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Zusammenfassung

Vor kurzem hat der radioaktive PET-Tracer [18F]NaF aus der Knochenbildgebung eine Anwendung

im Herzen gefunden: er verzeichnet Aufnahme in vulnerablen atherosklerotischen Plaques, die mit

hoher Wahrscheinlichkeit abreißen und potenziell einen Herzinfarkt verursachen. Die PET-Aufnahme

für [18F]NaF -Scans der Koronararterien benötigen jedoch eine halbe Stunde oder länger, weshalb

Herz- und Atembewegung die PET-Bildqualität verschlechtern können. Zu den auftretenden Bewe-

gungsartefakten gehören eine Unschärfe in der Darstellung des Tracer sowie ein fehlerhafter Überlapp

von PET-Daten und der Schwächungskarte. Herkömmliche Ansätze zur Bewegunsunterdrückung, wie

beispielsweise das Gating, sind auf eine hohe Zählrate in den aufgenommenen PET-Daten oder eine

starke lokale Ansammlung von PET-Tracer im Plaque angewiesen. In den Koronararterien sind diese

jedoch klein. Daher werden neue Bewegungskorrekturverfahren benötigt, die alle aufgenommenen

Daten nutzen können und diese in einen Zustand ohne Bewegung zurückversetzen.

Eine geeignete Modalität für die Umsetzung solcher Techniken ist PET/MR, ein Hybrid welcher

die gleichzeitige Aufnahme schneller und hochaufgelöster anatomischer Bildgebung von MR und der

komplementären Informationen über Stoffwechselprozesse durch PET ermöglicht. Das übergeordnete

Ziel dieser Arbeit war die Verbesserung der Darstellung und Quantifizierung von Plaques in den Ko-

ronararterien durch eine MR-basierte Korrektur der Herz-Atembewegung in simultan aufgenommenen

[18F]NaF -PET/MR Daten. Dazu wurde eine MR-Sequenz zur Darstellung von Wasser- und Fettgewebe

modifiziert, um den k-Raum entlang einer neuen Trajektorie abzutasten, welche besser für die

bewegungsaufgelöste Bildgebung geeignet ist. Bewegungskorrektur wurde in eine hochauflösende 3D-

Modell-basierte Fett-Wasser MR-Rekonstruktion integriert. Zudem wurde eine Simulationsumgebung

für dynamische PET/MR-Daten mit “Ground-Truth” Informationen entwickelt. Diese wurde genutzt,

um die Genauigkeit von synergistischen Bildregistrierung zu messen, welche zur Erstellung von Herz-

Atmungsbewegungs-Modellen eingesetzt wurde.

Die entwickelten Methoden wurden zunächst in einer eigenständigen Herz-MR-Anwendung validiert

und verbesserten die lokale Schärfe von 3D epikardialen Fettstrukturen durch Bewegungskorrektur

um 40 %. Daraufhin wurden die entwickelten Techniken auf [18F]NaF PET/MR Patienten mit

koronarer Herzkrankheit angewandt. Bei den detektierten koronaren [18F]NaF -positiven Plaques der

Patienten führte die Anwendung der Herz-Atembeweguns-Korrektur zu einer Erhöhung des Signal-zu-

Hintergrund Verhältnisses um bis zu 14 % und zu einer durchschnittlichen Reduktion der Plaqueweite

um 23 %. Zudem konnten Artefakte aufgrund von fehlerhafter Schwächungskorrektur verringert werden.

Die im Rahmen dieser Arbeit entwickelten Techniken könnten ein Schritt zu einer zuverlässigeren

und reproduzierbareren Bildgebung von Hochrisiko-Plaques in den Koronararterien mittels [18F]NaF

-PET/MR sein. Sie können einen Beitrag für eine verbesserte Diagnose und Therapiekontrolle liefern,

und die individuelle Behandlung von Plaques ermöglichen.





Abstract

Recently, the radioactive PET tracer[18F]NaF previously used in skeletal imaging found a

cardiac application: it shows uptake in vulnerable high-risk atherosclerotic plaques likely to

rupture and cause myocardial infarction. Subsequent studies revealed that coronary [18F]NaF

uptake provides a powerful predictor of myocardial infarction fatality in patients with coronary

artery disease. PET acquisition times for [18F]NaF scans of the coronary arteries, however,

are of the order of half an hour and therefore cardiac and respiratory motion can strongly

affect the PET image quality. These motion artefacts include blurring of the uptake, as well

as misalignment of PET emission data and attenuation correction map. Motion compensation

approaches such as motion-gating are limited to plaques with large uptakes as they rely on a

high number of PET counts in the gated data - however, the uptakes in the coronary arteries

are small. New approaches are needed to make use of all acquired data and motion-correct

them to the right anatomical location while mitigating the artefacts.

A suitable candidate for the implementation of such techniques is PET/MR, a hybrid modality

allowing the simultaneous acquisition of the fast, high-resolution anatomical images of MR

and the complementary, metabolic information of PET. The overall aim of this thesis was

to use MR-based, cardio-respiratory motion correction to improve the visualisation and

quantification of coronary plaques imaged with simultaneous [18F]NaF PET/MR. To enhance

the quality of the motion-models, a 3D fat-water separation sequence was extended to sample

k-space along a novel trajectory that is better suited for cardiac and respiratory resolved

imaging. Motion-correction was incorporated into a high-resolution 3D model-based fat-water

separated MR reconstruction. Furthermore, a simulation framework for dynamic PET/MR

data with motion ground truth information was developed. It was used to assess the accuracy

of synergistic image registration that were employed to generate cardiac and respiratory

motion models.

The developed techniques were first validated in a stand-alone cardiac MR application where

they could improve the local sharpness of 3D epicardial fat structures in patients by 40 % using

motion correction. Afterwards, they were applied to [18F]NaF PET/MR patients suffering

from atherosclerosis. In the detected coronary [18F]NaF -positive lesions in patients, the use

of cardio-respiratory motion correction yielded an increase in target-to-background ratio of

up to 14 % and an average reduction of plaque width of 23 %. Furthermore, artefacts due

to attenuation misalignment could be mitigated. The techniques developed in the scope of

this thesis could be a step towards more reliable and more reproducible imaging of high-risk

coronary plaques using [18F]NaF PET/MR. They can contribute to an improved diagnostic

quality of coronary artery disease and allow for its patient-specific treatment.
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1
Introduction

In the modern world with its ageing population, cardiovascular disease (CVD) is the leading

cause of death worldwide[1–3]. While there are preventive measures both at the population

and the individual level to reduce the prevalence of the disease, (e.g. through sufficient physical

activity or a healthy diet) [4] ischaemic heart disease and stroke combined are still responsible

for over 15 million deaths in 2016 [5].

Ultimately, the disease leads to an occlusion of parts of the vascular system restricting blood

supply to regions of the brain causing a stroke, or the heart leading to acute coronary syndrome

and likely myocardial infarction (MI). Also in Germany, despite a long-term positive trend

reducing the number of deaths associated with cardiac ischaemic disease by 40 % since 1990

[6] coronary artery disease (CAD) remains the most lethal disease. With a predicted increase

of CVD prevalence, this indicates that ever-improving technologies are required for an earlier

diagnosis and treatment of the underlying pathological processes.

The pathological condition underlying CVD is atherosclerosis [7, 8]. Fatty deposits, so-called

atheroma or plaques, form on the interior walls of the arterial vascular tree, in particular

in the coronary system. Over years and decades, in an inflammatory process, they develop

fibrous structures and necrotic cores, which can calcify leading to ossification of part of the

atheroma. The final stage of atherosclerosis is that a thin fibrous cap on the surface of these

plaques ruptures and a thrombus occurs inside the vessel, often with fatal consequences.

Imaging plaques in the vascular system of the heart demands a high spatial resolution

as the coronary arteries are at most a few millimetres in diameter. Intravascular optical

coherence tomography (OCT) can detect individual coronary plaque substructures and

identify vulnerable, thin fibrous caps and necrotic plaque cores but the procedure is highly

invasive. There are also other, non-invasive tomographic modalities available to image

atherosclerosis and its effects. Cardiac x-ray computed tomography (CT) can spatially resolve

coronary arteries and show calcification of the vessel, assigning the so-called calcium score.

Also with cardiac magnetic resonance imaging (MRI), angiographies can be performed that

yield sub-millimetre resolution images of the coronary arteries [9]. However, in standard

qualitative MRI, plaques are visualised as a narrowing of the vessel with no information
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on its substructure, and novel contrast agents for plaque classification [10] are still in a

research phase. Cardiac positron emission tomography (PET) on the other hand can provide

information on plaque metabolism and hence potentially plaque composition. While [18F]-

fluorodeoxyglucose (FDG) is used in clinical routine to image MI using perfusion it could in

principle be employed to image its uptake in plaques due to inflammation. However, FDG

is not used in clinical routine, because the large tracer uptake in the adjacent myocardium

usually completely obscures any uptake in the vessel wall[11].

Recently, the radiotracer [18F]sodium fluoride ([18F]NaF ) usually used for skeletal imaging

or to detect osseous prostate cancer metastasis imaging [12] has found novel applications in

vascular PET imaging. It could be shown in a first study using [18F]NaF sequential hybrid

positron emission and x-ray computed tomography (PET/CT) that the tracer uptake was

significantly higher in coronary plaques meeting the risk criteria for vulnerability compared to

non-vulnerable plaques [13]. It was also found that ruptured, culprit plaques in patients with

MI showed the highest uptake compared to the non-culprit plaques. Furthermore, a recent

study has shown a high prognostic value [14] in predicting a fatal outcome of MI. Hence,

despite that the underlying physiological processes are not entirely understood, [18F]NaF

-PET offers the first possibility to non-invasively identify high-risk coronary plaques. Its

precise uptake quantification could lead to a more patient, and plaque-specific treatment of

CAD.

Yet, a reliable and reproducible quantification is still challenging as coronary [18F]NaF uptakes

are small and at the limit of the spatial resolution of PET imaging systems. Additionally, as

the PET data acquisition process is in the order of 30 minutes physiological motion of the

coronaries due to respiration and the heartbeat impairs the quality of the resulting images.

Motion does not only introduce blurring into the PET images, it can also compromise

an accurate attenuation correction (AC) for coronary arteries and hence lead to erroneous

quantification. As the vessels run close to the interfaces between cardiac, fat and lung tissue

they are vulnerable to a motion-induced emission-attenuation-data mismatch [15].

The modality simultaneous hybrid positron emission and magnetic resonance tomography

(PET/MR) [16, 17] has the potential to address these challenges. It allows the simultaneous

data acquisition of both modalities which is not possible for other, sequential hybrids such

as PET/CT. Hence, the complementary information provided by magnetic resonance (MR)

is not limited to serve merely as an anatomical reference of the uptake but can be used to

improve the PET image quality. MRI provides high-resolution 3D anatomical information

with flexible soft-tissue contrast, while also the ability to measure cardiac and respiratory

motion. These can be utilised to create a patient-specific model of cardio-respiratory motion,

and a high-resolution, tissue-detailed, and motion-synchronised attenuation map.

Eventually, this synergy could enable the PET/MR modality to generate fully-motion

corrected, 3D high-resolution maps of high-risk coronary plaques in PET images, supported

by matching MRI anatomical information from one non-invasive data acquisition.
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Scope of the Thesis

This thesis aims to develop cardiac and respiratory non-rigid motion correction for uptakes

in the coronary system measured with simultaneous [18F]NaF PET/MR. The individual

components dedicated and required to yielding a high-quality PET/MR motion correction

are:

Numerical PET/MR Simulation Image registration-based motion models generated

from patient data suffer from the unavailability of ground truth motion information and

their precision can not be evaluated. Hence, a numerical simulation of simultaneous

PET/MR with available ground-truth motion information is required to serve as a

testing ground for the generation of motion-models on which their accuracy could be

assessed. Furthermore, it would allow optimising image registration hyperparameters

on a simulated dataset and transfer them onto patient data to achieve an optimal

motion model in-vivo.

Fat-Water Separated MRI A high-resolution MRI acquisition as a source for both motion

and attenuation information is required. A fat-water separated imaging approach unifies

multiple advantages: the additional positive fat contrast could be beneficial to the

motion-estimation, while at the same time providing a detailed MR-derived AC.

[18F]NaF PET motion correction (MoCo) Finally, simultaneous [18F]NaF PET/MR

patient data needs to be acquired. To assess the effect of cardio-respiratory motion

correction on [18F]NaF uptake strength and localisation the acquired data need to be

reconstructed in a motion-corrected image reconstruction (MCIR). Motion and AC can

be derived from the MRI, while the PET MCIR should include motion-modelling for

both AC and emission data to address both sources of motion-induced artefacts.

Thesis Outline

The following chapters address the components and challenges listed above and discuss

developments concerning the state of the art:

Chapter 2 The physiological cause of atherosclerosis and its inherent risks are briefly

introduced. Afterwards, an overview of the research on imaging atherosclerosis using

[18F]NaF PET is given. The chapter is completed by discussing cardiac magnetic

resonance (cMR) imaging techniques for depicting fat and water and advances in motion-

corrected PET/MR imaging.

Chapter 3 The development, implementation and application of a numerical simulation

framework for dynamic PET/MR data are presented. The framework is designed

to simulate a simultaneous PET/MR examination with the ground-truth motion

information readily available. The input and output are based on existing patient

raw data, such that the simulations integrate seamlessly into existing reconstruction

pipelines. The framework is tested in a series of PET and MR applications including

the evaluation of the accuracy of synergistic registration algorithms. This chapter has

been published in parts as [J1] and [J4] and were accepted for publication [J3].
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Chapter 4 In this chapter a free-breathing, 3D fat-water separated acquisition-

reconstruction framework for cardiac MR is developed. It is aimed at providing a

comprehensive MR examination dedicated to image small structures in the heart, while

simultaneously being able to supply anatomic and motion information as well as serve

as a basis for PET attenuation correction. As a first step, a novel phase-encoding

pattern for a 3D radial phase-encoding (RPE) trajectory is presented. Subsequently, a

model-based reconstruction combining fat-water separation and motion correction as

well as compressed sensing is developed. A synergistic PET/MR image registration

algorithm is applied to fat-water separated MR reconstructions to generate motion

models for the respiratory and cardiac motion of the heart. The numerical simulation

framework introduced in the previous chapter is applied to assess the accuracy of the

motion models.

Chapter 5 The methods outlined in chapter 4 are validated for cardiac adipose tissue

imaging. The fat-water separated reconstruction is first validated against images

acquired in a clinical routine protocol. Afterwards, data from nine patients are

evaluated concerning the quality of motion-resolved and motion-corrected images. A

local sharpness metric is used to quantify the improvement of the sharpness of fat

structures in the heart. Finally, possibilities to accelerate the acquisition process are

discussed.

Chapter 6 This chapter describes the application of the methods developed in the scope of

this thesis to simultaneous [18F]NaF PET/MR data acquired in ten patients. The fat-

water separated image reconstruction is applied to simultaneous PET/MR data. The

generated motion models are used to correct respiratory and cardiac motion for the

fat-water separated MR data. This minimises motion artefacts and provides a high-

resolution 3D image of the patients’ anatomy. These fully motion-corrected images are

segmented into an attenuation map for the PET reconstruction. At the same time, the

motion models are utilised in the PET image reconstruction to also minimise cardiac and

respiratory motion artefacts. The effect of motion correction on focal hotspots in the

coronary arteries in the motion-corrected PET reconstructions is assessed quantitatively.

Parts of this chapter were published as [J2].

Chapter 7 A summary of the challenges faced and the associated solutions developed in the

scope of this thesis is given. The results are discussed concerning state-of-art limitations

and potential further developments. A short outlook for future publications is given.
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Background

This chapter gives an overview of atherosclerosis as well as of previous studies of atherosclerosis

imaging using [18F]NaF PET. Subsequently, pathologies associated with myocardial fat

infiltration are discussed and fat imaging using MR is introduced to the reader. The chapter is

completed by an overview of current motion compensation methods and image reconstruction

techniques employed in clinical routine cMR and cardiac PET/MR as well as state of the art

developments. The following sections are based on [8], [18] and [19].

2.1 Atherosclerosis

Plaque Progression

Atherosclerosis is a multifactorial disease which is responsible for most deaths worldwide [20].

While the exact causal mechanisms of plaque development are not understood, an increase

of low-density lipoproteins in the blood can already lead to the development of clinically

relevant atheroma, commonly referred to as plaques. However, multiple risk factors such as a

poor diet, smoking and a genetic predisposition can increase the risk of disease development

[21] as they affect the interaction between aterial wall and proteins. Plaques initially form in

reproducible positions in the arterial vascular system that are related to shear stress generated

by blood flow [22]. These include in particular the bifurcations of the coronary arteries and

the carotids. With time, however, the disease spreads to adjacent sites as well. In elderly

patients most of the coronary tree can eventually be affected. The different stages of plaque

formation are depicted schematically in Fig. 2.1. This disease progression usually stretches

over several decades. Plaque formation is initiated when lipoproteins bind to the intimal

vessel cells and cause a reaction of the immune system leading to inflammation. The inflamed

sites will subsequently form foam cells from present macrophages which serve as deposits for

the lipids. Until this point, the disease is still reversible if the stimuli causing them disappear,

e.g. through a diet change. However, a formation of a necrotic core leads to the formation of

a fibroatheroma which is not reversible anymore. Apoptosis inside the plaque and additional

necrosis of foam cells and smooth muscle cells in the vessel wall can lead to the development of
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a necrotic core and potential non-functioning removal of apoptotic cells accelerates its growth.

The plaque content will become more and more fibrotic, in particular, the boundary with the

lumen forms a potentially unstable fibrotic cap over the plaque interior. In the last stages

of plaque development, calcification can set in that can cover the whole necrotic core. A

progressive occlusion of the vessel will eventually lead to stenosis.

Figure 2.1: Atherosclerotic disease progression. Starting from a healthy vessel foam cells
and lipid pools accumulate leading to a pathological intimal thickening. After a fibroatheroma
is created the process is no longer reversible. Apoptosis creates a necrotic core and angiogenesis
leads to intra-plaque haemorrhage. The thin fibrous cap makes the structure unstable. After a
calcification of the necrotic core, a fibrocalcific plaque is created. Figure based on [8], Figure 1.
This figure was created using graphics from [23].

A more dangerous event is so-called plaque rupture. It occurs if the fibrous cap is

damaged. This is depicted schematically in Fig. 2.2. The contents of fibroatheromas are

highly thrombogenic such that when they spill into the lumen a clot forms. This thrombus

can be transported to a more narrow part of the vessel tree where it can cause a stroke or MI

with often fatal consequences.
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Fibroatheroma

Figure 2.2: Plaque rupture. Left: plaque prone to rupture with thin fibrous cap, necrotic
core intra-plaque haemorrhage and calcifications. Middle: the fibrous cap ruptures and the
thrombogenic plaque core accesses the lumen. Right: healed plaque leading to stenosis. Figure
based on [8], Figure 3. This figure was created using graphics from [23].

[18F]NaF Atherosclerosis Imaging

Diagnostic methods that can give information on the plaque structure and composition and

allow to quantify the risk of plaque rupture are of central interest when for atherosclerosis

treatment planning [24]. Invasive methods such as intravascular OCT or ultrasound (US) can

resolve plaque substructures and identify fibrotic caps and other risk factors. However, they

are highly invasive procedures and can cause a high level of patient stress.

While CT and MR can non-invasively create high-resolution images of the heart, their access

to plaque substructures is limited. The so-called calcium score can be computed based on CT

images showing macrocalcifications in the vessels that correlate with cardiovascular event risk

and mortality [25]. In the coronaries due to the challenges posed by motion and the small

vessel size, coronary magnetic resonance angiography (cMRA) can only be applied to image

stenosis qualitatively as long as dedicated contrast agents are still in early research stages

[10].

PET is a non-invasive imaging modality that allows to image metabolism, usually acquired as

a combined modality PET/CT or PET/MR. There are several tracers which can provide

information about plaques. [18F]FDG can be used to image the inflammatory processes

occurring in the plaque but in studies this tracer did not show increased uptake in patients

with atherosclerosis [13, 26]. An additional disadvantage is that the large myocardial activity

makes quantification of uptake in the adjacent coronaries difficult [26].

[18F]NaF is a PET tracer which can be used to image calcification processes. Initially used

for skeletal imaging it has been used in oncology to detect osseos bone, prostate and breast

cancer metastasis [12, 27]. Since risk factors strongly vary based on the composition of plaques,

[18F]NaF adds clinical value in the analysis of plaque risk over global detection methods such

as blood markers or inferring disease progression based on non-invasive US of the carotids [8].

[18F]NaF has been used in prospective clinical trials to evaluate its potential using PET/CT.

The uptake in the coronaries was measured and correlated with both the calcium score that

indicates the degree of macrocalcifications as well as the occurrence of atherosclerosis [26]. It
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was found that 40% of the patients with increased calcium score did not show any significant

[18F]NaF uptake. This suggests that the tracer labels active micro-calcifications instead of

calcified macro-structures. This was confirmed for patients with aortic stenosis [28].

An detailed analysis of [18F]NaF uptake in coronary plaques using multiple imaging modalities

has between presented in [13]. Patients with stable angina or MI were examined using [18F]NaF

PET/CT and intravascular US and histological data were used as a reference for the plaque

substructure. All ruptured carotid plaques showed [18F]NaF uptake. In addition, uptake

in coronary plaques correlated well with high-risk characteristics obtained with US. Further

studies confirmed these findings using additional data acquired by intravascular OCT [29].

A subsequent in-depth analysis of the tracer distribution and molecular mechanisms involved

in [18F]NaF binding in plaques was performed in multiple studies [30, 31]. In [30] histological

analysis was combined with �휇PET and PET imaging showing how [18F]NaF binds to the

calcification surfaces and can distinguish between micro-and macrostructures. This is relevant

because while the occurence of macrocalcifications is associated with higher patient risk they

can act as a stabilising structure to individual plaques. In [31] the authors concluded that

the [18F]NaF uptake is a sign of early plaque calcification while it decreases with increased

deposition of calcium in the arterial walls. Recently its use as a prognostic predictor for fatal

or non-fatal MI outcomes [14] where it has been shown that [18F]NaF outperformed other

well-established clinical markers.

When using [18F]NaF PET/MR, it was found that there is a strong correlation between

the detected plaque locations with the ones obtained from PET/CT [32]. However, it was

highlighted that MR-based AC map generation can be hindered by susceptibility artefacts

caused by coronary stents [32, 33].

Physiological motion poses a major challenge when imaging the coronaries. While in the initial

studies physiological motion was not corrected for, PET motion compensation techniques

in the heart were addressed in PET/CT for cardiac motion of the coronaries [34, 35] and

in PET/MR of the aortic valves [36]. They showed that correcting for motion leads to

a better and more reliable quantification of the tracer. However, for PET/CT CT and

PET have to be acquired one after the other instead of simultaneously (c.f. Fig. 2.7) the

used motion models were PET based. The motion estimation from [18F]NaF PET frames

is challenging since they do not contain anatomical information except for bones whose

motion does not correlate with the motion of the heart. The acquired CT data could

only be used to support the registration by improving the alignment of anatomical features.

For [18F]FDG PET/MR multiple motion correction approaches obtain motion information

from simultaneously acquired high-resolution MR data. An overview of the current state of

PET/MR MoCo is given at the end of this chapter.

2.2 Adipose Tissue Imaging in Cardiac MR

Fat in the Heart

Fat is a major tissue component of the human body and naturally occurs in the healthy heart

as pericardial and epicardial adipose tissue. However, the infiltration of the myocardium

with adipose cells, known as lipotamous metaplasia (LM) is associated with risk factors for
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cardiovascular diseases as has been shown in autopsy studies [37]. LM is associated with poor

prognosis after MI [38], and sudden cardiac death [39, 40] and is also a significant predictor

for all-cause mortality, sustained ventricular arrhythmia and heart failure [41]. Furthermore,

an excess in epicardial adipose tissue is associated with atrial fibrillation and ventricular

arrhythmias due to the local changes in electrical conductivity [42–47]. To image fat in the

heart with cMR, mainly fat-water separation techniques have been used [48] which will be

discussed in more details in the next section. High prevalence of fat deposition in healed MI

could be detected using two-dimensional (2D) cardiac fat-water separation [49]. Furthermore,

fat-water separation could show the association of LM with dilated cardiomyopathy [50].

Also, cMR could be employed to measure the volume of epicardial fat and showed it to

be correlated with increased myocardial fat, interstitial myocardial fibrosis and damaging

effects on myocardial contractile function [51]. In similar studies, cMR was used to measure

functional parameters showing for patients with metabolic syndrome that epicardial and

pericardial fat depositions are linked to left-ventricular diastolic functional deficits, such as a

reduced peak-filling-rate [52]. A worsening of cardiac function could be due to the replacement

of compact scar by compressible adipocytes [53]. While fat often impairs cardiac function,

lately, it has also been found that patients suffering from heart failure with a preserved

ejection fraction have significantly more adipose cardiac tissue when compared to patients

with reduced ejection fraction [54].

Magnetic Resonance Fat-Water Imaging

CMR serves as a non-invasive tool to image cardiac fat [38, 55] and has been employed to

assess myocardial fat deposits. The physical basis of imaging different chemical components

is the so-called chemical shift. The molecular environment of hydrogen bound in lipids causes

their spins to have a different Larmor frequency compared to hydrogen in water. The chemical

frequency shift depends on the external magnetic field �퐵0:

Δ�휔 (�퐻�푧) = Δ�휔 (�푝�푝�푚) · �훾

2�휋
�퐵0 (2.1)

where Δ�휔 (�푝�푝�푚) is the chemical shift relative to a reference and �훾 is the gyromagnetic ratio.

The different chemical components can observed in a nuclear magnetic resonance (NMR)

spectrum, schematically displayed for fat and water in Fig. 2.3.

While the frequency offset gives MR flexibility in imaging the different components [18]

it is also associated with multiple artefacts: The fat voxels will accumulate additional phase

depending on the bandwidth encoded in the readout. This leads to a global displacement

of fat in readout direction. Furthermore, partial volume effects lead to the black boundary

artefact due to signal cancellations. Finally, fat typically has a T1 value similar to those

achieved in blood after injection of a T1 contrast agent. Hence, for example in T1 weighted

post-contrast cMRA the high fat signal surrounding coronary arteries will obscure the blood

signal or can be mistaken for fibrosis in late gadolinium enhancement (LGE) imaging.

There are multiple techniques dedicated to nulling the fat signal to avoid any artefacts. These

include fat saturation, water excitation and Short T1 Inversion Recovery (STIR).
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0 -3.5

Water

Fat

Figure 2.3: Fat and water NMR spectrum. Schematic depiction of an NMR spectrum
containing both fat and water. The spectrum is normed to the water peak at 0 ppm while the
fat-peaks are shifted in frequency. The main fat peak lies at approximately −3.5 ppm relative to
water. The offset in frequency can be computed using Eq. (2.1). Figure based on [18, 56].

While these methods are effective to suppress the fat and are used in clinical routine, they

can be impaired by �퐵0 and �퐵1 inhomogeneties which lead to incomplete fat suprression or

even supression of water signals [57]. As discussed above, imaging fat is of central interest in

cMR as it is associated with multiple cardiomyopathies. Since the above signal suppression

techniques are only providing negative fat contrast [58–60] they only provide little diagnostic

information about cardiac fat. Chemical-shift based separation approaches on the other hand,

yield both fat and water with positive contrast. They use multiple echo acquisitions and are

referred to as Dixon methods (Fig. 2.4). During data acquisition voxels containing fat �퐹

acquire a phase relative to the water signal �푊 such that the complex signal �푠(�푡) at time �푡

consists of:

�푠(�푡) = �푊 + �푒2�휋�푖Δl ·�푡 �퐹. (2.2)

Choosing the correct timing for the MR echo time during data acquisition and a subsequent

combination of the images at the different echo times can be used to separate the fat from

the water component. To ensure data consistency the different images are not acquired one

after another, but instead, multiple echoes are acquired during each TR interval.

As the chemical shift depends on the external magnetic field, local inhomogeneities, i.e.

�퐵0 = �퐵0(r) = �퐵0 + Δ�퐵0(r) will lead to a spatially dependent chemical shift. This can be

accounted for by a three-point Dixon methods [61] in which a third echo is acquired and the

off-resonance map Φ =
�훾

2�휋
Δ�퐵0(r) is computed. In order to accurately calculate fat, water

and an off-resonance map from (almost) arbitrary echo-times, iterative approaches have been

proposed [62–65]. A comprehensive overview of techniques employed in clinical routine is

given in [66].

These methods can also be incorporated into a model-based separation of fat and water [67,
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W

F

in-phase

out-of-phase

Figure 2.4: Dixon imaging. Principle of chemical shift-based fat-water separation (Dixon
imaging). Left: a two-pixel image containing water (W) and fat (F) is acquired at two different
echo times. Center: reconstructed images for individual echoes. Arrows depict the direction of
the complex signal phase. Right: computation of the images separated into water and fat by
combining the in- and out-of-phase reconstructions.

68] which skips the reconstruction of images at individual echo times. The forward operator

projects water and fat (�푊, �퐹) to k-space for different echo times �푇�퐸 :

�푘�푐 (�푇�퐸 ) = �퐸 (�푐,�푇� ) (�푊, �퐹)
= F (�퐶�푐�푒

2�휋�푖Φ�푇� ·�푊) + �퐷 (�푇�퐸 )F (�퐶�푐�푒
2�휋�푖Φ�푇� · �퐹)

where �퐶�푐 are the receiver channel sensitivities, Φ is the off-resonance map and �퐷 (�푇�퐸 ) a

chemical shift model. To invert such a forward model an iterative optimisation scheme is

required. This allows for regularisation on the final fat and water images instead of the

intermediate indivdiual echo images. A detailed discussion of this approach and an extension

to include physiological motion is given in chapter 5.

2.3 Motion Compensation in Image Reconstruction

For both cMR and cardiac PET/MR physiological motion is one of the major challenges.

Respiration and heartbeat impair the image quality of both modalities. Motion introduces a

blurring into the reconstructed images or can cause more complex artefacts in MR such as

ghosting. In PET, a mismatch between emission data and AC map can severely impair the

images if uptake is located near a tissue boundary with large differences in attenuation values,

such as between soft tissue and lung. Hence, there is the need to address motion during the

acquisition and reconstruction. General aspects of image reconstruction will be discussed in

the following including retrospective MoCo and the currently available techniques in both

cMR and cardiac PET/MR.

PET and MR image reconstruction is an inverse problem: the acquired raw data are the result

of a known physical measurement applied to an unknown tissue and tracer distribution in the
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human body. The task of the reconstruction is to infer the underlying distributions from the

acquired data, effectively inverting the measurement process. The measurement process of

both PET and MR can be described by:

y = �퐸x + b + n, (2.3)

where y is the measured data as a column vector, �퐸 is the acquisition model, i.e. usually

containing a transformation such as the Fourier or Radon transform, x is the image as a

column vector, b is some additive background term and n is the measurement noise. The

individual components for both modalities are depicted in Fig. 2.5. Solving the reconstruction

Background
NoiseImage
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True  mage
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dataForward model
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PET

Fourier transform

Coil sensitivities

Chemical shift

Field inhomogeneity

Radon transform

Attenuation

Detector normalisation
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Time of flight (TOF)

Sinograms
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Randoms

Poisson noise

Gaussian noise

Figure 2.5: Components of PET/MR image reconstruction. Top: overview of involved
components during PET/MR data acquisition as in Eq. (2.3). Bottom: non-exhaustive overview
of the individual components for PET and MR reconstruction. Potential image contrasts are
exemplified by Shepp-Logan phantoms.

problem involves determining x given �퐸 , y, b, and a model for n. The underlying assumption

is that the image is a function of space only and not of time: x = x(r). Motion, however,

breaks this assumption. The acquired raw data are inconsistent for different time points,

and solving the reconstruction problem with a time-independent acquisition model �퐸 ≠ �퐸 (�푡)
will yield artefacts in the resulting images. For thoraic PET and three -dimensional (3D)

MR this can be the case due to physiological motion. A common strategy is to exploit the

periodic nature of the respiratory and cardiac motion. To correlate the acquired data with the

motion there must be some surrogate signal �푠�푖�푔(�푡) available. For respiration, this can either

be acquired using a respiratory belt [69], extracted from the data using MR navigators [70], or

PET listmode data [71], while for cardiac motion usually an electrocardiogram (ECG) signal

is used. Then the time-dependent image can be expressed as x(r, �푡) = x(r, �푠�푖�푔(�푡)). As the

same motion states will approximately reoccur in each motion cycle it is possible to acquire

the necessary data over many cycles. This is depicted in Fig. 2.6.
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Figure 2.6: Schematic overview of the influence of motion gating. Left: respiratory
amplitude, the increased amplitude is shaded from white to cyan and partitioned into �푀

respiratory bins from �푅1 . . . �푅�푀 . Bottom: ECG with increase in cardiac cycle shaded from white
to magenta and partitioned into �푁 cardiac bins from �퐶1 . . . �퐶�푁 . The overlayed area under the grid
represents the time available for data acquisition per cardio-respiratory motion cycle. Taking only
a subset of the data will mitigate motion artefacts, however, at the cost of increasing the required
scan time for the same number of MR data points and PET counts.

The straight-forward motion compensation approach is to only acquire the raw data when

the surrogate signal �푠�푖�푔 is in a narrow window �푠�푖�푔 ∈ (�푠 − �훿, �푠 + �훿). If data acquistion is only

started for a fixed amount of time if �푠�푖�푔 ∈ (�푠 − �훿, �푠 + �훿), then this is often called triggering. If

data are acquired irrespectively of the value of �푠�푖�푔, but then reacquired until �푠�푖�푔 ∈ (�푠−�훿, �푠+�훿),
this is commonly referred to as gating [72].

Motion Corrected Image Reconstruction (MCIR)

While gating is very reliable, effectively freezing the image, it comes at the cost of increased

data acquisition time. In order to overcome this problem of long scan times, MoCo has been

proposed. Here, data is acquired in different motion states and then the acquisition model is

adapted to include a motion model.1

In the following, only periodic, non-rigid motion due to physiological motion in thoracic

1In MR there are also prospective approaches using so called slice-tracking [73–75]. Rigid or affine
retrospective MoCo (e.g. head MoCo) can be carried out directly in the raw data space[76, 77]
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applications is discussed. To resolve motion, based on the surrogate signal a retrospective

binning of the data into different motion state �푠 ∈ 1, . . . , �푆 can be performed: y → y�푠 . A

motion model to be included in the acquisition model is defined as the transformation:

x�푠 (r) = (x0 ◦ m�푠) (r), (2.4)

where �푥�푠 is the image in motion state �푠, �푥0 the image in the reference state �푠 = 0, and m is a

coordinate transform with m : R3 → R

3. Usually, this transformation is written as:

x�푠 = M�푠x0, (2.5)

where the image x0 is a column vector and M�푠 is a matrix containing the respective

interpolation weights. This, however, is more a question of notational convenience. An actual

storing of this matrix would not be computationally feasible, and its application as in Eq.

(2.5) is commonly carried out using Eq. (2.4).

To obtain the transformation in thoraic imaging it is usually generated using image regis-

tration. There are different available methods that are B-spline based. These are used to

maximise image similarity (e.g. using mutual information or normalised cross-correlation)

and possess intrinsic regularisations [78, 79]. Others optmise a pixel-wise sum-of-squared

differences to register images, add regularisation by enforcing diffeomorphic motion fields and

periodic boundary conditions on the motion or include the estimation into the reconstruction

iterations to improve data consistency [80, 81]. Also, multi-modality registrations are available

that estimate the motion simultaneously from PET and MR images [82]. This transformation

is assumed to be known in the following.

Once a motion transform is available there are two ways to include it in a MoCo, either the so-

called reconstruct-transform-average (RTA) approach or a full MCIR[83]. RTA reconstructs

the data of the individual bins separately and then averages them:

x = 〈M−1
�푠 x�푠〉�푠 . (2.6)

While for this approach the motion does not have to be included into the forward model it

has some disadvantages. In particular in PET the individual bins might not contain enough

counts to obtain a sufficient image quality. However, this approach is still useful if PET

quantification is not the main objective [83]. A full MCIR on the other hand makes use of

all acquired data simultaneously but requires to extend the reconstruction’s encoding model.

As an analytic inversion is typically used to invert a forward model that contains more than

either the Fourier or Radon transform an iterative inversion is employed to perform MCIR.

PET MCIR

The following maximum likelihood expectation maximisation (MLEM) reconstruction formula

serves as an exemplary reference for iterative PET reconstruction. It originates in the

assumption that PET data contain Poisson noise and is given without proof. The image
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2.3 Motion Compensation in Image Reconstruction

MLEM algorithm uses the iterative update:

x (�푘+1)
=

x (�푘)

�퐸⊺1
�퐸⊺

y

�퐸x (�푘) + b
(2.7)

where �푥 (�푘) is the image estimate after �푘 iterations of the algorithm, The initial image is

initialised with as positive �푥 (0) > 0, and division is understood as element-wise. The

denominator of the first term �퐸⊺1 is the so-called sensitivity term which is the adjoint

forward model applied to a unit projection set and ensures attenuation correction and detector

normalisation. The second part backprojects the ratio between the acquired data and the

prediction of the forward model based on the current image estimate. While this algorithm

is not computationally feasible and multiple improved and accelerated version are available,

including the ordered subset expectation maximisation (OSEM) algorithm [84], it can serve as

a simple example in how to include motion into a PET reconstruction. To extend the MLEM

algorithm by a motion model M, the update step would be modified as [85]:

x (�푘+1)
=

x (�푘)
∑

�푠M
⊺

�푠 �퐸
⊺
1

∑

�푠

M
⊺

�푠 �퐸
⊺

y�푠

�퐸M�푠x (�푘) + b
. (2.8)

where �푠 sums over all motion states.

This reconstruction approach yields the reconstructed image in the reference state �푠 = 0 and

the forward model deforms it into the respective motion states during reconstruction. This

allows using all available data without the need for gating. In the same fashion, motion

models can be included in an OSEM algorithm as well [83, 86].

MR MCIR

In contrast to PET, MR data contains Gaussian noise leading to an �퐿2 minimisation problem:

x̂ = min
x

‖�퐸x − y‖2. (2.9)

This problem can be iteratively solved with a range of optimisation algorithms, depending on

the acquisition model �퐸 and potential applications such as parallel imaging and compressed

sensing or fat-water imaging [67, 87, 88].

The inclusion of motion into a model-based MR reconstruction is performed analogously as

to the PET case by concatenating the model with a known motion transformation M:

�퐸 → �퐸 ◦M (2.10)

A successful iterative inversion will automatically lead to an MCIR [89]. This is further

discussed in chapter 5.
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High Resolution Motion-Compensated Cardiac MR and PET/MR

Commonly in clinical routine cardiac imaging is carried out as multiple slices with high in-

plane resolution but a large slice thickness of 4 mm to 8 mm. While the cardiac motion is

usually compensated using cardiac triggering, the respiratory motion is addressed by acquiring

the data during one or over multiple breath-holds.

To achieve an improved spatial coverage high-resolution 3D cMR imaging has been developed.

Yet, its implementation in clinical routine suffers from long acquisition times. As breath-holds

become difficult [90] motion compensation techniques for respiratory motion are required. The

usual approach to respiratory motion compensation is the application of respiratory gating

which leads to the rejection of a large fraction of the data (c.f. Fig. 2.6) and unpredictable

scan times that depend on the cardiac frequency and a patient’s breathing pattern [91–95].

Also, the correlation between diaphragm navigators and actual cardiac motion may change

over time [96].

Instead of compensating for respiratory motion, compressed sensing reconstructions [88]

can be used to resolve the respiratory motion in free-breathing 3D imaging applications

from undersampled respiratory motion states. Exploiting sparsity along the respiratory

direction has been suggested for radial (XD-GRASP) [97] and also extended towards cartesian

trajectories [98]. XD-GRASP has also been used to ommit cardiac triggerng and resolve

cardio-respiratory motion [99] with radial 3D encoding [100], providing five -dimensional (5D)

high-resolution whole-heart coverage in acquisition times of the order of 15 min. A similar

sequence has also been employed to achieve high-resolution whole-heart coverage [101] with a

complete extraction of cardio-respiratory surrogate information from the MR data. As radial

trajectories sample the k-space centre during every readout the cardiac signal can be extracted

using principal component analysis (PCA) with a similar performance as an external ECG.

As resolving the motion relies on reconstructing images from heavily undersampled k-space

data there are MoCo approaches that make use of all acquired data by including a motion

model for respiration in the reconstruction. In cMRAs this has been addressed by using image-

based navigators [98, 102–107] to estimate the motion. Low-resolution images can be acquired

during the start-up pulses of steady-state sequences. From these images, a rigid motion model

for the respiration can be extracted and applied to correct for motion between heartbeats. This

acquisition-reconstruction approach mitigates most respiratory motion artefacts and provides

high-resolution 3D images. But cardiac triggering restricts the acquisition period to a short

window during each heartbeat such that still long scan times are required.

Instead of obtaining a rigid or affine respiratory motion model from image navigators, non-

rigid motion models can also be estimated retrospectively by binning the acquired data,

carrying out an image registration and applying the obtained motion model in MCIR [89,

108–111] as described above. Lately, regularisation methods in the form of so-called low-

rank regularisation allowed for the reconstruction of high-resolution images from strongly

undersampled data acquired in shorter scan times. This has been used in cMR and been

combined with MoCo techniques [9, 112, 113] to produce high-resolution 3D images of the

heart. This approach was also applied to 3D cardiac fat-water separated LGE imaging [114].

So far, however, there has not been a combination of physiological motion compensation with

fat-water model-based reconstruction. Furthermore, in the above approaches cardiac motion
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2.3 Motion Compensation in Image Reconstruction

is not corrected for but compensated using cardiac triggering to acquire data in mid-diastole.

While the above-mentioned approaches are applied to qualitative cMR there are of course

substantial efforts towards quantitative parameter mapping. To name only a few, some of the

above methods were applied for 3D T1 and T2 mapping [115, 116], and 2D low-rank methods

were used in multi-tasking approaches [117, 118], or cMR fingerprinting [119, 120].

The above techniques were applied to cMR. Cardiac motion was mainly compensated by

cardiac triggering or gating. However, for PET cardiac gating might not be feasible as

insufficient counts strongly increase the image noise. Hence, in PET/MR there are other

approaches in particular aimed at correcting cardiac motion. In Fig. 2.7 the layout of the two

possible clinical systems for PET data acquisition, i.e. PET/CT and PET/MR is displayed.

While in the PET/CT the data of the two modalities are acquired sequentially the hardware

of a PET/MR system enables actual simultaneous data acquisition. This makes PET/MR a

true hybrid modality opening up possibilities to exploit structural similarities and ultimately

joint, synergistic image reconstructions [82, 121–124]. In research as well as clinically, it has

Figure 2.7: Comparison between PET/CT (left) and PET/MR (right). PET/CT: CT
(purple) and PET (cyan) hardware are incorporated into one case, but the data are acquired in a
sequential fashion. PET/MR: gradient coils (red), body radio frequency (RF) coils (yellow) and
PET hardware are all combined. Figure adapted from [125] and [126].

been shown for multiple tracers used in oncology that respiratory MoCo strongly improves

the detectability of lesions in simultaneous PET/MR [127–131].

Usually, as MR provides high resolution anatomical information, the motion models are

generated from MR and applied subsequently to PET using an approach as described in Eq.

2.8. An overview of employed techniques is given in [132], usually using the tracer [18F]FDG.

Also, 2D multislice MR has been used purely dedicated to extracting a motion model and

shown to be effective while keeping the additional MR scan time to generate the motion model

in the order of one minute [133].

Respiratory MoCo while simultaneously providing high-quality and valuable anatomical

information has been employed simultaneously with a 3D cMRA [134] and extended by

estimating cardiac motion from a dual-phase cMRA [135]. Also separate retrospectively

motion-binned MR acquisitions for cardiac and respiratory motion have been successfully
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combined to improve PET image quality [136]. Also, holistic approaches have been used,

estimating multi-phase cardiac and respiratory motion from a single MR acquisition [137, 138]

while simultaneously extracting surrogate signals and providing high-quality 3D anatomical

information, and have been extended to include respiratory-resolved attenuation correction

[139].

Recently, also real-time MR respiratory motion models able to cope with irregular breathing

patterns have been applied in abdominal imaging [140]. A positive effect of respiratory MoCo

has been shown for myocardial perfusion PET/MR using [18F]Flurpiridaz in porcine animal

models [141]. This effect will potentially be confirmed in patients once the tracer is clinically

available.

An overview of the use of PET/MR dedicated to imaging atherosclerotic plaques (not

necessarily using [18F]NaF ) is given in [142]. As discussed above, MoCo techniques have

also been applied to [18F]NaF PET/CT imaging [34–36]. However, these addressed cardiac

motion only. One study included respiration, and examined the effect of MoCo and PET

partial volume correcition based on a numerical phantom study and four patients [143]. It

was found that both cardiac and respiratory MoCo, and even more, partial volume corrections

(PVC) lead to a strong increase in the target-to-background ratio (TBR) of the detected

lesions. Additionally, there was no MCIR employed but instead relied on an RTA approach.

With respect to motion estimation PET/MR can improve with respect to PET/CT as the

both modalities are acquired simultaneously. The methods developed for cardiac [18F]FDG

PET/MR are discussed in the final section of this chapter, and show how the high resolution

anatomical MR data can be used to generate high-precision cardio-respiratory motion models

and motion-resolved attenuation maps for both cardiac and respiratory motion. So far,

respiratory motion has not been corrected for in [18F]NaF PET/MR and also detrimental

effects of AC mismatches due to motion have not been addressed so far but will be in the

scope of this thesis.

Aside from an improved motion estimation, PET/MR has more advantages over PET/CT

in [18F]NaF imaging: the limiting factor in terms of acquisition time is the PET data. This

neutralises advantage posed by the overall shorter time for data acquisition of CT compared

to MR. MR can be used during the whole PET acquisition to acquire for example quantitative

cardiac data. So far, PET/MR studies have not employed time-of-flight (TOF) information

in their reconstructions which was available for the PET/CT systems. This could lead to a

further improvement in resolution if data were acquired with a TOF PET/MR system.

Please note, that this discussion was focussed on "classical" imaging approaches. It omitted

the advances in image reconstruction involving machine learning, which will most certainly

allow for stronger data undersampling, leading to further decreases in scan and reconstruction

times.
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3
Flexible Numerical Simulation

Framework for Dynamic PET/MR

Data

Parts of this chapter have been published as J1, J3, J4, and J7.

3.1 Background

Positron-emission tomography (PET) and magnetic resonance imaging MRI are two com-

monly used medical imaging techniques. MRI yields high-resolution anatomical images

and functional information such as tissue perfusion. PET, on the other hand, provides

metabolic information with excellent sensitivity. Recently, they have been combined into

the hybrid modality PET/MR allowing simultaneous data acquisition of complementary

diagnostic information [16].

A major challenge for 3D high-resolution MR and especially PET in applications in the

abdomen or thorax is physiological motion [34, 144–146], which impacts data quality during

the long acquisition time of both modalities in the order of several minutes. Simultaneous

PET/MR offers the possibility to obtain physiological motion information and utilise it in

order to minimise motion artefacts. Several approaches use high-resolution anatomical MR

images or dedicated MR sequences for accurate motion correction of PET data [129, 135,

138, 143, 147–149]. Other techniques combine both MR and PET information for image

registration and use this to improve both MR and PET image quality [82, 137]. One of

the main challenges of these motion correction schemes is the evaluation of their accuracy.

Commonly there is no ground truth physiological motion information available. In addition,

acquisition of ground truth image information without motion artefacts (e.g. using gated

acquisitions) is often not feasible due to long acquisition times. Evaluation of motion

correction schemes is therefore often limited to assessing the improvement in image quality

between uncorrected and motion-corrected images. Although this gives an indication of the
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motion-correction scheme’s functionality, it does not necessarily provide information on how

accurate it is.

To overcome this challenge numerical simulations are employed. While many existing

simulation frameworks are dedicated to realistic simulations of a single modality [150–156]

they are not primarily aimed at simulating simultaneous PET/MR data acquisition. There are

PET/MR simulations which also incorporate physiological motion [83, 157, 158]. Nevertheless,

these methods are limited to respiratory motion and cannot easily be extended to other

types of motion or other dynamic processes such as contrast agent uptake. The design

is tailored to certain applications making it challenging to adapt for other purposes. In

particular, the frameworks’ emphases are put onto the data generation to create more realistic

anatomical input rather than utilising available solutions [151, 159, 160]. It is not possible

to supply custom segmentations, motion models and surrogate signals and their output

cannot be easily integrated into different reconstruction pipelines. Furthermore, simultaneous

multidimensional motion simulations (i.e. combining both cardiac and respiratory motion) in

a PET/MR framework remain unavailable so far.

In this chapter, a flexible framework to simulate dynamic simultaneous PET/MR raw data

is presented. It allows for the combined simulation of a range of different motion types such

as breathing or heartbeat. The framework provides ground-truth (GT) motion information

for the simulated dynamic processes. Thereby, an evaluation of spatial accuracy of image

registration and motion correction schemes can be performed. A detailed signal model

is used allowing the simulation of image contrast for different MR sequence parameters.

Additional dynamic processes such as uptake of MR contrast agents and PET tracers can

be flexibly included, enabling a wide range of different PET/MR applications. The input

of MR and PET acquisition parameters and output of MR and PET raw data files uses

standardised formats (International Society of Magnetic Resonance in Medicine Raw Data

format (ISMRMRD) for MR [161] and Interfile for PET [162]). This makes it compatible

with standard reconstruction frameworks [163–165]. The framework is implemented in

C++ and incorporated as a submodule of the Synergistic Image Reconstruction Framework

(SIRF) [166], an open-source PET/MR image reconstruction framework aimed specifically at

synergistic PET/MR applications. Its PET and MR capabilities are based on the powerful

tomographic image reconstruction toolboxes Gadgetron and Software for Tomographic Image

Reconstruction (STIR) [164, 165].

3.2 Methods

In the following an overview of the design of the framework is given, detailing its functionality

and use when simulating dynamic processes, such as cardiac and respiratory motion, contrast

agent uptake and PET tracer kinetics. Furthermore, the performance of the framework is

demonstrated for three different MR and PET/MR applications: (a) optimisation of image

registration parameters for cardiac and respiratory motion estimation in PET and PET/MR,

(b) comparison of 5D (cardiac and respiratory) motion-corrected image reconstruction of

PET/MR data and (c) assessment of the effect of inaccuracies in the motion estimation on

quantitative biophysical parameters obtained from motion-corrected free-breathing abdominal
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dynamic contrast enhancement (DCE) MR. All input parameters for the simulation were taken

from patient scans carried out on a simultaneous PET/MR scanner.

Simulation Input and Output

An overview of the framework design is given in Figure 3.1. Input and output for

the simulation is provided in standardised community format (ISMRMRD [161] format

(https://github.com/ismrmrd/ismrmrd) for MRI1 , and Interfile for PET [162]). The

acquisition parameters (e.g. TE , TR , flip angle, sequence type, image resolution, number of

receiver coils and k-space trajectory for MR or detector geometry for PET ) are automatically

set based on the header information of MR and PET raw data files. This enables and

reproduction of a phantom or in-vivo scan carried out on a PET/MR scanner using the

exact same hardware- and sequence-related parameters in the simulation framework or the

user can choose to overwrite them.

During the simulation, the data part of the input file is replaced by the generated simulation

data yielding a raw data output file, which is fully compatible with any image reconstruction

framework capable of dealing with ISMRMRD and/or Interfile raw data. In this manner, the

simulation can emulate the acquisition of already available in-vivo data while simultaneously

providing GT information. Furthermore, this allows using the simulation output in already

existing reconstruction workflows without modifications otherwise necessary to read and

process the simulation output.

In addition to the raw data file, an anatomical segmentation combined with an XML descriptor

detailing the tissue parameters for each voxel in the segmentation must be supplied. Each

tissue type is characterised by T1 , T2 , spin density, chemical shift, PET tracer radioactive

activity concentration and PET attenuation value which describes its MR and PET behaviour.

In this study, the extended cardiac-torso phantom (XCAT) [159] phantom was employed to

generate a tissue segmentation and respiratory and cardiac motion models. However, the

input format for the segmentation is vendor-independent and arbitrary voxelised anatomical

segmentations and matching motion models can be used. The MR and PET scan parameters

are then utilised to simulate realistic MR and PET signal intensities for the different tissue

types present in the anatomical segmentation. The MR signal for each voxel is computed

based on tissue parameters and sequence type using an effective signal model [167]. Currently,

only a low flip angle FLASH contrast is available, but extensions to other sequences with a

signal model available can be easily made. The PET signal assigns the activity concentration

(defined in the XML descriptor) to each voxel and transforms it into specific activity (Bq) by

multiplication with the voxel volume.

Signal Encoding

The signal encoding process is performed after the generation of PET and MR signal intensities.

The MR raw data is generated by sampling the k-space of the 3D signal. The default k-space

shape and acquisition parameters are defined by the information contained in the header of

the input file, but can also be changed by the user to simulate modifications to the sampling

1Conversion apps from vendor raw data formats of Philips, GE and Siemens to ISMRMRD are provided
and maintained by ISMRMRD.
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Figure 3.1: Schematic overview of the simulation framework. The default scan
parameters of the simulation, including MR and PET acquisition details, hardware layout, are
determined by the header information of the template data. These parameters can be overwritten
by the user to further customise the simulation. A voxelised tissue segmentation in combination
with an XML descriptor must be supplied as the second input. The XML file details the MR and
PET specific tissue parameters. Thirdly, a motion model and/or temporal variation of contrast
and tracer concentration can be specified in order to simulate dynamic processes. The simulation
applies the signal and dynamic models and simulates data sampling based on the parameters
defined in the input file. Finally, the simulated data are written together with the simulation
parameters into a raw data file. This figure was published in J1.

procedure. Furthermore, MR signal reception is simulated using multiple receiver coils to allow

parallel imaging [87]. Each sampled readout line is subsequently stored in the ISMRMRD

data structure and written to file.

In contrast to MR, the parameters of PET raw data are defined by the geometry of the

detector. This is provided by a template raw data file in Interfile format describing the desired

scanner, which is currently limited to ring-shaped designs with possible future extensions to

prototype architectures [168]. The forward operator �퐸PET maps the activity distribution into

sinogram space and includes tissue attenuation. During a simulation including motion, the

motion model is applied simultaneously to the activity distribution and the attenuation map

to ensure they are aligned for all simulated time points.

Noise Simulation

For MR, Gaussian noise is added to the real and imaginary part of the simulated k-space data

based on an signal-to-noise ratio (SNR) parameter defined in the image as SNR = S/�휎�푛, where

S is the simulated signal and �휎�푛 is the standard deviation of a complex Gaussian distribution

in image space. The signal S in the MR image depends on sequence but also tissue-specific

parameters (T1 , T2 , spin density). Therefore the user can set a reference tissue type in which
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the SNR is defined. This enables to simulate data with a predefined SNR in one region of

the image, e.g. SNR = 15 in the liver. The noise is then added to the k-space data in Fourier

space as a Gaussian distribution with a scaled width. The SNR is computed assuming data

acquisition is carried out with the body coil. Therefore, using the simulation with multiple

receiver coils the data will yield data with increased SNR compared to the simulation SNR

parameter due to noise averaging. This has to be accounted for by the user.

The sinograms for the PET raw data given by the forward operation �퐸PET applied to the

activity distribution �퐴(r) describe the decay events along each line of response (LOR) per

unit time. Poisson noise is added to them based on the acquisition time Tacq defined by the

user.

Motion models

The framework is set up to flexibly accept arbitrarily many independent dynamic processes

as input, in the following referred to as modes, which are combined into one simultaneous

process during the simulation. Hence, the framework allows the inclusion of multiple four

-dimensional (4D) motion models, e.g. 4D respiratory and cardiac motion as independent

motion modes, that result in a data set containing cardiorespiratory motion.

To fully describe one such motion mode during the simulation, a set of motion vector fields

(MVFs) describing the anatomical deformations and a motion control signal describing its

temporal progression are required. The motion control signal can be passed in the most

generic format as a set of pairs (�푡, �푠) = (time-point, signal amplitude) with �푠 ∈ [0, 1], which

are interpolated onto continuous time during the simulation. Deformations must define the

displacement of each voxel during the motion relative to the reference motion state given by

the segmented image. The motion model must encompass all the affected organs, e.g. the

entire abdomen for respiration, and must be self-consistent, such that different organs move

correctly relative to each other. Anatomy and motion models available for individual organs

must be combined and interpolated onto a grid matching the segmentation prior to using them

as an input and must be supplied as a set of dense MVFs: m = {m�푛}, �푛 ∈ {1, . . . , �푁} where

m1 = m(�푠 = 0) and m�푁 = m(�푠 = 1) respectively correspond to the borders of the interval on

which the motion control signal is defined. However, the number of supplied MVFs does not

limit the number of simulated motion states. The simulation performs a continuous simulation

of the entire motion range interpolating between the discrete motion states given by {m�푛}:
for example, assume �푁 = 3 with {m1 = m(�푠 = 0),m2 = m(�푠 = 0.5),m3 = m(�푠 = 1)}. Then the

state �푠 = 0.75 is generated using m(�푠 = 0.75) = 0.5 · (m2 + m3).

Dynamic Contrast Models

While motion deforms the anatomy, dynamic contrast modes can be included to modify

the tissue parameters as a function of time, e.g. T1 or activity concentration, translating

into signal variation over time. Independent contrast modes can be included flexibly and

are combined during the simulation to simultaneous contrast variations. As for motion, a

contrast mode requires a contrast control signal describing the temporal variation of the tissue

parameters. For each tissue type �휃, (e.g. �휃 = liver) the user must define two border tissue

parameter states, �휃0 = �휃 (�푠 = 0) and �휃1 = �휃 (�푠 = 1) and the normalised contrast control signal
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as pairs (�푡, �푠), �푠 ∈ [0, 1]. Every tissue parameter �휃�푠 can be described by a linear combination

between the two border condition tissue states �휃0 and �휃1:

�휃�푠 = (1 − �푠) · �휃0 + �푠 · �휃1. (3.1)

For example to simulate the contrast changes in the liver upon injection of contrast agent,

�휃 = liver. �푠 = 0 means no contrast agent is in the tissue and �푠 = 1 corresponds to the maximum

concentration. For a contrast agent effecting the T1 relaxation time the liver parameter in

the simulation could be set up as liver0.T1 = 900 ms and liver1.T1 = 300 ms. E.g. at �푠 = 0.3

this yields liver0.3.T1 = 0.7 · liver0.T1 + 0.3 · liver1.T1 = 720 ms. A dynamic behaviour is

generated since �푠(�푡) is a function of time. Aside from the T1 value, the contrast modes

can for example also model the decay of activity over time or changes in the attenuation

map linked to respiration in PET. The independent contrast dynamic modes are not limited

to one tissue type, but each tissue type (i.e. liver parenchyma, blood, lesion etc.) can be

assigned its own contrast mode independently without computational overhead. Naturally,

the simulation combines the added contrast modes with added motion modes, yielding their

combined dynamic behaviour.

Data Binning

For MR, the time axis underlying the simulation process is defined by the timestamps of

the MR template raw data. During a dynamic simulation, it must be guaranteed that each

readout line is acquired in the correct dynamic state defined by the simulation control signal

at the readout’s timestamp. In principle, the above approach of interpolating the dynamic

models onto a continuous time axis allows simulations with an arbitrary temporal resolution.

In practice, however, only a finite number of dynamic states are simulated for computational

reasons. This means that multiple time points are grouped together into a bin with a certain

temporal width for contrast modes and with a certain motion amplitude for motion states.

Readouts at these time points are acquired in the same dynamic state. Eventually, only one

k-space is stored, whose individual points are sampled at different contrast and motion states.

In most cases, motion leads to periodic changes in the anatomy which is different for contrast

modes. Therefore, two alternative binning schemes are used (Fig. 3.2):

• For contrast modes the time axis is binned directly by grouping together a set of

subsequent time points. The dynamic state is then defined by sampling the contrast

control signal in the bin centre. This yields a unique partition of the time axis

independent of the contrast control signal. Therefore contrast variations in many

different tissue types can be simulated simultaneously without the computational

overhead.

• For motion modes, instead of the time axis, the motion control signal axis is split

into bins and the dynamic state is defined directly at their centre. The time axis

binning results from grouping together time points from the same dynamic state

interval. Since the same motion state occurs repeatedly throughout the simulation

it is much more efficient to only apply the motion model a minimum number of times

and sample the necessary k-space points depending on their timestamps. However, for
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each motion dynamic, an individual time axis partition must be computed. All time

points corresponding to one signal bin can be simulated with a single application of the

motion model [169], avoiding redundant motion simulations.

For each independent mode, their individual time axis partition is computed independently

and intersected subsequently with the others to generate the simultaneous dynamic behaviour

of the simulation.

For PET, however, each dynamic state is stored as an independent sinogram. The time spent

in each bin defines how many counts contribute to each sinogram and hence its noise level

which therefore differs between dynamic states.

Generally, for each mode, the number of simulated motion states should be higher than the

number of reconstructed motion states in order to accurately simulate effects such as intra–bin

blurring. The suitable number of simulated states depends on the motion amplitude and

should be such that the maximum amplitude in voxels divided by the number of simulated

phases is below half the voxel size.

Figure 3.2: Time axis binning based on simulation control signals. Left: example
simulation contrast control signal. It is sampled at equidistant time points and the time axis is
partitioned into �푁�푐 bins. Right: motion dynamic performs an equidistant binning of the motion
control signal axis and converts it into a time axis partition with �푁�푟 bins. This figure was published
in J1.

Motion Ground Truth

The MVFs m�푏
�푎 are defined to transform images �퐼 between motion states �푎 and �푏:

m�푏
�푎 : R3 → R3; �퐼�푎 ↦→ �퐼�푏 (3.2)

�퐼�푏 (r) = �퐼�푎 (m�푏
�푎 (r)) (3.3)

The framework yields one MVF for each of the �푁�푠�푖�푚 simulated motion states. The set of GT

MVFs are defined relative to a reference phase �퐼0, given by the segmentation input, and point

to the simulated �푁�푠�푖�푚 motion states:

GT ′
�푠�푖�푚 = {m�푠

0} (3.4)

�푠 ∈ [0, 1], |GT ′
�푠�푖�푚 | = �푁�푠�푖�푚.
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3. Flexible Numerical Simulation Framework for Dynamic PET/MR Data

The image reconstruction can yield a different number of dynamic states �푁�푟�푒�푐�표 compared to

the simulated ones �푁�푠�푖�푚 and can also yield a different reference phase which is used in the

image registration. In order to be able to compare the MVFs obtained from the reconstructed

images, the GT motion information output GT ′
�푠�푖�푚 must be post-processed.

Post-processing of Motion Ground Truth

In order to be able to compare MVFs obtained with an image registration algorithm from

the reconstructed images of the simulated data to the GT, two important things need to be

considered:

• the reconstructed motion states are not the simulated motion states (black and red dots

in Fig. 3.3).

• the reference coordinate system for the ground truth differs from the one used in image

registration (blue offset vector in Fig. 3.3).

The GT information supplied by the framework consists of �푁�푠�푖�푚 MVFs defined in Eq. (3.4):

{m �휍

0
}, where {�휍}, �휍 ∈ [0.1] are the simulated motion states. Reconstruction, however,

generates an image series of size �푁�푟�푒�푐�표: {�퐼�푠}, �푠 ∈ [0, 1], |{�퐼�푠}| = �푁�푟�푒�푐�표. Generally, the

reconstructed dynamic states are not identical to the ones simulated: {�푠} ≠ {�휍} and

�푁�푟�푒�푐�표 ≠ �푁�푠�푖�푚. Hence, based on the surrogate-based data binning during reconstruction the

GT must be interpolated onto the reconstructed states. In the scope of this work a weight

matrix �푊 ∈ M(�푁�푟�푒�푐�표, �푁�푠�푖�푚) was computed and used for linear interpolation:

GT ′
�푟�푒�푐�표 = {m�푠

0} =
{

∑

�휍

�푊�푠, �휍 · m �휍

0

}

. (3.5)

An algorithm registering a reference image �퐼�푠0
∈ {�퐼�푠} to the whole series {�퐼�푠} yields the set of

MVFs:

REG = {m̃�푠
�푠0
} (3.6)

Hence, the MVFs generated by the registration algorithm are relative to one of the

reconstructed images �퐼�푠0
, but the MVFs from GT ′

�푟�푒�푐�표 are defined relative to the reference

phase �퐼0. There is a systematic mismatch between GT ′
�푟�푒�푐�표 and REG as their coordinate

systems are different (m�푠
0
≠ m�푠

�푠0
). This offset was corrected for by:

GT = m0
�푠0
◦ GT ′

�푟�푒�푐�표 = {m0
�푠0
◦ m�푠

0} = {m�푠
�푠0
}, (3.7)

where m0
�푠0

was computed by numerical inversion of m�푠0

0
.

Computation of Registration Error

For most applications the precision of the registration output REG is only of interest in a

certain region (region of interest (ROI)). However, in a MVF the motion of a voxel is not

encoded in the voxel itself but rather at the location where it is going to be deformed to
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3.2 Methods

(c.f. Eq. (3.3)). Hence, the inverse MVF encodes the motion of the voxel. To compute the

registration error both GT and REG must be inverted and evaluated in the ROI:

Δ
�푟�푒�푔
�푠 (ROI) = ‖(m�푠0

�푠 − m̃�푠0

�푠 ) (ROI)‖2. (3.8)

The precision of the inversion algorithm can be set arbitrarily small, such that its effect is

negligible on the accuracy of the registration output.2 Since the registration output must be

inverted eventually, in practice the inverse is registered directly: REG = {m̃�푠0

�푠 }. Note that the

ROI must be deformed from the reference phase of the segmentation into the motion state to

which the dynamic images were registered: ROI�푠0
(r) = ROI0(m�푠0

0
(r)).

signal s 0 0.25 0.330.33 0.50.5 0.66 0.750.75 1.0

Ground truth 

motion fields
Registered 

motion fields

Offset

Simulated motion states

Reconstructed motion states

Simulation

Registration

Figure 3.3: Schematic overview of relationship between registration and ground truth
outputs. �푁�푠�푖�푚 = 4 red dots show the simulated motion states, �푁�푟�푒�푐�표 = 3 black dots show the
reconstructed states. Red arrows symbolise the MVFs provided by the simulation, black arrows
show the registration output against which the GT must be compared. The arrows’ starting and
endpoint symbolise in which coordinate system they are defined and to which they point. The
post-processing steps discussed above would correspond to the following operations: first the red
arrows are weighted to create three arrows which point from �푠 = 0 to each of the black dots. To
adjust their starting coordinate system their starting points is shifted by the blue offset vector
is added s.t. they each depart from the black dot at �푠 = 0.25 instead of �푠 = 0. Then GT and
registration coordinate systems match and their content can be meaningfully compared. This
figure was published in J1.

To evaluate the registration output the simulation framework is able to generate ROIs

based on the underlying tissue segmentation for the different motion states.

2This assumes that the output of the registration algorithm is invertible. However, the two features of
physiological motion, tissues not passing through each other and motion cyclicality strongly suggest that
registration output should be invertible to describe motion.
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3. Flexible Numerical Simulation Framework for Dynamic PET/MR Data

3.3 Experiments

As mentioned above, we evaluated the framework on three different applications. In the

first, we optimised the parameters of a non-rigid image registration algorithm for cardiac-

resolved PET data and of a synergistic motion estimation approach to estimate cardiac and

respiratory motion using both MR and PET data. In the second application, 5D non-rigid

motion fields were utilised in a motion-corrected image reconstruction to compensate for

cardiac and respiratory motion. Finally, the effect of inaccuracies in the motion fields on the

final quantitative MR parameters obtained from DCE MR was assessed.

PET/MR Simulation Parameters

All tissue segmentation and motion models were generated by the XCAT software [159]. A

simulation of a PET/MR exam on a 3T Siemens Biograph mMR was performed using raw

data files from a patient data examination with the patient’s self-navigator and ECG signal as

motion control signal input (Fig. 3.4). Continuous MR data acquisition during free-breathing

was simulated for a triple-echo prototype Dixon-based GRE Golden angle Radial Phase

Encoding sequence (TR = 5.9ms, TE = 1.2/2.7/4.2ms, FA = 10°, #PE points = 125 pts
angle

×
256 angles)[139, 170]. The spatial resolution of MR was 1.9 mm3 × 3.2 mm3 × 3.2 mm3.

The simulated coil sensitivities consisted of a simple setup of four 3D varying Gaussian

profiles without phase variations between the different RF receive channels. However, more

sophisticated coil map simulations or measurements from an existing scanner could be easily

included and passed as a simulation parameter. The PET sinograms were simulated based

on the same segmentation input as the MRI data. The forward model encoded the spatial

resolution of a Biograph mMR detector using ray tracing. The individual PET images were

reconstructed at different resolutions depending on the application. This is described below.

Attenuation was included in the simulation but scatter and randoms effects were so-far omitted.

The total acquisition time was set to match the MR scan at 3.2 min. These parameters were

used for all subsequent PET simulations.
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Figure 3.4: Respiratory and cardiac motion control signal used as 5D PET/MR
simulation input. The respiratory signal changes smoothly over time. The cardiac signal has
the shape of a sawtooth function increasing linearly from R-peak to R-peak. This figure was
published in J1.
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Quantitative Evaluation of Image Registration

The output of the simulation framework was reconstructed into different cardiac and

respiratory motion states resulting in a series of 3D images {�퐼�푠}, �푠 ∈ [0, 1]. To generate a

motion model, this image series was registered to a reference phase �퐼�푠0
evaluated against the

GT in an ROI containing the left ventricle myocardium as described in Eq. (3.5).

Using Eq. (3.8), the maximum error over all motion phases, i.e.

Δ
�푟�푒�푔

= max
�푠

(

〈

Δ
�푟�푒�푔
�푠 (r)

〉

ROI

)

, (3.9)

is computed to quantify the spatial accuracy of the registration output. Δ�푟�푒�푔 will be referred

to as the registration error in the following. When evaluating the registration error it was

compared to the maximum amplitude of the GT MVFs which is the error made in neglecting

motion and reconstructing the average motion. The application of a motion-compensated

reconstruction can only expect to improve image quality if the motion model is more accurate

than this threshold. This comparison is depicted in Fig. 3.6 and Fig. 3.7.

Image Registration Using Cardiac-resolved 4D PET

To quantitatively evaluate a registration algorithm a 4D PET dataset was simulated in

16 cardiac motion states. Eight motion states {�퐼�푡 } were reconstructed at the signal

locations �푡 = {0.125, 0.25, . . . 1.0} at a spatial resolution matching the MR reconstructions

at 1.92 mm3 × 3.2 mm3 × 3.2 mm3. Attenuation correction was omitted to avoid the imprint

of a static attenuation map veiling the actual motion content of the images at the cost of

an apparently increased uptake in the lungs. The registration algorithm optimised an energy

functional:

m�푠0

�푠 = min
m̂

B0
B

E(m̂�푠0

�푠 ) = min
m̂

B0
B

S(�퐼�푠 ◦ m̂�푠0

�푠 , �퐼�푠0
) (3.10)

where S is a similarity measure. In the case of this study, normalised mutual information

was used as a similarity metric. The transformation was modelled as a free-form deformation

(FFD) using spatial B-spline interpolation [78, 171] without explicit regularisation because

the intrinsic regularisation ensures a smooth motion field on the interpolation scale. The

reconstructed images were registered for different spline control point distances Δ�퐵 to assess

the influence of the intrinsic regularisation on the registration quality. Motion correction was

performed using the registration-transform-add (RTA) approach, i.e.

�퐼�푐�표�푟�푟 (r) =
∑

�휎∈{�푠}
(�퐼�휎�푠0

◦ m�푠0

�휎 ) (r) (3.11)

This motion-corrected image was used to assess the influence of the registration output on

the image quality.
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3. Flexible Numerical Simulation Framework for Dynamic PET/MR Data

Synergistic registration Using 4D PET/MR

Further application of the framework was the evaluation of an advanced synergistic motion

estimation algorithm [82]. To this end two PET/MR datasets were simulated containing 4D

cardiac and respiratory motion, respectively. The MR images were reconstructed using an

iterative SENSE approach [87] for respiration and compressed sensing (CS) [88] for cardiac

motion. Reconstructions yielded image series at the same motion states and with the same

spatial resolution as the 4D PET data in section 3.3. An extended version of the image

registration from Eq. (3.10) with energy functional:

E(m�푠0

�푠 ) = �휆 · S(�퐼�푀�푅 ◦ m�푠0

�푠 , �퐼�푀�푅
�푠0

) + (1 − �휆) · S(�퐼�푃�퐸�푇 ◦ m�푠0

�푠 , �퐼�푃�퐸�푇
�푠0

) (3.12)

(3.13)

with �퐼�푀�푅/�푃�퐸�푇 as the PET and MR image series relative to a phase �퐼
�푀�푅/�푃�퐸�푇
�푠0

, and the synergy

weight �휆 ∈ [0, 1] balancing the PET and MR contribution to the cost function. The extremes

�휆 = 0 corresponds to PET, and �휆 = 1 corresponds to MR input only. The synergy weighting

parameter was varied in the range �휆 ∈ {0, 0.1, . . . , 0.9, 1.0} at Δ�퐵 = 12 for cardiac motion and

Δ�퐵 = 24 for respiration.

Motion Correction of 5D Cardiac PET/MR

All simulations were carried out using in-vivo PET/MR data as template input. Cardiac

and respiratory motion were included as independent motion modes with �푁�푟 = �푁�푐 = 8 states

respectively, yielding simultaneous cardio-respiratory motion in 64 combined motion states.

This corresponded to a cardiac time interval of 125 ms at 60 bpm. Based on the cardiac

and respiratory input signal the simulation output was double-binned into �푁�푟 × �푁�푐 = 4 × 4

motion states for both modalities, corresponding to a temporal resolution 250 ms at a motion

frequency of 60 bpm. The reconstructions were performed with and without motion correction

[89] using the ground truth motion fields. Subsequently, the resulting images were compared

to corresponding reconstructions of the in-vivo patient data to verify that the proposed

framework yields realistic output data. The PET images were reconstructed at a resolution

of 2 mm3 × 2.1 mm3 × 2.1 mm3 matching the patient data used in the comparison. The MR

simulation data were reconstructed using an iterative SENSE approach [87]. For PET AC

during reconstruction a static attenuation map used as the simulation input was employed.

For a more detailed description of the employed motion-correction scheme, please refer to

[172].

Dynamic Contrast Enhanced (DCE) Abdominal MRI

Data acquisition

An abdominal DCE MR exam during the injection of an MR contrast agent (gadoxeate

disodium) was simulated with the input data also acquired on a 3T Siemens Biograph

mMR and using a GRE Golden angle Radial Phase Encoding [173] sequence (TR / TE =

3.29/1.36 ms, FA = 11°, #PE points = 120 pts
angle

×640 angles) at an isotropic spatial resolution

30



3.3 Experiments

of 1.5 mm3 × 1.5 mm3 × 1.5 mm3. Fat suppression was simulated by setting the spin density

of fat to 10% of the water value.

Quantitative Parameter Estimation

An extended Toft’s model for the temporal evolution of the gadoxeate disodium concentration

in the tissue of interest (toi) C�푡�표�푖 (�푡) was fitted based on an arterial input function (AIF)

extracted from the hepatic artery in the template data [173]:

C�푡�표�푖 (�푡) = �푣�푝 · C�푝 (�푡) + �푘�푡�푟�푎�푛�푠 · C�푝 (�푡 − Δ�푇) ∗ �푒−
:CA0=B

E4
�푡
, (3.14)

with C�푝 the blood plasma contrast uptake, �푣�푝 the volume fraction of blood plasma, �푣�푒 the

extravascular extracellular fractional volume, �푘�푡�푟�푎�푛�푠 the volume transfer constant, Δ�푇 the

time delay of tissue enhancement with respect to the arterial concentration in plasma and ∗
representing the convolution operator. Every parameter of the right-hand side of equation

(3.14) depends on the tissue of interest except C�푝. The simulated tissues of interest were

healthy liver tissue and a hepatic lesion with a necrotic core. The parameters used as

simulation input can be found in table 3.1. The necrotic core was simulated as lesion tissue

without any contrast agent kinetics. The resulting Toft’s model and simulated T1 variations

are depicted in Fig. 3.5. The concentration of contrast agent was converted into a temporal

Table 3.1: Input parameters employed in the Toft’s model described in Eq. (3.14). This table
was published in J1.

Tissue type Healthy Liver Lesion Lesion Core
�푘�푡�푟�푎�푛�푠 0.041 0.135 0
�푣�푝 0.025 0.141 0
�푣�푒 0.087 0.022 1

Δ�푇 [min] 0.19 0.20 0

evolution of T1 using �푇1(�푡) =
1

�푅1 (�푡) =
1

�푅1+�푟 ·CC>8 (�푡) where �푟 = 6.2 mmol s−1 is the relaxivity of

gadoxeate disodium at 3T [174]. The simulated Toft’s model and the calculated change in

the T1 parameter extracted from patient data used as simulation input is depicted in Fig.

3.5. The DCE simulation was performed for �푁�푟 = 16 respiratory states and �푁�푐 = 49 contrast

states.

Image Reconstruction and Impact of Motion Field Inaccuracies

From the simulation output a k-t-SENSE reconstruction was performed with and without

respiratory motion correction [89]. In order to assess, how inaccuracies in the motion

estimation would impact the assessment of the quantitative parameters such as �푘�푡�푟�푎�푛�푠, a

bias of different strength �휎 was added to the GT motion fields using:

GT �휎 = {m�푡
�휎} = m�푡

0 + �휎 · �푡

�푁�푟�푒�푐�표 − 1
· n (3.15)
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Figure 3.5: Depiction of motion control signal used as DCE simulation input. Left:
Toft’s model simulated using the parameters from Table 3.1 for three different tissue types. Right:
Toft’s model converted into T1 variations and respiration signal passed to the simulation as
contrast control signal based on which tissue contrast and respiratory state were changed. One
can see how a contrast agent uptake leads to a drop in T1 which generates contrast between the
lesion and healthy tissue in late contrast phases.

where m�푡
0

are the GT MVFs for reconstructed motion phase �푡 ∈ {0 . . . �푁�푟�푒�푐�표 − 1}, �휎 is the

bias strength, �휎 ∈ {0, . . . , 6} and n a spatially varying (but temporally constant) random unit

vector field which fixes the direction of the bias for each voxel. This random unit vector was not

drawn for each voxel independently, but on a larger grid and subsequently spline-interpolated

to the resolution of the motion fields. This procedure took into consideration that the image

registration algorithm used here is spline-based, and hence errors in the motion estimation

are expected to vary smoothly between neighbouring voxels. The increase of bias with each

a larger motion phase number included potential accumulation of error for larger amplitudes

in the registration input. Each of the motion field sets GT �휎 were then used in the motion-

corrected reconstruction and �푘�푡�푟�푎�푛�푠 maps were computed from the dynamic contrast-resolved

image time series. The contrast-to-noise ratio (CNR) between lesion and necrotic core for

uncorrected and motion-corrected (with different values for �휎) images was compared. CNR

was computed as CNR =
Slesion−Score

�휎lesion
where S�푖 and �휎�푖 are the mean and standard deviation

of the �푘�푡�푟�푎�푛�푠 maps in the respective tissue regions. These were evaluated in a 2D axial slice

through the lesion centre and segmented by hand.

3.4 Results

4D PET/MR Motion Estimation Evaluation

Image Registration Using Cardiac-resolved 4D PET

The results of the 4D PET image registration for different registration parameters are shown

in Fig. 3.6. Coronal views of the motion-corrected PET image data are displayed, using a

registration output for two different parameter settings, as well as motion correction using

the GT motion model. The displayed images are corrected into end-diastole as in Eq. (3.11).
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The figure also shows the respective transformations which transform end-diastole images into

systole. The visualisations of the motion fields show that the motion fields with Δ�퐵 = 8 contain

many areas with non-physiological motion vectors. Motion fields obtained with Δ�퐵 = 18 have

a much better correspondence to the GT motion fields. Nevertheless, the motion-corrected

PET images have similar image quality and appear to be accurately corrected for cardiac

motion for both Δ�퐵 = 8 and Δ�퐵 = 18. The registration error evaluated in the left ventricle is

depicted as a function of the spline point distance Δ�퐵. Note that only amplitudes are plotted

but the deviations between registration output and GT are computed vectorially. The effect

of motion correction using the differently regularised registration outputs can be seen in the

animation in supplementary figure S1. The proposed framework provides the GT motion

fields and allows for the calculation of a motion field error in order to quantitatively assess

the performance of different registration parameters.
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Figure 3.6: Quantitative evaluation of 4D PET image registration. Left: Cardiac motion-
corrected PET images (top row) and corresponding motion information used for the correction
(bottom row). All images were motion-corrected to end-diastole. The red box indicates the
heart region for better comparison of images and motion information. A similar effect on the
image quality can be seen for both poorly (Δ�퐵 = 8) and well (Δ�퐵 = 18) regularised image
registration. Only the motion field transforming the data from systole to diastole is shown here.
Right: Maximum error over all motion phases between estimated motion and ground truth in the
left myocardium as a function of different spline point distances Δ�퐵 of the registration algorithm.
The red line indicates the maximum ground truth amplitude. A minimum can be found at Δ�퐵 = 18.
This figure was published in J1.

Synergistic Registration Using 4D PET/MR

The results of the quantitative assessment of synergistic motion estimation is depicted in Fig.

3.7. Systolic and diastolic and exhale and inhale images are shown for cardiac and respiratory

resolved PET and MR images, respectively. Markers indicate cardiac (top) and respiratory

(bottom) motion contained in the image data. PET reconstructions show large uptake in

the lungs in the absence of attenuation correction. The right column shows the registration

error for different synergistic weighting �휆. The red line is the amplitude of the GT motion

and hence corresponds to the error when neglecting motion. For both respiration and cardiac

motion using both MR and PET image data for the registration (i.e. 0 < �휆 < 1) improves the

registration accuracy compared to using either only MR or only PET image data separately.

For respiration one can see that the maximum error is always much lower than the maximum

amplitude of the ground truth motion whereas for cardiac motion the �휆 parameter needs to
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be fine-tuned to achieve a registration error below the GT amplitude and hence a registration

results which leads to an improvement in image quality when using motion correction.
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Figure 3.7: Quantitative assessment of joint PET/MR 4D motion estimation. Left:
MR and PET images used as the input for 4D respiratory and cardiac motion estimation.
Myocardial contraction between diastole and systole (red arrows) and translation between in- and
exhale (red lines) can be clearly seen. The depicted motion states correspond to the respective
maximum amplitude of the GT motion fields for both motion types. Right: quantitative evaluation
of the registration. The registration error is plotted in blue, with the maximum amplitude of the
GTMVFs in red. Minima can be found in both curves yielding the best choice of registration
parameter �휆. This figure was published in J1.

Motion Correction of 5D cardiac PET/MR

Images reconstructed from the simulated PET/MR raw data are compared to the corre-

sponding in-vivo patient data in Fig. 3.8. Respiratory and cardiac motion leads to similar

motion artefacts in both datasets for PET and MR. In the MR images blurring of anatomical

structures such as the heart or the liver can be clearly seen for both in-vivo data and numerical

simulations. The PET images show blurring of the myocardium and papillary muscles. Motion

correction of respiratory and cardiac motion in the in-vivo data improves the image quality,

leading to a better depiction of the anatomy comparable to the motion-free reference image

obtained with the simulation framework.

DCE Abdominal MRI

The reconstructed DCE images are pictured in Fig. 3.9 for both simulation and patient data.

For the two datasets both respiration averaged and motion compensated k-t-reconstructions

are compared in selected phases. An ROI containing a lesion with a necrotic core is zoomed in

on. The slice showing the respiration average has been selected to show the same anatomical

region as the respiratory-compensated images. For the selected ROI the �푘�푡�푟�푎�푛�푠 parameter of
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Figure 3.8: Reconstructions of in-vivo and simulated PET/MR data. The simulation
and acquisition occured during free-breathing and over multiple cardiac cycles. Left: MR
reconstructions. The top row shows the patient images for motion-average (5D average)
and cardiac and respiratory motion-correction (5D MoCo), and the bottom row displays the
corresponding reconstructions of the simulation output, where 5D MoCo was performed using the
ground truth motion. Patient data and simulation have a comparable image contrast and quality.
Motion correction reduces the blurring of anatomical structures indicated by the yellow arrows.
Right: corresponding PET reconstructions. Again, the image quality and contrast of simulation
and patient data reconstructions are comparable. Motion correction in PET yields a reduced
blurring of the uptake in the heart indicated by red arrows. This figure was published in J1.

a Toft’s model fit to the DCE images is depicted. In simulation and patient data motion

correction improves the visualisation of the necrotic core of the lesion with lower �푘�푡�푟�푎�푛�푠 value

compared to the lesion itself. In the �푘�푡�푟�푎�푛�푠 maps computed from motion-averaged cases the

necrotic core is strongly blurred. This finding is confirmed quantitatively by the results shown

in Fig. 3.10. The left plot shows the deviation from the true motion for the different �휎 values

of the maximum respiratory amplitude. Only the configuration of �휎 = 6 has a deviation

larger than the GT amplitude marked by the dotted line. Upper right: the CNR in the

�푘�푡�푟�푎�푛�푠 fits between lesion and core as a function of MVF bias. A non-linear relationship is

revealed resulting in a decrease in CNR between lesion and necrotic core in the �푘�푡�푟�푎�푛�푠. A

ROI-averaged bias larger than 4 mm yields a reduced CNR, in which the core is not visible

any more. Deviations larger than 5 mm yield a CNR of the same magnitude as if no motion

correction had been employed (indicated by the dotted line). The �푘�푡�푟�푎�푛�푠 maps for the different

bias strengths in which the CNR was evaluated are shown below the quantitative plots. While

one can see a degradation in contrast for growing bias, between �휎 = 0 and �휎 = 3 the core

stays clearly outlined.

3.5 Discussion

This paper presents the design and application of a simulation framework used to generate

realistic dynamic PET/MR raw data. The framework is specifically targeted at providing

dynamic ground truth information for different types of physiological motion. In addition,

other effects such as contrast or tracer dynamics and chemical shift between fat and water

in MRI can be included. It aims at supporting the development of new - and validation and

improvement of currently employed reconstruction methods and, more specifically, PET/MR

motion correction approaches.
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Figure 3.9: Comparison of simulated DCE and patient data. Top images show simulated
data, bottom images show patient data. Motion-corrupted (Free breathing) and respiratory
motion-corrected (Mo-Co) image reconstructions are shown in selected DCE images for both
simulation and patient data. The right row shows the �푘�푡�푟�푎�푛�푠 map resulting from a fit over all 48
contrast states. For the simulation a �푘�푡�푟�푎�푛�푠 map of a motion free simulation is available, displayed
next to the �푘�푡�푟�푎�푛�푠 fit of the motion-corrected data. This figure was published in J1.

The success of a motion-corrected reconstruction depends on the accuracy of the estimated

motion model from image registration. However, an improvement in image quality might

be an insufficient indicator for successfully modelling motion. Figure 3.6 shows that also

motion fields which are not physiologically plausible can lead to high image quality. Non-rigid

image registration offers many degrees of freedom [70, 79, 175], but it can also yield strong

improvements in image quality by computing an unrealistic and inaccurate motion model

[176]. The proposed approach offers here the possibility to simulate not just dynamic data

but also GT motion information which can serve as a reference standard, similar to previously

proposed MR-only approaches [171, 177, 178]. This allows for a comprehensive evaluation of

image registration techniques without the need for any manual annotations [179]. The realism

of numerical simulations of human anatomy is often limited by the accuracy of the organ

and tissue segmentation, assigned tissue parameters and signal and acquisition models. The

proposed method is not developed for a specific anatomical model, but can be combined with

any pixel-based model of the human anatomy [83, 155, 157, 159]. The presented framework

builds itself on flexible input possibilities allowing the inclusion of currently existing and

future human phantoms in a generic way. The output in standardised format allows direct

integration of the simulation results into existing workflows. The computational demand is

kept low, by directly computing effective MR and PET signals, and omitting Bloch and Monte-

Carlo simulations. However, this comes at the cost of reduced realism, neglecting intravoxel
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Figure 3.10: Artificial bias in vector field. Upper left: absolute value of the bias for different
�휎 as in Eq. (3.15) computed as the mean bias averaged over all motion phases in an ROI including
only the lesion and the necrotic core. Error bars correspond to the standard deviation in the ROI.
�휎 = 0 yields the GT MVF with no bias; the dotted line indicates the mean motion amplitude
used in the simulation. Only the largest bias �휎 = 6 exceeds the average motion amplitude. Right:
variation of the CNR in lesion and core with different MVF bias. Upper dotted line: CNR
without including motion in the simulation. Dotted line: resulting CNR without including motion
correction in the image reconstruction. It can be observed that the CNR drops to the level of
neglecting motion correction for deviations larger than 4 mm. Bottom: series of �푘�푡�푟�푎�푛�푠 maps
resulting from different bias strengths. A degradation in contrast for increasing bias starting from
�휎 = 3 is visible. The CNR evaluation was performed on manual segmentations of these images
This figure was published in J1.

effects and yielding identical contrast over regions of the same tissue. Despite this limitation,

the presented framework is able to generate data which is very similar to real patient data

as shown in Fig. 3.8. Nevertheless, more complex signal models could be included in the

framework. Currently randoms and scatter effects, positron range and partial volume effects

are not part of the PET simulation but this could also be added in the future. Following this

could also yield applications in training data generation for machine learning.

All simulations were performed on a Virtual Machine running on a workstation with access to

58 GB of RAM and 8 CPUs. Using this setup and a 208x208x208 voxel segmentation the time

to simulate 4 motion states was 25 minutes for PET using a Siemens Biograph mMR detector

consisting of 11 segments and 4 minutes for MRI simulating a 96000 phase-encoding points

on a 3D GRPE trajectory acquisition. The simulation time scales linearly with the number

of dynamic states included. The current implementation only allows equal-sized CC bins and

CC is sampled at the centre of each bin. Hence to avoid non-linear intra-bin CC behaviour

the number of simulated states must be high. Further improvement could be achieved by

computing the average CC in each bin instead and perform automatic bin sizing based on the

slope of the CC signal to ensure proper signal sampling while reducing computational costs.

In addition to comparing the image quality of the simulation to the template data, the

framework was used to evaluate the accuracy of registration algorithms. With the GT

information the optimal registration parameters for 4D motion in PET, shown in Fig. 3.6,
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3. Flexible Numerical Simulation Framework for Dynamic PET/MR Data

MR images or weighted combinations thereof, as in Fig. 3.7 could be determined. For a strong

weighting of the MR image information, image registration is affected by the undersampling

artefacts in the MR images and hence yields inaccurate motion fields. The results for the

optimal weighting between MR and PET image information obtained from the simulated

data was �휆 = 0.4 and 0.2 (�휆 = (0, 1)=(PET,MR)) for respiratory and cardiac motion. This is

in good agreement with the values reported from the in-vivo data of [82]. The framework was

also shown to be feasible in standalone MR applications, such as the DCE simulation presented

in 3.4. In this case, the number of simulated and reconstructed dynamic phases coincided for

contrast as well as motion. The framework was able to produce data with realistic content

and the same dynamic behaviour as observed in the patient data acquisitions. Furthermore, it

enabled a Toft’s model fit and reproduced the �푘�푡�푟�푎�푛�푠-maps found in the template input data.

An improvement in CNR between lesion and necrotic core when applying respiratory motion

correction could be visually detected for the simulation results where the motion-compensated

fit showed a clear delineation of the core. To quantify this effect different degrees of bias were

added to the MVFs in a fashion very similar to errors produced by artefacts and noise. Motion-

compensated �푘�푡�푟�푎�푛�푠 maps yielded a well-delineated core for ROI-averaged deviations of the

MVFs from the correct motion in the maximum amplitude motion phase up to the limit of

approximately twice the voxel size. Deviations larger than 4 mm, however, showed a CNR

comparable to completely neglecting motion. The direction of bias was fixed to one random

configuration and scaled to increase the deviation from the true motion. While the importance

of precise image registration to obtain high-quality �푘�푡�푟�푎�푛�푠 could be shown, to determine the

exact behaviour of the CNR evaluations with different directions of bias (i.e. different noise

realisations) would have to be carried out. In this study, the number of used template datasets

was limited to two, one from a PET/MR and from a free-breathing DCE abdominal exam.

The focus was set to prove the feasibility of the framework in multiple different tasks. It

was not examined how the degree of realism changes with different template data or different

segmentation input. Furthermore, for the cardiac PET/MR simulation, no pathology (e.g.

fibrotic tissue in the myocardium) was added. Future extensions in order to improve the

realism of the simulation framework will include scatter and randoms simulation and the

application of a positron range kernel for PET, and more realistic coil map simulations for

MR.

The output in standardised raw data format enables reconstruction with open-source recon-

struction packages such as Berkley Advanced Reconstruction Toolbox (BART), Gadgetron,

STIR and other frameworks able to read ISMRMRD or Interfile format. The framework

allowed an assessment of image registration accuracy to be efficiently performed on data

simulated with parameters as would be used in-vivo.

In this study, we used a spline-based model for image registration. Also, the GT motion fields

used as input to the simulation were based on the same model. This could lead to a bias in

the evaluation of image registration algorithms and requires further investigation.

The framework is not limited to periodic motion. The motion model can include global

rotations and translations, which in combination with a non-continuous CM (e.g. a step

function) enable the simulation of sudden patient motion.

Simulations often serve as a mean to validate newly developed methods, however, they should
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also become a useful tool to allow others to reproduce previous results. Supplying the software

as part of SIRF (https://www.ccppetmr.ac.uk/) ensures it will be available as part of a well-

maintained framework with an active PET/MR community. Implemented in C++, Matlab

and Python interfaces will enable easy use and both simulation and output can be shared

among the community. Additionally, the simulation and all its dependencies as part of the

SIRF software will be supplied in a virtual machine or Docker container.

3.6 Conclusion

A novel framework to simulate dynamic PET/MR data with motion and contrast changes

were presented. It allows for flexible user input and generates output in standardised raw

data format, integrating into existing workflows. Its performance was evaluated in different

applications and its output compared to patient data, showing that realistic data was

generated. The value of the framework for the evaluation and optimisation of registration

algorithms was assessed and demonstrated for PET , MR and synergistic PET/MR image

registration approaches of cardiac and respiratory motion estimation. Especially for complex

reconstruction pipelines (e.g. motion-corrected image reconstruction with subsequent model-

fitting to obtain quantitative biophysical parameters), this framework offers the possibility to

evaluate how inaccuracies in motion estimation are propagated through the pipeline to the

final diagnostic parameters.

This work is the basis for simulations performed in subsequent chapters. Especially, the

chemical shift of the MR signal model which has not yet been used allows evaluating fat-water

separation techniques. These are discussed in detail in the following and will be the foundation

of the acquisition of simultaneous [18F]NaF PET/MR patient data. When eventually applying

the subsequently developed MoCo methods to them the simulations will be able to provide

confidence in the generation of motion models when GT motion information is no longer

available.
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4
MR Acquisition-Reconstruction

Framework for Improved Motion

Estimation

The following chapter describes the development of MR acquisition-reconstruction techniques

that allow for the estimation of high-resolution physiological motion models, dynamic

attenuation correction maps and 3D anatomical reference images for PET uptake from one

comprehensive MR examination. While the presented methods are MR imaging specific they

were conceived to be als employed in simultaneous [18F]NaF PET/MR patient data MCIR.

Parts of this chapter have been submitted as J8.

4.1 Background

The acquisition of MR data in simultaneous [18F]NaF PET/MR can serve multiple purposes:

basis for AC map calculation, anatomical reference for uptake locations and source of motion

information for MoCo. While all these data could be acquired in separate acquisitions [71] this

reduces scan efficiency. Hence, it is more practical if data are acquired in one comprehensive

MR sequence that allows for the extraction of all parameters simultaneously. To meet these

requirements there are several demands to the employed MR sequence. The MR image must

have a high spatial 3D resolution and sufficient contrast to locate plaques in the coronary

system. Also, the sequence must be able to provide both cardiac and respiratory motion

information to correct for both motion types. Finally, it requires to classify different tissues

for AC generation. However, the MR data need to be acquired in a feasible scan time.

Retrospective binning approaches hence are bound to yield undersampled data in each bin

which requires the employed k-space trajectory to be motion-robust.

The approach taken in this work builds on a 3D T1 weighted Dixon acquisition that has

previously been used for cardio-respiratory PET/MR MoCo. The advantages of using a

Dixon sequence and employing fat-water separated reconstruction are three-fold. First, the
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fat around the coronaries can be effectively suppressed in anatomical reference images [57].

Secondly, if both a positive water and fat contrast are available it could be benefitial to

use both in estimating motion. Lastly, a fat-water separated reconstruction automatically

provides fat as a tissue for an AC map. A model-based fat-water separation framework was

implemented and combined with MCIR that allows compressed sensing regularisation on the

fat-water separated images instead of individual echo reconstructions. The previously assessed

PET/MR synergistic registration is applied to simulated fat-water separated MR images and

its performance is evaluated using the framework presented in chapter 3. Furthermore, a

novel phase encoding pattern for a 3D RPE sequence [170, 180] was developed providing an

ideal distribution of phase encoding points and ensuring the same image quality independent

of the periodicity of cardiac and respiratory motion.

4.2 Methods

Sunflower Trajectory

K-space data acquired in this work were sampled with an adaptation of the radial phase

encoding (RPE) trajectory [170, 180]. The readout occurs along a fixed direction �푘�푥 on a

Cartesian grid. All readouts are performed parallel to each other. The phase encoding steps

in the �푘�푦-�푘�푧-plane are arranged radially. In the following, radial lines refer to lines of phase

encoding points sampled along a constant angle of the �푘�푦 − �푘�푧 plane and do not refer to a

radial readout. This is depicted in Fig. 4.1.

ky

re
a

d
o

u
t

0

Figure 4.1: Radial phase encoding. Left: schematic k-space sampling pattern of 3D radial.
Cartesian readouts along �푘�푥 are aligned in parallel and ordered in a non-cartesian fashion in the
�푘�푦 − �푘�푧 phase encoding plane. Readouts are usually performed along the head-foot direction to
encode the largest field of view (FOV) along the main patient axis. Parts of this figure have been
published in J7.

The trajectory in the phase encoding plane can be computed using Eq. (4.1):

(

�푘�푦

�푘�푧

)

=

(

ℜ�픢

ℑ�픪

)

(

(�푛�푟�푑�푟 + Δ (�푛�휙)) · �푒�푖 ·�푛q�푑�휙

)

, (4.1)
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with �푛�푟 = −�푁A

2
, . . . ,

�푁A

2
− 1, �푛�휙 = 0, . . . , �푁�휙 − 1 with �푁�푟 the total number of radial points per

phase encoding line and �푁�휙 the total number of angles, Δ (�푛�휙) is an angle-dependent shift, and

ℜ�픢 and ℑ�픪 are the real and imaginary part of a complex number. The step-wise increments

in k-space in the radial and angular direction are given by �푑�푟 and �푑�휙, respectively. Additional

variability in the sampling patterns is introduced by the angle-dependent shift, displacing the

complete set of points along this angle by Δ (�푛�휙). Omitting an additional shift by setting

Δ (�푛�휙) = 0 ∀ �푛�휙 yields concentric circles with a radial distance of �푑�푟 between adjacent rings.

As this distance defines the radial FOV, a reduction of radial folding artefacts can be achieved

by a reduction of the distance between rings without increasing the number of sampled phase

encoding points. Previously, the RPE trajectory has been used with 4-fold interleaved circles

[170] with an angle-dependent shift in Eq. (4.2)

Δ (�푛�휙) =
�푑�푟

4
· �휋�퐵�푅

(

mod(�푛�휙, 4)
)

= Δ�퐵�푅 (�푛�휙) (4.2)

�휋�퐵�푅 :
(

0 1 2 3
)

↦→
(

0 2 1 3
)

(4.3)

where mod represents the modulo operator and �휋�퐵�푅 the bit-reversal permutation defined in

Eq. (4.3). Each concentric ring is split into 4 sub-rings decreasing the effective radial gaps

between them.

The trajectory proposed in this work is generated by the angle-dependent shift described in

Eq. (4.4):

Δ�푆�퐹�퐿 (�푛�휙) =
�푑�푟

2

(

2 · mod(�푛�휙,Φ) − 1
)

, (4.4)

where Φ =
1+

√
5

2
is the golden ratio. This applies the principle of golden-ratio based angular

increments [181] to the radial sampling direction of polar sampling. The pattern generated

through more and more phase encoding points is displayed in Fig. 4.2 and has the appearance

of seeds assembled in a sunflower, similar to a spiral readout trajectory based on Fibonacci

spirals [182].

The angle-dependent shift Δ�푆�퐹�퐿 from Eq. 4.4 assumes a linear angular increment �푑�휙 =
�휋
�푁q

.

The trajectory in this work was used with a golden angle increment �푑�휙 = �휋 · (Φ−1), where when

the final number of angles was known, assuming a constant angular spacing between them

and the shift for each radial line was applied in the correct order and with the appropriate sign.

One challenge encountered in standard RPE encoding is that the acquisition time of the

phase encoding points along one radial line is determined by how many points lie along it.

Ultimately this number is constrained by the FOV that needs to be encoded in the radial

direction. Subsets generated by retrospective binning of the data into motion states hence

often yields connected phase encoding points along individual radial lines. For the shift ΔSFL,

however, such infinitely interleaved circles generated by (4.4) for �푁�푟/�휙 · �푑 (�푟/�휙) = �푐�표�푛�푠�푡 allow

to undersample the radial direction �푁�푟 ↦→ �푁A

�퐹q
while simultaneously oversampling the angular

direction �푁�휙 ↦→ �퐹�휙 · �푁�휙. Hence, the encoded radial FOV is not depending on the number of

points along one radial line. Upon retrospective binning this simultaneous radial under- and

angular oversampling generates undersampling patterns with more homogeneous distribution
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and hence more incoherent artefacts [183]. The shift described by (4.4) depends on the radial

distance and hence the resolution increases at the same time by a factor of
�푁A−�퐹q

�푁A−1
compared

to the fully sampled case where �푁�푟 is the number of radial points per radial line for the full

FOV and �퐹�휙 the radial undersampling factor. This has to be taken into account during image

reconstruction. The scaling yields 0.94 for �퐹�휙 = 16 which would lead to approximately a 6%

shrinkage of the object in the reconstructed images if not corrected for.
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n¼ = {1,...,26}n¼ = {1,...,17}n¼ = {1,...,9}

n¼ = {1,...,51}n¼ = {1,...,42}n¼ = {1,...,34}

n¼ = {1,...,76}n¼ = {1,...,67}n¼ = {1,...,59}

n¼ = {1,...,101}n¼ = {1,...,92}n¼ = {1,...,84}

½¾¿ÀÁÀ½r¿ÂÃ-0.1-0.1 0.1

0.1

-0.1
FÄÅÆ

Figure 4.2: Sunflower pattern creation. With each frame the number of angles is increased
for �푁�푟 = 64 radial points and �푁�휙 =

�휋
2
·�푁�푟 = 101 angles. It can be seen, how the gaps in the pattern

are filled in such that finally, no two points have the same distance from the centre. The depicted
range is [-0.1, 0.1] while the trajectory is normed to [-0.5,0.5].
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Model-based Fat-Water Separation

A model-based iterative fat-water separation was implemented [67, 68], and extended by a

model describing physiological motion [89] (e.g., respiratory or cardiac motion). The image is

a 4D water-fat doublet (�푊, �퐹) (�푥, �푦, �푧, �푚) = (�푊, �퐹) (r, �푚) = (�푊�푚, �퐹�푚) where �푥, �푦, �푧 or r are the

spatial directions and �푚 labels the motion state. Physiological motion is defined as a map

�푇�푚 : R3 → R

3 where such that (�푊, �퐹) (r, 0) = (�푊, �퐹) (�푇�푚 ◦ r, �푚) where �푚 = 0 is an arbitrary

reference motion state. The acquisition model is described by the action of encoding operator

�퐸 for echo time �푇�퐸 , receiver channel �푐 and motion state �푚 by:

�푘�푐 (�푇�퐸 , �푚) = �퐸 (�푐,�푇� ,�푚) (�푊0, �퐹0) (4.5)

= P�푚
(

F (�퐶�푐�푒
2�휋�푖Φ�푇� ·�푊0 ◦ �푇−1

�푚 ) + �퐷 (�푇�퐸 )F (�퐶�푐�푒
2�휋�푖Φ�푇� · �퐹0 ◦ �푇−1

�푚 )
)

(4.6)

where �퐶�푐 is the normalised coil sensitivity profile, F the Fourier transform, Φ an off-resonance

frequency map due to local field inhomogeneities Δ�퐵0(r), P�푚 projects the data to the motion

bin �푚, and �퐷 (�푇�퐸 ) is the chemical shift between water and fat. The fat-water shift is

approximated by a six-peak model [67, 68, 184] of the form:

�퐷 (�푇�퐸 ) =
6

∑

�푝=1

�훼�푝 · �푒�푖�훾Δ ?�푇� (4.7)

in which �훾 is the gyromagnetic ratio �훼�푝 is a relative amplitude and Δ �푝 the chemical shift of

peak �푝 relative to the water signal. The adjoint action is defined by:

(�̃푊0, �퐹0) =
∑

�푐,�푇� ,�푚

�퐸�퐻
(�푐,�푇� ,�푚) �푘�푐 (�푇�퐸 , �푚) (4.8)

=

∑

�푐,�푇� ,�푚

�푒−2�휋�푖Φ�푇� · �푇�푚 ◦ �퐶★
�푐 F −1

(

�푘�푐 (�푇�퐸 , �푚), �퐷★(�푇�퐸 ) · �푘�푐 (�푇�퐸 , �푚)
)

(4.9)

where the in (�̃푊0, �퐹0) signifies that these are only the result of the application of the adjoint

and not the actual inverse. A direct inverse of the model described in Eq. (4.6) does not exist

such that the inversion must be found iteratively.

An inversion of the described model in Eq. 4.6 yields a fat-water separated MCIR in the state

�푚 = 0. However, this assumes that the motion �푇�푚 is known which is usually not the case but a

motion-model must be generated from the data. To this end, a motion-resolved reconstruction

is required, created based on motion-binning using a surrogate signal as described in chapter

2. The solution of the reconstruction problem will yield a 4D motion-resolved reconstruction

if the application of a motion model and a summation over all motion bins in Eq.(4.6) and

Eq.(4.9) are omitted.

The iterative inversion is formulated as the inversion of the cost function C(�푊, �퐹) given by:

C(�푊, �퐹) = ‖�퐸 (�푊, �퐹) − �푘 ‖2 + �휆�푇�푉 ‖�푇�푉 (�푊, �퐹)‖1 + �휆�푇�푉�푇 ‖�푇�푉�푇 (�푊, �퐹)‖1 (4.10)

where �휆�푇�푉 and �휆�푇�푉�푇 are the respective weights associated to the spatial total variation (�푇�푉)

and total variation along the motion direction (�푇�푉�푇) regularisations. This was optimised

using non-linear conjugate gradient descent with a line search optimisation [88, 185]. This
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way the model-based inversion incorporates parallel imaging [87] and MoCo [89] as well as

compressed sensing [88]. While in [67, 68] the off-resonance map Φ was a reconstructed

parameter and part of the optimisation, in this study its estimate was computed before the

optimisation [65] based on the three echoes and was subsequently kept constant and used as

a model parameter. A schematic overview of this process is depicted in Fig. 4.3.
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Figure 4.3: Schematic overview of model-based reconstruction framework. Top:
components of employed acquisition model, symbolically referred to as an MR scanner. Fat
and water images are first deformed by the motion model, then a chemical shift is applied by
adding an echo time-dependent complex phase, and eventually, Fourier encoding including coil-
sensitivities is performed. Bottom: iterative inversion of the acquisition model. Based on the
current image estimate the regularisation is computed (1). Then the acquisition model is applied
to the current image estimate (2) and its output (model prediction) is compared to the measured
data by computing the data fidelity (3). Based on the cost function, comprised of the regularisation
and data fidelity term, an image update for both water and fat is computed (4) and added to the
current image estimate (5). This process is iterated until convergence.

Fat-Water Dual Image Registration

In the forward model underlying the reconstruction, the motion transformation �푇�푚 in Eq. (4.6)

is assumed to be known. One way to obtain this information is to use an image registration

algorithm on a set of motion-resolved images (�푊�푚, �퐹�푚). The registration algorithm employed

in this work is based on an algorithm previously used in dual-modality image registration in

simultaneous cardiac PET/MR [82]. It was shown that combined use of both PET and MR

images in the registration leads to a more robust motion estimation t han if both data streams
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4. MR Acquisition-Reconstruction Framework for Improved Motion Estimation

are used separately. This principle was transferred to the fat-water separated images using fat

as complementary information to the water images. The registration algorithm is formulated

as an optimisation problem with the associated cost function:

C(�푇�푚) = �휆 · S(�푊�푚 ◦ �푇�푚,�푊0) + (1 − �휆) · S(�퐹�푚 ◦ �푇�푚, �퐹0) + �휌 · R(�푇�푚) (4.11)

where S is a similarity metric, �휆 weighting the contribution of water relative to fat (i.e. �휆 = 1

corresponds to water only, �휆 = 0 to fat only), and �휌 the weight associated to a regularising

term R. The parametrisation of the transformation �푇�푚 with B-splines [78] added further

implicit regularisation. In this work, S was normalised mutual information, and the explicit

term R was set to the so-called bending energy (i.e. the absolute value of the motion vector

field’s second spatial derivative) of the transformation [78, 186]. Larger bending energy forces

the computed �푇�푚 towards a more linear transformation.

Quantitative Assessment of Image Sharpness

To assess the effect of MoCo on the image quality, the sharpness Σ of structures visible in

the fat images was evaluated [187–190]. To this end, two coronal and two sagittal slices were

extracted from the fat image of each reconstruction. In the sagittal slices the apex and the

base, and the coronal slices, the pericardium at the left myocardium and right atrium were

manually delineated with a smooth curve. These evaluated edge positions are schematically

displayed in Fig. 4.4.

Figure 4.4: Sharpness computation locations in the numerical simulation. The four
locations are shown here for the ground truth motion-corrected fat image as the red dotted lines.

A canny edge detection algorithm was applied to the fat images yielding edge information.

The values of both fat and edge images were extracted along the delineated line ℓ with a width

of 16 pixels and subsequently averaged over the line width yielding �푖ℓ and �푒ℓ for the image

and edge information respectively. Finally, the edge sharpness was defined as

Σℓ =
max �푒ℓ

max �푖ℓ
(4.12)
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Δ�퐵 103 · �휌 �휆

(4,6,8,10,12) (0,1,2,3,4,5) (0, 0.5, 1)

Table 4.1: Parameters used in the numerical registration evaluation.

4.3 Experiments

Sunflower Trajectory

The different patterns generated by Δ (�푛�휙) = 0, Δ�퐵�푅 and Δ�푆�퐹�퐿 are generated for under-

oversampling factors �퐹�휙 = 1, 2, 4. Furthermore, phase encoding point distributions generated

by Δ�푆�퐹�퐿 and �퐹�휙 = 4 and Δ�푆�퐹�퐿 and �퐹�휙 = 1 are binned retrospectively using a respiratory

belt and ECG signal from patient data for �푁�푟�푎�푑 = 192 and �푁�휙 = 512. The number of bins is

�푁�푟�푒�푠�푝 = 6 for respiratory amplitude and �푁�푐�푎�푟�푑 = 12 for cardiac phase binning.

In all cases, the patterns are compared and assessed visually.

Simulation for Fat-Water Registration Evaluation

The numerical simulation framework described in chapter 3 was used to simulate dynamic

MR data containing either 4D respiratory or 4D cardiac motion [166, 191]. The underlying

anatomy segmentation and matching ground-truth motion fields were generated by the

XCAT [159]. Coil sensitivities were simulated using Gaussian distributions and no field

inhomogeneities were added. Data were reconstructed using the same fat-water reconstruction

as were applied to the patient data. A schematic overview of the employed simulation

framework is given in Fig. 4.5. The registration can be performed for multiple sets of

parameters and for each registration output, the error to the ground truth MVF can be

computed in an ROI. For this evaluation, the ROI consisted of the pericardium and the

myocardium as highlighted in Fig. 4.5.

Evaluation Registration Error

The free parameters of the registration are the triplet spline distance, bending energy weight,

and water-weight = (Δ�퐵, �휌, �휆). The registration was run for different parameter spacing

combinations that are displayed in Tab. 4.1.

Evaluation Image Sharpness Metric

Each registration was used to motion-correct the input images using the RTA method:

(�푊, �퐹)�푀�표�퐶�표 = 〈(�푊, �퐹) (�푇�푚 ◦ r, �푚)〉�푚. Σ defined in Eq. (4.12) was computed and for each

parameter set it was related to the registration error of the MVF used for MoCo.
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Figure 4.5: Schematic overview of simulations underlying the registration evaluation.
Top: simulation input as an XCAT anatomy segmentation and corresponding ground truth
motion fields, and dynamic information in the form of template MR k-space data and surrogate
signals extracted from one patient. Bottom: reconstruction output displayed for the cardiac and
respiratory motion for both fat and water images. Exemplary fat is displayed for respiratory
motion, and water for cardiac motion. Yellow lines and arrows show the motion amplitude
contained. Registrations were performed on data where water and fat were weighted by 1 − �휆

and �휆 respectively. Eventually, the registration output is compared to the ground truth motion
in the ROI indicated by the orange overlay.

4.4 Results

Sunflower Trajectory

The resulting trajectories for simultaneous radial under- and angular oversampling are

depicted in Fig. 4.6. The green H marker shows the radial k-space distance necessary to

encode the FOV. It should be noted, however, if this FOV were used for encoding it was

already insufficient to suppress all radial folding artefacts that appear as a ring around an

acquired subject. For acceptable image quality, this radial distance between adjacent rings is

not suited. As can be seen, only for Δ�푆�퐹�퐿 the newly sampled points are located in between

the previously sampled ones, ensure no large gaps occur between the acquired k-space points

for any �퐹�휙.

This allows adapting the temporal resolution of one radial line (i.e., the time to acquire all

phase encoding points along one line) almost arbitrarily. The effect of retrospective binning is

depicted in Fig. 4.7. The motion gating does not generate subsets of single radial lines in the
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Sunflower

F�

�

�

Figure 4.6: RPE undersampling-oversampling patterns. Three phase encoding trajectory
patterns generated by Δ (�푛�휙) = 0 (left), Δ�퐵�푅 (�푛�휙) (centre), and Δ�푆�퐹�퐿 (�푛�휙) (right). The green
spacing defines the distance in k-space that defines the encoded FOV by �푑�푟. A simultaneous radial
under- and angular over-sampling reduces the FOV for both unshifted and bit-reversed patterns
but leaves the sunflower pattern invariant. Also, one can visually detect that the sunflower pattern
has the smallest mean distance between adjacent k-space points and no concentric circles appear
as there are no two points with the same distance from the centre.

phase encoding plane depending on motion periodicity and the regions without any sampled

phase encoding points (black arrows) are smaller.

Finally, since the k-space centre is sampled with every radial line, a temporal resolution

of a self-navigator is Δ�푡 = �푁�푟 · �푇�푅. Hence, the temporal resolution is improved to Δ�푡 =
�푁A

�퐹q
· �푇�푅.

This would also allow the sampling of a respiratory self-navigator if TR becomes large.

Fat-water Synergistic Registration

The motion field errors for different registration parameters are plotted in Fig. 4.8. One can

see that over a large range of parameters a registration error below 1 voxel can be achieved.

For cardiac motion, when no additional regularisation (�휌 = 0) is applied the only water-based

(�휆 = 1) registration has an error larger than the motion amplitude.

The quantitative analysis of the registration error is summarised in Tab. 4.2. For both

respiratory and cardiac motion, the minimum error is the smallest for a �휆 = 0.5 at 0.52

and 0.74 voxel, respectively. The average error for both motion types is below one voxel for
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N�=	
�Nr=
�� F�� N������Nr��� F���

Cardiac binning N = 12Respiratory binning N = 6

Figure 4.7: RPE patterns after retrospective binning. The pattern generated by Δ�퐵�푅

(red) shows larger regions in which no points are sampled (black arrows) compared to Δ�푆�퐹�퐿 with
�퐹�휙 = 4 (blue). The overall distribution is more homogeneous for the patterns generated by Δ�푆�퐹�퐿

respiration and slightly above one voxel for cardiac motion. The standard deviation of the

error is similar for all weights.

Minimum error Average error Std. error
Motion Type �휆

Cardiac 0.0 0.57 0.69 0.08
0.5 0.52 0.70 0.13
1.0 0.62 0.81 0.21

Respiratory 0.0 0.82 1.16 0.29
0.5 0.74 1.04 0.26
1.0 0.78 1.09 0.24

Table 4.2: Quantitative analysis of the registration errors. The minimum, average and standard
deviation are computed over the set of all performed registration parameter combinations. All
errors are displayed in voxel sizes.

In Fig. 4.9 the results of the quantitative analysis of the registration are presented.

One can see that the best registration can follow the motion amplitude accurately across

all motion states where the average error is reduced to below one voxel. For the best

registration parameters the dependency of the registration error �휆 is small, however, the

optimal registration consists of both water and fat images weighted equally. The scatter plots

of Σ versus the registration accuracy show that there is a clear difference between neglecting

motion and using the ground truth to correct it. However, for the registrations, there is no

visible correlation between a precise image registration and the resulting Σ for any �휆. The

largest error for cardiac motion is of the order of not correcting motion and scores a higher Σ

than the ground truth MoCo.
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Figure 4.8: Results of the numerical evaluation of the registration accuracy. Top:
respiratory motion. Bottom: cardiac motion. Left to right: �휆 = 0 (fat only), �휆 = 0.5 and �휆 = 1
(water only). The minimum of the colour bar corresponds to zero error, the maximum to the mean
amplitude of the ground truth motion. Both motion types can be registered with an accuracy of
up to 1 voxel size for a variety of parameters. Only cardiac motion reaches errors of the same size
as the ground truth amplitude if no regularisation is used.
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R�
C�

Figure 4.9: Evaluation of registration error. Left column: respiration (R1-R3), right column:
cardiac motion (C1-C3). R1/ C1 show the motion-state resolved ground truth amplitude in green,
the registration amplitude in orange, and the registration error in blue. Error bars correspond to
one standard deviation. In both cases, the motion amplitudes are well captured and the residual
errors have only a small dependency on the motion amplitude. R2/C2 show the relationship of the
registration error for the best (Δ�퐵, �휌) pair determined by the analysis of the registration errors.
A minimum occurs in both curves for the �휆 = 0.5. However, the actual improvement compared
to �휆 = 0 and �휆 = 1 is small. R3/C3: scatter plot showing the distributions registration error and
image sharpness Σ. The two red points show an improvement from neglecting motion (nMoCo)
to correcting with the GT motion (gtMoCo). The cardiac registrations indicate a correlation
between 〈Δ�푀�푉�퐹�푀 〉�푚 and Σ (C3). Respiratory registration shows little correlation (R3).
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4.5 Discussion

In this chapter, a novel k-space trajectory, as well as a motion-corrected model-based fat-water,

separated reconstruction framework was presented. Also, a simulation-based assessment of

the registration accuracy of synergistic registration applied to water-fat separated images was

performed for both cardiac and respiratory motion.

The novel phase encoding pattern in RPE encoding allowed for simultaneous radial under- and

angular oversampling of the radial lines in the phase encoding plane. This resulted in a more

homogeneous distribution of retrospectively motion-binned data. Large angular gaps in the

phase encoding space lead to strong, coherent streaking artefacts as encountered for example

in stack-of-stars sequences [81]. The size of these gaps space could be reduced compared to

a bit-reversed shift of radial lines. The central region of k-space was still densely sampled

post motion-binning, yielding patterns more suitable to compressed sensing applications.

Furthermore, it increases the temporal resolution of the k-space center update and hence

of the self-navigator. However, the frequency of k-space center samples per time did not allow

for an extraction of cardiac surrogate signals as possible for example with 3D radial readouts

[101].

The evaluation of the synergistic registration showed that the employed registration framework

can successfully register respiratory and cardiac motion and reduce the motion errors to below

the image resolution as shown in Fig. 4.8. It could also be seen, that the chosen image

sharpness metric Σ improved when correcting with the ground truth motion compared to not

correcting motion for both motion types. In the case of respiration, however, there was little

correlation between respiratory registration precision and examined image quality metric Σ.

For cardiac motion, where the error relative to the ground truth amplitude was larger there

was a stronger correlation than for respiration. The outlier with the large registration error

presented in Fig. 4.9 C3 showed that a large error in registration produces a low Σ. But for

both motion types registrations were performed where a Σ higher than for the ground truth

MoCo was scored despite having a non-zero registration error. This shows that while the

correlation between registration error and Σ indicates that correcting for motion leads to an

increase in Σ, this statement can not be inverted. An increase in Σ does not induce a good

registration. An additional visual inspection is required to assess the quality of the estimated

motion model to ensure that it follows the underlying image data, and provides a correct

model of the physiological motion.

The dependence of the registration error for different weights of the water image �휆 was weak in

the case of the reconstructed simulation data. The numerical phantom analysis was, however,

limited to the single anatomy and motion provided by the underlying XCAT segmentation.

Also, the similarity between reconstructed simulation data and patient data was limited. This

is likely due to the use of unrealistic coil sensitivity profiles. The actual patient data shows

a stronger drop-off of sensitivity, weighting the chest and back area stronger and leading to

more coherent artefacts which could be achieved using a more sophisticated coil sensitivity

computation [151]. Stronger dependencies between fat and water weighting �휆 and registration

precision could well be possible when applied to patient data. This, however, could not be

tested due to a lack of ground-truth motion information for patient data.
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The performance of the motion-corrected model-based fat-water separation was not assessed

here and merely applied to reconstruct the simulation output. However, a thorough analysis

of its application to patient data is performed in chapter 5.

4.6 Conclusion

In this chapter, a comprehensive 3D high-resolution cardiac MR scan was developed aimed at

cardiac PET-MR applications. To provide high image quality, accurate motion information

and allow for AC calculation, a novel phase-encoding pattern for 3D RPE k-space sampling, a

synergistic registration framework for fat-water separated image data, and a motion-corrected

model-based fat-water reconstruction framework were developed. Although these methods

were aimed to improve coronary plaque imaging for NaF-PET/MR, these methods are in

general well-suited to image small cardiac structures. In the next chapter the framework

developed here is validated for patient data by visualising fat infiltrations in the myocardium

at 1.5 T . Chapter 6 then presents the application of the framework to NaF PET/MR in 10

patients suffering from atherosclerosis.
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5
Model-based Fat-Water Separation in

Cardiac Fat Quantification

In this chapter the methods developed in the previous chapter are applied in patients to image

small structures in the heart. It describes an independent cardiac MR (cMR) application at

1.5 T which yields high-resolution fat and water images with diagnostic quality. Parts of this

chapter are under revision as J8.

5.1 Background

Adipose tissue can infiltrate the myocardium, either isolated or paired with fibrosis, both

of which are associated with a range of ischaemic and non-ischaemic cardiomyopathies [38].

These include chronic myocardial infarction (MI), muscular dystrophy and arrhythmogenic

right ventricular cardiomyopathies (ARVC) [49, 192, 193]. CMR imaging can characterise

chemical tissue components non-invasively and therefore can provide important diagnostic

information [18].

Fat can be visualised by suppressing the water signal (spectral suppression) or by utilising

the chemical shift to separate the fat and the water signal from multiple acquisitions at

different echo times (Dixon imaging) [18]. In cardiac applications, multi-echo fat-water

separation techniques feature multiple advantages over spectral suppression methods. Direct

identification of a positive fat contrast automatically mitigates any incomplete suppression

experienced with spectral methods [63, 194]. Also, multiple echoes enable taking �퐵0 field

inhomogeneities into account [65, 195]. Separation techniques are also able to resolve

ambiguities in late gadolinium enhancement (LGE) imaging when fatty infiltrations can be

mistaken as fibrotic tissue in T1 -weighted sequences because both have a low post-contrast

T1 value [194]. Furthermore, chemical shift artefact induced misregistrations between water

and fat are suppressed in multi-point fat-water separated imaging [66, 196].

Commonly in clinical routine fat-water imaging is carried out as multiple slices with high

in-plane resolution but a large slice thickness of 4 mm to 8 mm during one or over multiple
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breath-holds. Images are either acquired as cine [64], resolving the cardiac motion or are ECG

triggered such that data are only acquired in mid-diastole to mitigate artefacts due to motion

caused by the heartbeat.

For fat-water imaging, images are usually first reconstructed at different echo times and then

separated into fat and water content. Model-based fat water reconstruction on the other hand

directly obtains a fat and water image from the acquired multi-echo k-space data. This allows

a direct regularisation of the final fat and water images instead of regularising only of the

multi-echo images and ensures that the obtained fat and water images are consistent with

the obtained k-space data. This approach has been combined with compressed sensing [67]

or with XD-GRASP for applications in the abdomen [68, 97].

Fat infiltration in the heart can be very small and irregularly distributed in the myocardium.

Therefore, they can be poorly resolved or missed with multi-slice 2D imaging. High-resolution

3D fat-water imaging has been proposed [197], but the main challenge is long scan time

because artefacts due to respiratory and cardiac motion need to be minimised using gating

and triggering, respectively [49, 90, 103, 106, 198]. Respiratory motion correction has been

proposed for fat-water imaging [107, 114], but cardiac triggering still reduces scan efficiency

and can lead to scan times which are longer than clinically feasible. Similar technquies using

fat have also been used for vessel imaging using a fat-selective excitation to correct for 3D

translational motion using epicardial fat tracking [199, 200].

In this chapter, the development of a combined cardiac and respiratory motion-corrected 3D

model-based fat water reconstruction is presented. The data acquisition is performed with a

non-triggered and free-breathing sequence which covers the whole heart with a radial phase

encoding (RPE) trajectory [180]. Images are reconstructed with a regularised model-based

fat water framework. Respiratory and cardiac motion is estimated from the data and then

utilised in a subsequent cardio-respiratory MCIR to minimise motion artefacts and improve

the accuracy of fat visualisation. The motion modelling is based on simultaneous non-rigid

registration of both water and fat images as analysed in the previous chapter. The model-

based reconstruction is validated on data acquired from 9 patients using clincial 2D images as

a reference. The effect of cardio-respiratory MoCo on adipose cardiac tissue is assessed with

a local edge sharpness metric applied to the reconstructed fat images.

5.2 Methods

Two-Step Motion-Corrected Image Reconstruction

A schematic overview of the employed acquisition and reconstruction workflow is given in

Fig, 5.1. In a first step, the respiratory self-navigator is extracted and used to bin the

data into �푁resp = 6 respiratory motion states based on respiratory amplitude with a 10 %

overlap between adjacent bins. This yielded an undersampling factor of 3 for the respiratory

reconstruction. The binned data are reconstructed into water and fat content using a total

variation (�푇�푉) and total variation in time (�푇�푉�푇) regularisation strength of �휆�푇�푉 = 0.05 and

�휆�푇�푉�푇 = 0. The resulting image series are subsequently registered using the dual fat-water

registration with (�휆,Δ�퐵, �휌) = (0.7, 8, 0) yielding MVFs that describe the respiratory motion

model. In a second step, the data are binned into �푁card = 12 cardiac motion states based
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on cardiac phase using the ECG signal. For cardiac binning, a 0 % overlap between adjacent

bins was used. This yielded an undersampling factor of 6 for the cardiac reconstruction. The

resulting data are reconstructed into water and fat modes using a regularisation strength

of �휆�푇�푉 = 0.025 and �휆�푇�푉�푇 = 0.05 while simultaneously applying the previously generated

respiration model for respiratory MoCo. The resulting image series resolves the heartbeat

motion, and each image itself is already free of artefacts caused by respiration. The image

registration with (�휆,Δ�퐵, �휌 = (0.5, 2, 2 · 10−3) was applied to determine the cardiac MVFs.

Eventually, both motion models were combined into a cardio-respiratory motion model

and applied to reconstruct a single, motion-free fat and water separated image. Finally,

three reconstructions were compared: the motion-averaged reconstruction (AVG), respiratory

motion-corrected image reconstruction (r-MCIR), and cardio-respiratory motion-corrected

image reconstruction (cr-MCIR). Each was �푇�푉 regularised with �휆�푇�푉 = 0.015 (as there was

only one reconstructed image �푇�푉�푇 regularisation could not be performed, �휆�푇�푉�푇 = 0.0).

Further details about the employed reconstruction framework can also be found in chapter 4.

Figure 5.1: Overview of reconstruction workflow. A self-navigator (B) is extracted from the
acquired data (A). It is used to bin the data into respiratory states (C) and extract a respiration
model from the motion-resolved image series. Subsequently, it is combined with the ECG (D) to
reconstruct a respiration-corrected and cardiac motion resolved image series. From this, a cardiac
motion model is extracted, combined with the respiration model (E) and used to reconstruct a
fully 5D motion-corrected image. This figure was submitted as J8.
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5.3 Experiments

Patient Data Acquisition

Nine patients were scanned on a 1.5 T Siemens Avanto using a 32-channel cardiac phased coil

array. Patients included in the study were suffering from ischaemic heart disease. Each patient

provided informed written consent. Data was acquired with a 3D 3-echo Dixon (TR = 8.2 ms,

TE = (2.90, 4.48, 6.06 ms), �훼=15°, TA =13 min43 s) FLASH sequence. The reconstructed

FOV in each direction was 288 mm with a 1.5 mm isotropic resolution, and covered the entire

thorax. Phase and slice encoding were performed using the sunflower trajectory presented

described in detail in section 4.4. The radial direction was undersampled by �퐹�푟 = 4 and

the angular direction was oversampled by �퐹�휙 = 10.67 yielding a net 1.7-fold oversampled

phase encoding space. Data acquisition was carried out during free-breathing without cardiac

triggering. Patients’ ECG signals were recorded. Each patient was given a �푇1 contrast agent

prior to data acquisition.

Fat-water separated images were acquired in 2, 3, and 4 chamber views using a standard

ECG-triggered 2D Cartesian acquisition scheme in 4 patients. The proposed 3D acquisition

was then reformatted to these orientations and compared.

Quantitative Assessment of Image Sharpness

The local image sharpness Σ of the epicardial fat structures was computed as described in

chapter 4 in four locations in the heart. They are displayed in Fig. 5.7 for one of the

patients. The obtained four sharpness values for each patient were averaged, yielding one Σ

value for each patient. Wilcoxon signed-rank tests were performed between the three different

reconstruction groups motion-averaged image reconstruction (AVG), r-MCIR and cr-MCIR.

A p-value �푝 ≤ 0.05 was viewed as statistically significant.

Systolic Gating to Correct Residual Cardiac Motion

Cardiac motion is particularly challenging to correct for. The temporal resolution of each

cardiac motion bin is potentially not sufficient to resolve the fast contraction of the heart

during systole. Additionally, the estimated motion model for the cardiac motion can be

inaccurate for the highly non-linear cardiac motion with large amplitudes and the optimal

regularisation parameters are potentially patient-specific. Hence, residual motion artefacts

might still be present post MCIR. To investigate if gating of the systole in addtion to MoCo

can further improve image quality, we compared r-MCIR and cr-MCIR with and without

systolic gating in a patient with large cardiac motion amplitude. r-MCIR and cr-MCIR

images were reconstructed using cardiac data of only 6 of the 12 cardiac bins that contained

the least motion. These images were compared to the reconstructions using the entire data.

Retrospective Data Undersampling

To assess the potential impact on image quality by reducing the acquisition time the same

analysis was performed after retrospectively undersampling, i.e. taking only the first �푁�푈�푆
�휙

=

1024 radial spokes. This corresponded to a reduction of the scan time by half from TA =
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13 min43 s to 6 min51 s. The cardiac registration parameters were altered to (�휆,Δ�퐵, �휌) =

(0.5, 4, 2 · 10−3), i.e. a larger Δ�퐵 was chosen to address increased undersampling artefacts. All

other parameters were kept constant.

5.4 Results

Qualitative Evaluation of Fat-Water Reconstructions

Motion-resolved reconstructions for two patients are displayed in Fig. 5.2. For both patients

water and fat images in end-exhale, end-inhale, diastole and systole are displayed. One patient

is shown in sagittal and one in coronal view to highlight the 3D isotropic resolution of the

acquired data.

For both patients, changes in the anatomy due to respiratory motion are clearly visible in water

and fat reconstructions. In the cardiac-resolved images, the respiration has been corrected as

indicated by the position of the liver and diaphragm. For patient 21 the contraction of the

heart from diastolic to systolic phase is visible both in water and fat images.

Motion-corrected images for two patients are shown in Fig. 5.3. Both fat and water images

are shown for AVG, r-MCIR, and cr-MCIR from left to right. Regions where a coronary vessel

highlighted and depicted in a seperate zoomed-in square. Cyan arrows indicate locations

where motion-blurring in the epicardial fat structures is visibly reduced by the application of

the proposed motion-corrected image reconstruction. Patient 18 shows a reduction of motion

blurring after the application of the respiratory model, especially in the abdominal region.

Motion blurring due to the heartbeat can be further reduced upon an additional application

of the cardiac motion model in both epicardial fat structures as well as for the coronary vessel.

Patient 24 shows very strong blurring in the motion-averaged case, of which the abdominal

fat and the structure at the apex could be improved with respiratory MoCo. Cardiac MoCo

could further improve the basal fat structure. A similar improvement can be also seen in the

complementary water image where the coronary arteries become clearly visible using cr-MCIR.

In addition to a reduction in blurring also respiratory motion artefacts in the ventricle are

reduced with MoCo.

Fat-water separated images reformatted to showing the left coronary artery are displayed

in Fig. 5.4. Correction of both cardiac and respiratory motion using cr-MCIR leads to an

improved depiction of the coronary arteries and the surrounding fat structures.

A comparison between 2D clinical acquisitions in 2, 3 and 4 chamber view and 3D fat

cr-MCIR reconstructions reformatted to the same views are displayed for two patients in Fig.

5.5. The depiction of fat structures acquired is comparable between both scans. Nevertheless,

it is important to note that the 2D acquisition was acquired during a breathhold using cardiac

triggering and hence might show a different motion state than cr-MCIR.

A patient with fat-infiltration in the septum is displayed in Fig. 5.6. The reconstructed

fat images are displayed in axial and sagittal view for both AVG and cr-MCIR. It can be

observed that MoCo led to an improved depiction of the fat in the axial view. The sagittal

slice shows the fine structure of the fat infiltration strongly blurred for the AVG reconstruction.

In addition, there are many motion-artefacts which make it difficult to clearly identify these

small structures. The proposed cr-MCIR reduced motion artefacts and blurring and strongly
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improved the visibility of the fat infiltration. This can also be seen in a fat-water overlay of

the sagittal slice.

Quantitative Evaluation of Image Sharpness

The measured Σ is displayed in Fig. 5.7. On the left, The locations ℓ where Σ is evaluated are

shown for patient 22 on cr-MCIR fat images. On the right, the values of 〈Σℓ〉ℓ are displayed for

AVG, r-MCIR and cr-MCIR. The result of the statistical tests between AVG and r-MCIR of

as well as cr-MCIR led to p-values �푝rMCIR = 0.008 and �푝crMCIR = 0.008, between r-MCIR and

cr-MCIR the p-value was �푝card = 0.01. This suggests that correcting for both the respiratory

and the cardiac motion yields a significant improvement in the fat structure Σ of the overall

heart.

The edge sharpness of the fat structures evaluated in the patient data is also summarised

in Tab. 5.1. The effect of r-MCIR leads to an increase in fat structure Σ for every patient,

with improvements ranging between 12 and 66 % with 33 ± 17 % on average. The effect of

additional cardiac MoCo is highly patient-specific. For some patients it can further improve

Σ by 20 % for other patients it does not lead to any further improvement. On average cardiac

MoCo increase Σ by 8 ± 8 %.

MocoType Σ AVG Σ rMCIR Σ crMCIR ΔResp (%) ΔCard (%) ΔCaRe (%)
Patientname

patient18 0.26 0.34 0.37 30 10 43
patient19 0.27 0.33 0.35 23 6 30
patient21 0.35 0.48 0.52 37 7 46
patient22 0.27 0.32 0.33 20 3 23
patient23 0.34 0.38 0.39 12 2 15
patient24 0.28 0.35 0.42 27 19 52
patient25 0.21 0.28 0.28 38 −2 35
patient26 0.26 0.39 0.47 50 20 80
patient29 0.23 0.38 0.39 66 4 73

Mean 0.27(5) 0.36(6) 0.39(7) 34(17) ∗∗ 8(8) ∗ 44(22) ∗∗

∗ �푝 < 0.05, ∗∗ �푝 < 0.01

Table 5.1: Quantitative analysis of Σ evaluated for each patient. ΔResp describes the increase
in Σ between r-MCIR and AVG. ΔCard describes the increase in Σ between cr-MCIR and r-
MCIR. ΔCaRe describes the increase in Σ between cr-MCIR and AVG. Statistical significance
was evaluated between for all three differences. Standard deviation is given in parenthesis in
significant digits. This table was submitted as J8
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Heartbeat

Diastole Systole

Figure 5.2: Motion-resolved patient data reconstructions as fat and water images. Two
example patients 21 (top) and 26 (bottom) are depicted. The intensity of undersampling artefacts
is larger in the reconstructions for patient 26, while cardiac and respiratory resolved images show
similar intensities of undersampling artefacts. Fat and water are displayed for both respiratory
(right) and cardiac (right) motion in the respective states of ex- and inhale, and diastole and
systole. Yellow bars indicate the exhale position to which the cardiac-resolved images are already
corrected to. Yellow arrows indicate cardiac motion which mainly leads to a contraction of the
heart and a thickening of the myocardium. This figure was submitted as J8
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Figure 5.3: Motion-corrected patient data. Motion-corrected fat-water-separated image
reconstruction of two patients 18 (top) and 24 (bottom). Cyan arrows highlight areas where
respiratory (rMCIR) and subsequently cardio-respiratory (cr-MCIR) MoCo improve visualisation
of epicardial fat. Yellow squares are zoomed in on to show delineation of coronary vessels with
more motion correction in both water and compelmentary fat image. This figure was submitted
as J8
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Figure 5.4: Effect of MCIR on coronaries. Reformatted motion-corrected fat-water-
separated image reconstruction of two patients 21 (top) and 24 (bottom). Left to right: AVG,
r-CMIR and cr-MCIR. Red arrows highlight improvements in the depiction of the vessels and
surrounding fat.
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Figure 5.5: Comparison with clinical standard reference.Images of 3D fat cr-MCIR
reformatted to clinical routine 4, 3 and 2 chamber view (left to right) for two patients. The top
row for each patient shows the clinical standard cardiac triggered reference exam obtained during
breath-hold. The bottom row shows the reformatted images generated from the free-breathing
motion-corrected cr-MCIR 3D data. Green arrows point out fine fat structures that the 3D data
can resolve. Red arrows show residual motion blurring due to imperfect cardiac MoCo. This
figure was submitted as J8
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Figure 5.6: Patient with myocardial fat infiltration. Comparison of AVG and cr-MCIR for
a patient with myocardial fat-infiltrations. Axial (top) and sagittal (centre) slices are depicted.
The fat-infiltration is indicated by a blue arrow. The proposed cr-MCIR fat-water separated image
reconstruction reduces motion artefacts and blurring, improving the visibility of the fat infiltration.
This is also visible in a fat-water overlay (bottom). This figure was submitted as J8
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patient 22

r-MCIR cr-MCIR

Figure 5.7: Σ computed for patient data reconstructions. Left: cr-MCIR of a patient with
the spline curves ℓ along which the metric was evaluated marked in dashed red. Right: distribution
and boxplot of the fat structure Σ metric for AVG (left), r-MCIR (centre), and cr-MCIR (right).
Orange bars indicate the median, the box includes second and third quartile, and the whiskers
span 1.5 times the box height from the median. The r-MCIR and cr-MCIR have a higher median
than the AVG data set. This figure was submitted as J8
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Systolic Gating to Correct Residual Cardiac Motion

Fig. 5.8 compares AVG, r-MCIR and cr-MCIR with and without cardiac gating. Cardiac

gating strongly improves the image quality for r-MCIR images leading to a better depiction of

the coronary artery in both the water and fat image. However, for cr-MCIR the improvements

in image quality due to gating are very small. Cardiac gating does lead to additional

undersampling artefacts (marked by the cyan arrow).

Retrospective Data Undersampling

Images reconstructed using all acquired data and from data undersampling by 1/2 are

displayed in Fig. 5.9. As expected, SNR is reduced and undersampling artefacts become

visible in the fat image due to the retrospective undersampling, but the overall image quality

is comparable. Also, the motion-corrected framework can achieve the same improvements in

image quality when applied to retrospectively undersampled data.

In Fig. 5.10 the effect of retrospective undersampling for the patient with septal fat

infiltration is depicted. Image quality is also comparable and the fat infiltration can be

visualised equally well using only half the k-space data.

The quantitative evaluation of Σ in the same regions as for the full dataset is presented in

Tab. 5.2. The improvements of Σ are similar to using the full k-space data (Tab. 5.1). Fig.

5.11 shows Σ for the different MoCo schemes for a data fraction of 1/2. Although, cr-MCIR

shows an improvement over r-MCIR in some patients, the median over all patients is only

slightly improved.

MocoType Σ AVG Σ rMCIR Σ crMCIR ΔResp (%) ΔCard (%) ΔCaRe (%)
Patientname

patient18 0.25 0.31 0.32 23 4 28
patient19 0.27 0.34 0.34 24 1 26
patient21 0.38 0.45 0.50 21 10 34
patient22 0.26 0.33 0.32 25 −2 22
patient23 0.34 0.38 0.40 13 4 18
patient24 0.27 0.33 0.34 20 4 25
patient25 0.17 0.25 0.25 45 2 48
patient26 0.24 0.37 0.45 56 22 90
patient29 0.23 0.38 0.40 66 5 74

Mean 0.27(6) 0.35(6) 0.37(8) 33(18) ∗∗ 6(7) ∗ 41(25) ∗∗

∗ �푝 < 0.05, ∗∗ �푝 < 0.01

Table 5.2: Quantitative analysis of Σ evaluated for each patient applied to k-space data
retrospective undersampled by a factor of 1/2. ΔResp describes the increase in Σ between r-MCIR
and AVG. ΔCard describes the increase in Σ between cr-MCIR and r-MCIR. ΔCaRe describes
the increase in Σ between cr-MCIR and AVG. Statistical significance was evaluated between for
all three differences. Standard deviation is given in parenthesis in significant digits.
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r-MCIR

Gated 6/12

cr-MCIR

Ungated

r-MCIR

cr-MCIR

patient 24

Figure 5.8: Effect of diastolic gating for MCIR. Top: water images, bottom fat images. The
2x2 matrices contain both types of motion compensation for the ungated and gated reconstruction.
I.e. from left to right the effect of gating is visible, from top to bottom the effect of including
cardiac motion correction can be seen. The coronary artery is zoomed in on in the yellow box.
The cyan arrow points to a streak artefact.
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VG cr-MCIR
Data
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1/1
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13:43 min

1/2

TA

6:51 min

Figure 5.9: Retrospective undersampling applied to patient 26. Left: the reconstructed
fraction of the total data and potential acquisition time TA . Top: comparison AVG and cr-MCIR
reconstructions for retrospectively undersampled k-space, using only half the data. Bottom: full
dataset as a reference. Despite using only 1/2 of the k-space data, image quality is comparable
between the two reconstructions and cr-MCIR leads to strong improvements in image quality in
both cases (yellow arrows).

patient 29

cr-MCIR

Data fraction��� ���

TA

� !"  min
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Figure 5.10: Depiction of myocardial fat infiltration. The cr-MCIR reconstructions are
shown for the full (left) and retrospectively undersampled (right) data. The arrow points to the
fat infiltration in the septum, which is clearly visible in both reconstructions.

71



5. Model-based Fat-Water Separation in Cardiac Fat Quantification

Data fraction: 1/2

r-MCIR cr-MCIR

*

**

Figure 5.11: Σ computed for retrospectively undersampled patient data. The
distribution and boxplot of the fat structure Σ metric for AVG (left), r-MCIR (centre), and
cr-MCIR (right). Orange bars indicate the median, the box includes second and third quartile,
and the whiskers span 1.5 times the box height from the median. The r-MCIR and cr-MCIR have
a higher median than the AVG data set.
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5.5 Discussion

In this chapter, we presented a model-based fat water reconstruction with cardiac and

respiratory MoCo.

With the presented reconstruction framework compressed sensing regularisation could be

successfully applied for motion-corrected image reconstruction of fat and water images.

In Fig. 5.2 two example reconstructions were presented that showed the motion-resolved

reconstruction of �푁resp = 6 and �푁card = 12 motion states. The �푇�푉 and �푇�푉�푇 regularisation

were able to suppress artefacts while at the same time conserving motion amplitudes.

The motion resolved images could then be used to estimate and subsequently correct for

respiratory and cardiac motion (Fig. 5.3). Image quality of both water and fat images was

improved by reducing motion artefacts and blurring. This could be seen in both an improved

delineation of of epicardial fat structures, as well an improved depiction of coronary vessels

and their surrounding fat structures.

Quantitatively this was analysed by computing a local edge sharpness metric Σ for epicardial

fat structures. The data showed a large improvement of 33 ± 17 % of selected epicardial fat

structures when including a respiratory motion model into the reconstruction process. Cardiac

motion modelling further increased Σ by an additional 8 ± 8 %. Statistical tests showed that

respiratory (�푝 < 0.01) and cardiac (�푝 < 0.05) MoCo led to a statistically significant increase in

sharpness Σ. The increase in Σ is highly patient dependent, especially for cardiac motion (Fig.

5.7 and Tab. 5.1). This effect is expected as cardiac motion is much more patient-specific

than respiratory motion. The impact of cardiac motion modelling depends on how long the

systolic phase is relative to the whole cardiac cycle and how strongly the heart contracts

during systole.

Cardiac motion is also more challenging to estimate than respiratory motion. While

respiration is similar for most patients and occurs mainly in the head-foot direction the

heartbeat leads to much more complex motion patterns which are more difficult to distinguish

from any residual image artefacts. Finding a single set of patient-independent parameters

for the registrations yielding high-quality registrations is very challenging. Adapting the

registration to be more patient-specific could be supported by machine learning [201, 202].

Also, further temporal regularisation could be employed during the registration to improve

the accuracy of motion estimation[80, 203, 204].

Fig. 5.6 shows the improvement in image quality and visualisation of fat structures infiltrating

the myocardial tissue. The displayed patient’s fat image was strongly deteriorated by motion

blurring and other motion artefacts and showed the largest improvement in Σ for all patients

using respiratory MoCo. In axial view both in AVG and cr-MCIR the structure was visible,

however, only after MoCo, the structure can be identified as a coherent infiltration permeating

a large part of the cardiac tissue.

Furthermore, we have demonstrated that using only 1/2 of the acquired k-space still leads

to a high image quality and accurate visualisation of fat structures with a small decrease in

SNR. We have also compared if cardiac gating can improve image quality by gating away 1/2
of the data containing the largest cardiac motion amplitudes. Our experiments showed that

cardiac gating only led to small improvements in image quality but causes small undersampling
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artefacts. A reduction of scan time by a factor of 2 can potentially justify a decrease in SNR

to make an application more feasible in a clinical setting. However, the benefit of reduced

motion artefacts as seen in the experiment due to gating does not outweigh the appearing

undersampling artefacts.

Towards shorter scan time

In order to investigate the limits of the proposed motion-corrected model-based fat-water

separation we retrospecitvely undersampled the k-space by a factor of 4 in one patient.

We compared the glscrMCIR fat-water images using the fieldmap and motion fields from

the reconstruction of the full k-space. In a second step, we investigated, how the image

quality of the motion-resolved reconstructions could be improved to allow for accurate motion

estimation despite being obtained from only 1/4 of the data.

In Fig. 5.12 cr-MCIR reconstructions from retrospective undersampling by a factor of

1 (≈14 min scan time), 2 (≈7 min scan time), and 4 (≈3.5 min scan time) are compared.

Although the image quality for the 3.5 min scan time is still good, some fine structures in

the fat image are not visible any more and fat and water cannot be separated succesfully

anymore in challening structures, such as the moving blood in the aorta.

TA = 6:51 minTA = 13:43 min

Retrospectively Accelerated Acquisition

fat

water

TA = 3:25 min

Figure 5.12: Effect of progressive retrospective undersampling on fat and water cr-
MCIR. Left to right: full dataset, half the dataset to one-quarter of the dataset. By using only
half the data the image quality is still good and fat structures can be seen clearly (green arrows).
For using 1/4, smaller fat structures are not well depicted anymore and there is signal from the
water mode in the fat image (red arrows).

The estimation of high-quality motion models for acquisition times faster than 5 minutes

could potentially benefit from developments in artificial intelligence. Stronger undersampling
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artefacts in cardiac-resolved reconstructions could be minimised by the application of

convolutional neural networks. This is exemplified in Fig. 5.13. A network making use

of spatio-temporal correlations that had previously been trained on 2D radial cardiac cine

data [205] was applied to axial slices for the fat-water separated images individually. With

this approach, the artefact level could be strongly reduced, especially for the fat images, while

conserving the motion amplitude. These are promising results for fat-water imaging in less

than 5 minutes, but further studies are required.

TA = 3:25 min 

TV + TVT + CNN

TA = 13:43 min

TV + TVT

Retrospective Undersampling and CNN-Application
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Figure 5.13: Potential use of a convolutional neural network (CNN) to reduce
artefacts in cardiac-resolved image reconstructions. The motion-resolved images are
displayed in diastole and systole (yellow lines indicate motion amplitude) and for water and fat.
Left: cardiac resolved recon from 1

4
of the data (retrospectively undersampled). Centre: CNN

applied post reconstruction to the images from the left. Right: cardiac-resolved full dataset as a
reference.

Although this analysis gives an idea of the image quality for shorter scan times, it is

limited because the sunflower trajectory is not well suited for retrospective undersampling.

As the phase encoding order is aimed to generate the sunflower pattern for a predefined

undersampling factor, larger gaps in the acquired k-space data appear if the undersampling is

increased retrospectively rather than prospectively (Fig. 5.14). Therefore, the image quality

for images reconstructed from data acquired for 7 min and 3.3 min is expected to be higher

for prospectively undersampled data acquisitions.
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Figure 5.14: Effect of retrospective undersampling on the sunflower trajectory. Left:
full k-space, centre: retrospectively undersampled k-space by factor 1

2
, right: prospectively

acquiring only 1

2
points in a sunflower trajectory. Prospective and retrospective undersampling

lead to different undersampling patterns, with retrospective undersampling leading to larger gaps
in k-space.

5.6 Conclusion

In this chapter, a cardio-respiratory motion-compensated and model-based fat-water sepa-

rated image reconstruction framework was presented. 3D high-resolution fat-water separated

images could be acquired during free-breathing and in a clinically feasible scan time. The

effectiveness of the motion-correction approach could be shown for 9 patients.

Finally, the results presented in this chapter demonstrated that this framework is also well

suited to address the challenges posed by [18F]NaF PET/MR:

• Motion-corrected fat- and water images serve as a high-quality anatomical reference to

locate [18F]NaF uptake.

• Fat- and water images can be the basis for high-resolution attenuation maps resolved

for fat, water and lung tissue.

• The framework can produce high-quality motion-models for both cardiac and respiratory

motion. These can be used to minimise motion artefacts in simultaneously acquired PET

data.
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This chapter describes the extension of the cMR application developed at 1.5 T, to simultane-

ous [18F]NaF PET/MR MCIR. It aims to develop a self-contained acquisition-reconstruction

framework using MR-based high-quality physiological motion models to improve PET image

quality, as well as high-resolution anatomical uptake localisation. Parts of this chapter

have been published in the European Journal of Nuclear Medicine and Molecular Imaging

(EJNMMI) as J2.

6.1 Background

In medical imaging, PET is used in a wide range of different cardiac applications, from the

assessment of cardiac viability and perfusion to the recently developed atherosclerotic plaque

imaging using [18F]NaF [13, 24]. The latter can be used to highlight vulnerable plaques, that

are likely to rupture and cause myocardial infarction by identifying pathological characteristics

such as micro-calcifications and inflammation [26]. Reliable and reproducible quantification

of [18F]NaF uptake would be a step towards patient and plaque specific treatment planning.

Both hybrid modalities PET/CT [13, 206, 207] and PET/MR [32, 208] have been shown

to provide a good assessment of coronary [18F]NaF uptake. A comprehensive comparison

between both hybrid modalities[32] found equally successful plaque identification in aortic

valves and coronary arteries. Yet, both hybrid modalities suffer from the main challenge of

cardiac PET in clinical applications: the impairing effect of physiological heart motion due

to both respiration and cardiac movement. The physiological motion of the heart leads to

a PET uptake blurring, which is especially a challenge for coronary plaque imaging due to

the small size of the plaques. Besides, motion can lead to a mismatch between attenuation

correction (AC) maps and the PET emission data. The proximity of the coronary arteries to

the lungs makes this especially a problem for coronary PET imaging. The major difference

in attenuation values between cardiac tissue and lung can lead to severe artefacts. While
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the straightforward motion-compensation approach of gating is very robust, only a small part

of the acquired data is used for image reconstruction yielding low signal-to-noise ratio [13,

209]. Also, it does not address AC misalignment artefacts due to motion [208]. Motion-

correction has been proposed to overcome these challenges for a range of other simultaneous

PET/MR techniques [135, 139, 148, 190]. Improvements have been shown for MR-based

ACs using different respiratory positions or allowing for free-breathing [210, 211]. So far

motion-correction techniques in [18F]NaF imaging have been PET/CT-based only. The

application of motion correction showed an increase in uptake [35, 212], was extended to

successfully improve the test-retest reproducibility of [18F]NaF -PET plaque imaging [212]

and combined with partial-volume corrections [143, 213]. However, the sequential PET/CT

data acquisition restricts the motion estimation to be performed on motion-resolved low-

resolution PET data only, limiting this approach to plaques with high uptake. Simultaneous

PET/MR overcomes this challenge by allowing to estimate the motion from high-quality

and anatomically detailed images: as of recently, a range of different motion correction

schemes is available where motion information is extracted from simultaneously acquired

MR data and utilised during PET image reconstruction [129, 138, 139, 172, 214]. Yet, so far

there has been no application of cardio-respiratory PET/MR motion correction to [18F]NaF

imaging. In this work, we present for the first time MR-based cardio-respiratory motion-

correction of simultaneous [18F]NaF PET/MR imaging of the coronary arteries. A framework

was developed combining advanced 3D MR acquisition with model-based reconstruction

techniques and dedicated image registration for motion estimation. From the acquired MR

data patient-specific motion models and dynamic AC maps were generated and applied

during PET image reconstruction. This approach minimises motion artefacts in the emission

data and ensures accurate alignment between PET and AC data. The framework yields

3D high-resolution and motion-compensated images for both PET and MR. The proposed

methods were demonstrated in 10 patients. The effect of MCIR on both MR and PET image

quality was assessed in uptake-positive plaques by comparing their target-to-background ratio

(TBR), their contrast-to-background ratio (contrast-to-background ratio (CBR)), and the

tracer visualisation.

6.2 Methods

PET/MR Data Acquisition

PET/MR data were acquired as part of the study “Molecular PET/MR–Imaging for detection

and characterisation of vulnerable atherosclerotic plaques in coronary arteries” (EA4/052017)

approved by the Charité ethics committee. It was performed in accordance with the

Declaration of Helsinki. Before taking part in the study all patients provided written

informed consent. The patient cohort consisted of 10 subjects (8 male), mean age 70 ± 7

years suffering from coronary artery disease. Data were acquired on a Siemens Biograph

mMR hybrid PET/MR scanner. A dose of 169 ± 14 MBq [18F]NaF tracer was administered

intravenously 104 ± 26 min before starting the PET acquisition over 45 ± 20 min. Before the

PET scan, an MR-AC scan provided by the vendor was carried out during breath-hold

78



6.2 Methods

(FOV=598 mm × 330 mm × 271 mm, �푑�푥×�푑�푦×�푑�푧=2.086 mm × 2.6 mm × 2.086 mm, TA=10.6 s).

An overview of the timeline for patient 1 is given in Fig. 6.1.
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Figure 6.1: Timeline of performed PET/MR examination for an example patient. The displayed
curve is the respiratory belt signal. PET data are acquired during the whole duration of the exam.
The orange window shows the time window in which both PET and MR employed in this work were
acquired simultaneously. Pink arrows indicate breath-holds when other, clinical MR examinations
were performed.

The MR data were acquired for 12:25 minutes simultaneously with the PET data and

used a T1 -weighted, Dixon sequence (TR=7.57 ms, TE=2.62/4.13/5.64 ms, FA=15°) with

a double-oversampled 3D RPE K-space sampling trajectory [180] with sunflower pattern

and a field of view (FOV) covering the entire thorax (FOV=288 mm × 288 mm × 288 mm)

at 1.5 mm isotropic resolution. ECG and respiratory signals were acquired simultaneously

with the physiological monitoring unit. A T1-contrast agent (Gadovist) bolus of 0.2 mL/kg

was administered before the MR exam. The contrast agent was used to increase the contrast

between the blood pool and myocardium and improve the visualisation of the coronary arteries

[214]. All PET/MR data were acquired as part of the study “Molecular PET/MR–Imaging

for detection and characterisation of vulnerable atherosclerotic plaques in coronary arteries”

(EA4/052017) approved by the Charité ethics committee. All procedures performed in studies

involving human participants were in accordance with the ethical standards of the institutional

and/or national research committee and with the 1964 Helsinki declaration and its later

amendments or comparable ethical standards. Before taking part in the study all subjects

provided written informed consent.

PET/MR Reconstruction Workflow

An overview of the reconstruction workflow is depicted in Fig. 6.2. The acquired data (A)

consists of MR k-space, PET listmode data, and respiratory belt, and ECG signals as motion

surrogates. Three consecutive fat-water separated MR reconstructions are performed to obtain

a cardio-respiratory motion model, a 3D motion-compensated MR anatomical image, and an
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6. 3D Motion Corrected Cardiac [18F]NaF PET/MR

AC map. First, using the belt signal the k-space data are binned into 6 different respiratory

states (B), motion-resolved reconstructions of fat and water content are performed. While

this eliminates the respiratory motion in each respiratory reconstructed state they still contain

cardiac motion. Nevertheless, the motion artefacts due to cardiac motion are similar in all

respiratory motion states and do not interfere with respiratory motion estimation. From these

images, a respiratory motion model is generated using image registration. Subsequently, data

are binned into 12 different cardiac states, (C) using the ECG signal, and motion-resolved

fat-water reconstructions, including the application of the respiratory motion model, are

performed. Hence each reconstructed cardiac state is free from respiratory motion artefacts.

A model for cardiac motion is extracted analogously to respiration. Both motion models are

combined in a third reconstruction (D) compensating for both motion types. Based on this

motion-free 3D fat-water MR image an AC map is computed. For the PET reconstruction,

the cardio-respiratory motion model is applied to the MR-based 4-tissue AC map [139] (E)

as well as to the listmode data, yielding a cardio-respiratory motion-compensated (cr-MCIR)

PET image (F).
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Figure 6.2: Overview of the reconstruction workflow. The acquired PET/MR data consist
of listmode and k-space data, as well as the respiratory belt and ECG as surrogate signals
for physiological motion. Three MR reconstructions (B-D) are performed from which motion
information and an attenuation map are extracted. This information is incorporated into the PET
reconstruction (E) compensating both emission data and attenuation map for motion yielding a
cardio-respiratory motion-compensated (cr-MCIR) PET reconstruction (F). The cr-MCIR MR
(D) and PET (F) reconstructions are hence in the same motion state and the MR anatomical
image can be used to identify the anatomical location of the uptake. This figure was published in
J2.
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PET/MR Image Reconstruction

The MR data were reconstructed into fat and water content with an iterative model-based

reconstruction [68] framework incorporating the effect of chemical shift, and using parallel

imaging [87], compressed sensing [215], as well as motion information [89]. Motion-resolved

images were reconstructed using the respiratory belt or ECG signal as a surrogate to bin data

before reconstruction based on respiratory amplitude, and cardiac phase. Software for MR re-

construction was implemented in MATLAB (The MathWorks, Natick, MA) and Python. This

has been described in detail in section 5. PET image reconstruction was performed with STIR

(Software for Tomographic Image Reconstruction). A FOV of 718 mm × 718 mm × 258 mm was

reconstructed at a resolution of 2.09 mm × 2.09 mm × 2.03 mm using an iterative 3D ordered

subset expectation-maximisation algorithm with 21 subsets, 3 full iterations, and a 4 mm

isotropic 3D Gaussian post-filtering[164]. PET scatter radiation estimates were performed

using SIRF [166] (Synergistic Image Reconstruction Framework). An AC image was generated

from the cr-MCIR MR reconstruction and transformed into the motion states matching the

emission data during PET reconstruction.

MR-based Motion Models and Attenuation Correction

Respiratory and cardiac motion models were generated using motion-resolved reconstructed

MR images. A dedicated image registration algorithm [78, 139] was used to generate a

deformable motion model based on both the MR fat and water modes. The fat-water dual

image registration is discussed in more detail in section 4.2. Specifically, the underlying cost

function is described in Eq. (4.11). The rationale behind using both image modes for the

registration is that while the water image describes the motion of coronary arteries and heart

muscle, the surrounding fat tissue provides complementary information with very positive

contrast [102, 200]. Additionally, the undersampling artefacts due to motion-binning are

different in both images such that using both image content acts as additional regularisation

as assessed in chapter 4. For this study �휆 = 0.5 was used, weighting water and fat images

the same. The motion model was generated by registering the individual motion-states to

the reference phase. Both motion types were combined into a cardio-respiratory motion

model concatenating the two individual transformations. The cardiac motion was corrected

to yield images in end-diastole while respiration was corrected to either end-exhale or end-

inhale depending on which state was more prevalent in the surrogate signal. PET data were

acquired for longer than MR data. To extend the obtained motion models onto the entire

duration of the PET scan, the respiratory belt was used as a respiratory motion surrogate.

Nevertheless, an MR self-navigator was available and used to improve the correlation [138]

of the belt signal with the respiratory motion of the heart: in the time-window during the

MR-acquisition a time shift for the belt-signal maximising the cross-correlation between belt

and self-navigator is determined. This shift is then applied globally to the belt signal. In each

case, the computed shift was much smaller than any period of respiration encountered during

the exams. The MR-based AC map was extracted from the MR cr-MCIR image and used

for both reconstructing motion-averaged, i.e. without the application of any motion model

during reconstruction (AVG) and cardiac and respiratory motion-compensated PET images

(cr-MCIR). Using the MR cr-MCIR images to calculate the AC map for both AVG PET and
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6. 3D Motion Corrected Cardiac [18F]NaF PET/MR

cr-MCIR PET ensures that the difference in image quality between these two reconstructions

is predominantly due to physiological motion artefacts in the emission data. A k-means

clustering algorithm [216] was used to segment fat, soft tissue, lung tissue and air. MR signal

voids caused by stents were automatically inpainted using morphological operations. As the

arms were not covered in the MR FOV these were inserted from the vendor AC map. This

process is displayed in Fig. 6.3.
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Figure 6.3: Example of AC-map generation. Top: water and fat cr-MCIR are segmented into
fat, soft-tissue, lung tissue and outside air. Subsequently, the stent-caused signal void is inpainted
(yellow box). Bottom: the generated AC map is interpolated into the PET coordinate system.
Then the relevant window containing the thorax is inserted in the Biograph mMR AC (red box)
to complete the AC map with the attenuation of the arms and hardware which are static during
data acquisition.

PET Image Quality Assessment

The quality of MR images for both water and fat fraction was assessed visually between

AVG, respiratory motion-compensated, i.e. only the respiratory motion model was applied

during reconstruction (r-MCIR), and cr-MCIR reconstructions. An increase in coronary vessel

sharpness and the position of the diaphragm was used to determine a successful generation of

the cardio-respiratory motion model. All PET reconstructions were converted into SUV. The

STIR open-source reconstructions were compared qualitatively to reconstructions provided by

the Biograph mMR in terms of uptake position, noise level, and artefacts generated by AC
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misalignment. The effect of motion-correction was evaluated quantitatively for all detected

plaques based on their TBR, CBR, and diameter (D). Uptake-positive plaques were detected

visually by an experienced observer. Plaques were identified as clearly visible, coherent tracer

uptake structures following the coronary vessel tree. An independent method to confirm that

the uptake was a plaque such as intra-vascular US or OCT was not available. Both 2D axial

and coronal slice through the plaque centre were selected from both AVG and cr-MCIR images.

Subsequently, the same plaque in all images was marked with a rectangular ROI.

The plaque signal �푠 was in a 5x5 pixel patch around the maximum standardised uptake value

(SUV) value in the ROI. To exclude background pixels from the patch an automated threshold

value inside the patch was computed using Otsu’s method [217]. This is depicted in Fig. 6.4.

The background signal b was extracted from an independent coronary slice and measured as

the blood signal average in an ROI in the left ventricle: �푏 = 〈�푆�푈�푉〉�푅�푂�퐼 �퐿�푉 . The TBR was

calculated as �푇�퐵�푅 =
�푠
�푏

, and CBR as �퐶�퐵�푅 =
‖�푠−�푏 ‖
�휎 (�푏) , where �휎(�푏)is the standard deviation

of the background. TBR and CBR values generated from both the axial and coronal view

of the plaque were averaged to include the effect of correcting motion both in and through

transversal planes.
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Figure 6.4: Patch-based computation of plaque signal. Yellow boxes show the ROI in which the
plaque was localised. A zoomed window shows a 5x5 patch around the SUVmax value in the ROI
in red shading with green pixels classified as signal by an automated segmentation in the patch
using Otus’s method. Top: axial slice of patient 1. Bottom: Coronal slice of patient 6.

To determine the diameter D, a line profile �푙 (�푥) perpendicular to the coronary artery was

extracted from the coronary slices and fitted with a model containing a Gaussian for the

plaque and a linear term and a constant locally describing the scatter background: �푙 (�푥) =

�푎 · �푒 ( −(�푥−�푏)
2

�푐2 ) +�푑 · �푥 + �푒. plaque width (D) was determined as the full-width at half maximum of

the fitted Gaussian curve: �퐷 = 2
√

2 log 2 · �푐. The parameters were constrained to be positive

and �푑 ∈ [−1, 1]. Statistical analyses between AVG and cr-MCIR data were performed using
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6. 3D Motion Corrected Cardiac [18F]NaF PET/MR

Python. To test the null hypothesis, that the values of both AVG and cr-MCIR both originate

from the same underlying distribution for the case of normal data, a Wilcoxon signed-rank

test was performed. P-values smaller than 0.05 were considered statistically significant.

6.3 Results

MR reconstruction and motion model generation

The results of the MR motion correction are displayed in Fig. 6.5. R-MCIR improved the

visualisation of the coronary vessel, which can be seen especially for the fat image (small insert

in Fig. 6.5). Nevertheless, there is still residual motion blurring which was further reduced

using cr-MCIR.
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Figure 6.5: MR images in sagittal view of one exemplary dataset with reconstructed water
(top) and fat (bottom) content. The motion-averaged reconstruction (AVG, left) is compared to
respiratory- (r-MCIR, centre) and cardio-respiratory (cr-MCIR, right) reconstruction. Cyan boxes
indicate enlarged areas depicted in the lower right corner reconstruction. Image quality increases
with the inclusion of more motion information from AVG over r-MCIR to cr-MCIR for both the
water and fat images especially in the coronary arteries and apex (yellow arrows). This figure was
published in J2.

PET Motion-Correction

The effect of cr-MCIR in PET for three patients is depicted in Fig. 6.6. The AVG and

cr-MCIR reconstructions are compared for three slices showing coronary uptake. Line profiles
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in cyan for AVG and magenta for cr-MCIR are plotted and an increase in �푆�푈�푉�푚�푎�푥 is visible

in the line profiles. The line profile fit based on which D is calculated is indicated as a black

curve and for the three presented cases, D was reduced by 6 %, 44 %, and 34 % respectively.

Furthermore, one can see that for patients 10 and 5 there was already a very good match

between the emission data and the AC map as very little imprint artefacts are visible. The

AVG reconstruction for patient 7, however, has an artefact indicated by a red arrow due to

the misalignment between PET emission data and AC map that was strongly reduced by

cr-MCIR.

cr-MCIRAVG Line profile

SUVPatient 10

Patient 7

Patient 5

-6%

-44%

-34%

Figure 6.6: Comparison between PET AVG (left column) and cr-MCIR (center column) for
patients 10, 7, and 5. Cyan and magenta lines indicate the position where line profiles (right
column) were extracted. The fit is overlayed in black. Compared to AVG, cr-MCIR leads to an
increase in the maximum uptake value and a decrease of plaque width D. The decrease ranged
between −6 % and −44 % for the displayed cases. Patient 7 shows an artefact due to misalignment
between AC map and PET emission data for AVG which is corrected by using cr-MCIR (red
arrow). This figure was published in J2.

A comparison between the AVG, cr-MCIR, and Biograph mMR images is depicted in

Fig. 6.7. Two different coronal positions are displayed, both of which contain uptake in
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the left coronary artery. AVG and cr-MCIR reconstructions achieved a comparable quality

of the PET uptake of the peripheric thorax region, visible when regarding uptake in the

ribcage and shoulders. The overall background noise due to scatter radiation was lower in

the Biograph reconstructions such that slightly different window settings were required to

create the same visibility of the plaque uptake. The misalignment between the AC map and

emission data is especially visible in the scanner reconstruction at the right hemidiaphragm

(red arrow, “banana artefact”). Those impaired the visualisation of the coronary uptake

which was located right at the edge of the heart and thereby obscured the actual extent of

the uptake along the vessel indicated by the yellow arrows.
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Figure 6.7: Result of the PET cr-MCIR application to patient 1. An enlarged ROI is marked
by the dashed yellow square. Top: coronal slice 1, bottom: coronal slice 2. Left: cr-MCIR.
Right: Biograph mMR vendor reconstruction. Yellow arrows highlight uptake in the left coronary
artery; red arrows indicate artefacts due to an AC mismatch. The cr-MCIR shows a reduced AC
mismatch compared to the Biograph mMR images. For the vendor reconstruction, the strong AC-
data mismatch due to physiological motion means the uptake in the coronary plaque is not visible
anymore in the second slice (bottom row). Scanner and STIR reconstructions required a different
window setting for comparable contrast in the coronary uptake. This figure was published in J2.

An overlay of MR and PET is depicted in Fig. 6.8. For patients 5 and 8 a coronal slice is

depicted where the PET image was reformatted to the MR coordinate system. Both patients

showed uptake in a stent that caused an artefact in the MR image. Despite this void, a

reliable MR-based AC map could be estimated allowing for accurate PET quantification and

visualisation of plaque uptake. However, the exact anatomic position could not be determined

in the MR image. Especially for patient 8 the signal void was much larger than the uptake.
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PETOverlay

Patient 5

MR

Figure 6.8: PET/MR overlay for patients 5 and 8 with uptake in stents (green arrows). All
images are cr-MCIR. PET images were reformatted to the MR coordinates. Left column: MR
water images. Central column: overlay of both modalities. Right column: PET images only. The
colour bar corresponds to the PET window in both images. In this case, the anatomic position
of the uptake is obscured by the signal void generated by the stent. However, the automated
inpainting of the stent voids during AC map generation mitigates potential AC artefacts for
tracer uptake within stents. This figure was published in J2.

Quantitative PET Image Assessment

In the 10 patient datasets, 10 coronary plaques were identified in 9 subjects. A comprehensive

overview of the computed image quality metrics is given in Tab. 6.1. The measured TBR in the

10 plaques ranged between 1.11 and 3.10 for AVG and 1.21 and 3.41 for MCIR reconstruction.

The average increase in TBR was 7 ± 7 % using cr-MCIR. The Wilcoxon signed-rank test

yielded a p-value of p<0.02. The CBR ranged between 1.02 and 15.15 for AVG and 2.30 and

18.76 for cr-MCIR reconstructions with a mean increase of 26 ± 38 % for cr-MCIR compared

to AVG. The Wilcoxon signed-rank test applied to the data yielded a p-value of p<0.04. D

ranged between 7.6 mm mm and 23.4 mm for the AVG and 5.47 mm and 17.91 mm for the

cr-MCIR reconstructions. On average cr-MCIR decreased D by 23 ± 18 %. The Wilcoxon

signed-rank test yielded a p-value of p<0.02.
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Patient TBRstat TBRdual ΔTBR (%) CBRstat CBRdual ΔCBR (%) Dstat Ddual ΔD (%)

NaF20190307 1.34 1.51 13.0 2.59 4.24 64.0 12.20 11.63 -5.0
NaF20190528 1.45 1.51 4.0 4.43 4.80 8.0 12.54 9.90 -21.0
NaF20190611 1.30 1.21 -7.0 3.22 2.30 -29.0 7.60 7.84 3.0
NaF20190625 3.10 3.41 10.0 15.15 18.76 24.0 23.71 17.91 -24.0
NaF20191119 1.11 1.24 12.0 1.02 2.12 107.0 18.72 12.39 -34.0
NaF20191119 1.58 1.68 6.0 5.46 5.93 9.0 12.57 5.47 -56.0
NaF20191126 2.54 2.50 -2.0 9.28 8.80 -5.0 11.87 9.91 -16.0
NaF20191212 1.37 1.48 8.0 4.49 5.72 27.0 23.39 13.09 -44.0
NaF20191217 1.35 1.47 9.0 4.43 5.80 31.0 16.43 12.62 -23.0
NaF20200114 1.54 1.76 14.0 5.06 6.13 21.0 10.07 9.43 -6.0

Mean 7 ± 7 ∗ 26 ± 38 ∗ −23 ± 18 ∗

∗ �푝 < 0.05

Table 6.1: Comprehensive overview of image quality data of motion-corrected [18F]NaF PET.
Plaque width D is given in mm.This table was published in J2.

6.4 Discussion

In this work, we presented an MR-based motion-compensation framework and its application

to coronary [18F]NaF PET/MR imaging. The data-driven patient-specific cardio-respiratory

motion models enabled MCIR for both modalities which improved the assessed image quality

metrics TBR, CBR, and plaque width significantly.

The quantitative assessment yielded an increase in TBR of up to 14 % and CBR of up to 107 %.

Average increases were 7 ± 7 % for TBR and 26 ± 38 % for CBR. The plaque localisation in

cr-MCIR reconstructions was improved compared to AVG reconstructions, reducing the

diameter D on average by 23 ± 18 % with a maximum reduction of 56 %. Statistical tests on

all these quantities yielded significant differences between AVG and cr-MCIR. The estimated

motion model also improved the anatomical visualisation of coronary arteries in the MR cr-

MCIR where both cardiac and respiratory motion contributed to an increase in the visibility

and sharpness of the coronary vessels and fat surrounding the heart. The improvement of

TBR and CBR depends on the location of the plaque, the motion amplitudes, and motion

cycles which strongly vary between patients. Furthermore, it could be shown that a dedicated

motion modelling of the AC was able to minimise mismatches between the AC map and

emission data, allowing for accurate visualisation of plaque uptake in the PET images. A

first improvement, as shown in Fig. 6.6, can be achieved by obtaining the AC map from a

cr-MCIR MR image that is motion-corrected to the most prevalent respiratory state. Further

improvement is achieved by adapting the AC map to the different motion states as part of PET

MCIR (patient 7 in Fig. 6.6). In contrast to that, the AC map for vendor reconstruction was

acquired during a breath-hold. Fig. 6.8 depicts an example where the breath-hold position

was very different from the free-breathing position of the heart during PET data acquisition.

This led to a strong AC mismatch severely impairing the visualisation of the uptake in the

plaque, because AC values of the lung were used to correct PET emission data of the heart.

One limitation of the presented work is that the tracer uptake could not be independently

identified as coronary plaques. Furthermore, a comparison between the images achieved using

motion-compensation and cardio-respiratory double-gated reconstructions were omitted. The

observed TBRs using the whole dataset were too small to expect any visible plaque uptake in

double-gated images. While the respiratory motion model is patient-specific, the necessity to
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extrapolate the respiratory motion model from the time window of MR data acquisition onto

the whole PET acquisition potentially reduces its accuracy. Large differences in respiratory

amplitudes between the time during which the motion model was generated and the rest of

the PET exam could make the application of the motion model less effective [70].

The number PET counts collected during the approximately 12-minute window of

simultaneous MR data acquisition was not sufficient. Hence, to be able to use all acquired

PET counts the motion models had to be extrapolated to the rest of the PET scan. The

validity of the extrapolated motion model outside the MR window is a strong assumption

that could be justified with further analysis: there have been studies [158, 218] classifying

breathing patterns into three different types based on the displacement histograms measured

in the diaphragm. An assessment of the probability density distribution of the surrogate

signals used for data binning inside and outside the 12-minute window of the MR acquisition

was performed. The distributions are displayed in Fig. 6.9 containing three different breathing

patterns for three different patients. The distributions were compared visually. While we

could show that there were different breathing patterns between patients, there was no intra-

patient difference in the shape of the distributions inside and outside the MR acquisition

window for any of the 10 acquired subjects.
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Figure 6.9: analysis of respiratory surrogate signal patterns. Blue: distribution of belt
signal during the MR acquisition. Red: belt signal outside the MR window. Black: self-navigator
as a direct measure of diaphragm displacement in head-foot direction. The differences in the black
curves indicate different breathing patterns for the three different patients. However, there is no
strong intra-patient variability in belt-signal distribution shape inside and outside the MR data
acquisition window.

This extrapolation required using the respiration belt for data binning which generally is

less accurate in describing motion states compared to an MR-based self-navigator[70]. This

can also be deducted from Fig. 6.9 where the distributions have different shapes between the

actual displacement reflected by the navigator and the belt signals. Using additional motion

surrogates [219] might further improve the application of the motion model to the PET data.

Also, this study neglected point-spread function modelling of the PET system. As the scatter

radiation used by the vendor system is unavailable, a standard technique [220] was used for its

computation. As displayed in Fig. 6.7, comparable overall image quality was achieved with a

slightly higher noise level in our reconstructions than in the vendor images. Being able to use
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the scatter estimation of the vendor could further improve image quality [221]. Furthermore,

as depicted in Fig. 6.8 and shown by previous studies [32], the MR signal voids caused

by stents do prevent the use of the MR as anatomic information to precisely locate uptake.

Potential errors, however, that propagate into the MR-based AC map could be efficiently and

automatically dealt with by custom morphological transformations and inpainting. The AC

map outside the MR FOV was completed by the vendor-provided attenuation information

of the arms. These data, if not available, could also be acquired time-efficiently in a short,

free-breathing, extra scan of a few seconds before or after finalisation of the PET exam.

6.5 Conclusion

In this chapter we presented the development and application of an MR-based motion-

compensation framework dedicated to [18F]NaF PET/MR imaging, yielding cardio-respiratory

motion-compensated high-resolution 3D MR and PET images. All required information

for motion-model and AC map generation, as well as the anatomic localisation of the

observed coronary uptakes, could be extracted from one comprehensive MR acquisition.

Furthermore, we could show that it is feasible to use all acquired PET data in motion-

corrected image reconstruction to achieve a high image quality despite the small uptakes.

The presented increase in TBR and CBR, the reduction in plaque width D and mitigation

of attenuation correction mismatch artefacts could enable a more reliable and reproducible

plaque localisation.
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Summary

In this thesis new methods to improve the detection and quantification of coronary

atherosclerotic plaques with simultaneous [18F]NaF PET/MR were developed and applied.

To address the challenges posed by physiological motion a flexible data acquisition and model-

based image reconstruction framework was developed able to correct motion of the heart due

to both respiration and heartbeat in PET/MR. The first component consisted of a numerical

simulation framework which was devised and implemented for ground truth evaluations of the

accuracy of different motion estimation approaches. Furthermore, MR model-based fat water

reconstruction was combined with cardio-respiratory motion correction and evaluated at 1.5 T

in patients with myocardial fat infiltrations. Subsequently, these methods were extended

by a motion-resolved attenuation correction and applied to successfully motion-correct

simultaneous [18F]NaF PET/MR in patients with known CAD. The quality of PET images

necessary for a reliable and reproducible quantification of cardiovascular atherosclerosis was

improved.

The generation of motion models in different applications during the project was supported

by a numerical simulation framework for dynamic simultaneous PET/MR. Its functionality

and implementation were described in chapter 3. The framework was designed for input

based on existing scanner raw data while providing ground truth motion information. Hence,

the simulations seamlessly integrate into already existing reconstruction workflows for patient

data with the ability to quantify the accuracy of registrations performed on the reconstructions.

It was shown that the simulation output yields realistic image data when compared to the

underlying patient data, as well as realistic cardiac and respiratory motion. Its usefulness was

demonstrated for simultaneous PET/MR, as well as stand-alone PET and MR applications.

These included the optimisation of regularisation parameters when generating 4D cardiac

and respiratory motion models for motion-resolved [18F]FDG PET, as well as evaluating the

registration accuracy of a non-rigid synergistic PET/MR registration algorithm. It was found

that for a synergistic 4D cardiac (respiratory) motion registration weighting the PET images

with 80 % (40 %) produces the optimal registration accuracy. The maximum error of the

motion fields over all motion phases in the myocardium could be reduced to approximately 1

voxel.
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The dynamic capabilities are not limited to motion alone, also signal and contrast changes

(e.g. due to contrast agent injection) can be flexibly incorporated and combined with motion.

While the framework can generate data similar to patient data with a low computational

demand, it still is limited by the incomplete realism of the employed PET and MR signal

models. In particular, the signal is based on analytical signal equations for steady-state

sequences. Also, the presented analysis is based only on the tissue segmentation and motion

of the XCAT model that was used as simulation input. Yet, as the segmentation is not bound

to XCAT, every available voxelised tissue phantom with a matching motion model could be

used. Hence, analysis performed with the simulation framework can be extended to multiple

anatomies. Possible improvements could therefore be the use of more sophisticated signal

models to extend its use to for example to T1 -mapping or MR fingerprinting.

By incorporating the simulation into a well-maintained open-source software project, it can

be accessed by a wider group of users. The final framework will be interfaced with Python

and merged into SIRF as a submodule. Furthermore, in- and output of the simulation is

based on open-source file formats (ISMRMRD and Interfile) which facilitates sharing the

simulation output and promotes reproducible research.

An additional by-product was the implementation of the RPE encoding model into the open-

source framework SIRF. This gives access to a larger variety of implemented reconstruction

algorithms. It already allows reconstructing MR data with advanced methods [222] and

should be able to facilitate synergistic methods for PET/MR data reconstruction in the

future.

Methods that were developed aimed at an improved estimation of motion-models and

attenuation correction were presented in chapter 4. On the acquisition side, a novel phase-

encoding pattern for a 3D RPE k-space trajectory based on the arrangement of seeds

in a sunflower was implemented. This could reduce the maximum gap sizes in k-space

after retrospective motion binning and resulted in a more regular distribution of k-space

points independent of whether cardiac or respiratory motion surrogates were used. On the

reconstruction side, a model-based fat-water separation framework with spatial and temporal

total-variation sparsity regularisation was implemented and combined with motion correction.

To generate the motion models for MCIR the synergistic PET/MR registration evaluated in

chapter 3 was transferred to the fat and water MR data. The motion in both fat and water

image modes were jointly registered exploiting the complementary information and positive

contrast the fat images provide. With the simulation framework, it was shown that using this

approach both cardiac and respiratory motion can be accurately estimated from a combination

of water and fat images.

Chapter 5 describes the use and validation of the novel acquisition-reconstruction methods

in a stand-alone clinical cardiac MR application. It could be shown that the visualisation

of adipose structures in the heart as well as coronary vessels could be improved using

cardio-respiratory motion correction. Patient data for 9 subjects with suspected lipotamous

metaplasia were acquired during free-breathing. The successful separation into water and fat

could be validated by comparing 2D slices from a clinical routine protocol with reformatted fat

images from the model-based reconstruction. The effect of motion correction on quality of the
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3D fat images were subsequently assessed quantitatively using a local edge sharpness metric

averaged over 4 different anatomical landmarks in different image orientations. The simulation-

optimised registration parameters were largely employed when generating the patient specific

motion-models for patient data in which no ground truth information to assess the registration

quality is available. Respiratory MoCo yielded a 34 ± 17 % increase in fat structure sharpness,

and cardiac MoCo an additional 8 ± 8 %. In one subject myocardial fat infiltrations were

detected. It was shown that the reconstruction spatially covered the entire infiltrations in 3D

from one acquisition and that cardio-respiratory motion-correction strongly increased their

visibility.

A clinical application of the presented model-based fat-water separated MoCo approach,

however, could be hindered by long reconstruction times in the order of multiple hours.

Foremost, this is because the sunflower trajectory requires non-uniform Fast Fourier Transform

(NUFFT) [223] which is more computaionally costly than the standard Fast Fourier transform

(FFT). Secondly, the iterative model inversion requires a more sophisticated optimisation

algorithm than a standard iterative conjugate gradient. However, this has to be weighted

against the advantages to the reconstruction framework over a standard Dixon approach,

allowing to regularise the fat-water seperated images and exploit sparsity in the fat images.

Furthermore, there was no effort in the scope of this thesis to accelerate the reconstruction

times. This could potentially be achieved performing the NUFFT on a GPU instead of on a

CPU.

On the acquisition side, however, a retrospective undersampling analysis to examine the

effect of potential accelerations was performed. The image analysis yielded comparable

image quality when reducing the theoretical acquisition time from 14 to 7 minutes where the

sharpness metrics were consistent with the full dataset while the sharpness metric increased

by 33 ± 18 % for respiratory - and an additional 6 ± 7 % for cardiac MoCo. Further reducing

the acquisition time below 4 minutes was assessed in a single patient, and also able to produce

high-quality motion-resolved images using preliminary machine learning image denoising. The

retrospective undersampling properties of the trajectory, however, did not allow to reliably

assess the fat structures. New, prospectively undersampled data would have to be acquired to

assess the resulting fat image quality. The chapters 4 and 5 showed the diagnostic virtue of the

presented MR sequence for cardiac fat-water applications. But also the developed methods

yield image data that is able to supply a simultaneous PET/MR exam with 3D high-resolution

anatomical information of the heart, motion models to employ in MCIR, as well as the basis

for a fat-water resolved AC map of the thorax at the same time.

Finally, in chapter 6 all of the above methods were applied to acquire and reconstruct

simultaneous [18F]NaF PET/MR for 10 patients with known or suspected CAD. The generated

motion-models could be successfully transferred to the PET emission and AC data. The

required information to generate a motion-model and AC map generation, as well to locate

the observed coronary uptakes in the anatomy could be extracted from one comprehensive MR

acquisition. The motion-compensated fat-water separation was segmented into fat, soft, and

lung-tissue and successfully converted into a 4-tissue AC map. Signal voids due to stents were

removed using inpainting methods. Hence, the displayed simultaneous PET/MR was ideally

co-registered and could provide motion, attenuation and high-resolution motion-compensated
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7. Summary

anatomical information at once. The effect of cardio-respiratory MCIR on [18F]NaF PET was

analysed by evaluation the TBR, CBR and diameter of the tracer uptake in the plaques. MCIR

could improve TBR by up to 14 % and CBR by up to 107 %. The average increase in was

7 ± 7 % for TBR, and 26 ± 38 % for CBR. Furthermore, cr-MCIR was able to reduce motion

blurring leading to an average plaque diameter reduction of 23 ± 18 %. These quantitative

measures show that MCIR was able to display the plaque uptake sharper and with higher

uptake value and contrast than without motion correction.

However, there were no independent data acquired which could confirm that a PET uptake is

in fact a high-risk atherosclerotic plaque. Uptakes with small TBR were, however, assumed to

be atherosclerosis, if they formed a coherent structure following the vascular tree over multiple

slices. A next step could be to analyse whether cr-MCIR allows the depiction of plaques that

were not visible in the motion-averaged reconstructions. However, that would require the

acquisition of ground truth reference data on the location of vulnerable plaques, as could, for

example, be provided by intravascular OCT or US data.

The comparison with the vendor reconstruction showed that the presented STIR reconstruc-

tions feature a higher noise level. This is assumed to be due to an imperfect scatter radiation

estimation. If this could improved to the quality of the vendor scatter correction a positive

impact on image quality is to be expected. Also, PET MCIR with more complex optimisation

algorithms [224] or the inclusion of time-of-flight (TOF) information [225–227] and partial

volume corrections [143, 213] could further improve PET image quality.

Furthermore, we could show that it is feasible to use all acquired PET data in motion-corrected

image reconstruction to achieve a high image quality despite the small coronary [18F]NaF

uptakes. To this end the motion models were generated from a time window on which the

MR information was available and had to be extrapolated from this window to the duration of

the entire PET scan. While the variations in the heartbeat can be assumed to be well captured

during the MR acquisition time [228, 229], the respiratory patterns might not (e.g. if a subject

falls asleep). However, the probability distributions for the surrogate signal amplitudes allow

to draw inferences from the belt signal to the respiratory pattern [83, 218]. It was shown

that there are strong inter-patient variations between these distributions, suggesting different

breathing for different patients. However, there were no intra-patient differences between the

distributions of the time window during which the motion models were generated and the

acquisition times to which it was extrapolated for any of the ten acquired patient datasets.

The low quality of the belt signal as a respiratory surrogate generally limits the respiratory

binning for the PET data. Yet, it is the only signal available during the whole scan, but

is noisier and has a lower correlation with the respiratory displacement of the heart than a

MR self-navigator. A navigator is, however, only available during the time window of the

simultaneous data acquisition and hence unfit to extrapolate the model. Machine learning

could aid in denoising the belt signal where during the period in which both surrogate signals

are available for example a convolutional neural network (CNN) can be trained to determine a

map between the belt signal and the self-navigator. Similar approaches have been previously

used by training classical signal filters [138].

The effect of the proposed respiratory resolved AC map during cr-MCIR was compared

to using an AC acquired during breath-hold as employed in the vendor reconstruction. The
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Biograph mMR images occasionally contained large AC misalignments, while for cr-MCIR

uptake in the vessel tree close to the heart/lung interface was better visible and was under

a lower risk of superimposition of a AC-misalignment artefact. Consequentially, modelling

AC motion is deemed crucial to guarantee a reproducible plaque detection independent of

different respiratory amplitudes during the AC map data acquisition.

Further improvement of the developed methods could be the incorporation of a more

complex surrogate signal for respiratory motion that would allow for more detailed motion

models and the inclusion of hysteresis [70, 158]. Generally, the incorporation of machine

learning into reconstruction has already and will play a major role in medical imaging of

the future. The data acquired in the scope of this thesis would potentially benefit from an

machine learning-based improved estimation of the cardiac motion [202, 230]. This highly

patient-specificic and non-linear motion with large amplitudes is hard to estimate accurately

from a fixed set of regularisation parameters. Also, the registration algorithms employed in

this thesis are able to co-register a general images. Instead, machine learning could replace this

general image registration approach by supplying algorithms dedicated to motion estimation of

medical images and hence specifically optimise the motion model generation for the individiual

motion types.

Machine learning can be further involved in quantiatitve applications such as parameter fitting

in DCE and pharmacokinetic modelling. The presented simulation framework on the other

hand could serve as a mean generate data for the validation and potentially the training of

the above-mentioned machine learning applications.

The methods proposed in this thesis show that physiological motion correction can strongly

improve the quality and quantification of [18F]NaF -PET uptake in coronary plaques. These

are an important basis for the clinical use of [18F]NaF PET as a potential non-invasive way

to quantify the risk of rupture posed by coronary plaques. Furthermore, with its ability to

increase the TBR and CBR motion-correction could potentially reduce the time necessary

for PET data acquisition. Hence, it could also help to increase patient throughput for a

comprehensive clinical exam which aims at the prediction and prevention of MI with a patient-

specific treatment.
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