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Abstract

We apply algebraic multigrid (AMG) as a preconditioner for solving
large singular linear systems of the type (I−T

T )x = 0 with GMRES. Here,
T is assumed to be the transition matrix of a Markov process. Although
AMG and GMRES are originally designed for the solution of regular sys-
tems, with adequate adaptation their applicability can be extended to
problems as described above.

1 Introduction

This paper treats the application of an algebraic multigrid (AMG) method [11]
as a preconditioner for solving large singular linear systems of the type

Ax := (I − T T )x = 0 (1)

with the generalised minimal residual (GMRES) method [12]. Here, T is the
transition matrix of a Markov process. The applicability of GMRES to singular
systems was examined, e.g., in [1, 4]. Our algebraic multigrid strategy is based
on the classical theory in [11] originally designed for systems involving regular,
symmetric, positive definite M-matrices. The approach in [11] was generalised
to symmetric positive definite and semi-definite matrices without the M -matrix
property, e.g., in [3, 5, 6, 10]. The main result of this paper is the extension of
the AMG approach to a class of singular non-symmetric M-matrices.

The theory of Markov chains [2, 13] represents an extremely important tool
that has a broad variety of applications not only in sciences, such as biology,
physics or chemistry, but also in business and economics. As an example, we
consider a Markov chain model for the blood circulation in a human body.

Example 1 Let us imagine the organs within a human body as states of a
blood particle. Within one time step, it can advance from one organ to another
with a certain probability. It is also possible that it stays within the organ and
only continues its journey a few time steps later. Hence, if we define a set
of (sub)organs as states of the Markov chain and the corresponding transition
probabilities, we get a large sparse (row) stochastic matrix. We are interested
in the stationary distribution of the Markov chain, which would, e.g., represent
the concentration of a dissolved substance after injection into an organ. For a
more detailed description, see [15].
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2 Preliminaries

We call a vector v ∈ Rn positive and we write v > 0 if all entries vi are positive.
A matrix T ∈ Rn×n, T = (tij)i,j=1,...,n is called positive (non-negative) and we
write T > 0 (T ≥ 0) if all entries tij are positive (non-negative). A matrix
T ∈ Rn×n is called reducible if there exists a permutation matrix P ∈ Rn×n,

such that PTPT =

[

T11 0
T21 T22

]

. Otherwise it is called irreducible.

A scalar λ ∈ R is called eigenvalue of the matrix T ∈ Rn×n if a vector
v ∈ Rn, v 6= 0 exists, such that Tv = λv. The vector v is called (right)
eigenvector of T associated with λ. Accordingly, a vector w ∈ Rn, w 6= 0 with
wT T = λwT is called (left) eigenvector of T . Let T ∈ Rn×n have the eigenvalues
λi, i = 1, . . . , n. Then we call ρ(T ) = max1≤i≤n |λi| the spectral radius of T .

A process is called finite homogeneous Markov chain if it has n states s1, . . . , sn

and the transition probability P [si ; sj ] =: tij is time-independent. The ma-
trix T = [tij ]i,j=1,...,n satisfies tij ≥ 0 and

∑n

j=1 tij = 1 for i, j = 1, . . . , n, i.e. is
(row) stochastic and is called transition matrix of a Markov chain. We denote
by xk = (xk

i ) the probability distribution vector, where xk
i is the probability that

the system is in state si after k steps. We have, xk
i ≥ 0 and

∑n

i=1 xk
i = 1 for

each k. A distribution vector x is said to be stationary if xT T = xT .

The well-known Perron-Frobenius Theorem guarantees the existence and
uniqueness of a stationary distribution.

Theorem 1 (Perron-Frobenius Theorem [2], p. 27) Let T ≥ 0 be irreducible
with spectral radius ρ(T ). Then ρ(T ) is a simple eigenvalue and T has a positive
left and right eigenvector corresponding to ρ(T ).

Corollary 1 ( [2], p. 28) A positive eigenvector x of a non-negative matrix T
corresponds to ρ(T ).

Corollary 2 Every finite homogeneous Markov chain has a stationary proba-
bility distribution vector. If the transition matrix T of the process is also irre-
ducible, then the stationary probability distribution vector is unique.

We define by Zn×n = {A = [aij ] ∈ Rn×n : aij ≤ 0, i 6= j} the set of all real
matrices with non-positive off-diagonal entries. Let B ≥ 0 with spectral radius
ρ(B). A matrix A of the form A = sI − B, with s > 0, and s ≥ ρ(B) is called
M-Matrix. If s > ρ(B) then A is a non-singular M-Matrix and if s = ρ(B)
then A is a singular M-Matrix. Hence, in our case A = (I − T T ) is a singular
M-matrix.

3 AMG preconditioning

The GMRES method we use was introduced in [12]. A version with left precon-
ditioning may look as follows:

Algorithm 1 (Preconditioned MGS-GMRES) Input: A ∈ Rn×n, b ∈Rn, starting vector x0 ∈ Rn, preconditioner M
Output: xm ∈ Rn solution approximate in the m-th step
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1. Compute r0 = M−1(b − Ax0), β := ‖r0‖2 and v1 := r0/β
2. Define the (m + 1) × m matrix H̄m = {hij}1≤i≤m+1,1≤j≤m. Set H̄m = 0.
3. For j = 1, 2, . . . , m Do:
4. Compute wj := M−1Avj

5. For i = 1, . . . , j Do:
6. hij := (wj , vi)
7. wj := wj − hijvi

8. EndDo
9. hj+1,j = ‖wj‖2. If hj+1,j = 0 set m := j and go to 12

10. vj+1 = wj/hj+1,j

11. EndDo
12. Compute ym the minimiser of ‖βe1 − H̄my‖2

13. Set xm = x0 + Vmym.

As we will see in the following, the application of AMG in our case requires the
property that the matrix A has row sums zero. Since A = (I −T T ) has column
sums zero instead, for the construction of the preconditioner we use the matrix
AT and then use MT for the iteration process.

3.1 Basic framework of AMG

The algebraic multigrid (AMG) method that is presented here follows the con-
cept introduced in [11] that is motivated by geometric multigrid, where a se-
quence of grids is constructed from the underlying geometry with corresponding
transfer operators between the grids. The main idea of GMG is to remove the
smooth error, that cannot be eliminated by relaxation on the fine grid, by coarse-
grid correction. The solution process then as usual consists of pre-smoothing,
transfer of residuals from fine to coarse grids, interpolation of corrections from
coarse to fine levels, and optional post-smoothing. In contrast to geometric
multigrid, the idea of AMG is to define an artificial sequence of systems of
equations decreasing in size,

Amum = bm, (2)

where the superscript m denotes the m-th iterate, directly from the underlying
matrix. We have A1 = A and for m = 1 the system (2) is identical to (1). We
call these equations “coarse grid” equations. The interpolation operator P and
the restriction operator R define the transfer from finer to coarser grids and vice
versa. More precisely, let Am ∈ Rnm×nm , then

Rm : Rnm → Rnm+1

Pm : Rnm+1 → Rnm ,

and the operator on the coarser grid is defined by

Am+1 = RmAmPm ∈ Rnm+1×nm+1 . (3)

Thus, we do not need a geometry behind the problem.

The AMG method consists of two main parts, the setup phase and the
solution phase. During the setup phase, the coarse grids and the corresponding
operators are defined. We describe this in Section 3.2. The solution phase
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consists of a multilevel iteration. Here, as an example, we illustrate a two-
level iteration, which involves the combination of a smoothing process, (e.g.,
Gauss-Seidel, see [7]) with a correction on a coarser grid:

x(k+1) = x(k) + B−1(bm − Amx(k)), (4a)

x(k+2) = x(k+1) + Pm(Am+1)−1Rm(bm − Amx(k+1)). (4b)

Here, the matrix (Ak+1)−1 is replaced by the recursive application of (4) to the
solution of the coarse grid system. The number of recursive calls, which is the
number of levels m, depends on the size and structure of the matrix. For our
method, we use the V-cycle pattern (see, e.g., [8]): Other recursive patterns,

smoothing

coarse grid correction

smoothing

smoothing

smoothing

R

R P

P

e.g., the W-cycle that involves two recursive calls per cycle are presented in [8].

3.2 Coarsening

The first main step of the coarsening process as introduced in [11] can be read
as a permutation of the matrix A ∈ Rn×n such that the fine grid nodes come
first:

A ; πT Aπ =

[

AFF AFC

ACF ACC

]

,

We choose the fine grid nodes such that the block AFF is close to a diagonal
matrix. A further sparsification step is applied in which the remaining off-
diagonal entries in AFF are redistributed onto the AFC block.

A ; Ã =

[

ÃFF ÃFC

ACF ACC

]

. (5)

It is shown in [11] that the “sparsification” process leaves the row sums of the
matrix A unchanged.

To obtain the restriction and interpolation operators, we consider the in-
complete block LU decomposition of the matrix Ã:

Ã =

[

ÃFF ÃFC

ACF ACC

]

=

[

I 0

ACF Ã−1
FF I

] [

ÃFF ÃFC

0 S

]

(6)

where S = ACC −ACF Ã−1
FF ÃFC is the Schur complement with respect to ÃFF .

We take S to be the new coarse grid operator. For other choices of restriction,
interpolation and coarse grid operators see, e.g., [5, 6, 11, 14]. The following
Lemma summarises the main results for the coarsening process.
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Lemma 1 Let A be sparsified and partitioned as in (6) and N be the number
of coarse grid nodes. Let S as in (6) be chosen as the new coarse grid operator.
Then, the following properties hold:

1. With the restriction and interpolation operators defined by

R =
[

−ACF Ã−1
FF I

]

∈ RN×n and P =

[

−Ã−1
FF ÃFC

I

]

∈ Rn×N ,

the new coarse grid operator S can be calculated from

S = RÃP ∈ RN×N . (7)

2. The interpolation operator P has all row sums equal to one.

3. The new coarse grid operator S has row sums equal to zero.

Proof.

1. By straight forward calculation we get

RÃP =
[

−ACF Ã−1
FF I

]

[

ÃFF ÃFC

ACF ACC

] [

−Ã−1
FF ÃFC

I

]

=

=
[

−ACF Ã−1
FF I

]

[

−ÃFC + ÃFC

−ACF Ã−1
FF ÃFC + ACC

]

= ACC − ACF Ã−1
FF ÃFC = S ∈ RN×N .

2. Let 1 = [1, . . . , 1]T represent the vector containing all entries equal to one.
Hence, for all i ∈ {1, . . . , N} we have

0 = eT
i Ã1 =

∑

k∈Ci

ãik + ãii

and thus, as all ãik ≤ 0 for i 6= k, we get

∑

k∈Ci
|ãik|

ãii

= 1,

where Ci is the set of interpolatory connections of i, i.e., we sum up the
entries in the i-th row of the ÃFC block. Hence, all row sums of the
interpolation operator P are equal to one.

3. From 2. we conclude that

eT
i S1 = eT

i RÃP1 = eT
i RÃ1 = 0 for all i,

i.e. the zero row sums property is preserved for the new coarse grid oper-
ator S.
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3.3 Multilevel Setup

For the setup of a recursive multilevel cycle, it is essential to ensure that the
important properties of the finest grid operator carry over to all coarser grids.
In our case it is on the one hand the row sums zero property, which is important
for an adequate interpolation of the smooth error and on the other hand the
singular M-matrix property. In Lemma 1 we have shown that the coarsening
process leaves the row sums zero. The following theorem states that the singular
M-matrix property is preserved after the performance of one coarsening step.

Theorem 2 Let A =

[

AFF AFC

ACF ACC

]

be a singular M-Matrix with zero row sums.

Then Ã =

[

ÃFF ÃFC

ACF ACC

]

as in (5) and the corresponding new coarse grid oper-

ator S = ACC − ACF Ã−1
FF ÃFC as in (7) are also singular M-matrices.

Proof.

1. Show that Ã is a singular M-Matrix:

A is a singular M-matrix. Therefore, it can be expressed in the form

A = sI − T, where T - transition matrix of a Markov process

ρ(T ) = 1 = s.

In [11] it was shown that the coarsening process leaves the row sums in-
variant, i.e. in our case equal to zero. Hence, we can write Ã = I − T̃ ,
where T̃ has row sums one. Furthermore, we have Ã ∈ Zn×n, i.e. the
off-diagonal entries in Ã are non-positive and the diagonal is non-negative
(as otherwise the row sums could not be zero). The diagonal entries are
also less than one. One can see this by considering the following “spar-
sification” steps (see [11] for a detailed description of the “sparsification”
process):

The initial matrix A has a sign and block structure
as illustrated on the right. The sign “−” indicates
that all entries in the corresponding section are non-
positive. Accordingly, “+” signifies that the entries
in the corresponding section are non-negative.

FFA AFC

ACCACF

+

_

+_

_

__

_

+

+

O

O

_

_ In the first step, the weak neighbours in each row are
added to the diagonal. The diagonal entries become
smaller but stay non-negative.

Then, off-diagonal entries of the AFF -block are dis-
tributed onto the AFC -block. The entries of the
AFC -block become smaller, but remain greater than
-1, as otherwise the row sums could not be zero.

+
_

_

_

+

Thus, T̃ is in addition non-negative and all entries are less than one.
From this we conclude that T̃ is stochastic and thus, ρ(T̃ ) = 1 = s.
Consequently, Ã is a singular M-matrix.
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2. Show that S as in (7) is a singular M-Matrix:

In Lemma 1 we have shown that S1 = 0, i.e. S has zero row sums. From
this and from ACC ∈ ZN×N and ACF Ã−1

FF ÃFC ≥ 0, we can conclude that

S = ACC − ACF Ã−1
FF ÃFC ∈ ZN×N . Let S now have the representation

S = sI − T̂ , T̂ ≥ 0, s > 0.

Then, we get

S1 = (sI − T̂ )1 = s1− T̂1 = 0

⇒ T̂1 = s1.
As 1 > 0 is a positive eigenvector of T̂ , it follows from Corollary 1 that
s = ρ(T̂ ). Hence, S is a singular M-matrix.

From Theorem 2 we conclude that the singular M-matrix property is pre-
served on all coarser levels.

3.4 Integration of the Side Constraint into the Solution

Process

For a badly chosen starting vector x0 the GMRES method in Algorithm 1
may converge to the trivial solution, instead of the stationary distribution. In
fact, for some problems we cannot choose the starting vector randomly but need
to employ a specifically fixed starting vector as, e.g., in the case of the blood
circulation model. Here, the initial distribution might represent an injection into
a certain organ. Therefore, it makes sense to set x0 = [0, . . . , 1, . . . , 0]T , where
the only nonzero entry [x0]i = 1 is positioned to represent the injection into
the organ i. In this case the naive application of the preconditioned GMRES
algorithm leads to a convergence to the trivial solution.

Hence, we have the side constraint 1T x = 1 that we have to include into
the solution process. The idea now is to shift the system such that the trivial
solution is excluded as a possible solution. Consider the orthogonal projection
matrix Q := I − 1

n
11T with respect to 1, that is 1T Q = 0. Any vector x can be

decomposed into

x := Qy + z

such that z = α1 for some constant α ∈ R. In particular, for a vector x̃ that
fulfils 1T x̃ = 1, we obtain z := 1

n
1. Now we transform the initial problem as

follows:

Ax = 0 (8)

⇔ A(Qy + z) = 0

⇔ AQy = − 1

n
A1.

By setting Â := AQ and b := − 1
n
A1, we get a formulation of the linear system

where the side constraint is embedded:

Ây = b. (9)
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Now, we can solve this system instead of (8) using AMG preconditioned GM-
RES. The system is still consistent since b ∈ im(A). As Q is orthogonal with
respect to z, we have x̃ = Qy + z 6= 0 for all y.

Note, that in the implementation we do not compute the product Â := AQ
explicitely as Q is not sparse and matrix-matrix products are expensive, but
rather successively calculate the corresponding matrix-vector products.

3.5 Direct Solution on the Coarsest Level

On the coarsest level we solve the singular system

Amxm = bm (10)

directly using the LU decomposition. From Section 3.3 we know that the oper-
ator Am on the coarsest level is still a singular M-matrix. In theory, the coars-
ening process does not necessarily guarantee irreducibility of Am, although in
our practical examples this is the case. Since the treatment of this problem is
beyond the scope of this paper, in the following discussion we will assume that
Am is irreducible. Then, an LU decomposition of Am with L non-singular exists
[9] and looks as follows:

Am = LU =







@
@

@@

1

1

@
@

@













@
@

@@
0







To solve the system (10), we only need to prove that it is consistent. That is,
we need to ensure that L−1 applied to the right hand side produces a zero in
the last entry of the resulting vector.

Lemma 2 Let A be a singular M-matrix with column sums zero and let A = LU
be an LU decomposition of A with L non-singular. Then

eT
nL−1 = 1T .

Proof. A = LU ⇔ L−1A = U . If we apply the n-th unit vector from the left,
we get

eT
nL−1A = eT

nU = [0, . . . , 0].

Thus, it must hold that eT
nL−1 = α1T for some scalar α. Yet, as L−1 has ones

on the diagonal, we get α = 1 and hence eT
nL−1 = 1T .

By construction, the AMG ensures that on any level j, the system (10)
satisfies 1T bj = 0 since this holds for the initial right hand side in (9) and the
new right hand sides on coarser grids are obtained via restriction of the residual,
i.e.,

bj+1 = Rj(bj − Ajxk).

Note, that Lemma 1 is applied to AT . Thus, Rj corresponds to (P j)T in Lemma
1.
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3.6 Numerical tests

For numerical tests, we used MATLAB R© Version 6.5 run on a PC with an
AMD Athlon(TM) XP 2100+ processor with relative machine precision eps =
2.2204× 10−16. As convergence criterion for GMRES we used the tolerance t =
‖r0‖√eps, where r0 is the initial residual, i.e. GMRES has converged when the
residual norm falls under the tolerance t. The time measurement was conducted
via the commands clock and etime and represents an upper bound for the
required time. It can be further reduced by a more efficient implementation
of the AMG algorithm. In Section 1, we have discussed the Markov chain
model of the blood circulation in a human body. Table 1 compares some results
of the basic GMRES solver with the AMG preconditioned GMRES applied
to transition matrices of Markov chains that arise from the blood circulation
problem.

Table 1: Blood-flow

GMRES AMG+GMRES
∑

AMG
n nnz TIME ITS GRID #level TIME ITS TIME
88 182 0.07 28 0.29 4 0.02 2 0.31
122 250 0.07 37 0.35 4 0.02 2 0.37
314 634 0.23 101 0.67 5 0.03 2 0.7
614 1234 0.64 169 1.3 6 0.06 2 1.36
1125 2256 5.15 368 2.12 7 0.15 2 2.27
2598 5202 34.41 687 4.58 8 0.64 2 5.22
4952 9901 119.79 1000 10.6 10 5.45 2 16.05

In the first column of Table 1 we have the size n of the problem. The second
column states the number nnz of nonzero elements in the matrix. The third
and fourth columns contain the computation time and the number of iterations
for the basic GMRES. The column labeled GRID shows the time required by
AMG for the grid construction. In #level the number of constructed grids is
given. The following TIME and ITS columns represent the computation time
of AMG preconditioned GMRES and the corresponding number of iterations.
The last column summarises the total time required by AMG preconditioned
GMRES.

As we can see, the number of iterations required by basic GMRES grows
linearly with the size of the matrix, whereas the number of iterations for the
preconditioned GMRES remains constant. Yet, with respect to the overall com-
putation time, the preconditioning becomes efficient only for large matrices.
This is due to the fact, that the overall computation time of the AMG precon-
ditioned GMRES is dominated by the time required to construct the “algebraic
grid”. The computational effort required for grid construction, however, al-
though it also grows linearly, grows much slower with the matrix size than the
computational effort for GMRES without preconditioning.
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4 Conclusions

In this paper, the application of the AMG method as a preconditioner for solv-
ing large singular linear systems of the type (I − T T )x = 0 with GMRES was
examined. In doing so, we concentrated on the case, where T is the transition
matrix of a Markov process. The AMG method [11] was originally developed
for regular, symmetric, positive definite M-matrices. In our case, although the
matrix (I − T T ) is singular and non-symmetric, it is a singular M-matrix that
possesses a number of useful properties. It turns out, that with the adaptation
that is discussed in Sections 3.3-3.5, the method becomes applicable to singular
matrices such as those in the blood circulation model. Numerical experiments
illustrate that preconditioning with AMG method leads to significant accelera-
tion of the convergence speed.
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