to ex-
tend the integral in Eq. (2.23) over the entire frequency space. With this, the definition
of the reservoir operator reads as:

b(t) =

∫ +∞

−∞
dω b(ω)e−i(ω−ω0)t (2.24)

with the commutation relations

[b(t), b†(t′)] = δ(t− t′)πg2
0e
iω0(t−t′) (2.25)

which means that for different times t, t′, they commute. Thus, the operator in Eq. (2.24)
includes the entire system-reservoir interaction, where the parameter t must be inter-
preted as the time at which the initial incoming field will interact with the system [77].
With this, the transformed Hamiltonian in Eq. (2.20) simplifies to

Hint,I(t) = i~g0

(
c†b(t) + cb†(t)

)
. (2.26)

The interest lies in solving the dynamics of the open system. The time evolution of the
combined system is governed by the Schrödinger equation in Eq. (2.7). Integrating it
formally yields:

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 (2.27)

with the time evolution operator U(t, t0) defined as:

U(t, t0) = T̂ exp

(
− i
~

∫ t

t0

H ′(t′)dt′
)
. (2.28)

where T̂ represents the time ordering. In order to include the system and the reservoir
in the ansatz for the wave function, it is defined as:

|ψ(t)〉 = |(ψsys ⊗ ψres)(t)〉

= lim
k→dn

∑
is=0,1

∞∑
n0,...,nk=0

cis,n0,...,nk(t) |is, n0, . . . , nk〉 , (2.29)

where the states |is = 0〉, |is = 1〉 denote the ground level and excited state of the system
and the {|nk〉} denotes the Fock states of the bosonic reservoir, thus nk denotes the
number of excitations in the kth mode. Note that with limk→∞, the reservoir is described
by a mode continuum.
Due to the infinite number of degrees of freedom of the reservoir, inserting Eq. (2.29) into
Eq. (2.27) results in an infinite number of differential equations for the time dependent
coefficients cis,n0,...,nk(t), making it very difficult to solve. Until now, its definition in
Eq. (2.24) is only an abbreviation for the integral over the mode continuum with infinite
modes k - the infinite degrees of freedom of the reservoir modes still need to be reduced.
This is done by treating the operators b(t)(†) as stochastic elements and introducing a
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time-discrete basis, as will be demonstrated in the following.
As the aim is to solve the Schrödinger equation, the start for the derivation is the time
evolution for |ψ(t)〉 in Eq. (2.27), where Eq. (2.28) defines the time evolution operator.
Note that here, the time ordering has to be preserved.
The corresponding Hamiltonian Hint,I has been derived in Eq. (2.26). Expanding it
to second order reads as, which |ψ(t)〉I = U † |ψ(t)〉 where |ψ(t)〉 has been defined in
Eq. (2.29):

|ψ(t)〉I =

(
I − i

~

∫ t

t0

dt′H(t′)I

)
|ψ(t0)〉I −

1

~2

∫ t

t0

dt′H(t′)I

∫ t′

t0

dt′′H(t′′)I |ψ(t0)〉I (2.30)

The reservoir is assumed to be in the vacuum state initially, thus |ψ(t0)〉 = |ψ(t0)〉sys ⊗
|vac〉. Note that for reasons of simplicity, the subscript I will be dropped in the following.
Note that the separation of timescales is assumed, which implies the weak-coupling limit:
the electromagnetic coupling is sufficiently weak so that for a time interval ∆t the dy-
namics of the reservoir is much quicker than the one induced by the interaction. Also
note that from now on, the time will be discretized, thus t→ ∆t.
Inserting the transformed Hamiltonian in Eq. (2.26) into Eq. (2.30) and taking into ac-
count that the reservoir is in a vacuum state initially, which implies that b(t) |ψ(t0)〉res =
0, the third term in Eq. (2.30) reads as:∫ ∆t

t0

dt′
∫ t′

t0

dt′′
(
− g2

0c
†cb(t′)b†(t′′) + g2

0ccb
†(t′)b†(t′′)

)
|ψ(t0)〉 . (2.31)

Using the commutation relations in Eq. (2.25) and the initial conditions of the reservoir,
the following relationship holds:

c†cb(t′)b†(t′′) |ψ(t0)〉 = δ(t′ − t′′)eiω0(t−t′) |ψ(t0)〉 . (2.32)

With this, the second term in Eq. (2.31) may be written as:∫ ∆t

t0

dt′
∫ t′

t0

dt′′ − g2
0c
†c δ(t′ − t′′)eiω0(t−t′) = −2πc†c g2

0∆t
1

2
. (2.33)

Note that it is proportional to ∆t. Applying the condition b(t) |ψ(t0)〉res = 0 also for the
second term in Eq. (2.30), Eq. (2.30) now reads as:

|ψ(∆t)〉 =
(

1− Γc†c∆t
1

2

)
|ψ(0)〉+

∫ ∆t

t0

dt′g0cb
†(t′) |ψ(t0)〉

+

∫ ∆t

t0

dt′
∫ t′

t0

dt′′g2
0ccb

†(t′)b†(t′′) |ψ(t0)〉 , (2.34)

where Γ ≡ 2πg2
0 has been defined.

Note that the first term contains the no-photon processes, the second term one-photon
processes and the third term two-photon processes.
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Next, coarse graining in time is introduced [81]: the time step is chosen so that it
holds Γ∆t is sufficiently small to assume that during one time step, the maximum of
one photon may be created or destroyed. Calculating the photon probabilities of the
single terms in Eq. (2.34) by taking the average over the initial system vector with
〈O〉0 = 〈ψ(0)|O |ψ(0)〉, with O an operator, yields P0(∆t) = 1 − 〈cc†〉Γ∆t for the first
term in Eq. (2.34), P1(∆t) = 〈cc†〉Γ∆t for the second and P2(∆t) = 1

2Γ2〈ccc†c†〉∆t2.
Thus, for a ∆t sufficiently small, the two-photon term in Eq. (2.34) may be neglected.

2.2.2 Transformation to a time discrete basis

The next step is to introduce time discrete quantum noise operators, which - for reasons
that become clear further below - are also called quantum Ito increment. They include
the full interaction with the reservoir at one time increment from tk to tk+1, where
equidistant time steps ∆t = tk+1 − tk are assumed:

∆B(†)(tk) =
1√
Γ

∫ tk+1

tk

dt′b(†)(t′) (2.35)

Thus, the operator in Eq. (2.35) represents a quantum noise increment during one time
step.
Up to the factor ∆t, the noise operators obey bosonic commutation relations, as may be
shown for equidistant time steps using Eq. (2.25):

[∆B(tk),∆B
†(tj)] =

∫ tk+1

tk

dt

∫ tj+1

tj

dt′δ(t− t′) = ∆tδkj . (2.36)

Thus, the {∆B(†)(tk)} form an orthogonal set of operators which may be interpreted as
annihilation or creation operator for reservoir excitations during the respective time inter-
val. Note that the time interval ∆t should be chosen smaller than the system timescales
but larger than the bandwidth of the reservoir modes around the resonance frequency.
By normalization to a factor

√
∆t, a set of orthonormal basis states is obtained:

|ip〉 =
(∆B†(tk))

ip√
ip!∆tip

|vac〉 , (2.37)

where ip, p integer, denotes the number of excitations present in the Fock state of the
kth time interval. With this, a basis transformation from the frequency representation of
the radiation field in the ansatz in Eq. (2.29) to a time representation may be conducted,
where the state of the reservoir during each time step is represented by its own Hilbert
space Hp. Thus, the total Hilbert space of this new representation reads

H = Hs ⊗
+∞∑
p=−∞

Hp, (2.38)
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where Hs is the system Hilbert space. The ansatz for the wave function now reads as:

|ψ(t)〉 =
∑
is,{ip}

cis,i1,...,iNT (t) |is, i1, . . . , iNT 〉 . (2.39)

As the ∆B(†)(tk) only act on the kth interval, time evolving the state up to the time k∆t
will not affect the Hilbert space for later times - and it will thus remain in the vacuum
state. Note that the dimensions of each subspace are reduced by assuming that ∆t is
sufficiently small so that the maximum of one excitation may be created during one time
step.

2.2.3 Quantum stochastic integration

The operator in Eq. (2.35) is a stochastic description due to the lack of information about
the precise mode of interaction with the system. Their increments are defined as:

dB(t) = B(t+ dt)−B(t) (2.40)

and
dB†(t) = B†(t+ dt)−B†(t) (2.41)

As explained above, the field is assumed to be in the vacuum state. With this, the
increments may be characterized as follows:

〈dB(†)(t)〉 = trres
(
dB(†)(t)ρ(t)

)
=

∞∑
ki=0

〈ki = 0|∆B(†)(tk)ρ(t) |ki = 0〉 = 0 (2.42)

and
〈dB(t)dB†(t′)〉 = dtδ(t− t′) (2.43)

Due to these two properties - the mean in Eq. (2.42) and the variance in Eq. (2.43) - the
quantum noise increments (Eq. (2.35)) are the quantum mechanical, non-commutative
analogues of the classical Wiener process.
In order to integrate the noise increments, a specific form of a quantum stochastic inte-
gration has to be considered: The Ito integration. Its form reads:∫ t

0
f(s)dB(s) = lim

n→∞

n∑
i=0

f(ti)[B(ti+1)−B(ti)], (2.44)

where f(t) is an operator values quantity which only depends on B(s) for s < t, which
means that the function f(ti) is independent of the stochastic increment [B(ti+1) −
B(ti)]. For quantum stochastic integrals of the Ito form, the conventional calculus
d
[
B(t)B†(t)

]
= dB(t)B†(t) + B(t)dB†(t) for the differential d

[
B(t)B†(t)

]
has to be

replaced by the following form [84]:

d
[
B(t)B†(t)

]
= dB(t)B†(t) +B(t)dB†(t) + dB(t)dB†(t). (2.45)

By using this calculus in Eq. (2.45), the Lindblad master equation may be derived from
the quantum stochastic Schrödinger equation, which will be demonstrated in Sec. 2.3.
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2.2.4 The quantum stochastic Schrödinger equation

With the time discretized Hilbert space and the quantum Ito increments, the QSSE
may now be derived. Writing Eq. (2.34) as a differential equation and inserting the Ito-
increments ∆B, ∆B† defined in Eq. (2.35) into it yields the equation for the first time
step:

∆ |ψ(t0)〉 ≡ |ψ(t0 + ∆t)〉 − |ψ(t0)〉

=
(
− c†cΓ

∆t

2
+
√

Γg0c∆B
†(0)

)
|ψ(t0)〉 (2.46)

This description may be generalized to the kth time interval, as it only affects the Hilbert
space for the kth time interval: evolution up to a time t does not affect the Hilbert spaces
for times later than t, thus the Hilbert spaces for ti > tk remain in the vacuum state.
The whole time interval T may be decomposed into a direct product of the subspaces
representing one time interval. Also, the derivation of Eq. (2.46) required that |ψ(0)〉
is in the vacuum state for the operators ∆B(0),∆B†(0). As the Ito increments for
one time step commute with these of the previous one, |ψ(k∆t)〉 is vacuum state for
∆B(k+ 1∆t),∆B†(k+ 1∆t). Thus, Eq. (2.46) may be generalized to the kth time step.
In the limit of ∆t ≤ 1

θ , thus that the strength of the interaction becomes very weak, the
change within every time step may be assumed to be sufficiently small, and Eq. (2.46)
may be written as:

d |ψ(t)〉 =
(
− c†cΓ

dt

2
+
√

Γg0cdB
†(t)
)
|ψ(t)〉 . (2.47)

As the increments dB(t) represent the future state of the reservoir, they are independent
of the present state of |ψ(t)〉, thus the integral resulting from Eq. (2.47) will be of Ito
kind.
Eq. (2.47) represents the quantum stochastic Schrödinger equation in the interaction pic-
ture. Transforming it back into the Schrödinger picture using the unitary transformation
for the time-independent system Hamiltonian U = exp

(
i
~Hsyst

)
yields:

d |ψ(t)〉 =
(
− i

~
Heff dt+

√
Γ c dB†(t)

)
|ψ(t)〉 (2.48)

with the non-Hermitian operator

Heff = Hsys − i~
1

2
c†cΓ (2.49)

The term dB†(t) represents the the incoming radiation field in the immediate future. This
implies that this field is not yet affected by the system. The second term in Eq. (2.49)
may be interpreted as a self-field created by the system which damps the radiation by
reacting on the system itself [77].
Also note that Eq. (2.48) formally resembles the classical Langevin equation which de-
scribes the motion of a particle in liquid or gas with a fluctuating, stochastic force de-
scribing Gaussian white noise and also implies the separation of timescales.
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Due to the linear nature of the QSSE, it is possible to solve it explicitly in some cases.
Examples include the decay of a single-photon cavity mode or of a two-level atom. Also,
the inclusion of several independent reservoirs or the interaction with a heat bath, thus
of a reservoir in thermodynamic equilibrium with a temperature above zero, may be
derived - see [81] for details. However, this is not the topic of this thesis, as here, the
QSSE picture will be used for modeling open quantum system dynamics numerically. Its
implementation will be explained in the following section.

2.2.5 Numerical solutions using the QSSE picture

For the numerical model, time-discretized Hilbert space of the QSSE picture serves as a
basis. Thus, the wave function is also expressed in this basis and reads

|ψ(t)〉 =
∑
is,{ip}

cis,i1,...,iNT (t) |is, i1, . . . , iNT 〉 . (2.50)

as introduced in Section2.2.2.
Due to this basis transformation, the time evolution operator in in Eq. (2.28) may also
be discretized, which may be seen as follows:

U(t, t0) = T̂ exp

(
−i

nT∑
n=0

∫ n∆t

(n−1)∆t
H ′(t′)dt′

)

= T̂ exp

(
−i

nT∑
n=0

Hn(tn)

)
(2.51)

with Hn(tn) =
∫ n∆t

(n−1)∆tH
′(t′)dt′ With this, the time evolution is now expressed with a

stroboscopic map, which reads for the kth time step:

|ψ(tk+1)〉 = exp

(
−i
∫ (k+1)∆t

k∆t
H ′(t′)dt′

)
|ψ(tk)〉 ⊗ |ik+1 = 0〉 (2.52)

with the assumption that in the initial state, system and reservoir are uncorrelated. Due
to this stroboscopic time evolution, the time ordering T̂ may be dropped.
With this, the time evolution may be computed numerically by repeated application of
the time evolution operator on the wave vector |ψ(tk)〉 which has to be updated after
every time step.

2.3 System-reservoir interaction in the density matrix
picture: The quantum optical master equation

In order in order to investigate the dynamics of the reduced system where the partial trace
over the reservoir is taken, the statistical operator or density matrix ρ(t) is introduced.
It is defined as

ρ(t) =
∑
i

pi |ψ(t)〉i 〈ψ(t)|i , (2.53)
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where the {|ψ〉i} form a complete set of eigenstates with eigenvalues pi, and the nor-
malization condition Tr ρ =

∑
i pi = 1. With this, incoherently mixed states may be

expressed as a weighted sum over pure states. The equation of motion for the density
matrix is called the Liouville-von-Neumann equation, which is of the form:

d
dt
ρ(t) = −i[H(t), ρ(t))], (2.54)

with H(t) the Hamiltonian of the system. Eq. (2.54) may also be written in a form
analogous to the classical Liouville equation.

d

dt
ρ(t) = L(t)ρ(t), (2.55)

where L is the so called Liouville operator, which is an operator containing a mapping rule
with another operator, L[·] ≡ −i[H(t), ·]. For that reason, L is called a super-operator.
Provided L is time independent, the formal solution to 2.55 is given by

ρ(t) = eL(t−t0)ρ(t0). (2.56)

When dealing with reduced systems, their quantum dynamics may generally no longer
be represented in terms of a unitary time evolution. Its dynamics may instead be for-
mulated by an appropriate equation of motion for its density matrix, a quantum master
equation. Various types of these equation have been derived for different types of system
dynamics. Here, the quantum optical master equation for Markovian type of interaction
between system and reservoir will be derived, as it is used throughout this thesis. It may
be derived directly from the quantum stochastic Schrödinger equation, cf. Eq. (2.48).
To this end, the start is Eq. (2.14), where the system Hamiltonian Hsys may now con-
tain additional terms to the free system evolution, for instance a coherent driving term;
however, for simplicity, it is assumed to be time-independent. Transformed into the
interaction picture using the unitary operator defined in Eq. (2.19), it reads as:

HI(t) = HI,sys + g0

∫
dω
(
c†b(ω)e−i(ω−ω0)t + h.c.

)
(2.57)

with HI,sys the system Hamiltonian in the interaction picture. Note that a frequency-
independent coupling constant g0 is assumed.
Expanding the equation of motion for |ψ(t)〉 to second order as defined in Eq. (2.30),
applying b(t) |ψ(t)〉res = 0 and the commutation relations in Eq. (2.25), neglecting the
two-photon term and introducing time discretization yields:

|ψ(∆t)〉 =

=
(

1− c†c g2
0∆t

1

2

)
|ψ(t0)〉+

∫ ∆t

t0

dt′g0cb
†(t′) |ψ(t0)〉

+

∫ ∆t

t0

dt′
∫ t′

t0

dt′′
(
H2

sys +Hsys g0 b
†(t′′)c+ g0 b

†(t′′)cHsys

)
|ψ(t0)〉 . (2.58)
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Note that the Markov approximation has been applied by putting |ψ(t′′)〉 = |ψ(t0)〉 in
the last line of Eq. (2.58), as it has been explained in Sec. 2.2.
For the first term in the second line, it holds that∫ ∆t

0
dt′
∫ t′

0
dt′′Hsys = Hsys

1

2
(∆t)2 → 0, (2.59)

thus it is of order (∆t)2 and may be neglected.
Writing Eq. (2.58) as a differential equation generalized for the kth time step, plugging
in the Ito-increments ∆B(†) and putting ∆t→ dt yields:

d |ψ(t)〉 =
(
− i

~
Heff dt+

√
Γg0 c dB

†(t) +HsyscdB̄1 + dB̄2cHsys

)
|ψ(t)〉 . (2.60)

with
Heff = Hsys − i~Γc†c

1

2
, (2.61)

dB̄1 =

∫ dt

0
dt′
∫ t′

0
dt′′ g0b

†(ω)ei(ω−ω0)t′ , (2.62)

and

dB̄2 =

∫ dt

0
dt′
∫ t′

0
dt′′g0 b

†(ω)ei(ω−ω0)t′ . (2.63)

In the following, the differential equation for dρ(t) = d(|ψ(t)〉 〈ψ(t)|) will be derived.
Using the Ito-calculus defined in Eq. (2.45), the formal rule reads as:

dρ(t) = d(|ψ(t)〉 〈ψ(t)| = (d |ψ(t)〉) 〈ψ(t)|+ |ψ(t)〉 (d 〈ψ(t)|) + (d |ψ(t)〉)(d 〈ψ(t)|). (2.64)

As the interest lies on the dynamical quantities of the system, the degrees of freedom
will be reduced by calculating the reduced density matrix ρs(t). It is obtained by taking
the partial trace trRρ(t) ≡

∑
{ip} 〈{ip}| ρ(t) |{ip}〉 over the reservoir:

ρs(t) ≡ trR(ρ(t)) = trR(|ψ(t)〉 〈ψ(t)|), (2.65)

Next, the Born approximation is made, thus the large separation of time scales holds with
the system dynamics governed by much larger frequencies than the one of the reservoir.
With this, the ansatz

|ψ(t)〉 = |ψ(t)〉sys ⊗ |ψ〉res (2.66)

is used, where the reservoir is assumed to be in the vacuum state |ψ〉res = |vac〉.
Thus, the differential is calculated as

trR(dρ(t)) = trR
[
d(|ψ(t)〉 〈ψ(t)|)

]
= trR

[
(d |ψ(t)〉) 〈ψ(t)|

]
+ trR

[
|ψ(t)〉 (d 〈ψ(t)|)

]
+ trR

[
(d |ψ(t)〉)(d 〈ψ(t)|)

]
= 〈vac| d(|ψ(t)〉) 〈ψ(t)|sys + |ψ(t)〉sys d(〈ψ(t)|) |vac〉+ trR

[
(d |ψ(t)〉)(d 〈ψ(t)|)

]
.

(2.67)
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where in the last step, the vacuum state of the reservoir, |ψ〉res ≡ |vac〉 has been exploited.
Plugging Eq. (2.60) into Eq. (2.67), inserting |ψ(t)〉 = |ψ(t)〉sys ⊗ |ψ(t)〉res = |ψ(t)〉sys ⊗
|vac〉 and using 〈vac| b†(t) = 0, we arrive at

trR(dρ(t)) = − i
~
dt
[
Heffρ(t)sys − ρ(t)sysHeff

]
+ trR

[
(d |ψ(t)〉)(d 〈ψ(t)|)

]
(2.68)

with ρ(t)sys = |ψ(t)〉sys 〈ψ(t)|sys the system density matrix.
Next, Eq. (2.60) is inserted into the last term in Eq. (2.68). This results in Eq. (11.2),cf. Sec. 11.1
in the appendix. As only summands of of the order of ∆t have to be taken into account,
the terms in Eq. (11.2) are analyzed by making use of the cyclic property of the trace and
of the weak coupling limit. This is also demonstrated in Sec. 11.1. With this, Eq. (11.2)
reduces to:

trR

[
(d |ψ(t)〉)(d 〈ψ(t)|)

]
= Γdtcρ(t)sysc

†, (2.69)

Inserting Eq. (2.69) and (2.61) into Eq. (2.68) yields:

dρsys(t) = − i
~
dt
[
Heffρ(t)sys − ρ(t)sysHeff

]
+ Γdtcρ(t)sysc

†

=
(
− i

~
Hsysρ(t)sys + Γ

1

2
c†cρ(t)sys +

i

~
ρ(t)sysHsys − Γ

1

2
ρ(t)sysc

†c+ Γcρ(t)sysc
†
)
dt.

(2.70)

Dividing Eq. (2.70) by dt yields the Lindblad master equation:

ρ̇(t)sys = − i
~

[
H(t)sys, ρ(t)sys

]
+ ΓD[c]ρ(t)sys (2.71)

with Γ ≡ 2πg2
0 and the Lindblad dissipator

D[c]ρ(t)sys = cρ(t)sysc
† − 1

2

{
c†c, ρ(t)sys

}
(2.72)

and the anti-commutator{
c†c, ρ(t)sys

}
= c†cρ(t)sys − ρ(t)sysc

†c. (2.73)
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3.

Modeling open quantum system dynamics

In the theory of open quantum systems, among the most important methodological tasks
is to avoid the integration of the entire system which usually consists of large number
of degrees of freedom. To this end, various approaches exist. Importantly, master equa-
tions provide a way to compute this evolution - in particular the Lindblad-Kossakowski
form which may be applied for systems where the Markov approximation holds [72] and
has been presented for the quantum optical case in Sec. 2.3. Other approaches include
quantum Langevin equations [73], the input-output formalism using the Heisenberg rep-
resentation [74] or continuous measurement theory [2].
However, when dealing with quantum many-body systems, all these formalisms face a
fundamental challenge, which is the large dimension of the Hilbert space: The reduced
Hilbert space grows exponentially with the number of particles involved, often mak-
ing analytical solutions difficult and numerical approaches very demanding. Consider,
for instance, one single particle with spin-1/2, which may either be in state spin-up
|s = 1/2〉 ≡ |0〉 or in the state spin-down |s = −1/2〉 ≡ |1〉: the dimension d of the local
Hilbert space is d = 2. If two particles are considered, obviously it holds that d = 2·2 = 4.
Thus, for N particles, d = 2N , which means that even for moderate numbers as N = 100
it is of the rather large dimension d ≈ 1, 27·1030. If the state is described as a mixed state
in the density matrix picture, as it is necessary for describing open quantum systems, its
dimension grows even faster with d = 22N = 4N .
Thus, full solutions of the equations of motion become very demanding. For instance,
solving the full set of differential equations of the reduced density matrix within the
master equation framework generally limits the system size to N ≈ 10 where N counts
the number of qubits of the many-body system.
Clearly, in order to access larger system sizes, approximative methods are needed which
allow for an efficient reduction of the exponentially growing Hilbert space.
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It is the aim of this thesis to work with approximative methods converging to the full
solution in the limit of finely tuned approximation parameters. Here, the tensor net-
work method matrix product states (MPS) provides a powerful tool which this thesis
makes use of. It is based on the decomposition of the complex coefficient of the wave
function into a set of tensors with the truncated quantity being the entanglement within
the system. This chapter provides an introduction to the form of matrix product states,
demonstrates how to write an arbitrary pure state in the form of an MPS, explains the
truncation method, the form and application of operators and the time evolution of an
MPS.

3.1 Time evolution with matrix product states (MPS)

Algorithms based on the description of the wave vector as a matrix product state (MPS)
have firmly established themselves as an important tool for the numerical treatment of
quantum physical systems [85, 86, 87] 1. They have been used as a convenient and useful
class of quantum states already for analytical studies, see for instance [94]. Examples
include the study of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state and more general of
finitely correlated states [95], which have consequently been used for analytical variational
methods, for instance on Heisenberg antiferromagnets [96]. The start of the use of MPS
as a numerical tool took place in the context of the density matrix renormalization group
(DMRG) technique [85]. The latter was invented in the early 1990s [97, 87] as a powerful
numerical tool mainly for the calculation of ground states in one-dimensional systems
with open boundary conditions [98]. Its algorithm is based on an iterative increase of
the Hilbert space taken into account, the minimization of the energy using variational
methods, and an efficient truncation which keeps only the eigenvectors associated to the
largest eigenvalues. Today, DMRG methods combined with MPS are a standard tool for
modeling one-dimensional systems [99, 100, 101, 89, 102, 85].
Initially, DRMG was limited to ground state calculations, but soon, efficient methods
for a description of a time evolution have been developed, the most important ones be-
ing the time-dependent density matrix renormalization group (tDRMG) [103, 104], the
time-evolving block decimation (TEBD) [105, 106] and the time evolution of the MPS
state (tMPS) [85]- see [86] for an excellent review. Although these methods differ in
some aspects, all of them are based on the powerful combination of an efficient appli-
cation of the operators and a valid truncation of the Hilbert space. Currently, these
methods are state of the art in the investigation of one-dimensional systems, and their
use for two- or three-dimensional systems is being explored. Apart from time-evolution,
DMRG-applications have been extended to the use of periodic boundary conditions, the
investigation of infinite systems, or single-site DMRG. For an excellent overview, see [85].
Central to these algorithms is the expansion of the state vector coefficient into a product
of tensors using the singular value decomposition. In this form, the entanglement between

1For detailed introductions to matrix-product states see [88, 89, 90, 91, 92, 93]. See also the tensor
network library website https://itensor.org/, upon whose open source algorithm the numerical work
of this thesis builds.
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the subsystems is accessible in form of the singular values which allows for a valid trun-
cation of the Hilbert space by setting those below a certain threshold to zero. The three
main algorithms TEBD, tDMRG and tMPS mathematically perform the same operation,
which is the application of a time-evolution operator U(t, t0) = T̂ exp

(
−i
∫ t
t0
H ′(t′)dt′

)
on a state |ψ(t)〉, which is described by the time-dependent Schrödinger equation. Here,
where H denotes the Hamilton operator of the system, i is the imaginary unit, ~ the
reduced Planck’s constant, and t the time. Thus, all of them numerically solve the
equation

|ψ(t+ ∆t)〉 = U(t+ ∆t, t) |ψ(t)〉 . (3.1)

All three algorithms express the state as an MPS and approximate - that is, truncate -
it essentially along the same lines, as will be explained in detail in this section. However,
there is one difference in the algorithms which concerns the way the MPS is compressed,
thus truncated: TEBD and tDRMG evolve and truncate one single site after the other
with one or several sweeps through the chain or network, while tMPS first evolves all
bonds in time and truncates the entire state by truncation the dimensions of all matrices
d2D to D. Thus, tDMRG and TEBD perform an iterativ variationally compression,
which may have the advantage of a numerically less costly time evolution. However,
tMPS has the advantage that it is the cleaner and more precise approach, as here, for
each time step, the time evolution is done before the truncation is performed [85]. For
this reason, this thesis employs tMPS for the time evolution.
Also, all methods go beyond the reach of exact diagonalization by solving Eq. (3.1) mak-
ing use of sparse matrix exponentials. Here, one can further diffentiate two important
approaches for the numerical approximation [86]. In the first, the action of U(∆t) is
approximated, which is done by a time-dependent variational principle based on the
Lanczos formalism [107], as it is done by the global [108, 109] or local [110] Krylov
method and by the time-dependent variational principle [111, 112]. In this approach, the
operator itself is not directly calculated. the second approach approximates the operator
itself [106, 103, 104, 113, 114]. Here, tDRMG, TEBD and tMPS all make use of the
Suzuki-Trotter-decomposition [115, 116], which has its origin in quantum field theory
and the setting up of path integrals [117]. Another recently proposed method [118] uses
a generalized form of the Euler approximation for the matrix exponential.
Despite the fact that tMPS has been developed for the application on pure states only, it
has been successfully applied on incoherent dynamics of mixed states - first, for unitary
time evolution of quantum states with finite temperatures. Here, the mixed state purified
with a duplicate of itself evolved along the imaginary axis [119].
Since roughly ten years, these methods have been extended to non-unitary time evo-
lution [120]. The method for finite temperature evolutions has been extended to the
simulation of dissipation [114, 119], and in a parallel development, a method has been
proposed where the density operator is written as a super-state and evolved by tDMRG
in Liouville space [121]. This method has been applied analytical [122, 123] as well as to
numerical time evolution of Markovian open many-body systems described in the density
matrix picture [124, 125, 126, 127, 128, 129, 130] and recently even on few-level systems
with non-Markovian [131] dynamics. However, the scaling of the Hilbert space with 4N
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- instead of 2N in Schrödinger space - again imposes a strong disadvantage for larger
system sizes. Additionally, the readout of expectation values is limited [121].
For all coherent dynamics with pure states, however, the more efficient Schrödinger pic-
ture allows for the full access of expectation values and may be applied on systems
with Markovian as well as non-Markovian dynamics, which has already successfully been
demonstrated for open few-level systems [80, 132, 71, 133]. For this reason, the picture
of the quantum stochastic Schrödinger equation serves as a numerical basis.

3.2 The MPS form and the Schmidt decomposition

An arbitrary pure state of a quantum system can be written as an linear superposition of
all basis states. Let |i1〉 , |i2〉 . . . |iN 〉 be a basis with N basis vectors of an N-dimensional
Hilbert space. Then a state |ψ〉 within this Hilbert space may be written as

|ψ〉 =

d1∑
i1

d2∑
i2

· · ·
dN∑
iN

ci1i2...iN |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iN 〉 . (3.2)

Here, ⊗ denotes the tensor product, ci1i2...iN are the coefficients with ci1i2...iN ∈ C and
d1, d2, . . . dN are the dimensions of each basis vector. For reasons of simplicity, the tensor
product symbol will be omitted in the following, resulting in the representation

|ψ〉 =
∑
i1...iN

ci1...iN |i1 . . . iN 〉 . (3.3)

The sum is taken over all possible combinations of the basis states, which means that
for the dimension d of |ψ〉 it holds that d = d1d2 . . . dN . Let the basis {|ik〉} be the local
Hilbert spaces of a spin chain with N sites, thus k ∈ (1 . . . N), with d1 = d2 = · · · =
dN = 2, while the two possible states are ik = |12〉 = |↑〉, for instance for spin up, and
ik = |−1

2〉 = |↓〉 for spin down. It holds that d = 2N , which means that the Hilbert
space grows exponentially with each site added to the system. In order to describe larger
quantum systems numerically, a valid physical approximation for such systems is needed,
which is given by transforming the state into a matrix product state and using this form
to find a valid approximation.
The key idea of the MPS form is that complex coefficient tensor ci1i2...iN may be written
as a product of matrices A:

ci1i2...iN = Ai1Ai2 . . . AiN ,

so that the state |ψ〉 can be written as:

|ψ〉 =
∑
i1...iN

Ai1Ai2 . . . AiN |i1 i2 . . . iN 〉 , (3.4)

Thus, the description of the state is expanded, as this form may at first glance seem as
the more complicated one. However, this representation is very useful because of two
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of its features: Firstly, it contains a more local description of the state, as each matrix
contains the coefficients for one site; and secondly, as will be shown in the following, it
makes the entanglement of each subspace with the respective other subspaces accessible
as a physical quantity which can then be used in order to make valid approximations of
the physical system.
In order to rewrite the complex coefficient tensor ci1i2...iN , the singular value decomposi-
tion (SVD) is needed. It states that an arbitrary, rectangular matrix A with A ∈ Cm×n

can be written in the following form:

A = USV T ,

with U ∈ Cm×min(m,n), V T ∈ Cmin(m,n)×n and S ∈ Cmin(m,n)×min(m,n).
Additional properties are that U has orthonormal columns (left singular vectors), i.e.
UTU = I and V T has orthonormal rows (right singular vectors), i.e. V TV = I. Here,
I indicates the identity matrix in the respective dimensions. S is a diagonal matrix
with non-negative entries si, i ∈ (1, . . . ,min(m,n)), the singular values. By convention
the singular values are sorted descending resulting in s1 > s2 > · · · > sk, where k ≤
min(m,n) and for all si with i ∈ (k + 1, . . . , k + min(m,n)) it holds that si = 0.
In order to visualize operations with the MPS form later in this section, a more intuitive,
graphical representation in the form of block diagrams is now being introduced. Let
|ψ〉 = ci1,i2 |i1, i2〉 be an arbitrary quantum state described with Eq. (3.3), while the local
Hilbert space is defined by i1, i2 - this may for instance describe the state of two coupled
two-level system. Using the SVD, the coefficient matrix ci1,i2 may now be decomposed
according to ci1,i2 = USV T , where U = Ui1,α, V = Vα,i2 and S = Sαα. Thus, U gets the
index of the first basis state, while V the one of the second, and the index α connects
the matrices.
In order to simplify these expressions for larger quantum systems, the block diagram
depiction is introduced in Fig. 3.1. The key idea is to represent each tensor with a block,
whose shape indicates its properties, while the indexes are represented by labeled lines.
Tensors carrying the same index may be connected by these lines, which indicates a
summation over this index. Vertical lines represent the physical indexes which are also
called site indexes, while horizontal lines indicate the link indexes.
Also, the SVD is the basis for the Schmidt decomposition, which states the following: If
|ψ〉 is a pure state of a composite quantum system of the subsystems A and B with the
dimensions NA, NB respectively, then there exist orthonormal states |i〉A, |i〉B for both
systems such that

|ψ〉 =
r∑
i

λi |i〉A |i〉B . (3.5)

For the λi - the so called Schmidt-coefficients - it holds that λi ∈ R+ and
∑

i λi = 1. r
denotes the so called Schmidt rank, which in quantum information theory is a measure
for the entanglement between the states on the two subspaces, and it holds that r = 1
for product states and r > 1 for entangled quantum states [134].
The Schmidt decomposition and the SVD may be used to express the entanglement of
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Figure 3.1: Block diagram of the singular value decomposition of a pure quantum state
in the Hilbert space i1, i2. The black box represents the coefficient matrix
ci1,i2 which is being decomposed into a left orthogonal (blue box), right-
orthogonal (green box) and diagonal (red circle) matrix. The horizontal lines
labeled with a1, a2 are called bond indexes, which connect the matrices with
its neighbors. Thus, the number of lines connected to one circle indicates the
number of indexes of the matrix. If two circles are connected by a line, the
matrices share the same index and may be multiplied by summing over it.

the state between the two subsystems as well as to provide a valid approximation for
numerical simulation of the evolution of the state. This can be seen as follows: The pure
quantum state |ψ〉 in Eq. (3.5) can always be expressed in the following form, where |j〉
and |k〉 are orthonormal basis for the subsystems A and B:

|ψ〉 =
∑
jk

cjk |j〉 |k〉 . (3.6)

The cij in Eq. (3.6) are coefficients of a matrix C, thus it holds for the reduced density
operators ρA = TrB |ψ〉 〈ψ| = C†C and ρB = TrA |ψ〉 〈ψ| = CC†.
Using the singular value decomposition, C may be decomposed such that

|ψ〉 =
∑
ijk

ujisiivik |j〉 |k〉 (3.7)

=

min(NA,NB)∑
i

∑
j

uji |j〉

 sii

(∑
k

vik |k〉

)
(3.8)

=
r∑
i

λi |i〉A |i〉B , (3.9)

which is equal to Eq. (3.5) with
(∑

j uji |j〉
)
≡ |iA〉, sii ≡ λi, (

∑
k vik |k〉) ≡ |iB〉 and

r = min(NA, NB).
The reduced density operators can be expressed with the Schmidt basis in Eq. (3.5) as
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eigenvectors and the corresponding eigenvalues as the squares of the Schmidt-coefficients:

ρB =
r∑
i

λ2
i |iA〉 〈iA| (3.10)

ρA =
r∑
i

λ2
i |iB〉 〈iB| (3.11)

As a measure for the entanglement between the two subsystems, the von Neumann
entropy of entanglement S(ρ) is a useful concept. It is a quantum mechanical measure of
uncertainty using the density operator ρ(t) of a system as the probability distribution.
It is defined as:

S(ρ) ≡ −Tr (ρ log2 ρ) = −
∑
p

λp log2 λp, (3.12)

where the λp denote the eigenvalues of the density matrix ρ. S is non-negative, zero if
and only if the state is pure, and in a d-dimensional Hilbert space it is at most log d for a
completely mixed state I/d [134]. If a composite quantum system |AB〉 is in an entangled
state, the conditional entropy SA|B expresses the remaining lack of knowledge about the
state of A, if we know the state of B, and thus is a measure for the entanglement between
the states in the subspaces. It is defined as:

SA|B(|ψ〉) = −Tr (ρA log2 ρA), (3.13)

and thus may be expressed using the Schmidt decomposition in Eq. (3.5) as follows:

SA|B(|ψ〉) = −
r∑
i

λi log2 λi. (3.14)

3.2.1 Decomposing a quantum state into a matrix product state

Let |ψ〉 be the arbitrary pure quantum state described by Eq. (3.3), assuming it is
normalized. If we assume that d1 = d2 = . . . dN , this state vector is of length dN . This
also holds for its coefficients ci1...iN , which may be expressed as a vector of length dN .
Next, this state vector is reshaped into a matrix of the dimensions d × dN−1, which is
equal to re-expressing the state in Eq. (3.3) as a tensor product of the two subspaces |i1〉
and |i2 . . . iN 〉. With this, the state coefficient vector ci1...iN may also be expressed as a
matrix C̄ ∈ Cd×dN−1 for which coefficients it holds C̄i1,(i2...iN ) = ci1...iN . Thus the state
now looks like

|ψ〉 =
∑
i1

∑
i2...iN

C̄i1,(i2...iN ) |i1〉 ⊗ |i2 . . . iN 〉 . (3.15)

The next step is to perform an SVD of C̄:

ci1...iN = C̄i1,(i2...iN ) =

r1∑
a1

Ui1,a1Sa1,a1(V †)a1,(i2...iN ), (3.16)
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where the rank r1 is r1 6 d.
Before proceeding with the state decomposition, the physical meaning of the SVD de-
composition in step 3.16 is explained briefly: Inserting Eq. (3.16) into 3.15 and defining

|a1〉A =
∑
i1

Ui1,a1 |i1〉 (3.17)

|a1〉B =
∑
i2...iN

(V †)a1,(i2...iN ) |i2 . . . iN 〉 (3.18)

Sa1,a1 = sa1 (3.19)

yields the Schmidt decomposition in Eq. (3.9) of |ψ〉 between the subspaces |i1〉 and
|i2 . . . iN 〉:

|ψ〉 =

r1∑
a1

sa1 |a1〉A |a1〉B . (3.20)

This means that the SVD in Eq. (3.16) is equivalent to a Schmidt decomposition of |ψ〉
between the two subspaces |i1〉 and |i2 . . . iN 〉, and that the von Neumann entropy in
Eq. (3.14) between these two subsystems can be read of using the Schmidt coefficients
on Sa1,a1 .
Going back to Eq. (3.16) and proceeding with the decomposition of the state into an
MPS, the next step is the following: First, the matrices S ∗ V † are contracted. This
results in an orthogonal matrix, as the multiplication of the singular value matrix S with
either the left-orthogonal matrix U or with the right-orthogonal matrix V does. Now,
the matrix Ui1,a1 from Eq. (3.9) is decomposed into d row vectors Ai1a1

= Ui1,a1 of the
dimension 1× r1 - thus, for each of the d values that a1 may take, one row vector exists.
Also, the matrix S ∗ V † - which is orthogonal - in 3.16 is reshaped into a new matrix
C̄(i1i2),(i3...iN ) ∈ Cr1d×dL−2 . Note that the smaller the Schmidt rank r1, the smaller are
the dimensions of the decomposed matrices. With this, the state looks like:

ci1...iN =

r1∑
a1

Ai1a1
C̄(a1i2),(i3...iN ). (3.21)

Note that the coefficient i1 is now stored in Ai1a1
and missing in C̄(a1i2),(i3...iN ), and that

both matrices are linked with the index a1. Repeating step 3.16 (the SVD decomposi-
tion of C̄(a1i2),(i3...iN )) as well as step 3.21 (the reshaping of the resulting matrices) and
inserting the results into 3.21 yields

ci1...iN =

r1∑
a1

r2∑
a1

Ai1a1
U(a1i2),a2

Sa2,a2(V †)a2,(i3...iN ) (3.22)

=

r1∑
a1

r2∑
a1

Ai1a1
Ai2a1,a2

C̄(a2i3),(i4...iN ), (3.23)

where in the last step, the matrix U(a1i2),a2
has been reshaped into two matrices Ai2a1,a2

of the dimensions r1 × r2 - note that the A matrices are not vectors any more, like in
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the previous step, as it is linked with two other matrices with the indexes a1 and a2.
Also, note that the Ai2a1,a2

contains only one index of the basis, i2 - thus, for each of the
d values that i2 may take, one matrix exists.
Proceeding like that until ci1...iN is completely decomposed yields

ci1...iN =
∑

a1...aL−1

Ai1a1
Ai2a1,a2

. . . A
iL−1
aL−2,aL−1A

iN
aN−1

(3.24)

= Ai1Ai2 . . . AiL−1AiN , (3.25)

where in the last step, the sum over the {ai} has been written as matrix multiplications.
Note that AiNaN−1

is a set of column vectors. As mentioned above, Ai1a1
is a set of row

vectors, thus multiplying all matrices will yield the scalar coefficients ci1...iN and the
whole state may now be written in the MPS form (3.4):

|ψ〉 =
∑
i1...iN

ci1...iN |i1 i2 . . . iN 〉 =
∑
i1...iN

Ai1Ai2 . . . AiN |i1 i2 . . . iN 〉 . (3.26)

With this, the decomposed state with all indexes as written in Eq. (3.24) looks like
displayed in Fig. 3.2.
If all Schmidt values are non-zero, the A-matrices have their maximal dimensions (from
left to right) with (1 × d), (d × d2), . . . , (d

L
2−1 × d

L
2 ), . . . , (d2 × d), (d × 1). Thus, only a

truncation makes this representation useful for calculations.Thus, a form is needed which
minimizes the distance of the original state |ψ〉 and its approximation |ψ̃〉 in Hilbert space,
|| |ψ〉 − |ψ̃〉 ||.

3.2.2 Truncation of an MPS

There are two ways to compress the MPS [86, 85] in order to gain such a valid approxi-
mation |ψ̃〉 of |ψ〉: One is to reduce the dimension directly by an SVD of the MPS, and
the other is a variational ansatz where the MPS-dimensions are reduced by minimizing
the distance between the original and the approximative state iteratively - the first one
is numerically more costly while the second one strongly depends on the chosen initial
state.
Both make use of the same principle, which is that the Schmidt decomposition in Eq. (3.5)
of |ψ〉 can be used to derive such a valid approximation |ψ̃〉 of |ψ〉. This becomes clear as
follows. In principle, if a given matrix M is supposed to be approximated with a matrix
M̃ , it has to fulfill the equation ∥∥∥M − M̃∥∥∥

p
≈ 0. (3.27)

First, making a valid approximation of the coefficient matrix C of |ψ〉 in Eq. (3.6) with
the coefficient matrix C̃ of |ψ̃〉 is equal to making a valid approximation of the state |ψ〉,
because it holds that the 2-norm of |ψ〉 is equal to the Frobenius norm ‖·‖F of coefficient
matrix C in Eq. (3.6):

‖|ψ〉‖22 =
∑
i,j

|cij |2 = ‖C‖2F (3.28)
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Such an approximation can be gained from the Schmidt decomposition of C, making
use of the so called low rank approximation of the Frobenius norm. It states that
the best approximation in the Frobenius norm to a rectangular matrix M ∈ Cm×n

(with M = USV T ) which is of rank r and with S = diag (s1, s2, . . . , sr), s1 > s2 >
· · · > sr, is given by a matrix M̃ with rank r̃ < r with M̃ = US̃V T , where S̃ =
diag (s1, s2, . . . , sr̃, 0, . . . ) with s1 > s2 > · · · > sr̃ and the remaining singular values si
for i ∈ (r̃, r̃ + 1, . . . r̃ + (r − r̃)) set to zero [135].
This means that C can be approximated by making a singular value decomposition and
cutting of the smallest singular values. This will result in lowering the column dimen-
sions of U and the row dimensions of V T , which may improve the numerical efficiency
enormously. Looking at Eq. (3.19) and (3.20), it can be seen that one way of reducing
the dimensions of these matrices is to cut of the smallest eigenvalues from the spectrum
of the singular value matrices Sak during the decomposition procedure, which is exactly
the approximation given by Eq. (3.28) discussed above. The key idea is that by cutting
of the smallest eigenvalues, the part of information about the entanglement of our system
which is least important for its description is lost. If only the the maximum of D singular
values is kept during each decomposition step, the dimensions of the MPS are reduced
to dN matrices with the dimensions D ×D each at the most. The upper bound for the
error made with this approximation |ψ̃〉 is given by:

∥∥∥|ψ〉 − |ψ̃〉∥∥∥2

2
6 2

N∑
i

εi(D). (3.29)

The εi(D) denote the truncation error caused by the truncation of the singular value
matrix during the ith step of the decomposition. It holds that εi(D) =

∑(N−D)
j s2

j , so
the error is the sum of the squares of the discarded singular values of the ith singular
value matrix. If the discarded singular values are small enough, so will be the error made
by the approximation.
Thus, finding a valid approximation |ψ̃〉 constitutes in the task of reducing the dimensions
of the truncated state as much as possible while at the same time minimizing the loss of
information, thus the distance to the un-truncated state.

3.2.3 Form of the MPS

For the decomposition of an arbitrary pure quantum state into a matrix product state,
several possibilities exist, thus the form of the MPS is not unique. The decomposition
explained in Sec. 3.2.1 above results in the so called left canonical form: An important
feature of the A-matrices is that they are left-normalized, which means it holds for
k ∈ (1 . . . N): ∑

ik

Aik†Aik = I. (3.30)

If an MPS is constructed in this way, it is called left-normalized. This form of the MPS
emerges if the decomposition is started from the left side of the indexes, as demonstrated
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Figure 3.2: Block diagram of a matrix product state in the left canonical form, where
the blue boxes represent the left orthogonal tensors and the red box the
orthogonality center of the MPS.

in Eq. (3.15) till (3.24) above. The result is depicted in Fig. 3.2. Obviously, one could
also start with the decomposition from the right side of the index set in 3.3, which results
in an so called right-canonical MPS of the form

|ψ〉 = Bi1Bi2 . . . BiN |i1 i2 . . . iN 〉 . (3.31)

where all B-matrices are right-normalized with
∑

ik
BikBik† = 1 for l ∈ (1 . . . N). This

form is depicted in Fig. 3.3.
From these two representation, two other important ones are easily derived: First, the

Figure 3.3: Block diagram of a matrix product state in the right canonical form, where
the green boxes represent the right orthogonal tensors and the red box the
orthogonality center of the MPS.

mixed-canonical form, where the decompositions are started from the left as well as from
the right, until the following form results:

|ψ〉 = Ai1 . . . AikSBil+1 . . . BiN |i1 i2 . . . iN 〉 , (3.32)

where S is a singular value matrix, the A-matrices are left-normalized and the B-matrices
right-normalized. Defining |al〉A =

∑
i1...il

(Ai1 . . . Aik)1,al |i1, . . . , il〉 and
|al〉B =

∑
i1+1...iN

(Bi1+1 . . . BiN )al,1 |il+1, . . . , iN 〉, this is again the Schmidt decomposi-
tion of the state between the l-th and (l + 1)-th bond with |ψ〉 =

∑
al
sa |al〉A |al〉B.

Multiplying S either with its left or right neighbor yields the orthogonality center (OC),
whose name is derived from the fact that the all basis states on its left/right are orthonor-
mal. This site is unnormalized, while all tensors to its left are left-normalized and the
ones to its right are right-normalized. It is also called active site, as for the calculation of
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expectation values, the OC needs to be placed on the respective site in order to exploit
the left- and right-normalization of the other lattice tensors, see Sec. 3.4. Fig. 3.4 shows
the block diagram notation of this state.
Secondly, the canonical form or Vidal decomposition is explained: here, all singular value
matrices are being kept during the decomposition. The mathematical procedure for both
decompositions is described very well in [85]. The obvious advantage of this form is that
the entanglement between all subspaces is kept accessible at all times.
In order to illustrate the outlined procedure, the decomposition of the W-state into an
MPS will be demonstrated in the appendix in Sec. 11.2, which serves as an example of a
multipartite entangled quantum state.

Figure 3.4: Block diagram of a matrix product state in the mixed canonical form, where
the green boxes on the right are the right-orthogonal B-matrices and the blue
boxes the left-orthogonal A-matrices. The red triangular box represents the
singular value matrix S.

3.3 The application of operators

An arbitrary operator O affecting |ψ〉 expressed in the basis {|ik〉} takes the form

O =
∑

i1,...,iN
i′1,...i

′
N

ci1,...,iN ,i′1,...i
′
N
|i1 . . . iN 〉 〈i′1 . . . i′N | (3.33)

The indexes can be rewritten using a compound index (ik, i
′
k), which takes the same role

as the index ik in the decomposition of a state into an MPS. With that, the operator
may be decomposed into a matrix product operator (MPO) like

O =
∑

i1,...,iN
i′1,...i

′
N

c(i1,i′1),...,(iN ,i′N ) |i1, . . . iN 〉 〈i′1 . . . i′N | (3.34)

=
∑

i1,...,iN
i′1,...i

′
N

W
i1i′1
1,b1

W
i2i′2
b1,b2

. . .W
iN i′N
bN ,1 |i1, . . . iN 〉 〈i′1 . . . i′N | (3.35)

=
∑

i1,...,iN
i′1,...i

′
N

W i1i′1W i2i′2 . . .W iN i′N |i1, . . . iN 〉 〈i′1 . . . i′N | , (3.36)
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where in the second step the coefficient tensor c(i1,i′1),...,(iN ,i′N ) has been decomposed into
a matrix product state making use of the same procedure as shown above in Eq. (3.15) -
(3.24). Note the important difference to the decomposition of a state |ψ〉: Now, each W -
matrix carries two physical indexes per site. The block diagram notation of an arbitrary
operator is shown in Fig. 3.5.
Applying the operator on the state reads as |ψ̃〉 = O |ψ〉. Inserting equations 3.35 and
3.24 results in

O |ψ〉 = |ψ̃〉 =
∑

i1,...,iN
i′1,...i

′
N

(W
i1i′1
1,b1

W
i2i′2
b1,b2

. . .W
iN i′N
bN ,1 )(A

i′1
1,a1

A
i′2
a1,a2 . . . A

i′N
aN ,1) |i1, . . . iN 〉 (3.37)

Because operators on different sites commute, it is possible to rearrange the matrices and
contract over one of the site indexes. This results in the new MPS |ψ̃〉 whose matrices

Figure 3.5: Block diagram of an matrix product operator (MPO) which acts on the entire
spin chain from site i1 to iN . Each solid rectangle represents a W -matrix
with two physical site indexes and (apart from the first and the last in the
row) two link indexes. The horizontal lines represent the link indexes bk,
k ∈ (1, . . . N −1), between the matrices, while the vertical lines represent the
physical indexes ik and i′k.

now have two new compound indexes (bk−1, ak−1), (bk, ak):

|ψ̃〉 =
∑

i1,...,iN
i′1,...i

′
N

(W
i1i′1
1,b1

A
i′1
1,a1

)(W
i2i′2
b1,b2

A
i′2
a1,a2) . . . (W

iN i′N
bN ,1 A

i′N
aN ,1) |i1, . . . iN 〉 (3.38)

=
∑

i1,...,iN

N i1
(1,1),(b1,a1)

N i2
(b2,a2),(b3,a3)

. . . N iN
(bN−1,aN−1),(1,1)

|i1, . . . iN 〉 (3.39)

=
∑

i1,...,iN

N i1 . . . N iN |i1, . . . iN 〉 (3.40)

Note that with the introduction of the new compound indexes, the bond dimensions
have grow in size, with the dimensions of the new MPS |ψ̃〉 being the product of the
dimensions of |ψ〉 and O. If the MPS would not be truncated after each step, this would
lead to an exponential increase in its size.
The block diagram of this procedure is shown in Fig. 3.6.
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Figure 3.6: The application an MPO on an MPS. The first line shows the application of
the operator before the contraction over the physical indexes i′k. In the second
line, this contraction and the re-labeling of the indices has been performed,
resulting in a new MPS.
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3.4 Calculation of expectation values

Another important step is the calculation of a one-site expectation value from a state in
the form of an MPS. First, consider an arbitrary one-site operator O[k] effecting site k.
It takes the form

O[k] =
∑
ik,i

′
k

cik,i′k |ik〉 〈i
′
k| (3.41)

and its application on |ψ〉 reads |ψ̃〉 = O[k] |ψ〉, while the expectation value MO[k] is
calculated with MO[k] = 〈ψ|O[k] |ψ〉. If O[k] is written as an matrix product operator in
the full Hilbert space of |ψ〉, all the W -matrices will be the identity I, except for the site
k. Thus, the operator takes the following form, where Oili

′
l = Iil,i

′
l for all l ∈ 1, . . . , N

except for k, and Oiki
′
k = cik,i′k :

O[k] =
∑
i,i′

Oi1i′1 . . . Oiki
′
k . . . OiN i′N |i1, . . . iN 〉 〈i′1 . . . i′N | (3.42)

With that, the operator takes the form of an MPO affecting the entire chain, as show
in Fig. 3.5. The numerically least expensive way for calculating MO[k] = 〈ψ|O[k] |ψ〉 is

Figure 3.7: Block diagram of the full calculation of an expectation value 〈ψ|O[k] |ψ〉 of the
Observable O[k] acting on site k. The black boxes in the middle represent the
matrix product operator, while the colored boxes on the lower line represent
|ψ〉 and the ones in the upper line 〈ψ|. Note that the MPS is in the mixed
canonical form with the orthogonality center on site k, which is represented
by the red box shape.

to write |ψ〉 in the mixed canonical form with the singular value matrix S between site
k− 1 and k, and contract S into the matrix Bk. This way, all matrices on the left side of
site k are left-normalized and the ones on the right are right-normalized. Thus, it holds:

MO[k] = 〈ψ|O[k] |ψ〉 (3.43)

=
∑
i,i′

(Ai1∗ . . . AiN∗)(Oi1i′1 . . . OiN i′N )(Ai′1 . . . Ai′N ). (3.44)

(3.45)
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The block diagram to this equation is shown in Fig. 3.7. The sum over the indexes
evaluate to 1 for each site except for site k, as for all matrices left of site k it holds that
Ail†Ail = I and Oil = I, and on the right side of site k it holds that AilAil† = I and
Oil = I. Thus, contracting the network over all these bonds results in the unitary matrix
I and the only calculation to perform is analytically expressed as

〈ψ|O[k] |ψ〉 =
∑
ik,i

′
k

Oiki
′
kAik†Aik . (3.46)

The corresponding block diagram is shown in Fig. 3.8. If a two-site correlation function

Figure 3.8: Block diagram of the same expectation value 〈ψ|O[k] |ψ〉 as shown in Fig. 3.7
above, where the contraction over the left- and right-normalized matrices has
already been done, yielding the identity on both sides. The remaining block
diagram stands for the analytical expression that remains to be evaluated
numerically, which is 〈ψ|O[k] |ψ〉 =

∑
ik,i

′
k
Oiki

′
kAik†Aik .

is supposed to be evaluated, the contraction will have to be performed over all sites in
between, or the two bins have to be brought next to each other beforehand. This is
explained in more detail in Sec. 8.2.2.

3.5 The Suzuki-Trotter decomposition

In order to set up operators for many-body systems within the MPS framework, an ap-
proximation of matrix exponential for U exact(∆t) = eiH∆t is needed. An efficient form
for this is given with the Suzuki-Trotter decomposition [115, 116].
Consider an Hamiltonian modeling a quantum mechanical many-body system, for in-
stance the Hamilton operator H of the isotropic Heisenberg chain consisting of N sites:

H = J
N−1∑
i

1

2

(
s+i s

−
i+1 + s−i s

+
i+1

)
+ szi s

z
i+1 (3.47)
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It may be written as a sum over local Hamiltonians hi = 1
2

(
s+
i s
−
i+1 + s−i s

+
i+1

)
+ szi s

z
i+1,

which describe the interaction between site i and i+ 1:

H =
N−1∑
i=1

hi (3.48)

and thus the time evolution operator which acts on the system looks like

U(∆t) = e−
i
~(

∑N−1
i=1 hi)∆t (3.49)

In order to avoid the exponential expansion of the Hilbert space with 2N , the time
evolution operator in 3.49 needs to be split into a product of local operators with the
dimension 22 = 4 [85, 86].
It is possible to split the sum in Eq. (3.48) into two parts: He containing all even i and
Ho all odd i, so that it holds

He =

(N−1)/2∑
i=1

h2i, (3.50)

Ho =

(N−1)/2∑
i=1

h2i−1 (3.51)

H = He +Ho (3.52)

and thus
U(∆t) = e−

i
~ (Ho+He)∆t (3.53)

As the local operators hi do not commute, [hi, hi+1] 6= 0, writing the exponential in
3.53 as a product will produce an error. It will now be shown that this error is of
O(∆t2), O(∆t3) or O(∆t5) - depending on the chosen approximation method - and thus
sufficiently small.
A Taylor expansion of 3.53 yields

e−
i
~ (Ho+He)∆t = 1 + (Ho +He) ∆t+

1

2
((Ho +He) ∆t)2 + . . .

= 1 +Ho∆t+He∆t+
1

2
HoHe∆t

2 +
1

2
HeHo∆t

2 +
1

2
H2
e∆t2 +

1

2
H2
o∆t2 . . . , (3.54)

while a Taylor expansion of e−
i
~Ho∆te−

i
~He∆t yields

e−
i
~Ho∆te−

i
~He∆t =

(
1 +Ho∆t+

1

2
H2
o∆t2 . . .

)(
1 +He∆t+

1

2
H2
e∆t2 . . .

)
= 1 +Ho∆t+

1

2
H2
o∆t2 +He∆t+HoHe∆t

2 +
1

2
H2
e∆t2 + . . . (3.55)

Subtracting both expansions yields

e−
i
~ (Ho+He)∆t − e−

i
~Ho∆te−

i
~He∆t =

1

2
∆t2(HeHo −HoHe) + . . . , (3.56)
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Inserting 3.56 into 3.53 gives the error for approximating U(∆t) by assuming that
[Ho, He] = 0:

U(∆t) = e−
i
~ (Ho+He)∆t

= e−
i
~Ho∆te−

i
~He∆t +

1

2
∆t2(HeHo −HoHe) + . . . (3.57)

and thus

U(∆t) = e−
i
~Ho∆te−

i
~He∆t +O(∆t2)

= UST1(∆t) +O(∆t2). (3.58)

Eq. (3.58) is called a Suzuki-Trotter decomposition of first order. By symmetrizing, one
can show that

U(∆t) = e−
i

2~He∆te−
i
~Ho∆te−

i
2~He∆t +O(∆t3)

= UST2(∆t) +O(∆t3) (3.59)

In the decomposition 3.59, the accuracy is of higher order in ∆t than in 3.58, and it
is called a Suzuki-Trotter decomposition of second order. In the same manner, one can
derive a formula for an approximation with accuracy of forth order:

U(∆t) = USZ2(τ1)USZ2(τ1)USZ2(τ2)USZ2(τ1)USZ2(τ1) +O(∆t5) (3.60)

with

τ1 = τ2 =
1

4− 41/3
τ (3.61)

τ2 = (1− 4τ1)τ (3.62)

The error which is made per time step using this approximation is of O(∆t5).
Generalizing this, for any HamiltonianH with internally commuting partsHα =

∑Nα
k=1 h

k
α

where the hkα may be diagonalized and commute with each other, one may write

UST1(∆t) = ΠNH
α=1e

−iHα∆t (3.63)

for the first order decomposition and

UST2(∆t) = ΠNH
α=1e

−iHα∆t
2 Π1

α=NH
e−iHα

∆t
2 (3.64)

for the second order decomposition. While the error per time step decreases with higher
order evolutions, the number of exponentials which need to be set up for one time step
increases strongly. Thus, it may be the more efficient choice to reduce the step size ∆t
instead of increasing the order of the decomposition [86].
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4.

Quantum coherent self-feedback

4.1 Introduction to feedback control

Feedback control is well established in modern physical control theory. Its aim is the
manipulation of the dynamics of physical systems. The principle setup is that a control
system - the controller - is provided with information about the evolution of the system
that is to be controlled - the plant. The controller then feeds this information back into
the plant in real time in order to achieve an objective, that is to influence its trajectory in
a desired way. This may be for instance for the trajectory to follow one precise evolution,
or to reach a certain state at a given time, or to reduce the effects of noise or errors on the
evolution - using a certain feedback protocol in order to achieve this. As this feedback
protocol begins and terminates at the plant, this form of control is also called closed-loop
control [136, 137, 138].
In the quantum regime, feedback control is investigated since the 1980s and is nowadays
an important method in various physical settings. Two different approaches exist. In
all forms of measurement-based feedback control, the protocol involves explicit measure-
ments made on the system, thus it relies on obtaining classical information about the
state in a loop containing classical input and output from and to the quantum system
[138, 139, 140, 141, 142, 143, 144, 145, 55, 146]. These protocols have been experimentally
realized in a broad range of different setups, for instance for adaptive phase estimation
[147, 148, 149] or for controlling a single-photon state [150].
In contrast to that, coherent feedback relies on measurement-free control processes and
couples the state of the plant and that of the controller by traveling wave fields [151, 152,
3] or, more generally, by unitary interactions [153, 154, 155]. It was first proposed in [151]
as an all-optical form of feedback control, and later in its general form presented in [153].
In this form, the controller is a quantum system which obtains quantum information via
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unitary interactions from the plant and uses this information to control it. Thus, the
control mechanism is fully quantum mechanical.
Coherent feedback has the strong advantage of relying on quantum state preserving in-
teractions, while in the case of measurement-based feedback, coherence is destroyed by
repeated measurements, for which additionally a strong amplification and processing of
the signal on larger timescales is usually necessary.
Quantum coherent feedback successfully generates a variety of effects such as noise-
reduction [156, 157], optical squeezing [158], quantum error correction [159, 160] and
entanglement control [161]. It has recently been used to generate nonclassical optical
states [162]. It has also been successfully implemented in experimental setups [163, 164,
165, 154, 166, 165, 167, 168].
Important applications lie in the field of quantum information processing [56, 57, 58]. In
particular, feedback control has been successfully used to predict and generate population
trapping in different setups, which will be discussed in the following. Here, an application
of fundamental importance is the field of quantum memory, which relies on the storage
and release of qubits on demand [61, 49, 62, 63, 64]. One specific form of feedback control
is time-delayed self-feedback. Here, the external control force is replaced by a repeated
interaction of the system with former states of itself. In classical physics, it has been
studied theoretically as well as experimentally for instance in the field of laser optics
[169, 170, 171] or dynamical systems and chaos control [172, 173, 174, 175, 176, 177].
The Pyragas form [172, 173] of the classical differential equations reads

ẋ(t) = f(x) + κ(y(t− τ)− y(t)), (4.1)

with x(t) the state vector, f(x) the equations of motion, y(t) the output signal and τ
the delay time. κ constitutes the control force which vanishes in case of y(t) = y(t− τ),
for instance in case of the stabilization of an instable periodic system or when a steady
state is reached. In the quantum regime, the enabling mechanism is often based on
the interaction of the system with a structured continuum with multi-mode degrees of
freedom [178, 179, 180, 181, 182]. In this thesis, the reservoir will be described with a
structured bosonic continuum [80, 133].
In the last decade, self-feedback has been intensely studied for single or coupled few-level
systems, with the aim to manipulate distinct system degrees of freedom. Its coherent
and non-Markovian nature introduces quantum interferences into the dynamics of these
systems and allows for the amplification of two-photon processes [132, 80], enhanced
entanglement and non-classical photon statistics [183], dimerization [184, 185] and a
stabilization of quantum coherence due to interference effects between incoming and
outgoing probability waves [186, 70, 187, 188]. Together with the formation of dark
states and subsequently emerging population trapping [133, 71], Rabi oscillations in the
single-excitation regime have been predicted [187].
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4.2 Population trapping

In this thesis, the self-feedback mechanism is employed by placing the system under
investigation in a semi-infinite waveguide. The closed end of the waveguide acts as a
mirror which is assumed to be perfectly reflecting. Thus, the system is subjected to a
time-delayed, coherent self-feedback, which is based on the interaction of the system with
a structured continuum : part of the excitation emitted from the system will be reflected
by the mirror and subsequently interact with the system again after the delay time τ . A
schematic setup is sketched in Fig. 4.1.
This mechanism provides a measurement-free, state preserving coherent form of quan-

Figure 4.1: Sketch of an quantum system placed in a semi-infinite waveguide where the
closed side is of length L and the end consists of mirror. Part of the emitted
excitation will then be reflected and interact with the system again, driving
it by its own past.

tum feedback control which provides for a method to manipulate system degrees of
freedom. It is mainly studied in atom-molecular-optics and cavity-QED [189, 187, 60,
190, 191, 80, 181, 192, 193, 180, 194, 195, 178, 196, 197, 179].
Placing a two-level system (TLS) in this waveguide serves as a brief introductory example
in order to discuss the properties of quantum feedback, and provides for an important
benchmark for the numerical method with tMPS. It describes the system dynamics in
the single-excitation regime, thus the quantum feedback mechanism is of linear nature.
This model is well investigated analytically [189, 192, 198, 186, 70, 187], and has also
been realized experimentally as a single atom decaying in front of a mirror [199].
The Hamiltonian reads (with � ≡ 1):

H = ω0σ
+σ− +

∫
dωωb†(ω)b(ω) +

∫
dω

(
Gfb(ω)b

†(ω)σ− + h.c.
)

(4.2)

The first term models the free evolution of the two-level system, where ω0 is the resonance
frequency of the TLS and σ+ = σx + iσy and σ− = σx − iσy are the creation and
destruction operators for an fermionic excitation in the two-level system, respectively.
The second term represents the free evolution of the bosonic mode continuum to which
the two-level system is coupled. Here, b(†)(ω) annihilates (creates) a bosonic excitation
of energy ω.
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The last term represents the interaction of the two-level emitter with the bosonic reservoir
which offers a unitary description of decay and feedback effects. Here, the frequency
dependent coupling Gfb(ω) models the feedback interaction and is defined as:

Gfb(ω) = g0 sin

(
ωL

c0

)
= i

√
Γ

2π

(
e−iωτ/2 − eiωτ/2

)
. (4.3)

Eq. (4.3) represents the sinusoidal, frequency-dependent system-reservoir coupling in
order to model a semi-infinite waveguide, where L is the length of the closed side of the
waveguide, c0 the phase velocity in the waveguide, τ = 2L/c0 the feedback delay time -
which is the round-trip time between the emission of a signal from the two-level emitter
into the waveguide and its re-absorption from the reservoir after its reflection at the
mirror - and g0 =

√
Γ/2π the coupling constant with the coupling rate Γ. Initializing

the bosonic continuum in the vacuum state |ψ(t0)〉res = |{0}k〉 with bk |ψ(t0)〉res = 0 and
assuming an initially excited emitter, that is ce(t0) = 1, cg(t0) = 0, the total system
dynamics is described in the single excitation regime: The electronic as well as the
photonic degrees of freedom are restricted to a single excitation, which may be located
either in the atom or in the reservoir. With this, the ansatz for the wave function reads

|ψ(t)〉 = ce(t) |1, {0}ω〉+

∫
dωcωg (t) |0, {1}ω〉 , (4.4)

with |ce(t)|2+
∫
dω|cωg (t)| = 1. Here, ce(t) denotes the complex coefficient with the atomic

state excited and the bosonic continuum in the vacuum state, while cωg (t) is the complex
coefficient where the atom is in its ground state and the excitation in the reservoir.
The system obeys the Schrödinger equation, and the equations of motion for the state of
the system are derived in order to study its time-evolution under feedback. To this end,
a unitary transformation into the interaction picture is applied where the Hamiltonian in
Eq. (4.2) is transformed into the rotating frame defined by its freely evolving part using

U1 = exp

[
it
(
ω0σ

+σ− +

∫
dωωb†(ω)b(ω)

)]
(4.5)

This yields the transformed Hamiltonian H ′(t):

H ′(t) =

∫
dω
(
Gfb(ω)σ+b(ω)e−i(ω−ωs)t + h.c.

)
(4.6)

Note that for a frequency-independent coupling constant Gfb(ω) = g0 instead of Gfb(ω),
the time dependent solution for |ψ(t)〉 in Eq. (4.4) under the evolution of the Schrödinger
equation would describe the spontaneous decay of a two-level emitter in a fully quantized
field, which may be solved withWigner-Weisskopf approximation yielding the exponential
decay in time of the emitter with the solution

|ce(t)|2 = e−2Γt (4.7)
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and thus with the the radiative lifetime 1
Γ .

With the frequency dependent coupling, however, the equation reads

∂tce(t) = −i
∫
dωGfb(ω)e−i(ω−ω0)tcωg (t) (4.8)

∂tc
ω
g (t) = −iGfb(ω)ei(ω−ωe)tce(t). (4.9)

Next, Eq. (4.9) is formally integrated and plugged into Eq. (4.8). This yields the dynamics
for the excited state

∂tce(t) = Γ
(

Θ(t− τ)ce(t− τ)eiφ − ce(t)
)
, (4.10)

where the feedback phase φ = ω0τ has been introduced. Note that the first term in
Eq. (4.10) only contributes for t ≥ τ , while the sign of this contribution is influenced
by eiφ: For φ = 2nπ, n ∈ N0, eiφ = 1 which yields a solution for ∂tce(t) = 0 with
a finite ce(t). This is the case of a fully constructive feedback phase. For the case of
φ = (2n+ 1)π, n ∈ N0, eiφ = −1, which results in the enhanced decay of the emitter.
Comparing Eq. (4.10) with the equation of motion for classical time-delayed feedback
control in Eq. (4.1), clearly the feedback phase is crucial when extending the classical
Pyragas control to the quantum regime. Eq. (4.10) may be solved using a Laplace
transformation. The result reads

ce(t) =
∞∑
n=0

(Γeiφ)n
1

n!
(t− nτ)ne−Γ(t−nτ)θ(t− nτ). (4.11)

Eq. (4.11) is in plugged into Eq. (4.9) in order to obtain a solution for the relaxation
dynamics of the emitter. Formally integrating and setting cωg (0) = 0 yields

cωg (t) = −iGfb(ω)

∫ t

0
dtei(ω−ω0)t

∞∑
n=0

(
Γeiωeτ

)n
n!

(t− nτ)ne−Γ(t−nτ)Θ(t− nτ) (4.12)

Here, the conservation of probability is checked for the 0th τ - interval by verifying∫ ∞
0

dω
∣∣cωg (t ≤ τ)

∣∣2 + |ce(t ≤ τ)|2 !
= 1 (4.13)

for n = 0 in Eq. (4.11) and (4.12). Again, it it is assumed that t → ∞ so that ce(t →
∞) = 0. Equations (4.11)-(4.12) fully describe the dynamics of |ψ(t)〉 in Eq. (4.4) under
the Schrödinger equation with the Hamiltonian given in Eq. (4.2).
In order to discuss the dynamics of a two-level emitter under feedback, the occupation
density of the excited level |ce(t)|2 = 〈σ11〉 is calculated from Eq. (4.11) for the first two
τ -intervals, that is for n ∈ 0, 1. The result reads, with Γτ = Γeiφ:

|ce(t)|2 = 〈σ11〉

= e−Γt
{

1 + Θ(t− τ)
[
eΓτ
(
Γτ t− Γττ

)]}
(4.14)
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Eq. (4.14) shows the dependence of the solution on the interval τ . The first term depicts
the time trace of the excitation density for the 0th τ -interval. During this interval, the
emitter does not interact with its own past yet, and thus decays exponentially into the
vacuum reservoir according to the corresponding Wigner-Weisskopf solution in Eq. (4.7).
The second term in Eq. (4.14) describes the evolution during the first τ -interval, where
the first re-absorbance of the emitted signal occurs.
In the case of a short delay time Γτ � 1, the feedback phase φ - the phase between emis-
sion and re-absorption - matters, which is included in the second last term in Eq. (4.14).
Its choice may either slow down or speed up the decay process compared to its free
decay. Here, for the case of a fully constructive feedback phase φ = 2nπ, n ∈ N, a
non-trivial solution for the long-time steady-state is obtained, where ce(t→∞) = const
and ce(t → ∞) > 0. During the 0th τ -interval, the initial excitation first dissipates
partially into the reservoir. In the 1st τ -interval, this process is stopped by the interac-
tion with the feedback signal. In the following τ -intervals, after a convergence time, the
system-reservoir interaction reaches a steady-state and dynamically traps the remaining
excitation within it. This process is referred to as population trapping or atom-photon
bound state [59]: Without any external disturbances, the excitation probability within
the system remains constant for t→∞.
Note that the condition for trapping to occur only depends on the choice of the feedback
phase φ, not on the delay time τ - the choice of the latter only influences the trapped
excited density. For all cases where φ 6= 2nπ, the system will eventually decay, thus
ce(t→∞) = 0. For the case of φ = (2n+ 1)π, the destructive feedback phase, the decay
process is most strongly enhanced.
Both cases are depicted in the appendix in Sec. 11.3.2 in Fig. 11.1 - 11.2. These plots
also serve as a benchmark for the numerical implementation of coherent self-feedback
using tMPS (black dotted lines), demonstrating the accordance of the algorithm with
the analytical solution. The derivation of the computational basis is given in the ap-
pendix in Sec. 11.3.1. This benchmark will serve as a starting point for the applications
of quantum feedback control presented in the following.
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Part II.

Quantum many-body system-reservoir
interaction





5.

Quantum spin physics

5.1 Introduction to spin physics

This thesis is concerned with one-dimensional spin system as paradigmatic models for
many-body systems. A spin system consists of two or more particles which have a
magnetic moment µ. In most cases electrons are the cause of magnetism, so they may
be considered to represent these particles. For their magnetic moment µ it holds:

µ = µl + µs =
β

~
(l + gss) (5.1)

where l is the operator for the orbital angular momentum, s the operator for the spin
angular momentum and β = e~

2m is the Bohr magneton, which is the elementary unit of
the magnetic moment. g is the gyromagentic factor which indicates the proportionality
of the entire magnetic moment µ to the classical explainable part µl. Here, for electrons
it holds that gs ≈ 2. For reasons of simplicity, the part of the magnetic moment which is
due to the orbital angular momentum l caused by the movement of the electron will not
be considered here. Also, only the exchange interaction will be considered here, while
the weak magnetic interaction will be neglected. The exchange interaction is due to the
Pauli principle for indistinguishable particles, thus quantum mechanical in its origin and
due to the Coulomb forces between the electrons [200, 201].
The spin may be interpreted as the intrinsic angular momentum carried by elementary
particles, and is a fundamental property of them. For its operator s = (sx, sy, sz), the
general properties for angular momentum operators hold. Thus, the following commuta-
tor rules apply:

[si, sj ] = i~εijksk (5.2)

[s2, sz] = 0, (5.3)
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where s2 = (sx)2 + (sy)
2 + (sz)

2 and εijk denotes the Levi-Civita-Tensor which is defined

εijk =


1 if (i, j, k) is an even permutation of (x, y, z)

−1 if (i, j, k) is an uneven permutation of (x, y, z)

0 if i = j or i = k or j = k.

(5.4)

Note that the z-component in equ. (5.3) is chosen by convention to have the same
eigenbasis as s2. Note that s has the following eigenvalue equations:

s2 |l,m〉 = l(l + 1)~2 |l,m〉 (5.5)
sz |l,m〉 = m~ |l,m〉 (5.6)

and |l,m〉 are the corresponding eigenstates of s and sz, where l may be an integer
or half-integer. Bosons carry integer spin, fermions half-integer spin. For electrons, it
holds that l = 1

2 . The quantum number m takes the values m ∈ {−l,−l + 1, . . . , l} =,
so for electrons it holds that m ± 1

2 . The three components of s are defined with the
Pauli-matrices σi, i ∈ (x, y, z), according to

si =
~
2
σi, (5.7)

with

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (5.8)

and

σ2
i = I and σiσj = −σjσi for i 6= j. (5.9)

The Pauli spin matrices obey to the following commutator rule:

[σi, σj ] = 2iεijkσk. (5.10)

When choosing a respective basis, the spin part of the wave function of an electron has
the following two eigenstates, which form an orthonormal system and are defined by the
values the z-component of the spin may take:

|l =
1

2
,m = +

1

2
〉 = |+1

2
〉 ≡ |↑〉 ≡

(
1
0

)
(5.11)

|l =
1

2
,m = −1

2
〉 = |−1

2
〉 ≡ |↓〉 ≡

(
0
1

)
(5.12)

The eigenstate |↑〉 is called spin-up and corresponds to the spin being parallel to the
z-axis, while |↓〉 is called spin-down with the spin being anti-parallel to the z-axis.
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Two more operators need to be introduced: The ascending operator s+ and the descend-
ing operator s− which are defined with

s+ ≡ sx + isy (5.13)
s− ≡ sx − isy (5.14)

and have the following effect on the eigenstates:

s+ |↑〉 = 0, s+ |↓〉 = |↑〉 (5.15)
s− |↑〉 = |↓〉 , s− |↓〉 = 0 (5.16)

Thus, the ascending operator s+ flips a spin-down state to a spin-up state, and the
descending operator flips a spin-up state to a spin-down state [200].

5.2 The Heisenberg chain and the Bethe ansatz

Different models exist for the interaction in systems of spins, corresponding to the fact
that the exchange interaction may take many different forms. This thesis considers the
paradigmatic example of the Heisenberg chain, whose physical properties will be sketched
briefly in the following. [202, 200, 201].
The Heisenberg model expresses an exchange interaction between two spins. For the
isotropic case the Hamiltonian reads

H = J s1 · s2, (5.17)

where J is the coupling constant and marks the preferred direction and strength of the
interaction. If J < 0, the interacting spins will minimize their energy - and thus produce
the strongest microscopic magnetic moment µi - when aligned parallel, which will, on a
large scale, result in a ferromagnet with a large total magnetic moment µtotal =

∑
i µi.

The energy of the ground state is E = NJS2 = 1
4NJ . If J > 0, the spins will prefer

antiparallel alignment and thus µtotal will vanish. The corresponding ground state energy
is E = −NJS2 = −1

4NJ .
If a system of N coupled spins is considered, one important question is with how many
other spins each single spin interacts. Here, the Heisenberg model for a chain with
interaction only with the nearest neighbour will be introduced, which will be used in this
thesis. The Hamiltonian for the isotropic case is

H = J

N−1∑
i=1

si · si+1 +

N∑
i

his
z
i (5.18)

= J

N−1∑
i=1

(
sxi s

x
i+1 + syi s

y
i+1 + szi s

z
i+1

)
+

N∑
i

his
z
i . (5.19)
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Here, hi denotes an external magnetic field which interacts with the z-component of the
spins and may vary for each single spin. Note that the operator si only acts on the i-th
site in the chain, and that operators which act on different sites commute, thus

[ski , s
l
j ] = δij (5.20)

for k, l ∈ [x, y, z].
The Heisenberg model for the one-dimensional spin chain has an exact, analytical solu-
tion, which is known as the Bethe-ansatz. Bethe showed its validity for the spin- 1

2 -chain
in 1931 [38]. In this thesis, the one-dimensional case is treated numerically, which is why
the analytic solutions to this model are briefly explained here. However, not the ground
state is of interest in this thesis, but non-equilibrium steady states.
The Hamiltionian in equ. (5.19) can be rewritten using the raising and lowering operator

H = J
N−1∑
i

[
1

2

(
s+
i s
−
i+1 + s−i s

+
i+1

)
+ szi s

z
i+1

]
+

N∑
i

his
z
i (5.21)

which is shown as:

s+
i s
−
i+1 = (sx + isy)(sx − isy)

= sxi s
x
i+1 + syi s

y
i+1 + i(syi s

x
i+1 − s

y
i s
x
i+1) (5.22)

and
s−i s

+
i+1 = sxi s

x
i+1 + syi s

y
i+1 − i(s

y
i s
x
i+1 − s

y
i s
x
i+1) (5.23)

thus
s−i s

+
i+1 + s+

i s
−
i+1 = 2(sxi s

x
i+1 + syi s

y
i+1). (5.24)

As for the operator of the total z-component SzT =
∑

l s
z
l it holds that [H,SzT ] = 0, an

eigenbasis of both H and SzT may be chosen. Considering the fully aligned state |A〉
and setting the hi = 0, i.e. all spins up and szT = N

2 , the eigenvalue equation of the
Heisenberg-Hamiltonian reads:

H |A〉 =
JN

4
|A〉 ≡ EA |A〉 . (5.25)

If J < 0, EA is the energy of the ferromagnetic ground state. For the case J > 0, this is
the state with the highest energy - it is still an eigenstate, but not the ground state.
Considering states with exactly one deviation on the l-th site |l〉 from the fully aligned
state, the eigenvalue equation becomes

H |l〉 = EA |l〉+ J

(
1

2
|l − 1〉+

1

2
|l + 1〉 − |j〉

)
(5.26)

It is solved using as ansatz a linear superposition of all possible single-excitation states,
thus |ψ〉 =

∑
l fl |l〉. It can be shown that the corresponding eigenstates |ψk〉 are of the
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form of plane waves, thus fl = cke
ikl, ck = const, and are called spin-waves or magnons.

These are of the form
|ψk〉 =

1√
N

∑
l

eikl |l〉 , (5.27)

where |l〉 is the site of the deviation, and k represents the wave vector with k = λ2π
N ,

λ ∈ R. The energy εk of one magnon with the wave vector k is

εk = |J |(1− cos k). (5.28)

Considering r deviations from the fully aligned state, the ansatz presented by Bethe [38]
for the eigenvalue equation requires that

fl1...lr =
M∑
p=1

Ape
i(kp1 l1...k

p
r lr) (5.29)

and (5.30)

Ap = C exp

 r∑
i=1

r∑
j=i+1

φpij

 (5.31)

This means that the phase factors Ap are of the form of two-body phase factors φpij .
Here, M = r! are all possible permutations of the values for k, with kpi denoting the i-th
k in the p-th permutation. This ansatz yields the following relationship for k and φ

Nki = 2πλi +
∑
j 6=i

φij (5.32)

2 cot
φij
2

= cot
ki
2
− kj

2
(5.33)

as well as the solution for the eigenvalue of the energy

ε = J
r∑
i=1

(cos ki − 1). (5.34)

With these equations, it is possible to exactly calculate the ground state energy of the
antiferromagnetic spin chain (J > 0). In the classical case, this ground state is a state
with the z-component of the total spin sTz = 0 and half the spins reversed, thus r = N

2 .
The corresponding quantum mechanical state is called the Néel state |ψN 〉:

|ψN 〉 = |↓↑↓ . . . ↑↓↑〉 (5.35)

However, |ψN 〉 is the ground state only for infinite chain length; for finite chain lengths,
it is a basis state but not an eigenstate, which is due to finite size effects. For a chain
with a finite length of N sites, with equ. (5.34) the eigenvalue of the ground state relative

to the energy of the aligned state EA = JN
4 is thus given by ε = J

∑N
2
i=1(cos ki − 1). For
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the limit N →∞, Hulthen calculated in 1938 ε∞ by solving the equations 5.32-5.34 with
the following result [203]:

ε∞ = −JN ln 2 (5.36)

This yields the ground state energy of the antiferromagnetic chain with

E = ε∞ − EA (5.37)

= −JN ln 2 +
JN

4
(5.38)

and thus
E

JN
≈ −0.443147. (5.39)

Using this result, Cloiseaux and Pearson calculated 1962 the energy of antiferromagnetic
spin waves [204], i.e. of single or several deviations from the antiferromagnetic ground
state - relative to the fully aligned state - with the following result for the energy of a
spin wave with the wave vector k :

ε = −JN ln 2 +
Jπ

2
sin k. (5.40)

The Heisenberg chain may also be considered with an anisotropy in z-direction, that is,
an additional coupling strength Jz in z-direction exists. The Hamiltonian thus is

H =

N−1∑
i=1

J

2

[(
s+
i s
−
i+1 + s−i s

+
i+1

)
+ Jzs

z
i s
z
i+1

]
+

N∑
i=1

his
z
i . (5.41)

So, obviously, if Jz = 1 the model corresponds to the isotropic Heisenberg chain in equ.
(5.19). The case |Jz| < 1 is called axial regime of anisotropy, the case Jz > 1 is called
the planar regime. It may also be solved using an extended Bethe ansatz.

54



6.

Many-body system-reservoir interaction in
the non-Markovian regime

6.1 Applying feedback control on a spin chain

The Heisenberg spin-1/2 chain represents a simple model for the interaction of quantum
particles [37], and its description plays a prominent role in the search for gaining insight
into dynamical behavior of quantum many-body systems, for instance strongly correlated
electron systems or for experimentally realizable spin-chain materials [40, 41, 42, 43, 44].
For nearest neighbor interaction, the model is exactly solvable with the Bethe ansatz
[38], cf. Sec. 5.2. The dynamical behavior of this system, coupled to magnetic reservoirs
at its ends, has drawn a lot of interest in recent research publications [122, 121, 125, 126,
127, 128, 129]. Here, the spin chain driven into a non-equilibrium steady-state (NESS)
by coupling it to reservoirs on both ends, which are described with the Lindblad for-
malism and thus rely on a Markovian approximation. With this, the properties of the
chain depending on the the driving strength induced by the external reservoir, on an
externally-induced disorder parameter [20, 34, 21] or on the strength of the anisotropy
[207, 208, 209] are discussed.
This section goes beyond this approach. It does so by studying the effect of a non-
Markovian, structured reservoir on an open Heisenberg chain. To this end, coherent
time-delayed feedback control is applied on it. While this model has recently been in-
tensely discussed for few-level emitter [60, 187, 185, 80, 196, 71, 194, 133], cf. Sec. 8,
it is extended here to a quantum many-body system. This means that a new kind of
boundary-driving is implemented, that is a temporal-driving scheme, in contrast to the
spatial scheme discussed above. Now, loss and driving take place vie the interaction of
one site with two different points in time. These points are separated by the delay time
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τ . Thus, applying self-feedback on a one-dimensional many-body system allows for the
investigation of a new paradigm of non-Markovian imposed boundary-driving - comple-
menting the existing measurement-based approaches for controlling a one-dimensional
many-body system [210, 211, 212]. Due to its coherent nature, it introduces quantum
interferences into the dynamics of the system. In the context of cavity-QED, Rabi os-
cillations have been predicted in the single excitation regime when applying this control
on a two-level emitter placed in a cavity [187]. These cavity-induced Rabi oscillations,
however, have been limited to the single-excitation and single-emitter case.
As demonstrated in the following, these this phenomenon of feedback-induced stabiliza-
tion of Rabi oscillations also occurs in the case of a strongly-correlated many-body system.
It will be shown that for certain parameter sets, it is possible to stabilize highly sym-
metric states within the chain. Also, it is demonstrated that for the isotropic Heisenberg
spin chain with nearest neighbor interaction the number of possible trapping conditions
is equal to the number of sites in the chain, which proposes a way to control the state of
the chain non-invasively.

6.1.1 Model and Setup

Fig. 6.1 depicts a sketch of the model, a Heisenberg spin chain modeled as coupled two
level systems with the coupling strength J . Its end is placed in a semi-infinite waveguide
and couples with the rate Γ to this reservoir which is assumed to be in the vacuum state
initially, cf. Sec. 8. The closed end of the waveguide is of length L and acts as a mirror
which feeds back part of the excitation after a delay time τ = 2L/c [182, 213, 214, 189].
At the open end of the waveguide, a detector time-integrates the emitted signal after this
second interaction. The Hamiltonian reads (with ~ ≡ 1):

H =

N∑
i=1

ω0σ
+
i σ
−
i +

∫
dω ωb†(ω)b(ω) +

N−1∑
i=1

J
(
σxi σ

x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1

)
+

∫
dω
(
Gfb(ω)b†N (ω)σ−N + h.c.

)
(6.1)

The first term represents the free evolution of N single spin systems, where ω0 governs the
free evolution of each single site and σ+

i = σxi + iσyi and σ−i = σxi − iσ
y
i create/annihilate

a fermionic excitation in the ith two-level system - this corresponds to a flip of a spin on
this site.
The second term models the free evolution of the bosonic mode continuum to which the
last site is coupled. Here, b(†)N (ω) creates/annihilates a bosonic excitation of energy ω
in interaction with the Nth site of the spin chain. The third term models the isotropic
Heisenberg spin chain with nearest neighbor interaction, a chain of N single sites and
with a three-dimensional nearest neighbor interaction in x, y and z direction, where
σk, k ∈ x, y, z represent the Pauli matrices interacting with strength J . The last term
represents the interaction of the Nth site of the chain with the bosonic reservoir with
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Figure 6.1: Sketch of a Heisenberg spin chain modeled as coupled two level systems with
the coupling strength J . Its end is placed in a semi-infinite waveguide and
couples with the rate Γ to this reservoir. The closed end of the waveguide is
of length L and acts as a mirror which feeds back part of the excitation after
a delay time τ = 2L/c. A detector records the emitted signal at the open
end of the waveguide for a finite integration time T .

Gfb(ω) defined as:

Gfb(ω) = g0 sin

(
ωL

c0

)
= i

√
Γ

2π

(
e−iωτ/2 − eiωτ/2

)
(6.2)

where L is the length of the closed side of the waveguide, c0 the phase velocity in the
waveguide, τ = 2L/c0 the delay time and g0 =

√
Γ/2π the coupling constant with

the coupling rate Γ. Eq. (6.2) represents the sinusoidal, frequency-dependent system-
reservoir coupling in order to model a semi-infinite waveguide, cf. Sec. 4. This frequency-
dependent coupling introduces a non-Markovianity into the dynamics. For this reason,
the simulation is employed by describing the state of the system and of the reservoir
numerically as a matrix product state (MPS), cf. Sec. 3.1. The picture of the quantum
stochastic Schrödinger equation (QSSE), cf. Sec. 2.2, serves as a computational basis,
in the same manner as for a two-level emitter (Sec. 4). The numerical implementation,
however, has to deal with the difficulty inherent to the computation of quantum many-
body dynamics: The large Hilbert space required for its description. As explained in
Sec. 11.3.1, the swapping technique for the implementation of a non-Markovian time
evolution scales with the dimensions of the involved link indices and thus with the en-
tanglement within the MPS. While in case of a few-level emitter, the sub-Hilbert space
is usually low in its dimensions, this is not the case for many-body systems, where it
generally scales exponentially with the number of sites involved. A convenient MPS ar-
chitecture will be presented in the following section, but first, the derivation of the time
evolution operator is explained.
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6.2 Derivation of the time evolution operator

6.2.1 Basis transformation

The start of the derivation is the Hamiltonian in Eq. (6.1), which reads (with ~ ≡ 1):

H =
N∑
i=1

ω0σ
+
i σ
−
i +

∫
dωωb†(ω)b(ω) +

N−1∑
i=1

J
(
σxi σ

x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1

)
+

∫
dω
(
Gfb(ω)b†N (ω)σ−N + h.c.

)
(6.3)

In a similar manner as in the case of a two-level emitter, this Hamiltonian is transformed
into the rotating frame defined by its freely evolving part. The unitary transformation
is defined as

H ′ = U1HU
†
1 − iU1∂tU

†
1 (6.4)

where the unitary operator U1 is defined as:

U1 = exp

[
it
( N∑
i=0

ω0σ
+
i σ
−
i +

∫
dωωb†(ω)b(ω)

)]
(6.5)

This yields the transformed Hamiltonian H ′(t):

H ′(t) =
N−1∑
i=1

J
(
σxi σ

x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1

)
+

∫
dω
(
Gfb(ω)σ+

NbN (ω)e−i(ω−ω0)t + h.c.
)

(6.6)

Next, the dependency of the delay time τ is shifted into the operators using the unitary
transformation

U2 = exp

[
−iτ

2

∫
dωωb†(ω)b(ω)

]
. (6.7)

This yields:

H ′(t) =

N−1∑
i=1

J
(
σxi σ

x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1

)
+ ig0

∫
dω
(
σ+
N

(
bN (ω)e−i(ω−ω0)t − bN (ω)e−i(ω−ω0)teiωτ

)
+ h.c.

)
(6.8)

The next step is to make use of the time dependent reservoir operators b(†)(t), cf. Eq. (2.21),
Sec. 2.2,

b(t) =
1√
2π

∫
dωb(ω)e−i(ω−ω0)t (6.9)
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which are inserted into Eq. (6.8). This yields the transformed Hamiltonian H ′′:

H ′′(t) =
N−1∑
i=1

J
(
σxi σ

x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1

)
+ i
√

Γ
(
bN (t)− bN (t− τ)eiφ

)
σ+
N − i

√
Γ
(
b†N (t)− b†N (t− τ)e−iφ

)
σ−N (6.10)

with the delay time τ = 2L
c0

and the feedback phase φ = ω0τ , which denoted the quantum
mechanical phase between the present and feedback signal.
Next, the time discrete quantum noise operators, cf. Sec. 2.2.2, cf. Eq. (2.35),

∆B(†)(tk) =

∫ tk+1

tk

dt′b(†)(t′) (6.11)

are inserted into Eq. (6.10). Note that B(†)(tk) and B(†)(tk−l) only commute for ∆t =
tk+1 − tk < τ .
Discretizing the time evolution operator in this basis, cf. Sec. 2.2.2, yields

U(tk+1, tk) =

= exp

[
N−1∑
i=1

J
(
σxi σ

x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1

)
+
√

Γ
(

∆BN (tk)−∆BN (tk−l)e
iφ
)
σ+
N −
√

Γ
(

∆B†N (tk)−∆B†N (tk−l)e
−iφ
)
σ−N

]
(6.12)

for k ∈ [0, NT − 1] as integer of the time steps, where the time evolution operator T̂ may
be dropped for equidistant time steps ∆t = tk+1 − tk, cf. Sec. 2.2.5. Here, tk denotes
the kth time step, while tk−l = (k − l)∆t denotes the time delayed by τ , thus τ = l∆t.
With this, the QSSE operators defined in Eq. (2.37) may now be used as the basis for
the numerical non-Markovian time evolution, while the time evolution is computed as a
stroboscopic map, cf. Eq. (2.52).

|ψ(tk+1)〉 = exp

(
−i
∫ (k+1)∆t

k∆t
H ′(t′)dt′

)
|ψ(tk)〉 ⊗ |ik+1 = 0〉 . (6.13)

This will be done using the tensor network method tMPS which has been introduced in
Sec. 3.1. The corresponding algorithm based on the Suzuki-Trotter decomposition and
on a two-dimensional construction of the wave vector will be explained in the following
Sec. 6.3.

6.3 MPS algorithm: Computing quantum feedback on a
many-body system

In case of non-Markovian system-reservoir interaction, the information-backflow from
the reservoir introduces non-timelocal contributions into the interaction part Hint. This
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means that the present state of the reservoir is influenced by interactions with the system
which have occurred in the past. In terms of the MPS formalism, as a consequence, for
calculating the dynamics of the total system, the information backflow from the reservoir
of previous time steps needs to be taken into account. To this end, the time bins have
to be moved with the swapping technique explained in Sec. 11.3.1 through the MPS
during the time evolution, which scales with the dimensions of the involved link indices
and thus with the entanglement within the MPS. This constitutes no difficulty in case
of a two-level emitter due to the low-dimensional system Hilbert space and due to the
favorable scaling of the entanglement in between the time-discretized sub-Hilbert spaces.
However, this is generally not the case for the entanglement growth during the time evo-
lution of quantum many-body systems. Here, especially for strongly correlated systems,
the Schmidt values strongly grow in number and in size, making larger systems difficult
to access numerically. This generates the need to re-structure the algorithm in order to
reduce the computational effort. This structure will be presented in the following, but
first, the derivation of the time evolution operator is explained.

6.3.1 Setting up the matrix product operator (MPO)

In order to set up the time evolution operator in Eq. (6.12) as a MPO, the Suzuki-Trotter
decomposition described in Sec. 3.5 is applied. For this, the time evolution operator in
Eq. (6.12) is split into the system and interaction part and written as a sum over local
Hamiltonians as explained in Sec. 3.5:

U(tk+1, tk) = exp

[(N−1∑
i=1

hi,i+1

)
∆t

]
= exp

[(N−1∑
i=1

hsysi,i+1 + hintN,tk

)
∆t

]
, (6.14)

Using this form for the Suzuki-Trotter decomposition, the MPO described with Eq. (6.14)
is built iteratively as follows.
First, the operator hsysi,i+1 acting on the sites i,i+ 1 is being set up. Next, the exponential

U(tk+1, tk)
sys = eh

sys
i,i+1∆t is calculated with a Taylor expansion U(t) =

∑10
k

1
k!(h

sys
i,i+1)k +

O(∆t11). Following this, the eh
sys
i,i+1∆t are written into two separated MPO, Ue(tk+1, tk)

with even indices, and Uo(tk+1, tk) with odd indices. In case the operator of hsysN−1,N , the

interaction part eh
int
N,tk

∆t is added before the Taylor expansion.
With this procedure, two MPO for even and odd numbers in i are being built separately
for the entire chain length. Note that order for both operators to act on the entire chain,
the identity operator has to be filled in at the free sites on the end of both operators.
Now, each of these two operators acts on each site of the entire chain. The next step is
that each local time evolution operator acting on site i and i + 1 is being decomposed
with an SVD, where the singular value matrix S is multiplied into V T in order to get
two matrices, each acting on a single site only:

W
j′i,j
′
i+1

ji,ji+1
= Uai

ji,j′i
Sai,ai+1V

ai+1

ji+1,j′i+1
= Uai

ji,j′i
V̄ ai
ji+1,j′i+1

≡W ai
ji,j′i

W ai
ji+1,j′i+1

(6.15)
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This brings Ue and Uo into the form of an MPO. The missing links between each second
site can easily be created by the procedure of bringing the MPO into the left, right or
mixed canonical form. With this, both operators may now be applied successively on
|ψ〉. However, the numerically least expensive way is to first multiply both operators
into one single operator in the MPO representation. This multiplication is performed as
a summation over one of the physical indices for each tensor of the MPOs. Afterwards,
the MPO may be applied on the MPS as explained in Sec. 3.1.

6.3.2 MPS architecture

To compute the time evolution with tMPS, the state vector is expanded into a MPS.
The total wave vector |ψ〉tot consists of the system wave vector |ψ〉sys and the reservoir
wave vector |ψ〉res:

|ψ(t)〉 = |(ψsys ⊗ ψres)(t)〉

= lim
k→∞

∑
is=0,1

∞∑
n0,...,nk=0

cis,n0,...,nk(t) |is, n0, . . . , nk〉 . (6.16)

In case of non-Markovian system-reservoir interaction, the information-backflow from the
reservoir introduces non-timelocal contributions into the interaction part Hint. Translat-
ing into the tMPS formalism the fact that the present state of the reservoir is influenced
by interactions with the system which have occurred in the past, this implies that for
calculating the dynamics of the total system, previous time steps needs to be taken
into account during the computation. In order to construct an efficient algorithm for this
non-Markovian time evolution, the uncorrelated initial state between system and reser-
voir is exploited for constructing a two-dimensional MPS-form which enables efficient
movement of bins during time-evolution. As the reservoir is in a vacuum state initially
and not yet entangled with the spin chain, the wave vector both of system and bath
may be expanded separately at the start of the time evolution. In the same manner as
demonstrated in Sec. 8.2.2, Eq. (6.16) may be transformed into the time discrete basis
defined in Eq. (2.37). It reads as:

|ψ(t0)〉 =
∑

n1...nN
=0,1

cn1...nN (t0) |n1 . . . nN 〉

⊗
∑

m1...mNT

cm1...mNT
(t0) |m1 . . .mNT 〉 (6.17)

where both complex coefficients are expanded into products of tensors A:

cn1...nN = An1An2 . . . AnN (6.18)
cm1...kNT

= Am1Am2 . . . AmNT (6.19)

Fig. 6.2 depicts the block diagram of the MPS and the MPO. To preserve the entangle-
ment between the two subspaces during time evolution, they are stuck together at the
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Nth chain bin and the kth time bin, where the interaction between the many-body sys-
tem and the bath occurs. This connection is kept throughout the entire time evolution
and thus the entanglement between the two subspaces is preserved. Fig. 6.3 depicts the

(a) MPS (b) MPO

Figure 6.2: Block diagram of MPS and MPO of a Heisenberg spin chain under self-
feedback. Figure (a) shows the MPS architecture. It is constructed two-
dimensional and consists of two MPS, the first containing the system bins
labeled with the site indices ni and the link indices li, and the second con-
taining the reservoir bins labeled with the site indices mk and the link indices
pk. The two MPS are stuck together at the Nth system bin where the interac-
tion occurs. Figure (b) depicts the corresponding MPO. It affects all system
bins, but only the present time bin mk and relevant time bin describing the
past state of the reservoir mk−l.

block diagram algorithm of the algorithm. To compute the kth time step, the Nth chain
bin, the kth time bin initialized in a vacuum state and the tk−lth bin containing the
feedback signal are contracted. Afterwards, the time-evolution operator U(tk+1, tk) is
applied as explained in Sec. 3.1. With this, the number of swapping operations reduces
significantly. The time bin of the past time step only must be moved through the reser-
voir MPS, where the entanglement is usually well below the one in the chain. In addition,
only the Nth chain bin must be moved through the reservoir MPS during time evolution,
not the entire chain. After the application of the MPO, the tensors are decomposed and
the resulting bins are shifted back to their original position in the chain. With this, the
bins of the (k + 1)th time step may be moved and contracted, and so forth. In order to
preserve the entanglement correctly during this process, the position of the orthogonality
center has to be moved with the bins, cf. Section. 3.1. It is indicated by the red box in
Fig. 6.3.

6.4 The dissipative chain without feedback

First, the dynamics of the dissipative chain without feedback are investigated. In this
case, the coupling to the reservoir exhibits a vanishing frequency dependence Gfb(ω) ≡
2g0 = const. As only one single spin - the boundary spin - of the chain is subject coupled
to the reservoir and thus subject to dissipation, this case is completely equivalent to a
Markovian description with the Lindblad formalism. This means that the QSSE evolution
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Figure 6.3: Block diagram for the computation of one time step. Blue boxes indicate left-
orthogonality of the tensors, while green boxes indicate right-orthogonality
and the red box marks the position of the orthogonality center of the MPS.
The spin chain MPS and the reservoir MPS are connected at the kth time
bin mk. Also, the past time bin mk−l has been brought next to them with
swapping operations. For the application of the MPO, the Nth chain bin,
the present and feedback time bin mk and mk−l are contracted and the chain
MPS is multiplied into the MPO. Afterwards, the tensors are decomposed
and moved back to their original position in the chain.
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models the Lindblad master equation of the form:

d
dt
ρ(t) = −i [Hchain, ρ(t)] + ΓD[σ−N ]ρ(t) (6.20)

with

Hchain =

N∑
i=1

ω0σ
+
i σ
−
i +

N−1∑
i=1

J
(
σxi σ

x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1

)
(6.21)

and the Lindblad super-operator D[Ĵ ]ρ = ĴρĴ† − Ĵ†Ĵρ− ρĴ†Ĵ , cf. Sec. 2.3.
This equivalence of the time-bin setting without feedback and the dynamics of a Lindblad
decay are used to benchmark the algorithm - see Fig. 6.4. Here, the black dotted lines
represent the full solution for |ψ(t)〉 with the Lindblad master Eq. (6.20). The feedback
algorithm for the uncoupled last site is also benchmarked using the analytical solution
for a single two-level system, cf. Sec. 4.1. In this setting, excitation trapping is not
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Figure 6.4: Time-dependent occupation densities in a Heisenberg chain of N = 4 sites
initialized in the |↓↓↓↑〉 state without feedback. After a transient regime dur-
ing which the densities oscillate irregularly, the initial excitation is completely
lost into the reservoir. Note that each curve is plotted twice demonstrating
a benchmark of the tMPS algorithm with a full solution of the equations of
motion of the system. The orange line depicts the time-dependent detector
signal. It reaches its normalized maximum value after the convergence time
Tc, thus I(t = Tc) = 1. Parameters for this plot are Γ = 0.24 and J = 0.1.

possible for any initial state or parameter set, which means the excitation stored within
the chain is inevitably lost to the reservoir modes. The detector which is placed at
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the open end of the waveguide records the time-dependent excitations which leave the
feedback loop between the emitter at the end of the quantum chain and the mirror
until a finite time T is reached. Thus, the detector signal is formed by the normalized,
time-integrated excitation I(t) =

∑NT
tk=0〈∆B†(tk)∆B(tk)〉/

∑N
i=0〈σ11

i 〉0. The excitation
density within the waveguide at the kth time step 〈∆B†(tk)∆B(tk)〉 is summed over
until the total integration time ∆tNT . Additionally, this signal is normalized to the total
initial excitation within the system, which is described by

∑N
i=0〈σ11

i 〉0 as the reservoir
is in a vacuum state initially. This time-integrated signal serves as a figure of merit.
In the case without feedback, it will always reach unity if integrated long enough. In
Fig. 6.4, the time evolution of all sites is depicted exemplary for a spin chain of four sites
(blue, red and green lines). The system has been initialized in the |↓↓↓↑〉 ⊗ |vac〉 state.
Additionally, the time dependent detector signal is plotted (orange line), which integrates
the dissipated signal during the integration time. Clearly, all sites decay completely into
ground state, and the signal at the detector I(t) reaches its normalized maximum value
after the convergence time Tc, thus I(t = Tc) = 1.
In the given setup, no population trapping or non-trivial steady-states can occur. This
is due to the fact that only one site is coupled to the reservoir - if more spins would be
coupled dissipatively, this picture would change [71].

6.5 The Heisenberg chain under feedback

6.5.1 Population trapping in a many-body system

Contrary to the Markovian case described in the previous section, when subjecting the
chain to coherent self-feedback, population trapping occurs. This means that the initial
excitation within the chain first dissipates partially into the environment. This loss
of excitation is then stopped by interaction with the feedback signal. This interaction
induces quantum interferences which modify the coupling. Consequently, the system-
reservoir interaction reaches a steady-state after a convergence time Tc and the remaining
excitation within the chain is trapped in it dynamically, cf. Sec. 4.1. From this time on,
the detector will not record a signal any longer, and consequently, and longer integration
times will not change the detected excitation any more. The conditions for population
trapping depend on the two feedback parameters τ and φ, cf. Sec. 4. As in the case
of the two-level system, cf. Sec. 4, these two parameters are not independent due to
their relationship defined by φ = ω0τ . Fig. 6.5 depicts the dynamics of the occupation
densities σ11

i = σ+
i σ
−
i of each single site i in the Heisenberg chain of N = 4 sites

(blue, red and green lines) and the detected excitation leaving the waveguide (orange
line). The plot depicts the transient regime as well as the long time limit. During the
transient regime, the densities within the chain oscillate irregularly and the detector
signal steadily increases. After this, the detector signal saturates as in the case without
feedback, however now it remains well below unity. This means that part of the initial
excitation remains within the chain, equipartitioned on all sites of the chain. This forms
a non-equilibrium steady-state of the chain, where the sum over all excitation in the
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Figure 6.5: Time-dependent occupation densities (blue, red and green lines) in a Heisen-
berg chain of N = 4 sites under self-feedback for the set of feedback param-
eters φc = 2π, τc = 1.25Jt. The chain has been initialized in the |↓↓↓↑〉
state. After a transient regime during which the densities oscillate irregu-
larly, the time-dependent detector signal (orange line) saturates, however it
remains well below unity. Part of the initial excitation remains within the
chain, equipartitioned on all sites, to form a non-equilibrium steady state.
Parameters for this plot are Γ = 0.24 and J = 0.1.
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chain remains finite and constant, hence the excitation within the chain is conserved:

N∑
i=1

〈σ11
i (t)〉tr = const, > 0. (6.22)

The same condition holds obviously for a closed chain - however, in the case here, the
system is open and dissipative. The initial state of the chain is the |↓↓↓↑〉 state - only
the spin coupled to the reservoir is in excited state, while the remaining spins are in the
ground state. As the reservoir is in a vacuum state initially, this means that the system
is in the single-excitation regime. However, the results are not limited to the this case
but also hold for more excitations, as will be demonstrated further below.

6.5.2 Trapping conditions in the φ-τ parameter space

For the case of the many-body system under feedback, the conditions for the trapping to
take place differ significantly from the case of a single two-level system. As demonstrated
in Sec. 4, a single two-level system coupled within a semi-infinite waveguide only exhibits
population trapping at φtr = ω0τ = 2πn, n ∈ N+, i.e. in the interval [0, 2π) only phase
allows population trapping. Also, the feedback phase for which trapping occurs φtr does
not depend on the delay time τ , thus it holds that φtr(τ) = const.
In case of a many-body system, this is significantly different. Here, population trapping
occurs for a much larger set of trapping parameters φtr, τtr. The conditions for a two-level
system also hold - however, there are other trapping parameter sets where it now holds
that the feedback phase φtr depends on the delay time, thus φtr=φtr(τ). To illustrate
this, Fig. 6.6 depicts the survival probability of the excitation in a chain of N = 2 sites
in the φ-τ -plane. It depicts the time integrated detector signal, meaning that darker
regions indicate a higher amount of trapped excitation within the system while white
regions show that the excitation has been completely lost to the environment. Thus, all
special parameter sets φtr, τtr for which trapping conditions exist are visible as lines in
this plane.
Note that the lines broaden out for two reasons: First, for the regions close to the special
parameters, φ → φtr, τ → τtr and τΓ � 1, no trapping condition exists, however the
feedback signal strongly slows down the dissipation into the environment. Also, note that
for a fixed integration time T , the areas around the φtr-τtr lines additionally broaden out
with increasing delay time due to the convergence time strongly increasing with increas-
ing τ .
Additionally, in Fig. 6.6, the dependency of the survival probability on τ for a fixed cou-
pling strength Γ becomes visible. The trapped excited density clearly decreases with an
increasing delay time. This observation agrees with the behavior of the single two-level
system subjected to self-feedback and is due to the fact that the system looses excitation
into the reservoir until the first interaction with the feedback signal occurs. This obser-
vation also explains that the higher the decay rate Γ, the smaller the survival probability
for a fixed τ .
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Figure 6.6: Trapping conditions in the φ-τ plane for an isotropic Heisenberg chain with
nearest neighbor interaction and N = 2 sites. The plot depicts the detector
signal after a finite integration time T . Darker regions indicate a higher sur-
vival probability in the spin chain while white regions show that the excitation
has been completely lost into the environment and detected. Broadening of
the lines stems from finite calculation times, as mentioned in the main text.
The periodic reappearance of the lines is due to the inherent 2π-periodicity
of the feedback phase φ: Each trapping condition is fulfilled once within ev-
ery interval of φ ∈ [2πn, 2π(n + 1)), n ∈ N+. Parameters for this plot are
Γ = 0.24, J = 0.1.

Coming back to the additional trapping conditions in the many-body system, clearly,
in Fig. 6.6 in the interval [0, 2π) one more condition for φtr which lead to population
trapping exists, and in strong contrast to the single two-level emitter, this conditions
depends on τ , thus φtr = φtr(τ). This dependency of the feedback phase on the delay
time is an entirely new phenomenon compared to the well-investigated case of the single
two-level system. The many-body system also displays the φ = 2nπ trapping condition,
equally as the two-level system, which is visible as a horizontal line in Fig. 6.6. Thus,
here it holds that φtr(τ) = const., φtr does not depend on τ . Due to the inherent peri-
odicity of the phase, each of these additional lines appears once within every interval of
φ ∈ [2πn, 2π(n + 1)), n ∈ N+, which means that the lines reappear periodically in the
parameter space.
The reason for these additional trapping conditions is the interaction dynamics within
the chain which imposes new conditions for the feedback phase φtr, as within the quan-
tum many-body system, more coherent excitation exchange is possible.
Most interestingly, the number of possible population trapping conditions Nφtr grows

linearly with the number of sites in the chain - despite the complex interactions within
the many-body system. If points of degeneracy - hence the points where the lines in Fig-
ures 6.6 and 6.7 intersect - are avoided, the number of trapping condition even equals
the number of sites in the chain, Nφtr = N , cf. Fig. 6.8. This implies that the detec-
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Figure 6.7: Trapping conditions in the φ-τ plane for a Heisenberg chain with different
site numbers. Darker regions indicate a higher survival probability in the
spin chain while white regions show that the excitation has been completely
lost into the environment and detected. Clearly, one additional periodic set
of lines appears for each additional site in the chain. Parameters are J = 0.1
and Γ = 0.24.
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tor signal provides a means to partially characterize the chain. This linear dependency
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Figure 6.8: Plot of the maximum number of possible trapping conditions for the feedback
phase Nφtr within one interval φ ∈ [0, 2π) as a function of the number of sites
N in the chain. Strikingly, it holds that Nφtr = N . Hence, the detector signal
provides for a way to partially characterize the chain non-invasively.

may be explained as a resonance effect with traveling excitations within the chain and
the waveguide destructively or constructively interfering. Here, the resonance conditions
depend on the eigenfrequencies within the chain and thus, the conditions for coherently
reinforcing them increase by N for N additional sites within the chain. However, note
that the resonance conditions also depend on the eigenvalue degeneracies, and the equal-
ity of the trapping conditions and the number of sites, which is true for the isotropic
Heisenberg chain, in the chain is not given for all chain types. Investigating chains with
less symmetries, shifts and anisotropies reveals that a connections between the degenera-
cies of the eigenvalues and the number of trapping conditions exists: The lower the degree
of degeneracy is, the lower the number of trapping conditions are - further investigations
on this relationship are a possible direction of future research.

6.5.3 Relationship to dynamical quantum phase transitions

Also note that these results show features which at first sight might resemble a dynamical
quantum phase transition, which is why the relationship to this research field is briefly
clarified here. Dynamical quantum phase transitions characterize non-equilibrium quan-
tum systems, and correspond to a qualitative change in the physical behavior of the
system characterized by an order parameter (for instance an observable or a correlation
function) with this physical quantity becoming nonanalytic as a function of some mi-
croscopic control parameter. This nonanalyticity appears as a convergence of a system
parameter approaching some limit, most commonly in the limit of large system sizes or
long integration times. The current literature on this topic covers closed systems with
the focus on transient effects [22, 215, 216, 217, 218, 219, 220], on the long-time limit
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[221, 222, 223, 224, 144, 225, 226] or open quantum systems [227, 228, 229, 230, 10].
The results of this study, however, only seemingly exhibit some features related to dy-
namical quantum phase transitions: Here, the φ-τ plane would constitute a parameter
space, with φ, τ the control parameters. The dynamics of the physical system |ψ(t)〉
would then be characterized with an order parameter depending on these parameter val-
ues, which constitutes the conserved proportion of the initial excitation within the chain
in the steady-state:

ce,tr(φ, τ) =

N∑
i=1

〈σ11
i (t)〉tr

/ N∑
i=1

〈σ11
i 〉0, (6.23)

which behaves nonanalytical for all parameter sets of φ,τ where trapping occurs.
However, in case of this study, this nonanalyticity is not emerging and does not scale
with a parameter choice. When trying to relate this kink to a dynamical quantum phase
transition, it becomes clear that the kink in ce,tr(φ, τ) occurs independently from the
chosen integration time (only its shape converges to a δ-function with t → ∞) and is
independent of the limit of large systems (while it depends qualitatively of course on the
system size as the values for φ,τ where the system traps depend on N).
This kind of parameter dependency often occurs for systems controlled by self-feedback:
Effects such as two-photon processes [132, 80], enhancement of entanglement [183] or
quantum coherence stabilization [186, 70, 187, 188] achieved with quantum coherent
feedback control rely on a specific value of the feedback phase as well as of the delay
time. An example from other physical fields of research could for instance be a coherent
perfect absorber, where a material becomes perfectly absorbing under specific physical
conditions [231, 232].

6.5.4 Characterization of steady states

Investigating the steady-state behavior for different feedback phases and time delays
yields that three possibilities exist. First, trivially, in the long-time limit all excitation
within the chain is lost to the reservoir. Looking at Figures 6.6 and 6.7 makes clear
that this case is the rule, which means that most delay times and phases do not allow a
non-trivial steady-state in combination with the quantum spin chain dynamics but will
lead to a complete loss of excitation to the environment.
Secondly, all single site occupation densities in the chain are finite and constant. This is
the case when a set of parameters φtr, τtr allows for trapping, which means Eq. (6.22)
holds, hence in the non-equilibrium steady state, the excitation within the chain remains
finite and constant.
Here, importantly, each trapping line corresponds to one specific steady-state of the chain.
One example is depicted in Fig. 6.5, where all single site occupation densities equilibrate
out to the same level. Another possibility is that the steady-state densities are finite
and constant, but not on the same level. These steady states always are symmetric with
respect to the middle of the chain as a axis. If the specific order may reproduce itself for

71



different N , the parameter set φc, τc for this stability line remains exactly the same. This
is explained with the fact that the phase conditions for the site under feedback imposed
by the interactions in the chain do not change despite the increasing number of sites.
Fig.6.9 depicts this exact overlap for the case of N = 2 and N = 4. It demonstrates that

Figure 6.9: Detector signal of a Heisenberg chain of different lengths N in a semi-infinite
waveguide as a function of τ , I(t = T ) = I(τ), for a fixed feedback phase
φ = 2π

3 . The dips in the curve indicate the trapped steady states where a
finite amount of excitation remains within the chain. Due to the inherent 2π-
periodicity of the feedback phase, they re-appear with a certain frequency.
For N = 2, only one frequency occurs, while for N = 4, two additional
periodic frequencies of these dips appear. Clearly, for one frequency, these
dips overlap despite the different site numbers in the chain, indicating that
in this case, the exact trapping condition is reproduced.

for a fixed feedback phase φ = const, trapping is visible as a dip in the strength of the
detector signal and occurs with a constant frequency which is due to the 2π-periodicity
of the feedback phase, resulting in the fact that one trapping condition reappears once
within every interval of φ ∈ [2πn, 2π(n + 1)), n ∈ N+. or N = 2, only one frequency
occurs, while for N = 4, two additional periodic frequencies of these dips appear. Clearly,
for one frequency, these dips overlap despite the different site numbers in the chain,
indicating that in this case, the exact trapping condition is reproduced. This allows for
a non-invasive characterization of the chain length. If the symmetry with respect to the
middle of the chain may not be reproduced, it adapts to the new site number, causing
the stability line to shift slightly.
Coming back to the characterization of the trapped steady-states, a third case exists. If
a point of degeneracy is chosen for which the system provides two or more population
trapping phases, the highly non-trivial steady state of stabilized Rabi oscillations occurs
within the chain without any dephasing and dissipation although we simulate an open
quantum system. This means the total excitation in the chain remains constant and
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finite but the densities oscillate. This highly non-trivial steady state will be discussed in
the next section.

6.5.5 Robustness of stabilized Rabi-oscillations

This type of periodic, time-dependent steady-state is created at all points of degeneracy,
hence at all intersection points of two or more trapping lines in the parameter space.
These steady states differ however in coherence and relative phase shifts between the
trapped occupation densities 〈σ11

i 〉tr at different intersection points. An example of a
very regular, time-reversible oscillation pattern is displayed in Fig. 6.10 and appears at a
certain intersection which is marked in Fig. 6.7 (b) with a green circle. Note that despite
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Figure 6.10: Time-dependent occupation densities 〈σ11
i (t)〉 in a Heisenberg chain of 4

sites. Clearly, feedback creates stable Rabi oscillations within the chain
where site 2 and 3 as well as 1 and 4 are completely coherent and in phase.
Consequently, part of the excitation remains trapped in the chain, clearly
visible as the detector signal remains well below I(Tc) = 1. As is explained
below, these oscillations appear at intersection points of trapping lines in
the φ-τ plane, where two trapping conditions are fulfilled at the same time.
Parameters for this plot are Γ = 0.24, J = 0.1.

this induced, synchronized and regular oscillations, the total excitation within the chain
is preserved, thus Eq. (6.22) holds - although the system is open. This holds for different
decay strengths Γ and feedback delay times τ , as well as feedback phases φ, and is a
generic feature of such a system. As visible in Fig. 6.7, the total trapped excited density
is maximal at the intersection points, where the oscillations occur.
In Fig. 6.11, the population trapping-induced oscillations within the chain are depicted
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for different initial states and number of excitations in the chain. Clearly, the effect is
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Figure 6.11: Regular oscillations for different initial states and initial numbers of excita-
tions in a chain of N = 4 sites. The amplitude decreases with an increasing
number of excited states. The oscillations, however, remain regular and
periodic. Parameters for this plot are Γ = 0.24, J = 0.1.

not limited to the single-excitation regime, but exists for different excitations and thus
is a generic feature of the feedback-driven quantum spin chain.
However, the amplitude of the oscillations is reduced for larger numbers of excitations: it
is maximal for a single initial excitation (light blue line) and strongly decreases with an
increasing number of initial excitation (e.g. quadruply-excited initial state, green line).
This behavior is qualitatively independent of the location of the initial excitation within
the chain. The explanation for the dependence of the amplitude on the initial number
of excitations lies in the dynamics of the chain up to the first interaction with its own
feedback signal. The higher the amplitude of the oscillations occurring in this first time
interval t ∈ [0, τ ] is, the higher the amplitude of the stabilized Rabi oscillations is. This
is explained as follows: If the chain is initialized with a single excitation - no matter at
which site in the chain - the irregular oscillation of the occupation densities during the
initial transient regime has the highest amplitude, as the inversion of the excited site is
not slowed down by neighboring excited sites.
These oscillations also persist for much larger systems. Here, with the existing algorithm
it is possible to reach system sizes as large as N = 30. This is demonstrated in Fig. 6.12,
which exemplary shows the oscillation pattern of the last site in the chain for a chain
length of N = 30.
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Figure 6.12: Dynamics of the time-dependent occupation density 〈σ11(t)〉30 of the last
site in a Heisenberg chain of lengths N = 30 under feedback. Clearly, the
regular and periodic oscillations persist even for much larger system sizes.
Parameters for this plot are Γ = 1.5, J = 0.1.

6.6 Conclusion

In this section, a Heisenberg spin chain with nearest neighbor interaction in non-Markovian
interaction with a structured reservoir has been investigated. This reservoir is repre-
sented by a semi-infinite waveguide where the closed end serves as a mirror. Thus, part
of the excitation emitted from the chain is reflected and fed back into the many-body
system. With this, the application of quantum coherent feedback control is extended
on a many-body system. It is demonstrated that the many-body interactions give rise
to new trapping conditions where the feedback phase φtr depends on the chosen delay
time τtr. Due to the inherent periodicity of the phase, the trapping conditions reappear
periodically in the interval [0, 2π). Here, it is demonstrated that despite the complex
interactions within a quantum many-body system, the number of trapping parameter
sets φtr, τtr within one interval is equal to the number of sites N in the chain. Also, it
is shown that each of these parameter set φtr, τtr may be characterized with a respective
steady-state within the chain using the numerical results. Additionally, it is demon-
strated that at points in the φ-τ plane where several trapping conditions hold at the
same time, stable Rabi oscillations occur. These oscillations also persist for much larger
systems. Here, it is demonstrated that the proposed algorithm enables the computation
of system sizes as large as N = 30.
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7.

The boundary-driven Heisenberg chain

This part of the thesis at hand aims at the investigation of open quantum many-body
systems and their multi-excitation properties in the non-equilibrium steady-state (NESS).
In order to do so, it remains with the paradigmatic model of the Heisenberg quantum
spin-chain. The dynamical behavior of this system, driven by magnetic reservoirs coupled
to its ends, has drawn a lot of interest and brought forth many studies in recent years [122,
121, 125, 126, 127, 128, 129]. Here, the chain is driven into a non-equilibrium steady-state
(NESS), and its properties are investigated, depending on the the driving strength via
the external reservoir, on an externally-induced disorder parameter [20, 34, 21] or on the
strength of the anisotropy [207, 208, 209] are discussed. Next to entanglement growth and
energy transport, the most prominent figure of merit in these studies is the quantum spin
current through the chain which is induced by the potential difference between the two
reservoirs at either end of the chain. A range of non-equilibrium phenomena have been
characterized, among them anomalous transport and negative differential conductivity.
Here, the boundary-driving is realized with a full Markovian approximation with respect
to the system-reservoir interaction, thus the chain is driven incoherently. Hence, the
Markovian approximation of the system-reservoir interaction limits these investigations
to incoherent processes of loss and gain. Additionally, the dynamics have to be described
in the density matrix picture, making the numerical costs significantly higher and thus
larger systems difficult to access.
In this section, a model and an efficient algorithm are presented for studying the steady-
state properties of coherently driven many-body systems. In this thesis, the driving is
realized with a fully coherent process and described in the Schrödinger picture. With this,
the approach presented here goes beyond the dominant Markovian description of decay
and loss in these systems. This novel implementation poses most interesting possibilities
for the comparison of the out-of-equilibrium properties of many-body systems driven
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with different approaches. It proposes an hitherto unexploited scheme in contrast and in
complement to the dominant approach of incoherently driven many-body systems.

7.1 Model of the coherently driven chain

The model consists of the open, isotropic Heisenberg spin-chain with nearest-neighbor
interaction which has been introduced in the previous section. Contrary to the dominant

Figure 7.1: Open, isotropic Heisenberg spin-1/2-chain with three-dimensional nearest-
neighbor interaction with coupling strength J which is driven out-of-
equilibrium. The gain is modeled with a coherent driving via a continuous
wave pump field Ω which is applied on the first site of the chain, while the
loss is realized with a coherent interaction with a continuous bosonic reservoir
which is assumed to be in the vacuum state. This may for instance be repre-
sented as an infinite waveguide to which the last site of the chain is coupled
with a decay rate Γ.

approach in the research field, here, the gain is modeled with a coherent driving via a
continuous wave pump field Ω which is applied on the first site of the chain. The loss is
realized with a coherent interaction with a continuous bosonic reservoir which is assumed
to be in the vacuum state.
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The Hamiltonian thus reads as:

H =

N∑
i=1

ω0σ
+
i σ
−
i +

∫
dω ωb†(ω)b(ω) +

N−1∑
i=1

J
(
σxi σ

x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1

)
+ Ω

(
σ+

1 e
−iωLt + σ−1 e

iωLt
)

+

∫
dω
(
g0b
†
N (ω)c−N + h.c.

)
(7.1)

The first three terms in Eq. (7.1) are analogous to the model discussed in Sec. 6,
cf. Eq. (6.1): The first term models the free evolution of N single spin systems, the
second term the free evolution of the bosonic mode continuum to which the last site
of the chain is coupled, and the third term describes the Heisenberg spin chain with a
three-dimensional nearest-neighbor interaction. If ∆ 6= 1, this term models an anisotropic
coupling in z-direction. The forth term models the coherent driving via a laser with the
continuous wave pump field Ω which is applied on the first site of the chain. A resonant
driving is assumed, that is ωl = ω0. Analogous to Eq. (6.1), the last term models the
coupling of the last site of the chain to a vacuum reservoir, which may for instance be
created by the interaction with an infinite waveguide. Note that this dissipative cou-
pling is completely equivalent to the Markovian description of decay with the Lindblad
formalism.

7.2 NESS-properties of the incoherently driven chain

In order to connect this novel setup to the existing research, the NESS-properties of
the incoherently driven chain are briefly reviewed in the following, as it is the aim of the
approach presented in this thesis to offer a tool for going beyond the dominant Markovian
approach.
As the transport properties of the chain are of interest, the reservoir is coupled to the
first and the last site of the chain. It is described by two dissipators acting on each site of
the chain, D[σ+] and D[σ−], where D[σ+] describes the inscattering of the spin up state
|↑〉 and D[σ−] describes the inscattering of the state |↓〉, which may also be described as
the outscattering of a spin up state |↑〉. The four dissipators read as:

Lin
1 =

√
Γin

1 (1 + µ)σ+
1 , Lout

1 =
√

Γout
1 (1− µ)σ−1 (7.2)

Lin
N =

√
Γin
N (1− µ)σ+

N , Lout
N =

√
Γout
N (1 + µ)σ−N , (7.3)

and the master equation of the open Heisenberg chain reads

ρ̇(t) = L[ρ(t)]

= − i
~

[H, ρ(t)] +D[Lin
1 ]ρ(t) +D[Lout

1 ]ρ(t) +D[Lin
N ]ρ(t) +D[Lout

N ]ρ(t), (7.4)

with ρ(t) the density matrix, D[L]ρ the Lindblad operator

D[L]ρ = 2LρL† −
{
L†L, ρ

}
= 2LρL† − L†Lρ− ρL†L (7.5)
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and L[ρ(t)] the Liouville super-operator, cf. Sec. 2.3. The scattering rates Γ are defined
using an additional parameter µ with µ ∈ [−1, 1], which changes the ratio of the in-
and outscattering rate on each side of the chain. Thus, µ models the magnitude of the
difference between the two rates, playing the role of an external potential, which induces
a spin current through the chain. Due to this potential, the system will never be in a
equilibrium state, but will in the long time limit reach a non-equilibrium steady-state
ρNESS = limt→∞ e

Ltρ(t0) due to the bias between the two reservoirs.

7.2.1 Spin-transport properties in the non-equilibrium steady-state

The relative current per site jk(t) serves as a figure of merit for characterizing the trans-
port properties in the non-equilibrium steady state. It may be derived from the continuity
equation, where the density of interest is the density of the spin in z-direction σkz . Thus,
the continuity equation in one spatial dimension x reads as

∂tσ
k
z + ∂xjk = 0.. (7.6)

As the current is observed at the lattice points, it is put ∂xjk =
jk−jk−1

h , and ∂tσ
k
z is

calculated using the Heisenberg equation of motion d
dtσ

z
k = − i

~ [σzk, H] + (∂tσ
z
k), where σzk

does not depend explicitly on t. This yields

jk = J(σxkσ
y
k+1 − σ

y
kσ

x
k+1),

= 2iJ(σ+
k σ
−
k+1 − σ

−
k σ

+
k+1). (7.7)

In the steady state, the current will be site independent, thus

〈j(t)〉 =
1

N − 1

N−1∑
k=1

〈j(t)〉k. (7.8)

Another observable of importance is the single site magnetization Mk(t). Note that
contrary to the relative current, it is not site-independent. It is defined as:

〈Mk(t)〉 = Tr
(
σzρ(t)

)
, (7.9)

As in the NESS, ρNESS is constant, so will be the expectation value of both figures of
merit:

〈j〉 = Tr
(
jkρNESS

)
. (7.10)

〈Mk〉 = Tr
(
σkρNESS

)
. (7.11)

Fig. 7.2 (a) depicts the magnetization 〈Mk〉 of each single site k in a chain with N = 4
sites, initialized in the |↓↑↑↑〉 state. Parameters are set to µ = 1, J = 0.1 and all scatter-
ing rates to Γin

1 = Γout
1 = Γin

N = Γout
1 ≡ Γ = 0.01. Clearly, in the NESS, the spins align

along direction of the external reservoir, while this effect is strongest for the edge spins
and vanishes for the spins in the middle. Contrary to this behavior, the relative current
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Figure 7.2: (a) Single site magnetization 〈Mk〉 of each single site k in a chain with N = 4
sites, initialized in the |↓↑↑↑〉 state. Parameters are set to µ = 1, J = 0.1 and
all scattering rates to Γin

1 = Γout
1 = Γin

N = Γout
1 ≡ Γ = 0.01. Clearly, in the

non-equilibrium steady state, the spins align along direction of the external
reservoir, while this effect is strongest for the edge spins and vanishes for
the spins in the middle. (b) Relative current 〈jk〉 of each single site k in
the same chain as in (a). Clearly, in the non-equilibrium steady state, all
〈jk〉 converge to the same nonzero value induced by the external driving with
µ 6= 0. The computation in Fig. 7.2 (a) and (b) has been performed with the
tMPS method extended into Liouville-space. The basis transformation and
the derivation of the time-evolution operator is explained in the appendix of
this thesis, cf. Sec. 11.4.
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〈jk〉 of each single site k displayed in Fig. 7.2 (b), clearly converges to the same nonzero
value in the NESS which is induced by the external driving with µ 6= 0.
The computation in Fig. 7.2 (a) and (b) has been performed with the tMPS method
extended into Liouville-space. The basis transformation and the derivation of the time-
evolution operator is explained in the appendix of this thesis, cf. Sec. 11.4.

7.2.2 Transport in the weak driving regime

The spin transport through the chain may generally be described as a diffusive process
which is driven by a difference in the density of the magnetic field or spin reservoirs.
Hence, it may phenomenologically be characterizes with Fick’s first law, which states for
the one-dimensional case that the particle current j is proportional to the gradient of the
particle density c with a constant of proportionality, the diffusion constant D [233]:

j = −D ∂c
∂x
. (7.12)

If Eq. (7.12) holds, the system is called diffusive. In case of an externally driven spin
chain, the spatial density difference is expressed by the difference of the magnetization
at both ends of the chain, ∆m = 〈m1〉 − 〈mN 〉. As the system is spatially discretized,
∂∆m
∂x may be expressed as

∂∆m

∂x
=

∆m

N
. (7.13)

Comparing Equations (7.12) and (7.13) makes clear that the characterization of the
transport process is expressed with the structure of the diffusion constant D. Here,
in case of the diffusive transport, one the one hand, D is linearly dependent on the
magnetization difference on both ends of the chain, D ∼ ∆m. As ∆m depends on the
potential difference µ of the external driving, one way to characterize a diffusive process
is with the relationship D ∼ µ - if this is the case, this is called the linear regime. On
the other hand, if the transport is diffusive, it holds that D ∼ − 1

N , which is another way
of evaluating phenomenologically the diffusive character of the transport [121].
However, the transport may either be faster or slower - superdiffusive or subdiffusive
- compared to the diffusive case, or not depend on the system size N at all, in which
case the transport is called ballistic. All these cases are called anomalous transport,
in contrast to the normal diffusive case. These regimes may be characterized by the
following more general dependence, where a scaling exponent γ ∈ R is introduced:

j ∼ 1

Nγ
. (7.14)

Thus, if γ = 1, the transport is diffusive. If γ = 0, the transport is independent of N and
thus ballistic. The superdiffusive case is characterized by 0 < γ < 1, which means that
the current decreases slower with the system size than in the diffusive case. If γ > 1,
the process is called subdiffusive, where the current decreases faster with the system size
than in the diffusive case [234, 124, 32].
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Only the fully resonant interaction between the single sites will be discussed here. The
weak driving regime is characterized by a small potential difference, µ � 1. In this
regime, the Heisenberg chain with nearest-neighbor interaction has been demonstrated
to be in the linear regime [124, 234, 20]. Here, the transport properties depend strongly
on the anisotropy ∆, cf. Eq. (7.1), and depending on it, anomalous transport has been
demonstrated. For ∆ < 1, the transport is ballistic for any temperature, while it is
superdiffusive for ∆ = 1 and diffusive for ∆ > 1, both for T →∞ [32].
Note that this picture changes for an interaction with a longer range than nearest neigh-
bor: Here, the ballistic regime may also be reached in the isotropic case, depending on
the chain length. For larger system sizes, a transition from a diffusive to a ballistic
regime has been demonstrated recently, where the critical chain length for the transition
depends on the range of the interaction [34].
Fig. 7.3 plots the relative current jk over the system size N , with Γ/J = 10 and weak
driving µ = 0.1. The data is fitted with a power law function, and the obtained param-
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Figure 7.3: Plot of the relative current jk over the system size N . Parameters are Γ/J =
10 and µ = 0.1, that it, a weak driving is applied. The data is fitted with a
power law function and the parameter γ = 0.02± 0.005 is obtained. Thus, in
accordance with [32], the system displays superdiffusive behavior.

eter is γ = 0.02± 0.005, indicating superdiffusive behavior in accordance with [32].
Note that obtaining the data is numerically very demanding. The reason for this lies in
the growing entanglement within the chain while it evolves in time, and in the disadvan-
tageous scaling of the Liouville space with the number of differential equations growing
with 4N with N the system size. Here, the novel approach presented in this thesis has
the strong advantage of describing coherent dynamics which may be done in the QSSE-
picture. Thus, the scaling is reduced to 2N . In the following, an efficent algorithm is
presented for this computation.
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7.3 Algorithm

The full Hamiltonian H in Eq. (7.1) is transformed into the QSSE-picture as described
in Sec. 2.2. The resulting time evolution operator reads:

U(tk+1, tk) = exp
[
iΩ(σ+

1 + σ−1 ) + i
N−1∑
i=1

J
(
σxi σ

x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1

)
+ i
√

Γ∆B(tk)σ
+
N − i

√
Γ∆B†(tk)σ

−
N

]
. (7.15)

Analogous to the case of a many-emitter coupled to a structured reservoir, cf. Sec. 6.4,
evolving |ψ(t)〉 in time using tMPS poses the difficulty of numerically costly swapping
processes, cf. Sec. 6.3.2. This thesis thus employs an algorithm which overcomes these
limitations and which is optimized for the Markovian type of decay. It operates without
swapping the position of the bins. By doing so, it exploits that the future time bins fac-
torize with the system dynamics, and relies on the Markovian approximation from which
follows that only the present state of the reservoir matters. Note that for the possibility
to include non-Markovian dynamics, the algorithm presented in Sec. 6 may be applied
without difficulty, too.
In this case, the MPS contains only the many-body system and the present time step.
In order to compute one time step, this time bin is contracted with the last site and the
MPO is applied. After the subsequent decomposition, this time bin is not stored in the
MPS but dropped, and as a consequence, the information of the state of the bath as well
as the entanglement of the state of the bath with the its own past is lost. Next, a new
vacuum bin is generated, which may be initialized apart from the many-body system as
it is not yet correlated with it. It is contracted with the last site, and continued with the
algorithm. Fig. 7.4 depicts the corresponding block diagram.
With this, the computational costly reordering of the bins is avoided, enabling a signifi-
cant speedup and thus the calculation of the dynamics of larger many-body systems. In
order to demonstrate the potential of the proposed algorithm, Fig. 7.5 plots the decay
dynamics of the model described with Eq. (7.15) without an external pump field, thus
Ω = 0, for a system size as large as N = 50.

7.4 Results

As the chain is driven by the pump field on its left end and displays a Lindblad type of
decay on its right end, the figure of merit is the spin current through the chain in the
NESS, cf. Eq. (7.10), completely equivalent to the case of the incoherently driven chain.
In Fig. 7.6, the benchmark of the algorithm with the full solution of the Lindblad master
equation is depicted. The plot shows the time dynamics of the spin current between
all single sites in a chain with N = 4 sites, which has been initialized in the Neel state
|↑↓↑↓〉. In the transient regime, the densities oscillate irregularly and after a convergence
time, they equilibrate out a NESS, where the current between all sites takes on the same
value. This figure also serves as a benchmark using the full solution for |ψ(t)〉 with the
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Figure 7.4: Block diagram of an efficient algorithm for a coherently driven quantum spin
chain where the last site of the system is subject to dissipation. The diagram
demonstrates the calculation of the kth time step. Blue boxes indicate left-
orthogonality of the tensors, while green boxes indicate right-orthogonality
and the red box marks the position of the orthogonality center of the MPS.
The MPS contains only the many-body system and the present time step.
In order to compute one time step, this time bin is contracted with the last
site and the MPO is applied. After the subsequent decomposition, this time
bin is dropped and a new vacuum bin is generated, which may be initialized
apart from the many-body system as it is not yet correlated with it. With
this, the computational costly reordering of the bins is avoided, enabling a
significant speedup and thus the calculation of the dynamics of larger many-
body systems.
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without an external pump field, thus Ω = 0, for a system size as large as
N = 50. This plot serves as a demonstration of the potential of the proposed
algorithm.
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Figure 7.6: Time dynamics of the spin current between all single sites in a chain with
N = 4 sites in a chain initialized in the Neel state, thus |↑↓↑↓〉 (green, blue
and orange lines). In the transient regime, the densities oscillate irregularly
and after a convergence time, they equilibrate out a NESS, where the current
between all sites takes on the same value. This figure serves as a benchmark
using the full solution for |ψ(t)〉 with the Lindblad master equation (black
dotted lines).

Lindblad master equation (black dotted lines).
In Fig. 7.7, the relative current 〈σz〉rel through the chain is depicted over the system size
N of the chain (black triangles). The data is fitted with a power law function (green
line), yielding the value γ = 0.01± 0.0006. This indicates a superdiffusive behavior.
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Figure 7.7: Plot of the relative current 〈σz〉 over the system size N of the many-body
system (black triangles). The data is fitted with a power law function, and the
parameter γ = 0.001±0.3 is yielded. This indicates a superdiffusive behavior,
thus it holds that 〈σz〉rel ∼ N−γ with 0 < γ < 1. This is in correspondence
with the incoherently driven case depicted in Fig 7.3, where for weak driving
regime, these anomalous transport properties have been demonstrated, too.

Interestingly, despite the coherent driving which is applied in this model, this corresponds
to the result for an incoherently driven chain modeled with a Lindblad master equation
displayed in Fig. 7.3, where the current also displays superdiffusive behavior in the weak
driving regime.

7.5 Conclusion

In this section, a novel model for a boundary driven many-body system has been pre-
sented, using the example of a Heisenberg spin-chain with nearest-neighbor interaction.
Here, the chain is coherently driven with a continuous, resonant pump field applied to the
first spin, while the last spin is coupled dissipatively to a vacuum reservoir, and the trans-
port properties of the chain in the non-equilibrium steady state (NESS) are investigated.
This novel approach contrasts and complements the dominant model in the research field,
where the potential difference is realized with an incoherent driving using a full Marko-
vian approximation by coupling its first and last site to reservoirs which is described with
the Lindblad formalism. Due to the coherent time evolution, the dynamics of the pure
state of the system may be computed in the tMPS framework in the QSSE-picture. It is
shown that for the weak driving regime, the system also displays superdiffusive behav-
ior. This novel implementation poses most interesting possibilities for the comparison of
the out-of-equilibrium properties - for instance spin transport properties, entanglement
growth or energy transport - of many-body systems driven either coherently or with a
full Markovian approximation. Also, it allows for the possibility of investigating driven
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many-body systems in non-Markovian interaction with their environment, a setup highly
interesting for studying properties of open quantum many-body systems and for future
applications in the field of quantum information technologies.
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Part III.

Single-emitter system-reservoir interaction





8.

Controlling the feedback phase
of a Λ-type three-level system

In the previous part of the thesis at hand, it has been demonstrated that it is possible
to dynamically stabilize the excited state density of a many-body system using time-
delayed, coherent feedback control. By doing so, trapping parameters arise where the
choice of the feedback phase leading to excitation stabilization depends on the delay time.
Compared to the case of the two-level system under self-feedback, this is an entirely new
phenomenon. This effect immediately leads to the question if further possibilities for
stabilization arise if it would be possible to control the feedback phase separately from
the delay time.
Adding up to this, the discussed setup has been employed to study the dynamics of
few-level emitters in various schemes. Here, enhancement of antibunching or of the two-
photon probability [132, 183], or quantum coherence stabilization [186, 70, 187, 188] have
been achieved with this approach.
Even though the phase condition for stabilization in these cases does not depend on the
choice of the delay time, still, in all these cases, the intrinsic connection between the de-
lay time τ and the feedback phase φ which expresses itself as φ = ω0τ with ω0 a system
transition frequency does not allow for the delay time τ to be tuned without affecting
the feedback phase φ. As all the effects reported above rely on a specific value of the
feedback phase as well as of the delay time, this intertwining of the two control parameter
may well lead to experimental limitations. Furthermore, tuning the two parameters may
create the need for major experimental efforts.
In this section, a novel approach to controlling self-feedback induced stabilization pro-
cesses is presented. In order to tune the phase between the incoming and emitted signal,
an external pump field is applied on the system, which induces phase shifts on demand.
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As will be demonstrated here for the case of a three-level system (3LS), a resonant mi-
crowave pump field leads to an additional way of controlling the system dynamics, using
the Rabi-frequency as a new control parameter. These findings increase the application
possibilities for coherent quantum feedback [60].

8.1 Model

The model consists of a three-level system (3LS) which is placed in the semi-infinite
waveguide introduced in Sec. 4.2. The 3LS consists of a Λ-type system with non-
degenerate ground states |1〉 and |2〉 and the excited state |3〉. The system allows for
radiative transmission between the excited level and one of the ground states. Between
the two non-degenerate ground levels, the 3LS is resonantly pumped with a laser field.
Fig. 8.1 shows a sketch of the setup. The Hamiltonian reads (with � ≡ 1)

L

Energy

0

Figure 8.1: Sketch of a three-level system (3LS) placed in a semi-infinite waveguide where
the closed end consists of a mirror reflecting the emitted excitation which will
subsequently interact with the system after a delay time τ . The 3LS consists
of a Λ-type system with non-degenerated ground states |1〉 and |2〉 and the
excited state |3〉, with radiative transmission allowed between the excited
level |3〉 and the ground states |1〉 and |2〉. Between the two non-degenerate
ground levels, the 3LS is resonantly pumped with a laser field.

H(t) = ω2σ22 + ω3σ33 +

∫
dωωb(ω)†b(ω) + Ω(t) cos (ω2t) (σ12 + σ21)

+

∫
dω

[
Gfb(ω)b(ω)

† (σ13 + σ23) + h.c.
]
. (8.1)
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The first two terms in Eq. (8.1) describe the free evolution of the 3LS relative to the
ground level energy |1〉. Here, σ22, σ33 represent the number operator for the respective
level and ω2, ω3 represent the transition frequencies. The third term models the free
evolution of the bosonic mode continuum to which the three-level system is coupled,
where the b(ω)(†) are the annihilation (creation) operators for a photon in the mode of
frequency ω. The forth term models the interaction of the 3LS with the pump field of
pump frequency ω2 which is resonant to the transition between the two non-degenerate
ground states, while the amplitude evolves with the Rabi frequency Ω(t). Here, the
σij , i, j = 1, 2, 3, are the atomic flip operators and defined as σij = |i〉 〈j|, with the
commutation relation [σij , σkl] = σilδjk − σkjδil. The last term models the interaction
of the 3LS with the structured reservoir which is assumed to be sinusoidal frequency
dependent, cf. Sec. 4.2 and Eq. (4.3). Note that contrary to the case of the two-level
presented in Sec. 4.2, excitations on two different levels may now be created or destroyed,
annihilating/creating an excitation in the waveguide in this process.
Assuming the case of an umpumped system with Ω(t) = 0, it is possible to derive an
analytical solution for the dynamics of the coefficient of level |3〉, c3(t). Further assuming
the special case of ω2τ = 2nπ, n ∈ N+, this solution is identical to the one for a TLS,
cf. Eq. (4.10) in Sec. 4.2 [235, 189].
This picture changes, however, in the case of Ω(t) 6= 0 in Eq. (8.1). In the following, the
system dynamics will be derived for this case [60].
For this, the Hamiltonian in Eq. (8.1) is transformed into the rotating frame defined by
its freely evolving part via

U1 = exp

[
it
(
ω2σ22 + ω3σ33 +

∫
dωωb(ω)†b(ω)

)]
. (8.2)

Together with the rotating-wave approximation, this yields:

H ′(t) =
Ω(t)

2
(σ12 + σ21)+

∫
dω
[
Gfb(ω)eiωtb(ω)†e−iω3t

(
σ13 + σ23e

iω2t
)

+ h.c.
]
. (8.3)

Next, in order to gain a suitable basis for the analytical considerations, another unitary
transformation is applied, which is defined by the pump field

U2 = exp

[
it
(Ω(t)

2
(σ12 + σ21)

)]
. (8.4)

This yields:

H ′′(t) =

∫
dω
{
Gfb(ω)eiωtb(ω)†e−iω3t

×
[
cos

(
Ω

2
t

)(
σ13 + σ23e

iω2t
)

+i sin

(
Ω

2
t

)(
σ13e

iω2t + σ23

)]
+H.c.

}
. (8.5)

The system obeys the Schrödinger equation, while the ansatz for the wave function reads
as:

|ψ′′(t)〉 = c3(t) |3, {0}ω〉+

∫
dωcω2 (t) |2, {1}ω〉+

∫
dωcω1 (t) |1, {1}ω〉 . (8.6)
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Note that it is in the single excitation limit, analogous to the case of the TLS explained
Sec. 4.2. Here, |3, {0}ω〉 denotes the excited state of the atom where the reservoir is in
the vacuum state, while |2, {1}ω〉 and |1, {1}ω〉 denote the states where the excitation is
located in the mode of frequency ω of the reservoir and the atom is in one of its ground
states. The equations of motion for the coefficients may now be derived and read

ċ3(t) = −i
∫
dωGfb(ω)e−iωteiω3t

{
cω2 (t)

[
cos

(
Ω

2
t

)
e−iω2t − i sin

(
Ω

2
t

)]
+cω1 (t)

[
cos

(
Ω

2
t

)
− i sin

(
Ω

2
t

)
e−iω2t

]}
, (8.7)

ċω2 (t) = −iGfb(ω)eiωte−iω3tc3(t)

[
cos

(
Ω

2
t

)
eiω2t + i sin

(
Ω

2
t

)]
, (8.8)

ċω1 (t) = −iGfb(ω)eiωte−iω3tc3(t)

[
cos

(
Ω

2
t

)
+ i sin

(
Ω

2
t

)
eiω2t

]
. (8.9)

Initially, the emitter is assumed to be in the excited state and the reservoir in the vacuum
state, c3(t0) = 1, cω2 (t0) = 0, cω1 (t0) = 0, analogous to the case of the TLS explained
Sec. 4.2. Formally integrating and inserting Equations (8.8) and (8.9) into Eq. (8.7)
yields for the dynamics of the excited state coefficient:

ċ3(t) = −2Γc3(t) + Γeiω3τ

[
cos

(
Ω

2
τ

)(
1 + e−iω2τ

)
− i sin

(
Ω

2
τ

)

×
(
e−iω2t + eiω2(t−τ)

)]
c3(t− τ)Θ(t− τ). (8.10)

This equation will be discussed further below. Before doing so, the basis for the compu-
tation of the system dynamics using MPS will be derived.

8.2 MPS algorithm

8.2.1 Basis transformation

The start of the derivation is the Hamiltonian given in Eq. (8.1). First, a unitary trans-
formation into the rotating frame of the free energies of the excited level and the reservoir
is chosen, thus

U = exp

[
it
(
ω3σ33 +

∫
dωωb(ω)†b(ω)

)]
. (8.11)

This yields

H ′′(t) = ω2σ22 + Ω(t) cos (ω2t) (σ12 + σ21)∫
dω
[
Gfb(ω)b(ω)†b(ω)ei(ω−ω3)t(σ13 + σ23) + h.c.

]
(8.12)
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Next, analogous to Sec. 11.3.1, the τ -dependency is shifted into the operators with the
same transformation as applied for the TLS, cf. Eq. (11.15), the definition for the si-
nusoidal coupling given in Eq. (4.3). The time-dependent bath operators are defined
as

b3LS(t) =
1√
2π

∫
dωb(ω)e−i(ω−ω3)t (8.13)

This yields:

H ′′(t) = ω2σ22 + Ω(t) cos (ω2t) (σ12 + σ21)

−
{
iΓ(σ13 + σ23)

[
b†3LS(t)− b†3LS(t− τ)eiω3τ

]
+ h.c.

}
. (8.14)

The transformed Hamiltonian is inserted into the definition of the time evolution operator

U(t, t0) = T̂ exp

(
−i
∫ t

t0

H ′′(t′)dt′
)

(8.15)

and the quantum noise operators are defined

∆B
(†)
3LS(tk) =

∫ tk+1

tk

dt′b
(†)
3LS(t′). (8.16)

Note that in this derivation, the fast rotating terms containing cos(ω2)t are kept. Eq. (8.15)
has to be solved using the approximation of a constant Rabi frequency during one time
interval t ∈ [tk+1, tk], thus Ω(t) ≈ Ω(tk). With this, the time evolution operator read as:

U(tk, tk+1) = exp
[
− iω2σ22∆t− iΩ(tk)(σ12 + σ21)[sin(ω2tk+1)− sin(ω2tk)]

−Γ(σ13 + σ23)[∆B†3LS(tk)− e−iω3τ∆B†3LS(tk−l)]

+Γ(σ31 + σ32)[∆B3LS(tk)− eiω3τ∆B3LS(tk−l)]
]

(8.17)

with which the time evolution of |ψ(t)〉 may now be computed as explained in Sec. 11.3.1.

8.2.2 Modeling coherent quantum feedback with tMPS

To compute the time evolution with tMPS, as derived in Sec. 2.2, Eq. (8.6) may be
transformed into the time discrete basis defined in Eq. (2.37). It thus reads as:

|ψ〉 =
∑
ns=0,1

m1...mNT

cns,m1...mNT

(
|ns〉 ⊗ |m1 . . .mNT 〉

)
, (8.18)

where ns, ns ∈ [0, 1, 2] is the index of the state of the 3LS and the mk denote the state
of the reservoir at the kth time step. The complex coefficients cns,m1...mNT

are expanded
into tensors A:

cns,m1...mNT
= Alnsns A

lns ,lm1
m1 A

lm1 ,lm2
m2 . . . A

lmNT−1
mNT

(8.19)
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Throughout all the computations done in this thesis, a time step ∆t is chosen small
enough as to limit the number of excitations created or annihilated during one time step
to one and neglect higher excitation probabilities, cf. Sec. 2.2.2. By convention,

|0〉 ≡
(

1
0

)
, |1〉 ≡

(
0
1

)
(8.20)

where |0〉 describes the vacuum state while |1〉 describes the fully excited state, either of
the the two-level emitter or of the reservoir.
Eq. (8.19) contains the information about the system as well as of the state of the reser-
voir at every time step. It consist of NT + 1 connected tensors, where NT = T

∆t is the
total number of time steps. Thus, the matrix Ans describes the state of the 3LS, while
the matrices Amk contain the information of the state of the reservoir at one time step.
Note that each tensor carries one physical index which is also called site index, and one
or several link indices lni , lmk . Fig. 8.2 (a) depicts this decomposition in the form of a
block diagram.
Using the form in Eq. (8.19) allows for the preservation of the state of the reservoir at
every time step, which is necessary in order to compute the interaction with the feedback
signal. Due to the choice of the basis, the Hilbert spaces Hk describing the reservoir
at the time step tk, cf. Sec. 2.2.2, are entangled, thus the reservoir states {|ik〉} do not
factorize - writing them in the form of Eq. (8.19) allows to preserve this entanglement.
As explained in Sec. 3.2.2, it is this quantity which is truncated during the time evolution
of the state, and it is accessible in the above form of |ψ〉 in Eq. (8.19).
As the time-evolution operator U(tk+1, tk) in Eq. (11.22) only affects the TLS and the
kth as well as the (k − l)th time step of the reservoir, it may be kept in the form of a
single tensor, cf. Fig. 8.2 (b) for the corresponding block diagram.
During the time evolution, the system bin is moved through the MPS to the right, as

will become clear in the following. The first interaction with the feedback signal only
occurs after the finite time τ = (k− l)∆t, and the waveguide will be in the vacuum state
until this time, as it is initialized in it. Thus, the interaction with the vacuum before the
time t = τ has to be included in the algorithm. This is done by enlarging the MPS by
placing (k− l) tensors initialized in the vacuum state |0〉 on the left of the system bin at
the start of the time evolution.
To compute the kth time step, the two-level system bin, the kth time bin initialized in
a vacuum state and the (k − l)th bin of the feedback time step have to be contracted.
However, the (k− l)th bin is separated from the system bin by the time steps in between.
The entanglement in between these subspaces is encoded in the link indices, and in order
to preserve it, there are two technical ways within the MPS formalism. The first one
would be to contract over the link indices of all the tensors

∑k
j=k−lA

′lj−1,lj
j . This opera-

tion would preserve the physical indices j′. Due to this, the dimensions of the resulting
tensor depends on the feedback time τ = (k − l)∆t scaling with 2(k−l) - thus, for larger
τ , providing this storage place quickly becomes numerically too demanding, at least by
conventional numerical resources.
The second way is to move the bins through the MPS. Here, in order to preserve the
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(a) MPS

(b) MPO

Figure 8.2: Block diagram of the MPS and the MPO of a few-level under self-feedback.
Figure (a) depicts the MPS. Here, ns labels the site index of the few-level
system, while mk labels the time bins, and l1 . . . lNT−1

label the link indices.
The diagram depicts the kth time step, where the system tensor Ans is placed
in between the kth and (k + 1)th time bin. Figure (b) shows the MPO for
the time evolution of the dissipative 3LS system subjected to dissipation. It
always affects the emitter, but only the reservoir time bin of the present time
step k and of the feedback time step (k − l).

entanglement in between them, the link indices have to be moved with the bin, as they
contain the entanglement information, cf. Sec. 3.2. This creates the need to contract the
tensor with its respective neighbor and decompose them again, swapping the link indices
and the places in the MPS in this procedure. It is illustrated in Fig. 8.3. With this, the
tensors may be contracted into each other, and the MPO may be applied according to
Eq. (11.24), which means the MPO is multiplied into the MPS as explained in Sec. 3.3.
Afterwards, the kth time bin is moved to the left end of the MPS in the same manner as
the feedback bin has been moved. With this, all following time steps may be computed
accordingly.Fig. 8.3. depicts the corresponding block diagram.
As the swapping technique requires a contraction and re-decomposition of all involved
tensors, it scales with the dimensions of the link indices and thus with the entanglement
within the MPS: If the entanglement within it strongly grows with time, the Schmidt
values grow in number as well as in size, and may not be neglected during the truncation
procedure. Subsequently, the number of non-zero entries on the system tensors grows
strongly and so does computation effort.
This is generally not the case for the entanglement between different time bins, which
makes this algorithm very well suited for computing the time evolution of few-level emit-
ters, where the system part of the MPS is small.
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Figure 8.3: Block diagram of the algorithm for computing self-feedback on a single emitter
using tMPS demonstrating the computation of the kth time step. First, the
feedback time bin is moved through the MPS in order to bring it next to the
system bin, a procedure during which the link indices have to be swapped,
too. This is illustrated in line 2. Afterwards, the system bin, the present
time bin k and the feedback time bin k − l are multiplied into each other
over their link indices. Following this, the MPO is applied over the unprimed
site indices, which is illustrated in the third line. Afterwards, the tensors
are decomposed and the indices unprimed, and the present time bin must be
swapped through the MPS to the left of the system, while the feedback time
bin has to be brought back to its original position in the same manner.
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8.3 Unpumped system

First, the system behavior in the unpumped case, thus Ω = 0 in Eq. (8.1) is discussed.
As in the case of the unpumped TLS, population trapping occurs for certain conditions
the feedback phase φ has to fulfill; however, note that in Eq. (8.1), two phases appear,
hence

φ2 ≡ ω2τ (8.21)
φ3 ≡ ω3τ (8.22)

For Ω = 0, Eq. (8.1) becomes:

ċ3(t) = −2Γc3(t) + Γeiω3τ
(
1 + e−iω2τ

)
c3(t− τ)Θ(t− τ). (8.23)

If the feedback phase φ2 fulfills the condition φ2 = 2nπ for n ∈ N+, Eq. (8.23) again
reduces to the equivalent case of the TLS under self-feedback, cf. Eq. (4.10). In this case,
if it additionally holds that φ3 = 2n′π, n′ ∈ N+, the system traps and the remaining
excitation is dynamically stabilized. Thus, the delay time τ needs to fulfill the condition

τ =
2πn

ω2
=

2πn′

ω3
. (8.24)

Fig. 8.4 shows the system dynamics for the decaying emitter in the waveguide without
an external driving field, that is Ω = 0. It depicts the occupation density of the ex-
cited level 〈σ33〉. The system frequencies in the depicted case are ω2/(2π) = 0.8 ps−1

and ω3/(2π) = 239.3 ps−1, and the dynamics of the excited state density 〈σ33(t)〉 are
displayed for various values for the delay time τ .
The solutions shown in Fig. 8.4 have been achieved solving Eq. (8.23) numerically with
the tMPS algorithm presented above. Note that each curve is plotted twice, demonstrat-
ing the accordance of the tMPS algorithm with the analytical solution which is computed
with a program using a Runge-Kutta algorithm of forth order (black dotted lines).
Clearly, the dynamics resemble the case of the TLS: the choice of the delay time - which,
as the two parameter are intrinsically intertwined, cf. Eq. (8.22), in turn influences φ -
either enhances, slows down or stops the decay of the excited state. Also, due to the
inherent 2π-periodicity of the feedback phase, stabilization is achieved periodically for
different values of τ .
However, the case illustrated in Fig. 8.4 may only be achieved if it holds that n

ω2
= n′

ω3
.

Thus, for certain combination of the transition frequencies, stabilization lies out of ex-
perimentally achievable range.
In Fig. 8.5, the same system is depicted, but here for the case of long delay times,

Γτ � 1. As discussed in Sec. 4.2, the transient part of the decay process displays peri-
odic intervals of decay and re-excitation. After a long transient time lasting more than
ten feedback intervals, the delay time τ = 10 ps leads to a stabilization at the value of
〈σ33〉 = 0.0141.
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Figure 8.4: Dynamics of the occupation density of the excited level 〈σ33〉 of a decaying
3LS in a semi-infinite waveguide without external driving field, that is Ω = 0,
for different delay times τ . The system frequencies in the depicted case are
ω2/(2π) = 0.8 ps−1 and ω3/(2π) = 239.3 ps−1. Clearly, the dynamics resem-
ble the case of the TLS: The choice of the delay time - which, as the two
parameter are intrinsically intertwined, cf. Eq. (8.22), in turn influences φ -
either enhances, slows down or stops the decay of the excited state. Also, due
to the inherent 2π-periodicity of the feedback phase, stabilization is achieved
periodically for different values of τ . Note that each curve is plotted twice,
demonstrating the accordance of the MPS algorithm with the analytical so-
lution (black dotted lines).
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Figure 8.5: Dynamics of the occupation density of the excited level 〈σ33〉 of the same
system as depicted in Fig. 8.4 for long delay times, Γτ � 1. As discussed
in Sec. 4.2, the transient part of the decay process displays periodic intervals
of decay and re-excitation. After a long transient time lasting more than 10
feedback intervals, the delay time τ = 10 ps leads to a stabilization at the
value of 〈σ33〉 = 0.0141.
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8.4 Pumped system: Achieving population trapping with a
microwave control field

In case of a continuous pump field applied to the system, that is Ω 6= 0, additional
parameter sets arise with which population trapping may be achieved. This is the case
for the set n

ω2
= n′+1/2

ω3
, n, n′ ∈ N - in the unpumped case, for this set the fastest decay

is achieved. If, however, a continuous pump field is applied which satisfies Ωτ/2 = π,
and additionally the delay time fulfills

τ =
2πn

ω2
=

(2n′ + 1)π

ω3
, (8.25)

the decay may be stopped completely and the system may be stabilized at a finite excited
occupation density.
Fig. 8.6 depicts this stabilization for the same system as displayed in Fig. 8.4. Here, the
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Figure 8.6: Dynamics of the occupation density of the excited level 〈σ33〉 of the same
decaying 3LS in a semi-infinite waveguide as depicted in Fig. 8.4 at the delay
time τ = 5 ps for different Rabi frequencies Ω of the driving field. Clearly, a
finite Rabi frequency slows down the decay process, while a Rabi frequency
at the value of Ω = 2π/τ again induces dynamical population trapping of the
system. Note that each curve is plotted twice, demonstrating the accordance
of the tMPS algorithm with the analytical solution (black dotted lines). How-
ever, for stronger pump fields than depicted here, deviations occur which are
due to the approximations made during the basis derivation.

delay time τ is kept fixed at τ = 5 ps, and the Rabi frequency of the pump pulse is varied.
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Clearly, a finite Rabi frequency slows down the decay process, while a Rabi frequency at
the value of Ω = 2π/τ again induces dynamical population trapping of the system.
Due to the inherent periodicity of the sine and cosine terms in Eq. (8.10), this will be
the case for all Rabi frequencies which fulfill the condition

Ω = 2π(2n′′ + 1)τ. (8.26)

Note that in Fig. 8.6, each curve is plotted twice, and with this, the tMPS algorithm
again is proven to produce correct results. However, for stronger pump fields than de-
picted here, deviations occur which are due to the approximations made during the basis
derivation.
Considering the case of long delay times, Fig. 8.7 displays the same system as investi-
gated in Fig. 8.6, but with a faster decay process compared to the delay time, Γτ � 1.
Strikingly, the pump field Ω = 2π/τ leads to a much faster stabilization of the system
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Figure 8.7: Dynamics of the occupation density of the excited level 〈σ33〉 of the same
decaying 3LS in a semi-infinite waveguide as depicted in Fig. 8.4 for the case
of large Γτ � 1. Clearly, the pump field Ω = 2π/τ leads to a much faster
stabilization of the system compared to the unpumped case, cf. Fig. 8.5.
Furthermore, the trapped excited density is significantly higher with 〈σ33〉 =
0.0449.

compared to the unpumped case, cf. Fig. 8.5. Furthermore, the trapped excited density
is significantly higher with 〈σ33〉 = 0.0449. Hence, with a control field Ω of microwave
light, it is possible to induce a faster stabilization at a higher excited density than in the
case the system is solely controlled by tuning the delay time τ .
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8.5 Conclusion

In this section, the control of a non-degenerate Λ-type system with coherent self-feedback
has been discussed. Here, the novel approach of controlling the system with an external
pump field is introduced, which is in resonance with the transition frequency between
the two ground levels.
First, the unpumped case is discussed, and it has been demonstrated that stabilization
may be achieved at certain delay times. Next, the system behavior with a continuous
pump field is investigated. Here, it is shown that the Rabi frequency of the driving field
serves as a new control parameter, which gives rise to the possibility of disentangling the
two intertwined feedback parameters, the delay time τ and the feedback phase φ.
To summarize the results, depending on the properties of the system - the transition
frequencies ω2 and ω3 - the smallest possible delay time τ may be achieved with or
without an external pump field. Assuming that ω2/ω3 = n/n′, n, n′ ∈ N and the fraction
n/n′ is irreducible, and if n is even, it is achieved with the external pump field. For odd
n, stabilization occurs at smaller τ without an driving field. The example presented here
demonstrates the first case, however, for the latter case the additional control parameter
may still give rise to stabilization in case experimental limitations do not allow for doing
so otherwise. Thus, the results presented here not only broaden the possibilities of
feedback control significantly, but also enable a reduction of the transient time and thus
a stabilization at higher excited state densities for the investigated system.
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9.

Indistinguishable photons with feedback

The Hong-Ou-Mandel effect has been demonstrated in 1987 and describes a method for
probing the indistinguishability of two photons. The basic setup is as follows: two pho-
tons - which may be emitted by the same or by different sources - interfere at a beam
splitter and are transmitted or reflected with probabilities r, t. After passing the beam
splitter, the intensity correlation g(2)(τ) of the two photons is probed as a measure for
the indistinguishability. If the two photons are completely identical, they will never be
measured at the same time, thus g(2)(τ = 0) = 0, which is the so called Hong-Ou-Mandel
dip in the two-photon correlation [236, 237, 238]. This effect has recently been realized
experimentally in different settings, for instance taking the influence of dephasing effects
into account [239, 240]. As the control of sources emitting indistinguishable photons
on demand represents a basis of fundamental importance for quantum communication
networks [241, 242, 49, 58], concepts for enhancing the visibility of the two-photon inter-
ference are of high interest.
In this chapter, the influence of coherent feedback-control on this effect is investigated.
As demonstrated in the previous chapters, time-delayed feedback may enhance or slow
down the decay of excited emitters, and hence the question is posed if this effect may
be used in order to enhance the visibility V = 1 − g(2) of photons emitted from photon
sources with different properties such as different decay rates.

9.1 The Hong-Ou-Mandel effect

9.1.1 Model

Consider two two-level systems which are excited by a resonant pump pulse of and are
placed in front of a beam splitter. During the relaxation process, they will emit photons
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Figure 9.1: Sketch of a Hong-Ou-Mandel type of setup for investigating the two-photon
interference. Two two-level systems placed in front of a beam splitter and are
excited by a resonant pump pulse. During the relaxation process, they emit
photons which interfere at the beam splitter. Behind the beam splitter, two
detectors are placed which record the transmitted or reflected photons, while
the time difference between the two detection events is denoted by τ .
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which will interfere at the beam splitter. Behind it, two detectors are placed which record
the transmitted or reflected photons, while the time difference between the two detection
events is denoted by τ . Figure 9.1 depicts a sketch of the setup. The emitted photons at
the beam splitter are in the modes a(†)

in,1 and a(†)
in,2. When passing the beam splitter with

the probability t, amplitude and phase remain the same, whereas a reflection with the
probability r causes a phase jump of π. This leads to the two output modes behind the
beam splitter:

a
(†)
out,1 =

1√
2

(√
ta

(†)
in,1 +

√
ra

(†)
in,2

)
(9.1)

a
(†)
out,2 =

1√
2

(√
ra

(†)
in,1 −

√
ta

(†)
in,2

)
(9.2)

Note that the commutation relation holds[
aout,1, a

†
out,2

]
= 0 (9.3)

as well as probability conservation
r + t = 1. (9.4)

From this, an additional boundary condition for the probabilities is derived which must
hold in order to preserve Eq. (9.3) [243, 244]:

√
t
√
r
∗

+
√
r
√
t
∗

= 0 (9.5)

9.1.2 Derivation of the photon wave packet form

The Hamiltonian for the system reads (with ~ ≡ 1):

H =
∑
j=1,2

ωjeσ
j
ee +

∫
dωjωja

j†
ω a

j
ω + Ω(t)

(
e−iωptσjeg + eiωptσjge

)
+

∫
dωjg

j
ω

(
ajωσ

j
eg + aj†ω σ

j
ge

)
(9.6)

The first term describes the two-level systems with the transition frequency ωje and the
number operator σjee, where j ∈ [1, 2]. Note that the energy level of the excited state
is considered relative to the ground state. The second term describes the quantized
light field by the annihilation and creator operators ajω and aj†ω with

[
aiω, a

j†
ω′

]
= δijδωω′ .

The third term denotes the classical excitation field with the amplitude of the pump
pulse Ω(t) and the interaction between the TLS and the light field. The lowering and
raising operators of the TLS are denoted by σik := |i〉 〈k|, which obey the commutation
relations [σik, σpl] = σilδkp − σpkδil. The pump field is assumed to be in resonance with
the transition frequency of the two-level systems, ωjp = ωje. Also, gj denotes the coupling
strength which is assumed to depend only weakly on the frequency, thus gjω ≈ gj .
The equation of motion for the system is the Schrödinger equation

i
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 , (9.7)
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with the wave function |ψ〉 describing the two two-level systems and two photons:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 (9.8)

with

|ψj〉 = cjg(t) |gj , vac〉+cje(t) |ej , vac〉+
∫
dωjc

ωj
g (t) |gj , 1ωj 〉+

∫
dωjc

ωj
e (t) |ej , 1ωj 〉 . (9.9)

It is assumed that the excitation dynamics caused by the pump pulse is much faster than
the emission time scale, which means that the dynamics described by the third term in
Eq. (9.6) may be neglected while the two-level systems are assumed to be in the excited
state initially. Thus, starting with ce(t = 0) = 1, cg(t = 0) = 0 as initial condition, the
state vector reads:

|ψj〉 = cje(t) |ej , vac〉+

∫
dωjc

ωj
g (t) |gj , 1ωj 〉 . (9.10)

In order to obtain a suitable basis, a unitary transformation into the interaction picture
is being applied. This results in the time-dependent Hamiltonian H̃ which reads

H̃ =
∑
j=1,2

(
gje

i(ωj−ωje)tajωσ
j
ge + h.c.

)
(9.11)

Using ce(t = 0) = 1, cωjg (t = 0) = 0 as initial condition, the Wigner-Weisskopf problem
reads

∂tc
j
e(t) = −igj

∫
dωje

−i(ωj−ωje)tc
ωj
g (t) (9.12)

∂tc
j
g(t) = −igjei(ωj−ω

j
e)tcje(t). (9.13)

Eq. (9.13) is formally solved with

cjg(t) = −igj
∫ t

0
dt′ei(ωj−ω

j
e)tcje(t), (9.14)

where cjg(0) = 0, and Eq. (9.14) is being plugged into Eq. (9.12) and integrated. This
yields a relaxation dynamics for the excited state:

cje(t) = e−Γjt, (9.15)

where cje(0) = 1 and the decay rate is defined as

Γj ≡ g2
jπ. (9.16)

Hence, the photon wave packet form in Eq. (9.14) becomes:

cjg(t) = −igj
∫ t

0
dt′ei(ωj−ω

j
e)te−Γjt. (9.17)
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With this, and with the assumption that t→∞ so that the TLS has decayed completely
to the ground state and cje(t→∞) = 0, the total wave function now reads:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 =

[
−ig1

∫ ∞
0

dω1

∫ t

0
dt1e

i(ω1−ω1
e)t1e−Γ1t1a†ω1

|vac〉
]

⊗
[
−ig2

∫ ∞
0

dω2

∫ t

0
dt2e

i(ω2−ω2
e)t2e−Γ2t2a†ω2

|vac〉
]

(9.18)

9.1.3 Calculation of the g(2)-function

The visibility V is expressed via the normalized two-photon correlation [83, 239]:

V = 1− g(2). (9.19)

The two-photon correlation is defined as:

g(2)(tD, tD+τ) =
〈ψ(t)|E(−)

3 (tD)E
(−)
4 (tD + τ)E

(+)
4 (tD + τ)E

(+)
3 (tD) |ψ(t)〉

〈ψ(t)|E(−)
3 (tD)E

(+)
3 (tD) |ψ(t)〉 〈ψ(t)|E(−)

4 (tD)E
(+)
4 (tD) |ψ(t)〉

, (9.20)

where the time-dependent electrical field operators are defined with

Ek(t)
(∓) =

∫
dωke

±iωktaωk , (9.21)

and tD denotes the detection time while τ denotes the time difference between the two
detection events. Also, E3(t), E4(t) denote the two detection modes of the electrical field
behind the beam splitter. Let E1(t), E2(t) denote the modes of the incoming electrical
field. Following the definition in Eq. (9.1) and Eq. (9.2), E3(t), E4(t) then read

E3(t)(±) =
√
tE1(t)(±) +

√
rE2(t)(±) (9.22)

E4(t)(±) =
√
tE1(t)(±) −

√
rE2(t)(±). (9.23)

Hence, Eq. (9.18) may be calculated and reads:

E
(+)
4 (tD + τ)E

(+)
3 (tD) |ψ(t)〉

=
(
tE2(tD + τ)(+)E1(tD)(+) − rE1(tD + τ)(+)E2(tD)(+)

)
|ψ(t)〉 , (9.24)

where all states with two incoming photons in one mode, |gj , 2ωj 〉, are omitted because
of the restriction to the single excitation limit. Inserting Eq. (9.18) and 9.21 into 9.24
yields:

E
(+)
4 (tD + τ)E

(+)
3 (tD) |ψ(t)〉 =

− g1g2

(
t

∫ ∞
0

dω2e
−iω2(tD+τ)

∫ ∞
0

dω1e
−iω1tD − r

∫ ∞
0

dω1e
−iω1(tD+τ)

∫ ∞
0

dω2e
−iω2tD

)
∫ t

0
dt1e

i(ω1−ω1
e)t1e−Γ1t1a†ω1

∫ t

0
dt2e

i(ω2−ω2
e)t2e−Γ2t2a†ω2

|vac〉 . (9.25)

109



Integrating over the frequencies and the times until the detection event tD, tD + τ yields:

E
(+)
4 (tD + τ)E

(+)
3 (tD) |ψ(t)〉 =

− g1g2π
2
(
te−iω

1
e tD−iω2

e(tD+τ)−Γ1tD−Γ2(tD+τ) − re−iω1
e(tD+τ)−iω2

e tD−Γ1(tD+τ)−Γ2tD
)
.

(9.26)

With this, the unnormalized two-photon correlation G(2)(tD, τ) may be calculated as
follows:

G(2)(tD, τ) = |E(+)
4 (tD + τ)E

(+)
3 (tD) |ψ(t)〉 |2 =

g2
1g

2
2π

4e−2(Γ1+Γ2)tD
[
|r|2e−2Γ1τ + |t|2e−2Γ2τ − 2rtRe

(
ei(ω1−ω2)τ−(Γ1+Γ2)τ

)]
(9.27)

At this point, the conditions for a perfect beam splitter [244] are plugged in, thus
√
r =√

t = 1
2 . This yields:

G(2)(tD, τ) =
g2

1g
2
2π

4

4
e−2(Γ1+Γ2)tD

[
e−2Γ1τ + e−2Γ2τ − 2Re

(
ei(ω1−ω2)τ−(Γ1+Γ2)τ

)]
(9.28)

In order to normalize the two-photon correlation, the population densities of the two
output modes are calculated:

〈ψ(t)|E(+)
3 (tD)E

(−)
3 (tD) |ψ(t)〉 = |E(+)

3 (tD) |ψ(t)〉 |2 =
∣∣∣(E(+)

1 (tD) + E
(+)
2 (tD)

)
|ψ(t)〉

∣∣∣2
= −g1g2

(√
t

∫ ∞
0

dω1e
−iω1tDaω1 +

√
r

∫ ∞
0

dω2e
−iω2tDaω2

)
∫ t

0
dt1e

i(ω1−ω1
e)t1e−Γ1t1a†ω1

∫ t

0
dt2e

i(ω2−ω2
e)t2e−Γ2t2a†ω2

|vac〉

= tπΓ1e
−2Γ1tD + rπΓ2e

−2Γ2tD (9.29)

Integrating over td with tD →∞ and using r + t = 1 yields:

〈ψ(t)|E(+)
3 (tD)E

(−)
3 (tD) |ψ(t)〉 =

π

2
(9.30)

Equivalently, it is obtained:

〈ψ(t)|E(+)
4 (tD)E

(−)
4 (tD) |ψ(t)〉 =

π

2
. (9.31)

With this, the normalized time-integrated two-photon correlation reads

g(2) = 2 · 4

π2

∫ ∞
0

dtD

∫ ∞
0

dτ G(2)(tD, τ) =

1

2

[
1− 4Γ1Γ2

(ω1
e − ω2

e)
2 + (Γ1 + Γ2)2

]
=

1

2
[1− U ] , (9.32)
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where
U(Γ1,Γ2, ω

1
e , ω

2
e) =

4Γ1Γ2

(ω1
e − ω2

e)
2 + (Γ1 + Γ2)2

(9.33)

denotes the dependency of the two-photon correlation on the different properties of the
two two-level systems.

9.1.4 Dependence of the g(2)-function on the properties of the wave
function

With Eq. (9.32) and (9.33), the dependence of the g(2)-function on the properties of the
two wave functions is revealed.
If Γ1 = Γ2 = Γ and ω1

e = ω2
e = ω, the two emitted photons will be indistinguishable.

For this case, it holds that U = 1 and thus g(2) = 0, or V = 1. This is the so called
Hong-Ou-Mandel dip in the two-photon-correlation: if the photons are indistinguishable,
they will never be measured simultaneously at both detectors.
If, however, the properties of the two emitted wave packets differ, it follows that U 6= 1
and thus g(2) 6= 0. Consider the case ω1

e = ω2
e = ω, U reads:

U(Γ1,Γ2)

∣∣∣∣
ω1
e=ω2

e

=
4Γ1Γ2

(Γ1 + Γ2)2
(9.34)

If it additionally holds that Γ1 = Γ, Γ2 = αΓ where α ∈ R+, U becomes:

U(α)

∣∣∣∣
ω1
e=ω2

e ,Γ1=Γ,Γ2=αΓ

=
4α

(α+ 1)2
(9.35)

Note that for α ∈ R+ it holds that U(α) ∈ [0, 1]. Again, for the case α = 1, the two
wave packets are indistinguishable and thus g(2) = 0. For all other cases, U(α) < 1 and
U(α)→ 0 for α� 1 as well as α� 1. In this case, the two wave packets differ strongly,
and the g(2)-function approaches the value of 1

2 .

9.2 The Hong-Ou-Mandel effect with feedback

Having derived the form of the g(2)-function without feedback, in this part, the idea is
explored to what extend it is possible to enhance the visibility of two different photons
using feedback-control.

9.3 Model

The setup is identical to the one described in Sec. 9.1.1. Now, however, one or two of the
emitters are subjected to feedback, thus the emission is being fed back into the system
by placing each of the photon sources in a semi-infinite waveguide, cf. Sec. 4.2. Fig. 9.2
depicts a sketch of the setup.
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Figure 9.2: Sketch of a Hong-Ou-Mandel type of setup for investigating the two-photon
interference where the emitter are now subject to coherent time-delayed feed-
back control, that is, they are placed in semi-infinite waveguides. Two two-
level systems placed in front of a beam splitter and are excited by a resonant
pump pulse. During the relaxation process, they emit photons which inter-
fere at the beam splitter. Behind the beam splitter, two detectors are placed
which record the transmitted or reflected photons, while the time difference
between the two detection events is denoted by τ . However, part of the exci-
tation emitted from the two-level systems will now be reflected by the closed
end of the waveguide which serves as a mirror and will interact with the
systems again after a feedback delay time τ̃ .
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The Hamiltonian for the system remains almost the same as in Eq. (9.6), differing only
in the form of the system-reservoir coupling. It thus reads:

H =
∑
j=1,2

ωjeσ
j
ee +

∫
dωjωja

j†
ω a

j
ω + Ω(t)

(
e−iωptσjeg + eiωptσjge

)
+

∫
dωjG

j
fb(ω)

(
ajωσ

j
eg + aj†ω σ

j
ge

)
, (9.36)

where the sinusoidal frequency dependent coupling element Gjfb(ω) with Gjfb(ωj) =

gj sin
(
ωjLj
c0

)
= gj sin

(
ωj

τ̃j
2

)
as introduced in Eq. (4.3), where Lj is the length of the

closed side of the waveguide affecting the jth emitter, c0 the speed of light in vacuum
and τ̃j =

2Lj
c0

the resulting delay time of the jth TLS. The equations of motion for the
state coefficients now read

∂tcej (t) = −i
∫
dωjG

j
fb(ω)e−i(ωj−ω

j
e)tc

ωj
gj (t) (9.37)

∂tc
ωj
gj (t) = −iGjfb(ω)ei(ωj−ω

j
e)tcej (t). (9.38)

9.3.1 Analytical approach

First, an analytical solution is derived. Here, for simplicity, it is put τ̃1 = τ̃2 = τ̃ .
The calculation is demonstrated in the appendix in Sec. 11.4.4. It yields the relaxation
dynamics of the emitters:

c
ωj
gj (t) = Gfb,j(ωj)

∞∑
n=0

(
Γeiω

j
eτ
)n

n!
Θ(t− nτ)e−(Γ+i(ωj−ωje))(t−nτ)

 1

Γ + i(ωj − ωje)
(t− nτ)n +

n∑
m=1

(t− nτ)n−m(
Γ + i(ωj − ωje)

)m+1 Πm−1
k=0 (n− k)

 (9.39)

Calculating the g(2)-function from this solution, however, results in an involved equation
even costly when solved numerically, cf. Eq. (11.62) in Sec. 11.4.4. This serves to demon-
strate that the the problem formulated with Eq. (9.37) and (9.38) is ideally fitted to be
solved with a numerical approach using tMPS.

9.3.2 tMPS-solution: Algorithm and benchmark

The algorithm consists of two two-level emitter under self-feedback and is constructed
completely analogous to the derivation in Sec. 11.3.1 and 8.2.2. Here, in a first step, it is
assumed that photons emitted by the two different sources differ only in the decay rate
Γj while the resonance frequency ωje is kept emitter-independent, ω1

e = ω2
e .
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As the state of the reservoir is conserved for each time step, the g(2)-function may be
calculated straightforward from the obtained MPS by swapping the reservoir bins next
to each other as explained in Sec. 8.2.2 and calculating the expectation value according
to the procedure explained in Sec. 3.4. With this, the G(2)(τ)-function is calculated
for each value of τ = j∆t with j ∈ [0, NT ], while the g(2)-function is obtained with
g(2) =

∑NT
j=0G

(2)(j∆t).
The algorithm is benchmarked using the dependence of the g(2)-function on the properties
of the wave function, cf. Eq. (9.35) and Eq. (9.32). Thus, it is assumed that it holds for
the decay rates that Γ1 = Γ, Γ2 = αΓ where α ∈ R+, and the g(2)-function is calculated
numerically for different α.
Fig. 9.3 depicts the results using Eq. (9.35) and Eq. (9.32) as analytical solution (green
line) and comparing it to the numerical computed case (red line). Clearly, the lines are
in good accordance, demonstrating the correctness of the employed algorithm.
The plot shows that it holds that g(2) = 0 in case of identical decay rates of both
emitters, and thus V = 1. However, this picture changes if the decay rates differ: Here,
with increasing difference, the g(2)-function increases and thus the visibility decreases.
Next, both emitter are subject to self-feedback using identical feedback parameters φ1 =
φ2, τ1 = τ2. The result is depicted in Fig. 9.3 (blue line). Clearly, for identical decay
rates, it holds that g(2) = 0, analogous to the case without feedback. For different
decay rates, however, the g(2)-function yields higher values compared to the case without
feedback, thus the visibility decreases.
If only one emitter is influenced by feedback control and the decay rates differ, the
visibility decreases by more than one magnitude compared to the case without feedback,
for all parameter sets checked numerically. Thus, interestingly, it seems to be the case
that for two emitters with the same resonance frequency but with different decay rates,
coherent self-feedback may not increase the visibility.
As a next step, the case of detuned emitters will be investigated. Note that the overlap
U defined in Eq. (9.33) depends on the detuning ∆12 ≡ ω1

e − ω2
e as follows. Consider

Γ1 = Γ2 = 1, then

U(α)

∣∣∣∣
Γ1=Γ2=1

=
4

∆2
12 + 4

, (9.40)

where again U = 1 for ∆12 = 0.

9.4 Conclusion

This section investigated the idea of enhancing the indistinguishability of photons ra-
diated by two emitters differing in some properties, for instance in the decay rate or
the transition frequency, using coherent time-delayed feedback control. This is done by
modeling the intensity correlation of two photons interfering at a beam splitter as a mea-
sure for the indistinguishability. The setup is modeled using the tMPS-method and the
influence of feedback on the g(2)-function is investigated for different feedback parameter
sets. However, in case of the sources differing in the decay rate, no enhancement of the
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Figure 9.3: Dependence of the g(2)-function on the properties of the wave functions of
two TLS, where two different decay rates with Γ1 = Γ and Γ2 = αΓ, α ∈ R+

are assumed. The green line depicts the analytical solution, cf. Eq. (9.35) and
Eq. (9.32).The red line is calculated numerically for different using the tMPS-
method and clearly is in good accordance with the analytical solution. The
blue line depicts the numerical solution where both emitter are controlled
using self-feedback with the same feedback parameters φ1 = φ2, τ1 = τ2.
Clearly, for identical decay rates, it holds that g(2) = 0, analogous to the
case without feedback. For different decay rates, however, the g(2)-function
yields higher values compared to the case without feedback, thus the visibility
decreases.
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indistinguishability is achieved. Further work will be to investigate the case of detuned
emitters.
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10.

Conclusion and outlook

It has been the aim of this thesis to contribute to the research field of many-body sys-
tems in non-Markovian interaction with their environment. To this end, in Sec. 6, the
one-dimensional Heisenberg spin-1/2 chain is employed as a paradigmatic and recently
intensely studied model. With the application of quantum coherent feedback control, a
method established for the investigation of single emitter is extended on that model. It
is demonstrated that by doing so, it is possible to generate persistent oscillations within
the system and thus induce highly non-trivial states which dynamically store excitation
within the chain. These oscillations occur at special points in the parameter space and
persists for different chain lengths and different initial excitations within the chain. Also,
the non-invasive partial characterization of the chain is demonstrated by exploiting on
the fact that the different trapping conditions each relate to specific steady states within
the chain. Directions of future research on this topic include for instance the investigation
of the influence of disorder on the system. Preliminary numerical results for Heisenberg
chains with lower symmetries, shifts, and also anisotropies indicate a connection between
the eigenvalues of the system and the trapping conditions. Likewise, it would be of high
interest to investigate the system dynamics if more sites are coupled to the waveguide.
In Sec. 7, a novel model for a boundary driven many-body system has been presented, also
using the model of the Heisenberg spin-chain with nearest-neighbor interaction. Here,
the chain is exposed to a coherent, resonant driving field on one end while coupled dissi-
patively to a reservoir on its other side, and the transport properties of the chain in the
non-equilibrium steady state are investigated. This novel approach contrasts and comple-
ments the dominant model in the research field, where the potential difference is realized
with an incoherent driving using a full Markovian approximation by coupling its first
and last site to reservoirs which are described with the Lindblad formalism. It is shown
that for the weak driving regime, both driving realizations induce anomalous transport
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behavior which is characterized as superdiffusive. This novel implementation poses most
interesting possibilities for the comparison of the out-of-equilibrium properties - e.g. spin
transport properties, entanglement growth or energy transport - of many-body systems
driven either coherently or with a full Markovian approximation. Also, it allows for the
possibility of investigating driven many-body systems in non-Markovian interaction with
their environment, a setup highly interesting for studying properties of open quantum
many-body systems and for future applications in the field of quantum information tech-
nologies.
Sec. III was dedicated to single-emitter system-reservoir interaction in the non-Markovian
regime by investigating the case of fully coherent self-feedback. In the first part, Sec. 8,
the control of a non-degenerate Λ-type system with coherent self-feedback has been dis-
cussed. Here, the novel approach of controlling the system with an external pump field
has been introduced, with the motivation of further investigating the influence of the
feedback phase and establishing methods for controlling it. For the unpumped case, it is
demonstrated that stabilization may be achieved at certain delay times. When applying
a continuous external field, new trapping conditions arise. It is shown that the Rabi
frequency of the driving field serves as a new control parameter, which gives rise to the
possibility of disentangling the two intertwined feedback parameters, the delay time τ
and the feedback phase φ. Depending on the properties of the system - the transition
frequencies ω2 and ω3 - the smallest possible delay time τ may be achieved with or
without an external pump field. Thus, the results presented here not only broaden the
possibilities of feedback control significantly, but also enable a reduction of the transient
time and thus a stabilization at higher excited state densities for the investigated system.
As a direction for future research, further control options using a time-dependent pump
pulse might be explored.
In the last chapter, Sec. 9, the influence of time-delayed feedback control on the inten-
sity correlation g(2)(τ) of two photons interfering at a beamsplitter as a measure for the
indistinguishability was investigated. Here, the setup is modeled using tMPS and the
influence of feedback on the g(2)-function is investigated for different feedback parameter
sets. However, in case of the sources differing in the decay rate, no enhancement of the
indistinguishability is achieved. Further work includes the study of the case of photon
sources also differing in their transition frequencies.
In summary, it can be stated that with these results, the thesis at hand offers a theoretical
model to study open quantum systems. It sheds light on topics such as non-equilibrium
steady-states, non-Markovianity, properties of many-body systems and coherent feedback
control. With this, it contributes to a better understanding of the control of many-body
systems as well as of few-level emitter and their applications for quantum simulation and
quantum information processing.
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11.

Appendix

11.1 Calculations for the derivation of the quantum optical
master equation

In Sec. 2.3, the aim is to calculate the following equation:

trR(dρ(t)) = − i
~
dt
[
Heffρ(t)sys + ρ(t)sysHeff

]
+ trR

[
(d |ψ(t)〉)(d 〈ψ(t)|)

]
(11.1)
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with ρ(t)sys = |ψ(t)〉sys 〈ψ(t)|sys the system density matrix.
To this end, Eq. (2.60) is inserted into the last term in Eq. (11.1). This yields

trR

[
(d |ψ(t)〉)(d 〈ψ(t)|)

]
=

= trR

[(
− i

~
Heff dt+

√
Γg0 c dB

†(t) +HsyscdB̄1 + dB̄2cHsys

)
|ψ(t)〉 〈ψ(t)|(

− i

~
H†eff dt+

√
Γg0c

†dB + dB̄†1c
†H†sys +H†sysc

†dB̄†2

)]
= trR

[
dtHeffρ(t)dtH†eff +

√
Γg0dB

†cρ(t)dtH†eff

+HsyscdB̄
†
1ρ(t)dtH†eff + dB̄2cHsysρ(t)dtH†eff

+ dtHeffρ(t)
√

Γg0c
†dB(t) + Γg2

0dB
†cρ(t)c†dB(t)

+HsysdB̄
†
1cρ(t)

√
Γg0c

†dB(t) + dB̄2cHsysρ(t)
√

Γg0c
†dB(t)

+ dtHeffρ(t)HsyscdB̄
†
1 +
√

Γg0dB
†cρ(t)dB̄†1c

†H†sys

+HsyscdB̄
†
1ρ(t)dB̄†1c

†H†sys + dB̄2cHsysρ(t)dB̄†1c
†H†sys

+ dtHeffρ(t)H†sysc
†dB̄†2 +

√
Γg0dB

†cρ(t)H†sysc
†dB̄†2

+HsyscdB̄
†
1ρ(t)H†sysc

†dB̄†2 + dB̄2cHsysρ(t)H†sysc
†dB̄†2

]
(11.2)

As only summands of order of ∆t have to be taken into account, the terms in Eq. (11.2) are
analyzed by making use of the cyclic property of the trace and of the Born factorization.
This yields for instance:

trR
[
dB†cρ(t)c†dB(t)

]
=trR

[
dB†c

(
ρ(t)sys ⊗ ρ(t)res

)
c†dB(t)

]
=trR

[
ρ(t)resdB(t)dB†cρ(t)sysc

†]
=trR

[
ρ(t)resdB(t)dB†

]
trR
[
cρ(t)sysc

†]
=trR

[
g2

0

2π

∫ dt

0
dt′
∫
dωb(ω)e−i(ω−ω0)t′

∫ dt

0
dt′′
∫
dω′b†(ω′)ei(ω

′−ω0)t′′

]
cρ(t)sysc

†

=trR

[
g2

0

2π

∫
dω

∫ dt

0
dt′
∫ dt

0
dt′′e−i(ω−ω0)(t′−t′′)

]
cρ(t)sysc

†

=trR

[
g2

0

c

∫ dt

0
dt′
∫ dt

0
dt′′e−(t′−t′′)δ(t′ − t′′)

]
cρ(t)sysc

† =
g2

0

c
dtcρ(t)sysc

†. (11.3)

where in the second last step, the commutation relations (2.16) and the action on the
vacuum reservoir have been exploited.
This term is the only term in Eq. (11.2) which is of order of ∆t. All other terms are
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neglected as they are of higher order in dt. This is demonstrated exemplary for one term:

trR

[
dB̄†1Hsyscρ(t)c†dB(t)

]
= trR

[
ρ(t)resdB(t)dB̄†1

]
Hsyscρ(t)sysc

†

= trR

[
ρ(t)res

g2
0

2π

∫ dt

0
dt′
∫ t′

0
dt′′
∫
dω′b†(ω′)ei(ω

′−ω0)t′′
∫ dt

0
dt′
∫
dωb(ω)e−i(ω−ω0)t′

]
Hsyscρ(t)sysc

†

=
g2

0

c

∫ dt

0
dt′
∫ t′

0
dt′′ = O(dt2)→ 0. (11.4)

With this, Eq. (11.2) reduces to:

trR

[
(d |ψ(t)〉)(d 〈ψ(t)|)

]
= Γdtcρ(t)sysc

†. (11.5)

11.2 The W-state as a matrix product state

In order to give an example for the decomposition of a quantum state, the W-state [5] will
now be decomposed into an MPS, which serves as an example of a multipartite entangled
quantum state. It takes the form

|W 〉 =
1√
3

(|001〉+ |010〉+ |100〉) (11.6)

where from now on, the normation factor 1√
3
will now be omitted for reasons of simplicity.

The first step is to reshape the coefficient tensor Ci1,i2,i3 into a matrix C̄i1,(i2,i3) ∈ R2×4:

C̄i1,(i2,i3) =

(
0 1 1 0
1 0 0 0

)
(11.7)

An SVD decomposition of 11.7 yields:

C̄ = U i1a1
· Sa1,a2 · (V T )a2,(i2,i3)

=

(
1 0
0 1

)
·
(√

2 0 0 0
0 1 0 0

)
·


0 1√

2
1√
2

0

1 0 0 0
0 0 0 1
0 − 1√

2
1√
2

0


where the third and fourth row in V T have been added to complete the ONS.
U i1a1

is decomposed into two row vectors:

Ai1=0 =
(
1 0

)
(11.8)

Ai1=1 =
(
0 1

)
(11.9)

Next, S · V T =

(
0 1 1 0
1 0 0 0

)
is calculated and reshaped:

S · V T = C̄(a1i2),i3 =


0 1
1 0
1 0
0 0
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An SVD yields:

C̄(a1,i2),i3 = U(a1,i2),a2
· Sa2,a3 · (V T )a3,i3

=


0 1
1√
2

0
1√
2

0

0 0

 ·
(√

2 0
0 1

)
·
(

1 0
0 1

)

Next, U(a1,i2),a2
is decomposed into two matrices of the dimensions (2× 2):

Ai2=0
a1,a2

=

(
0 1
1√
2

0

)
(11.10)

Ai2=1
a1,a2

=

(
1√
2

0

0 0

)
(11.11)

The last step is to calculate

C̄(a1i2),i3 = Sa2,a3 · (V T )a3,i3 =

(√
2 0

0 1

)
and decompose the result into two column vectors:

Ai3=0
a3

=

(√
2

0

)
(11.12)

Ai3=1
a3

=

(
0
1

)
(11.13)

Putting together equations 11.8 - 11.13, it is finally possible to write the W-state in 11.6
in its full, left-canonical MPS form, which reads as:

|W 〉 = |001〉+ |010〉+ |100〉
=

∑
i1,i2,i3

Ai1Ai2Ai3 |i1 i2 i3〉

= Ai1=0Ai2=0Ai3=1 |001〉+Ai1=1Ai2=0Ai3=0 |010〉+Ai1=1Ai2=0Ai3=0 |100〉

=
(
1 0

)( 0 1
1√
2

0

)(
0
1

)
|001〉 +

(
1 0

)( 1√
2

0

0 0

)(√
2

0

)
|010〉

+
(
1 0

)( 1 0
1√
2

0

)(√
2

0

)
|100〉 .

After this introduction and demonstration of the decompositions in the MPS form, the
application of operators on this state will be explained.
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11.3 Analytical benchmark of the tMPS code for a two-level
emitter

11.3.1 Modeling quantum coherent self-feedback for a two-level emitter
with tMPS

The start of the derivation is the Hamiltonian which is already in the rotating frame
defined by its freely evolving part and which is given in Eq. (4.2). In order to achieve
a facilitating description for the numerical simulation, the full Hamiltonian in Eq. (4.2)
has to be transformed to a suitable basis. First, it is transformed into the rotating frame
defined by its freely evolving part as demonstrated in Equation-(4.6). It reads:

H ′(t) =

∫
dω
(
Gfb(ω)σ+b(ω)e−i(ω−ω0)t + h.c.

)
(11.14)

Next, another unitary transformation is applied, in order to shift the dependency of the
delay time τ into the operators. This unitary operator U2 is defined as:

U2 = exp

[
−iτ

2

∫
dωωb†(ω)b(ω)

]
(11.15)

This yields:

H ′(t) = + ig0

∫
dω
(
σ+
(
b(ω)e−i(ω−ω0)t − b(ω)e−i(ω−ω0)teiωτ

)
+ h.c.

)
(11.16)

The time dependent reservoir operators b(†)(t) introduced in Sec. 2.2 in Eq. (2.21) with

b(t) =
1√
2π

∫
dωb(ω)e−i(ω−ω0)t (11.17)

are inserted into Eq. (11.16). As demonstrated in Sec. 2.2 in Eq. (2.25), their commuta-
tion relation is proportional to a δ-peak in time space:

[b(t), b†(t′)] = δ(t− t′)πg2
0e
iω0(t−t′), (11.18)

which means that they model white noise, cf. Sec. 2.2.
This yields the transformed Hamiltonian H ′′:

H ′′(t) = + i
√

Γ
(
b(t)− b(t− τ)eiφ

)
σ+ − i

√
Γ
(
b†(t)− b†(t− τ)e−iφ

)
σ− (11.19)

with the delay time τ and the feedback phase φ = ω0τ as introduced in Sec. 4.
The time evolution operator is defined as:

U(t, t0) = T̂ exp

(
−i
∫ t

t0

H ′′(t′)dt′
)
. (11.20)
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As explained in Sec. 2.2.5, U(t, t0) may discretized in the basis of the time discrete quan-
tum noise operators ∆B(†)(tk), which have been introduced in Sec. 2.2.2, cf. Eq. (2.35),
and include the interaction with the reservoir at one time step with a stochastic, contin-
uous description

∆B(†)(tk) =

∫ tk+1

tk

dt′b(†)(t′). (11.21)

They obey canonical commutation relation defined in Eq. (2.36) up to a normalization
factor of ∆t, but note importantly, that B(†)(tk) and B(†)(tk−l) only commute for ∆t =
tk+1 − tk < τ .
Discretizing Eq. (11.20) in this basis yields the following time evolution operator

U(tk+1, tk) =

= exp

[
+
√

Γ
(

∆B(tk)−∆B(tk−l)e
iφ
)
σ+ −

√
Γ
(

∆B†(tk)−∆B†(tk−l)e
−iφ
)
σ−

]
(11.22)

for k ∈ [0, NT − 1] as integer of the time steps, where the time evolution operator T̂ may
be dropped for equidistant time steps ∆t = tk+1 − tk, cf. Sec. 2.2.5. Here, tk denotes
the kth time step, while tk−l = (k − l)∆t denotes the time delayed by τ , thus τ = l∆t.
Introducing the normalized basis states, cf. Eq. (2.37) in Sec. 2.2.2, which read as

|ip〉 =
(∆B†(tk))

ip√
ip!∆tip

|vac〉 , (11.23)

where ip, p integer, denotes the number of excitations present in the Fock state of the kth
time interval |ip〉, the time evolution of |ψ(t)〉 may now be computed as a stroboscopic
map, cf. Sec. 2.2.2:

|ψ(tk+1)〉 = exp

(
−i
∫ (k+1)∆t

k∆t
H ′(t′)dt′

)
|ψ(tk)〉 ⊗ |ik+1 = 0〉

= U(tk+1, tk) |ψ(tk)〉 ⊗ |ik+1 = 0〉 (11.24)

This will be done using the tensor network method tMPS which has been introduced in
Sec. 3.1. The corresponding construction of the wave vector as well as the algorithm ar-
chitecture is completely analogous to the case of the Λ-type system and is thus explained
in Sec. 8.2.2.

11.3.2 Benchmark plots: computing feedback with tMPS

Note that Figures 11.1-11.2 furthermore serve as benchmarks for the numerical method
applied in this thesis, as they also show the solution obtained with the tMPS program
described in Sec. 11.3.1 (black dotted lines), demonstrating its full accordance with the
analytical solution.
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Figure 11.1: Decay of an excited two-level emitter in a semi-infinite waveguide under the
influence of self-feedback. The plot depicts the occupation density of the ex-
cited level for a long feedback time Γτ � 1 over the feedback time intervals,
computed from the full solution of the equations of motion, cf. Section 4.1.
Clearly, during the 0th τ -interval, the entire excitation dissipates into the
reservoir. During the first τ -interval, the first interaction with the feedback
signal occurs and a re-absorbance of the emitter of its own past becomes vis-
ible, which again decays completely during this period. This process repeats
itself during the following τ -intervals, while the amplitude of the excitation
decreases, as part of the excitation is lost during each interval. In the limit
of long times, this periodic process of emittance and re-absorbance will ei-
ther lead to a complete decay of the atom and thus to a trivial steady state
ce(t → ∞) = 0 or to a finite excitation within the system. Note that this
plot furthermore serve as benchmarks for the numerical method applied in
this thesis, as it also shows the solution obtained with the tMPS program de-
scribed in Sec. 11.3.1 (black dotted lines), demonstrating its full accordance
with the analytical solution.
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Figure 11.2: Decay of an excited two-level emitter in a semi-infinite waveguide, without
feedback (green line) and under the influence of self-feedback (red and blue
lines). The plot depicts the occupation density of the excited level for a
short feedback time Γτ � 1 over the feedback time intervals, computed
from the full solution of the equations of motion, cf. Section4.1. In this
case, the feedback phase φ - the phase between emission and re-absorption
- matters, while its choice may either slow down or speed up the decay pro-
cess. Here, for the case of a fully constructive feedback phase φ = 2nπ,
n ∈ N, a non-trivial solution for the long-time steady-state is obtained,
where ce(t → ∞) = const and ce(t → ∞) > 0 (red line in Fig. 11.2). Dur-
ing the 0th τ -interval, the initial excitation first dissipates partially into the
reservoir. In the 1st τ -interval, this process is stopped by the interaction
with the feedback signal. In the following τ -intervals, after a convergence
time, the system-reservoir interaction reaches a steady-state and dynami-
cally traps the remaining excitation within the chain. The blue line depicts
the case of a destructive feedback phase φ = (2n+ 1)π, which enhances the
decay process most strongly. Clearly, compared to the case without feed-
back (green line), the excitation dissipates quicker into the reservoir. Note
that this plot furthermore serves as a benchmark for the numerical method
applied in this thesis, as it also shows the solution obtained with the tMPS
program described in Sec. 11.3.1 (black dotted lines), demonstrating its full
accordance with the analytical solution.
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11.4 Modeling system dynamics in Liouville space using
MPS

11.4.1 Basis transformation and mapping into Liouville space

This adaption follows two important ideas, recently proposed by [121]. The first one is
to treat the density matrix operator ρ(t) not as an operator, but as a pure quantum
state, and to use the MPS formalism in order to describe its time evolution: Within the
framework of matrix product states, the state and not the operators are evolved in time.
In order to do so, the Lindblad superoperator L has to be written as an time-independent
matrix product operator which describes the time evolution of the state of ρ(t).

Secondly, the system is mapped from the carthesian basis
{(

0
1

)
,

(
1
0

)}
to another basis,

one which is more convenient for the calculation and description of the matrix product
operators in the algorithm and allows for an calculation of expectation values using the
MPS framework. This basis consists of the Pauli spin matrices σx, σy and σz, while the
forth basis state σ0 is defined as the identity matrix. Hence the basis is

σ0 =

(
1 0
0 1

)
, σ1 ≡ σx =

(
0 1
1 0

)
, σ2 ≡ σy =

(
0 −i
i 0

)
, σ3 ≡ σz =

(
1 0
0 −1

)
.

(11.25)

Therefore, ρ is element of a 4n-dimensional Hilbert space, and is now described with:

ρ =
∑

i1,i2...iN

ci1,i2...iN (σi1 ⊗ σi2 ⊗ · · · ⊗ σiN ), (11.26)

with ik = 1, 2, 3, 4. Hence, the density operator may be expressed as a state vector
ρ→ |ρ〉 with the following basis

σ0 ≡ |0〉 ≡


1
0
0
0

 σx ≡ |1〉 ≡


0
1
0
0

 σy ≡ |2〉 ≡


0
0
1
0

 σz ≡ |3〉 ≡


0
0
0
1

 . (11.27)

With this, the density operator reads:

|ρ〉 =
∑

i1,i2...iN

ci1,i2...iN |σi1σi2 . . . σiN 〉 . (11.28)

Thus, ρ takes the form of a state vector residing in a 4n-dimensional Hilbert space and
is no longer written as a matrix but as a vector, whose basis is built by matrices. Its
coefficient tensor ci1,i2...iN may be decomposed into 4N matrices Ai of the dimensions
Ai ∈ C4×1, cf. Sec. 3.2:

|ρ〉 =
∑

i1,i2...iN

Ai1Ai2 . . . AiN |σi1σi2 . . . σiN 〉 . (11.29)
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Analogous to this, the super-operator L may now be written as an matrix product oper-
ator. Its specific form will be derived in Sec. 11.4.3. With this, the time evolution may
be performed completely analogous to the evolution of pure states in the Schrödinger
picture, cf. Sec. 3.3 and 3.5. Note, however, that in case of L generating non-unitary
transformations - as it will be the case if it describes time-irreversible dynamics using the
master equation - within the MPS formalism, the canonical form of the MPS will not be
preserved during its application: The MPS is no longer orthonormal after the application
of the MPO, which means that the bond values are no longer identical to the Schmidt
values and thus, when truncating them, additional information would be lost [105, 120].
In order to avoid this, the MPS has to be re-orthogonalized after the application of the
operator, which means each matrix of the chain has to be decomposed and contracted
again, bringing it back into the canonical form.

11.4.2 Calculation of expectation values

One of the advantages of the application of the MPS formalism is that the calculation of
expectation values within is possible at relatively low computational costs, cf. Section3.4).
In order to exploit this, the expectation value of an operator O has to be calculated in
the Schrödinger picture with 〈O〉 = 〈ψ|O |ψ〉. However, for mixed states in the density
matrix picture the trace has to be calculated, thus:

〈O〉 = Tr (ρO) = Tr

(∑
i

pi |ψi〉 〈ψi|O

)
=
∑
i

pi 〈ψi|O |ψi〉 . (11.30)

However, the {|ψi〉} do in principle not factorize, and the entanglement information is
contained in the single matrices Am of the MPS decomposition. Hence, the standard
MPS-contraction method, cf. Sec. 3.4, is not to be applied in for the calculation of ex-
pectation values in Liouville space.
In this thesis, two different methods for the calculation of expectation values have been
developed, which both make use of the MPS formalism, however transforming it into
Liouville space.
The first one calculates the exact expectation values by contracting the MPS-decomposition
into one single tensor, after which the expectation values may be read off directly. Its
computational costs, however, are large and thus, it can only be made use for for small
chain lengths and for benchmarking the program. Exploiting the property of the Pauli
matrices that

Tr (σx) = Tr (σy) = Tr (σz) = 0, (11.31)

and the contracted tensor |ρ〉 is of the form

|ρ〉 =
∑
i1...iN

ci1...iN |σ
i1 . . . σiN 〉 , (11.32)
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with ik ∈ (0, 1, 2, 3). Let O be an arbitrary operator acting on |ρ〉. If mapped into the
basis of Pauli matrices, it reads

O =
∑
j1...jN

c̃j1...jN |σ
j1 . . . σjN 〉 . (11.33)

Thus calculating 〈O〉 is done with

〈O〉 = Tr (Oρ) = Tr

 ∑
i1...iN

ci1...iN |σ
i1 . . . σiN 〉

∑
j1...jN

c̃j1...jN |σ
j1 . . . σjN 〉

 (11.34)

=
∑
i1...iN

∑
j1...jN

ci1...iN c̃j1...jN Tr
(
|σi1σj1 . . . σiNσjN 〉

)
(11.35)

=
∑
i1...iN

∑
j1...jN

ci1...iN c̃j1...jN TrN (σiNσjN ) . . .Tr1 (σi1σj1) (11.36)

=

{
2Nci1...iN c̃j1...jN if ik = jk ∀k ∈ (1, . . . , N)

0 else,
(11.37)

where the last condition arises from the fact that if two Pauli matrices are multiplied,
it yields the identity matrix only if the matrices are identical, σiσj = σ0 if and only if
i = j.
The second way uses the canonical form of the MPS |ρ〉 and defines MPOs O in Liouville
space for each observable 〈O〉 which makes it possible to use the standard MPS formalism
such that it holds (〈O〉)2 = 〈ρ|O |ρ〉, but by doing so, sign and phase of the entries of
|ρ〉 are lost during the calculation. This is one important reason for choosing the Pauli
matrices as a basis: with that, all coefficients ci1...ik are ∈ R and calculating c2

i1...ik
means

only the sign of 〈O〉 is lost. As it preserves the decomposed structure of the MPS, it is
much more efficient than the first method.
The definition of the MPO is done as follows: assuming the operator Ok acts on the kth
site. First, it is transformed into the basis of the Pauli matrices, thus Ok → |O〉k. As
demonstrated in Sec. 3.3, the coefficients of the MPO are defined with

c̃(i1,i′1),...,(iN ,i
′
N ) = W i1i′1 . . .W iki

′
k . . .W iN i

′
N . (11.38)

Now, putting
W ili

′
l = I (11.39)

for all l 6= k, and
W iki

′
k = |O〉k 〈O|k (11.40)

and calculating 〈ρ(t)|O |ρ(t)〉 as demonstrated in Sec. 3.3 will read of all needed coeffi-
cients squared, thus

〈ρ(t)|O |ρ(t)〉 = c2
i1=0 · c2

i2=0 · . . . c2
ik=3 · . . . c2

iN−1=0 . . . c
2
iN=0 (11.41)

= c2
0...3...0, (11.42)

and thus

〈Mk〉 = 2N
√
〈ρ(t)|Ok |ρ(t)〉. (11.43)
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11.4.3 Derivation of the matrix product operator

As explained in Sec. 11.4, the Pauli spin matrices are chosen as a suitable basis for the
time-evolution, cf. Eq. (11.27), and the density matrix ρ(t) is mapped into a state vector
written in this basis, thus

ρ(t)→ |ρ(t)〉 = |ρ〉 =
∑

i1,i2...iN

ci1,i2...iN |σi1σi2 . . . σiN 〉 . (11.44)

The time evolution is given by formally integrating Eq. (7.4), which yields

ρ(t) = eL(t−t0)ρ(t0). (11.45)

In order to demonstrate its derivation, the super-operator L is divided into three parts
according to

ρ̇ = L[ρ]

= − i
~

[H, ρ]︸ ︷︷ ︸
LH

+D[Lin
i1 ] +D[Lout

i1 ]︸ ︷︷ ︸
LB1

+D[Lin
iN

] +D[Lout
iN

]︸ ︷︷ ︸
LBN

. (11.46)

Expressing the fermionic flip operators σ+/− with the Pauli spin matrices in order to use
the mapping defined in Eq. (11.27) yields for the three terms in Eq. (11.46):

LB1 = Γ+
1

(
−2c1 |σx〉1 − 2c2 |σy〉1 − 4c3 |σz〉1

)
+ Γ−1 4c0 |σz〉1 , (11.47)

LBN = Γ+
N

(
−2c1 |σx〉N − 2c2 |σy〉N − 4c3 |σz〉N

)
+ Γ−N4c0 |σz〉N . (11.48)

and LH given in matrix form, acting on site k,k + 1:

(LH)(ik,ik+1),(jk,jk+1) = (LH)m,n = (11.49)



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2hk+1 0 0 0 0 0 0 0 0 −2J 0 0 2∆ 0
0 −2hk+1 0 0 0 0 0 +2J 0 0 0 0 0 −2∆ 0 0
0 0 0 0 0 0 −2J 0 0 +2J 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2hk 0 0 +2∆ 0 0 −2J 0
0 0 0 0 0 0 2hk+1 0 0 2hk 0 0 0 0 0 0
0 0 0 2J 0 −2hk+1 0 0 0 0 0 2hk 0 0 −2J 0
0 0 −2J 0 0 0 0 0 +2D 0 0 0 2hk 0 0 0
0 0 0 0 −2hk 0 0 +2D 0 0 0 0 0 2J 0 0
0 0 0 −2J 0 −2hk 0 0 0 0 0 2hk+1 0 2J 0 0
0 0 0 0 0 0 −2hk 0 0 −2hk+1 0 0 0 0 0 0
0 0 +2J 0 0 −2∆ 0 0 −2hk 0 0 0 0 0 0 0
0 0 0 0 0 0 2J 0 0 −2J 0 0 0 0 0 0
0 0 2∆ 0 0 0 0 0 −2J 0 0 0 0 0 0 0
0 0 −2∆ 0 0 2J 0 0 0 0 0 0 0 2hk+1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Note that as LH acts on two sites simultaneously, the Suzuki-Trotter decomposition has
to performed during the setup of the operator, cf. Sec. 3.5 and 6.3.1 for details. With
this, ρ(t) may be evolved in time by numerically solving for

|ρ(tk+1)〉 = exp[L] |ρ(tk)〉 . (11.50)
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11.4.4 Derivation of the photon wave packet form with feedback

The Hamiltonian for the system remains almost the same as in Eq. (9.6), differing only
in the form of the system-reservoir coupling. It thus reads:

H =
∑
j=1,2

~ωjeσjee +

∫
dωj~ωjaj†ω ajω + ~Ω(t)

(
e−iωptσjeg + eiωptσjge

)
+

∫
dωj~Gjfb(ω)

(
ajωσ

j
eg + aj†ω σ

j
ge

)
, (11.51)

where the sinusoidal frequency dependent coupling element Gjfb(ω) with Gjfb(ωj) =

gj sin
(
ωjL
c0

)
= gj sin

(
ωj

τ̃
2

)
as introduced in Eq. (4.3), where Lj is the length of the

closed side of the waveguide affecting the jth emitter, c0 the speed of light in vacuum
and τ̃j = 2L

c0
the resulting delay time of the jth TLS.

Next, the transformation into the interaction picture is applied. With this, and using
ce(t = 0) = 1, cωjg (t = 0) = 0 as initial condition, the Wigner-Weisskopf problem now
reads:

∂tcej (t) = −i
∫
dωjG

j
fb(ω)e−i(ωj−ω

j
e)tc

ωj
gj (t) (11.52)

∂tc
ωj
gj (t) = −iGjfb(ω)ei(ωj−ω

j
e)tcej (t). (11.53)

Eq. (11.53) is formally integrated and plugged into Eq. (11.52). This yields the relaxation
dynamics for the excited state:

∂tcej (t) = Γ
(
cej (t− τ̃)eiω

j
e τ̃Θ(t− τ̃)− cej (t)

)
, (11.54)

where Γ ≡ g2
jπ

2 . Eq. (11.54) is solved using a Laplace transformation. The result reads:

cej (t) =

∞∑
n=0

(
Γeiω

j
e τ̃
)n

n!
(t− nτ̃)ne−Γ(t−nτ̃)Θ(t− nτ̃) (11.55)

Again, we plug the result in Eq. (11.55) into Eq. (9.38) in order to obtain a solution
for the relaxation dynamics of the emitter.Formally integrating and putting cωjgj (0) = 0
yields:

c
ωj
gj (t) = −iGjfb(ωj)

∫ t

0
dtje

i(ωj−ωje)tj

∞∑
n=0

(
Γeiω

j
e τ̃
)n

n!
(t−nτ̃)ne−Γ(t−nτ̃)Θ(t−nτ̃) (11.56)

Here, the conservation of probability is being checked for the 0-th τ̃ - interval by verifying∫ ∞
0

dω
∣∣cωjgj (t ≤ τ̃)

∣∣2 +
∣∣cej (t ≤ τ̃)

∣∣2 !
= 1 (11.57)
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for n = 0 in Eq. (11.55) and 11.56.
Next, it it is assumed that t → ∞ so that cje(t → ∞) = 0. With this, the total wave
function reads:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉

= −i
∫ ∞

0
dω1Gfb,1(ω1)

∫ t

0
dt1e

i(ω1−ω1
e)t1

∞∑
n=0

(
Γeiωe1 τ̃

)n
n!

(t−nτ̃)ne−Γ(t−nτ̃)Θ(t−nτ̃)a†ω1
|vac〉

⊗−
∫ ∞

0
dω2iGfb,2(ω2)

∫ t

0
dt2e

i(ω2−ω2
e)t2

∞∑
n=0

(
Γeiωe2 τ̃

)n
n!

(t−nτ̃)ne−Γ(t−nτ̃)Θ(t−nτ̃) |vac〉

(11.58)

The solution to Eq. (4.12) yields the relaxation dynamics of the emitters and is obtained
with partial integration. It reads:

c
ωj
gj (t) = Gfb,j(ωj)

∞∑
n=0

(
Γeiω

j
eτ
)n

n!
Θ(t− nτ)e−(Γ+i(ωj−ωje))(t−nτ)

 1

Γ + i(ωj − ωje)
(t− nτ)n +

n∑
m=1

(t− nτ)n−m(
Γ + i(ωj − ωje)

)m+1 Πm−1
k=0 (n− k)

 (11.59)

Again, it it is assumed that t → ∞ so that cje(t → ∞) = 0. Plugging Eq. (11.59) into
Eq. (11.58) yields for the total wave function:

|ψ〉 = −
∫ ∞

0
dω1Gfb,1(ω1)

∞∑
n=0

(
Γeiωe1τ

)n
n!

Θ(t1 − nτ)e−(Γ+i(ω1−ωe1 ))(t1−nτ)

(
1

Γ + i(ωj − ωe1)
(t1 − nτ)n +

n∑
m=1

(t1 − nτ)n−m

(Γ + i(ω1 − ωe1))m+1 Πm−1
k=0 (n− k)

)
∫ ∞

0
dω2Gfb,2(ω2)

∞∑
n=0

(
Γeiωe2τ

)n
n!

Θ(t2 − nτ)e−(Γ+i(ω2−ωe2 ))(t2−nτ)

(
1

Γ + i(ω2 − ωe2)
(t2 − nτ)n +

n∑
m=1

(t2 − nτ)n−m

(Γ + i(ω2 − ωe2))m+1 Πm−1
k=0 (n− k)

)
a†ω1

a†ω2
|vac〉

(11.60)

With this, the g(2)-function with feedback as defined in Eq. (9.18) may be calculated.
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11.4.5 Calculation of the g(2)-function with feedback

Again, first the ket is evaluated:

E
(+)
4 (tD + τ)E

(+)
3 (tD) |ψ(t)〉

=
(
tE2(tD + τ)(+)E1(tD)(+) − rE1(tD + τ)(+)E2(tD)(+)

)
|ψ(t)〉

= −t
∫ ∞

0
dω2iGfb,2(ω2)e−ω2(tD+τ)

∫ ∞
o

dω1iGfb,1(ω1)e−ω1tD

∞∑
n=0

(
Γeiωe1 τ̃

)n
n!

Θ(tD − nτ̃)e−(Γ+i(ω1−ωe1 ))(tD−nτ̃)

(
1

Γ + i(ω1 − ωe1)
(tD − nτ̃)n +

n∑
m=1

(tD − nτ̃)n−m

(Γ + i(ω1 − ωe1))m+1 Πm−1
k=0 (n− k)

)
∞∑
n=0

(
Γeiωe2 τ̃

)n
n!

Θ(tD + τ − nτ̃)e−(Γ+i(ω2−ωe2 ))(tD+τ−nτ̃)

(
1

Γ + i(ω2 − ωe2)
(tD + τ − nτ̃)n +

n∑
m=1

(tD + τ − nτ̃)n−m

(Γ + i(ω2 − ωe2))m+1 Πm−1
k=0 (n− k)

)
|vac〉

+ r

∫ ∞
o

dω1iGfb,1(ω1)e−ω1(tD+τ)

∫ ∞
o

dω2iGfb,2(ω2)e−ω2tD

∞∑
n=0

(
Γeiωe1 τ̃

)n
n!

Θ(tD + τ − nτ̃)e−(Γ+i(ω1−ωe1 ))(tD+τ−nτ̃)

(
1

Γ + i(ω1 − ωe1)
(tD + τ − nτ̃)n +

n∑
m=1

(tD + τ − nτ̃)n−m

(Γ + i(ω1 − ωe1))m+1 Πm−1
k=0 (n− k)

)
∞∑
n=0

(
Γeiωe2 τ̃

)n
n!

Θ(tD − nτ̃)e−(Γ+i(ω2−ωe2 ))(tD−nτ̃)

(
1

Γ + i(ω2 − ωe2)
(tD − nτ̃)n +

n∑
m=1

(tD − nτ̃)n−m

(Γ + i(ω2 − ωe2))m+1 Πm−1
k=0 (n− k)

)
|vac〉

(11.61)
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Plugging the definition for the feedback coupling into Eq. (11.61) yields:

E
(+)
4 (tD + τ)E

(+)
3 (tD) |ψ(t)〉 =

=
t

4

∫ ∞
o

dω1

∫ ∞
o

dω2

(
e−iω2(tD− τ̃2 +τ)e−iω1(tD− τ̃2 )

−e−iω2(tD− τ̃2 +τ)e−iω1(tD+ τ̃
2

)

−e−iω2(tD+ τ̃
2

+τ)e−iω1(tD− τ̃2 )

+e−iω2(tD+ τ̃
2

+τ)e−iω1(tD+ τ̃
2

)
)

∞∑
n=0

(
Γeiωe1 τ̃

)n
n!

Θ(tD − nτ̃)e−(Γ+i(ω1−ωe1 ))(tD−nτ̃)

(
1

Γ + i(ω1 − ωe1)
(tD − nτ̃)n +

n∑
m=1

(tD − nτ̃)n−m

(Γ + i(ω1 − ωe1))m+1 Πm−1
k=0 (n− k)

)
∞∑
n=0

(
Γeiωe2 τ̃

)n
n!

Θ(tD + τ − nτ̃)e−(Γ+i(ω2−ωe2 ))(tD+τ−nτ̃)

(
1

Γ + i(ω2 − ωe2)
(tD + τ − nτ̃)n +

n∑
m=1

(tD + τ − nτ̃)n−m

(Γ + i(ω2 − ωe2))m+1 Πm−1
k=0 (n− k)

)
|vac〉

− r

4

∫ ∞
o

dω2

∫ ∞
o

dω1

(
e−iω1(tD− τ̃2 +τ)e−iω2(tD− τ̃2 )

−e−iω1(tD− τ̃2 +τ)e−iω2(tD+ τ̃
2

)

−e−iω1(tD+ τ̃
2

+τ)e−iω2(tD− τ̃2 )

+e−iω1(tD+ τ̃
2

+τ)e−iω2(tD+ τ̃
2

)
)

∞∑
n=0

(
Γeiωe1 τ̃

)n
n!

Θ(tD + τ − nτ̃)e−(Γ+i(ω1−ωe1 ))(tD+τ−nτ̃)

(
1

Γ + i(ω1 − ωe1)
(tD + τ − nτ̃)n +

n∑
m=1

(tD + τ − nτ̃)n−m

(Γ + i(ω1 − ωe1))m+1 Πm−1
k=0 (n− k)

)
∞∑
n=0

(
Γeiωe2 τ̃

)n
n!

Θ(tD − nτ̃)e−(Γ+i(ω2−ωe2 ))(tD−nτ̃)

(
1

Γ + i(ω2 − ωe2)
(tD − nτ̃)n +

n∑
m=1

(tD − nτ̃)n−m

(Γ + i(ω2 − ωe2))m+1 Πm−1
k=0 (n− k)

)
|vac〉

(11.62)
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