
Applied Network ScienceBentert et al. Applied Network Science (2020) 5:73
https://doi.org/10.1007/s41109-020-00311-0

RESEARCH Open Access

Efficient computation of optimal
temporal walks under waiting-time
constraints
Matthias Bentert*, Anne-Sophie Himmel, André Nichterlein and Rolf Niedermeier

An extended abstract of this work appeared in the proceedings of the 8th International Conference on Complex
Networks and their Applications (2019) (Himmel et al. 2019). This full version considers more optimization criteria,
provides missing proofs, and presents extended experimental results.

*Correspondence:
matthias.bentert@tu-berlin.de
Anne-Sophie Himmel is supported
by the DFG, project FPTinP
(NI 369/16).
Technische Universität Berlin,
Faculty IV, Algorithmics and
Computational Complexity, Berlin,
Germany

Abstract
Node connectivity plays a central role in temporal network analysis. We provide a broad
study of various concepts of walks in temporal graphs, that is, graphs with fixed vertex
sets but arc sets changing over time. Taking into account the temporal aspect leads to
a rich set of optimization criteria for “shortest” walks. Extending and broadening
state-of-the-art work of Wu et al. [IEEE TKDE 2016], we provide an algorithm for
computing shortest walks that is capable to deal with various optimization criteria and
any linear combination of these. It runs in O(|V| + |E| log |E|) time where |V| is the
number of vertices and |E| is the number of time-arcs. A central distinguishing factor to
Wu et al.’s work is that our model allows to, motivated by real-world applications,
respect waiting-time constraints for vertices, that is, the minimum and maximum
waiting time allowed in intermediate vertices of a walk. Moreover, other than Wu et al.
our algorithm also allows to search for walks that pass multiple subsequent time-arcs in
one time step, and it can deal with a richer set of optimization criteria. Our
experimental studies indicate that our richer modeling can be achieved without
significantly worsening the running time when compared to Wu et al.’s algorithms.

Keywords: Temporal networks, Temporal paths, Shortest path computation, Waiting
policies, Infectious disease spreading

Introduction
Computing shortest paths in networks is arguably among the most important graph algo-
rithms. It is relevant in numerous application contexts and used as a subroutine in a
highly diverse set of applications.While the respective problem has been studied for static
graphs for decades, over the last years there has been an intensified interest in study-
ing shortest path computations in temporal graphs—graphs where the vertex set remains
static, but the arc set may change over time (in discrete time steps).

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-020-00311-0&domain=pdf
mailto: matthias.bentert@tu-berlin.de
http://creativecommons.org/licenses/by/4.0/

Bentert et al. Applied Network Science (2020) 5:73 Page 2 of 26

Two natural motivating examples for the relevance of path and walk (in the later one
may visit a vertex multiple times) computations in temporal graphs are as follows. First,
Wu et al. (2016) discussed applications in flight networks where every node represents an
airport and each arc represents a flight connectionwith a departure time. Clearly, a “short-
est” path may then relates to a most convenient flight connection between two cities.
Second, understanding the spread of infectious diseases is a major challenge to global
health. Herein, nodes represent persons and time-labeled arcs represent contacts between
persons where a virus can be transmitted. “Shortest” path (walk) analysis here may help
to find measures against disease spreading (Newman 2018, Chapter 17). Notably, in both
examples one might need to also take into account issues such as different concepts of
“shortest”—also called optimal—paths (walks) or waiting times in nodes; this will be an
important aspect of our modeling.
Our main reference point is the work of Wu et al. (2016) on efficient algorithms for

optimal temporal path computation. These algorithms are also implemented in the tem-
poral graph library of Apache Flink (Lightenberg et al. 2018). We extend their model with
respect to two aspects. First, we additionally consider waiting-time constraints1 for the
network nodes, that is, a minimum time a walk must spend in a node before continuing
and a maximum time a walk can stay in a node before it has to continue. Minimum wait-
ing times can be used to model that passengers on an airport need some time to get from
an arriving flight to the terminal for their next flight and maximum waiting times can be
used to model recover times of patients after which they can no longer infect other peo-
ple. Importantly, maximum-waiting-time constraints can enforce cycles from one node
to another; refer to Fig. 1 for a simple example. Hence, we need to take into account opti-
mal temporal walks from one node to another (in Wu et al.’s model without waiting-time
constraints there is always an (optimal) temporal path visiting no node twice because no
cycles are necessary).
Actually, if one insists on paths (without repeated nodes) instead of walks, then even

deciding whether there exists a path between two nodes becomes NP-hard (Casteigts et
al. 2019).
The second extension to Wu et al.’s work lies in an increased number of optimality

criteria (different notions of optimal walks) and the fact that we do not only deal with opti-
mizing one criterion but a linear combination of any of these, thus addressing potentially
richer modeling needs in real-world applications. For example, in the above-mentioned
flight network a traveling person might want to use our algorithm to optimize a linear
combination of cost and travel duration. Note that trying to find walks under constraints
(e.g., travel duration at most t and cost at most c for given c, t ∈ N) leads to NP-hard
computational problems, even in the static case (Ahuja et al. 1993).

Related Work. The theory of temporal graphs is a relatively young but active field of
research (Holme 2015; Holme and Saramäki 2012; Holme and Saramäki 2013; Holme
and Saramäki 2019). Many of the basic concepts of temporal graphs such as temporal
connectivity (Kempe et al. 2002; Nicosia et al. 2012; Axiotis and Fotakis 2016; Mertzios
et al. 2019) or s-z-separation (Zschoche et al. 2020; Fluschnik et al. 2020) are based on
the notion of temporal paths and walks. The concept of optimal temporal walks plays

1Waiting-time constraints play a particularly important role in standard spreading models of infectious diseases such as
the SIS-model (Susceptible-Infected-Susceptible) (Newman 2018, Chapter 17).

Bentert et al. Applied Network Science (2020) 5:73 Page 3 of 26

Fig. 1 A temporal graph (with time-labeled arcs called time-arcs) with maximum waiting time four in which
the only temporal walk from A to C visits B twice

a central role in the definition of temporal graph metrics such as eccentricity, diameter,
betweenness and closeness centrality (Pan and Saramäki 2011; Santoro et al. 2011; Kim
and Anderson 2012; Buß et al. 2020).
An early algorithm for computing optimal temporal walks is due to Xuan et al. (2003).

They computed temporal walks under different optimization criteria, namely foremost,
fastest, and minimum hop-count. Wu et al. (2016) followed up by introducing algorithms
for computing optimal walks for the optimization criteria foremost, reverse-foremost,
fastest, and shortest on temporal graphs with no waiting-time constraints. Their algo-
rithms run in linear and quasi-linear time with respect to the number of time-arcs,
provided that transmission times on time-arcs are greater than zero. Concerning time-
dependent multicriteria optimal path computation, there has been research in the related
field of route planning (Bast et al. 2016).
The study of minimum- and maximum-waiting-time constraints in vertices has not

receivedmuch attention in the context of temporal walks even though they are considered
as important extensions to the temporal walk model (Holme and Saramäki 2012; Pan
and Saramäki 2011). One of the first papers to consider waiting-time constraints in the
context of paths is due to Dean (Dean 2004). Dean showed that time-dependent shortest
path problems with waiting constraints can be solved in polynomial time. Dean’s setting
is closely related to waiting-time constraints for optimal temporal walks. In more recent
work, Modiri et al. (2019) and Kivelä et al. (2018) studied the changes in reachability
when introducing maximum-waiting time constraints for temporal walks using so-called
event graphs. Lastly, Casteigts et al. (2019) have very recently shown that finding optimal
temporal paths under maximum-waiting-time constraints is NP-hard.
In the so-called multistage setting, where multiple graphs over the same vertex set are

considered without a (temporal) ordering, paths have been studied by Fluschnik et al.
(2020).

Our Contributions. We analyze the running time complexity of computing optimal
temporal walks under waiting-time constraints. To this end, we develop and (theoretically
and empirically) analyze an algorithm for finding an optimal walk from a source vertex
to each vertex in the temporal graph under waiting-time constraints. Our algorithm runs
in quasi-linear time in the number of time-arcs. This implies that the additional consid-
eration of waiting-time constraints on temporal walks does not increase the asymptotic
computational complexity of finding optimal temporal walks. Moreover, our algorithm
can compute optimal walks not only for single optimality criteria but also for any lin-
ear combination of these. In experiments on real-world social network data sets, we
demonstrate that in terms of efficiency our algorithm can compete with state-of-the-art
algorithms by Wu et al. (2016). Their algorithms only run on temporal graphs without

Bentert et al. Applied Network Science (2020) 5:73 Page 4 of 26

waiting-time constraints, which do optimize only one criterion (and not a linear combina-
tion). Additionally, our algorithm allows transmission times being zero (hence, allowing to
pass multiple arcs in one time step) while the algorithms ofWu et al. request transmission
times on arcs to be greater than zero.

Organization of the Paper. In “Modeling of optimal temporal walks” section, we dis-
cuss temporal graphs, temporal walks, and the various corresponding optimality criteria,
starting with an extensive motivating example in the context of disease spreading. In
“Formal definitions” section, we introduce definitions and notations used through-
out the paper. We continue in “Transformation” section by presenting two sim-
ple linear-time transformations to eliminate transmission times and minimum wait-
ing times in the temporal graph without loosing any modeling power. In “Algo-
rithm” section, we design and analyze an algorithm for computing optimal walks
under maximum-waiting-time for any linear combination of these. Finally, in “Exper-
imental results” section, we demonstrate the efficiency of our algorithm on real-
world data sets. We compare our running times with the running times of the
algorithms of Wu et al. (2016). We further examine the impact of different
maximum-waiting-time values on the existence and structure of optimal temporal
walks.

Modeling of optimal temporal walks
Before we introduce our basic concepts relating to temporal graphs and walks, we start
with a more extensive discussion of a motivating example from the disease spreading
context.

Disease Spreading Motivating Example. Pandemic spread of an infectious disease is
a great threat to global health, potentially associated with high mortality rates as well
as economic fallout (Salathé et al. 2010). Understanding the dynamics of infectious dis-
ease spreading within human proximity networks could facilitate the development of
mitigation strategies.
A large part of the study required to understand the dynamics of infectious diseases is

the analysis of transmission routes through proximity networks (Salathé et al. 2010). Clas-
sical graph theory can be used to model the main structure of a network: Each person in
the network is represented by a node and an arc between two nodes indicates the possi-
bility of an infection from one person to the other. However, the time component plays
a crucial role in the analysis of transmission routes of a potential disease as shown in the
following example:

Example 1 Studying a proximity network as shown in Fig. 2a, there are several trans-
mission routes from A to D, e.g., A → B → D and A → C → D, by which a disease could
have spread. If we extend our model by the points in time of proximity contacts in Fig. 2b
to d, then we reach the conclusion that a disease could not have spread from A to D. The
proximity contacts A 3→ B and A 3→ C occurred on day three whereas the contacts B 1→ D
and C 2→ D occurred on days one and two, respectively. Thus, A could have only infected
B and C after proximity contact with D. �

Bentert et al. Applied Network Science (2020) 5:73 Page 5 of 26

Fig. 2 A proximity network modeled as a static graph (a) and a closer look at the days in which the proximity
contacts occur (b-d)

In addition to what has been said so far, the infectious period of a disease also has to be
taken into account when computing potential transmission routes through the network,
implying the minimum time a person has to be infected before she becomes conta-
gious herself and the maximum time a person can be infected before she is no longer
contagious:

Example 2 If person B was infected by person A on day four (A 4→ B) and the infectious
period of the disease starts after one day and ends after the fourth day, then person B could
not have infected person C she met on day ten (B 10→ C). Hence, person C could not have
been infected by the disease via the transmission route A 4→ B 10→ C. �

Temporal Graphs. These are capable of modeling both properties elaborated in the two
examples above. Temporal graphs are already a frequently used model in the prediction
and control of infectious diseases (Masuda and Holme 2013; Holme 2016). Temporal
graphs—also referred to as temporal networks (Nicosia et al. 2013; Holme and Saramäki
2012), evolving graphs (Xuan et al. 2003), or time-varying graphs (Santoro et al. 2011;
Casteigts et al. 2012)—are graphs where the arc set changes over time; thus, they can
capture the dynamics within a proximity network.
In this paper, we will consider the following temporal graph model: A temporal graph

consists of a set of vertices, a set of time-arcs, and a lifetime. A time-arc is a (directed) arc
between two vertices that is associated with a time stamp at which the contact occurs and
a transmission time that indicates the amount of time to traverse the arc. Furthermore,
each vertex v is assigned an individualminimum waiting time α(v) andmaximum waiting
time β(v).
The application areas of temporal graphs are numerous: In addition to human and ani-

mal proximity networks, they are used in communication networks, traffic networks,
and distributed computing, to name a few application areas (Holme and Saramäki 2012;
Holme and Saramäki 2013; Holme and Saramäki 2019).
In our running disease spreading example, we are interested in transmission routes of

an infectious disease. These transmission routes can revisit a person in the proximity
network due to possible reinfection (Barabási 2016). Hence, the transmission routes can
contain cycles which needs to be considered in the choice of concepts representing these
routes.

Bentert et al. Applied Network Science (2020) 5:73 Page 6 of 26

Temporal Walks & Optimal Temporal Walks. Within the temporal graph model,
temporal walks—also called journeys (Xuan et al. 2003; Nicosia et al. 2013)—are the
fundamental concept that represents the transmission routes in our running example.
A temporal walk is a sequence of time-arcs which connects a sequence of vertices and

which are non-decreasing in time. In our model, a temporal walk additionally ensures that
it remains the minimum waiting time in each intermediate vertex and does not exceed
the maximum waiting time in any intermediate vertex of the walk.

Example 3 Continuing Example 2, a valid temporal walk (transmission route) from A to
D could be the following: A 4→ B 8→ D. Person A could have infected B on day four. Due to
the infectious period of four days, B was still contagious on day eight when she had contact
with person C. This does not hold on a route A 4→ B 10→ C as discussed in Example 2. If B
was infected at time step 4, then she was not contagious anymore at time step 10. �

A temporal path is a temporal walk where all vertices are pairwise distinct. Maximum-
waiting-time constraints have significant impact on temporal walks. In a temporal graph
with constraints on the maximum waiting time, one can be forced to make detours
because the maximum waiting time in a vertex is exceeded. As a consequence, there can
be two vertices A and C such that any temporal walk from A to C is not a path, as shown
in Fig. 1.

Observation 1 Let G = (V ,E,T ,β) be a temporal graph with maximum-waiting-time
constraints. Then there can exist two vertices s, z ∈ V such that no s-z-walk is a temporal
path.

We are interested in temporal walks within our proximity network in general, but wish
to place emphasis on temporal walks that optimize certain properties. A plethora of
criteria can be optimized as a consequence of the time aspect. Possible criteria (with
the chosen names in brackets) include: arrival time (foremost), departure time (reverse-
foremost), duration (fastest), transmission time (shortest), number of time-arcs (minimum
hop-count), time-arc cost (cheapest), probability (most-likely), and waiting time (mini-
mum waiting time). Next, we provide examples for all properties from their respective
fields of application.

Foremost. A foremost walk is a temporal walk that has the earliest arrival time. Com-
puting a foremost walk from a source vertex to all vertices in the proximity network
determines the speed with which an infectious disease could spread.

Reverse-Foremost. A reverse-foremost walk is a temporal walk that exhibits the latest
possible departure time. Computing a reverse-foremost walk from a source vertex
to all vertices in the proximity network estimates the latest possible point in time
at which an infectious disease could start spreading and still permeates the entire
network.

Fastest. A fastest walk is a temporal walk which exhibits the minimum travel dura-
tion, that is, the minimum difference between departure and arrival times. For an
appropriate motivation, we leave proximity networks and consider the field of flight
networks. Airports represent vertices, time-arcs represent flights from one airport
to another. The time stamp of a time-arc indicates the departure time of a flight,

Bentert et al. Applied Network Science (2020) 5:73 Page 13 of 26

Algorithm 1: Computes optimal walks.
Input : An instantaneous temporal graph G = (V ,E,T ,β), two cost functions c, cλ, two

vertex functions ind,A, and a source vertex s ∈ V .
Output : For each v ∈ V the specific length of an optimal s-v walk.
Variables :

opt(v) stores the value of an optimal walk from s to v within time interval [0, t];
L(v) is a sorted list [(opta1 , a1), . . . , (optak , ak)] where optai is an optimal value of

a walk from s to v that arrives at time ai with t + β(v) ≤ ai ≤ t.
δ1, ..., δ7 linear combination of the optimality criteria foremost, reverse-foremost,

fastest, shortest, cheapest, minimum hop-count, and minimum waiting time,
respectively.

1 Initialize opt(v) = ∞ and L(v) as empty list for all v ∈ V \ {s}
2 for t = 1, . . . ,T with Et �= ∅ do
3 G, dt , dr ← generateGraph(Gt)
4 V ′, optt ← modDijkstra(G, dt , dr)
5 for v ∈ V ′ do

/* Update step */
6 opt(v) ← min{opt(v), δ1 · t − δ2 · T + δ3 · (t − T) + optt(v)}
7 L(v) ← append (optt(v), t) and delete redundant tuples (see Lemma 1)

8 return opt

/* GraphGeneration step: Generate graph G which only contains
the arcs present at time step t and add arcs from s to each
vertex v in G that has been reached within the last β(v) time
steps. */

9 function generateGraph(Gt):
10 Initialize Er ← ∅; dr(v,w) ← ∞ and dt(v,w) ← ∞ for all v,w ∈ Vt ∪ {s}
11 for (v,w) ∈ Et do

12 dt(v,w) ←
{

(δ2 + δ3) · (T − t) + δ4 · cλ(v,w, t) + δ5 · c(v,w, t) + δ6 if v = s
δ4 · cλ(v,w, t) + δ5 · c(v,w, t) + δ6 else

13 for v ∈ Vt \ {s} do
14 delete tuples (opta, a) in L(v) with a + β(v) < t
15 if L(v) is not empty then
16 Er ← Er ∪ {(s, v)}
17 opt ← min{opta | (opta, a) ∈ L(v)}
18 dr(s, v) ← opt + δ7 · ind(v) · (t − a + A(v))

19 return ((Vt ∪ {s},Et ∪ Er), dt , dr)

/* ModDijkstra step: Returns all vertices V ′ with an arrival
time exactly at time step t and their optimization value
d : V ′ → N. */

20 function modDijkstra((V ,Et ∪ Er), dt , dr):
21 initialize optt(v) ← ∞, r(v) ← ∞ for all v ∈ Vt , and r(s) = 0
22 initialize Q ← V and V ′ ← ∅
23 while Q �= ∅ do
24 v ← vertex in Q with minimum r(v)
25 remove v from Q
26 for (v,w) ∈ Et ∪ Er do
27 r(w) ← min{r(w), r(v) + min{dt(v,w), dr(v,w)}}
28 if (v,w) ∈ Et then
29 optt(w) ← min{optt(w), r(v) + dt(v,w)}
30 V ′ ← V ′ ∪ {w}

31 return V ′, optt

Bentert et al. Applied Network Science (2020) 5:73 Page 14 of 26

For given δ1, . . . , δ7 ∈ Q, Algorithm 1 for all v ∈ V now computes an optimal walk P =
((vi−1, vi, ti))ki=1 = (ei)ki=1 from s to v with respect to

linT(P) =δ1 · (tk) + δ2 · (−t1) + δ3 · (tk − t1) + δ4 ·
k∑

i=1
cλ(ei)

+ δ5 ·
k∑

i=1
c(ei) + δ6 · k + δ7 ·

k−1∑

i=1
(ti+1 − ti + A(vi+1)) · ind(vi).

We have shown in Proposition 1 that an optimal walk with respect to linT(P) in G directly
corresponds to an optimal walk with respect to lin(P) in the original temporal graph G ′.
For each vertex v ∈ V \ {s}, Algorithm 1 stores in opt(v) the value of an optimal walk

from s to v and in L(v) a list of all relevant arrival times from s to v with their optimal
values. In the beginning, opt(v) = ∞ and L(v) is an empty list (Line 1 in Algorithm 1).
Then, for each time step t and each v ∈ V , Algorithm 1 computes the optimal walk from
the source s to v that arrives in time step t (if it exists). Thus, Algorithm 1 performs for
each t ∈ {1, . . . ,T} the following steps:
GraphGeneration. Generate a static graph G with GenerateGraph (Line 3 and Lines

9 to 19). This graph consists of the static graphGt = (Vt ,Et), that is, the static graph
induced by all time-arcs with time stamp t, and the source vertex s.
The weight of an arc (v,w) ∈ Et is set to δ4 · cλ(v,w) + δ5 · c(v,w) + δ6. If further

v = s, then we have to add (δ2 + δ3) · (T − t) to take the departure time in s into
account for the criteria reverse-foremost and fastest, see Line 12.
Additionally, non-existing arcs from s to each vertex v ∈ Vt are added if there

exists a temporal walk from s to v that arrived not later than β(v) time steps ago. Let
opta be the optimal value among all walks that arrive within the time interval [t −
β(v), t] and let a be the corresponding arrival time in v. Additionally, the minimum
waiting time A(v) plus the additional waiting time (t − a) in v has to be taken into
account if ind(v) = 1. Hence, the weight of arc (s, v) is set to opta + δ7 · ind(v) ·
(t − a + A(v)), see Line 18. Let Er be the set of these additional arcs. Then, G =
(Vt ∪ {s},Et ∪ Er , dt , dr).

ModDijkstra. Run a modified Dijkstra Algorithm onGwith modDijkstra (Line 4 and
Lines 20 to 31). Instead of computing a shortest walk (using the original Dijkstra
Algorithm) in G, compute a shortest walk among all walks that end in an arc of Et .
This represents a temporal walk that arrives in time step t with optimal value. The
function modDijkstra returns the set V ′ of vertices that can be reached within G
via an arc in Et and the function optt : V ′ → N that maps each vertex v ∈ V ′ to its
optimal value of a walk from s to v arriving exactly at time t.

Update. For each v ∈ V ′, set the optimum opt(v) to the minimum of its current value
and the optimal value of a newly computed walk, that is, opt(v) := min{opt(v), δ1 ·
t + δ3 · (t − T) + optt(v)} (Line 6). Herein, we have to add the arrival time t that has
not been taken into account in the calculation of the optimal value because it is the
same for all walks found at time step t. Add the tuple (optt(v), t) to list L(v) (Line 7).

After the Update step for time step t, the list L(v) contains all tuples (optar, ar) such
that there exists a walk from s to v that arrives at time ar ∈[t − β(v), t] with its optimal
cost value optar. We want to have constant-time access to the optimal value of a walk

Bentert et al. Applied Network Science (2020) 5:73 Page 15 of 26

that arrives in v within time interval [t − β(v), t]. This can be achieved by deleting tuples
from list L(v) that are redundant, that is these tuples are not meaningful for the correct
computation of optimal walks. Let

L(v) =[(opta1 , a1), . . . , (optak , ak)]

be such a list for a time step t with t − β(v) ≤ a1 < . . . < ak ≤ t. A tuple (optar, ar)
is redundant if there exists a tuple with an arrival time greater than ar such that its opti-
mal value is smaller than optar plus the additional waiting time. This is shown with the
following lemma:

Lemma 1 For a time step t ∈ {1, . . . ,T} and a vertex v ∈ V, if there are two tuples
(optai , ai), (optaj , aj) ∈ L(v) with ai < aj and

optaj ≤ optai + δ7 · ind(v) · (aj − ai),

then (optai , ai) is redundant and can be removed from L(v).

Proof After all time-arcs with time stamp t have been processed, Algorithm 1 only
considers time-arcs with time stamp t′ > t. In the generated graph G (Line 3), the algo-
rithm adds an arc from s to v ∈ Vt′ if a walk from s arrives in v within [t′ − β(v), t′].
If ai ∈[t′ − β(v), t′], then aj ∈[t′ − β(v), t′] because ai < aj < t′. Furthermore, let (opt, a)
be the optimal value and the arrival time of a walk from s to v that arrives within time
interval [t′ − β(v), t′] that minimizes

opt + δ7 · ind(v)(t′ − a + A(v)).

Then, the weight of the arc (s, v) is set to this value. Since ai < aj ∈[t′ − β(v), t′] and
optai + δ7 · ind(v) · (aj − ai) ≥ optaj , we know that

optaj + δ7 · ind(v)(t′ − aj + A(v)) ≤ optai + δ7 · ind(v)(t′ − ai + A(v)).

Hence, the tuple (optai , ai) is not needed in the list L(v) at time step t and can be removed.

If L(v) does not contain any redundant tuples, then it also holds that

opta1 + δ7 · ind(v) · (a2 − a1) < · · · < optak .

Hence, (a1, opta1) contains the optimal value and arrival time of a walk that arrives within
time interval [t − β(v), t] and minimizes opt + δ7 · ind(v)(t′ − a + A(v)). It follows that
finding opt = min{opta | (opta, a) ∈ L(v)} in Line 18 takes constant time. The deletion
of redundant tuples takes O(|E|) time during the whole run of Algorithm 1. With these
considerations at hand, we can derive the following lemma.

Lemma 2 Algorithm 1 runs in O(|V | + |E| log |E|) time.

Proof The initialization in Algorithm 1 can be done in O(|V |) time. Furthermore, the
time-arcs have to be sorted by time stamps which takesO(|E| log |E|) time. Then, for each
time step t ∈[T], Algorithm 1 generates in O(|Et| + |Vt|) time a static directed graph
G = (Vt ∪ {s},Et ∪ Er) with O(|Vt|) vertices and O(|Et| + |Vt|) arcs.
For each generated graph G, modDijkstra is executed in O(|Et| log |Et|) time. The

updates of opt and L afterwards run in O(|Vt|) time. Note that |Vt| is the number of

Bentert et al. Applied Network Science (2020) 5:73 Page 16 of 26

vertices that have at least one in-going or out-going time-arc at time step t. Consequently,
it holds that |Vt| ≤ 2|Et|.
Due to the sorting of L(v), maintaining these lists in Lines 15 and 7 takes O(|E|) time

during the whole run of the algorithm as shown Lemma 1. In the list L(v), we delete
at most as many elements as there are time-arcs in the temporal graph. Recall that if
(opta, a) ∈ L(v), then there exists a time-arc (w, v, a) ∈ E.
We can analyze the running time by

O
(|V | + |E| +

T∑

t=1
(|Et|) + (|Vt| log |Vt|)

)

= O
(|V | + |E| +

T∑

t=1
(|Et|) + (|Et| log |Et|)

)

= O
(|V | + |E| +

T∑

t=1
|Et| log |Et|

)

⊆ O
(|V | + |E| log |E|).

Hence, Algorithm 1 runs in O
(|V | + |E| log |E|) time.

Next, we show the correctness of Algorithm 1. We prove that for every time step t and
for every vertex v, Algorithm 1 computes an optimal walk from s to v that arrives at time
step t (if it exists).

Lemma 3 For a time step t ∈[T] and a vertex v ∈ V, Algorithm 1 computes the optimal
value of a temporal walk from s to v that arrives exactly in time step t.

Proof The proof is by induction on the time step t ∈ {1, . . . ,T}.
In the beginning, L(v) is empty. For t = 1, the algorithm generates a graph G = (V1 ∪

{s},E1). For all arcs (s,w) ∈ E1, the weights are set to

d1(s,w) := (δ2 + δ3) · (T − 1) + δ4 · cλ((v,w, 1)) + δ5 · c((v,w, 1)) + δ6;

for the other arcs (v,w) ∈ E1 the weights are set to

d1(v,w) = δ4 · cλ(v,w) + δ5 · c((v,w, 1)) + δ6.

Note that if there is an optimal temporal walk arriving in time step 1, then there also exists
an optimal temporal walk arriving at time step 1. Now if there is an optimal walk P =
((vi−1, vi, 1))ki=1 = (ei)ki=1 from s to a vertex v ∈ V that arrives exactly in time step 1, then
there exists a path P′ = ((vi−1, vi))ki=1 = (ai)ki=1 from s to v in G with value

k∑

i=1
dt(ai) = (δ2 + δ3) · (T − 1) +

k∑

i=1
δ4 · cλ(vi−1, vi) + δ5 · c(vi−1, vi) + δ6

= opt1(v).

Bentert et al. Applied Network Science (2020) 5:73 Page 17 of 26

Algorithm 1 finds in modDijkstra the path P′, adds (opt1(v), 1) to L(v) and sets

opt(v) := δ1 · 1 − δ2 · T + δ3 · (1 − T) + opt1(v)

= δ1 · 1 − δ2 · T + δ3 · (1 − T) + (δ2 + δ3) · (T − 1) +
k∑

i=1
δ4 · cλ(vi−1, vi)

+ δ5 · c(vi−1, vi) + δ6 · k

= δ1 · 1 − δ2 · 1 + δ3 · 0 + δ4 ·
k∑

i=1
cλ(ei)

+ δ5 ·
k∑

i=1
c(ei) + δ6 · k + δ7 ·

k−1∑

i=1
(ti+1 − ti + A(vi)) · ind(vi)

= linT(P).

Note that A(vi) = 0 for i ∈[k − 1] by Transformation 1 in time step 1. If there exists
an optimal path P∗ in G, then this directly translates to the existence of a temporal path
P′ that arrives also in time step 1 with a smaller optimal value than P, contradicting the
assumption that P is optimal.
Now, let us assume that for all time steps t′ ∈ {1, . . . , t} Algorithm 1 computed the

optimal value opt of a walk from s to v ∈ V that arrives exactly in time step t′ and added
(opt − δ1 · t′ + δ2 · T − δ3 · (t′ − T), t′) to L(v). If for time step t + 1 a vertex v ∈ V has
no in-going time-arc with time step t + 1, then there cannot exist a temporal walk from s
to v that arrives exactly in time step t + 1. Thus, only vertices in Vt+1 are candidates for a
temporal walk that arrives exactly in time step t + 1.
Let v ∈ Vt+1 be a vertex such that there is a temporal walk from s to v that arrives

exactly in time step t + 1. Let P = ((vi−1, vi, 1))ki=1 = (ei)ki=1 be an optimal walk from s to
v that arrives exactly in time step t + 1 with the optimal value

linT(P) = δ1 · t1 − δ2 · tk + δ3 · (tk − t1) + δ4 ·
k∑

i=1
cλ(ei)

+ δ5 ·
k∑

i=1
c(ei) + δ6 · k + δ7 ·

k−1∑

i=1
(ti+1 − ti + A(vi)) · ind(vi).

Assume towards a contradiction that Algorithm 1 does not find a walk from s to v with
optimal value linT(P).
First consider the case that ti = t + 1 for all i ∈[k], that is, all time-arcs of the temporal

walk P have time stamp t+1. Then, we can assume that P is a temporal path. Hence there
exists a path P′ = ((vi−1, vi))ki=1 = (ai)ki=1 from s to v in Gt+1 and therefore in G with
optimal value

k∑

i=1
dt(ai) = (δ2 + δ3) · (T − (t + 1)) +

k∑

i=1
δ4 · cλ(vi−1, vi) + δ5 · c(vi−1, vi) + δ6

= optt+1(v).

Bentert et al. Applied Network Science (2020) 5:73 Page 18 of 26

Algorithm 1 finds in modDijkstra the path P′, adds (optt+1(v), t + 1) to L(v), and
updates opt(v) to the minimum of opt(v) and

δ1 · (t + 1) − δ2 · T + δ3 · (t + 1 − T) + optt+1(v)

= δ1 · (t + 1) − δ2 · T + δ3 · (t + 1 − T) + (δ2 + δ3) · (T − (t + 1))

+
k∑

i=1
δ4 · cλ(vi−1, vi) + δ5 · c(vi−1, vi) + δ6 · k

= δ1 · t1 − δ2 · tk + δ3 · (tk − t1) + δ4 ·
k∑

i=1
cλ(ei)

+ δ5 ·
k∑

i=1
c(ei) + δ6 · k + δ7 ·

k−1∑

i=1
(ti+1 − ti + A(vi)) · ind(vi)

= linT(P).

Note again that A(vi) = 0 for i ∈[k − 1] if ti−1 = ti by Transformation 1. Hence, we
find a walk from s to v at time step t + 1 with optimal value linT(P), contradicting our
assumption.
Now assume for P that there exists an � ∈ {1, . . . , k − 1} such that for j ∈[�] it holds

that tj < t + 1 and for j′ ∈ {i + 1, . . . , k} it holds that tj′ = t + 1. The temporal walk
P� = ((vi−1, vi, ti))�i=1 = (ei)ki=1 is an optimal subwalk from s to v� that arrives exactly in
time step t�, otherwise P is not optimal because it could be improved by replacing P�. The
subwalk P� has an optimal value

linT(P�) = δ1 · t1 − δ2 · t� + δ3 · (t� − t1) + δ4 ·
k∑

i=1
cλ(ei)

+ δ5 ·
�∑

i=1
c(ei) + δ6 · k + δ7 ·

�−1∑

i=1
(ti+1 − ti + A(vi)) · ind(vi).

Then

optt� (v�) = optP�
− δ1 · t� + δ2 · T − δ3 · (t� − T)

= (δ2 + δ3) · (T − t�) + δ4 ·
�∑

i=1
cλ(ei)

+ δ5 ·
�∑

i=1
c(ei) + δ6 · k + δ7 ·

�−1∑

i=1
(ti+1 − ti + A(vi)) · ind(vi).

By our induction hypothesis, the tuple (optt� (v�), t�) was added to L(v�). If the
tuple (optt� (v�), t�) is not in L(v�) in time step t + 1, then due to Lemma 1 there must be
another tuple (optt̂(v�), t̂) in L(v�) with t� < t̂ < t + 1 < t� + β(v�) ≤ t̂ + β(v�) and

optt� (v�)+ δ7 · ind(v�)(t+1− t� +A(v�)) = optt̂(v�)+ δ7 · ind(v�)(t+1− t̂+A(v�)).

Otherwise P is not optimal because it could be improved by replacing P� by the temporal
walk represented by (optt̂(v�), t̂).
Now consider the generated graphG = (Vt+1∪{s},Et+1∪Er). The arc sequence Pt+1 =

((vi−1, vi))ki=�+1 = (ai)ki=�+1 is a path in Gt+1 = (Vt+1,Et+1) and, thus, contained in G.
The arc a� = (s, v�) is contained in Er with weight

dr(s, v�) = optt� (v�) + (t + 1 − t� + A(v�)) · ind(v�).

Bentert et al. Applied Network Science (2020) 5:73 Page 19 of 26

Thus, there is a walk from s to v in G and modDijkstra on G returns the vertex v
because ak ∈ Et+1 with the optimal value

dr(a�) +
k∑

i=�+1
dt(ai)

= optt� (vi) + ind(v�) · (t + 1 − t� + A(v�))

+
k∑

i=�+1
δ4 · cλ(vi−1, vi, t + 1) + δ5 · c(vi−1, vi, t + 1) + δ6

= (δ2 + δ3) · (T − t�) +
�∑

i=1

(
δ4 · cλ(ei) + δ5 · c(ei) + δ6

)

+ δ7 ·
�−1∑

i=1
ind(vi) · (ti+1 − ti + A(vi))

+ ind(v�) · (t + 1 − t� + A(v�))

+
k∑

i=�+1

(
δ4 · cλ(vi−1, vi) + δ5 · c(vi−1, vi) + δ6

)

= (δ2 + δ3) · (T − t�) + δ4 ·
k∑

i=1
cλ(ei)

+ δ5 ·
k∑

i=1
c(ei) + δ6 · k + δ7 ·

�∑

i=1
(ti+1 − ti + A(vi)) · ind(vi)

= (δ2 + δ3) · (T − t�) + δ4 ·
k∑

i=1
cλ(ei)

+ δ5 ·
k∑

i=1
c(ei) + δ6 · k + δ7 ·

k−1∑

i=1
(ti+1 − ti + A(vi)) · ind(vi)

= optt+1(v).

Note that by Transformation 1 A(vi) = 0 for i ∈[� + 1, k − 1] if ti−1 = ti. Consequently,
the tuple (optt+1(v), t+1) is added to L(v) and opt(v) is set to the minimum of its current
value and

δ1 · (t + 1) − δ2 · T + δ3(t + 1 − T) + optt+1(v)

= δ1 · (t + 1) − δ2 · T + δ3(t + 1 − T)

+ (δ2 + δ3) · (T − t1) + δ4 ·
k∑

i=1
cλ(ei)

+ δ5 ·
k∑

i=1
c(ei) + δ6 · k + δ7 ·

k−1∑

i=1
(ti+1 − ti + A(vi)) · ind(vi)

= δ · (t + 1) + δ2 · (tk) + δ3(t + 1 − t1) + δ4 ·
k∑

i=1
cλ(ei)

+ δ5 ·
k∑

i=1
c(ei) + δ6 · k + δ7 ·

k−1∑

i=1
(ti+1 − ti + A(vi)) · ind(vi)

= linT(P).

Bentert et al. Applied Network Science (2020) 5:73 Page 20 of 26

This is a contradiction to our assumption.
Lastly, observe that the algorithm only computes temporal walks that are contained

in G as it only uses arcs from Gt which all correspond to temporal walks in G (single arcs
or longer walks starting in s). Thus, for t ∈ {1, . . . ,T}, Algorithm 1 computes an optimal
temporal walk from s to v ∈ V that arrives exactly in time step t.

Based on this statement, we can finally prove the correctness of Algorithm 1. This
concludes the proof of Theorem 1.

Lemma 4 Algorithm 1 computes optimal walks from a given source vertex s to all
vertices.

Proof Let P = ((vi−1, vi, 1))ki=1 = (ei)ki=1 be a walk with minimum linT(P) among all
temporal walks from s to a vertex v. The walk P is also an optimal walk from s to v that
arrives exactly in time step tk . This is computed by Algorithm 1 in time step tk as shown
in Lemma 3.

Experimental results
We implemented Algorithm 1 and performed experimental studies including compar-
isons to existing state-of-the-art algorithms by Wu et al. (2016). Note that the algorithms
by Wu et al. (and our algorithm as well) are Dijkstra-like algorithms adjusted to the
specific temporal setting. A notable difference is that our algorithm stops the graph explo-
ration if no more vertex can be visited, whereas the algorithms by Wu et al. (2016) always
iterate over all time-arcs. We show that our algorithm—while being able to solve a more
general problem—can compete with these algorithms on real-world instances for the spe-
cial case of computing temporal walks with no maximum-waiting-time constraints. We
further examine the influence of different maximum-waiting-time values on the existence
and structure (e.g., the number of cycles) of optimal temporal walks and on the running
time of Algorithm 1.

Setup and statics

We implemented Algorithm 1 in C++ (v11) and performed our experiments on an Intel
Xeon E5-1620 c omputer with 64GB of RAM and four cores clocked at 3.6GHz each.
The operating system was Debian GNU/Linux 7.0 where we compiled the program with
GCC v7.3.0 on optimization level -O3. We compare Algorithm 1 to the algorithms of
Wu et al. (2016) using their C++ code and testing it on the same hardware and with the
same compiler. We tested our algorithm on the same freely available data sets as Wu et
al. (2016) from the well-established KONECT library (KONECT 2017). The graphs are
listed in Table 2 with some relevant statistics.
For each optimization criterion, each β ≡ c, c ∈ {1, 2, 4, 8, . . . , 2�logT�}, and each data

set, Algorithm 1 ran for 100 fixed source vertices of the data set chosen independently
and uniformly at random. Our open source code is freely available at https://fpt.akt.tu-
berlin.de/temporalwalks.

Findings

In the following, we first compare Algorithm 1 to the algorithm by Wu et al. (2016) in
terms of running times in our experiments. In the second part, we analyze the effects of
different maximum-waiting-time values β on Algorithm 1.

https://fpt.akt.tu-berlin.de/temporalwalks
https://fpt.akt.tu-berlin.de/temporalwalks

Bentert et al. Applied Network Science (2020) 5:73 Page 21 of 26

Table 2 Statistics for the real-world data sets used in our experiments (same freely available data sets
as used by Wu et al. (2016), taken from the KONECT library (KONECT 2017)). The column “T ” shows
the lifetime of the temporal graph (after factoring out the precision in which time-arcs are measured)
and the column “τ ” shows the number of time steps of the graph for which there exists at least one
time-arc

File |V| |E| T τ

elec 7,118 1 · 105 1.19 · 108 1 · 105
facebook-wosn-links 63,731 8.2 · 105 1.23 · 109 7.4 · 105
epinions 1.3 · 105 8.4 · 105 8.16 · 107 939

enron 87,273 1.1 · 106 1.4 · 109 2.1 · 105
digg-friends 2.8 · 105 1.7 · 106 1.25 · 109 82,641

ca-cit-HepPh 28,093 4.6 · 106 3.15 · 108 2,337

youtube-u-growth 3.2 · 106 9.4 · 106 1.94 · 107 203

dblp-coauthor 1.3 · 106 1.8 · 107 2.4 · 109 70

flickr-growth 2.3 · 106 3.3 · 107 1.7 · 107 134

wikipedia-growth 1.9 · 106 4 · 107 1.93 · 108 2,198

Comparison

When comparing with the algorithms by Wu et al. (2016), we only use the runs with no
maximum-waiting-time constraints (β ≡ T) and we tested all algorithms on the same set
of randomly chosen starting vertices. In the experiments, we could only measure a very
small effect of the optimization criteria on the running time. This even holds for linear
combinations. The only exception was the computation of foremost which was a bit faster
in comparison to the computation of the other criteria. For this reason we only include
two examples here. We chose foremost and shortest as these are the two criteria where
Algorithm 1 performed the best and the worst compared to the algorithms by Wu et al.
(2016), respectively. The respective findings are illustrated in the box plots in Fig. 3.
As one can observe in Fig. 3, Algorithm 1 has a larger variance and, therefore, is more

dependent on the choice of starting vertices. The reason is that even for β ≡ T , that
is, no maximum waiting time constraints, not all vertices can reach all other vertices by
temporal walks in the considered graphs: Algorithm 1 only considers arcs that start in
vertices that were already visited and, hence, if many verices are not reached then the
algorithm stops. In contrast, the algorithm byWu et al. (2016) always considers the whole
sorted time-arc list and, therefore, has almost no variance in the running time.
The high variance is also the reason why our algorithm has a higher average running

time but a comparable median running time: On average, the algorithm by Wu et al.
(2016) is 16.4 times faster for computing the foremost walk and 7.6 times slower for short-
est walks. Considering the median running times, however, our algorithm is 5.8 times
faster for the foremost walk but the algorithm by Wu et al. (2016) is 1.2 times faster for
shortest walks. The higher average running time is a clear weakness of our algorithm. We
believe, however, that the algorithm is still a valuable contribution as it solves more gen-
eral problems: it can easily combine multiple optimization criteria and it can cope with
maximum waiting times and instantaneous arcs, that is, arcs with λ = 0.
When looking at the time to read the data we can observe that our algorithm takes

roughly twice to thrice the time for preprocessing compared to the algorithms by Wu et
al. This is due to the fact that for each arc in the input graph Transformation 1 constructs
a new vertex and a new arc and so the resulting graph is almost thrice the size. The time
to read in the data is much larger than the time of the actual algorithm and so Algorithm 1

Bentert et al. Applied Network Science (2020) 5:73 Page 22 of 26

Fig. 3 Running time comparison for computing foremost and shortest walks. For each graph there are four
box plots. From left to right these correspond to the following algorithms: foremost of Wu et al. (black), our
foremost (red), shortest of Wu et al. (blue), our shortest (green). The boxes represent the 25% to 75% percentile
of running times over the 100 runs for different sources on the respective temporal graph and the line within
the boxes illustrates the 50% percentile (the median). The whiskers on the top and the bottom represent the
best and worst running times, respectively. We only depict the running times of the algorithms after the data
has been read in and was preprocessed by Transformation 1. The two plots with the crosses show the
running times of reading in the input and preprocessing it

takes roughly thrice the time of the algorithms byWu et al. (2016) if preprocessing is taken
into account.
Finally, we compared the running time of Algorithm 1 with a single optimization cri-

terion against the same algorithm with a linear combination of all criteria considered.
Figure 4 displays the average and median running time for β ≡ T on all considered data
sets.
As expected, the linear combination of optimization criteria does not change the

running time compared to a single criterion.

Effect of differentmaximumwaiting-time values β

We next analyze the impact that the maximum-waiting-time constraint β has on Algo-
rithm 1. Decreasing β can have two different effects: First, it can make temporal walks
invalid as the maximum allowed waiting time in a vertex is exceeded. Thus, with small β-
values certain vertices can only reach few vertices by temporal walks. The second effect
is that a temporal walk is invalidated but can be fixed by a detour that starts and ends in
the vertex in which the maximal waiting time was exceeded.
We first investigate the second effect. To this end, we partition the optimization crite-

ria into two categories: The first category contains all optimization criteria for which a
detour has no negative effect on the solution. These are foremost, reverse-foremost, fastest,
and minimum waiting time. Since the solution for, e. g., fastest is only depending on the
first and last time-arc of the temporal walk, adding a cycle somewhere in between does
not change the solution.Minimum waiting time plays a special role here as this value can
decrease when adding intermediate cycles. The second category contains all other opti-
mization criteria, that is, those for which a detour has a negative effect on the solution.

Bentert et al. Applied Network Science (2020) 5:73 Page 23 of 26

Fig. 4 Running time comparison for computing optimal walks with respect to a linear combination
(δ1 = δ2 = . . . = δ7 = 1) of different optimization criteria (black) and with respect to cheapest walks (red)
for β ≡ T . Note that the red and black line are on top of each other and hence almost indistinguishable. The
(upper) lines with crosses illustrate the average running time and the (lower) lines with boxes show the
median running time

These areminimum hop count, cheapest, and shortest. Since we could not measure signif-
icant differences for the different optimization criteria within a category, we only display
one figure for each category in Fig. 5.2

We remark that in the first category we implemented the algorithm such that irrelevant
cycles (cycles which do not change the optimality value) are kept in the solution. Hence
Fig. 5 (top left plot) displays values close to the upper bound on the number of cycles in
an optimal solution.
Figure 5 (two bottom plots) show that the different categories behave very similarly

when it comes to the running-time dependence on the value of β . It seems to be more
likely that the first effect we described in the beginning of this subsection (that decreas-
ing β-values can make temporal walks invalid as the maximum allowed waiting time
in a vertex is exceeded) is more important for explaining the running times. With very
small β-values, a vertex can only reach few other vertices and hence only few time-arcs
are considered by Algorithm 1. With increasing β-values, there seems to be a critical
value (around 0.1% − 10% of the lifetime of the temporal graph) where suddenly much
more connections appear and hence the running time increases drastically. This observa-
tion is affirmed by Fig. 6, which shows that (almost) independently of the input graph, the
running time is linearly depending on the number of vertices that are visited.
We believe that the difference for small β-values comes from the initialization which is

again more depending on the input graph compared to the algorithms by Wu et al. This
would explain, why our algorithms have a higher running time variance.

Conclusion
Building on and widening previous work ofWu et al. (2016), we provided a theoretical and
experimental study of computing optimal temporal walks under waiting-time constraints.

2We omitted the data sets facebook-wosn-links, flickr-growth, ca-cit-HepPh, and youtube-u-growth in Fig. 5 to keep the
figure clear. There is no information gain in displaying these data sets.

Bentert et al. Applied Network Science (2020) 5:73 Page 24 of 26

Fig. 5 Impact of different β-values on the number of cycles, the running time, and the number of vertices
that can be reached by temporal walks from the chosen starting vertices. Each data point represents 100 runs
for a specific β-value for randomly selected starting vertices in the same graph (the same vertices where used
for all β-values). The symbol of the data point represents the input graph, the color represents the average
number of visited vertices, and the x-coordinate represents the chosen β-value (for the sake of comparability
in terms of β-value divided by the graphs lifetime). The y-coordinate represents in the two upper plots the
average number of cycles in optimal walks to all reached vertices and in the bottom two plots the average
running time for each source vertex. A line connects all data points that use the same graph. The two plots on
the left side show results for foremost walks and the two plots on the right side show results for cheapest walks

The performed experiments indicate the practical relevance of our approach. As to future
challenges, recall that moving from walks to paths would yield NP-hard optimization
problems (Casteigts et al. 2015). Hence, for the path scenario the study of approximation,
fixed-parameter, or heuristic algorithms is a natural next step. For the scenario considered
in this work, note that we did not study the natural extension to Pareto-optimal walks
(under several optimization criteria). Moreover, for (temporal) network centrality mea-
sures based on shortest paths and walks, counting or even listing all optimal temporal
walks or paths would be of interest. First results in this direction indicate that for several

Bentert et al. Applied Network Science (2020) 5:73 Page 25 of 26

Fig. 6 Average number of visited vertices and its influence on the average running time for foremost. Each
data point represents 100 runs of our algorithm for foremost for one of the considered graphs for a
specific β-value. The x-coordinate represents the average number of visited vertices and the y-coordinate
indicates the average running time

optimization criteria counting temporal paths is computationally hard even without wait-
ing time constraints; in contrast, counting temporal walks seems easier (Rad et al. 2017;
Buß et al. 2020).

Acknowledgements
We thank Lilian Jacobs (TU Berlin) for her programming work helping to enable our experimental studies and the
anonymous reviewers of COMPLEX NETWORKS 2019 and Applied Network Science for their constructive feedback.

Authors’ contributions
Parts of this work originated from the master thesis of ASH. Overall, all authors have contributed equally to the paper. All
authors read and approved the final manuscript.

Funding
ASH was supported by the DFG, project FPTinP (NI 369/16). Open access funding provided by Projekt DEAL.

Availability of data andmaterials
The data sets used and analyzed during the current study are available in the KONECT library, http://konect.cc/networks/
(KONECT 2017). The open source code of the algorithm is freely available at https://fpt.akt.tu-berlin.de/temporalwalks.

Competing interests
The authors declare that they have no competing interests.

Received: 10 March 2020 Accepted: 24 August 2020

References
Ahuja RK, Magnanti TL, Orlin JB (1993) Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle

River
Axiotis K, Fotakis D (2016) On the size and the approximability of minimum temporally connected subgraphs. In:

Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP ’16). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Saarbrücken. pp 149–114914

Barabási A-L (2016) Network Science. Cambridge University Press, Cambridge
Bast H, Delling D, Goldberg A, Müller-Hannemann M, Pajor T, Sanders P, Wagner D, Werneck RF (2016) Route planning in

transportation networks. In: Algorithm Engineering - Selected Results and Surveys. Lecture Notes in Computer
Science. Springer Vol. 9220. pp 19–80

Buß S, Molter H, Niedermeier R, Rymar M (2020) Algorithmic aspects of temporal betweenness. In: Proceedings of the
26th SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’20). ACM. pp 2084–2092

Casteigts A, Flocchini P, Godard E, Santoro N, Yamashita M (2015) On the expressivity of time-varying graphs. Theor
Comput Sci 590:27–37

http://konect.cc/networks/
https://fpt.akt.tu-berlin.de/temporalwalks

Bentert et al. Applied Network Science (2020) 5:73 Page 26 of 26

Casteigts A, Flocchini P, Quattrociocchi W, Santoro N (2012) Time-varying graphs and dynamic networks. Int J Parallel
Emergent Distrib Syst 27(5):387–408

Casteigts A, Himmel A-S, Molter H, Zschoche P (2019) The computational complexity of finding temporal paths under
waiting time constraints. arXiv preprint arXiv:1909.06437. To appear at ISAAC ’20

Dean BC (2004) Algorithms for minimum-cost paths in time-dependent networks with waiting policies. Networks
44:41–46

Fluschnik T, Molter H, Niedermeier R, Renken M, Zschoche P (2020) Temporal graph classes: A view through temporal
separators. Theor Comput Sci 806:197–218

Fluschnik T, Niedermeier R, Schubert C, Zschoche P (2020) Multistage s-t path: Confronting similarity with dissimilarity.
arXiv preprint arXiv:2002.07569. To appear at ISAAC ’20

Himmel A, Bentert M, Nichterlein A, Niedermeier R (2019) Efficient computation of optimal temporal walks under waiting-
time constraints. In: Proceedings of the 8th International Conference on Complex Networks and Their Applications
(COMPLEX NETWORKS ’19). Studies in Computational Intelligence. Springer, New York. Vol. 882. pp 494–506

Holme P (2015) Modern temporal network theory: a colloquium. Eur Phys J B 88(9):234
Holme P (2016) Temporal network structures controlling disease spreading. Phys Rev E 94(2):022305
Holme P, Saramäki J (2012) Temporal networks. Physics Reports 519(3):97–125
Holme P, Saramäki J (2013) Temporal networks as a modeling framework. In: Holme P, Saramäki J (eds). Temporal

Networks. Springer, New York. pp 1–14
Holme P, Saramäki J (2019) Temporal Network Theory. Springer, New York
Kempe D, Kleinberg J, Kumar A (2002) Connectivity and inference problems for temporal networks. J Comput Syst Sci

64(4):820–842
Kim H, Anderson R (2012) Temporal node centrality in complex networks. Phys Rev E 85(2):026107
Kivelä M, Cambe J, Saramäki J, Karsai M (2018) Mapping temporal-network percolation to weighted, static event graphs.

Sci Rep 8(1):12357
KONECT (2017) DNC emails network dataset. Inst Web Sci Technol. http://konect.uni-koblenz.de/networks/dnc-

temporalGraph. Accessed 2017
Lightenberg W, Pei Y, Fletcher G, Pechenizkiy M (2018) Tink: A temporal graph analytics library for Apache Flink. In: Proc.

of WWW ’18. ACM, New York. pp 71–72
Masuda N, Holme P (2013) Predicting and controlling infectious disease epidemics using temporal networks. F1000prime

Rep 5
Mertzios GB, Michail O, Spirakis PG (2019) Temporal network optimization subject to connectivity constraints.

Algorithmica 81(4):1416–1449
Modiri AB, Karsai M, Kivelä M (2019) Efficient limited time reachability estimation in temporal networks. arXiv preprint

arXiv:1908.11831
Newman MEJ (2018) Networks. Oxford University Press, Oxford
Nicosia V, Tang J, Mascolo C, Musolesi M, Russo G, Latora V (2013) Graph metrics for temporal networks. In: Temporal

Networks. Springer, New York. pp 15–40
Nicosia V, Tang J, Musolesi M, Russo G, Mascolo C, Latora V (2012) Components in time-varying graphs. Chaos Interdisc J

Nonlinear Sci 22(2):023101
Pan RK, Saramäki J (2011) Path lengths, correlations, and centrality in temporal networks. Phys Rev E 84(1):016105
Rad AA, Flocchini P, Gaudet J (2017) Computation and analysis of temporal betweenness in a knowledge mobilization

network. Comput Soc Netw 4(1):5
Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, Jones JH (2010) A high-resolution human contact network for

infectious disease transmission. Proc Natl Acad Sci 107(51):22020–22025
Santoro N, Quattrociocchi W, Flocchini P, Casteigts A, Amblard F (2011) Time-varying graphs and social network analysis:

Temporal indicators and metrics
Wu H, Cheng J, Ke Y, Huang S, Huang Y, Wu H (2016) Efficient algorithms for temporal path computation. IEEE Trans

Knowl Data Eng 28(11):2927–2942
Xuan BB, Ferreira A, Jarry A (2003) Computing shortest, fastest, and foremost journeys in dynamic networks. Int J Found

Comput Sci 14(02):267–285
Zschoche P, Fluschnik T, Molter H, Niedermeier R (2020) The complexity of finding small separators in temporal graphs. J

Comput Syst Sci 107:72–92

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://konect.uni-koblenz.de/networks/dnc-temporalGraph
http://konect.uni-koblenz.de/networks/dnc-temporalGraph

	Abstract
	Keywords

	Introduction
	Related Work.
	Our Contributions.
	Organization of the Paper.

	Modeling of optimal temporal walks
	Disease Spreading Motivating Example.
	Temporal Graphs.
	Temporal Walks & Optimal Temporal Walks.

	Formal definitions
	Temporal Graphs.
	Temporal Walk.
	Optimal Temporal Walk.

	Transformation
	Algorithm
	Algorithm Details.

	Experimental results
	Setup and statics
	Findings
	Comparison
	Effect of different maximum waiting-time values

	Conclusion
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

