On Hilbert's tenth problem: Is classical set theory inconsistent?

Michael Pfender*

Jan Sablatnig[†]

March 2014, last revised September 26, 2018

Abstract

We consider cartesian categorical (free-variables) theory \mathbf{PR} of primitive recursion and arithmetise (gödelise) it into the natural numbers set of a classical **set** theory \mathbf{T} . We evaluate the map codes of the coded theory by a general recursive \mathbf{T} map and construct a μ -recursive decision algorithm based on evaluation of primitive recursive map codes. Within theory \mathbf{T} strengthend by p. r. internal inconsistency **axiom**, the predicate decision algorithm turns out to be total, terminating. It decides in a uniform way all diophantine equations and contradicts within the strengthend theory Matiyasevich's

^{*}michael.pfender@gmx.de

[†]jan-hendrik.sablatnig@alumni.tu-berlin.de

negative solution of Hilbert's 10th problem. But by Gödel's second incompleteness theorem the strengthend theory is relative consistent to **T**. This is to show inconsistency of classical **set** theorie(s).

Contents

1	Overview	2
2	Primitive Recursion	4
	2.1 Cartesian language	4
	2.2 Theory PR of primitive recursion	5
3	Evaluation	7
4	Decision	10
5	Hilbert's 10th Problem revisited	13

1 Overview

- 1. Axioms of cartesian categorical free-variables theory **PR** of primitive recursion with equality definability theorem are recalled. Mentioned is embedding extension of **PR** into theory **PRa** with abstraction of primitive recursive ("p. r.") predicates into subsets of objects of **PR**.
- 2. Consider a classical, quantified arithmetical **set** theory **T** with quantifiers which has in particular terms for all primitive recursive maps; **T** is to be one of Principia Math-

- ematica **PM** or Zermelo-Fraenkel **set** theory **ZF**, or v. Neumann Gödel Bernays **set** theory **NGB**.
- 3. Theory **PRa** is gödelised into internal theory PRa $\subset \mathbb{N}$ within classical **set** theorie(s) **T**.
- 4. This latter theory admits (general) recursive evaluation of internal, gödelised theory PRa into T.
- 5. By use of evaluation it is shown that theory ${\bf T}$ admits a μ -recursive decision map/algorithm for decision of p. r. predicates/subsets.
- 6. Theory **T** has a strengthening $\tilde{\mathbf{T}} = \mathbf{T} + \neg \text{Con}_{\mathbf{T}}$ of **T** by **axiom** $\neg \text{Con}_{\mathbf{T}}$ of internal, *arithmetised* inconsistency.
- 7. Within theory $\tilde{\mathbf{T}}$ the μ -recursive predicate decision algorithm terminates, is totally defined. It decides there all p. r. predicates into availability of counterexamples vs. overall truth. It decides there in particular in a uniform way diophantine equations in the sense of Hilbert's 10th problem as stated by Matiyasevich.
- 8. This author's negative solution of that problem within \mathbf{T} , taken as theorem in stronger theory $\tilde{\mathbf{T}}$, contradicts there (uniform) decidability of diophantine equations.
- 9. So $\tilde{\mathbf{T}}$ must be inconsistent and so are classical **set** theories \mathbf{T} as well, by Gödel's second incompleteness theorem stating relative consistency of $\neg \operatorname{Con}_{\mathbf{T}}$ over \mathbf{T} .

2 Primitive Recursion

2.1 Cartesian language

Free-variables cartesian "but" categorical language starts here with cartesian basic one object 1 and natural numbers object "NNO" N, and their (nested) formal cartesian products, coming with (formal) left and right projections

$$\ell = \ell_{A,B} : A \times B \to B \text{ and } r = r_{A,B} : A \times B \to B.$$

We **define/interpret** free variables as identity maps resp. left or right projections – possibly nested – out of cartesian products, onto their factors.

A special rôle is played by terminal object $\mathbbm{1}$. It works as the empty cartesian product \mathbbm{N}^0 , comes with a (unique) "projection" map $\Pi: A \to \mathbbm{1}$ for each object A, and is the domain object for concrete "elements" $a: \mathbbm{1} \to A$ of A, in particular for (concrete) numbers $n: \mathbbm{1} \to \mathbbm{N}$.

We first state the **axioms** for cartesian theory CA:

$$f: A \to B$$

$$f \circ \mathrm{id} = f \circ \mathrm{id}_A = f;$$

$$\mathrm{id} \circ f = \mathrm{id}_B \circ f = f$$

$$neutrality \ of \ identities \ to \ composition.$$

$$f: A \to B; \ g: B \to C; \ h: C \to D$$

$$(h \circ g) \circ f = h \circ (g \circ f) : A \to D$$
$$= h \circ g \circ f = h g f = h(g(f(a))))$$

associativity of composition.

$$f:A\to \mathbb{1}$$

$$f = \Pi_A$$

uniqueness of terminal map.

$$f: C \to A, \ g: C \to B$$

$$(f,g):C\to A\times B$$

(unique) induced map into product:

$$\ell \circ (f,g) = f, \ \mathbf{r} \circ (f,g) = g$$

Godement's diagram

2.2 Theory PR of primitive recursion

Add to cartesian theory **CA** iteration axioms:

$f: A \to A \text{ (endomap)}$

$$\begin{split} f^\S &= f^\S(a,n) : A \times \mathbb{N} \to A \ (\textit{iterated}); \\ f^\S(a,0) &:= f^\S(\mathrm{id}_A,0_A) = f^\S(\mathrm{id}_A,0\,\Pi_A) = a = \mathrm{id}_A : \\ A \to A \times \mathbb{N} \ (\textit{anchoring}); \\ f^\S \circ (A \times \mathbf{s}) &= f^\S(a,\mathbf{s}\,n) = f \circ f^\S = f(f^\S(a,n)) : \\ A \times \mathbb{N} \to A \to A \ (\textit{iteration step}); \\ f^n(a) &:= f^\S(a,n) \end{split}$$

apply iteratively endomap f to initial argument a, iterate n times.

Iteration DIAGRAM

$$f: A \to B; \ g: B \to B; \ h: A \times \mathbb{N} \to B;$$

$$h(a,0) = f(a);$$

$$h(a,s\,n) = g\,h(a,n)$$

$$h = g^{\S} (f \times id_{\mathbb{N}})$$
 i. e.

$$h(a,n) = g^n(f(a)) : A \times \mathbb{N} \to B :$$

Freyd's uniqueness of the iterated endomap g
initialised by map f

3 Evaluation

Crucial for present approach to Hilbert's decidability problem is availability – within \mathbf{T} as well as in $\tilde{\mathbf{T}} = \mathbf{T} + \neg \mathrm{Con}_{\mathbf{T}}$ – of a (general) recursive *evaluation* map

$$ev = ev(\chi, n) : [\mathbb{N}, 2]_{\mathbf{PRa}} \times \mathbb{N} \to 2 = \{0, 1\}$$

on the **T**-internal (primitive recursively decidable) *code set* (gödel numbers set) $[\mathbb{N}, 2]_{\mathbf{PRa}}$,

$$\chi \in [\mathbb{N}, 2]_{\mathbf{PRa}} \subset \mathrm{PRa} = \bigcup_{A,B} [A, B]_{\mathbf{PRa}} \subset \mathbb{N}$$

Explication: Primitive recursive *predicates* are viewed¹ as p. r. maps with codomain $2 \subset \mathbb{N}$ within cartesian categorical (free-variables) theory

$$\mathbf{PRa} = \mathbf{PR} + (\mathrm{abstr})$$

 $^{^{1}}$ Reiter 1982

of primitive recursion with interpretation of \mathbf{PR} predicates as additional objects, "subsets". Theory \mathbf{PRa} is an embedding extension of \mathbf{PR} .

Evaluation map ev is defined in **T** by (nested) double recursion à la Ackermann (see PÉTER 1967), and satisfies – for p. r. predicate $\varphi = \varphi(n) : \mathbb{N} \to 2$ – the characteristic equation

$$ev(\ulcorner \varphi \urcorner, n) = \varphi(n)$$

Evaluation in **detail**:

Evaluation family $ev = [ev_{A,B} : [A,B]_{PRa} \times A \rightarrow B]$ is recursively **defined** by

$$ev(\lceil ba \rceil, x) = ba(x)$$

for $ba \in bas = \{0, s\} \cup \{\Pi_A, \ell_{A,B}, r_{A,B} : A, B \text{ objects}\}$
in particular

$$ev_{N,N}(s,n) = s(n)$$

 $ev_{A\times B,A}(\ell_{A,B},(a,b)) = \ell_{A,B}(a,b) = a$

as well as recursively

Objectivity theorem

For
$$f:A\to B$$
 in **PRa**

$$ev_{A,B}(\lceil f \rceil, a) = f(a) : A \to B$$

Proof by nested recursion:

anchor: The theorem holds for $f \in \text{bas}$ by definition of ev. steps:

$$\begin{array}{ll} \boldsymbol{ev}_{A,C}(\lceil g \circ f \rceil, a) &= _{\mathrm{by\,def}} \ \boldsymbol{ev}_{A,C}(\lceil g \rceil \lceil \circ \rceil \lceil f \rceil, a) \\ &= \boldsymbol{ev}_{B,C}(\lceil g \rceil, \boldsymbol{ev}_{A,B}(\lceil f \rceil, a)) \\ &= g(f(a)) = (g \circ f)(a) \\ &\text{by recursion hypothesis} \\ \boldsymbol{ev}(\lceil (f,g) \rceil, c) &= _{\mathrm{by\,def}} \ \boldsymbol{ev}(\langle \lceil f \rceil; \lceil g \rceil \rangle) \end{array}$$

 $= (\textcolor{red}{ev}(\lceil f \rceil, c), \textcolor{red}{ev}(\lceil g \rceil, c)) = (f(c), g(c)) = (f, g)(c)$

by recursion hypothesis

as well as – inner induction on $n \in \mathbb{N}$:

anchor:

$$\mathbf{e}\mathbf{v}(\lceil f^{\S \neg}, (a, 0)) =_{\text{by def}} \mathbf{e}\mathbf{v}(\lceil f^{\neg \lceil \S \neg}, (a, 0))$$

= $a = f^{\S}(a, 0)$

step:

$$\mathbf{ev}(\lceil f^{\S \lnot}, (a, \operatorname{s} n)) = \mathbf{ev}(\lceil f^{\lnot \ulcorner \S \urcorner}, (a, \operatorname{s} n))$$

$$= \mathbf{ev}(\lceil f \urcorner, \mathbf{ev}(\lceil f^{\lnot \ulcorner \S \urcorner}, (a, n)))$$

$$= \mathbf{ev}(\lceil f \urcorner, f^{\S}(a, n)) \text{ by induction hypothesis on } n$$

$$= (f \circ f^{\S})(a, n) \text{ by recursion hypothesis on } f$$

$$= f^{\S}(a, \operatorname{s} n) \quad \operatorname{\mathbf{q. e. d.}}$$

4 Decision

Define the a priori partial μ -recursive decision map

decis = decis(
$$\varphi$$
): $[\mathbb{N}, 2]_{\mathbf{PRa}} \rightarrow 2 = \{0, 1\}$ in \mathbf{T} , $\varphi \in [\mathbb{N}, 2]_{\mathbf{PR}} \subset formulae_{\mathbf{T}} \subset \mathbb{N}$

via two antagonistic termination indices

$$\begin{split} &\mu_{ex}(\varphi),\ \mu_{\operatorname{thm}_{\mathbf{T}}}(\varphi): [\mathbb{N},2]_{\mathbf{PR}} \to \mathbb{N} \cup \{\infty\} \text{ within } \mathbf{T} \text{ as follows:} \\ &\mu_{ex}(\varphi):=\mu\{n: \mathbf{ev}(\varphi,n)=0\} \quad \text{``minimal counter} \ example'' \\ &= \begin{cases} \min\{n: \mathbf{ev}(\varphi,n)=0\} & \text{if} \quad \exists n[\mathbf{ev}(\varphi,n)=0] \\ \infty \text{ (undefined)} & \text{if} \quad \forall n[\mathbf{ev}(\varphi,n)=1] \end{cases} \end{split}$$

Theorem index $\mu_{\text{thm}_{\mathbf{T}}}(\varphi) \in \mathbb{N} \cup \{\infty\} \text{ of } \varphi \in [\mathbb{N}, 2]_{\mathbf{PRa}} \text{ is defined by}$

$$\mu_{\text{thm}_{\mathbf{T}}}(\varphi) = \mu\{k : \text{thm}_{\mathbf{T}}(k) = \varphi\}$$

Here the p.r. enumeration

$$thm_{\mathbf{T}} = thm_{\mathbf{T}}(k) : \mathbb{N} \to formulae_{\mathbf{T}} \subset \mathbb{N}$$

is the **T** internal version of the p.r. enumeration of all (Gödel numbers of) **T** theorems; enumeration is lexicographic by "length of shortest proof".

Finally, we define the – a priori partial – μ -recursive **T** map

$$decis = decis(\varphi) : [\mathbb{N}, 2]_{\mathbf{PR}} \to 2$$
 by

$$\operatorname{decis}(\varphi) = \begin{cases} 0 \text{ if } \mu_{ex}(\varphi) < \infty & (\text{``counterexample''}) \\ 1 \text{ if } \mu_{ex}(\varphi) = \infty \text{ and } \mu_{\operatorname{thm}_{\mathbf{T}}}(\varphi) < \infty & (\mathbf{T} \text{ theorem}) \\ \infty \text{ otherwise, i. e. if } \mu_{\operatorname{thm}_{\mathbf{T}}}(\varphi) = \mu_{ex}(\varphi) = \infty. \end{cases}$$

For proof of decis to be *totally defined* within $\tilde{\mathbf{T}}$ we rely on the following (trivial)

Lemma (Semantical completeness of $\tilde{\mathbf{T}}$ rel. p. r. predicates):

$$\tilde{\mathbf{T}} \vdash \forall n[\boldsymbol{ev}(\varphi, n) = 1] \implies \exists k[\operatorname{thm}_{\mathbf{T}}(k) = \varphi],$$

 φ free on $[\mathbb{N}, 2]_{\mathbf{PRa}}$

Proof: One of the equivalent T formulae expressing internal inconsistency of T is

$$\neg \text{Con}_{\mathbf{T}} = (\forall f \in formulae_{\mathbf{T}})(\exists k \in \mathbb{N})[\text{thm}_{\mathbf{T}}(k) = f]$$

"Every internal ${\bf T}$ formula – Gödel number – is provable." This gives in particular

$$\tilde{\mathbf{T}} \vdash \exists k[\operatorname{thm}_{\mathbf{T}}(k) = \varphi],$$

\varphi \text{ free on } [\mathbb{N}, 2]_{\mathbf{PR}} \subseteq formulae_{\mathbf{T}} \text{ q. e. d.}

Decision theorem

(i) within $\tilde{\mathbf{T}} = \mathbf{T} + \neg \text{Con}_{\mathbf{T}}$, the (a priori partial) μ -recursive decision algorithm

$$\operatorname{decis}(\varphi) : [\mathbb{N}, 2]_{\mathbf{PR}} \rightharpoonup 2$$

is in fact totally defined, in other words it terminates on all internal Gödel numbers $\varphi \in [\mathbb{N},2]_{\mathbf{PR}}$.

- (ii) For $\varphi = \varphi(n)$ a p. r. predicate, $\lceil \varphi \rceil \in [\mathbb{N}, 2]_{\mathbf{PR}} \subset \mathbb{N}$ its gödel number, decis($\lceil \varphi \rceil$) gives in $\tilde{\mathbf{T}}$ the *correct* result:
 - $\tilde{\mathbf{T}} \vdash \operatorname{decis}(\lceil \varphi \rceil) = 0 \iff \exists n [\neg \varphi(n)],$
 - $\tilde{\mathbf{T}} \vdash \operatorname{decis}(\lceil \varphi \rceil) = 1 \implies \forall n \, \varphi(n).$

Proof of (i):

$$\tilde{\mathbf{T}} \vdash \mu_{ex}(\varphi) = \infty$$

$$\iff \forall n[\mathbf{e}\mathbf{v}(\varphi, n) = 1]$$

$$\iff \exists k[\operatorname{thm}_{\mathbf{T}}(k) = \varphi]$$
by internal semantical completeness of $\tilde{\mathbf{T}}$ above
$$\iff \mu_{\operatorname{thm}_{\mathbf{T}}}(\varphi) < \infty$$

Hence not both of $\mu_{ex}(\varphi)$, $\mu_{\text{thm}_{\mathbf{T}}}(\varphi)$ can be undefined within $\tilde{\mathbf{T}}$.

This shows termination $\operatorname{decis}(\varphi) \in \{0,1\}$ of decis within $\tilde{\mathbf{T}}$ for all internal p. r. predicates φ .

Proof of (ii):

$$\begin{split} \tilde{\mathbf{T}} &\vdash \operatorname{decis}(\lceil \varphi \rceil) = 0 \\ &\iff \mu_{ex} [\lceil \varphi \rceil < \infty] \\ &\iff \exists n [\boldsymbol{ev}(\lceil \varphi \rceil, n) = 0] \\ &\iff \exists n [\varphi(n) = 0] \quad \text{by } \boldsymbol{ev} \text{'s evaluation property} \\ &\iff \exists n [\neg \varphi(n)] \\ &\text{as well as} \\ \tilde{\mathbf{T}} &\vdash \operatorname{decis}(\lceil \varphi \rceil) = 1 \\ &\iff \forall n [\boldsymbol{ev}(\lceil \varphi \rceil, n) = 1] \\ &\iff \forall n \varphi(n) \quad \mathbf{q. e. d.} \end{split}$$

[if here $\operatorname{decis}(\lceil \varphi \rceil) = 0 = 1$ then $\tilde{\mathbf{T}}$ is inconsistent and we are done.]

5 Hilbert's 10th Problem revisited

A diophantine equation

$$[D_L(x_1, \dots, x_m) = D_R(x_1, \dots, x_m)] : \mathbb{N}^m \to \mathbb{N}^m \times \mathbb{N}^m \to \mathbb{N} \times \mathbb{N} \xrightarrow{=} 2 = \{0, 1\}$$

is equivalent to p.r. predicate

$$\varphi_D = \varphi_D(n)$$

$$= [D_L(x_1, \dots, x_m) = D_R(x_1, \dots, x_m)] \circ \operatorname{cantor}_{\mathbb{N}^m} :$$
 $\mathbb{N} \xrightarrow{\simeq} \mathbb{N}^m \to 2$

decided as $\operatorname{decis}(\lceil \varphi_D \rceil)$ defined within theory $\tilde{\mathbf{T}}$:

$$\tilde{\mathbf{T}} \vdash \operatorname{decis}(\lceil \varphi_D \rceil) < \infty \quad (\bullet)$$

Consider now countable family

$$[D_{\alpha}^{L}(x_1,\ldots,x_{m(\alpha)})=D_{\alpha}^{R}(x_1,\ldots,x_{m(\alpha)})]_{\alpha\in\mathbb{N}}$$

of *all* diophantine equations: The equations are counted lexicographically by their (finite) polynome-coefficient lists.

Cf. Matiyasevich 1993, 1.1, 1.2, and 1.3. This family gives rise to p. r. predicates

$$\varphi_{\alpha} = [D_{\alpha}^{L}(x_1, \dots, x_{m(\alpha)}) \neq D_{\alpha}^{R}(x_1, \dots, x_{m(\alpha)})] : \mathbb{N}^{m(\alpha)} \to 2$$

which has property that

$$(x_1,\ldots,x_{m(\alpha)})\in\mathbb{N}^{m(\alpha)}$$
 is a solution to $\varphi(\alpha)$

iff it is a counterexample to

$$D_{\alpha} = [D_{\alpha}^{L}(x_1, \dots, x_{m(\alpha)}) = D_{\alpha}^{R}(x_1, \dots, x_{m(\alpha)})] : \mathbb{N}^{m(\alpha)} \to 2$$

and D_{α} has no solution (in natural numbers)

iff
$$\varphi_{\alpha}$$
 holds for $(x_1, \ldots, x_{m(\alpha)})$ free in $\mathbb{N}^{m(\alpha)}$

From Decision Lemma (for p. r. predicates) above we obtain

Decision Theorem

1. $\tilde{\mathbf{T}} \vdash \operatorname{decis}^{\lceil \varphi_{\alpha} \rceil} < \infty, \ \alpha \in \mathbb{N}$ free.

Within the – somewhat strange – theory $\tilde{\mathbf{T}} = \mathbf{T} + \neg \text{Con}_{\mathbf{T}}$ the (partial) μ -recursive map (the "algorithm")

$$decis : [\mathbb{N}, 2]_{\mathbf{PRa}} \rightharpoonup 2$$

decides in fact all primitive recursive predicates, in particular all diophantine predicates as considered above, uniformally.

- 2. Since μ -recursion and Turing machines have equal computation power by the verified part of Church's thesis this means: Within $\tilde{\mathbf{T}}$, decis gives rise to a Turing machine TM deciding all diophantine equations, i. e. $\tilde{\mathbf{T}}$ admits a positive solution to Hilbert's 10th problem.
- 3. On the other hand, Matiyasevich's negative solution to this problem works in **set** theory \mathbf{T} , a fortiori in theory $\tilde{\mathbf{T}} = \mathbf{T} + \neg \text{Con}_{\mathbf{T}}$.
- 4. The latter two results MATIYASEVICH's negative \mathbf{T} theorem and our positive $\tilde{\mathbf{T}}$ theorem contradict each other in stronger theory $\tilde{\mathbf{T}}$. This shows $\tilde{\mathbf{T}}$ to be inconsistent.
- 5. Gödel's consistency of $\neg Con_{\mathbf{T}}$ relative to \mathbf{T} second incompleteness theorem then entails inconsistency of classical **set** theorie(s) \mathbf{T} .

Outlook: Since Matiyasevich 1993 makes essential use of formal (existential) quantification for "unsolving" Hilbert's 10th

problem, this only decidability problem on Hilbert's list is again open – for treatment within the framework of suitable *constructive* foundations for Arithmetic.

References

- [1] S. EILENBERG, C. C. ELGOT 1970: Recursiveness. Academic Press.
- [2] P. J. Freyd 1972: Aspects of Topoi. Bull. Australian Math. Soc. 7, 1-76.
- [3] K. GÖDEL 1931: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatsh. der Mathematik und Physik 38, 173-198.
- [4] R. L. GOODSTEIN 1971: Development of Mathematical Logic, ch. 7: Free-Variable Arithmetics. Logos Press.
- [5] D. HILBERT 1900: Mathematische Probleme. Vortrag. Quoted in MATIYASEVICH 1993.
- [6] F. W. LAWVERE 1964: An Elementary Theory of the Category of Sets. *Proc. Nat. Acad. Sc. USA* 51, 1506-1510.
- [7] Y. V. Matiyasevich 1993: *Hilbert's Tenth Problem*. The MIT Press.
- [8] R. Péter 1967: Recursive Functions. Academic Press.
- [9] M. Pfender, M. Kröplin, D. Pape 1994: Primitive recursion, equality, and a universal set. *Math. Struct. in Comp. Sc.* 4, 295-313.

- [10] R. REITER 1982: Ein algebraisch-konstruktiver Abbildungskalkül zur Fundierung der elementaren Arithmetik. Dissertation, rejected by Math. dpt. of TU Berlin.
- [11] L. Romàn 1989: Cartesian categories with natural numbers object. J. Pure and Appl. Alg. 58, 267-278.
- [12] C. SMORYNSKI 1977: The incompleteness theorems. Part D.1, pp. 821-865 in J. BARWISE ed. 1977: Handbook of Mathematical Logic. North Holland.