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Abstract

We consider cartesian categorical (free-variables) theory PR

of primitive recursion and arithmetise (gödelise) it into the

natural numbers set of a classical set theory T. We evalu-

ate the map codes of the coded theory by a general recursive

T map and construct a µ-recursive decision algorithm based

on evaluation of primitive recursive map codes. Within the-

ory T strengthend by p. r. internal inconsistency axiom, the

predicate decision algorithm turns out to be total, terminat-

ing. It decides in a uniform way all diophantine equations

and contradicts within the strengthend theory Matiyasevich’s
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negative solution of Hilbert’s 10th problem. But by Gödel’s

second incompleteness theorem the strengthend theory is rela-

tive consistent to T. This is to show inconsistency of classical

set theorie(s).
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1 Overview

1. Axioms of cartesian categorical free-variables theory PR

of primitive recursion with equality definability theorem

are recalled. Mentioned is embedding extension of PR

into theory PRa with abstraction of primitive recursive

(“p. r.”) predicates into subsets of objects of PR.

2. Consider a classical, quantified arithmetical set theory T

with quantifiers which has in particular terms for all prim-

itive recursive maps; T is to be one of Principia Math-
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ematica PM or Zermelo-Fraenkel set theory ZF, or v.

Neumann Gödel Bernays set theory NGB.

3. Theory PRa is gödelised into internal theory PRa ⊂ N

within classical set theorie(s) T.

4. This latter theory admits (general) recursive evaluation

of internal, gödelised theory PRa into T.

5. By use of evaluation it is shown that theory T admits

a µ-recursive decision map/algorithm for decision of p. r.

predicates/subsets.

6. Theory T has a strengthening T̃ = T + ¬ConT of T by

axiom ¬ConT of internal, arithmetised inconsistency.

7. Within theory T̃ the µ-recursive predicate decision al-

gorithm terminates, is totally defined. It decides there

all p. r. predicates into availability of counterexamples vs.

overall truth. It decides there in particular – in a uniform

way – diophantine equations in the sense of Hilbert’s 10th

problem as stated by Matiyasevich.

8. This author’s negative solution of that problem within T,

taken as theorem in stronger theory T̃, contradicts there

(uniform) decidability of diophantine equations.

9. So T̃ must be inconsistent and so are classical set theo-

ries T as well, by Gödel’s second incompleteness theorem

stating relative consistency of ¬ConT over T.
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2 Primitive Recursion

2.1 Cartesian language

Free-variables cartesian “but” categorical language starts here

with cartesian basic one object 1 and natural numbers object

“NNO” N, and their (nested) formal cartesian products, com-

ing with (formal) left and right projections

` = `A,B : A×B → B and r = rA,B : A×B → B.

We define/interpret free variables as identity maps resp.

left or right projections – possibly nested – out of cartesian

products, onto their factors.

A special rôle is played by terminal object 1. It works as

the empty cartesian product N0, comes with a (unique) “pro-

jection” map Π : A → 1 for each object A, and is the domain

object for concrete “elements” a : 1 → A of A, in particular

for (concrete) numbers n : 1→ N.

We first state the axioms for cartesian theory CA :

f : A→ B

f ◦ id = f ◦ idA = f ;

id ◦ f = idB ◦ f = f

neutrality of identities to composition.

f : A→ B; g : B → C; h : C → D

(h ◦ g) ◦ f = h ◦ (g ◦ f) : A→ D

= h ◦ g ◦ f = h g f = h(g(f(a))))
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associativity of composition.

f : A→ 1

f = ΠA

uniqueness of terminal map.

f : C → A, g : C → B

(f, g) : C → A×B

(unique) induced map into product:

` ◦ (f, g) = f, r ◦ (f, g) = g

=

A

C

f
22

(f,g) //

g
,,

A×B

`

OO

r

��

=

B

Godement’s diagram

2.2 Theory PR of primitive recursion

Add to cartesian theory CA iteration axioms:
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f : A→ A (endomap)

f § = f §(a, n) : A×N→ A (iterated);

f §(a, 0) := f §(idA, 0A) = f §(idA, 0 ΠA) = a = idA :

A→ A×N (anchoring);

f § ◦ (A× s) = f §(a, sn) = f ◦ f § = f(f §(a, n)) :

A×N→ A→ A (iteration step);

fn(a) := f §(a, n)

apply iteratively endomap f to initial argument a,

iterate n times.

A×N A×s //

f§

��

=

A×N

f§

��

A

(id,0)
;;

id ##

=

A
f // A

Iteration diagram

6



f : A→ B; g : B → B; h : A×N→ B;

h(a, 0) = f(a);

h(a, sn) = g h(a, n)

h = g§ (f × idN) i. e.

h(a, n) = gn(f(a)) : A×N→ B :

Freyd’s uniqueness of the iterated endomap g

initialised by map f

3 Evaluation

Crucial for present approach to Hilbert’s decidability problem

is availability – within T as well as in T̃ = T + ¬ConT – of a

(general) recursive evaluation map

ev = ev(χ, n) : [N,2]PRa ×N→ 2 = {0, 1}

on the T-internal (primitive recursively decidable) code set

(gödel numbers set) [N,2]PRa ,

χ ∈ [N,2]PRa ⊂ PRa =
⋃
A,B

[A,B]PRa ⊂ N

Explication: Primitive recursive predicates are viewed1 as

p. r. maps with codomain 2 ⊂ N within cartesian categorical

(free-variables) theory

PRa = PR + (abstr)

1 Reiter 1982
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of primitive recursion with interpretation of PR predicates as

additional objects, “subsets”. Theory PRa is an embedding

extension of PR.

Evaluation map ev is defined in T by (nested) double re-

cursion à la Ackermann (see Péter 1967), and satisfies – for

p. r. predicate ϕ = ϕ(n) : N→ 2 – the characteristic equation

ev( pϕq , n) = ϕ(n)

Evaluation in detail:

Evaluation family ev = [evA,B : [A,B]PRa × A → B] is

recursively defined by

ev( pbaq , x) = ba(x)

for ba ∈ bas = {0, s} ∪ {ΠA, `A,B, rA,B : A,B objects}
in particular

evN,N(s, n) = s(n)

evA×B,A(`A,B, (a, b)) = `A,B(a, b) = a

as well as recursively

evA,C(g p◦qf , a) = evB,C(g, evA,B(f , a))

evC,A×B(〈f ; g〉, c) = (evC,A(f , c), evC,B(g, c))

evA×N,A(f p§q , (a, 0)) = idA(a) = a

evA×N,A(f p§q , (a, sn)) = evA,A(f , evA×N(f p§q , (a, n))

Objectivity theorem

For f : A→ B in PRa

evA,B( pfq , a) = f(a) : A→ B
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Proof by nested recursion:

anchor: The theorem holds for f ∈ bas by definition of ev.

steps:

evA,C( pg ◦ fq , a) = by def evA,C( pgq p◦q pfq , a)

= evB,C( pgq , evA,B( pfq , a))

= g(f(a)) = (g ◦ f)(a)

by recursion hypothesis

ev( p(f, g)q , c) = by def ev(〈 pfq ; pgq 〉)
= (ev( pfq , c), ev( pgq , c)) = (f(c), g(c)) = (f, g)(c)

by recursion hypothesis

as well as – inner induction on n ∈ N :

anchor:

ev( pf §q , (a, 0)) = by def ev( pfq p§q , (a, 0))

= a = f §(a, 0)

step:

ev( pf §q , (a, sn)) = ev( pfq p§q , (a, sn))

= ev( pfq , ev( pfq p§q , (a, n))

= ev( pfq , f §(a, n)) by induction hypothesis on n

= (f ◦ f §)(a, n) by recursion hypothesis on f

= f §(a, sn) q. e. d.
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4 Decision

Define the a priori partial µ-recursive decision map

decis = decis(ϕ) : [N, 2]PRa ⇀ 2 = {0, 1} in T,

ϕ ∈ [N, 2]PR ⊂ formulaeT ⊂ N

via two antagonistic termination indices

µex (ϕ), µthmT
(ϕ) : [N, 2]PR → N ∪ {∞} within T as follows:

µex (ϕ) := µ{n : ev(ϕ, n) = 0} “minimal counterexample”

=

min{n : ev(ϕ, n) = 0} if ∃n[ev(ϕ, n) = 0]

∞ (undefined) if ∀n[ev(ϕ, n) = 1]

Theorem index µthmT
(ϕ) ∈ N∪{∞} of ϕ ∈ [N, 2]PRa is defined

by

µthmT
(ϕ) = µ{k : thmT(k) = ϕ}

Here the p. r. enumeration

thmT = thmT(k) : N→ formulaeT ⊂ N

is the T internal version of the p. r. enumeration of all (Gödel

numbers of) T theorems; enumeration is lexicographic by “length

of shortest proof ”.

Finally, we define the – a priori partial – µ-recursive T map

decis = decis(ϕ) : [N, 2]PR ⇀ 2 by

decis(ϕ) =


0 if µex (ϕ) <∞ (“counterexample”)

1 if µex (ϕ) =∞ and µthmT
(ϕ) <∞ (T theorem)

∞ otherwise, i. e. if µthmT
(ϕ) = µex (ϕ) =∞.

10



For proof of decis to be totally defined within T̃ we rely on

the following (trivial)

Lemma (Semantical completeness of T̃ rel. p. r. predicates):

T̃ ` ∀n[ev(ϕ, n) = 1] =⇒ ∃k[thmT(k) = ϕ],

ϕ free on [N, 2]PRa

Proof: One of the equivalent T formulae expressing internal

inconsistency of T is

¬ConT = (∀f ∈ formulaeT)(∃k ∈ N)[thmT(k) = f ]

“Every internal T formula – Gödel number – is provable.”

This gives in particular

T̃ ` ∃k[thmT(k) = ϕ],

ϕ free on [N, 2]PR ⊂ formulaeT q. e. d.

Decision theorem

(i) within T̃ = T + ¬ConT, the (a priori partial) µ-recursive decision

algorithm

decis(ϕ) : [N, 2]PR ⇀ 2

is in fact totally defined, in other words it terminates on all internal

Gödel numbers ϕ ∈ [N, 2]PR .

(ii) For ϕ = ϕ(n) a p. r. predicate, pϕq ∈ [N, 2]PR ⊂ N its gödel number,

decis( pϕq ) gives – in T̃ – the correct result:

• T̃ ` decis( pϕq ) = 0 ⇐⇒ ∃n[¬ϕ(n)],

• T̃ ` decis( pϕq ) = 1 =⇒ ∀nϕ(n).
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Proof of (i):

T̃ ` µex (ϕ) =∞
⇐⇒ ∀n[ev(ϕ, n) = 1]

=⇒ ∃k[thmT(k) = ϕ]

by internal semantical completeness of T̃ above

⇐⇒ µthmT
(ϕ) <∞]

Hence not both of µex (ϕ), µthmT
(ϕ) can be undefined within

T̃.

This shows termination decis(ϕ) ∈ {0, 1} of decis within T̃

for all internal p. r. predicates ϕ.

Proof of (ii):

T̃ ` decis( pϕq ) = 0

⇐⇒ µex [ pϕq <∞]

⇐⇒ ∃n[ev( pϕq , n) = 0]

⇐⇒ ∃n[ϕ(n) = 0] by ev’s evaluation property

⇐⇒ ∃n[¬ϕ(n)]

as well as

T̃ ` decis( pϕq ) = 1

=⇒ µex pϕq =∞
⇐⇒ ∀n[ev( pϕq , n) = 1]

⇐⇒ ∀nϕ(n) q. e. d.

[if here decis( pϕq ) = 0 = 1 then T̃ is inconsistent and we are

done.]
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5 Hilbert’s 10th Problem revisited

A diophantine equation

[DL(x1, . . . , xm) = DR(x1, . . . , xm)] :

N
m → N

m ×Nm → N×N =−→ 2 = {0, 1}

is equivalent to p. r. predicate

ϕD = ϕD(n)

= [DL(x1, . . . , xm) = DR(x1, . . . , xm)] ◦ cantorNm :

N
∼=−→ N

m → 2

decided as decis( pϕDq ) defined within theory T̃ :

T̃ ` decis( pϕDq ) <∞ (•)

Consider now countable family

[DL
α(x1, . . . , xm(α)) = DR

α (x1, . . . , xm(α))]α∈N

of all diophantine equations: The equations are counted lexi-

cographically by their (finite) polynome-coefficient lists.

Cf. Matiyasevich 1993, 1.1, 1.2, and 1.3. This family

gives rise to p. r. predicates

ϕα = [DL
α(x1, . . . , xm(α)) 6= DR

α (x1, . . . , xm(α))] : Nm(α) → 2

which has property that

(x1, . . . , xm(α)) ∈ Nm(α) is a solution to ϕ(α)

iff it is a counterexample to

Dα = [DL
α(x1, . . . , xm(α)) = DR

α (x1, . . . , xm(α))] : Nm(α) → 2

and Dα has no solution (in natural numbers)

iff ϕα holds for (x1, . . . , xm(α)) free in Nm(α)
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From Decision Lemma (for p. r. predicates) above we obtain

Decision Theorem

1. T̃ ` decis pϕαq <∞, α ∈ N free.

Within the – somewhat strange – theory T̃ = T+¬ConT

the (partial) µ-recursive map (the “algorithm”)

decis : [N, 2]PRa ⇀ 2

decides in fact all primitive recursive predicates, in partic-

ular all diophantine predicates as considered above, uni-

formally.

2. Since µ-recursion and Turing machines have equal com-

putation power – by the verified part of Church’s the-

sis – this means: Within T̃, decis gives rise to a Turing

machine TM deciding all diophantine equations, i. e. T̃

admits a positive solution to Hilbert’s 10th problem.

3. On the other hand, Matiyasevich’s negative solution to

this problem works in set theory T,

a fortiori in theory T̃ = T + ¬ConT .

4. The latter two results – Matiyasevich’s negative T the-

orem and our positive T̃ theorem contradict each other

in stronger theory T̃. This shows T̃ to be inconsistent.

5. Gödel’s consistency of ¬ConT relative to T – second in-

completeness theorem – then entails inconsistency of clas-

sical set theorie(s) T.

Outlook: Since Matiyasevich 1993 makes essential use of

formal (existential) quantification for “unsolving” Hilbert’s 10th
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problem, this only decidability problem on Hilbert’s list is again

open – for treatment within the framework of suitable construc-

tive foundations for Arithmetic.
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