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Abstract. Motivated by a famous open question on the
single-source unsplittable minimum cost flow problem, we
present a new approximation result for the relaxation of the
problem where, for a given number k, each commodity must
be routed along at most k paths.

Keywords: Approximation Algorithm; Multi-Commodity
Flow; Network Flow; Routing; Unsplittable Flow; k-
Splittable Flow

1 Introduction

We study a relaxation of the following network flow problem
introduced by Kleinberg [5]:

Single-source unsplittable min-cost flow problem

Given: Digraph G = (V,E) with capacities u = (ue)e∈E

and costs c = (ce)e∈E ; source node s ∈ V and
p sink nodes t1, . . . , tp ∈ V with demands d =
(d1, . . . , dp) ∈ Rp

≥0.

Task: Find a flow (ye)e∈E with y ≤ u of minimum cost
c(y) =

∑
e∈E ceye and with a path decomposition

(yPi)i=1,...,p such that Pi is an s-ti-path and yPi = di

for i = 1, . . . , p.

The condition on the path decomposition of y simply says
that the demand di of each commodity i must be routed
along one single s-ti-path. Any such flow y is called an
unsplittable flow satisfying demands d. Already the problem
of deciding whether an unsplittable flow satisfying demands
d and obeying capacity constraints y ≤ u exists is NP-
complete [5]. It contains several well-known NP-complete
problems as special cases, such as, for example, Partition
and Bin Packing. On the other hand, if we drop the con-
straint on y to be unsplittable, what remains is a classical
minimum cost flow problem that can be solved efficiently.

Let dmax := maxi di denote the maximum demand value.
A popular assumption in the context of unsplittable flows is
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the no bottleneck condition which says that no demand may
exceed the capacity of any arc, that is,

dmax ≤ ue for all e ∈ E. (1)

Our work is motivated by the following conjecture.

Conjecture 1 (Goemans [4]). For any flow x satisfying de-
mands d, there is an unsplittable flow y satisfying demands
d with

ye ≤ xe + dmax for all e ∈ E (2)

and c(y) ≤ c(x).

Dinitz, Garg, and Goemans [2] prove that the conjecture
without costs (i.e., removing the bound c(y) ≤ c(x)) is true
and provide an efficient algorithm that computes y.

The congestion of a given flow y is the minimum value
α ≥ 1 with y ≤ αu. In particular, a flow of conges-
tion 1 obeys the capacity constraints. The first approxi-
mation results for the min-congestion version of the single-
source unsplittable flow problem (without costs) are given
by Kleinberg [6]. Since a flow x satisfying demands d with
minimum congestion can be computed with classical net-
work flow techniques, the result of Dinitz et al. [2] implies
the existence of a 2-approximation algorithm for the min-
congestion problem without costs. For this and all further
approximation results mentioned below we assume that the
no-bottleneck condition (1) holds.

Kolliopoulos and Stein [8] prove the weaker version of
Conjecture 1 where condition (2) is replaced by

ye ≤ 2xe + dmax for all e ∈ E (3)

and with the relaxed cost bound c(y) ≤ 2c(x). Their result
implies the existence of a bicriteria (3, 2)-approximation al-
gorithm for congestion and cost. Improving upon this re-
sult, Skutella [10] gives a (3, 1)-approximation algorithm.
He proves Conjecture 1 with (2) replaced by (3) but with the
original cost bound c(y) ≤ c(x). Notice that an efficient
algorithm that computes an unsplittable flow y as in Conjec-
ture 1 would yield a (2, 1)-approximation algorithm. On the
negative side, Erlebach and Hall [3] prove that, for arbitrary
ε > 0, there is no (2−ε, 1)-approximation algorithm, unless
P=NP.

Kolliopoulos and Stein [8] and Skutella [10] both build
upon the result that Conjecture 1 holds for the special case
where all demand values are powers of 2. In [8] the case of
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general demands is handled by rounding up demand values
to the nearest power of 2. This yields an increase in cost by
a factor of at most 2. In contrast to this, the improved result
in [10] is achieved by rounding down demand values to the
nearest power of 2 and carefully adjusting the given flow x.

We mention the following reformulation of Conjecture 1
stated in [9].

Conjecture 2 ([9]). Any flow x satisfying demands d can
be written as a convex combination of unsplittable flows y`,
` ∈ L, with property (2) and satisfying demands d.

It is not difficult to observe that Conjecture 2 is equiva-
lent to Conjecture 1 (see [9] for details). Building upon [8]
and [10], Martens, Salazar, and Skutella [9] prove the fol-
lowing result.

Theorem 1 ([9]). Conjecture 2 holds if all demands are
powers of 2. Moreover, the family of unsplittable flows y`,
` ∈ L, can be obtained in polynomial time.

In particular, the cardinality of L is polynomially bounded
in the input size. More precisely, it is at most |E| + 1 (as a
consequence of Carathéodory’s Theorem).

Baier, Köhler, and Skutella [1] introduce the following
relaxation of unsplittable flows. For a given k ≥ 1, a k-
splittable flow must route each commodity along at most k
paths. In particular, 1-splittable flows are unsplittable flows.
The resulting relaxation of our unsplittable flow problem is
the single-source k-splittable min-cost flow problem. It fol-
lows from the classical flow decomposition theorem that k-
splittability is not a meaningful restriction for k ≥ |E|. We
therefore assume in the remainder of the paper that k < |E|.

Kolliopoulos [7] presents an efficient algorithm that,
given a flow x satisfying demands d, finds a 2-splittable flow
y satisfying demands d with ye ≤ 4

3xe+ 2
3dmax for all e ∈ E

and c(y) ≤ c(x). This yields a (2, 1)-approximation algo-
rithm for the single-source 2-splittable min-cost flow prob-
lem. The main idea behind this result is to round down the
demand values to the nearest sum of two powers of 2 and to
carefully adjust the given flow x (as in [10]).

Our contribution. Inspired by the work of Kolliopou-
los [7], we present the following improved and generalized
result yielding a (1+ 1

k + 1
2k−1 , 1)-approximation algorithm

for the single-source k-splittable min-cost flow problem. In
particular, for k = 2 we get an ( 11

6 , 1)-approximation algo-
rithm.

Theorem 2. Let k ∈ Z>0. For any flow x satisfying de-
mands d, there is a k-splittable flow y satisfying demands d
with

ye ≤ 2k

2k − 1
xe +

dmax

k
for all e ∈ E (4)

and c(y) ≤ c(x). Moreover, such a flow y can be found in
polynomial time.

In order to achieve this result, we build upon results men-
tioned above and introduce several new ideas and tech-
niques. The history of bicriteria approximations for un-
splittable flows outlined above suggests that rounding down
demands to powers of 2 (as in [10]) leads to superior re-
sults compared to rounding up (as in [8]). Consequently,
Kolliopoulos [7] also uses rounding-down in his algorithm.
Surprisingly, the algorithm behind Theorem 2 is based on
rounding-up. For the special case k = 1, our result coin-
cides with the best known result for the unsplittable min-cost
flow problem given in [10]. This implies, in particular, that
the original idea of Kolliopoulos and Stein [8] to round up
demands to powers of 2 can still lead to unsplittable flows y
that are no more expensive than the given flow x. This in-
sight also sheds new light on Conjecture 1.

Moreover, in contrast to earlier approximation results, in
our result we use a more sophisticated technique based upon
Theorem 1. That is, for the problem with rounded demands
we compute an entire family of k-splittable flows which con-
tain an accordingly rounded version of the given flow x in
their convex hull. We emphasize that, in our approach, it is
not sufficient to only compute a member of this family that
has minimum cost. Only after going back to the original
demands and rounding down all k-splittable flows we can
check which members of the family do not violate the cost
bound.

2 Proof of Theorem 2

The next lemma provides the basis for rounding up demand
values to sums of k powers of 2.

Lemma 1. For any a ≤ k there exist integers q1 ≤ · · · ≤
qk ≤ 0 such that

a ≤
k∑

j=1

2qj <
2k

2k − 1
a .

Moreover, given a, the numbers q1, . . . , qk can be obtained
with O(k) elementary operations.

Proof. Since a ≤ k, there exist q1 ≤ · · · ≤ qk ≤ 0 such that

a ≤
k∑

j=1

2qj . (5)

Among all possible choices of q1, . . . , qk, consider one that
minimizes the right-hand side of (5). Decreasing q1 by 1
yields a smaller right-hand side and thus

2q1−1 +
k∑

j=2

2qj < a . (6)
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Moreover, since q1 ≤ qj for j = 2, . . . , k,

k∑
j=1

2qj = 2q1−1 +
k∑

j=2

2qj +
(2k − 1) 2q1−1

2k − 1

≤ 2q1−1 +
k∑

j=2

2qj +
2q1−1 + 2

∑k
j=2 2qj−1

2k − 1

=
2k

2k − 1

2q1−1 +
k∑

j=2

2qj

 .

This inequality together with (6) yields the desired result.
The following simple procedure can be used to compute

q1, . . . , qk with O(k) elementary operations: Set ak := a.
For j = k down to 2 set qj := min{0, blog2 ajc} and
aj−1 := aj − 2qj . Finally, set q1 := dlog2 a1e.

Take an instance I of the single-source unsplittable min-
cost flow problem. Without loss of generality we assume in
the following that dmax = k (scaling). For each commodity
i = 1, . . . , p, apply Lemma 1 to its demand di ≤ k in order
to find qi,1, . . . , qi,k ≤ 0 and d̄i :=

∑k
j=1 2qi,j so that

1 ≤ αi :=
d̄i

di
<

2k

2k − 1
. (7)

Let d̄ := (d̄1, . . . , d̄p) and let Ī denote a modified instance
with demand vector d replaced by the rounded demand vec-
tor d̄. Moreover, let Ī ′ denote the instance obtained from Ī
where each commodity i = 1, . . . , p is replaced by k sub-
commodities ij with demands 2qi,j and sharing the same
sink tij := ti, j = 1, . . . , k. We denote the corresponding
demand vector by d̄′.

Observation 1.

(i) A flow x̄ satisfies d̄ if and only if it satisfies d̄′.

(ii) The maximum demand value d̄′max is equal to dmax/k.

Let I ′ denote the instance obtained from Ī ′ by setting the
demand of sub-commodity ij to 2qi,j /αi, i = 1, . . . , p, j =
1, . . . , k. The corresponding demand vector is denoted by
d′. Notice that the maximum demand value d′max in d′ is
equal to 1 = dmax/k. Since

∑k
j=1 2qi,j /αi = d̄i/αi = di,

for i = 1, . . . , p, a flow satisfies d if and only if it satisfies
d′. This yields the following observation.

Observation 2. Any unsplittable flow satisfying d′ is a k-
splittable flow satisfying d.

We can now state the algorithm used to prove Theorem 2.

Algorithm
Input: A flow x satisfying d.
Output: A k-splittable flow satisfying d.

1. Compute d̄ and d̄′ as discussed above.

2. Compute a minimum cost flow x̄ satisfying d̄ with

x ≤ x̄ ≤ 2k

2k − 1
x . (8)

3. Write x̄ as a convex combination of unsplittable flows
ȳ`, ` ∈ L, satisfying d̄′ with

ȳ`
e ≤ x̄e + d̄′max for all e ∈ E. (9)

4. For each ` ∈ L, construct y` from ȳ` by scaling flow
of all sub-commodities ij by 1/αi for i = 1, . . . , p,
j = 1, . . . , k.

5. Determine `∗ ∈ L with c(y`∗) minimal and output y`∗ .

Lemma 2. Given a flow x satisfying d, the algorithm above
computes in polynomial time a k-splittable flow satisfying d
and with congestion bounded as in (4).

Proof. Step 1 of the algorithm can be done efficiently by
Lemma 1. Notice that the flow x̄ in Step 2 exists due to (7).
It can be obtained by a standard minimum cost flow com-
putation. By Observation 1 (i), x̄ satisfies demands d̄′. Due
to Theorem 1, the convex combination in Step 3 exists and
can be obtained efficiently. Since the cardinality of the index
set L is bounded by |E| + 1 (remark after Theorem 1), also
Steps 4 and 5 can be done efficiently.

By construction, y` is an unsplittable flow satisfying d′,
for each ` ∈ L. Thus, by Observation 2, each y` is a k-
splittable flow satisfying d. Finally, we prove that each y`,
` ∈ L, satisfies the bounds (4). For each arc e ∈ E

y`
e ≤ ȳ`

e since αi ≥ 1 for all i,
≤ x̄e + d̄′max by (9),

≤ 2k

2k − 1
xe +

dmax

k
by (8) and Observation 1 (ii).

This concludes the proof.

In the next lemma, we state the desired cost bound for the
k-splittable flow computed by the algorithm.

Lemma 3. The cost of the k-splittable flow computed by the
algorithm is at most the cost of the given flow x.

If x was contained in the convex hull of the y`, ` ∈ L,
the result would immediately follow. This is, however, in
general not the case.
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Proof. By construction, x̄ is a convex combination of the ȳ`,
` ∈ L, that is

x̄ =
∑
`∈L

λ` ȳ` (10)

with λ` ≥ 0 for each ` ∈ L and
∑

`∈L λ` = 1. Let

x̃ :=
∑
`∈L

λ` y` . (11)

Since each y`, ` ∈ L, satisfies demands d, the same holds
for the convex combination x̃.

By our choice of `∗, the cost of y`∗ is at most c(x̃). It
therefore suffices to prove that c(x̃) ≤ c(x). To this end, we
show that x̄ − x̃ + x is a feasible solution to the min-cost
flow problem in Step 2 of the algorithm. By linearity of the
cost function and optimality of x̄, this implies that

0 ≥ c(x̄) − c(x̄ − x̃ + x) = c(x̃) − c(x)

and thus the desired cost bound.
To check that flow x̄− x̃ + x has the properties requested

in Step 2, first notice that it satisfies the same demands d̄
as x̄ because both x and x̃ satisfy d and thus cancel out. It
remains to prove the required lower and upper bounds on
x̄ − x̃ + x. The bounds on the αi’s in (7) yield

2k − 1
2k

ȳ` < y` ≤ ȳ` for each ` ∈ L.

Taking convex combinations (see (10) and (11)) we get

2k − 1
2k

x̄ ≤ x̃ ≤ x̄ .

Together with (8) this finally yields

x ≤ x̄ − x̃ + x ≤ x̄ − 2k − 1
2k

x̄ + x

=
1
2k

x̄ + x ≤ 1
2k

2k

2k − 1
x + x =

2k

2k − 1
x .

Thus, x̄ − x̃ + x is a feasible solution to the min-cost flow
problem in Step 2 of the algorithm.

Lemmas 2 and 3 complete the proof of Theorem 2.
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