
Anomaly Symptom Recognition
in Distributed IT Systems

vorgelegt von
M. Sc.

Alexander Acker

an der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

Promotionsausschuss:

Vorsitzender: Prof. Dr. Jan Nordholz
Gutachter: Prof. Dr. Odej Kao
Gutachter: Prof. Dr. David Bermbach
Gutachter: Prof. Dr. Carsten Griwodz

Tag der wissenschaftlichen Aussprache: 08. Oktober 2021

Berlin 2021

Acknowledgements

The realization of this thesis would not have been possible without the help of brilliant, sup-
portive, understanding, and loving people around me. I want to take the opportunity to express
my gratitude to them.

First, I want to thank my advisor Odej Kao, who allowed me to work in his research group
full of brilliant researchers. You always granted me the freedom and trust, allowing me to
realize my research ideas that eventually lead to this thesis. Thank you for your guidance,
support, honesty, and a lot of patience. I also want to thank David Bermbach and Carsten
Griwodz for agreeing to review this thesis.

I am thankful to my colleagues and former colleagues. It was always a pleasure to discuss
ideas, share knowledge and experiences, or just talk about weekend plans with all of you. I
especially want to thank Florian Schmidt, who supervised my master’s thesis and ultimately in-
spired me to pursue a Ph.D. degree. A special thanks to Sasho and Anton. Jointly working with
both of you pushed me to improve my personal and professional abilities. Anton, Florian, Mar-
cel, and Sören, thank you for the numerous enjoyable trips to Munich. I will never forget how
we jointly prepared our presentations or live demos and celebrated successful project deliveries
with Bavarian beer. Thank you Lauritz, Jasmin, Lilly, Thorsten, Dominik, Kevin, Tim, Vincent,
and Andreas. An enormous thank you to Jana for all the organizational and administrative help.

I was very lucky to be involved in several collaborative research projects with Huawei,
Deutsche Telekom, Siemens, and KSB. It gave me the opportunity to work with remarkable
people who were an incredible source of knowledge and experience. Thank you Feng, Eliezer,
Jorge, Wu Fan, Tingyao, Bingnan, Matvey, Ajo, Joachim, Sebastian, Gerhard, Philipp, Tobias,
and Jochen.

This work would not have been possible without the endless support of my family and
friends. Thank you, Marie, for your love, support, and patience, especially during the highly
intense phases of my work. Thank you мама and папа for guiding me through life, teaching me
to follow my dreams with determination, and showing me the value of mutual respect. Thank
you to my Sisters, Elena and Nathalie, my brother, Daniel, and my son, Jonas, for providing the
distraction that I needed sometimes. Finally, I want to thank my friends for all the adventures
and special moments we share.

iii

Zusammenfassung

Die fortschreitende globale Digitalisierung treibt die Entwicklung von Netzwerktechnolo-
gien, Analyseplattformen und datengetriebenen Diensten voran. Damit einhergehend ist eine
steigende Anzahl an Komponent wie Sensoren, Aktoren, Rechen- und Netzwerkknoten sowie
unterschiedlichen Applikationen. Infolgedessen nimmt die Komplexität von IT Infrastrukturen
stetig zu. Ein System mit hoher Komplexität ist anfällig für Fehler oder Ausfälle jedoch er-
warten Anwender, dass die Dienste immer verfügbar sind. Darüber hinaus ist eine hohe Ver-
fügbarkeit unerlässlich für die Nutzung von IT Systemen in kritischen Bereichen wie Medizin,
Logistik, Energie oder der Fertigungsindustrie. Dort haben Ausfälle, die nicht schnell genug
behoben werden, katastrophale Folgen. Die Konsequenz daraus ist, dass Betreiber zunehmend
mit der Aufgabe überfordert sind die notwendige Verfügbarkeit zu gewährleisten.

Dies erfordert Lösungen, die den Betrieb und die Wartung von komplexen IT Systemen un-
terstützen. Dafür wird der Einsatz KI-gestützter Methoden erforscht, die die Wartbarkeit, Ver-
fügbarkeit und Zuverlässigkeit von IT Systemen verbessern sollen. Diese werden eingesetzt um
Systemkomponenten zu überwachen, die Überwachungsdaten zu analysieren und bei Bedarf
automatisch Operationen auszuwählen und auszuführen, um einen effizienten Betriebszustand
aufrechtzuerhalten. Durch diese Automatisierung von Wartungs- und Administrationsaufgaben
soll eine höhere Robustheit gegenüber Ausfällen realisiert werden.

In dieser Arbeit erfoschen wir Methoden, die die Verfügbarkeit von IT Systemen erhöhen
sollen, indem die notwendige Zeit für die Behebung von Fehlern und Ausfällen reduziert wird.
Dazu werden Daten von Systemkomponenten, deren Betriebszustand von einer bekannten
Norm abweicht, nach spezifischen Mustern durchsucht. Diese als Anomaliesymptome beze-
ichneten Muster dienen dazu Fehlerfälle zu identifizieren. Falls diese bereits in der Vergangen-
heit aufgetreten sind und erfolgreich Behoben wurden, ermöglicht das eine automatisierte und
somit schnelle Wiederherstellung eines normalen Systemzustands. Die von uns entwickelten
Erkennungsmethoden sind in der Lage Muster, die noch nicht bekannt sind, zu identifizieren
und deren Behandlung an menschliche Experten zu delegieren. Dieser "Human-in-the-Loop"-
Ansatz stellt eine schrittweise Übertragung des Wissens von menschlichen Experten in unser
System dar.

v

Abstract

The progressing global digitalization is driving innovative network technologies, computation
platforms, and data-driven services. The number of components such as sensors, actuators,
computing, storage, and network nodes, as well as a variety of service applications increases
and results in IT systems of high complexity. A complex system is prone to errors or failures,
but users expect services always to be available. Furthermore, high availability is essential for
utilizing IT systems in critical areas such as medicine, logistics, energy, or the manufacturing
industry. There, failures that are not immediately resolved can lead to hazardous situations.
Consequently, system operators are increasingly overwhelmed with the task of keeping com-
plex IT systems at an operational state.

Solutions that support the operation and maintenance of complex IT systems are required
to support humans. For this purpose, artificial intelligence for IT system operations (AIOps)
is being explored to improve the availability, maintainability, and reliability of IT systems. It
combines the research areas of artificial intelligence, machine learning, and system operation
to monitor relevant components, analyze the monitoring data, and automatically select and
execute operations to maintain an efficient operational state. The automation should enable
improved robustness against failures.

This thesis introduces methods to increase the availability of IT systems by reducing the
time required to resolve errors and failures. Thereby, system components whose operational
state deviates from a known norm are referred to as anomalies. We employ pattern recognition
to search monitoring data from anomalous components for specific patterns. The identification
of these anomaly symptoms allows a comparison to historical occurrences of anomalies and an
automatic selection of feasible operations to resolve them. Further, our implemented methods
can identify patterns that are representing yet unknown anomalies. Such cases are delegated
to human experts. This "human-in-the-loop" approach represents a step-by-step transfer of
knowledge from human experts into our system.

vii

Contents

1 Introduction 1
1.1 Problem Definition . 3
1.2 Contributions . 3
1.3 Outline of the Thesis . 6

2 Background 9
2.1 Dependability of Distributed Systems . 9

2.1.1 Cloud Computing . 10
2.1.2 Fog and Edge Computing . 12

2.2 Failure Models . 13
2.3 Fault Tolerance . 15

2.3.1 Fault Tolerance Policies . 16
2.3.2 Temporal Analysis of Fault Tolerance Policies 17

3 Related Work 21
3.1 A Brief History of Fault-Tolerant IT Systems 21
3.2 Fault Tolerance Methods . 22
3.3 Autonomic Computing . 24
3.4 AIOps . 26

3.4.1 Anomaly Symptom Analysis . 28
3.4.2 Automatic Remediation or Recovery 29

4 Anomaly Symptom Recognition in an AIOps System 31
4.1 Challenges and Assumptions . 31

4.1.1 Challenges . 32
4.1.2 Assumptions . 33

4.2 AIOps System . 34
4.2.1 Closed-Loop Control, Sensors and Effectors 35
4.2.2 Anomaly Detection . 36
4.2.3 Operation Execution . 37

4.3 ReCoMe Engine . 37
4.3.1 Knowledge Base . 39
4.3.2 Ingest Control . 41
4.3.3 Anomaly Symptom Recognition . 41
4.3.4 Operation Selection . 43

4.4 Modeling Concepts for Anomaly Symptom Recognition 44

ix

x Contents

4.4.1 Classification of System Metric Data 44
4.4.2 Classification Model Requirements 45

5 Density Grid Pattern Model 49
5.1 Anomaly Symptom Analysis . 50

5.1.1 Preprocessing . 50
5.1.2 Density Grid Transformation . 50
5.1.3 Grid Pattern Similarity . 54

5.2 Anomaly Type Inference . 56
5.3 Evaluation Environment . 57

5.3.1 Cloud Computing System and Monitoring 57
5.3.2 Virtual IP Multimedia Subsystem . 58
5.3.3 Video on Demand Service . 59
5.3.4 Anomaly Injection . 60

5.4 Evaluation . 61
5.4.1 Evaluation Scores . 61
5.4.2 Experiment . 63
5.4.3 Evaluating Anomaly Symptom Recognition 64
5.4.4 Evaluating Unknown Anomaly Type Recognition 68

6 Recurrent Neural Network Model 71
6.1 Anomaly Symptom Analysis . 72

6.1.1 Model Architecture . 72
6.1.2 Model Training . 75

6.2 Anomaly Type Inference . 77
6.3 Metric Series Augmentation . 78

6.3.1 Local Blurring . 79
6.3.2 Interpolation . 80

6.4 Evaluation . 81
6.4.1 Experiment . 82
6.4.2 Effect of Metric Series Augmentation 83
6.4.3 Evaluating Anomaly Symptom Recognition 86
6.4.4 Evaluating Unknown Anomaly Type Recognition 89

7 Integration into an AIOps Platform 91
7.1 Bitflow and ZerOps . 91
7.2 ReCoMe Engine Implementation Details . 94

7.2.1 Preference Score Calculation . 97
7.2.2 Integration into ZerOps . 98

7.3 Deployment Strategies . 99
7.4 Evaluation . 103

7.4.1 Runtime Evaluation . 103
7.4.2 Experimental Environment . 106
7.4.3 AIOps in Cloud Environments . 109
7.4.4 AIOps in Fog Environments . 114

Contents xi

8 Conclusion 119
8.1 Limitations . 120
8.2 Future Work . 120

A Evaluation Result Details 123
A.1 Symptom Recognition Scores . 123
A.2 Unknown Anomaly Type Recognition Accuracy 126

Bibliography 127

List of Figures

2.1 Overview of cloud computing systems. 10
2.2 Moving computational resources closer to end devices. Adjusted from [25]. . . 12
2.3 Failure model based on definitions from [141] and [144]. 14
2.4 Taxonomy of fault tolerance policies. Adjusted from [136]. 16
2.5 Comparing temporal progress of different fault tolerance policies. 18

3.1 The MAPE-K closed loop for autonomic computing [123]. 24

4.1 RoCoMe Engine for automated SuO remediation embedded in a closed-loop
control. 35

4.2 Overview of all RoCoMe Engine components, the main input and output inter-
faces as well as interfaces to the human expert and the knowledge base. 38

4.3 Visualization of classification decision regions and boundaries. 46

5.1 General workflow of the grid pattern comparison method. 49
5.2 Density grid transformation. 50
5.3 Exemplary spatial discretization of two time series together with two temporal

aggregation methods. Note that the scale of the bar charts is the same within
each column but differs between columns. 52

5.4 Visualization of density decay over time under varying λ 52
5.5 Grid pattern similarity. 54
5.6 Examples of problematic cases when applying strict overlay of grid patterns. . . 55
5.7 Agent-based anomaly injection. 60
5.8 Accuracy results for different training / test data splits. 65
5.9 Precision, recall, and F1 scores. 66
5.11 Accuracy of "unknown" anomaly prediction. 68

6.1 General workflow of the proposed method. 71
6.2 Sequential model architecture for anomaly symptom recognition. 73
6.3 RNN and GRU cell structure. 74
6.4 Visualization of the cross entropy loss for the ground truth value 1. 76
6.5 Conceptual visualization of the proposed metric data augmentation method. . . 79
6.6 Conceptual visualization of two possible problems with sporadic decision re-

gion sub-sampling. 81
6.7 Anomaly symptom recognition results based on different metric series augmen-

tation methods. 84
6.8 Loss values for training and test examples. 85

xiii

xiv List of Figures

6.9 Accuracy results for different train / test data splits. 87
6.10 Precision, recall, and F1 scores. 87
6.11 Distribution of incorrectly predicted classes. 88
6.12 Accuracy result for predicting the "unknown" class. 89

7.1 Bitflow data stream processing framework (adjusted from [106]). 92
7.2 Overview of the ZerOps platform. 94
7.3 ReCoMe process flow. 95
7.4 Closed-loop AIOps system containing the ReCoMe engine. 99
7.5 Two deployment concept variants. 100
7.6 Two deployment concepts. 102
7.7 Runtime results of density grid comparison for each anomaly type. 105
7.8 Simulated fog environment. 107
7.9 Mispredictions results for the ReCoMe engine using the two different anomaly

symptom recognition models. 110
7.10 Distribution of the mispredictions across the different components for the two

anomaly symptom recognition models. 112
7.11 Percentage of cases for which an operation can be automatically selected. . . . 113
7.12 Mispredictions results for the ReCoMe engine using either only the in-situ de-

ployment or the in-situ on combination with a remote deployment. 115
7.13 Percentage of cases for which an operation can be automatically selected dis-

tinguished by pure in-situ and in-situ combined with a AIOps cloud deployment. 116

List of Tables

5.1 Hardware specifications of commodity cluster nodes. 57
5.2 Project Clearwater services. 59
5.3 Overview of anomalies. 61
5.4 Multi-class confusion matrix. 62
5.5 Number of VMs for each Clearwater service. 63
5.6 Description and parametrization of injected anomalies. 64

6.1 Number of VMs for each Clearwater and video on demand service. 82
6.2 Metrics that are collected during the experiment. 83
6.3 Description and parametrization of anomalies. 83

7.1 Preference score calculation via weighted sum model. 97
7.2 Runtime results of metric data processing steps during the training phase. . . . 104
7.3 Runtime results of metric data processing steps during the prediction phase. . . 104
7.4 Hardware specifications of compute node for RNN model training. 106
7.5 Number of VMs for each Clearwater service. 108
7.6 Metrics that are monitored during the experiment. 108
7.7 Description and parametrization of anomalies. 109

A.1 Density grid pattern model scores for the 10 % split. 123
A.2 Density grid pattern model scores for the 30 % split. 123
A.3 Density grid pattern model scores for the 50 % split. 124
A.4 Density grid pattern model scores for the 70 % split. 124
A.5 Euclidean model scores for the 10 % split. 124
A.6 Euclidean model scores for the 30 % split. 124
A.7 Euclidean model scores for the 50 % split. 124
A.8 Euclidean model scores for the 70 % split. 125
A.9 DTW model scores for the 10 % split. 125
A.10 DTW model scores for the 30 % split. 125
A.11 DTW model scores for the 50 % split. 125
A.12 DTW model scores for the 70 % split. 125
A.13 Unknown anomaly type recognition accuracy scores for the density grid pattern

model. 126
A.14 Unknown anomaly type recognition accuracy scores for the Euclidean distance

model. 126
A.15 Unknown anomaly type recognition accuracy scores for the DTW model. . . . 126

xv

Acronyms and Abbreviations

AI Artificial Intelligence

AIOps Artificial Intelligence for System Operations

BGP Border Gateway Protocol

CPU Central Processing Unit

DevOps Development and Operation

DTW Dynamic Time Warping

DAG Directed Acyclic Graph

DSL Domain Specific Language

GP Grid Pattern

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

IaC Infrastructure as Code

IMS IP Multimedia Subsystem

IoT Internet of Things

IP Internet Protocol

IRQ Interquartile Range

LSTM Long Short-Term Memory

ML Machine Learning

MTBF Mean Time Between Failure

MTTR Mean Time to Recovery

NFV Network Function Virtualization

NRE Network reliability Engineer

xvii

xviii List of Tables

Ops Operations

RC Root Cause

RCA Root Cause Analysis

ReCoMe Recommendation and Remediation

RNN Recurrent Neural Network

SIP Session Initiation Protocol

SLA Service Level Agreement

SRE Site Reliability Engineer

SuO System Under Operation

STL Season and Trend Decomposition based on Loess

URL Uniform Resource Locator

VM Virtual Machine

VNF Virtual Network Function

ZerOps Zero-Touch Operations

Chapter 1

Introduction

Digitalization is an integral part of today’s world. Our everyday life increasingly depends on
web and mobile applications. Furthermore, numerous industries like energy, transportation,
manufacturing, and health care depend on data-driven services. Thereby, the number of com-
ponents within the whole IT ecosystem is growing fast. Reports from Gartner and Cisco pre-
dict that the number of interconnected devices will reach numbers between 20 and 30 billion
by 2022 [84, 124]. These trends require network connectivity and computational resources to
meet the growing demand for digitalization. Network technologies like 5G or 6G enable access
and connectivity, while cloud computing systems provide computation and storage resources.
Emerging technologies such as fog and edge computing promise low latencies and reduced
data volume transmissions to data centers, which is achieved by providing location-agnostic
service access. Data should be processed as close as possible to its source. Although these
trends introduce increased flexibility and improve business opportunities, they come at the cost
of significantly higher complexity.

Human users and a growing amount of machines expect highly available and reliable ser-
vices. Moreover, the high availability of IT systems in critical industries is a fundamental
requirement since unresolved problems can lead to hazardous situations. Danger to our envi-
ronment or even human life must be prevented. However, system complexity grows, which
leads to an increased proneness to failures [49, 178]. An empirical study done by Fiondella
et al. [83] analyzes system outages of major IT companies and shows an exponential growth
of the number of outage incidents per year. Another empirical study conducted by Garraghan
et al. [93] analyzes a cloud computing environment of 12,500 servers. It observes the average
amount of time between the occurrences of two consecutive failures on the same server, which
is referred to as Mean Time Between Failure (MTBF). For servers, an MTBF of 12.5 days is
identified. Considering the 12,500 servers, this translates to an average of 1000 failures per day.
Furthermore, the time needed to resolve the failure is analyzed, which is referred to as Mean
Time To Recovery (MTTR). The MTTR values for servers follow a heavy-tailed distribution
with an overall mean value of 5.2 hours. Their study provides no explicit information about the
type of failures. Other studies show that failed hardware causes less than 10% of failures, and
around 80% are caused by software or operational mistakes [99, 111].

Human experts are currently responsible for the operation and maintenance of IT systems.
However, recovering 1000 failures per day is a challenge. Additionally, the diversity of soft-
and hardware components from different vendors and an increasing geographical distribution
aggravates that difficulty. These aspects result in longer MTTR values and are reflected in the

1

2 Chapter 1. Introduction

increased demand for qualified and specialized system operators. Numerous job positions like
DevOps experts, Site Reliability Engineers (SREs), or Network reliability Engineers (NREs)
are created to cope with the challenges of system operation [27]. Nevertheless, human ex-
perts are increasingly overwhelmed with the operation of the rapidly growing systems [29, 48].
Solutions supporting the operation and maintenance of distributed systems are required to pre-
vent a complete loss of control. Such support aims at adding autonomy to distributed systems
by enabling capabilities to resolve occurring problems automatically [138]. Therefore, human
involvement should be gradually reduced by implementing methods that autonomously keep
system components at an operational state.

Artificial intelligence for IT System operations (AIOps) is an upcoming research field con-
cerned with developing such methods. It combines the areas of artificial intelligence (AI),
machine learning (ML), and system operations (Ops). Thereby, solutions are usually designed
as a closed-loop control that consists of several methods [138, 213]. First, the observability of
systems is realized by monitoring relevant system metric data at runtime. Second, anomaly de-
tection analyzes these data to detect if component states are deviating from a known norm [210,
222]. Thereby, anomaly refers either to a failed system component or to a degraded state that
potentially indicates an imminent failure. Latter enables the recovery of components before
failures happen, giving human experts more time to react and plan. At this point, human op-
erators are still left to analyze anomalies, compiling operations, and executing them. Working
with current production systems puts high pressure on experts since every minute of downtime
or service degradation entails losses in revenue for companies [78, 166]. Working with sys-
tems that are used in critical industries entails that operators must assume a potential danger for
human lives if problems are not resolved fast enough. Thus, the third step closes the loop by
automatically selecting and eventually executing recovery or remediation operations that trans-
fer the anomalous component to a known norm. It finally enables fast recovery of anomalies
and the reduction of the MTTR [6, 96].

In this work, we aim at enabling an automatic selection of remediation or recovery oper-
ations to restore the normal state of anomalous system components. This process is initiated
after anomalies are detected. We assume to receive alarms that contain binary information,
i.e., a component is either normal or anomalous [171, 211, 222]. Based on this, the recent
monitoring data from the anomalous component is searched for specific patterns, which enable
the recognition of anomaly states. The knowledge about a specific anomaly state, or anomaly
type, is then used to select recovery operations and eventually restore a normal operational
state. The patterns within the monitoring data that are specific for anomaly types are referred
to as anomaly symptoms. We name the identification of anomaly type-specific symptoms in the
monitoring data of anomalous components as anomaly symptom recognition.

The precise recognition of anomaly type-specific symptom patterns is challenging in com-
plex IT systems, consisting of diverse components affected by numerous internal and external
factors. Examples of diversity are different hardware specifications, changing software ver-
sions, or varying configuration parameters. Examples of internal or external factors are the
availability of computation resources or the current workload. During anomalies, the observed
monitoring data represent a mixture of anomaly-related patterns and patterns specific for the
component type and the current internal and external factors, which lead to deviations between
symptoms of the same anomaly type, i.e., intra-type variation. Furthermore, anomalies are ex-
pected to occur infrequently. It is challenging to identify variating symptom patterns based on
a few available examples [28].

1.1. Problem Definition 3

1.1 Problem Definition
An AIOps system requires an automatic selection of operations to resolve anomaly states of
components that are part of a complex IT system. The research question is formulated as
follows:

"Given the monitoring data of an anomalous IT system component, how an
automatic selection of operations to restore its normal functional state can be

enabled?"

We realize the automatic selection of operations by recognizing anomaly type-specific
symptom patterns in the monitoring data of an anomalous system component. The automation
stems from the assumption that anomaly types represented by similar symptom patterns repeat-
edly occur in a complex IT system. Methods for symptom pattern recognition and anomaly
type inference based on the monitoring data of anomalous system components are required.
They must be efficient in the sense that precise pattern detection is realized without causing an
extensive overhead.

We focus on the following four research questions:

1. We investigate the ability of pattern analysis methods to recognize anomaly type-specific
symptoms in monitoring data from anomalous components and emphasize the limited
availability of anomaly type examples.

2. Distributed systems are dynamic, and their components must be assumed to change over
time. Also, new components can appear. We evaluate the ability of our pattern recogni-
tion methods to identify symptoms that represent yet unknown anomaly types.

3. The value of an IT system stems from the execution of a regular workload. Automation
methods to keep it operational should consume a small fraction of available resources. We
investigate the trade-off that is required between computational complexity and precise
symptom recognition.

4. We integrate the anomaly symptom recognition methods into an AIOps platform and
test whether an efficient and precise anomaly symptom recognition can be employed
alongside regular workload execution. Thereby, different deployment concepts are tested
to infer general deployment guidelines.

1.2 Contributions
This thesis proposes methods to enable the automatic selection of operations that resolve de-
tected anomalies in components of a complex IT system. The concrete contributions are:

1. The precise recognition of anomaly type-specific symptom patterns is challenging in
complex IT systems. The observed monitoring data represent a mixture of anomaly-
related and varying normal patterns, resulting in intra-type variations. The existence
of few available examples in combination with high intra-type variations is the major
challenge to recognize anomaly type-specific symptoms. We develop two methods for

4 Chapter 1. Introduction

anomaly symptom recognition. One focuses on low computation overhead, while the
other applies complex computation to recognize symptom patterns under high intra-type
variation.

2. The occurrence of previously not observed anomaly types must be considered. Soft-
ware systems undergo updates, hardware is changed, and new components are deployed.
These are few examples of the system dynamics. Furthermore, an initially empty knowl-
edge base, i.e., cold-start, needs to be considered when deployment is done on a new IT
system. Based on this, we extend the methods and enable the recognition of yet unknown
anomaly types. We further introduce a human-in-the-loop approach to gradually extend
the knowledge base enabling automatic operation selection for an increasing number of
anomaly types.

3. A system needs to process a regular workload. Only a fraction of available resources
can be reserved for keeping it in an operational state. We analyze the trade-off between
the computational overhead for high anomaly symptom recognition precision and the
efficiency due to the limited availability of computation resources.

4. Different AIOps methods must interact with each other to achieve automatic handling
of occurring anomalies. To conduct a functional investigation of the anomaly symptom
recognition, we integrate our methods into the AIOps platform called ZerOps. We inves-
tigate the AIOps deployment requirements of cloud and fog computing systems. Thereby,
different deployment concepts are tested. Based on the result, we elaborate on guidelines
to realize an efficient AIOps platform deployment.

The work of this thesis builds upon the following list of peer-reviewed articles:

[1] Acker, Alexander and Schmidt, Florian and Gulenko, Anton and Kao, Odej. “Online
Density Grid Pattern Analysis to Classify Anomalies in Cloud and NFV Systems”.
In: 2018 IEEE International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE. 2018, pp. 290–295.

[2] Acker, Alexander and Schmidt, Florian and Gulenko, Anton and Kietzmann, Reinhard
and Kao, Odej. “Patient-individual morphological anomaly detection in multi-lead elec-
trocardiography data streams”. In: 2017 IEEE International Conference on Big Data
(Big Data). IEEE. 2017, pp. 3841–3846.

[3] Acker, Alexander and Wittkopp, Thorsten and Nedelkoski, Sasho and Bogatinovski,
Jasmin and Kao, Odej. “Superiority of Simplicity: A Lightweight Model for Network
Device Workload Prediction”. In: 2020 15th Conference on Computer Science and In-
formation Systems (FedCSIS). IEEE. 2020, pp. 7–10.

[4] Becker, Soeren and Schmidt, Florian and Gulenko, Anton and Acker, Alexander and
Kao, Odej. “Towards AIOps in Edge Computing Environments”. In: 2020 IEEE Inter-
national Conference on Big Data (Big Data). IEEE. 2020, pp. 3470–3475.

[5] Gulenko, Anton and Acker, Alexander and Kao, Odej and Liu, Feng. “AI-Governance
and Levels of Automation for AIOps-supported System Administration”. In: 2020
29th International Conference on Computer Communications and Networks (ICCCN).
IEEE. 2020, pp. 1–6.

1.2. Contributions 5

[6] Gulenko, Anton and Acker, Alexander and Schmidt, Florian and Becker, Soeren and
Kao, Odej. “Bitflow: An In Situ Stream Processing Framework”. In: 2020 IEEE Inter-
national Conference on Autonomic Computing and Self-Organizing Systems Compan-
ion (ACSOS-C). IEEE. 2020, pp. 182–187.

[7] Gulenko, Anton and Schmidt, Florian and Acker, Alexander and Wallschlaeger, Mar-
cel and Kao, Odej and Liu, Feng. “Detecting anomalous behavior of black-box services
modeled with distance-based online clustering”. In: 2018 IEEE 11th International Con-
ference on Cloud Computing (CLOUD). IEEE. 2018, pp. 912–915.

[8] Nedelkoski, Sasho and Bogatinovski, Jasmin and Acker, Alexander and Cardoso, Jorge
and Kao, Odej. “Self-Attentive Classification-Based Anomaly Detection in Unstruc-
tured Logs”. In: 2020 IEEE International Conference on Data Mining (ICDM). IEEE.
2020, pp. 1196–1201.

[9] Nedelkoski, Sasho and Bogatinovski, Jasmin and Acker, Alexander and Cardoso, Jorge
and Kao, Odej. “Self-supervised Log Parsing”. In: Machine Learning and Knowledge
Discovery in Databases: Applied Data Science Track. Springer. 2021, pp. 122–138.

[10] Ott, Harold and Bogatinovski, Jasmin and Acker, Alexander and Nedelkoski, Sasho
and Kao, Odej. “Robust and Transferable Anomaly Detection in Log Data using Pre-
Trained Language Models”. In: Workshop Proceedings of the 43rd International Con-
ference on Software Engineering. ACM. 2021.

[11] Scheinert, Dominik and Acker, Alexander. “Telesto: A graph neural network model for
anomaly classification in cloud services”. In: Service-Oriented Computing – ICSOC
2020 Workshops. Springer International Publishing. 2021, pp. 214–227.

[12] Scheinert, Dominik and Acker, Alexander and Thamsen, Lauritz and Geldenhuys, Mor-
gan K and Kao, Odej. “Learning Dependencies in Distributed Cloud Applications to
Identify and Localize Anomalies”. In: Workshop Proceedings of the 43rd International
Conference on Software Engineering. ACM. 2021.

[13] Schmidt, Florian and Gulenko, Anton and Wallschlaeger, Marcel and Acker, Alexander
and Hennig, Vincent and Liu, Feng and Kao, Odej. “Iftm-unsupervised anomaly detec-
tion for virtualized network function services”. In: 2018 IEEE International Conference
on Web Services (ICWS). IEEE. 2018, pp. 187–194.

[14] Schmidt, Florian and Suri-Payer, Florian and Gulenko, Anton and Wallschlaeger, Mar-
cel and Acker, Alexander and Kao, Odej. “Unsupervised anomaly event detection for
cloud monitoring using online arima”. In: 2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Companion). IEEE. 2018, pp. 71–
76.

[15] Schmidt, Florian and Suri-Payer, Florian and Gulenko, Anton and Wallschlaeger, Mar-
cel and Acker, Alexander and Kao, Odej. “Unsupervised anomaly event detection for
vnf service monitoring using multivariate online arima”. In: 2018 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom). IEEE. 2018,
pp. 278–283.

6 Chapter 1. Introduction

[16] Schroeder, Daniel Thilo and Styp-Rekowski, Kevin and Schmidt, Florian and Acker,
Alexander and Kao, Odej. “Graph-based Feature Selection Filter Utilizing Maximal
Cliques”. In: 2019 Sixth International Conference on Social Networks Analysis, Man-
agement and Security (SNAMS). IEEE. 2019, pp. 297–302.

[17] Wallschlaeger, Marcel and Acker, Alexander and Kao, Odej. “Silent Consensus: Proba-
bilistic Packet Sampling for Lightweight Network Monitoring”. In: International Con-
ference on Computational Science and Its Applications. Springer. 2019, pp. 241–256.

[18] Wallschlaeger, Marcel and Gulenko, Anton and Schmidt, Florian and Acker, Alexan-
der and Kao, Odej. “Anomaly Detection for Black Box Services in Edge Clouds Using
Packet Size Distribution”. In: 2018 IEEE 7th International Conference on Cloud Net-
working (CloudNet). IEEE. 2018, pp. 1–6.

[19] Wittkopp, Thorsten and Acker, Alexander. “Decentralized federated learning preserves
model and data privacy”. In: Service-Oriented Computing – ICSOC 2020 Workshops.
Springer International Publishing. 2021, pp. 176–187.

[20] Wu, Li and Tordsson, Johan and Acker, Alexander and Kao, Odej. “MicroRAS: Auto-
matic Recovery in the Absence of Historical Failure Data for Microservice Systems”.
In: 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing
(UCC). IEEE. 2020, pp. 227–236.

1.3 Outline of the Thesis

The rest of this thesis is structured as follows.
Chapter 2 provides the necessary background on service deployment in cloud and fog

computing systems, the dependability of such system, a failure model, and an overview of fault
tolerance policies.

Chapter 3 gives an extensive overview of the related work. Thereby, we focus on the vi-
sion of autonomous computing, self-healing frameworks, AIOps in general, and related AIOps
methods for monitoring data analysis.

Chapter 4 introduces the concept of automatic selection of remediation operations. We
analyze the problems and requirements of a solution for complex IT systems. After that, our
anomaly type recognition objective is presented, and its embedding into an AIOps system is
shown. The system architecture is described and analyzed in detail before a modeling concept
for anomaly symptom recognition is presented.

Chapter 5 presents our first method for anomaly symptom recognition. It combines a
transformation of monitoring data to a grid space, resulting in different grid patterns for the
respective anomaly symptoms. A comparison of grid patterns realizes the anomaly symptom
recognition. Furthermore, we introduce a cloud computing environment, where evaluation ex-
periments are conducted and evaluate the ability to recognize a set of anomaly types.

Chapter 6 shows the necessity of a method specialized in the classification of sequential
data and realizes this in the form of a model based on gated recurrent units (GRUs). It em-
ploys a method of higher computational complexity that should be applied to anomalies with
a high intra-type variation. A focus lies on improving the training of such models when few
anomaly type examples are available by proposing an augmentation method for monitoring

1.3. Outline of the Thesis 7

data. The evaluation shows the effect of data augmentation and investigates the ability to rec-
ognize anomaly types on components that execute heterogeneous workloads.

Chapter 7 describes the implementation of the anomaly type recognition and the automatic
operation selection into an AIOps platform named ZerOps. It is a system prototype wherein we
integrate both our methods. We test different method combinations and deployment concepts
to derive conclusions for the applicability of such systems.

Chapter 8 concludes our work, summarizes findings, and identifies directions for future
research.

Chapter 2

Background

This chapter presents the background for this work. Our general focus is to increase a dis-
tributed systems’ dependability by enabling an automatic selecting remediation operations
when system components become anomalous. We first give a definition of dependability and
explain cloud and fog computing systems focusing on their dependability. After that, several
failure models from the literature are presented. They are essential to describe the transition of
a normal system state to an failure. Based on this transition, we apply the terminology on the
previously described distributed systems and derive the term anomaly. Third, we elaborate on
different fault-tolerance policies, which aim at managing systems that are expected to fail over
time. From this, we draw implications for the design of the automatic selection of operations
to resolve anomalies and their embedding into a AIOps system.

2.1 Dependability of Distributed Systems

Computer systems are expected to eventually fail over time an thus, suffer from reduced de-
pendability [100, 169, 175, 178, 191]. Different attributes are used to measure the dependabil-
ity of a system of which the following five are commonly used [120, 141, 223]. The availability
defines the percentage of time within a specific time frame, during which the service is deliv-
ered correctly. It is usually defined as the MTBF divided by the sum of MTBF and MTTR.
The reliability is the expected time that a system operates without failures. It is essential to
distinguish availability from reliability. A system can fail once a year and be unavailable for
two weeks or can fail every day and be unavailable for one minute. Considering one year as
the time frame, the former is more reliable but has the availability of 96.2% while the latter is
less reliable but has the availability of 99.9%. It can be seen that the MTTR plays an essential
role in the availability of a system. By reducing the MTTR the availability can be increased.
Safety is a measure of catastrophic effects when failures occur, and maintainability quantifies
the effort to repair a failed system.

A general rule is that a system increasing in size and complexity becomes less depend-
able [244]. Northrop et al. [178] analyze the challenges of large distributed systems and iden-
tify the preservation of high dependability as a critical problem. Based on these and other
studies [19, 63, 111], the status quo is that complex distributed systems will fail over time. This
reduced dependability is a fundamental problem since many IT companies rely on the avail-
ability of their services [78]. Therefore, the necessity for concepts that tolerate the occurrence

9

10 Chapter 2. Background

of failures by mitigating their effects was recognized early on [32, 33, 122, 191].

2.1.1 Cloud Computing
The relevance of distributed systems is growing, especially since the beginning of the com-
mercial use of cloud computing [9, 85, 159]. Fox et al. [85] analyze the main drivers behind
the success of cloud computing. They identify simpler payment methods for internet-based
services, lower prices for electricity and data center housing, and growing demand for applica-
tions such as interactive web and mobile applications and big data analytic services as the main
drivers. These observations partly comply with the essential characteristics of cloud computing
given by NIST [159]: On-demand self-service, broad network access, resource pooling, rapid
elasticity, and measured service. Instead of deploying and managing their own IT infrastruc-
tures, many companies favor hosting their applications and services within cloud computing
systems [78, 201].

Virtualization Layer

Virtual Host Virtual Host

Virtualization Layer

Physical Server Physical Server

Data Center Network Data Center Network

Identity Management

Cloud Management

Service Access

Deployed Services Deployed Services

Virtual Machine
Management

Virtual Storage
Management

Virtual Network
Management

Carrier Network

IaaSPaaSSaaS

Access & Maintenance
Responsibility

Cloud User

Cloud Provider
Network Provider

Data Center 1 Data Center 2

API Access

Figure 2.1: Overview of cloud computing systems.

Figure 2.1 shows an exemplary cloud computing system deployed across two data cen-
ters, its layered architecture, and its distributed nature. The carrier network connects both data
centers and is usually managed by network providers. It can be seen that physical servers are
connected via the data center’s internal network. Networking within the data center, the compu-
tation, and storage hardware, and the virtualization and management software are maintained
by cloud providers [20, 159]. The virtualization layer provides an abstraction to decouple
physical hardware from virtual host provisioning. The cloud management is a collection of
services controlling different functions of the cloud computing system. The depicted example
consists of an access API and identity, virtual network, storage, and machine management ser-

2.1. Dependability of Distributed Systems 11

vices. Real cloud management systems contain a variety of such interdependent management
services [214]. The virtual hosts contain user applications that are usually accessed via the
Internet. Example interdependencies between user applications are shown as well. The dis-
tribution of responsibilities between the cloud provider and application owner depends on the
service model. There are three basic service models defined by NIST [159]

⋄ Software as a Service (SaaS): The application is entirely managed by the cloud provider
and is accessed via interfaces. Only the services provided by the application are accessi-
ble to customers.

⋄ Platform as a Service (PaaS): Applications are developed via programming languages,
libraries, services, and tools that the cloud provider supports. The customer has control
over the deployment of the application.

⋄ Infrastructure as a Service (IaaS): The customer has control over virtually provisioned
fundamental computing resources such as computation, storage, and networking. It is
possible to deploy arbitrary software, including the operating system.

The number of services hosted within cloud computing systems increases constantly [7,
162, 201]. Service providers that deploy their applications in cloud computing systems entrust
the operation of a significant part of the IT infrastructure to the cloud providers. For connec-
tivity, cloud providers rely on the carrier network which is managed by network providers. In
this setup, many stakeholders do both, provide own and rely on external services, resulting in
a system where services are highly interdependent. The availability of each service can impact
the availability of the whole system. The legal basis of such interdependencies is the definition
of service level agreements (SLAs) [24]. They define particular service criteria between the
provider and the user of a service and measure these via observable metrics. SLAs also contain
defined penalties for service providers when these metrics fall below certain thresholds. These
penalties are usually refunds or additional monetary compensation payments. A widely used
metric is the availability of services. For example, as of April 2021, the Google Cloud Platform
entitles the customer to a refund of 10%, 25%, and 100% when a single virtual machine avail-
ability falls respectively below 99.9%, 99% and 95% during one month 1. The same concept is
applied for Amazon AWS 2 and Microsoft Azure 3. The availability and refund values differ.
Whether a service is responsive defines its "availability", which is a binary decision. However,
a reduced service quality such as a higher response time is possible. The SLAs, as mentioned
above, do not cover these degraded service states.

To operate continuously growing distributes systems, industry and public research develop
methods to increase availability while keeping the operational costs moderate [33, 69, 94, 153].
By combining the fact that complex systems are prone to failures and the requirement of high
availability, we conclude that occurring failures must be recovered as fast as possible. A low
MTTR directly translated to higher availability. A possible solution is to introduce additional
automation into the handling of system anomalies.

1https://cloud.google.com/compute/sla (last access 28 April 2021)
2https://aws.amazon.com/compute/sla (last access 28 April 2021)
3https://azure.microsoft.com/en-us/support/legal/sla (last access 28 April 2021)

https://cloud.google.com/compute/sla
https://aws.amazon.com/compute/sla
https://azure.microsoft.com/en-us/support/legal/sla

12 Chapter 2. Background

2.1.2 Fog and Edge Computing
The increasing number of interconnected devices is predicted to pose a significant challenge
for the existing IT infrastructures [25, 84, 124]. An exponentially increasing data volume com-
bined with low latency requirements of services makes it challenging to solve this with cloud
computing alone. Despite their described benefits, cloud computing systems are centralized
and usually far away from end-user devices, sensors, or other components. Sending data back
and forth over long distances brings the disadvantages of high latency and high energy con-
sumption for network transfer. Furthermore, it is difficult for network providers to keep up with
the increasing data volume transferred via their networks.

Methods to analyze and reduce the network latency and bandwidth usage are researched [38,
98]. A widely pursued solution in industry and research is to move computational resources
closer to the end devices [25, 150, 186]. This concept is depicted in Figure 2.2. A set of in-
termediate components that provide computational resources is located between end devices
and the cloud computing system. Preprocessing, filtering, compressing, or complete data anal-
ysis can be done as close as possible to the data source [187], which potentially enabled more
data privacy since a central storage can be avoided [98, 179] Only relevant and required data
are expected to be sent to cloud data centers. There are different terminologies for solutions
and computational paradigms that are referred to as fog computing, mist computing, cloudlets,
or edge computing [130]. However, at the time this work was written, no commonly agreed
consensus existed. Many works refer to the first set of nodes after end devices that provide
computational resources as the edge [25, 150]. Others refer to end devices, on which it is possi-
ble to execute workload, as edge devices [130]. The set of intermediate nodes between the end
devices and the cloud computing systems is usually referred to as fog.

Cloud Computing
System

Carrier Network

End Devices

Edge Device

Intermediate Node

Figure 2.2: Moving computational resources closer to end devices. Adjusted from [25].

Providing nodes between end devices and the cloud computing system entail geographical
distribution. Failures in such systems have a significant impact on dependability [18]. These
nodes are not located in central data centers but are expected to be exposed and potentially
non-stationary. This requires a widely available mobile connectivity [195], adaptivity [220],
and access and mobility management [79]. Whenever anomalies occur, a remote connection is

2.2. Failure Models 13

required to resolve them. However, anomalies can affect the connectivity. The last option is
a local recovery which requires human operators to move to the remote fog nodes. It results
in an overall increased MTTR and, thus, a reduced availability [151]. Integrating additional
automation into fog nodes to locally resolve eventually occurring anomalies is a solution to
reduce MTTR and increase availability.

2.2 Failure Models
A failure model is required to analyze failures in IT systems [14, 68, 192]. It consists of
definitions that describe the evolution from a normal system state to a failure. Thereby, a
widely used definition of failures is provided by Aviz̆ienis and Laprie:

"A system failure occurs when the delivered service deviates from the specified
service, where the service specification is an agreed description of the expected
service." [14]

Other works adopt this definition [144, 203] or a variation of it [68, 200, 227]. The central
aspect of this definition is that external entities (other services or users) notice the discrepancy
between expected and delivered service results. Furthermore, the definition implies that failures
are effects of a system state that deviates from the norm.

There are different existent categorizations of failures [22, 67, 203, 227]. A widely applied
failure categorization is provided by Cristian et al. [67] which is further extended by Laranjeira
et al. [142]. It defines six failure categories:

⋄ Crash failure: It is also referred to as fail-stop failure [203, 227]. The service is not
responsive and remains unresponsive until it is repaired.

⋄ Omission failure: The service does not respond to a request. The difference to a crash
failure is that the service remains responsive in general but fails to respond to certain
requests.

⋄ Performance failure: The service response is delivered with an intolerable delay. Com-
puting the results took longer than expected.

⋄ Timing failure: The response was requested to be delivered at a certain time interval.
However, the service responds outside of this time interval.

⋄ Incorrect computation failure: The results contained in the response are incorrect.

⋄ Arbitrary failure A default category where all failures are assigned to which do not fit
any of the above categories.

Barroso and Hölzle [22] provide a simplified definition of four failure categories descendingly
sorted by their severity.

⋄ Corrupted: The service is not responding to requests (fail-stop failure). The state of the
service is lost and cannot be restored.

⋄ Unreachable: The service is not responding (fail-stop failure).

14 Chapter 2. Background

⋄ Degraded: The service responds, but the received results deviate from the expected
norm.

⋄ Masked: The failure occurred but was detected internally. Countermeasures were exe-
cuted to deliver expected results to external entities.

Thereby, crash failures as defined by Laranjeira et al. [142] are split into two sub-categories
based on the recoverability of the service state. An unrecoverable state is considered more
severe. Whenever a service response is not meeting the expectations of external entities, it
is considered to be degraded. No sub-categorization based on the degradation type is done.
Masked failures represent a contradiction to the general definition of failures by Aviz̆ienis and
Laprie [14] since external entities are not aware of a discrepancy between the received and
expected results. However, enabling the awareness of what external entities expect allows the
detection of expectation deviations before it is externally observed. Without internal detection
and subsequent masking, the discrepancy would be observable to external entities. Cotroneo et
al. [65] further provide a gradual definition of performance anomalies. Thereby, the severity of
a failure depends on the degree of discrepancy between expected and delivered results.

Observation

Event

Error Error

Symptoms

Undetected Detected

Monitoring

State

Fault

Audition

Root Cause

Failure

Anomaly

Unreach-
able

Figure 2.3: Failure model based on definitions from [141] and [144].

Failures are events and as such, consequences of defective states of system components [1,
141, 202]. The defective states are referred to as errors. An error must not necessarily result in
a failure. As long as the service can be provided to external entities without deviations, a failure
has not occurred. The origin of errors and failures are faults. These are system defects that do
not influence the system up until certain conditions are met. A software bug in the source code
is a fault that becomes an error if the code branch which contains it is executed. Damaged
sections of a disk do not have an effect until data is written to or read from it. Figure 2.3
shows the fundamental relationships between faults, errors and failures [141, 144, 202]. The
role of each component is represented at the top of the boxes. The tools required to detect them
are shown at the bottom. An arrow connecting two elements represents a causal relationship.
Faults are expected to be existent but do not influence the runtime behavior of the system.
Therefore, they must be actively searched for to detect them. This procedure is referred to as
audition [202]. Errors are states of running system components. The transition from a normal
state to an error results from a fault that was triggered by encountering certain conditions. They
can be either detected or undetected. The detection of errors is realized via the monitoring of
system components. Specific deviations within the monitoring data are referred to as symptoms.
Analyzing monitoring data to identify symptomatic patterns allows the general detection of an
error state.

2.3. Fault Tolerance 15

This failure model assumes the observability of all components to determine if an error
state is causing failures. However, the effect of errors often cannot be observed. User-service
providers usually cannot observe how their users perceive the requested service results. Com-
ponents in cloud and fog computing systems are not accessible to all stakeholders. Deployed
services usually cannot be accessed by cloud computing providers. Devices that are connected
to the carrier network are not directly observable by network providers. Due to legally de-
fined SLAs between the stakeholders, crash or corruption failures are noticed. Nevertheless,
for other failures, the distinction between errors and failures cannot always be made. Recent
publications introduce the term anomaly and use it for errors and failures where components
are still reachable but are degraded or masked [5, 210, 241].

The above failure model considers one system component and its effects on external entities
in the form of failures. Cristian [66] is extending this by considering the propagation of anoma-
lies in distributed systems. System components that rely on each other’s service results can
become anomalous due to failures of dependant services. Thereby, the inability to cope with
anomalies of dependent services represents the fault, and the occurrence of such anomalies is
the condition that causes their failure (or anomaly). It can result in a propagation throughout
interdependent services of a distributed system, entailing to recover several components. The
identification of the source of this propagation is referred to as the root cause (RC) and the
identification of it is named root cause analysis (RCA) [2, 240].

Anomalies are caused by different faults, which implies the necessity of different mecha-
nisms to handle them [215, 242]. Resolving resource leakage is handled differently than a con-
nectivity issue or overload of components. The detection of anomalies requires human experts
to analyze monitoring data and search for symptoms. Thereby, recognizing fault-specific symp-
tom patterns allows them to compile remediation operations and execute them to resolve the
anomaly. This process highly depends on the knowledge and experience of these experts [29,
48]. This process entails the possibility to automate the selection of remediation operations by
analyzing fault-specific symptom patterns.

2.3 Fault Tolerance

Distributed systems consist of different interconnected components and interdependent ser-
vices. Like any IT system in general, such systems suffer from reduced dependability [175,
178, 223]. Components must be expected to contain faults, and thus, anomalies can occur,
eventually resulting in an unreachable component. To maintain systems in an operational state,
concepts to handle anomalies and unreachable components are required. In literature, this is
referred to as fault tolerance. Aviz̆ienis et al. define four general fault tolerance categories to
achieve this [14, 15]. The fault prevention includes methods to avoid the presence of faults in a
system. These can be realized via policies to prevent programmers from writing code that con-
tains bugs or to introduce generally standardized processes during the construction of hardware
components. Although prevention can reduce the number of faults in a system, it is considered
impossible to eliminate their existence [14, 225]. Aside from other factors, this is mainly due to
the complexity of systems, their interconnection and potential incompatibility, and the number
of parties involved in the development process. Faults are assumed to be present even in critical
system domains such as spacecraft [86], medicine [125] or nuclear power industry [43], where
fault prevention mechanisms are highly sophisticated. Employed fault tolerance methods aim

16 Chapter 2. Background

to prevent faults from becoming visible to external entities, i.e., the failure event should be
avoided, masked, or its severity mitigated. Fault removal techniques deal with faults that are
identified at runtime or during tests and remove them by adjusting the system. This is done
via software updates or by using a different material when building hardware components. An-
alyzing systems and the historical occurrence of faults enable fault forecasting. Considering
different properties of components like complexity, interoperability, or the number of involved
parties during developments, allows estimating the number of faults that it eventually contains.
Such estimations can be used to determine resources that are required for fault prevention dur-
ing the development process and fault tolerance after deployment.

2.3.1 Fault Tolerance Policies
Our work is focused on fault tolerance, where faults are assumed to be a part of components
in a distributed system. Whenever faults happen to cause anomalies or lead to unreadability of
a component, operations should be selected automatically to reduce the MTTR. The work of
Aviz̆ienis et al. [15] provides a taxonomy of fault tolerance methods which is further extended
by Kaitovic and Malek [136]. Similar taxonomies are described in [81, 202, 225]. We align
this taxonomy with the failure model explained in Section 2.2. The overview of the taxonomy
is depicted in Figure 2.4. Fault tolerance policies are generally separated into two groups, reac-
tive and proactive. Originally, these terms refer to failures of a system component. However, as
previously explained, failure types where components are still reachable are often not observ-
able. Therefore, we consider the remediation of anomalous components as proactive and the
recovery of unreachable components as reactive.

Fault Tolerance
Policies

Reactive

Proactive

Immediate Recovery

Masking & Recovery

Prediction & Preparation

Prediction & Avoidance

Figure 2.4: Taxonomy of fault tolerance policies. Adjusted from [136].

The reactive fault tolerance group is divided into two policy types: Immediate recovery and
masking & recovery. In both cases, recovery operations are selected and executed but with
different objectives. Former assumes operations to recover the unreachable component. Latter
hides the unreachable component before recovering it, which assumes redundancy. During the
recovery process, requests are relayed to other components that can serve them. Redundancy
can be realized via load balancing between a set of replicas, cold or warm redundancy, or N-
version programming [12].

The group of predictive fault tolerance aims at the prediction of failures where system com-
ponents become unreachable. The prediction is either done by observing temporal regularities
(e.g., periodicity) of failure events or analyzing monitoring data and searching for symptoms
that indicate anomalies. Whenever failures are predicted, a fault tolerance policy is applied.
Two general policy types are defined: Prediction & preparation and prediction & avoidance.

2.3. Fault Tolerance 17

The prediction & preparation policy prepares the system for the unreachability of a component,
usually aiming to reduce the MTTR. Examples are warming up spare components to speed
up the switch-over when the primary component fails [60] or creating backups or checkpoints
when a failure is predicted [11]. The prediction & avoidance policy tries to avoid the un-
reachability of a component. Balancing requests between a set of replica components allows
reconfiguring the load balancer, such as no requests are assigned to the component for which a
failure is predicted. This isolation allows selection and execution of remediation operations first
and reassign it to handle requests afterward. Although the component might become unreach-
able during recovery, the overall service does not become unreachable because the replicas can
provide it.

2.3.2 Temporal Analysis of Fault Tolerance Policies
We analyze the temporal progress of a system component’s status to understand the implica-
tions behind the different fault tolerance policies. Therefore, Figure 2.5 illustrates two exem-
plary visualizations of a temporal progress. Thereby, the reactive and predictive fault tolerance
policies are considered. A component can either have a normal, recovery, anomaly, or unreach-
able status. The anomaly and unreachable statuses are conforming the definitions provided in
Section 2.2. The recovery status means that operations are executed for components that either
become unreachable or to avoid their unreachability. A system that is being recovered might
be unreachable (e.g., during an ongoing reboot) until the recovery operations are successfully
finished. Furthermore, we separate the observed and real status of the component to distinguish
detected and undetected anomalies. In the shown examples, it is assumed that the unreacha-
bility of a component is immediately apparent. Also, anomalies are causing a failure after a
delay. In real systems, a component can become immediately unreachable. A reactive pol-
icy must handle such cases. Alternatively, anomalies must not cause a component to become
unreachable at all but might cause degraded failures.

The top illustration shows the temporal progress of a reactive policy. Thereby, recovery
operations are selected and executed when a component becomes unreachable. No monitor-
ing data analysis to search for anomaly symptoms is employed. After anomalies occur, the
component remains in an undetected anomaly state until it eventually becomes unreachable.
Alternatively the anomaly can be reported by external entities which receive results that deviate
from the expected norm. It remains in an unreachable or anomaly state until recovery operations
are selected and executed. Applying this policy entails that the availability and eventual SLAs
are affected. To reduce the impact on those, the time to select and execute operations must
be reduced. This reduction translated to a shorter time that a component is unreachable and,
thus, to overall higher availability. We state that this can be achieved by automatic selection of
recovery operations.

Predictive fault tolerance policies are either analyzing the periodicity of past failures or the
monitoring data to identify symptoms of anomalies. Such anomalies are assumed to either put
the component into a degraded failure state or imminently result in unreachability. After the
occurrence of an anomaly, the detection of its symptom patterns enables the alignment of the
real (green line) and observed (red line) status. After that, it is possible to select operations that
either prepare the system for the unreachability of this component or avoid its unreachability.
It is favourable to select and execute these operations before the component fails. Otherwise, a
reactive policy must be applied. After the detection of an anomaly, it is hard to predict when the

18 Chapter 2. Background

Time to
detect
anomaly

Time to
execute
operations

Time to select
operations

Normal

Recovery

Anomaly

Unreachable

Time to
execute
operations

Normal

Recovery

Anomaly

Unreachable

Time to select
operations

Reactive Policy

Predictive Policy

Time in anomaly
state

Observation

Real

Anomaly detected

Anomaly occured

Component unreachable

Figure 2.5: Comparing temporal progress of different fault tolerance policies.

component will fail [93]. Therefore, the available time for selecting and executing operations is
not precisely known. Also, the impact of degraded failures can have severe consequences [132].
Therefore, the fast selection and execution of operations are crucial when predictive fault toler-
ance is applied.

It might seem obvious to favor the predictive over the reactive fault tolerance policy. How-
ever, the selection of a policy depends on the use case [34, 87, 136, 141]. We want to highlight
the following aspects 4:

⋄ The overall assumption behind a predictive policy is that the negative effect on the avail-
ability of a component can be reduced by executing preparation or avoidance opera-
tions [15, 136]. If this cannot be achieved, employing a predictive policy cannot be
justified.

⋄ The monitoring of system components and the execution of analysis methods to identify
anomaly symptoms causes computational overhead [110, 224]. Furthermore, it intro-
duces additional complexity into the system [109]. On the one side, the eventual detection
of anomalies enables the selection and execution of precedent preparation or avoidance
operations increasing the overall system availability. On the other side, this increases
the overall system complexity and computational overhead. These aspects need to be
weighed against each other when choosing a fault tolerance policy.

⋄ Detecting anomalies is imperfect. Whenever anomalies remain undetected until the com-
ponent becomes unreachable, predictive policies lose their benefit. Such cases are han-
dled as if a reactive policy is employed, but with increased overall system complexity and

4The list is not claimed to be complete but gives an overview of aspects relevant to this work.

2.3. Fault Tolerance 19

computational overhead. Contrary, the false detection of anomalies can trigger the exe-
cution of unnecessary preparation or avoidance operations. Therefore, using a predictive
fault tolerance policy depends on the correct detection of anomalies.

⋄ Whether to prefer operations that prepare for or avoid the unreachability failure depends
on the use case. After detecting an anomaly, it is challenging to predict the time until
the component becomes unreachable. Replacing hardware devices that show anomalies
before they fail can be expensive depending on the consequences of a failure and the time
between anomaly detection and failure [235]. When components are rebooting, they
are unavailable until the reboot is completed and potentially result in lost optimization-
related states like caches or prefetching policies [47]. Such aspects must be considered
when selecting operations, making the selection itself difficult.

Reactive fault tolerance policies require a fast selection and execution of recovery opera-
tions to minimize the negative impact on availability. The ability to detect anomalies is the
prerequisite to apply a predictive fault tolerance policy. Anomaly detection methods are not
perfect, and mispredictions must be assumed when operations are selected and executed. The
selection of operations defines whether to prepare for or to avoid the unreachability of sys-
tem components. This choice depends on many aspects that are hard and time-consuming to
consider for human experts.

Chapter 3

Related Work

In this thesis, we develop methods for anomaly symptom recognition that enable the automatic
selection of operations to resolve anomalies. On a high level, this can be categorized as a
fault-tolerance method since anomalies and failures are assumed to occur. Automation should
accelerate the process of resolving anomalies and failures and mitigate negative consequences.
Therefore, we give a brief overview of the history of fault-tolerant IT systems and analyze
the methods. Based on this, we infer the requirement of general and holistic approaches and
analyze the concept of autonomic computing. It provides a variety of aspects where autonomy
for IT systems is required. We focus our review of related literature on the aspect of self-healing
and present frameworks and systems. The area of AIOps is concerned with researching the
application of methods from artificial intelligence and machine learning to support IT system
operation. We provide an overview of this research direction, focusing on symptom pattern
recognition and automatic operation selection methods.

3.1 A Brief History of Fault-Tolerant IT Systems

Due to the growing size of distributed systems and increasingly strict criteria defined within
SLAs, human operators require support to operate these systems [123]. However, the neces-
sity to implement fault tolerance into IT systems exists for an extended period. Early works
focus on the theoretical fundamentals of IT system reliability [21, 198]. Utilizing concepts
from probability theory, they estimate the reliability properties of systems that consist of mul-
tiple components and predict eventual failures. Based on the work of Epstein and Sobel [77],
Hosford [120] defines the term dependability as the probability that a IT system is operable
when needed and provides quantitative measures. He further uses the terms availability and
reliability and proposes formal definitions for both. Brian Randell [191] introduces modular-
ity as a key requirement for fault tolerance of complex IT systems. The modularity allows
the separation of a distributed system into fault blocks. He analysis different constellation and
segmentation strategies and defines an analytical model to express the ability of a system to
tolerate faults. Algirdas Avizienis provides a qualitative discussion on fault tolerance, system
faults, and fault-tolerant design concepts [16]. He further investigates design concepts for IT
systems that support fault tolerance [13]. His and the work of Laprie [14, 141] define failures
in IT systems together with a general failure model and taxonomy of fault tolerance methods.

Early implementation of fault tolerance in IT systems can be found in critical application

21

22 Chapter 3. Related Work

fields like aircraft [67, 237], spacecraft [193], or military [167]. Gray and Siewiorekkey [100]
define concepts and techniques to build highly available systems. They propose five key as-
pects that can be utilized to improve the fault tolerance of IT systems: modularity, fail-fast
modules, independent failure modes, redundancy, and repair. In the area of fault-tolerant oper-
ating systems, Anita Borg’s publications are well recognized. She develops a distributed UNIX
operating system with a focus on fault tolerance [32, 33]. Redundancy is the primary approach
to realize fault tolerance for hardware components of a system, Najjar and Gaudiot [169] an-
alyze the fault tolerance of networks and propose concepts to design network topologies that
tolerate the outage of single nodes. Their fault-tolerant topologies proclaim a design that con-
tains redundant routes between network endpoints. Works on redundancy distinguish cold,
warm or standby, and hot redundancy [216]. Thereby, the respectively redundant components
are either turned off, in standby mode, or turned on, with respective implications to energy con-
sumption and switch-over times. Early work in the area of fault tolerance in software systems
concentrates around executing a task multiple times. Chen and Avizienis introduce the term
N-version programming whereby N>2 equivalent programs with the identical initial specifica-
tion are started [52]. A decision algorithm is required to evaluate the N results and make a final
selection. Variants of this have been investigated for tasks like matrix operations [122], or the
calculation of the invariant distribution of a Markov chain [142].

It can be seen that the focus of fault tolerance research shifted from a theoretical perspective
towards practical and implementable solutions. This process correlates with the increasing
availability and usage of IT systems. Thereby, an initial strong focus lies on redundancy which
should mitigate the effects of occurring failures.

3.2 Fault Tolerance Methods
The growing availability of IT systems accelerates the pace at which data analysis platforms
and digital applications are developed. On the one hand, the system complexity is considerably
growing, but on the other hand, this comes with powerful hardware, which allows the em-
ployment of increasingly sophisticated fault tolerance methods. In related work, mostly three
different fault-tolerance policies are investigated.

1. A reactive policy handles failures when they occur. Most works that employ redundancy
can be categorized as reactive.

2. The periodic policy executes operations in regular intervals, where the interval is a config-
uration parameter and subject to optimization. A periodic failure immersion is assumed
to realize this policy [115].

3. A proactive policy employs models to predict failures and handle them before they occur.
An antecedent system state deviation, referred to as degraded state [39] or anomaly [64,
71, 90, 172, 173, 188, 238], is assumed to be recognizable. This enables the preparation
of the system for failure or the execution of countermeasures to avoid failure.

Castelli et al. [46] compare the impact on system availability and component downtime
between the three fault-tolerant policies. They apply the reactive policy as the baseline and
show that the periodic policy could reduce the downtime by 25 %, whereas the proactive fault

3.2. Fault Tolerance Methods 23

tolerance policy achieves a downtime reduction of 60 %. Egwutuoha et al. [76] compare a re-
active and proactive fault tolerance policy. They are monitoring the system health of compute
nodes that host virtual machines. When detecting a degraded health status, VMs were migrated
to a healthy node. By applying the proactive policy, the execution time of the application de-
ployed within the VMs could be reduced by up to 30 % compared to the reactive policy. By
applying Markov models, Eckart et al. [75] implement a combination of fault prediction and
proactive fault tolerance. They analyze simulations of different RAID configurations and show
that the mean time to data loss can be extended by up to 85% compared to a reactive policy.
Instead of avoiding a failure, other approaches are preparing the system for the occurrence of
the failure. An example is a periodic checkpointing of a running application’s state. When-
ever failures are predicted to occur, a checkpoint is computed to reduce the re-computation
effort. Experimental evaluations of such an approach conducted by Bouguerra et al. [35] shows
a performance-boosting of an HPC system by 30% while introducing only 6% of additional
overhead.

Several works assume an ideal failure prediction model for proactive fault tolerance either
implicitly [46, 76] or explicitly [75]. However, based on the imperfection of failure predic-
tion models, these assumptions limit the evidential magnitude of the results and conclusions
for practical applications. Since this imperfection is not considered, the presented performance
improvements might differ when applied in productive environments. Occurring false predic-
tions will decrease the improvement or might even fall below the performance of a reactive fault
tolerance policy, which is shown by Aupy et al. [11] They address the impact of an imperfect
failure prediction for proactive fault tolerance. Simulations under varying model parameters
reveal that proactive approaches are not always the best option. A frequent false prediction of
failures results in an increased overhead due to the execution of unnecessary operations. There-
fore, analyzing the prediction performance of the models is an essential step towards practical
applicability. By combining proactive migration and reactive checkpointing, Lan and Li [140]
define the runtime of an application as the performance criteria for their evaluation. They man-
age to decrease the execution time by 27 % when the model perfectly predicts the failures.
However, decreasing the prediction performance results in an increased runtime by up to 10 %.

The importance of the failure prediction correctness is shown to impact the performance of
a fault tolerance policy significantly. Therefore, it is important to consider the ability to predict
failures when applying predictive fault tolerance correctly. Salfner and Malek [204] present an
availability model that includes prediction model performance measures. They aim to optimize
the availability of a system by analyzing the impact of the model performance measure. It
quantifies the model performance required for a proactive fault tolerance policy to outperform
a reactive policy. Similar work is done by Kaitovic et al. [136]. They extend the proposed
model of Salfner and Malek and include additional model performance parameters. A formal
definition of a break-even point is given, which provides a quantitative answer to whether to
use a reactive or proactive policy. Their results show a significant impact of false predictions
on the availability of systems managed by proactive fault tolerance. Matos et al. [157] ana-
lyze a complex availability model having 14 parameters. By applying a parametric sensitivity
analysis, they identify the parameters with the most substantial influence on availability. Be-
sides that, they consider monetary costs for normal, degraded, failed system states and present
optimization results based on cost-related parameter values.

Although depending on the ability to predict failures correctly, fault tolerance research fo-
cuses on the proactive fault tolerance policy. Thereby, increasingly precise methods to detect

24 Chapter 3. Related Work

anomalies are developed. However, the described proactive methods focus on specific failures.
Whenever its occurrence is predicted, a defined operation is executed to avoid it or to prepare
the system for its occurrence. The complexity of IT systems entails a variety of components
that can be affected by different failures. This complexity requires the execution of different
operations to resolve imminent failures. A more general view of fault tolerance in IT systems
is needed.

3.3 Autonomic Computing

In 2001, IBM addressed the problem of generality for IT system fault tolerance. They raised
the initiative of autonomic computing [119] and proposed their vision of IT systems that are
self-managed [138]. The inspiration of autonomic computing systems is drawn from biology,
more precisely, the autonomic nervous system. The analogy implies that IT systems should ex-
ecute their tasks entirely without external - i.e., human - intervention, including the continuous
adaption to environmental changes and the handling of occurring problems.

2.3. Autonomic Computing 19

specific functionality. The autonomic agent performs four core activities: self-

configuration, self-healing, self-optimization, and self-protection. As previously

noted, all these activities are primarily focused on understanding and managing

its own internal structure, state, and the state of its subsystems. In order to

implement these activities, the autonomic agent consists of high-level building

blocks as depicted in Figure 2.3. Sensors deliver monitoring data that describes

aspects of the managed element. The monitoring data can be numerical or of

some other format, but must ultimately be machine readable. Next, the collected

data is analyzed, a plan of action is created, and finally executed. Since the

sensors continuously deliver their data, the consequences of the executed actions

can be observed, and saved for future iterations. This closed-loop system allows

to continuously learn how the managed element behaves in different situations,

which is symbolized by the central knowledge extraction part. Together, the steps

Monitor, Analyze, Plan, Execute, and Knowledge form the MAPE-K loop [82].

Figure 2.3: The MAPE-K loop of autonomic computing systems: Mon-

itor, Analyze, Plan, Execute & Knowledge [82]Figure 3.1: The MAPE-K closed loop for autonomic computing [123].

To achieve autonomic computing, IBM [126] design a closed-loop control. Later, it is
referred to as MAPE-K [158]. Figure 3.1 shows the MAPE-K architecture. It is composed of
an autonomic manager and a managed element. In our work, we refer to the managed element
as the system under operation (SuO). The manager takes the role of a controller that accesses
the sensor interfaces to assess the state of the managed element, performs analyses, and takes
action if needed. This workflow of the manager contains four steps. First, monitoring (M) is
realized by accessing the sensors of the managed system. Second, collected monitoring data
are analyzed (A) to recognize indications that necessitate taking action. Third, operations are
selected, and an execution plan (P) is compiled. Fourth, the effector interfaces are accessed to
execute (E) the operations. Over time, the autonomic manager should improve and operate the
managed element more efficiently. Knowledge (K) management is required to improve. It is
continuously updated and central for future analyses and control decisions.

3.3. Autonomic Computing 25

The employment of methods for analysis, planning, and execution depends on the objec-
tives of an autonomic computing system. The vision is that every aspect in a life-cycle of an
IT system (e.g., deployment, configuration, maintenance, or protection) should be executed au-
tonomously. However, it is recognized that this is a vast field of problems that requires separa-
tion into sub-problems. In their original publication of autonomic computing [119], the authors
defined four attributes of self-management: self-configuration, self-optimization, self-healing,
and self-protection.

The self-configuration addresses the dynamics of complex IT systems. Whenever the en-
vironment changes, an autonomic configuration adjustment should be applied to ensure the
continued operability of the system. This is often applied for wireless networks [121, 168,
184] and the Internet of things (IoT) [10, 51]. Wireless network connectivity is susceptible
to environmental disturbances, which necessitates a fast adaption. However, the adjustment
to environmental disturbances always comes at a cost, which could be energy, computation
resources, or any monetary cost. Therefore, the self-configuration is often coupled with self-
optimization [121, 184]. It results in the objective to keep the system operational but adds
constraints regarding defined cost metrics. Besides environmental changes, IT systems are al-
ways prone to external threats. It is stated that the identification and protection against various
types of attacks are required to enable autonomic computing. The attribute of self-protection is
defined to cover this problem field. However, IT system security is a huge industrial and public
research area, even before autonomic computing [8]. The attribute self-healing is defined to
enable fault tolerance. IBM describes this by discovering problems or potential problems and
finding alternatives of using available resources or applying reconfigurations to keep the system
functional.

Overlappings exist between the objectives of the four attributes. Self-configuration, protec-
tion, and healing allow IT systems to react to occurring problems. The difference lies in the
origin of the problems: external environmental disturbances for self-configuration, malicious
external or internal attackers for self-protection, and inherent faults in soft- and hardware with
the potential to cause anomalies or failures for self-healing. Self-optimization serves as a con-
straint that should prevent the system from excessively using resources to resolve the different
problems. Our work is related to self-healing and considers self-optimization.

There are three well-recognized surveys on self-healing [94, 190, 213]. Ghosh et al. [94]
give an overview of publications that are related to self-healing. Psaier and Dustdar [190] pro-
vide an extensive analysis of autonomic computing with a focus on self-healing before present-
ing self-healing publications based on their grouping into nine categories. Schneider et.al. [213]
present a categorization of self-healing systems based on the management style, computing en-
vironment, and learning methodology. The published approaches can be further categorized
as invasive and non-invasive. Former assumes that self-healing is part of a system itself and
must be integrated into it during the development process (e.g., use respective materials for
hardware or having self-healing within the source code of an application). Latter is realized via
an additional self-healing system that passively monitors and operates the managed system by
applying adjustments like reconfiguration or redeployment when required.

An example of an invasive approach is given by Dashofy et al. [70]. They provide an
architecture of a development framework for event-based software systems with inherent self-
healing. Further, guidelines are presented to enable the efficient self-healing of software sys-
tems. For the implementation, the software is described via an abstract XML-like language.
After deployment, it is possible to adapt the XMl descriptions, whereupon changes are applied

26 Chapter 3. Related Work

to the application. Miorandi et al. present Embryo-ware [163, 164], which is inspired by bi-
ological reproduction, healing, and immunity. Thereby system components are provided with
meta-information that is comparable to genomes. Genomes are replicated among all compo-
nents. They contain definitions and constraints regarding the tasks of a component. Failures are
compensated by reassigning the tasks of a failed system part among the remaining components.

In contrast to invasive methods, Garlan and Schmerl [92] present a non-invasive approach
by using an adaptation of the managed system. In other publications [55, 91], they further
extend the architecture and refer to it as Rainbow. Thereby, one or more models of a system are
generated and adapted at run time. Based on these models, human experts can define invariants
which are constraints for the collected system information. Violation of invariants is regarded
as anomalies that require operations to resolve them. The architecture of Rainbow is related to
this thesis. The main differences are the employed methods for recognizing anomaly patterns
in the monitoring data and the selection of operations based on this. While Rainbow utilizes a
constraint-based approach, we apply pattern matching to recognize anomaly symptom patterns
and couple this with an automatic operation selection.

The systems presented so far focus on self-healing architectures, propose domain-specific
solutions, or assume an adaption of the application source code. We conclude that additional
generality of methods is required to enable fully automated IT system operation to cope with
the fast pace at which these systems are developed.

3.4 AIOps
Autonomic computing requires data analysis methods. Thereby, the state of SuO components
needs to be observed, and the monitoring data must be analyzed. Whenever deviations from
an expected norm occur, operations should be compiled and executed to transfer it to a normal
operation mode again. This process is realized as a set of data analysis methods taking system
monitoring data as input and eventually executing operations to resolve anomalies or realize
runtime optimization [17, 95, 213]. The recent advances in machine learning and artificial in-
telligence inspire the application of methods from these areas to analyze IT system monitoring
data. The company Gartner, Inc. initially named this research direction Algorithmic IT Opera-
tions in 2014. In a later publication (2018), they renamed it to AIOps (artificial intelligence for
IT operations) [97]. Due to their complexity, heterogeneity and increased distribution, AIOps
methods are especially researched for systems like cloud [89], fog [18], and edge [133] com-
puting, network function virtualization (NFV) [61], or high-performance computing [171].

Several publications are further investigating the general implications, opportunities, and
challenges of AIOps. Dang, Lin, and Huang [69] analyze and motivate the utilization of AIOps
methods to enhance fault tolerance of IT systems. They further identify challenges and innova-
tions that AIOps will bring. A book written by Masood and Hashmi [156] discusses the topic
of AIOps, how it differs from traditional IT system operation, and the potential to improve
fault tolerance. The idea of AIOps is picked up by the industry as well. Big IT companies
and startups apply AIOps solutions to their systems and add them to their product portfolio.
Qu and Ha provide insights into the software development and system operation processes of
Baidu 1 and explain how they envision the employment of AIOps. Microsoft [155], Amazon 2,

1https://www.baidu.com/ (last access 22 May 2021)
2https://aws.amazon.com/de/devops-guru/ (last access 22 May 2021)

https://www.baidu.com/
https://aws.amazon.com/de/devops-guru/

3.4. AIOps 27

and Google [97] are applying AI and ML to increase the dependability of their systems and
offer such services for their cloud platforms allowing customers to integrate them with their
services. Moogsoft 3 is a startup with a specific focus on AIOps. They offer solutions for sys-
tem monitoring, anomaly detection, root cause analysis, log data analysis, and several others.
They give insights into the models they are using, including clustering, probabilistic sequence
analysis, and metric correlation analysis. Dynatrace 4 offers automatic discovery of system
component interdependencies coupled with different analytical models to detect anomalies or
to identify root causes. Several other projects such as BigPanda 5, Logz 6, or Resolve 7 offer
similar product portfolios.

With AIOps systems, it should be possible to realize robustness against anomalies based on
non-specific system data like metrics [64, 95, 239], or enable the processing of multiple data
sources [31]. Thereby, domain-specific assumptions are reduced to realize generality. Several
methods are published in this research direction including anomaly detection [64, 90, 172, 173,
188, 238], root cause analysis [114, 135, 148, 208, 233, 239], symptom analysis [30, 54, 94,
131, 137, 174], and operation selection [50, 128, 139, 145, 161].

Anomaly detection in the context AIOps should analyze monitoring data and recognize if
SuO components deviate from the expected operational state. Recent solutions focus on one-
class methods that utilize only the normal system states for training [64, 173, 238]. When
deployed, they should recognize deviations from the trained norm and raise alarms. This con-
cept is referred to as binary, two- or bi-class anomaly detection since these methods report
either a normal state or an anomaly. Published solutions for this type of anomaly detection
rely on fundamentals of stochastic theory [64, 188], classical machine learning [238], or deep
learning [90, 173]. Moreover, the analysis is applied on different monitoring data, which are
traces [172], logs [73], and metrics [173, 238].

IT systems are undergoing a transition from monolithic architectures to microservices en-
abling advantages such as resilience, agility, and scalability [176]. These are deployed on cloud,
fog, or edge computing systems, resulting in complex and distributed environments. The inter-
dependencies in such systems result in propagating anomalies, which means that an anomalous
component can cause anomalies on dependent components, eventually resulting in a cascade of
alarms [114]. Root cause analysis methods are concerned with the identification of the node that
initially became anomalous. Again, the RCA is applied on different monitoring data sources,
i.e., traces [148], logs [135], and metrics [208, 233, 239]. Most RCA follow a similar workflow.
First, a graph structure is constructed based on the available normal data. Whenever anoma-
lies occur, a subgraph is acquired containing all components that are reported as anomalous.
Based on different graph search methods, a single node is identified in the subgraph. This node
represents the anomalous component.

Anomaly detection and root cause analysis are essential parts of a AIOps system. However,
additional analyses are required to enable autonomy for the automatic resolving of anomalies.
We focus on the recognition of symptom patterns to identify anomaly types. Based on this, an
operation to resolve the anomaly should automatically be selected.

3https://www.moogsoft.com/ (last access 22 May 2021)
4https://www.dynatrace.com/ (last access 22 May 2021)
5https://www.bigpanda.io/ (last access 22 May 2021)
6https://logz.io/ (last access 22 May 2021)
7https://resolve.io/aiops (last access 22 May 2021)

https://www.moogsoft.com/
https://www.dynatrace.com/
https://www.bigpanda.io/
https://logz.io/
https://resolve.io/aiops

28 Chapter 3. Related Work

3.4.1 Anomaly Symptom Analysis

The origin of anomalies are faults in hard- or software components. When faults become
anomalies, their symptoms are assumed to be observable in the monitoring data. Different
faults require respective operations to be resolved [94]. Therefore, the symptom analysis is
concerned with recognizing patterns in the monitoring data based on which the anomaly type
that represents a specific fault should be inferred. This is often approached as a classification
problem, whereby different anomalies are classes that should be predicted by a classification
model based on available monitoring data.

Islam and Manivannan [131] propose a model for sequential metric data analysis to predict
failures in the Google cluster workload trace. Based on the memory and CPU utilization met-
rics, they predict the failure codes of executed jobs and tasks. Furthermore, they utilize a cloud
simulation system to recreate memory and CPU utilization metrics of executed jobs and tasks.
Predicting return codes instead of anomaly types is owed to the missing labels in the dataset that
they used. It is questionable if different return codes reflect the whole set of existing anomaly
types.

Bodik et al. [30] referring to the classification of various data center crises as data center fin-
gerprinting. Thereby, system resource metrics from all data center components are aggregated
via quantile discretization, and feature selection methods are applied to choose only relevant
metrics for distinguishing different data center crisis types. The reported results were achieved
by an aggregation of system resource metrics collected over 30 minutes. For distributed system
environments, the central aggregation of metrics from all system components limits scalability.
Furthermore, the requirement of 30 minutes aggregation time windows results in a significant
delay between emerging anomalies and their classification.

Kajó and Nováczki [137] provide a comparison of different machine learning algorithms
together with a genetic algorithm approach. Given monitoring data from a System Architec-
ture Evolution (SAE) core network, they select an optimized metric subset used as input for
different classification algorithms. The focus lies on metric selection, whereby each metric is
averaged over a 15 minutes interval. The delay prevents a timely selection of operations from
resolving an anomaly. Furthermore, the models are trained on a set of 850 anomaly observa-
tions. A sparse occurrence of anomalies is expected, and thus only a few available examples
for each anomaly type must be expected. The requirement of many training data poses a limit
for practical application.

Another work of Cheng et al. [54] applies a multi-scale long short-term memory model
to classify four different anomalies during update messages of the border gateway protocol
(BGP). They use a sequence of collected metrics during each of the four anomalies and the
normal system state. For model training, several hours of anomalous metric data are expected.
However, the occurrence of anomalies is usually time-limited. The objective is to transfer the
system back to a normal operation state as fast as possible. The expectation of long consecutive
anomalous metric sequences limits the applicability.

Netti et al. [174] test four machine learning methods to classify eight anomaly types in an
HPC cluster node. They use 144 metrics from the node, which are sampled at each second. 22
features from each metric series are extracted based on 60-second windows with a stride of 10
seconds. The machine learning methods are applied individually on each metric. Evaluation
is done separately for each model and averaged across all models eventually. The employment
of 144 models per node poses a limitation regarding scalability. Prediction with and potential

3.4. AIOps 29

retraining of a large number of models requires a significant amount of computation resources.
Anomaly type symptom recognition is needed to infer the anomaly type of observed symp-

tom in the metric data and couple this information with operations to resolve the anomaly.
However, the precise recognition of patterns in metric data is hard to achieve. Existing methods
either require many examples to train the models or apply a fine-grained separation of metric
data into sub-metrics for which respective models are utilized. A system should use only a small
fraction of available resources for monitoring data analysis. This requirement restricts the num-
ber of models that can be used to analyze the data. Furthermore, IT systems are dynamic and
constantly change, which entails the occurrence of novel anomaly types. An anomaly symp-
tom recognition method should be able to recognize yet unknown anomaly types. None of the
presented methods address this issue.

3.4.2 Automatic Remediation or Recovery
This thesis aims to enable the automatic selection of operations to resolve anomalies. It is
achieved by inferring anomaly types based on symptom patterns, which are coupled with spe-
cific operations. Therefore, we want to investigate related approaches and analyze how the
automatic remediation or recovery of system components is achieved. In many publications,
methods are proposed that resolve one specific anomaly type [11, 35, 46, 75, 76, 140, 149].
Thereby, it is implicitly assumed that either a single anomaly type occurs on the component or
that all anomaly types that occur can be resolved by executing the same operation. Often, the
timing of the execution is subject to optimization, or the system is adjusted in a way that accel-
erates the execution of the operation. Examples of such approaches are minimizing the time of
a reboot operation for containers or virtual machines [45], efficient estimation and adjustment
of resource provisioning in cloud systems [152, 170] or optimal checkpointing of data process-
ing jobs [140]. In the case of checkpointing, a high overhead due to frequent checkpoint should
be balanced with the time that is required to recompute the results when a failure occurs [11].
Another example is to hit a favorable moment for a restart of a component [46] or the ahead of
time provision of virtual resources to decrease the time until they are operational [149].

Research has also been conducted on system disaster recovery. After hazardous accidents,
the system is typically redeployed in the same or an alternative location. Pokharel et al. [189]
present an approach based on geographic redundancy of distributed system components. By
employing a Continuous Time Markov Chain, they analyze the overall system reliability in
dependence on the reliability of individual system components. However, having full redun-
dancies of every single component is expensive and requires more computation resources, even-
tually leading to increased energy consumption. A reactive approach is expounded by Lavriv et
al. [143]. They define disaster as a phenomenon that puts the system into a state where it cannot
be recovered from. A redeployment is required in this case. They compare a manual redeploy-
ment with a scripted redeployment workflow defined with infrastructure as code (IaC) scripts
and show that the latter reduces the time until the system is operational again. Chang [50] in-
vestigate disaster recovery of Big Data systems across three different data centers and show that
their methods of data distribution and replication significantly accelerate the recovery process
of one data center. They rely on backups and four complementary retrieval methods. Although
enabling automation of the recovery process, disaster recovery deals with a different problem
than our approach. Hazardous accidents are immediately evident and do not require sophisti-
cated monitoring data analysis methods. Also, the time frames until the system is expected to

30 Chapter 3. Related Work

be operational again differs as well. After an outage of the system part or the whole system,
the redeployment is expected to require an extended period (hours or even days). In our case,
anomalies should be resolved much faster, whereby mitigations within minutes or seconds are
expected.

We use three categories for the further related publications.
Rule-based methods allow human experts to define rules based on IF-THEN expres-

sions [139, 161]. The IF-part matches defined policies, e.g., alarms from specific components
or recognized anomaly symptom patterns. The THEN-part is connected with the conditions
of the IF-part and executes operations if the condition matches. Platforms exist that connect to
alerting or monitoring systems to receive data that can be matched by IF-statements and support
a variety of tools to execute operations 89. We see these platforms as complementary to our pro-
posed method. The detection of anomaly type symptom patterns can be defined as conditions
via IF-statements to trigger the automatic selection of operations with THEN-matches.

Learning-based methods use reinforcement learning to infer remediation and recovery op-
erations without human intervention [128, 245]. Thereby, a trial and error policy is applied.
The methods are provided with a pool of commands, out of which sequences of commands are
composed and executed against anomalous system components. The effects are observed and
considered successful if the system reaches a normal operational state after executing a com-
mand sequence. Although this enables AIOps systems to resolve anomalies automatically, rein-
forcement learning has three disadvantages. As stated by Zhu et al. [245], a growing amount of
available commands results in exponential growth of the search space. Reinforcement learning
methods require thousands of trial and error attempts to find a command sequence that resolves
the anomaly. A guided search based on heuristics can be applied to mitigate this. However,
even a guided search relies on trial and error to recover from an anomaly. System operators are
very conservative when it comes to the execution of commands with the unpredictable outcome
and is regarded as an infeasible system in productive deployment [105, 107, 218]. Additionally,
a sequence of commands must exist in the search space. Otherwise, the reinforcement method
will not be able to find a solution. Therefore, human experts need to verify that the reinforce-
ment method can find a solution by checking if such a solution exists. It is contradictory to let
an algorithm search for a solution which existence is already known to the expert.

Case-based methods utilize the occurrence of previous anomalies or failures as cases and
match them against future occurrences [145, 165]. These can be automatically resolved by ex-
ecuting respective operations. Resolving occurred cases works under two central assumptions.
First, anomalies and failures, i.e., cases in this context, must reoccur. Second, operations that
were executed for past cases will resolve the future case as well. Based on this, it is possible
to couple past anomalies or failures with the operations used to resolve them, which allows
the automatic selection of these operations for future occurrences. Thereby, the challenge is
to recognize anomalies or failures. Publications from Montani and Anglano [165] as well as
Li et al. [145] require service-specific metrics like responses to HTTP requests or application
error messages to match the cases. We propose a method based on anomaly type symptom
patterns in system metric data to recognize reoccurring anomalies and match theses with a set
of operations to resolve them.

8https://stackstorm.com/ (last access 21 May 2021)
9https://www.rundeck.com/ (last access 21 May 2021)

https://stackstorm.com/
https://www.rundeck.com/

Chapter 4

Anomaly Symptom Recognition in an
AIOps System

This chapter introduces the analysis of anomaly type-specific symptom patterns to automati-
cally select operations and resolve anomalies in components of a distributed system. First, we
describe the role of symptom pattern recognition and its enabling of automatic operation selec-
tion in an AIOps system and analyze the challenges and assumptions. Second, an overview of a
closed-loop control is given. We introduce a set of modules and their respective tasks to realize
an automatic recover of anomalies and highlight the focus of our thesis. The framework archi-
tecture of our proposed ReCoMe engine is presented and explained in detail. It contains consec-
utive modules to enable system metric data analysis, symptoms pattern recognition, anomaly
type inference, and automatic operations selection. Third, we model the anomaly symptom
recognition as a classification problem applied to monitoring data. Different modeling con-
cepts are analyzed, and requirements for anomaly symptom recognition are inferred.

4.1 Challenges and Assumptions

Our work aims to accelerate the remediation and recovery of anomalous or failed system com-
ponents by enabling an automatic operation selection. However, the operation selection cannot
be considered a stand-alone problem. It relies on aspects like the applied fault tolerance pol-
icy, the ability to detect anomalies, the recognition of anomaly type-specific symptom patterns,
or interfaces to the relevant system components. Therefore, we consider our approach in the
context of an AIOps system. Enabling anomaly recovery automation for IT systems is a com-
plex problem and usually split up into several subproblems whose solution methods can be
combined [94, 154, 208]. Considered subproblems are the monitoring, anomaly detection, root
cause analysis, operation selection, and operation execution [94, 109, 213].

Our methods are applied on a System under Operations (SuO), which can be any compo-
nent of an IT system. The monitoring of SuOs is concerned with an efficient observation of
monitoring data from relevant components [2]. Anomaly detection provides methods to raise
alarms whenever a component state deviates from the known norm [206]. In distributed sys-
tems, anomalies can propagate. The component from which the propagation started is referred
to as the root cause. Root cause analysis methods are concerned with its localization. If anoma-
lies are detected, operations need to be selected and executed to resolve them. The propagation

31

32 Chapter 4. Anomaly Symptom Recognition in an AIOps System

entails selecting and executing respective remediation operations for every component - poten-
tially in a specific order - to recover the SuO.

Anomalies can result from different faults and usually require respective operations to be
resolved [215, 242]. Our anomaly symptom recognition methods assume a categorization of
faults. They can be recovered by respective operations whenever faults lead to anomalies.
However, anomaly states cannot be directly observed at runtime. Instead, their manifestation
in the form of symptoms must be recognized by analyzing the monitoring data. We propose
a respective categorization of anomalies based on their symptom patterns. Suchlike categories
are referred to as anomaly types, and we refer to the assignment of anomalies to categories
based on symptom patterns as anomaly symptom recognition. The recurrence of such anomaly
types enables the automatic selection of operations to resolve them.

4.1.1 Challenges

We consider two types of challenges. The first type focuses on anomaly symptom recognition
based on patterns in monitoring data. The second type refers to the implementation of anomaly
symptom recognition and automatic operation selection into an AIOps system.

Due to the nature of complex IT systems, anomaly symptom recognition based on recur-
ring symptom patterns is challenging. Cloud and fog computing systems consist of various
components. Symptoms of the same anomaly types can differ significantly depending on the
component they occur on [42]. Furthermore, system components are interconnected, and their
states depend on several internal and external aspects, which affect the symptoms. We summa-
rize the following central challenges for anomaly symptom recognition:

1. Rareness of anomaly type examples: In contrast to normal component states, anomalies
are expected to occur rarely and have a limited duration. Therefore, anomaly symptom
recognition must cope with few examples of anomaly symptoms when trying to recognize
them. Identifying general similarities or dissimilarities of patterns in data based on few
examples is considered a challenging task [28]

2. Component heterogeneity: We consider complex IT systems with a variety of compo-
nents. Different service types like web servers, content streaming services, or identity
management services run on virtual resources with different specifications like virtual
CPUs or available memory. The sources of virtual resources are physical nodes with
potentially different hardware specifications. These dynamics are represented as varia-
tions in observed monitoring data and pose a challenge to recognizing specific anomaly
symptoms.

3. Varying external factors: External entities such as human end-users, other services,
sensors, or effectors are expected to interact with SuO components. Furthermore, the SuO
components are interconnected. These high interdependencies result in chaotic usage
patterns [4, 41]. It affects the respective SuO components, their utilization and leads to
variating patterns in their monitoring data.

4. Incomplete knowledge: Components of a SuO can change, or new components can be
integrated over time. These dynamics entail the eventual occurrence of anomaly types

4.1. Challenges and Assumptions 33

that were not observed yet. The knowledge base that contains all known anomaly symp-
toms must be considered incomplete at all times. It requires an anomaly symptom recog-
nition method to admit that symptoms do not match any known anomaly types yet are
unknown.

Both the component heterogeneity and varying external factors lead to variations of symptom
patterns of the same anomaly type. We refer to this as the intra-type variation. This variation
in combination with anomaly-type examples’ rareness makes it difficult to recognize anomaly
type-specific symptoms.

Several challenges need to be considered when integrating anomaly symptom recognition
and automatic operation selection into an AIOps system.

⋄ The incomplete knowledge assumption requires an approach to handle unknown anomaly
types. Furthermore, a knowledge base that contains historical anomaly symptoms cannot
always be assumed. The acquisition of anomaly symptom examples until automation can
be realized is referred to as the cold-start problem. A concept on how to handle empty
knowledge bases and novel anomaly types is needed.

⋄ Integrating monitoring data analysis into an IT system must assume a limited availability
of computation resources to execute data analyses. The main value of the SuO stems
from the execution of regular workloads. The analysis must utilize a small fraction of
the available resources to limit interference with the regular workload. However, the
recognition of anomaly symptoms with a high intra-type variation requires computation-
intensive calculations. A trade-off between both aspects is required.

⋄ Anomalies can propagate in distributed systems and affect several components. Multiple
anomalous components entail identifying the root cause and managing the order in which
anomalies should be resolved. Such order requirement has implications for the automatic
operation selection.

⋄ Operations to resolve anomaly types depend on the anomalous component, the current
system load, the preference of different human operators, and several other aspects.
Therefore, an anomaly type can eventually be resolved by more than one operation. When
assuming more than one available operation for an anomaly type, a concept to select an
operation from a set of available candidates must be realized.

4.1.2 Assumptions
The first assumption is the existence of a preceding anomaly detection method that raises
alarms whenever states of system components deviate from a known norm. The anomaly symp-
tom recognition and operation selection are only executed when taking action is required, i.e.,
when anomalies are detected. Detection of anomalies entails that their symptoms must be ob-
servable. It can be the case that anomalies remain undetected. A reason for this invisibility
might be the fact that the symptoms are present in data that are not observed or that the symp-
toms cannot be detected due to high noise caused by regular workload execution. Undetectable
anomalies cannot be considered.

When several components are reported to be anomalous within a short time frame, a propa-
gating anomaly must be expected. To reasonably manage the order in which the anomalies are

34 Chapter 4. Anomaly Symptom Recognition in an AIOps System

resolved, knowledge about the root cause is required. Therefore, our second assumption is the
existence of a root cause analysis that can be requested on-demand to localize the root cause
component from a set of anomalous components.

The anomaly symptom recognition groups anomalies based on common symptoms to au-
tomatically select recovery or remediation operations. Historical occurrences of respective
anomaly types are expected to have been resolved by previously defined operations. Based
on this, the third assumption is that anomalies of the same type occur multiple times.

Although it is often envisioned, immediate automation of operation selection is hard to
achieve when handling unknown anomaly types. Different policies exist to select recovery
operations for yet unknown anomaly types [94]. The trial and error policy aims at execut-
ing combinations of known operations until the anomaly is eventually resolved. This policy is
problematic since the effect of operations under unknown anomaly states is challenging to fore-
see, and reverting these effects is not always possible. This approach can require a significant
amount of time since many combinations of different operations exist. Furthermore, providers
and operators of IT systems are very conservative when employing such uncertain methods
within production [218]. As an alternative to this policy, we apply a human-in-the-loop ap-
proach. It aims to gradually transfer expert knowledge from the human into the AIOps system.
Whenever anomalies are encountered for which no operations can be automatically selected,
human experts are consulted. Therefore, the fourth assumption is a cooperation between the
operation selection method and human experts whenever required.

4.2 AIOps System

To manage increasingly complex systems, human operators require automation and support.
Such support can be achieved by employing different methods to monitor components, detect
anomalies, or automatically select remediation and recovery operations. These methods are
eventually combined in AIOps systems. Traditionally, human experts are notified by alarms
whenever system anomalies are detected, leaving the selection and execution of operations to
them [2, 93]. It requires them to analyze the symptoms, compile operations and execute them to
resolve anomalies. This manual work is time-consuming, difficult, and partly repetitive. There-
fore, an automatic selection of operations to resolve anomalies should serve as assistance to
human experts. We propose the ReCoMe (recommendation and remediation) engine to achieve
this by utilizing four steps: ingest control, symptom analysis, anomaly type inference, and op-
eration selection. It is designed to be embedded into an AIOps system for compatibility with
existing frameworks. The structural overview of the ReCoMe engine, together with its embed-
ding into a closed-loop control, is depicted in Figure 4.1.

We assume a monitorable SuO and an anomaly detection method that raises alarms when
system components deviate from the known norm. The ReCoMe engine is invoked whenever
such alarms are received. Four analysis modules are applied to realize the automatic selection
of operations in order to resolve the anomaly. Thereby, a root cause analysis should be called
on-demand if alarms from multiple components are reported simultaneously. Following the
principles of cohesion and decoupling, selecting a remediation operation is separated from
its execution. An external operation executer is expected to provide SuO-specific operation
implementations and manage their execution. In the following, we start with an explanation of
the closed-loop system and its components. After that, we specifically describe the ReCoMe

4.2. AIOps System 35

Monitoring

Operation Execution

Anomaly Detection

Anomaly Type
Inference

Human
Operator

Operation
Selection

Knowledge Base

SuO

Ingest
Control

Symptom
Analysis

Root Cause Analysis

Anomaly Symptom Recognition

ReCoMe Engine

Figure 4.1: RoCoMe Engine for automated SuO remediation embedded in a closed-loop control.

engine and its four modules in detail.

4.2.1 Closed-Loop Control, Sensors and Effectors
Most AIOps systems are designed as a closed-loop control. It consists of two parts: The AIOps
system and the system that is being operated (SuO). The AIOps system should ensure the
correct and efficient execution of the SuO. Therefore, the current state of SuO components is
sensed, compared to normal and desired behavior, and corrected if anomalous deviations are
detected. Sensing and correction entail the requirement of two interfaces - sensor and effector -
between the two systems.

The state of SuO components is not directly observable. Monitoring data from relevant SuO
components are collected and analyzed to infer their state. Therefore it is essential to acquire
such data from the system. The acquisition can be done passively by sample measurements
of metrics like memory allocation, CPU utilization, or disk and network I/O statistics or by
collecting system log data [146]. Alternatively, system information can be acquired actively
via probing. Two examples for this are traces that track requests through multiple components
or system layers [217] and profiles, which provide runtime information of predefined workloads
executed on certain components [101]. The majority of systems allow a passive observation of
metric data, which is the primary data source throughout this work.

Monitoring systems are measuring the metrics of components at regular time intervals. Such
sequences of measurements allow not only to assess the component’s state based on the recent
observation but provide the opportunity to analyze the progress of metric data over time. Such
temporally progressing data are referred to as time series [112]. We define the monitored metric
data as a multivariate time series X =(Xt ∈Rd : t = 1,2, . . .), where d is the number of univariate
time series, i.e., the number of metrics that are monitored. Each element Xt is an observation

36 Chapter 4. Anomaly Symptom Recognition in an AIOps System

of all metrics at a certain point in time t and thus is a vector with d elements. A single metric,
i.e., a univariate time series, without a specific point in time is written as X i. To reference a
specific metric i at time t, X i

t is written. A time series interval between time a and b, with a < b
is written as Xa:b = {Xt : a ≤ t ≤ b}. Combining both, it is possible to reference a single metric
i within an time interval a and b as X i

a:b.
Metric data are a latent representation of the SuO component’s state. The analysis methods

of an AIOps system continuously analyze these data to infer the states of components. The
AIOps system’s overall task is to continuously decide whether operations need to be executed
or not based on the results of the analysis methods. This process can be expressed as a function
F

F : Rd 7→O (4.1)

that maps from the metric data space Rd to the operation space O. The mapping function in
Equation 4.1 can be applied on each time series sample or an aggregation of multiple samples.
The objective of the function F is to decide on an operation. It can be either an operation to
restore an expected, i.e., normal, SuO state, or the noop operation representing to do nothing if
all components are running as expected.

4.2.2 Anomaly Detection
Anomaly detection is usually the first analysis method in an AIOps system. It is considered a
prerequisite that raises alarms whenever anomalies are detected. These alarms are indicating
that the execution of certain operations is required to restore a normal operational state. Within
the AIOps system, it triggers the selection of operations to resolve the anomaly. Generally,
anomaly detection is an umbrella term for a group of methods that aim at the identification of
observations that are deviating from the known norm [103, 116]. Therefore, monitoring data
analysis methods are employed to distinguish normal from anomalous data samples, usually
via a binary output [171, 211, 222]. A component is indicated to be either normal or in an
anomalous state.

In general, anomaly detection methods can be grouped based on the availability of labeled
data. Supervised methods assume labels for both anomalies and normal data and are explicitly
trained to distinguish between those. Semi-supervised methods assume labels for part of the
available data while the remaining samples are unlabeled. Models can be trained either only on
normal samples, i.e., anomalies are excluded from the training process, or available anomaly
samples can be used to enhance the ability of the model to distinguish normal samples and
anomalies. Unsupervised methods do not assume any labels. Thereby, assumptions are utilized
during model training. A common assumption is that the available data mainly contains normal
samples, i.e., anomalies are rare [108, 211]. Anomaly detection models are training to represent
the normal state of components. Everything that deviates from the known norm is assumed to
be anomalous.

Since IBM presented the concept of autonomic computing [119] anomaly detection was
considered the inevitable first analysis step. However, the basic definition of anomalies as de-
viations from the known norm does not contain further implications other than the fact that the
current monitoring data is not normal. This observation does not enable full anomaly recov-
ery automation since it leaves the task of further symptom analysis, operation selection, and
execution to human experts. A subsequent analysis of symptoms is required to enable the auto-
matic operation selection. Thereby, the aspect of propagating anomalies in distributed systems

4.3. ReCoMe Engine 37

needs to be considered. It entails the emergence of multiple alarms in short time frames, which
requires the management of these alarms.

4.2.3 Operation Execution
The implementation of operations to resolve anomalies is component- and tool-specific. Op-
eration execution refers to the realization, i.e., implementation and execution, of operations. It
depends on the SuO component effector interface and might even change over time, e.g., when
software updates occur. Furthermore, it depends on the tools that are utilized to interact with
the effector interfaces. This aspect should be demonstrated using an example. Considering
a simple restart operation, the command implementation to achieve a restart of a component
depends on its effector interface. Virtual machines can be restarted by accessing it via, e.g.,
ssh or through the cloud computing management services API. Containers are usually restarted
via the API of the container orchestrator. Due to vendor-specifics, even more diversities exist
across different physical hardware devices such as network nodes or compute nodes. Further-
more, an API can change between software versions. The API call to restarting a container can
differ after updating the container orchestrator software to a newer version.

Therefore, we apply the principles of cohesion and decoupling to separate the selection of
an operation from its implementation and execution. The ReCoMe engine enables the auto-
matic operation selection via anomaly symptom recognition. After that, the task of executing
implemented operations is delegated to the operation execution module. It performs the actual
execution, observes the execution progress and outcome, and can report whether the operation
execution was successful or failed.

4.3 ReCoMe Engine
Applying anomaly detection on metric data should raise alarms whenever deviations from a
known norm occur. Traditionally, this requires human operators to investigate these alarms,
analyze symptoms, select or compile operations, and execute them. Executing these steps is
a challenging, time-consuming, and often repetitive task. We propose the remediation and
recommendation (ReCoMe) engine that supports system operators by automatically selecting
operations to resolve anomalies and transfer SuO components to a normal state.

An overview of the ReCoMe engine is depicted in Figure 4.2. It provides an interface to the
metric data of SuO components and the respective alarms of the anomaly detection. For each
SuO component, the alarm channel receives alarms raised when the state of the component
changes. Therefore, two alarm message types are defined:

⋄ From normal to anomaly: N 7→ A, and

⋄ from anomaly to normal: A 7→ N.

After an N 7→ A alarm is received, recent metric data from the anomalous SuO component are
requested via the metric data channel. Until an A 7→ N alarm is received, the ReCoMe engine
continuously receives recent metric samples whenever available. Note that the metric channel
is only utilized when N 7→ A alarms are raised and is disabled shortly after a A 7→ N alarm is
received. Normal SuO components generally do not transmit metric data to the ReCoMe engine

38 Chapter 4. Anomaly Symptom Recognition in an AIOps System

System Component
Alarm Channel

Metric Data Channel

ReCoMe Engine

Anomaly Type Inference
Anomaly Similarity

Anomaly 3 0.5

Anomaly 1 0.4

Anomaly 2 0.1

Operation Selection

Rem. Op. Score
Op. 1 1.5

Op. 2 0.6

Op. 3 0.5

Anomaly 3

System Component

...

Alarm Channel

Ingest
Control

Metric Data Channel

Remediation

Operation

Notification Exchange

Human Operator

Symptom 1 Symptom 2 Symptom 3

Symptom Analysis

Current Metrics

Anomaly Symptom Recognition

Knowledge Base

Historic Symptom
Patterns

Operations
Operation
Executions

ReCoMe Engine

Anomaly Type Inference Operation Selection

Remediation

OperationAnomaly Symptom Recognition

M
et

ric
 D

at
a

C
ha

nn
el

Ingest
Control Symptom Analysis

...

Figure 4.2: Overview of all RoCoMe Engine components, the main input and output interfaces as well as interfaces
to the human expert and the knowledge base.

since normal states do not entail automatic operation selection. Thus, the anomaly detection
serves as a filter that prevents the handling of irrelevant (i.e., normal) SuO component states
and activates the ReCoMe engine only when it becomes relevant (i.e., to handle anomalous
SuO component states).

The core functionality of the ReCoMe engine consists of three modules. Thereby, the
anomaly symptom recognition is split into two parts: Symptom analysis and anomaly type
inference.

1. The ingest control module provides interfaces to the metric data of SuO components and
the respective anomaly detection. It receives alarm messages via the alarm channel and
metric samples via the metric channel. The SuO is expected to be a distributed system
with various interconnected and interdependent components. This entails that several
anomalies might coincide due to propagation. Whenever the ingest control module re-
ceives alarms from several components simultaneously, it can request an external RCA
module to identify the root cause. Furthermore, it manages the order of component re-
mediation and recovery. First, the root cause anomaly is resolved. After that, it checks
all components for the receipt of an A 7→ N alarm. If such an alarm is missing, it again
initializes the automatic operation selection. It further enables hierarchical chaining of
ReCoMe engines. Whenever a ReCoMe engine cannot resolve the anomaly, the metric
data and meta-information about the anomalous component can be transferred to another
ReCoMe engine.

4.3. ReCoMe Engine 39

2. The anomaly symptom recognition module consists of two parts. First, recent metric
data of the anomalous SuO component are received. These data are analyzed by symp-
tom analysis. It tries to recognize symptom patterns of known anomaly types. Until
an A 7→ N alarm is observed, it updates the matching results with each newly received
metric data sample. The result is an anomaly type list, sorted by a score. The score repre-
sents the similarity of the currently detected anomaly’s symptoms to all known anomaly
type symptoms. Second, the anomaly type inference module analyzes the scores of the
anomaly type list. Based on the symptom analysis result, it infers the anomaly type. This
includes the consideration that the results reflect a yet unknown anomaly.

3. The operation selection maps the inferred anomaly type to a list of available operations.
It is assumed that a specific anomaly type can be resolved by more than one operation,
leading to the availability of several operation candidates. The operation selection should
enable the selection to rank the operation based on a preference score calculation. In
the case of an unknown anomaly type, its handling is relayed to a human expert or a
hierarchically next ReCoMe engine.

The final output of the ReCoMe engine is an operation that should be executed against the
effector interface of the anomalous SuO component to restore its normal state. Following the
principles of cohesion and decoupling from specific SuOs, the actual operation implementation
and execution task is not realized by the ReCoMe engine. This task is delegated via requests to
an external module that provides implemented operations, ensures the correct operation execu-
tion, and reports the result.

The ReCoMe engine applies two general concepts when trying to remediate anomalous SuO
components. First, the identified anomaly type is known, and a set of operations exist to resolve
it. In this case, the automatic selection of operations can be made. Second, when operations
cannot be automatically selected, the ReCoMe engine delegates the task to a human operator
who should resolve the system anomaly or a hierarchically next ReCoMe engine. Thereby, it
is assumed that eventually, an expert provides operations for the yet unknown anomaly type,
enabling the automatic operation selection in the future. These operations are stored persistently
in a knowledge base and used to automatically improve the ReCoMe engine’s ability to select
operations. In the following, the knowledge base structure and all modules are explained in
detail.

4.3.1 Knowledge Base
Various information is required to realize the anomaly symptom recognition and automatic
selection of operations. This information is stored in the knowledge base, which acts as the
ReCoMe engine experience. Generally, the required information can be categorized into three
parts which are relational tabular structures. Each table contains a column with a unique identi-
fier for each entry. This ID property will not be explicitly mentioned when the respective table
structures are explained. In the following, the structure of each part is described.

The first part represents the storage of historical anomaly symptoms. It enables the ReCoMe
engine to group anomalies based on common symptoms and match occurring anomalies with
these known types. The anomaly symptom recognition is essential for mapping anomaly types
to operations, enabling automatic operation selection. For each anomaly that occurred within
the SuO, three properties are stored.

40 Chapter 4. Anomaly Symptom Recognition in an AIOps System

⋄ Time stamp: Timestamp at which the anomaly occurred. It allows to analyze the MTBF,
identify seasonality patterns and other aspects related to time.

⋄ Symptom representation: Metric data are considered to be a latent representation of a
SuO component state. They contain anomaly type-specific symptoms. A representation
of these symptoms is stored to enable grouping and type recognition. A representation
can be either the metric data series or a transformed representation (e.g., compressed,
filtered).

⋄ Anomaly type: The anomaly type is a label that groups anomalies. When applying
anomaly symptom recognition, this label assigns a type to the detected anomaly by com-
paring it to symptom representations of known types. Note that the knowledge base is
assumed to contain several entries of every existent anomaly type over time.

The second part represents the storage of available operations. It is required to enable
the mapping of anomaly types to a set of available operations done by the operation selection
module. Each table entry consists of two properties.

⋄ Component selector: This selector is a set of SuO component properties that is used to
select the components against which this operation can be executed.

⋄ Anomaly types: A list of anomaly types can be resolved by executing this operation.

The third part represents the storage of meta-information about operation executions. If
multiple operations are available to resolve an anomaly, these metrics are used to calculate
preference scores to rank them. Whenever an operation is executed, five properties are stored.

⋄ Operation ID: Reference to an operation from the operation table.

⋄ Anomaly type: Anomaly type that was tried to be resolved. This type matches entries of
the historic anomaly symptom table. It is also an item within the anomaly types property
of the operation referenced by the operation ID.

⋄ Successfully executed: This property does not imply that the anomaly was success-
fully resolved but instead states if the operation was executed without raising errors (e.g.,
checking the return value). It is received from the operation execution module. The
successful execution of operations can depend on the current state of the SuO (e.g., a
migration of a virtual machine can fail if there are no compute nodes that can host it).
Since the state of SuO’s is usually changing over time, operations can fail. This property
is a binary flag. By analyzing several executions of the same operations, the distribution
of this flag can be interpreted as the robustness of the operation to different SuO states.

⋄ Successfully remediated anomaly: This property is a binary flag that indicates whether
the anomaly was successfully resolved after the execution of this operation. For this to
be true, the operation needs to be successfully executed, and an A 7→ N alarm must be
received.

⋄ Execution duration: The time that it took to execute the operation. This property can be
used to prefer fast operations over such that require more time.

These four parts of the knowledge base are the basis for the ReCoMe modules.

4.3. ReCoMe Engine 41

4.3.2 Ingest Control
The SuO is generally assumed to be a distributed system. The ingest control has four tasks to
meet the requirements of such systems. First, the distributed systems entail the management of
anomaly alarms and the request of metric data from different components. Both requirements
are realized via respective alarm and metric data channels for each SuO component. Second,
metrics of components have different ranges and are respectively influenced by noise. The In-
gest control applies a pre-processing of the metric data before redirecting them to the anomaly
symptom recognition. Third, we consider SuOs such as fog computing environments, where
components are geographically distributed. Thereby locally deployed AIOps systems can oper-
ate autonomously without having to send data to central instances. However, anomalies cannot
always be handled locally. The ingest control allows to hierarchically couple ReCoMe en-
gines. If an anomaly cannot be resolved, it can redirect the metric data to a hierarchically next
ReCoMe engine and thereby delegate the task of resolving the anomaly. Fourth, propagating
anomalies result in the simultaneous occurrence of N 7→ A alarms from multiple components.
The ingest control module selects the components that require the execution of operations to re-
solve the anomaly and initiates the automatic selection of operations. These reported anomalies
can be categorized into three types.

1. A component can be the source of the propagating anomaly. It is the anomalous com-
ponent from which the anomaly propagated to neighboring components and possibly
beyond.

2. Components that became anomalous due to propagation require active remediation, i.e.,
fixing the anomaly source will not resolve the anomaly on such components.

3. Components that became anomalous due to propagation do not require active remedia-
tion, i.e., fixing the source anomaly will resolve the anomaly on such components.

To determine type 1, the ingest control can access an external root cause analysis module to
determine the root cause of a group of anomalous components. Every anomalous component
of type 1 or 3 leads to invoking the subsequent ReCoMe engine modules to select remediation
operations. The distinction between the type 2 and 3 components can be made by resolving the
root cause component first and observing whether an A 7→ N message is received for the other
anomalous components.

4.3.3 Anomaly Symptom Recognition
The detection of anomaly type-specific symptom patterns should allow the inference of
anomaly types at runtime. We refer to this as anomaly symptom recognition, whereby metric
data from anomalous system components are received and analyzed. First, distinctive patterns
in the metric data should be identified and compared to available patterns of historical anomaly
types. This step is referred to as symptom analysis. It expects metric data samples as input and
calculates a score representing the similarity of the currently observed patterns to the symptoms
of known anomaly types. The result is a key-value structure with anomaly types as keys and the
respective score as the value. Second, an anomaly type should be inferred based on the scores.
We refer to this step as anomaly type inference. It analyzes the scores and selects the highest
scored anomaly type or decides that the scores indicate that the currently observed symptoms

42 Chapter 4. Anomaly Symptom Recognition in an AIOps System

represent a yet unknown anomaly type. The anomaly type inference output is an anomaly type
(either one of the historical types or "unknown") and a confidence score reflecting the model’s
confidence in the inferred anomaly type.

Anomaly Symptom Analysis

There are two phases for the symptom analysis. First, a batch of recent metrics is requested,
and symptom analysis is performed. This is done initially when N 7→ A alarms are received.
Second, the anomaly symptom recognition module continuously receives metric data samples.
Thereby, the symptom analysis results are constantly updated until an A 7→ N alarm is received.
After the initial symptom analysis and after each update, the results are sent to the anomaly
type inference.

The analysis of anomaly type symptoms based on metric data is challenging. Anomalies of
the same type appear on components constantly influenced by various factors such as changing
system load, varying parametrization, parallelism, different co-locations, CPU temperature,
and many more. These dynamics are reflected in a high intra-type variation which means that
symptoms can appear differently for anomalies of the same type. The infrequent occurrence
of anomalies aggravates this problem. It translates to the availability of few examples for each
anomaly type, eventually with a high intra-type variation. The availability of few examples
combined with high intra-type variation is considered a significant problem in the area of pattern
analysis [28].

These difficulties entail the possibility of imprecise recognition results. The assignment of
an anomaly to a wrong type results in the selection of operations that probably will not resolve
it. Propose wrong operations to human experts will increase the time they need to bring the sys-
tem back into a normal state. The potential automatic execution of incorrect operations might
not have any effect in the best case or result in an aggravation of the anomaly state. Human
experts need to understand the effects of incorrect operation executions, execute operations to
revert these effects, and fix the anomaly. Therefore, the symptom analysis method should be
conservative in its predictions. Admitting that an anomaly type is unknown and delegating its
handling to a human expert is considered less severe than the wrong anomaly type assignment
leading to an automatic selection of incorrect operations.

The ReCoMe engine is designed to update its knowledge base constantly. Therefore, after
anomalies are matched, the representation of their type-specific symptoms is added to the list of
historical anomalies. To be utilized in future calculations, it needs to be assigned to an anomaly
type group. However, the symptom analysis module cannot verify the correctness of its results.
Thus, it relies on the feedback that contains information about the automatic operation selection
process from the operation selection module. The assignment to an anomaly type group is
done automatically if the group can be unambiguously inferred from the feedback message.
Otherwise, a list of potential anomaly types is presented to a human operator, who has to select
the correct type.

Anomaly Type Inference

Symptom patterns of a detected anomaly can be unambiguously matched to a known anomaly
type in an optimal case. Such precise recognition means that the symptom analysis yielded a
high similarity to a specific type and low similarities to all other types. However, the intra-type

4.3. ReCoMe Engine 43

variation of symptoms can lead to ambiguity. Also, the symptom analysis results are updated
with each recent metric data observation. The selection of operations and the eventual commu-
nication of the analysis results with human experts require a quantitative expression of confi-
dence in the anomaly symptom recognition. This expression has practical importance. High
confidence that is assigned to an anomaly type can result in a precise selection of an operation.
For such cases, an automated execution initiation can be considered. Lower confidence value
results would require human expert confirmation before they are executed.

First, the ReCoMe engine must recognize if an anomaly type is unknown, i.e., examples of
that type were not observed yet. Computer systems are constantly evolving, and new system
anomaly sources are introduced over time [65, 111, 219]. Examples of such system evolu-
tions are hardware modernizations, software updates, and network reconfigurations. Therefore,
anomaly types that were not observed yet must be expected to occur over time. Such anomaly
types are represented by dissimilarity to all known anomaly type symptoms. The anomaly
type inference analyzes the symptom analysis results and calculates their ambiguity. It decides
whether the observed anomaly’s type is yet unknown or if the anomaly type with the highest
symptom pattern similarity score can be selected. A high ambiguity represents an unknown
anomaly type, while a low ambiguity allows the inference of a known anomaly type.

Second, the symptom analysis initially calculates the similarity after receiving an N 7→ A
alarm based on a batch of recent monitoring data. Subsequently, it updates the results after
every new metric sample until the anomaly is resolved. Therefore, the anomaly type inference
module must decide a point where it infers the anomaly type and transmits the result to the
operation selection module. A frequently changing inference of different anomaly types entails
that the operation selection selects different operations. A changing operation selection results
in potential roll-backs of previously executed operations or human experts are confronted with
varying recommendations. It implies insecurity and reduces the trust of human experts in the
system. Therefore, the anomaly type inference module must consider a timely decision on
the one hand but wait until the results are stable to prevent frequent anomaly type inference
changes.

Third, the subsequent operation selection requires the confidence of the anomaly type recog-
nition towards the predicted anomaly type. Therefore, the anomaly inference calculates a quan-
titative value based on the symptom analysis result reflecting its confidence towards the inferred
anomaly type.

An anomaly type inference depends on the properties of the symptom analysis method.
Although there is a logical separation of symptom analysis and anomaly type inference, an
implementation of both modules has interdependencies with limits to a strong separation. Gen-
erally, the anomaly type inference module serves as a mediator between symptom analysis and
operations selection. It can be understood as a set of post-processing steps to improve the
applicability of the overall anomaly symptom recognition for automatic operation selection.

4.3.4 Operation Selection
The operation selection module should automatically select an operation to resolve the currently
observed anomaly. It receives the anomaly symptom recognition result, which is considered as
the basis for the operation selection. The selection of the operation is achieved in four steps.

First, the anomaly type received from the anomaly symptom recognition is used to query
available operations from the operation knowledge base. Thereby, the received anomaly type is

44 Chapter 4. Anomaly Symptom Recognition in an AIOps System

compared to the anomaly type list of each operation entry in the knowledge base. If both have
elements in common, the remediation operation is considered a feasible candidate.

Second, it checks whether each selected operation can be executed against the anomalous
system component. Therefore, the component selector of the operation knowledge base entry
is utilized. The operation selection queries meta-information of the anomalous component and
compares them with the information stored in the component selector field. If they match, the
operation remains a feasible candidate. Otherwise, it is excluded.

Third, an operation should be selected from the set of feasible candidates. Depending on the
received anomaly type list and the number of defined operations to resolve each type, the feasi-
ble set of operations can contain multiple elements. The operation selection module implements
the management of this feasible operations set. Thereby, a preference score is calculated for
each element. These preference scores are calculated by loading all entries from the operation
execution knowledge base for a specific operation. A score function takes these entries together
with the confidence value for the inferred anomaly type as input and calculates the preference
score. Applying this to each feasible operation results in a set of operations descendingly sorted
by the respective preference score.

The operation selection module represents the interface between the ReCoMe engine and
the human operator. Whenever the feasible set of operations is empty, a human expert must
define an operation for the current anomaly. This allows to map the observed symptoms to
the provided operation and eventually enables the automatic selection of operations for future
occurrences of this anomaly type. Furthermore, the operation selection module can initiate
the execution of an operation by transmitting a request to the operation execution module. It
expects to receive the execution outcome, e.g., whether the operation execution was successful
or not, or how long it took to execute it. However, the operation execution module cannot
verify that a successful execution resolved the anomaly. This information is received from
the anomaly detection module via a A 7→ N alarm. After receiving such an alarm, it provides
feedback to the anomaly symptom analysis module.

4.4 Modeling Concepts for Anomaly Symptom Recognition
The anomaly symptom recognition is the central prerequisite to enable the automatic selection
of operations. It analyses the metric data of system components to detect anomaly type-specific
symptom patterns. Thereby the similarity of the observed symptoms to all known anomaly
type-specific symptoms is calculated. After processing the result by an anomaly type infer-
ence, the inferred type is used to select feasible operations to resolve the anomaly. Considering
the previously described challenges, anomaly symptom recognition is a challenging task. An
essential focus of this thesis lies in developing methods to solve these problems. In this section,
we define symptom analysis as a classification problem. After that, we analyze general clas-
sification modeling concepts and derive model requirements to realize the anomaly symptom
recognition.

4.4.1 Classification of System Metric Data

We formulate the task of anomaly symptom recognition as a classification problem. Thereby,
the goal is to assign a sequence of metric data samples X to one of K discrete classes. These

4.4. Modeling Concepts for Anomaly Symptom Recognition 45

classes are associated with anomaly types. We write for the set of known classes Ck = {ci : 1 ≤
i ≤ Kk}, where Kk is the number of known anomaly types.

Matching anomaly types of IT system components differ from the conventional classifica-
tion problem. The set of known anomaly types is never complete. New anomalies can occur in
a system with an association to a yet unknown anomaly type. Based on this, an additional un-
known (cu) class is added to the class set. We define our set of discrete classes as C =Ck ∪{cu}
and K = Kk + 1. The following descriptions provide an intuitive understanding of both class
types:

⋄ Ck - All anomaly types in the set Ck were previously observed, i.e., known. It can be
assumed that at least one operation exists that can be executed to resolve the respective
anomaly class. If a detected anomaly is classified as an element of this set, the operation
selection module can automatically select the operations.

⋄ cu - Computer systems change over time. Software components undergo regular version
updates, and hardware is modernized over time. Therefore, the set of known anomaly
types Ck is considered to be never complete. This incompleteness entails the necessity to
be able to recognize unknown anomaly types. An anomaly symptom recognition model
must admit that a detected anomaly that cannot be associated with any known type is
indeed unknown. This unknown recognition is crucial since operations are assumed to
be not available for unknown anomaly types.

The classification is realized via a function that maps metric data to an anomaly type, gen-
erally defined as fC : X 7→ C. Thereby, the input space is divided into decision regions whose
boundaries are referred to as decision boundaries or decision surfaces [28]. They are positioned
so that intra-class samples are located in the same region while inter-class samples are located
in different regions. Each region is associated with a class (i.e., anomaly type in our case).

The challenges associated with distributed systems like heterogeneity or varying external
factors lead to a complex fC. Defining an analytical model for such functions implies an ex-
haustive knowledge of all possible anomalies and their manifestations. The analytical definition
is considered infeasible for distributed systems such as cloud or fog computing systems [211].
Therefore, we infer fC from available anomaly type examples. The placement of decision
boundaries within the input space is subject to optimization based on a set of examples in com-
bination with an objective [28]. Informally, the objective is to set decision boundaries such
as anomalies of the same type are located within the same decision region while anomalies of
different types are located in different regions. Inferring the function fC is referred to as train-
ing or fitting. The result is a trained function fC or classification model. In the following, we
analyze different decision boundary examples and the properties of monitoring data to derive
the anomaly symptom recognition requirements.

4.4.2 Classification Model Requirements
How decision boundaries are placed in the input space defines how classification model results
are expressed. For more than two classes, a 1-of-K coding scheme is commonly used. Thereby,
the classification result is represented as a vector y of length K, where each element encodes
the association with the respective class:

y = {y j : 1 ≤ j ≤ K} (4.2)

46 Chapter 4. Anomaly Symptom Recognition in an AIOps System

We analyze different decision boundary placement policies and derive the requirements for
anomaly symptom recognition. Figure 4.3 shows six plots with classification model examples
and respectively highlighted decision regions and boundaries. The red, blue, and green dots
represent examples from class 1, class 2, and class 3. They are referred to as training samples
that were used to optimize the decision boundary placement. After training, the black dots are
subject to classification and, therefore, referred to as test samples. In this example, all data
samples are located in a two-dimensional space. The data samples within the left column of
plots are linearly separable, while the data samples in the right column of plots are non-linearly
separable.

Linear Decision Boundaries Non-linear Decision Boundaries

Probabilistic Decision Boundaries Probabilistic Decision Boundaries

Training Sample Class 1

Test SampleTraining Sample Class 2

Training Sample Class 3

Encapsulating Decision Boundaries Encapsulating Decision Boundaries

Figure 4.3: Visualization of classification decision regions and boundaries.

Decision regions within the input space can be either defined by hard (first two rows of

4.4. Modeling Concepts for Anomaly Symptom Recognition 47

plots) or soft (last row of plots) boundaries. The separation in the first row of plots is done by
linear (left) or non-linear (right) discriminant functions. Such functions are dividing the whole
input space into respective decision regions. As a result, each test sample is assigned to exactly
one class, and thus, exactly one vector element takes the value 1 while all others are 0. A sample
that is located in the red, green or blue area results respectively in y = (1,0,0)T , y = (0,1,0)T ,
and y = (0,0,1)T

The above-described aspects also apply to the encapsulating decision boundaries (second
row of plots). However, an encapsulating decision boundary encloses a sub-space of the original
input space as a decision region. The two plots of the second row show examples of spherical
regions 1. This results in the existence of regions within the input space that are not encapsulated
by a decision region. Samples located in these areas are represented by a result vector that
contains only elements with value zero: y = (0,0,0)T .

For encapsulating decision boundaries, the regions can overlap (right plot of the second
row of plots). Whether to allow or disallow overlapping depends on the use case. It might be
required to decide on one or no class, or it can be feasible to provide a set of candidate classes.
Overlapping entails the possibility of assigning a sample to more than one class. Therefore,
more than one element of the vector y can take the value 1. In the left plot of the second row,
a test sample is located in the overlapping red and green regions. This results in y = (1,1,0)T

Note that hard boundaries in general entail that elements of the result vector are binary, i.e. can
take either the value 1 or 0.

∀y ∈ y : y ∈ {0,1}. (4.3)

Whether exactly one (1), at most one (2) element or an arbitrary number of elements (3) is
allowed to take the value 1 can be expressed by summing the elements s = ∑∀y∈y y and define
the allowed range of the result:

s ∈ N, (1) s = 1, (2) 0 ≤ s ≤ 1, (3) 0 ≤ s ≤ K. (4.4)

The probabilistic decision boundaries are shown in the last row of plots. In the example
plots, one single-modal Gaussian distribution2 is assumed for each class. They map a sample
to probability values that represents the association with the respective class. Note that the
contour plots in both plots are showing the area of high probability for each class. There is
a very low non-zero association probability with each of the classes for all the white regions.
Samples that are located between two probabilistic decision regions can have similar member-
ship probabilities to both classes. Therefore, the input space is covered by a superposition of
all class distributions. Each element of the result vector represents the probability that a sample
is associated with each class. It is a real value between 0 and 1:

∀y ∈ y : y ∈ (0,1). (4.5)

This output allows expressing uncertainty towards a classification decision. In the left plot of
the last row of plots, the result for the test sample located in the red area is y = (0.8,0.2,0.01)T .
It can be seen that the model assigns a high association probability to class 1 and lower asso-
ciation probabilities to classes 2 and 3. Another example is a test sample located in the upper
right white area. The result is y = (0.01,0.01,0.001)T . Low association probabilities for each

1Note that other shapes are possible as well.
2Note that other probability distributions can be used as well.

48 Chapter 4. Anomaly Symptom Recognition in an AIOps System

element express an uncertainty towards all classes. In the right plot of the last row of plots,
a test sample is located in an area where classes 1 and 2 have an overlapping of high prob-
abilities. This test sample results in a vector y = (0.8,0.8,0.01)T , expressing that the model
cannot distinguish the sample’s association between classes 1 and 2 but shows a low associ-
ation probability to class 3. A normalization of y can be applied, after which the sum of all
y elements is 1 [28]. However, it becomes difficult to interpret the uncertainty in the results.
Depending on the use case, an additional post-processing procedure might be required to assign
classes based on the membership probabilities of samples. By defining thresholds for each class
probability distribution, the soft probabilistic decision boundaries can be transformed into hard
encapsulating decision boundaries.

The necessity of detecting previously unknown anomaly types (cu) is required. A model
must express that a sample is not matching any of so far known classes. Furthermore, similarity
to classes and an expression of confidence in the classification result are needed. This can be
realized with encapsulating and probabilistic decision boundaries. Therefore, we focus on these
decision boundary types when implementing an anomaly symptom recognition model.

Chapter 5

Density Grid Pattern Model

This chapter describes a method for anomaly symptom recognition, which was published in [3].
It is utilized on system components with a regular and homogeneous workload, such as virtual
machines or containers that contain a particular service. The general workflow of the method
is depicted in Figure 5.1. The ingest control does the preprocessing of the metric series. After
that, the symptom analysis based on grid pattern comparison is applied to the data. Thereby,
the metric data that contain anomaly type-specific symptom patterns are transformed into a grid
representation, i.e., a grid pattern. Patterns for which the anomaly type is known are labeled
and stored in the knowledge base. We define a function to calculate the similarity between grid
patterns. The symptom analysis is realized by comparing grid representations of anomaly type
symptoms with existing labeled grid pattern examples and calculating respective similarities.
A list of anomaly types together with respectively computed similarity scores is forwarded
to the anomaly type inference. It decides on a class that is either a known anomaly or the
"unknown" class. Latter indicates that the observed symptom patterns are dissimilar to all
known anomaly type symptoms and potentially represent an anomaly type that is yet unknown.
The anomaly type inference requires parameters to make this decision, which is set based on
the so-far available grid patterns in the knowledge base.

Symptom Analysis

Parameter Setting

Anomaly Type
InferencePreprocessingMetric

Series
Predicted Class

Knowledge Base

Figure 5.1: General workflow of the grid pattern comparison method.

49

50 Chapter 5. Density Grid Pattern Model

5.1 Anomaly Symptom Analysis
The symptom analysis is realized via two steps. First, the received metric series is transformed
into a density grid representation. The result is a grid pattern that represents the anomaly
type-specific symptoms. We emphasize the low computational overhead of the transformation,
which discretizes the input space and aggregates the temporal dimension while preserving gen-
eral temporal information. Second, a similarity measure for density grids is defined to compare
them. Having a set of grid patterns labeled by the respective anomaly type allows inferring
the anomaly type of an unlabeled pattern via a comparison of the observed pattern with the
available examples.

5.1.1 Preprocessing
Before the anomaly symptom recognition is executed, a range normalization by rescaling each
element of Xt to the range (0,1) is applied

X̂ i
t =

Xi
t −Xi

min

Xi
max −Xi

min
. (5.1)

For resource metric data of IT system components, the limits of most resource types are well-
known (e.g., number of CPU cores and their frequency or maximum available memory). This
is the case for the considered metrics. For some data types like latencies between network
endpoints, context switches, or packet errors, it is challenging to decide on upper or lower
boundaries. Those can be determined based on available metric series data.

5.1.2 Density Grid Transformation
First, the density grid transformation of the received metric data is executed to achieve a com-
pact grid representation. The process is depicted in Figure 5.2.

Xt

Grid
 Ma
ppin
g

Density Value
Update

Metric Data

Density Grid

Density Grid

Grid Space

Grid CellΔi

Figure 5.2: Density grid transformation.

We describe the grid transformation as temporal aggregation and spatial discretization.
Each received and normalized metric data sample Xt ∈ Rd is defined within a real space
Rd = R1 ×R2 ×·· ·×Rd . The spatial discretization is achieved by splitting the value range
of each dimension into a defined number h of intervals. Thereby, a known lower and upper

5.1. Anomaly Symptom Analysis 51

bound is assumed for each element of Xt , which is given since a rescaling is applied during pre-
processing. Based on this, it is possible to calculated the interval ∆ lengths of each dimension i
via

∆i =
X i

max −X i
min

h
, where 1 ≤ i ≤ d. (5.2)

This is applied on all d dimensions resulting in respective density grids Gi. A suchlike dis-
cretized bounded real space is a set of d density grids and referred to as grid space G:

Gd = G1 ×G2 ×·· ·×Gd. (5.3)

An element of a grid space is a grid cell g. It is a key-value structure, where the key is a tuple
of integer values q that defines the location of the cell in the grid space and the value is an
aggregated representation of all Xt that are mapped to it:

g =< q : δ >, where q ∈ Nd and δ ∈ R. (5.4)

We refer to the δ as density value. The cardinality of the grid space can be calculates via |G|=
∏1...d h. Such relationship with the dimensionality d of the metric data Xt is often referred to as
the curse of dimensionality [28]. It states that the volume of space increases exponentially with
the dimensionality of the input data, leading to increasing sparsity. Therefore, it is important to
limit the input space to prevent an unmanageably high grid space volume.

As shown in Figure 5.2, the density grid transformation consists of two steps: Grid mapping
and density value update. The mapping assigns a metric data sample Xt to a grid cell g. Thereby,
the location of the target grid cell is calculated based on the values of each element of Xt . Since
the density space G is the result of dividing each dimension of the original space into h intervals,
the calculation is defined as:

qi =

⌊
X i

t
∆i

⌋
. (5.5)

The calculation and update of the density value are explained based on a minimal exam-
ple depicted in Figure 5.3. It shows two time series (A and B) consisting of 50 data points
raging between 0 and 1. In each time series, 25 data points have a value of 0, and the other
25 data points have a value of 0.99. However, their temporal pattern differs. Note that the
anomaly symptom recognition should distinguish anomaly types based on patterns observed in
the metric data. In this example, the task would be to calculate grid cell values that allow the
distinction of both time series. First, both h are set to 2, which results in a boundary at 0.5
(dotted lines) that separated the value range into two intervals (spatial discretization). Next, the
temporal aggregation combines the points that are located in each interval to one representative
value. Generally, this concept is known from histograms. However, histograms analyze the
frequency of data points in each interval while the temporal information is lost. The relative
frequency of points within each interval is calculated in the depicted example, resulting in iden-
tical histograms for both time series. We provide a temporal aggregation that encodes temporal
information when aggregating the values of each interval. The bar chart visualization of the
density grids shows that it is possible to distinguish both grids after aggregation.

To encode temporal information, we apply the concept of temporal decay. Thereby, a score
is calculated for data samples that are mapped to a grid cell. Over time, these scores constantly
decrease and asymptotically approach 0. The score is referred to as density, and the constant

52 Chapter 5. Density Grid Pattern Model

0

0.5

1

Time Series A

0.5

0.5

Histogram A

0.67

9.28

Density Grid A

0

0.5

1

Time Series B

0.5

0.5

Histogram B

7.4

2.55

Density Grid B

Figure 5.3: Exemplary spatial discretization of two time series together with two temporal aggregation methods.
Note that the scale of the bar charts is the same within each column but differs between columns.

decrease is density decay. Based on related literature [53, 88, 134], an exponential decay is
used:

D(tm, t) = λ
t−tm , with t ≥ tm and 0 < λ < 1. (5.6)

The time tm is the time at which a metric data sample was mapped to the grid cell. Thus,
function D calculates the density value for a single metric data sample, which decreases when
time t is progressing, i.e., tm ≤ t. Measuring the density in the moment at which the mapping
is done (i.e. tm = t) results in a value of 1. The rate at which the density value decrease is
referred to as decay and can be controlled via the parameter λ . Examples of the decay function
for different λ values is shown in Figure 5.4. It shows the exponential decrease of the density
value over time. Thereby, values for λ that are closer to zero lead to faster decay while a lambda
closer to 1 cause a slow decay.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

t

D
en

si
ty

λ = 0.2
λ = 0.5
λ = 0.7
λ = 0.9

λ = 0.95

Figure 5.4: Visualization of density decay over time under varying λ .

Equation 5.6 defines the decay for one metric data sample. The overall density value δ of a
grid cell at time t is the sum of all density values that were mapped to that cell so far:

δt = ∑
tm∈Tm

D(tm, t). (5.7)

5.1. Anomaly Symptom Analysis 53

Tm represents a set of all times at which a metric data sample was mapped to this grid cell.
Storing the time of every metric sample contradict the objective of temporal aggregation to
achieve a compact representation. Based on Equation 5.6 and Equation 5.7, we show that the
calculation of δ can be done incrementally, and thus, only the time of the last density value
update is required.

Consider the current time t, the time of the previously received metric data sample tm, and
an arbitrary time between tn. By applying the exponent product rule on Equation 5.6, it can be
written as:

D(tm, t) = λ
t−tm = λ

t−tn ·λ tn−tm = λ
t−tn ·D(tm, tn). (5.8)

It means that the current density value for a single data sample can be calculated by scaling a
past density value at time tn by the factor λ t−tn . On that basis, the overall density value of a
grid cell can be calculated by

δt = ∑
tm∈Tm

D(tm, t) = ∑
tm∈Tm

λ
t−tn ·D(tm, tn) = λ

t−tn ∑
tm∈Tm

D(tm, tn) = λ
t−tn ·δtn (5.9)

It can be seen that the density at a time t can be incrementally calculated by scaling the previ-
ously calculated density at time tn by the factor λ t−tn . It is not required to store Tm but only the
previous density value update time tn. This time is set accordingly whenever a density value
update is calculated.

Equation 5.9 calculates the density value update if no metric sample is mapped to the grid
cell at time t. Whenever the update is calculated due to a metric sample being mapped to a grid
cell, the case of t = tm needs to be considered. As previously shown, the density value equals 1
in this case. Therefore, Equation 5.9 must be updated as

δt = 1+λ
t−tn ·δtn (5.10)

By considering both cases, i.e., metric sample was mapped or not, we define the density value
update for a grid cell as a recursive function, where t0 is the start time of the density grid
mapping:

δt =

{
λ t−tn ·δtn , if no mapping
1+λ t−tn ·δtn , if mapping

with tn < t, and with the initial conditions δt0 = 0, t0 < t.

(5.11)

Referring to the example density grids in Figure 5.3, the density values were calculated with
λ = 0.9

The density grid transformation is applied to achieve a compact representation of metric
data. One criterion to apply for anomaly symptom recognition is a low runtime complexity.
During the mapping procedure, the target interval for each dimension must be calculated to
acquire the location of the target grid cell. This requires Equation 5.5 to be applied d times.
After that, the density value of the grid is updated via invoking Equation 5.11 once. Neither
Equation 5.5 nor Equation 5.11 has an internal higher order complexity. The overall time
complexity can be expressed by using the big O notation O(d).

For the objective of anomaly symptom recognition, the metric data received when system
components are anomalous are mapped to the grid space. Therefore, every anomaly example
is represented by a set of grid cells and associated with an anomaly type (i.e., class in terms of

54 Chapter 5. Density Grid Pattern Model

classification). Out of the whole grid space, only grid cells with a non-zero density are stored.
Such a set of grid cells is referred to as a grid pattern φ . Grid patterns are representations of
anomaly symptoms and, therefore, examples of an anomaly type. When assuming an available
knowledge base of such patterns, the anomaly symptom recognition compares the anomaly
symptom pattern to the known type patterns in the knowledge base to infer the type affiliation.

5.1.3 Grid Pattern Similarity
A notion of similarity is required to compare grid patterns. Given two example grid patterns
φi and φ j, we define a function Sφ (φi,φ j) ∈ [0,1] to calculate their similarity, where 1 repre-
sents perfect similarity and 0 perfect dissimilarity. The intuition behind the proposed similarity
concept is depicted in Figure 5.5. It shows two comparisons of grid patterns that are generated
based on metric data with d = 2. The grid space is generated with h = 4. All density values
are color-encoded with the respective scale shown on the right side of the picture. The left
part visualizes the comparison of grid pattern φi, and φ j while on the right part, φi, and φk are
compared. Due to the alignment of grid cells with similar density values, the comparison of φi
and φk should intuitively yield a higher similarity than φi and φ j.

Based on this, the overlap of two grid patterns put on top of each other is calculated to
determine their similarity. It means that a pairwise grid cell comparison is applied. Two grid
cells gk ∈ φi and gℓ ∈ φ j must fulfill the following criteria to be considered a pair:

1. Given qk ∈ gk and qℓ ∈ gℓ, qk = qℓ: Pairs are determined based on their location. Cells
with the same location tuple values are considered a pair.

2. Given δk ∈ gk and δℓ ∈ gℓ, δk > 0∨ δℓ > 0: At least on of the density values must be
greater than zero.

The result is a set ψ containing all grid cell pairs as couples that fulfill both criteria.

φi

φj

φi

φk 0

10

Figure 5.5: Grid pattern similarity.

The similarity of a grid cell pair is defined as the ratio of the lower density to the higher
density:

Sg(gk,gℓ) =
min(δk,δℓ)

max(δk,δℓ)
, where δk ∈ gk,δℓ ∈ gℓ and (gk,gℓ) ∈ ψ. (5.12)

Note that the denominator is never zero due to the second criterion of the grid cell pairs. The
function Sg is therefore defined in the rang [0,1]. It is 1 (i.e. perfect similarity) when both
values are equal and approaches 0 when the difference between both values increases.

5.1. Anomaly Symptom Analysis 55

Applying this on all grid cell pairs (gk,gℓ) ∈ ψ , the similarity function Sφ of two grid
patterns is defined as the mean of all grid pair similarities

Sφ =
1
|ψ| ∑

∀(gk,gℓ)∈ψ

Sg(gk,gℓ). (5.13)

There are two problems with a strict overlay of grid patterns. System metric data are gen-
erally noisy. Furthermore, the shape of the metric data series depends on different external
and internal criteria. Considering a CPU-intensive task, the utilization of a component’s CPU
cores depends on the current load on the system (e.g., number of requests that need to be served
in parallel), resulting in a higher or lower overall baseline. The effect of noise and a shifted
baseline on the grid pattern calculation is depicted in Figure 5.6. Time series C jumps from
value 0 to a baseline value of 0.59 while time series D jumps to a baseline value of 0.61. It can
be seen that a slight variation of the baseline results in a mapping of data samples to another
grid. Although both time series could be considered as similar, the pattern similarity defined in
Equation 5.13 would yield a value of 0.3. The impact of noise can be observed in time series E,
which jumps to a baseline of 0.60 and is affected by an additive Gaussian noise with µ = 0 and
σ = 0.1. This noise results in a mapping of data samples across all grid cells. The similarity
between grid patterns C and E, and D and E is 0.34 and 0.25.

0

0.5

1

Time Series C

0.37

0

9.58

0

0

Density Grid C

0

0.5

1

Time Series D

0.37

0

0

9.58

0

Density Grid D

0

0.5

1

Time Series E

0.37

0.44

6.53

2.42

0.19

Density Grid E

Figure 5.6: Examples of problematic cases when applying strict overlay of grid patterns.

Instead of calculating a strict overlay of two grid patterns, we relax the grid cell pair bound-
aries and consider a neighborhood around each cell pair. This neighborhood is considered
symmetrically in both grid patterns. Thereby, the density value sum of the neighborhood cells

56 Chapter 5. Density Grid Pattern Model

is used when calculating the ratio:

Sg(gk,gℓ) =
min(∑δki∈gki∈N (gk) gki ,∑δℓi∈gℓi∈N (gℓ) gℓi)

max(∑δki∈gki∈N (gk) gki ,∑δℓi∈gℓi∈N (gℓ) gℓi)
, where (gk,gl) ∈ ψ. (5.14)

The neighborhood of a grid cell N (g) is a set of cells that are located within a certain distance
γ around g

N (g) = {gi : L1(qi,q)≤ γ,qi ∈ gi,q ∈ g}. (5.15)

Due to the rectangular shape of cells and the resulting grid space structure, the L1 norm is
used as the distance metric. It can be non-formally described as the minimum amount of grid
cell steps that lie between a start and destination cell. Cells that are direct neighbors have the
distance of 1, i.e., one step needs to be done to get from one cell to the other. Formally, the L1
norm is defined as

L1(gk,gℓ) = ||qk −qℓ||1 =
d

∑
i=1

|qki −qℓi |, where qk ∈ gk and qℓ ∈ gℓ. (5.16)

Since the elements of q are integers, the neighborhood threshold gamma is an integer as well
γ ∈ N.

The similarity calculation defined in Equation 5.14 mitigates the problems depicted in Fig-
ure 5.6. Setting the maximum distance for neighborhood selection to γ = 1, the similarity be-
tween density grid C and D becomes 1, which means that we achieved a controllable tolerance
against baseline shifts. The similarity between grid patterns C and E, and D and E becomes
0.63 and 0.54, allowing configurable robustness against noise.

Two parameters are impacting the runtime complexity of the pattern similarity calculation.
The highest impact is the number of Equation 5.14 invocations, which is equal to the cardinality
of the cell pair set |ψ|. In the worst case, this cardinality is the total number of grid cells in
the grid space |Gd|= hd . The neighborhood calculation introduces another parameter which is
the sum calculation in Equation 5.14 that depends on the cardinality of the neighborhood set
|N (g)|. Both parameter are multiplicatively combined |N (g)| · hd , resulting in a worst case
big O notation of O(hd).

5.2 Anomaly Type Inference
IT systems are expected to change over time. Also, certain anomaly types are rarely observable.
The knowledge base of known anomaly types must be considered incomplete at all times. This
assumption entails the necessity to detect unknown anomaly types. The symptom analysis is
implemented as a density grid mapping method that transforms monitoring metrics of system
components into grid patterns and calculates the similarity to a knowledge base of labeled pat-
terns. A decision boundary definition is required to detect unknown anomaly types. Therefore,
the anomaly type inference receives the similarity list and compares each similarity value to a
boundary parameter β . If the similarity is below this parameter, the anomaly type is filtered
from the list. Whenever the list happens to be empty, the anomaly is considered unknown.

The setting of the parameter β is done individually for each anomaly type based on the
intra-type similarities of all available grid patterns. For each know anomaly type c, we set a

5.3. Evaluation Environment 57

hard decision boundary by calculating the minimum intra-type pattern similarity:

βc = min(Sφ (φ
(c)
i ,φ

(c)
j)), where 1 ≤ i, j ≤ nc, nc ≥ 2 and i ̸= j. (5.17)

Thereby, nc is the number of examples for an anomaly type c. When performing the similarity
calculation for a detected anomaly represented by a grid pattern, the anomaly type is set to
unknown if the similarity to all known anomaly types lies below the respective βc value. Other-
wise, the anomaly type that yields the highest similarity is set as the predicted class. Thereby,
its similarity value is set as the confidence ζ .

5.3 Evaluation Environment
This section describes the evaluation environment that is used to conduct experiments. We eval-
uate our method based on data collected during experiments. Thereby, a commodity cluster is
used to deploy a cloud computing system, where services are deployed on virtual machines. An
anomaly injection system is developed to disturb the normal operation of different components
and observe the resulting behavior. The evaluation environment can be used in two operation
modes. First, a defined experiment can be conducted while recording monitoring data. It al-
lows us to evaluate our methods on the collected data retrospectively. Second, it enables the
deployment of the evaluation environment alongside an AIOps system to perform live testing.
This evaluation environment was used to conduct experiments for several publications[3, 23,
106–108, 209–212, 232, 238]. It consists of the cloud computing system and therein deployed
services. The combination of both is considered to be the SuO. In the following subsections,
we provide a detailed description of the experiment environment.

5.3.1 Cloud Computing System and Monitoring
The basis of all experiments is a commodity cluster of 200 nodes. Hardware specifications
of the different resource types are listed in Table 5.1. Each node has two network ports that
are used to set up an external and internal network. For the internal network, a two-level tree
structure is used. The leaf level consists of six Netgear FS750-T2EU switches, each having
48 100MBit ports. All 200 nodes are connected to these switches. The root level is a Netgear
GS716T-200 switch, which has 16 1GBit ports. All six leaf switches are connected to it. In-
ternet connectivity is provided via the external network. All 200 nodes are connected to an HP
5412-92G-POE+-4G v2 switch with 203 1GBit ports.

Table 5.1: Hardware specifications of commodity cluster nodes.

Resource Type Specification Quantity
Processor Intel Xeon Quadcore E3-1230 V2 3.30GHz 8 Cores 1

Main Memory Samsung M393B5173FH0 4GB 1333MHz 4
Storage Seagate ST31000524NS 1TB 3Gb/s 3
Network Intel 82574L 1GBit Ethernet Controller 2

A subset of commodity cluster nodes is selected to experiment. These nodes are prepared by
executing custom Ansible1 playbooks that are configuring the network interfaces and installing

1https://www.ansible.com/ (last access 31 May 2021)

https://www.ansible.com/

58 Chapter 5. Density Grid Pattern Model

packages. Ansible is an orchestration tool that enabled a declarative description of the desired
node state. It configures the nodes into the defined state by connecting to them via SSH and
executing a set of commands.

On the prepared nodes, we deploy OpenStack2 as a cloud computing system. After
Rackspace Hosting and NASA jointly launched it in July 2010, it evolved into a widely used
open-source cloud computing project [214]. It consists of a growing number of sub-projects,
where each provides specific functionality to the system. The core functionality of OpenStack
is to provision, manage and provide access to (mostly virtual) resources for users. OpenStack is
organized as a distributed system. External systems or users access functionalities via defined
APIs, while RPC over a message queue is used to realized communication between internal
OpenStack components. Some sub-projects develop non-core functionalities such as monitor-
ing solutions, orchestration tools, or deployment methods.

The Kolla3 project is used to set up OpenStack on the commodity cluster. It manages
all components that provide a core functionality as Docker4 containers, which should allow a
convenient deployment and removal of OpenStack. Thereby, Ansible is used to prepare cluster
nodes, configure and place OpenStack component containers, or undo these operations when
removing OpenStack. Furthermore, we utilize the orchestration project Heat5 to provision
all necessary cloud resources for experiments. It implements a domain-specific language to
write template files that define resources such as virtual machines and networks or storage and
describe their topology. We refer to the result of such a procedure as the virtual environment.
After that, custom Ansible playbooks are used to deploy different services on the provisioned
virtual machines.

In real systems, direct access to components can be limited. Considering an IaaS model,
cloud providers are not allowed to access the internals of customer VMs. The network provider
can monitor generic metrics but usually are not aware of the communicating applications. Dur-
ing our experiments, generic (i.e., not application-specific) metrics such as CPU utilization,
memory allocation, or different network traffic statistics are collected. Therefore, custom mon-
itoring agents are deployed to collect metric data from commodity cluster nodes and virtual
machines. Cluster node metrics are retrieved from the /proc file system6. Virtual machine met-
rics are acquired by accessing the libvirt7 API. The data collection frequency can be set to 2Hz
with a CPU utilization overhead of < 3%[109]. Monitoring data samples can be stored in text
files or exposed via TCP or HTTP endpoints at runtime.

5.3.2 Virtual IP Multimedia Subsystem

Inspired by the success story of cloud computing, network operators are developing solutions
to run network technology on commodity hardware by utilizing virtualization. This direction
is referred to as network function virtualization (NFV), whereby network software logic that
was traditionally integrated into specialized equipment is decoupled and provided as virtual
network functions (VNFs) [56, 113]. Besides the benefits like horizontal scaling, faster time to

2https://www.openstack.org/ (last access 31 May 2021)
3https://wiki.openstack.org/wiki/Kolla (last access 31 May 2021)
4https://www.docker.com/ (last access 31 May 2021)
5https://wiki.openstack.org/wiki/Heat (last access 30 May 2021)
6https://man7.org/linux/man-pages/man5/proc.5.html (last access 31 May 2021)
7https://libvirt.org/ (last access 31 May 2021)

https://www.openstack.org/
https://wiki.openstack.org/wiki/Kolla
https://www.docker.com/
https://wiki.openstack.org/wiki/Heat
https://man7.org/linux/man-pages/man5/proc.5.html
https://libvirt.org/

5.3. Evaluation Environment 59

market, customized solutions, and several more, the availability requirement for VNFs is hard
to achieve [113]. Due to this, we consider NFV as a relevant use case to test our methods.

The IP multimedia subsystem (IMS) is a collection of different network functions that de-
liver multimedia services such as IP telephony, conference calls, or rich communication ser-
vices to users [44]. It is responsible for user data management, mobility management, session
life cycles, and billing. Project Clearwater8 is a virtual implementation of an IMS that was
maintained as an open-source project until December 2019. After that, it became a closed
source project maintained by metaswitch and commercially offered to their customers9. It is
developed as a microservice architecture consisting of seven services designed to be deployed
on cloud systems. A short description of each service is given in Table 5.2.

Table 5.2: Project Clearwater services.

Service Description
bono Edge proxy for clients.
sprout Session control, authentication & authorization.
homer XDMS: User setting storage.

dime - homestead HSS proxy/interface.
chronos Timing management & billing.

cassandra (Homer, Dime) Database for HSS and XDMS.
vellum - astaire In-memory DB. State storage.

The session initiation protocol (SIP) is used to communicate between user devices and the
IMS system. We utilize the tool SIPp10 to generate load against the Clearwater services. It can
perform requests such as registration, initialization of calls with other users, calls answering,
and several others. We start multiple differently configured SIPp processes to simulate a variety
of user behaviors. During experiments, the load generation is executed on dedicated commodity
cluster nodes to minimize the interference between load generation and the Clearwater system.

5.3.3 Video on Demand Service
The majority of the Internet traffic is generated by videos with a share of up to 60% [82, 205].
Thereby, video call applications and on-demand video streaming are the main drivers. Due to
the popularity of video on demand services and their relevance for the industry, we choose it
as our second use case [102, 194]. It consists of two service types: video streaming server
and load balancer. The content transmission is done via the Real-Time Messaging Protocol
(RTMP) [182]. A client connects to one of the load balancers, which delegates the request
to one of the available video streaming servers. After that, it receives the video stream and
forwards it to the client. Load balancing is realized via ha-proxy 11 while video streaming is
done via nginx12 web servers with an RTMP plugin 13. A library of 15 videos with different
lengths and respectively different resolutions is provided and used as streaming content.

8https://www.projectclearwater.org/ (last access 31 May 2021)
9https://www.metaswitch.com/products/clearwater-core-ims (last access 31 May 2021)

10https://sourceforge.net/projects/sipp/ (last access 31 May 2021)
11http://www.haproxy.org (last access 30 May 2021)
12https://www.nginx.com (last access 30 May 2021)
13https://github.com/arut/nginx-rtmp-module (last access 30 May 2021)

https://www.projectclearwater.org/
https://www.metaswitch.com/products/clearwater-core-ims
https://sourceforge.net/projects/sipp/
http://www.haproxy.org
https://www.nginx.com
https://github.com/arut/nginx-rtmp-module

60 Chapter 5. Density Grid Pattern Model

To generate load, we implement a client simulation that requests videos from defined end-
points. It is possible to adjust the selection policy of videos (random or round-robin) and set
a configurable resolution preference. Client processes offer HTTP APIs, which can be used to
adjust configurations at runtime or request runtime metrics like the number of requested videos,
video resolutions, or the number of processed frames and pixels. This data is used to observe
how well the video on demand service is operating. Again, we separate the video on demand
services from the client processes by deploying them on dedicated cluster nodes to minimize
interference.

5.3.4 Anomaly Injection
Anomalies occur irregularly in functional systems. However, control and reproducibility are
required to evaluate and compare fault tolerance methods. A widely applied solution is the
synthetic injection of anomalies into systems that run real load [59, 62, 64, 74, 104, 154, 174,
208, 228, 236, 240] It enables the execution of reproducible experiments. Thereby, either the
system configurations are adjusted, or processes start to simulate anomalous behavior while
the system runs real load. Furthermore, it typically allows to revert the injection and bring the
system back into a normal state.

Anomaly Injection
Controller

SuO Component

Regular Workload
Process

Anomaly Process

System
Configuration

Injection AgentAPI

Figure 5.7: Agent-based anomaly injection.

We implement an agent-based anomaly injection system 14. Its architecture is depicted in
Figure 5.7. Injector agents are deployed on all relevant SuO components, i.e., on virtual ma-
chines or the commodity cluster nodes, while an anomaly injection controller runs on another
dedicated cluster node. The agents expose an HTTP API that can be used to start or stop
anomalies. Internally, they use two tools to realize anomalies. The stress-ng tool15 is used
to start processes that affect resources like CPU, memory, or disk I/O. The tcconfig library16

configures the traffic shaping on network interfaces which is used to increase latencies, limit
bandwidth or enable packet drop. Components can become unreachable from outside when
certain anomalies are injected (e.g., high packet drop percentage). Therefore, the agents enable
a configurable fall-back timer. On expiry, the respectively injected anomalies are reverted by
the injection agents. A controller allows defining anomalies and injection schedules in order
to run experiments. Anomaly intensities, duration, and temporal progress can be configured.
The configuration enables the randomization of configuration parameters either via normal or

14Available at https://github.com/dos-group/distributed-anomaly-injection (last ac-
cess 30 May 2021)

15https://kernel.ubuntu.com/~cking/stress-ng/ (last access 30 May 2021)
16https://github.com/thombashi/tcconfig (last access 30 May 2021)

https://github.com/dos-group/distributed-anomaly-injection
https://kernel.ubuntu.com/~cking/stress-ng/
https://github.com/thombashi/tcconfig

5.4. Evaluation 61

equal distribution. It is possible to draw intensities, durations, and other parameters from these
distributions instead of setting them to a fixed value.

Table 5.3: Overview of anomalies.
Computation Resource Anomalies

CPU Perform operations on the CPU to achieve a configure utilization.
Memory Allocate and eventually release a defined amount of memory.

Disk Perform read and write operations on the disk.
Network Send network traffic to or receive it from a defined destination.

Network Shaping Anomalies
Latency Delay ingress or egress packets.

Bandwidth Limit the throughput.
Packet Loss Drop packets with a configurable probability.

Packet Duplication Duplicate a configurable percentage of egress packets.

An overview of the anomaly portfolio is listed in Table 5.3 Based on experiments that
were conducted in related publications [62, 74, 154, 174, 228, 236, 240], we define three
general types of anomalies that affect component resources: hogging, leakage, and fluctuation.
Therefore, example injections could simulate a memory leak, CPU hog, network congestion,
or fluctuating disk utilization. Table 5.3 also shows the network shaping anomalies. Thereby,
anomalies like a slow or unreliable network can be simulated.

Since the start and end times of the injected anomalies are known, it is possible to label the
data set after the experiment is finished. Samples within an injection period are labeled by the
anomaly type that was injected. Samples outside of the injection periods are labeled as normal.
These labels are the ground truth for the evaluations.

5.4 Evaluation

In this section, we evaluate our method. First, the evaluation scores used to test our method
are described. After that, we describe two experiments conducted to collect metric data. These
data are used to evaluate the anomaly symptom recognition method. Next, we evaluate the
ability of our model to recognize anomaly type-specific symptoms and infer the anomaly type.
Finally, we test whether the model can detect previously unseen anomaly types as "unknown".
Our work is compared to two baseline methods.

5.4.1 Evaluation Scores

The anomaly symptom recognition is defined as a classification problem. Multiple anomaly
types entail multiple classes, which results in a multi-class classification. We utilize a multi-
class confusion matrix to define the evaluation scores for anomaly symptom recognition.

The multi-class confusion matrix is shown in Table 5.4. The rows represent class predic-
tions, while columns are the actual classes. Given an example prediction ci and the ground truth
c j, it is possible to assign it into the respective cell ci, j. Based on this, we want to measure the

62 Chapter 5. Density Grid Pattern Model

Table 5.4: Multi-class confusion matrix.

Actual

Class1 Class2 ... ClassK

Pr
ed

ic
te

d

Class1 c1,1 c1,2 ... c1,K

Class2 c2,1 c2,2 ... c2,K

...

ClassK cK,1 cK,2 ... cK,K

fraction of correctly classified examples, which is referred to as accuracy:

Acc =
1

∑
K
i=1 ∑

K
j=1 ci, j

K

∑
k=1

ck,k. (5.18)

It calculates the ratio of the matrix diagonal sum, i.e., all elements that are correctly predicted,
to the sum of all matrix cells, i.e., all predicted examples.

Furthermore, we use precision, recall and F1 score to evaluate our methods. The recall is
defined respectively for each Classi as the ration of correct predictions to all predictions of this
certain class:

rec(ci,i) =
ci,i

∑
K
j=1 c j,i

. (5.19)

It can be intuitively described as the ability to not classify Classi as another class. The precision
is defined respectively for each Classi as the ration of correct predictions of that class to the
number of other class’ mispredictions as Classi:

pre(ci,i) =
ci,i

∑
K
j=1 ci, j

. (5.20)

It can be intuitively described as the ability to not misclassify other classes as Classi. The F1
score is the harmonic mean between precision and recall:

f 1(ci,i) =
2 · pre(ci,i) · rec(ci,i)

pre(ci,i)+ rec(ci,i)
. (5.21)

Furthermore, we define the overall recall, precision, and F1 score by calculating the weighted
average for all classes:

Sc =
K

∑
i=1

wi · sc(ci,i), (5.22)

where Sc can be substituted with {Pre,Rec,F1} and sc with {pre,rec, f 1} with the constraint
that both substitution must select the same set index. The weight is the relative frequency of

the respective class and can be calculated via wi =
∑

K
ℓ=1 ci,ℓ

∑
K
j=1 ∑

K
k=1 c j,k

.

5.4. Evaluation 63

5.4.2 Experiment
We use the experiment environment described in Section 5.3 to conduct two experiments, which
are conducted on 25 commodity cluster nodes. For both experiments OpenStack Stein17 is
deployed on 21 nodes. Three nodes are load balanced with haproxy 18 and host the OpenStack
network and controller services. Six nodes are used as storage, and another eleven as compute
nodes. Out of the remaining five nodes four are reserved for load generation and one hosts the
anomaly injection controller.

We deploy the virtual IMS Clearwater in virtual machines hosted on the eleven compute
nodes in the first experiment. The number of components for each Clearwater service is listed in
Table 5.5. The VMs are provided with one virtual CPU, 2GB RAM, and 40GB disk space. They
operate with Ubuntu 16.04.3 LTS under Linux kernel version 4.4.0-128-generic. For simulating
user traffic, one SIPp process is started on each node separated for workload generation. They
are configured to jointly generate between 900 and 1200 user registrations and call initiations
every second. All monitoring agents are configured to collect system metric data at a frequency
of 2Hz. We collect the following metrics: CPU utilization in percent, the fraction of allocated
memory in percent, the sum of disk read and write volume in bytes, and the sum of in- and
out-going network traffic in bytes.

Table 5.5: Number of VMs for each Clearwater service.
Component Bono Sprout Homer Homestead Chronos Cassandra Astaire

Num. of VMs 6 6 4 4 5 3 5

In the second experiment, we deploy the video on demand service. We deploy six VMs
as service load balancers and another six VMs as video streaming servers on the eleven com-
pute nodes. Each VM is provided with two virtual CPUs, 4GB RAM, and 80GB disk space.
Again, Ubuntu 16.04.3 LTS under Linux kernel version 4.4.0-128-generic is used. The load sys-
tem load is generated via four processes running on each of the reserved user load generation
nodes. They simulate client access whereby between 100 and 150 clients should simultaneously
request video streams. After finishing a video, a simulated client waits between 10 seconds and
5 minutes to select the next video. The video and its resolution are randomly chosen.

In order to evaluate the anomaly symptom recognition, several anomalies were injected into
the respective service VMs. All anomalies together with their description and parametrization
are listed in Table 5.6 To test whether our approach can recognize different anomaly occur-
rences of the same type, we inject each anomaly type several times into the same service. For
Clearwater, we excluded Cassandra as an injection target. On all other Clearwater and video
on demand services, each anomaly was injected 20 times. This resulted in six injection targets
and overall 960 injections for the Clearwater experiment and two injection targets, and over-
all 320 injections for the video on demand experiment. The injection targets, e.g., a concrete
Bono or video server VM, were selected randomly. The duration of every injection was set to
4 minutes, and 1 minute recovery period between the injections is defined. We use the start
and end times of the anomaly injection for labeling. All metric series samples within this time
range are labeled with the respective anomaly type. Additionally, we consider 25 normal sam-
ples before the respectively first anomalous sample to capture the transition from normal to an

17https://releases.openstack.org/stein (last access 30 May 2021)
18http://www.haproxy.org/ (last access 30 May 2021)

https://releases.openstack.org/stein
http://www.haproxy.org/

64 Chapter 5. Density Grid Pattern Model

anomaly state. Both experiments have an initial two hours without injections. The first and
second experiments have an overall duration of 82 and 28.7 hours.

Table 5.6: Description and parametrization of injected anomalies.
Description

Anomaly Clearwater Video on Demand
CPU overutilization Utilize all cores at 90 - 100%.

CPU hogging
Step-wise increase the CPU utilization. Increase by 1%

every 2 seconds until 90-100%.

Memory leak
Step-wise allocate memory. x MB every y seconds until z MB.
x=3, y=1, z=500 x=6, y=1, z=1000

Memory overutilization
Allocate x MB of memory.

x=500 x=1000
Disk IO Start 3 processes that write / read data to / from disk.

Packet Loss Drop 15 % of incoming and outgoing packets on all interfaces.
Throttled Bandwidth Limit bandwidth to 50 Kbps.

Network Overutilization Repeatedly start downloading a large file from the internet.

5.4.3 Evaluating Anomaly Symptom Recognition
For the evaluation, we use the monitoring metric series that were labeled as anomalous. We test
the ability of the anomaly symptom recognition to infer the anomaly type based on the symp-
tom patterns in the metric data. Therefore, the available 20 examples of each injected anomaly
are split in a training and test set. This is done by randomly selecting a fraction of examples for
training while the remaining examples are left for testing. The training set is used to generate
anomaly symptom-specific grid patterns. After that, the anomaly examples in the test set are
transformed into grid patterns and compared to the patterns that were generated from the train-
ing set. The comparison is made individually for each service, i.e., a test pattern generated from
Bono data is compared only with Bono training patterns. For each anomaly type, the highest
similarity is used. The list of anomaly similarities is passed to the confidence estimation mod-
ule, which filters entries bases on the β values. The interval parameter to discretize the input
series is set to h = 20, and the decay is set to λ = 0.9. The neighborhood distance threshold γ is
determined based on the available test data. It is set to minimize the average intra-class similar-
ity and maximize the average inter-class similarity between the training patterns by searching
the value range 1 ≤ γ ≤ h

2 .
The grid pattern (GP) model is compared to two baselines. For both, the time series of

the training set is stored and used for comparison with the time series of the test set. The
first baseline is calculating the average Euclidean distance between each data point of two time
series. A varying number of samples is handled via truncation to the shorter of both series.
The second baseline calculates the distance between two time series via dynamic time warping
(DTW) [26]. DTW is considered a strong baseline in many state-of-the-art publications on
time series analysis [40, 80] while the Euclidean model is often used for comparison with
DTW [72, 127]. The DTW model has a hyperparameter ω , which is the search window through
the warping matrix. We set this parameter the same as the γ parameter for GP, based on the
available training examples. The anomaly symptom recognition for the baselines is performed

5.4. Evaluation 65

by the same procedure as for density grid patterns. Considering an anomaly series that should
be type matched, we use the smallest distance to all available examples of each anomaly. This
list of distances is passed to the confidence estimation module, which filters entries bases on
the β values. The β values are determined as described in Section 5.2, but for small distance
instead of high similarity values.

Figure 5.8: Accuracy results for different training / test data splits.

First, we evaluate the ability of the models to accurately match observed symptoms with
existing anomaly type symptoms to infer the anomaly type. This is expressed by the accuracy,
which is depicted in Figure 5.8. A detailed list of results for each service component can be
found in Section A.1. The two plots show respective results for the two services: Clearwater
is shown on the left, and video on demand is shown on the right. We analyze different splits
between training and test data. Thereby, 10%, 30%, 50%, or 70% of the examples were used
as training data, while the remaining examples are test data. To mitigate the bias of a concrete
split, we apply k-fold cross-validation with k = 20. The accuracy values are averaged over all
folds and service components. The error bars above and below indicate the 0.95 confidence
interval.

The DTW and GP models outperform the Euclidean distance model. It can be explained
due to the inability of the point-wise comparison to tolerate noise, time shifts, or symptom
shape variations. Comparing the DTW and GP models, GP yields a higher mean accuracy for
all splits. However, both models yield close accuracy values for the 30 % and 70 % splits. For
Clearwater, six examples (30 % split) of each anomaly type are required for the GP model to
reaches an accuracy value of 0.76. Increasing it to 10 and 14 examples (70 % and 50 % split)
results in accuracy values of 0.89 and 0.97. Equivalently, the DTW model achieves accuracy
values of 0.52, 0.83, and 0.94. Similar trajectories are observable for video on demand. The GP
model achieves accuracies of 0.71, 0.85, and 0.94 for 30%, 50% and 70% splits compared to
0.51, 0.73, and 0.94 achieved by the DTW model. Generally, the GP model can achieve higher
scores with less amount of training data than the DTW model for both service scenarios.

Besides the accuracy, we want to analyze the recall, precision, and F1 score. These are

66 Chapter 5. Density Grid Pattern Model

Figure 5.9: Precision, recall, and F1 scores.

depicted in Figure 5.9. The plots are organized in a grid with four columns and two rows. Each
column contains the result for a specific split (left to right 10%, 30%, 50%, and 70%). The
top and the bottom row contain the results of Clearwater and video on demand. The bars are
grouped by the score type, i.e., precision, recall, and F1 score, where each bar represents a
respective model. Again, increasing score values can be observed with an increasing amount of
available training data. From the 30% split and beyond, the GP and DTW models outperform
the Euclidean distance model across all scores. Also, scores for the GP model are generally
increasing faster than the DTW model scores but end up in similar ranges at the 70% split.

The larger precision scores for the GP model, especially in the lower splits, are apparent.
For 10% and 30% splits, the GP precisions are 2 and 1.5 times higher than the DTW precision
values. Note that the scores are weighted averages over the respective scores for each class,
where the weights are the relative frequency of each class. Although anomaly examples within
the test set can be classified as "unknown", no "unknown" class examples exist because no
"unknown" anomalies were injected during the experiment. The weight for the "unknown"
class is therefore 0. The "unknown" predictions are considered in the recall calculation but are
nullified in the calculation of the precision since no "unknown" class can be mispredicted. The
precision of the "unknown" class itself is nullified due to the zero-weight. Both aspects result
in high precision scores if most mispredicted examples are predicted as "unknown".

This supposition is confirmed when analyzing the incorrectly predicted examples (see Fig-
ure 5.10a for Clearwater and Figure 5.10b for video on demand). The two plots show the
distribution of incorrectly predicted examples between the "unknown" class (orange bar) and
all other classes (blue bar). The error bars represent 0.95 confidence intervals. Note that the
y-axes are differently scaled for each service due to the different amount of available examples,
i.e., all anomalies are injected 20 times into all services, but Clearwater has six and video on
demand two service components. Again, the columns represent the split from 10% until 70%,
and both bars are grouped based on the model. By comparing the 10% distributions for Clear-
water, it is evident that the GP model yields the majority of mispredictions as "unknown". In

5.4. Evaluation 67

(a) Distribution of incorrectly predicted classes for Clearwater.

(b) Distribution of incorrectly predicted classes for video on demand.

contrast to that, the majority of DTW mispredictions are other classes than "unknown". As
expected, the amount of incorrect predictions decreases with increasing training data split per-
centage. However, the ratio between "unknown" and other class mispredictions stays in favor
of other classes for the DTW model. In contrast to that, GP initially yields "unknown" mis-
predictions but changes after the 30% split to misclassify more examples as other classes than
"unknown". These misclassification distributions for the DTW model are because the DTW
is created to find short distances between time series. Instead of yielding "unknown" predic-
tions, it incorrectly predicts examples as other existing anomaly types instead of "unknown".
This behavior indicates a sparsity of regions within the input space that are not representing
any class. The behavior of the GP model can be explained by tight decision boundaries around
each class. Examples outside of these boundaries are classified as "unknown". The boundaries
are adjusted when more training examples are available. However, some examples appear in
regions of other classes. The amount of these examples is decreasing slower than the amount
of "unknown" misclassifications, which indicates the existence of examples that are generally
difficult to classify.

The anomaly type matches should be used to automatically select operations to resolve
anomalies. If a model misclassifies an anomaly as "unknown", no operations can be automat-
ically selected. A human operator is requested to resolve the anomaly. If a model incorrectly
predicts an anomaly as some other anomaly type, operations that probably will not resolve the
anomaly are selected. The execution of such operations can aggravate the anomaly, leaving the
component in a state that is even harder to recover. From a practical perspective, a model that
can admit its inability to perform a correct anomaly symptom recognition should be favored
over a model that mispredicts examples as other anomaly types.

68 Chapter 5. Density Grid Pattern Model

5.4.4 Evaluating Unknown Anomaly Type Recognition

Distributed systems are constantly changing, which potentially introduces novel anomalies.
The knowledge base of anomaly types must be assumed as incomplete at all times. Besides
recognizing known anomaly symptoms, an anomaly symptom recognition method should be
able to identify a symptom pattern as unknown if the respective anomaly type never occurred
before. Therefore, we evaluate the accuracy of the GP and the two baseline models to classify
metric anomaly data as "unknown" if they do not occur in the training set.

We apply the same model parametrization as in Subsection 5.4.3. The metric series that are
labeled as anomalous is used. The available 20 examples of each anomaly injected into each
service are randomly split into a training and test set. This splitting is done respectively for each
anomaly, i.e., identical amounts of training and test examples are available for each anomaly
after the split is applied. For this evaluation, we define a constraint whereby the training set
contains all but one anomaly type. This means that we exclude one anomaly type from the
training set and move all examples of this excluded type to the test set. The task of the models
is to predict the excluded anomaly type examples as "unknown". We repeatedly apply this
procedure for each anomaly type while setting the training data fractions to 10%, 30%, 50%,
and 70%. Ten folds were executed for each split to analyze the dependence on the selection of
training examples, i.e., for each fold, respective training examples were randomly chosen.

Figure 5.11: Accuracy of "unknown" anomaly prediction.

The results are depicted in Figure 5.11. A detailed list of results for each service component
can be found in Section A.2. Again, the results for Clearwater and video on demand are respec-
tively shown in the two bar plots. The bars are grouped by the splits, and each bar in a group
represents the mean accuracy value of the respective model. Error bars are showing the 0.95
confidence intervals. It can be observed that the accuracy generally decreases as more training
examples are available. This is due to the initial sparsity of decision regions in the input space
if few examples are available. When more examples are observed, the decision regions grow
and eventually cover areas of the "unknown" anomaly. The GP model’s accuracy is the highest

5.4. Evaluation 69

on all splits and across the two services. The DTW model is designed to tolerate variances and
shifts in the time series, which leads to less decision region sparsity in the input data space.
This results in smaller distance values than the calculated β values, appearing in a non-empty
result list for "unknown" test examples. The accuracy values for the Euclidean distance model
are usually higher than DTW but lower than the GP accuracies. It has less tolerance to noise
and intra-class variations than the other models, resulting in a higher dependence on the split,
which is indicated by the longer error bars. For Clearwater and video on demand, GP yields a
1.0 accuracies for 10% splits, which is expected since only a few training examples are avail-
able to define the decision regions. The accuracy decreases when more training examples are
available and reaches 0.97 and 0.92 on 50% and 70% splits for Clearwater and 0.94 and 0.90
for video on demand. We conclude that the GP model can define tight decision regions and
recognize unseen anomaly types as "unknown".

Chapter 6

Recurrent Neural Network Model

Analyzing metric data to identify specific symptom patterns of anomaly types is difficult. It is
especially difficult when system components execute heterogeneous workloads (e.g., a compute
node hosting virtual machines that contain different services). For such components, the metric
data time series exhibit complex temporal relationships and stochasticity [180]. This chapter
proposes a method that realizes the recognition of anomaly type symptoms via a recurrent
neural network (RNN) based on gated recurrent units (GRUs). It is designed to capture complex
dependencies in sequential data in the presence of noise and intra-type variation. However, the
ability of GRU RNNs to capture such complex dependencies makes them prone to overfitting,
especially when few training examples are available [207]. Therefore, a method for time series
augmentation is proposed that stabilizes the training procedure of the model and mitigates the
overfitting problem.

Model Training

Symptom Analysis

Parameter Setting

Anomaly Type
Inference

PreprocessingMetric
Series

Predicted Class

Model Parameters

Metric Series Augmentation

Training Phase

Prediction Phase

Figure 6.1: General workflow of the proposed method.

The workflow of our method is depicted in Figure 6.1. Metric series are preprocessed first.
After that, the method is split into two phases: training and prediction. During training, the
metric series augmentation generates metric series data based on available training examples.
Thereby, the symptom analysis model, i.e., the GRU RNN, is trained first. After that, model
prediction results on augmented examples are used to set the parameters of the anomaly type
inference. Next, the trained model, together with the parameters, is deployed for prediction.
The GRU RNN yields prediction results for each received monitoring series sample while the

71

72 Chapter 6. Recurrent Neural Network Model

anomaly type inference analyses the prediction sequences and infers the anomaly type. The
anomaly type options include the known anomaly types and "unknown" representing the recog-
nition of yet unknown symptom patterns.

6.1 Anomaly Symptom Analysis
To match anomaly types based with specific symptom patterns in metric data, we consider the
temporally ordered sequence of samples Xt0:tc = {Xt0 ,Xt1 , . . . ,Xtc} at time tc. This means that
a set of samples from the time of anomaly detection t0 up until tc are considered to perform
the anomaly symptom recognition. The symptom analysis is applied on each Xt , resulting in
a prediction function fC(Xt ,θ) : Rd 7→ yt . Thereby, θ are parameters that should be adjusted
based on available class examples of anomaly types and an objective function. We use a GRU
RNN to model the function fC. The prediction results yt contain a set of class prediction targets
Ck, resulting in |yt |=Kk . Each element yi ∈ yt is a probability value 0≤ yi ≤ 1 that indicates the
association to a certain class. The yi values can be expressed as conditional probabilities yi =
P(ci|Xt0:t). Note that the GRU RNN considers the current metric series sample Xt and a compact
representation of all processed samples before t. This allows to condition the prediction on the
whole series Xt0:tc . We model yt as a posterior joint probability which means that all element
values must sum up to 1.

6.1.1 Model Architecture
After detecting an anomaly, the anomaly symptom recognition constantly receives monitoring
metric samples whenever they are available. With each received sample, the symptom analysis
calculates the association probabilities to all known anomaly types. Therefore, the model must
be applied to a sequence of monitoring series samples. We propose a sequence-to-sequence
prediction modeling that yields scores at each time step t. Thereby, a metric sample Xt and a
compact representation of all received samples up to time t is used to calculate the prediction.
The architecture of our model is depicted in Figure 6.2. In the following, we describe each
model component in detail.

Preprocessing

The metric data samples are rescaled to a range of (0,1). This rescaling is done within the
ingest control but is shown here for the sake of completeness. It is important to adjust the
model parameters θ in a well-conditioned manner, which is crucial for the parameter values to
converge [129]. We apply rescaling individually on each series via

X̂ i
t =

X i
t −X i

min

X i
max −X i

min
. (6.1)

Most system component resource metrics’ upper and lower boundaries are well-known (e.g.,
number of CPU cores and their frequency or maximum available memory). However, for some
metrics like latencies between network endpoints, the number of context switches, or packet
errors, it is challenging to decide on upper or lower boundaries. If the boundaries are not
known, X i

min and X i
max are determined from the available training examples and used during

prediction.

6.1. Anomaly Symptom Analysis 73

Dropout

GRU Layer

Softmax

GRU Layer

Dropout

GRU Layer

GRU Layer

Preprocessing

Input

Output

Stacked

...

...

N
eu

ra
l N

et
w

or
k

ot ...ot-1...

Xt ...Xt-1...

...

...

Stacked

Linear LayerLinear Layer

Figure 6.2: Sequential model architecture for anomaly symptom recognition.

Recurrent Neural Network Structure

The neural network with parameters θ is the central component of the symptom analysis model.
It must retain the temporal information of the metric data series by considering the sequential
dependencies between consecutive samples. We utilize a recurrent neural network that has
sequential connections between neuron outputs [199]. This conditioning is realized by main-
taining an internal state, which is a compact representation of preceding samples. A general
RNN structure is depicted in Figure 6.3a. At a time step t the model receives a metric data sam-
ple Xt and the previous state st−1. The state contains information about all metric data samples
up to t. RNNs can handle sequential data, where sequences can have varying lengths, which
fits our requirement of constantly received metric data samples until an anomaly is resolved.

The basic RNNs suffer from the issue of vanishing gradients [117]. Common solutions for
this problem are either LSTM (Long Short-Term Memory) [118] or GRU (Gated Recurrent
Unit) [57] cells. Empirical evaluation shows that both cell types perform similarly on many
datasets [58]. Since a GRU cell has one parameter less than an LSTM cell, we use GRU cells1.
Figure 6.3b shows the internals of an GRU cell. It requires the previous state value st−1 and a
metric data sample Xt as input. Its internal structure routes the values through different gates to
eventually calculate the state st . For GRU cells, the state st is also the output ot . We show the

1Note that neural networks usually consist of hundreds or thousands cells, which results in a respective scale
of the one parameter less.

74 Chapter 6. Recurrent Neural Network Model

Xt-1 Xt Xt+1

U U U

W W W

V V V

ot-1 ot ot+1

st-1 st st+1

(a) General RNN structure.

σ σ tanh

1-

X

X +

Xt

st-1 st

st
~ztrt

X

(b) GRU cell.

Figure 6.3: RNN and GRU cell structure.

formal definitions and explain the intuition behind each gate. The update gate zt is defines as

zt = σ(UXt +Wst−1). (6.2)

Thereby, the input sample and state values are multiplied with their respective weights. These
weights are part of the model parameters θ and adjusted during model training. Intuitively, the
update gate controls how the current information contained in Xt is combined with informa-
tion from past samples that are compactly represented by st−1. The reset gate rt is computed
similarly but uses different weights for st−1

rt = σ(UXt +V st−1). (6.3)

Intuitively, it controls the model’s decision to forget past information. The internal memory s̃t
is defined as

s̃t = tanh(UXt + rt ◦V st−1). (6.4)

It combines the information contained in the current metric sample and the previous state scaled
by the reset gate. The scaling is done via the Hadamard product of the two vectors. If the reset
gate contained only zero-values, the current state would contain recent information only. The
output st is a combination of both the previous state and the current internal state

st = zt ◦ st−1 +(1− zt)◦ s̃t . (6.5)

Directly scaling the previous state st−1 without any weight multiplication serves as a shortcut
for the back-propagation and mitigates the problem of a vanishing gradient. Furthermore, when
values of zt are close to one, it allows information from previous samples to be passed directly
to the next time step, enabling the use of past information to make predictions. Contrary, zt
values close to zero enable the model to use the most recent information to make predictions.
Routing information through these gates enables GRU cells to consider short- and long-term
dependencies.

In our model, we use GRU layers, a set of GRU cells connected with either the input metric
samples or the outputs of the previous layer’s GRU cells. The architecture of the neural net-
work is depicted in Figure 6.2. By unfolding the neural network, it is visually shown that the
incorporation of the previous GRU states allows the model to condition the current prediction

6.1. Anomaly Symptom Analysis 75

on a representation of preceding time series samples and the current sample. This way, the
salient information from the past samples can impact the prediction at each time t and iden-
tify anomaly type-specific symptom patterns in the metric series. The first part of the neural
network consists of a combination of a GRU layer with dropout. This combination can be
arbitrarily stacked, resulting in a configurable amount of GRU+dropout layers. Dropout is a
regularization mechanism to mitigate overfitting [221]. It randomly disables a defined fraction
of connections between layers, i.e., withholds part of the information from the respective model
layer. Dropout is applied only during model training. Throughout our experiments, we set the
dropout to 0.3. The neural network model is terminated with a combination of a GRU and lin-
ear layer. The linear layer adjusts the output dimensionality to Kk outputs, where each element
in the output vector is a prior probability value representing the associational of the samples to
an anomaly type.

Calculating Posterior Probability via Softmax

The output of the linear layer is a vector yt with Kk elements, where each element value is
the prior probability at time t. It denotes that the currently observed metric data series is a
manifestation of a specific anomaly type. This means that each value in this vector is associated
with one of the Kk classes. We utilize the softmax normalization [37] to calculate the posterior
probability values. Thereby, the values are scaled to a range of (0,1) and should sum up to 1,
i.e., ∀yi ∈ yt : 0 ≤ yi ≤ 1∧∑i yi = 1. To simplify the notation we omit the time index t for the
yi elements. The values yi are calculated by

yi =
eyi

∑
Kk
j=1 ey j

. (6.6)

It is applied on each element in yt yields a probability distribution over all Kk classes. The
higher the value, the stronger the association with the respective anomaly type.

6.1.2 Model Training
The objective of the model is to combine an input sample Xt with the state st−1 and transform
them to posterior probability values that represent associations with the respective class predic-
tion targets. Considering the function yt = fC(Xt ,θ) and the fact that Xt is given, the parameters
θ should be adjusted during the training of the model. The parameters of neural networks are
adjusted via stochastic gradient decent[196] and backpropagation [147]. It requires available
examples, i.e., metric series, for which the class label, i.e., anomaly type, is known and an error
function that quantifies the correctness of the prediction. It allows to gradually adjust the θ

values of the neural network via

θi+1 = θi −α
∂E(fC(Xt ,θi),y∗t)

∂θi
. (6.7)

The network yields a prediction for an example Xt based on the current parameters θ . The
availability of the ground truth y∗t allows calculating the error E between the prediction and
the ground truth. Calculating the partial derivative with respect to θi gives the gradient, which
defines how the respective values of θi must be changed to reduce the error. The parameter α

76 Chapter 6. Recurrent Neural Network Model

controls the change of the parameters to prevent a highly fluctuating gradient. The result is an
updated set of parameters θi+1. Since neural networks combine several linear and non-linear
functions, the chain rule is applied to calculate the partial derivatives. The chain rule appli-
cation is referred to as backpropagation. It is computationally expensive to execute gradient
decent calculations. Therefore, averaging the error of a sample set and jointly calculating the
backpropagation instead of doing this for each sample is a method to reduce the overhead. The
set of samples is thereby referred to as batch, and the number of samples in a batch is the batch
size. A neural network must process the available training data several times until the parameter
values converge. Processing a number of batches selected from the available training examples
is referred to as training epoch.

During training, a set of metric series examples with known class affinity is available. The
affinity is represented by the ground truth vector y∗t that contains the value 1 for the class with
which the metric series sample Xt should be associated while all other values are set to zero. The
cross-entropy loss is utilized to measure the error between the ground truth and the prediction:

E =−
Kk

∑
i

y∗i,clog(yi,c). (6.8)

Having multiple classes as prediction targets, the predictions yi for which the ground truth
value is 1 are considered. These are indicated by c. All others are nullified due to the zero-
multiplication by y∗i,c and, thus, do not need to be considered in the summation. Considering a
single y∗i,c and yi,c pair, the cross entropy loss yields is zero if the predicted probability yi,c is 1.
Note that this is expected since it matches the ground truth probability y∗i,c, which is also 1. The
progress of an increasing divergence between the expected and actual probability is depicted in
Figure 6.4. It can be seen that the loss approaches infinity if the predicted loss approaches 0,
although 1 is expected.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

Predicted propability

Lo
ss

Figure 6.4: Visualization of the cross entropy loss for the ground truth value 1.

The GRU RNN should capture the sequential dependencies between metric series samples.
During training, we select a metric series that should be associated with an anomaly type and
provide the samples Xto:tc in sequential order to the model. After one series is processed, we

6.2. Anomaly Type Inference 77

reset the internal state of the GRU cells to randomly initialized values. The input series must
not be truncated or padded to a uniform size since the GRU RNN is used as a sequence to
sequence model. Therefore, the whole metric series of an anomaly example is used as a batch,
whereby the model should output an anomaly class prediction for each sample in the series.
The backpropagation is computed after processing the complete series. The model is constantly
trained for 300 epochs with a learning rate of α = 10−3.

6.2 Anomaly Type Inference

The anomaly type selector receives the yt results from the symptom analysis module. The
supervised training of the RNN does not allow to directly predict a probability value for the
"unknown" class. No examples are available for anomaly types that were not observed yet.
Furthermore, the anomaly type selector receives a prediction for each observed monitoring
data sample at time t resulting in multiple prediction results for the duration of an anomaly.
These results should be aggregated to yield one anomaly type eventually. Based on this, the
selector has two tasks. First, it should analyze the received results and infer whether the ob-
served anomaly does not match any known anomaly types. If this is the case, the observed
anomaly type should be stated as "unknown". Second, the observed results over time should be
aggregated to eventually yield one anomaly type decision together with a value that represents
the confidence ζ .

The "unknown" class represents all areas in the input data space that are not associated
with known anomaly types. Since such anomalies were not observed yet, it impossible to train
the model explicitly on such examples. Therefore, postprocessing of the posterior probability
values should infer this information. The intuition behind this approach is that if the model
cannot assign a high probability value to one of the classes but similar probabilities to several
classes, the observed symptoms indicate a yet unknown anomaly type. Similar probability
values across multiple classes result in an increasingly uniform posterior distribution. We utilize
the Gini coefficient[231] to measure the uniformity of the predicted probability values. It is
defined as

G(yt) =
∑yi∈yt ∑y j∈yt |yi − y j|

2(Kk)2yt
, (6.9)

where yt =
1

Kk
∑yi∈yt yi. It represents the average of element-wise differences for each existing

element pair, normalized by the average of all elements. The elements are the predicted prob-
ability values at time t. The range of G is (0,1) with 0 representing an uniform distribution.
G approaching 1 represents an increasing non-uniformity. Based on this, we interpret the Gini
coefficient values that are closer to 0 as an indicator that the current metric data are representing
a yet unknown anomaly type.

The next step is to decide on a class ŷt based on the symptom analysis results yt and the
Gini coefficient. Whether to set the result to "unknown" is decided based on a threshold value ε

for G. If the result is not interpreted as "unknown", the class with the highest probability value
is selected as the predicted class. This is defined as

ŷt =

{
cu , if G(yt)≤ ε

argmaxCk
(yt) , otherwise.

(6.10)

78 Chapter 6. Recurrent Neural Network Model

Thereby ŷt represents the prediction result at time t, which can be a known anomaly type, the
normal state, or a yet unknown anomaly type. Following the 1-of-K coding scheme, where
K = Kk +1, ŷ is a vector where each element is associated with a class. In ŷt , one element has
the value 1 while all others are 0.

The anomaly symptom recognition results should be used to automatically select operations
to resolve an anomaly. A decision on an anomaly type initializes the selection process. There-
fore, it is unreasonable to yield an anomaly type match after each received metric data sample,
i.e., forward all ŷt . The second task of the anomaly type inference is to aggregate multiple
prediction results from the symptom analysis and eventually yield a final anomaly symptom
recognition decision consisting of a class and a confidence value. This is done after receiving τ

prediction results. First, we calculate the sum of all prediction vectors

ŷ = ∑
t0≤t≤τ

ŷt . (6.11)

The class decision is done by y = argmaxC(ŷ), which is effectively a majority voting. The
confidence value for the result is defined as the relative frequency of the predicted class y. If ic
is the index of the predicted class in ŷ, the confidence ζ is formally defined as

ζ =
ŷic

∑ŷ j∈ŷ ŷ j
, where ŷic ∈ ŷ. (6.12)

The intuition is that the prediction result can be trusted if the model frequently yields the same
class prediction. A prediction that fluctuates across different classes is assumed to be less
trustworthy.

Both parameter ε and τ are determined during the training phase after the training of the
RNN model. Thereby, the metric series augmentation generates a number of examples for
classes that represent anomaly types. For each example, the model yields predictions yt . The
parameter ε is determined first. For all yt , the Gini coefficient Gt(yt) is calculated. The thresh-
old ε is defined individually for each class as the average Gini coefficient for all yt predictions
and all augmented examples of this class. After that, the parameter τ is calculated individually
for each class. It is set such as for the anomaly type inference to yield a correct decision with
the minimum amount of ŷt predictions, emphasizing a timely but correct decision. Therefore,
the smallest t with the highest number of correct predictions is set as τ .

6.3 Metric Series Augmentation
Metric data collected from IT system components generally contain variations due to internal
and external factors that affect the processing. These variations affect the anomaly type-specific
symptom patterns, resulting in variations between the examples and general noise. An anomaly
symptom recognition model should be able to cope with intra-type variation and tolerate noise.

Neural networks in general, and thus RNNs, can learn complex dependencies within the
input data. On the one hand, it allows the proposed RNN to identify complex symptom patterns
of anomaly types, but on the other hand, it is prone to learn an exact or close to the exact repre-
sentation of the observed metric series. The latter aspect is referred to as overfitting. Thereby,
noise within the training data is learned as part of the classification information, which deterio-
rates the ability of the model to make predictions on unseen examples [230]. Overfitting occurs

6.3. Metric Series Augmentation 79

when the model contains more parameters than justified by the available training data. From
this statement, two mitigation strategies can be inferred. Either the amount of model parame-
ters is treated as a hyperparameter and must be adjusted based on the available training data, or
the training data is manipulated to prevent the model from learning the exact representation of
available examples. Former requires to split available examples into a training and validation
set, whereby the model is trained with different amounts of parameters and validated to identify
an appropriate setting [28]. The splitting of available data is problematic if only a few examples
are available. Latter is referred to as augmentation. Thereby, synthetic examples are generated
that follow the distribution of the available training data. They resemble them, such as allowing
the model to learn the representation but differ in a way that prevents the model from learn-
ing the exact representation, i.e., contained noise. Furthermore, an augmentation method can
manipulate existing examples to better generalize the model on unseen examples.

Original
Local Blurring
Interpolation

Available Training Examples Local Blurring Interpolation

Figure 6.5: Conceptual visualization of the proposed metric data augmentation method.

We propose an augmentation method for metric data to generate synthetic metric series
based on available examples. It consists of two steps that are conceptually depicted in Fig-
ure 6.5. The plots contain training examples (original and augmented) from two different
classes. No augmentation is performed on the data in the left plot. These are the available
examples to train the model. The dotted line represents a trajectory within the input space that
indicates the decision region’s location for the respective class. We refer to the first augmenta-
tion step as local blurring. Thereby, the noise values of an example are changed to prevent the
model from learning an exact representation of this noise. The second augmentation step is re-
ferred to as interpolation. Two neighboring locally blurred examples are selected as references.
Based on them, an augmented example between these references is generated. This should
allow the RNN model to assign decision regions that are not covered by the real examples to
the respective class. Note that the pictured example is an oversimplified visualization. Apply-
ing local blurring and interpolation to metric series with multiple dimensions and containing
multiple samples is a non-trivial task.

6.3.1 Local Blurring
The local blurring should prevent the model from learning the general noise in the training
examples by applying variations of that noise. Since noise can depend on the current state of
a SuO component, the local blurring is done individually for each available training example.
Applying noise variation must be done cautiously. Minor noise variations will not prevent the
model from overfitting, while very high variations will hide the signal (i.e., anomaly symptom
patterns), making it impossible for the model to identify it. Therefore, we infer information

80 Chapter 6. Recurrent Neural Network Model

about the noise from the respective metric series examples. This inference is made in two
steps. First, an initial Box-Cox transformation [36] is applied to stabilize the variance of a
metric series. This step is required since the second step assumes a stationary series, which
is usually not the case for monitoring metric data from a dynamic IT system. In the second
step, a season and trend decomposition based on Loess (STL) [197] is applied to infer the
residuals of the metric series. We are interested in the local noise of the series and set the period
parameter of STL to 3. The residuals represent the noise of the metric series and thus, can be
modified to create a synthetic example that contains the original anomaly symptom patterns but
with changed residuals. Changing residuals is realized by drawing samples from the extracted
residual values. Since residuals are autocorrelated, a tapered block bootstrap [181] is applied
to draw a sequence of residuals that preserves the distribution of the original residual values.
The STL decomposition is reversed by combining the trend and seasonality component with
the sampled residuals. After that, the inverse Box-Cox transformation is applied to acquire the
original variance of the metric series.

Given a metric series Xt0:tc that contains symptoms of an anomaly type, the local blurring is
applied respectively for each series dimension X i

t0:tc . Rectangles represent the synthetic exam-
ples resulting from the local blurring in Figure 6.5.

6.3.2 Interpolation
The combination of variating symptom patterns and the limited availability of examples poses
a challenge for anomaly symptom recognition models. In Figure 6.5, this is visualized by gaps
between available example points. These gaps result in decision areas representing anomaly
types but are not covered by the available examples. Based on this, we propose to create
synthetic metric series in these uncovered areas via interpolation between two neighboring
examples. The interpolation between samples required a distance notion D. We define a metric
series X (1) and its nearest neighbor series X (2) based on D, which are both of the same class,
as the basis. An interpolated synthetic series example X (1-2) is defined via the distance to both
basis series

D(X (1),X (2)) = D(X (1-2),X (1))+D(X (1-2),X (2)). (6.13)

Assuming a relative distance of 1 between X (1) and X (2), the distance between X (1) and X (1-2)

is w1 and between X (2) and X (1-2) is w2. Setting w1 and w2 accordingly allows to control the
location of the interpolated sample between the two basis samples, e.g., weights of w1 = 0.9
and w2 = 0.1 would result in a series that is located close to X (1) and further away from X (2).
We utilize dynamic time warping (DTW) to calculate the distance D between two metric series.

Since DTW is an algorithm to find the closest distance of two series by searching for a
path through the warping matrix, it is not trivially possible to interpolate between two series.
The interpolation is realized by applying DTW barycenter averaging (DBA) [185]. It is an
optimization problem defined as

argmin
X i

∑
X i∈X i

D2(X i
,X i). (6.14)

DBA is defined for univariate series and thus, must be applied on each metric series dimension
i. The series X i is the result and subject to optimization. All samples in X i should be set such
as to minimize the squared DTW distance between X i and a set of reference series X i. The
result is considered as an average over the series contained in X i.

6.4. Evaluation 81

The generation of an interpolated synthetic metric series example for a particular class is
realized as follows. First, we select a random metric series example X (1) and its nearest neigh-
bor X (2) based on the DTW distance. Second, we define a value n1 for X (1) and n2 = nmax −n1
for X (2), where n1 is a sample from a uniform distribution n1 U(1,nmax − 1). Throughout our
experiment, we set nmax to 10. Third, the local blurring is applied n1 times to each dimension
i of X (1) and n2 times to each dimension i of X (2). The result of the local blurring for each
dimension i is defined as X i. Fourth, DBA is applied on each X i, resulting in a synthetic
metric series example X . Thereby, the values n1 and n2 serve implicitly as weights w1 =

n1
n1+n2

and w2 = n2
n1+n2

. An n1 value that is close to nmax results in a X i that contains more locally

blurred examples of X i,(1) which effectively leads to X i to be closer to X i,(1) than to X i,(2). Note
that the n1 value is used for all dimensions i. This equality results in the same relative distance
of all dimensions of X (1) and X (2). The synthetic metric series X is the result of our metric
series augmentation method. The augmented examples are used to train the RNN GRU model
and configure the parameters of the anomaly type inference. Triangles represent the synthetic
examples resulting from the interpolation in Figure 6.5.

Original
Local Blurring
Interpolation

Incomplete Decision Region Incorrect Decision RegionIncomplete Decision Region

Figure 6.6: Conceptual visualization of two possible problems with sporadic decision region sub-sampling.

Due to the interpolation, this augmentation method requires examples representing a rea-
sonable sub-sampling of the decision region in the input space to yield good augmentations.
Two problems that occur when the input space is sporadically sub-sampled are conceptually
depicted in Figure 6.6. It shows a decision region of a class between two dotted lines, which
is non-linear. As depicted in the left-most visualizations, only two examples for the class are
available, allowing only a sub-region to be sub-sampled. The augmentation method is not able
to extrapolate distant decision regions. In the middle visualization, four examples are avail-
able, which are located in the outer area of the decision region. The nearest neighbor selection
prevents the sub-sampling of the region between the two outer examples. In the right-most vi-
sualization, the examples are located distant from each other. The non-linearity of the decision
region’s trajectory leads to a sub-sampling of a decision region representing the shortest path
between the two examples but is different from the actual decision region.

The central part of the local blurring is the STL decomposition, and the interpolation of
metric series is achieved via DBA. Therefore, we refer to this augmentation method as STL-
DBA augmentation.

6.4 Evaluation
In the following, we evaluate the anomaly symptom recognition method whereby we employ
the RNN model with GRU cells to realize the symptom analysis, apply the described anomaly

82 Chapter 6. Recurrent Neural Network Model

type inference, and use the metric series augmentation. First, a detailed explanation of the con-
ducted experiment is given. It is executed on the previously presented evaluation environment,
whereby we focus on system components that execute heterogeneous workloads and inject dif-
ferent anomaly types therein. Base on the collected metric data, we analyze the effect of our
metric data augmentation method when the RNN model is trained.

6.4.1 Experiment

We want to evaluate the proposed method’s ability to identify anomaly types within compo-
nents that concurrently execute heterogeneous workloads. Therefore, anomalies are injected on
compute nodes that host VMs wherein different services are executed. We use the experiment
environment described in Section 5.3 to conduct the experiment. The experiment is conducted
on 27 commodity cluster nodes. OpenStack Stein2 is deployed on 21 nodes. Three nodes
are load balanced with haproxy 3 and host the OpenStack network and controller services, six
are used as storage, and eleven as compute nodes. Out of the remaining seven nodes, one is
reserved for the anomaly injection controller, and the other six for load generation.

Table 6.1: Number of VMs for each Clearwater and video on demand service.
Clearwater

Service bono sprout homer homestaed chronos cassandra astaire
VMs 6 6 4 4 5 3 5

Video on Demand
Service lb video server
VMs 6 6

We jointly deploy both services, Clearwater, and video on demand. The number of VMs
for each Clearwater and video on demand service is listed in Table 6.1, whereby VMs were
randomly placed on the available compute nodes. Such deployment represents an execution of
multiple heterogeneous workloads on each compute node. The Clearwater VMs are provided
with one virtual CPU, 2GB RAM, and 40GB disk space, while video on demand VMs run with
two virtual CPUs, 4GB RAM, and 80GB disk space. All VMs operate with Ubuntu 16.04.3 LTS
under Linux kernel version 4.4.0-128-generic. We execute a SIPp process respectively on two
and four video client simulation processes respectively on the other four cluster nodes separated
for workload execution. Each SIPp process is configured to generate between 600 and 900 user
registrations and call initiations every second. The video client processes are simulating 40
to 60 users that request videos. After finishing a video stream, a simulated user waits for 10
seconds to 5 minutes to select the next video. The video and its resolution were randomly
selected. The monitoring agents are configured to collect system metric data at a frequency of
2Hz. All metrics that were collected throughout the experiment are listed in Table 6.2. The
metrics are measured either in bytes, percent %, or a counting value #.

To evaluate the anomaly symptom recognition method, we inject anomalies into the com-
pute nodes. The anomalies that were injected during this experiment are listed in Table 6.3.
Each anomaly type was injected 20 times into a randomly selected compute node, resulting in

2https://releases.openstack.org/stein (last access 06 May 2021)
3http://www.haproxy.org/ (last access 30 May 2021)

https://releases.openstack.org/stein
http://www.haproxy.org/

6.4. Evaluation 83

Table 6.2: Metrics that are collected during the experiment.
Resource Metrics Unit

CPU cpu utilization %
Memory allocated memory %

Disk

written data bytes
read data bytes

I/O operations #
used disk volume %

Network

rx volume bytes
tx volume bytes
rx packets #
tx packets #

errors #

180 injections. The duration of every injection was set to four minutes, after which one minute
recovery period without injections was defined. We use the start and end times of the anomaly
injection. All metric series samples within this time range are labeled with the injected anomaly
type. Additionally, we consider 25 normal samples before the respectively first anomalous sam-
ple to capture the transition from normal to an anomaly state. The experiment has an initial 2
hour period without injections, resulting in an overall experiment duration of 17 hours.

Table 6.3: Description and parametrization of anomalies.
Anomaly Compute Nodes

CPU overutilization Utilize all cores at 90 - 100%.

CPU hogging
Step-wise increase the CPU utilization. Increase by 1%

every 2 seconds until 90-100%.

Memory leak
Step-wise allocate memory. 20 MB every

second until 3000 MB.
Memory overutilization Allocate 2500 MB of memory.

Disk IO Start 3 processes that write / read data to / from disk.

Packet Loss
Drop 5 % of incoming and outgoing packets on

all interfaces.
Throttled Bandwidth Limit bandwidth to 1500 Kbps.

Network Overutilization
Repeatedly start downloading a large file

from the internet.

6.4.2 Effect of Metric Series Augmentation

The anomaly symptom recognition method should be evaluated as depicted in Figure 6.1. It
includes the metric series augmentation used to generate augmented training examples based
on a set of available training data. The augmentation should prevent the GRU model from
overfitting. Furthermore, augmented examples are used to set the parameters of the anomaly
type inference. Before analyzing the anomaly symptom recognition method and comparing it

84 Chapter 6. Recurrent Neural Network Model

to baselines, we investigate the effect of the augmentation on the training process. The accu-
racy of the proposed anomaly symptom recognition method that was trained based on either
augmented or original examples is tested. Beside the proposed STL-DBA augmentation from
Section 6.3 we utilize a jitter augmentation as proposed by [229] or [226]. Thereby, a small ran-
dom value is added to each sample of the time series. The random value is drawn from a normal
distribution with zero mean and a configurable standard deviation. We follow the recommen-
dation of Um et al. [229] and set the standard deviation σ = 0.03. The Jitter augmentation is
applied respectively to each metric series.

Figure 6.7: Anomaly symptom recognition results based on different metric series augmentation methods.

The available 20 examples of each anomaly type injected into the compute nodes are ran-
domly split in a train and test set. The split is done respectively for each anomaly, i.e., the
same amounts of training and test examples are available for each anomaly after the split is
applied. After that, the training data are either used directly or are the basis to generate aug-
mented examples. We train the GRU model and set the anomaly type inference parameters.
For the setting of the anomaly type inference parameters, we utilize 20 augmented examples.
When executing the evaluation without augmentation, all available training examples are used
to set the parameters. The evaluation is executed for four different training, and test data splits,
whereby 10 %, 30 %, 50 %, and 70 % of the available examples are used for training while
the remaining are used as test data. For each of the split, random examples are selected and
used for training. The evaluation for each split is repeated 20 times, each time with a random
training set selection.

The evaluation results for the different metric series augmentation methods are depicted in
Figure 6.7. The plot shows the accuracy values for the anomaly symptom recognition, whereby

6.4. Evaluation 85

the GRU model and the anomaly type inference parameters are adjusted based on metric se-
ries examples. The three colors represent the two different augmentation methods and the case
where no augmentation was used. The x-axis depicts the different training, and test data splits.
One notable aspect observed during the experiments is the high variation between the folds,
whereby the model yields sporadically high accuracy results. A bar plot is used to visualize
this. The line within the bar and the value represent the median, while the lower and upper
boundaries of the bars are the first and third quartile. The distance between them is the in-
terquartile range (IRQ) and is used to define outliers. All observations outside the 1.5 ∗ IRQ
range are outliers and marked separately as points in the plot. The lower and upper whiskers
represent the minimum and maximum value that are not outliers.

The combination of the overfitting and the heterogeneous workloads resulting in high intra-
type variation for the anomaly metric series prevents the model from detecting anomaly type-
specific symptoms based on 10 % and 30 % of available training data. These splits translate
to two and six metric series examples, which is not enough to match anomaly types reliably.
However, it can be seen that both augmentation methods are mitigating the overfitting of the
GRU model. For the 30 % split, the STL-GRU augmentation results in a median accuracy
of 0.27 compared to 0.15 when no augmentation is used and 0.26 for Jitter augmentation.
Three outliers of the Jitter augmentation reach values above 0.4, which is not the case when no
augmentation is used. The 50 % split, i.e., having ten examples available for each anomaly type,
is a reasonable representation of the anomaly type decision regions and allows the STL-DBA
augmentation to yield a median accuracy of 0.82. The lower outliers indicate that there are
splits, for which STL-DBA does not sub-sample the decision region well enough. The median
accuracy for the Jitter augmentation is 0.41 and for no augmentation 0.21. However, a very
high variance can be observed, which indicates a high dependence on the training examples
selected for the respective fold. For Jitter augmentation, some constellations yield accuracy
results of above 0.8 while more than half of the accuracy values lie below 0.4. Using 70 %
of the available data for training, the median accuracy value for the STL-DBA augmentation
improves to 0.91 and does not yield any lower bound outliers. The median values for the Jitter
augmentation and when no augmentation is used improve to 0.66 and 0.32. However, the high
dependence on the selected training examples remains, which results in a wide IQR when no
augmentation is used and in long whiskers for Jitter augmentation.

Figure 6.8: Loss values for training and test examples.

To analyze the extent to which the observed results are due to the overfitting of the GRU
model, we analyze the training procedure of the model. Therefore the loss values for all 20 folds
of the 70 % are observed across all 300 epochs. During training, the average loss value for each
epoch is determined. After each epoch, we switch the model into the prediction mode, calculate

86 Chapter 6. Recurrent Neural Network Model

a prediction for each test example metric series, and determine the average loss value. This
procedure results in a series of training and test loss values for each epoch. To remove initially
high loss, we start from epoch 3. The results are depicted in Figure 6.8, which shows the loss
values when no augmentation is used (left plot), for the Jitter augmentation (middle plot), and
the STL-DBA augmentation (right plot). The x-axis represents the epochs, while the y-axis
shows the loss values. The thick line represents the mean value, while the transparent area
around it is the standard deviation. When no augmentation is utilized, it can be seen that after
an initial joint decrease, the loss values for the training and test examples are strongly diverging.
The model is learning to apply the anomaly symptom recognition on the training examples but
fails to do so on unseen metric series, which fits the definition of overfitting. The test data loss
values are closer to training data loss values for the Jitter augmentation, indicating a mitigated
overfitting effect. However, between epoch 50 and 100, the test loss is not converging with
the training loss. The application of the STL-DBA metric series augmentation results in a
test data loss that closely follows the training data loss, resulting in a well-generalized model.
Combining the accuracy observations and loss value progresses, we conclude that the proposed
STL-DBA metric series augmentation method can mitigate the overfitting problem and enable
a well-generalized GRU model if the available examples are sub-sampling the decision region
well enough.

6.4.3 Evaluating Anomaly Symptom Recognition

We evaluate the ability of the anomaly symptom recognition to determine the anomaly type
based on metric series when the heterogeneous workload is executed on the components. Based
on the augmentation evaluation from Subsection 6.4.2, we utilize the STL-DBA augmentation
to train the symptom analysis model and set the anomaly type inference parameters. We refer
to our model as GRU in the following. The evaluation results are compared to the GP, DTW,
and Euclidean distance models. Since these models have limitations regarding the input space
dimensionality d, we use a partly aggregated subset of the collected metric data, which are:
CPU utilization in percent, the fraction of allocated memory in percent, the sum of disk read and
write data volume in bytes, and the sum of rx and tx network traffic volume in bytes. The same
parametrization as in Subsection 5.4.3 is used for the GP, DTW, and Euclidean distance models.
The augmentation is applied only for the GRU RNN model training. All other models utilize
the available training examples. Again, we use the available 20 examples of each anomaly type
injected into the compute nodes. The 20 examples of each anomaly are randomly split into a
training and test dataset. We analyze our method for different amounts of available training
examples, where 10 %, 30 %, 50 %, and 70 % are used as training data, and the remaining
examples are left for testing. The evaluation is executed 20 times for each split.

The accuracy results are depicted in Figure 6.9. The plot visualizes the trajectories of
achieved accuracy values with increasing training data split. Accuracy values are shown on
the y-axis, while the training data splits are marked on the x-axis. Respective colors represent
the four models. The dots are the mean accuracy values, while the error bars represent the 0.95
confidence interval calculated for all anomalies and all folds. It can be observed that the GRU
model generally yields lower accuracy results for the 10 % split. For GP, DTW, and Euclidean
distance models, the accuracy ranges between 0.18 and 0.21 while the accuracy for GRU is
0.14. For the 30 % split, the highest accuracy of 0.45 is achieved by the DG model while
the GRU, DTW, and Euclidean distance model’s accuracies are 0.29, 0.33, and 0.28. For the

6.4. Evaluation 87

Figure 6.9: Accuracy results for different train / test data splits.

50 % split, the GRU accuracy jumps to 0.79. A similar increase was observed during the pre-
vious evaluation in Subsection 6.4.2. This increase indicates that the intra-type variation of the
anomalies injected in this experiment necessitates around ten training examples to reasonably
sub-sample the decision regions in the input space, which allows the STL-DBA augmentation
to produce representative interpolations. The accuracy values for the GP, DTW, and Euclidean
distance models respectively increase to 0.61, 0.56, and 0.35. A slight increase of the GP and
DTW model’s accuracies for the 70 % split to 0.63 and 0.61 indicates a saturation. Additional
training data are unlikely to further increase the accuracy values for these models. The intra-
class variation limits the ability of the saturated models to improve further their ability to match
anomaly types, while the GRU model in combination with the metric data augmentation can
improve further. The slow increase of the Euclidean distance model prevents it from reaching
a mean accuracy of above 0.4. The GRU model achieves the highest accuracy value of 0.9.

Figure 6.10: Precision, recall, and F1 scores.

We further analyze the precision, recall, and F1 scores, which are depicted in Figure 6.10.
From left to right, the four plots represent the 10 %, 30 %, 50 %, and 70 % splits. Each
bar color represents a model. The respective score type groups the bars. The height of the
bar is defined by the respective mean score value, while the error bars are 0.95 confidence
intervals. As expected, the scores for all models increase with the increasing availability of

88 Chapter 6. Recurrent Neural Network Model

training examples. For the 10 % and 30 % splits, a comparably high precision value can be seen
for the GP model. The GRU model yields a comparable precision to the DTW and Euclidean
distance models, while the recall and F1 score are notably lower. For the 30 % split, the GRU
model achieves a higher precision compared to the DTW and Euclidean distance models and a
comparable recall and F1 score. At the 50 % split, the GRU scores outperform all other models
reaching a precision, recall, and F1 score of 0.86, 0.79, and 0.81 compared to the GP model
with 0.75, 0.61, and 0.65. The same steep increase of the GRU scores between 30 % and 50 %
split was previously observed for the accuracy values. For the 70 % split, the GP, DTW, and
Euclidean distance models reach a saturation, whereby only a slight change in the scores can
be observed compared to the 50 % split. The scores for the GRU model further increase to a
precision of 0.92, a recall of 0.89, and an F1 of 0.90. The overfitting of the GRU model when
only a few training examples are available leads to low evaluation scores. Additional training
examples enable a better sub-sampling of the decision regions of each class and thus allow
the augmentation method to generate examples within the decision regions. The variation of
the examples through augmentation mitigates the GRU overfitting problem for 50 % and 70%
splits.

Figure 6.11: Distribution of incorrectly predicted classes.

A model should rather misclassify anomaly types as unknown instead of predicting an in-
correct anomaly type. From a practical perspective, the models’ ability to admit their inability
to match an anomaly type is essential. It is better to redirect the problem to a human expert
instead of automatically select operations that will not resolve the anomaly. Therefore, we ob-
serve the distribution of misclassifications between the "unknown" class and all other classes
and present the result in Figure 6.11. The four plots represent the four different splits. The
two bars are grouped by the model while the colors show the average total number of incor-
rectly predicted examples respectively for "unknown" and all other classes mispredictions. The
error bars represent the 0.95 confidence interval. For the 10 % and 30 % splits, most GRU
and GP model mispredictions are the "unknown" class. In contrast to that, the DTW and Eu-
clidean distance models mispredict most examples as other anomaly type classes. The ration
between "unknown" class and all other anomaly type classes changes after the 30 % split for
GP and GRU. This change indicates an adjustment of the decision regions, which reduces the
"unknown" misclassifications faster. For the 70 % split, all models except GP yield an average
total number of other anomaly type mispredictions lower than 1.0. The "unknown" mispre-
diction value of 7.2 for the GP model indicates that the scores could be further increased by
fine-tuning the β parameter for each class. The GRU model yields an average total number of
5.1 mispredictions.

In Subsection 5.4.3 we state that the high precision values of the GP model can be translated

6.4. Evaluation 89

to a majority of "unknown" mispredictions. However, the inverse is not possible, represented
by most "unknown" mispredictions for the GRU model but a precision value of 0.24. The
precision is the ratio between the correct predictions of a class divided by the number of other
classes’ mispredictions as this class. This entails that the precision value for a class can be low
if either few examples are correctly predicted, or many examples of other classes are incorrectly
predicted as this class. Due to the nullification of the "unknown" class, the latter results in high
precision values for GP. In the case of GRU, the small number of correct predictions for certain
anomaly types (e.g., packet loss yields and memory leak yield precisions of 0.03 and 0.1 for
the 10 % split) results in a lower overall precision value.

6.4.4 Evaluating Unknown Anomaly Type Recognition
We test the ability of the proposed model to recognize previously unseen anomaly types as
"unknown", which is important for the extension of the anomaly symptom recognition knowl-
edge base. The same partly aggregated subset of the collected metric data as described in
Subsection 6.4.3 is used, whereof the monitoring metric series that are labeled as anomalous
is selected. The available anomaly type examples are split into a training and test dataset. We
exclude anomaly types, one at a time, from the training set for this evaluation and move them
to the test set. The task of the models is to predict the metric series that represent the excluded
anomaly type as "unknown". Each anomaly type is excluded ten times from the training data,
while 10 %, 30 %, 50 %, and 70 % of randomly selected examples of the non-excluded anomaly
types are selected for the training dataset.

Figure 6.12: Accuracy result for predicting the "unknown" class.

We analyze the model’s ability to recognize the excluded anomalies by calculating the accu-
racy. For this, all 20 metric series examples of the excluded anomaly type are presented to the
model with the desired outcome for it to classify them as "unknown". The results are depicted
in Figure 6.12. Each of the four bars represents the accuracy value of the respective model,

90 Chapter 6. Recurrent Neural Network Model

while the bars are grouped by the split percentage of used training data. The height of the bar
shows the mean accuracy, while the error whiskers are the 0.95 confidence intervals. Classify-
ing previously unseen anomaly types as "unknown" requires setting tight decision boundaries
around the decision regions. It can be seen that it is challenging for models to set tight decision
boundaries in the presence of homogeneous workload and the resulting high intra-class varia-
tions. The DTW and Euclidean distance models are yielding lower results than the GP and the
GRU models. The GP model yields constantly higher accuracy than the GRU model. When
few training examples are used, the sparsity of the decision regions allows the GRU and GP to
achieve accuracy values of 0.85 and 0.89 for the 10 % split and accuracy values of 0.81 and
0.82 for the 30 % split. For the 50 % and 70 % split, the accuracy for the GRU model decreases
to 0.75 and 0.66. The high variance indicates a dependence on the selected training examples.
The GP model’s accuracy is 0.78 and 0.68 for the 50 % and 70 % splits with a smaller variance
than the GRU model.

The augmentation that is used to train the GRU model results in a sub-sampling of the
decision region. Whether the generated samples fall into the real decision region has an effect
on how the decision boundaries are set during model training. A higher number of available
training examples results in decision regions of known classes that overlap with the unknown
class decision region with the effect of misclassifying them. It can be seen as a trade-off. More
available examples result in higher accuracy for known anomaly type classes but entail lower
accuracy values when recognizing unknown anomaly types.

Chapter 7

Integration into an AIOps Platform

This chapter is concerned with a prototypical implementation of a AIOps system that contains
our presented ReCoMe engine and the anomaly type recognition methods. It should enable
the automatic selection of operations to resolve anomalies. In the previous sections, we show
the ability of our methods to recognize symptom patterns in metric data and infer the anomaly
type. However, an anomaly symptom recognition alone cannot enable an automatic selection of
operation to resolve anomalies. It requires other methods like system component monitoring,
anomaly detection, root cause analysis, and execution of operations. These are provided by a
AIOps platform named ZerOps (short for zero-touch operation), wherein we integrate an imple-
mentation of the ReCoMe engine, which contains our anomaly symptom recognition methods.
ZerOps builds upon Bitflow, a data stream processing framework. We first describe both sys-
tems, which are published in [105] and [106]. Besides the ability to recognize symptoms and
infer anomaly types, the ReCoMe engine requires two other modules. The ingest control serves
as an interface. It manages the ingest of metric data and anomaly detection alarms, delegates the
root cause analysis task and initiates the anomaly symptom recognition. Further, it can relay the
metric data to another ReCoMe engine if no operation can be selected for the inferred anomaly
type to resolve the anomaly. It also contains the operation selection, including the interaction
with human operators. Finally, ZerOps allows flexible deployment of the AIOps modules. We
describe the concept of in-situ deployment and discuss different deployment concepts of our
ReCoMe engine. For evaluation, we deploy ZerOps in a cloud and simulated fog computing
environment and test the ability of our solution to infer anomaly types.

7.1 Bitflow and ZerOps
We implement the ReCoMe engine into the ZerOps platform. Initially proposed as a self-
stabilization pipeline for network function virtualization infrastructures [109], we develop Ze-
rOps into an AIOps platform for cloud and fog computing environments. At its core, it is based
on a data stream processing framework called Bitflow 1. The architecture of Bitflow is depicted
in Figure 7.1. At its core, it consists of a stream processing runtime and a Bitflowscript com-
piler. The runtime provides data processing operations which are referred to as operators. The
runtime enables the execution of operators, organizes the routing of the data, and provides in-
put and output interfaces. Furthermore, it manages all libraries that are required to execute the

1https://github.com/bitflow-stream/ (last access 20 May 2021)

91

https://github.com/bitflow-stream/

92 Chapter 7. Integration into an AIOps Platform

operators. An operator itself processes incoming data and forwards them to the next operator.
They can be combined as a directed acyclic graph (DAG). The definition and parametrization
of operators, input sources, and output sinks together with their combination to DAGs is ex-
pressed in a lightweight domain-specific language (DSL) named Bitflowscript. Such a script
can be passed to the runtime as an argument, whereupon data are read or received from defined
sources, processed by the operator of the DAG, and transmitted or provides at an output inter-
face. Thereby, the Bitflowscript compiler checks the syntax, identifies potential conflicts, and
notifies the user if defined step implementations are missing. A set of data operations, such as
filtering, normalization, and aggregation, is implemented by default. More advanced operators,
such as machine learning algorithms can be added through a plugin mechanism.

The Bitflowscript compiler and the runtime are deployed as Docker 2 containers. We refer
to a running container as a processing step. It is possible to define processing steps as input data
sources or output sinks. By doing so, the steps can be combined into a data processing pipeline.
Aside from processing steps, it is possible to define files, databases, and network endpoints as
sources and sinks.

Input
Data

Output
Data

DAG

Libs

Bitflow Stream Processing Runtime

Master Node

Kubernetes Bitflow Operator

Bitflowscript Compiler

Worker Node Worker NodeWorker Node

Processing
Step

Processing
Step

Processing
Step

Processing
Step

Processing
Step

Processing
Step

Processing
Step

Processing
Step

Processing
Step

Processing
Step

Processing
Data

Processing
Data

Master NodeMaster NodeMaster Node

Worker Node

Data Source
&

Processing Step
Definition

Figure 7.1: Bitflow data stream processing framework (adjusted from [106]).

The management of the processing steps is realized with Kubernetes 3. Kubernetes is used
for resource management, scheduling, and placement of processing steps. A Bitflow operator

2https://www.docker.com/ (last access 20 May 2021)
3https://kubernetes.io/ (last access 20 May 2021)

https://www.docker.com/
https://kubernetes.io/

7.1. Bitflow and ZerOps 93

is realized with the Kubernetes operator pattern 4. Thereby, the processing steps are managed
as custom resources 5. Two resource types are defined: data input and processing step. The
coupling of data inputs and processing steps is realized via labels. It is possible to assign labels
to data inputs and processing steps and define matching rules based on these labels. The Bitflow
operator spawns the instances of the custom resources based on the defined labels and matching
rules and couples them as a data processing pipeline. Following the declarative object defini-
tion principle of Kubernetes, processing steps are defined via a customized Kubernetes object
description files (ODF) - usually in YAML or JSON format. They contain the definition of pro-
cessing steps and data sources, which are external sources like files, databases or monitoring
systems, or existing processing steps. The Kubernetes ODF also contains the default config-
uration parameters for containers, which allow to define resource and placement constraints,
adjust port and volume mappings, and many others. These configurations allow controlling
how processing steps are places and executed on worker nodes. It can be seen that such a setup
allows the definition of AIOps methods like anomaly detection, anomaly symptom recognition,
root cause analysis, or operation execution as processing steps. The connection of processing
steps enables the deployment of a closed-loop AIOps system, whereby it is possible to control
how many resources the steps are allowed to consume and how they should be placed across
the worker nodes.

The ZerOps platform is implemented around Biflow. It includes several components to re-
alize the AIOps system. The system architecture is depicted in Figure 7.2. ZerOps utilizes
the Bitflow collector, which implements interfaces to different system data sources to acquire
monitoring data from SuO components. They transform the monitoring data into a unified
Bitflow-internal format and provide them as a data source to data processing steps. Further-
more, ZerOps provides an interface to the meta-information of the SuO components, such as
the placement of virtual machines, IP addresses, or network topology. This information is re-
quired by the Bitflow operator for data processing step placement or by the operation selection
module to select operations that can be executed on a specific component. ZerOps extends
the Bitflow stream processing runtime and implements interfaces to a model repository and an
event bus. Former is used to load and store models, e.g., for anomaly detection or anomaly
symptom recognition. A version policy is implemented for models, which allows retrieving
previous model parameters. It is used to trace the models’ past decisions if parameters changes
in the meantime. Latter is a communication interface between processing steps to transmit and
receive notifications.

The Bitflow operator places and starts the data processing steps on worker nodes. The
anomaly detection, RCA, and all ReCoMe modules are implemented as data processing steps.
They receive monitoring series data and apply their analyses. The operation selection is a
special processing step. It does not process the monitoring series but operates on events. If
anomalies are detected, it expects to receive information about the anomaly type, which allows
an automatic selection of an operation. StackStorm 6 is utilized as an external operation ex-
ecutor to separate the selection of operations from their implementation. Human operators are
needed whenever an automatic operation selection cannot be made. They are required to de-

4https://kubernetes.io/docs/concepts/extend-kubernetes/operator/ (last access
20 May 2021)

5https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
custom-resources/ (last access 20 May 2021)

6https://stackstorm.com/ (last access 20 May 2021)

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://stackstorm.com/

94 Chapter 7. Integration into an AIOps Platform

Execute
Operation

Feedback

Virtual Resource
Managers

Monitoring Data
Sources

Operation Executor

Bitlow Collector

Meta Information
Interface

Bitflow Stream Processing
Runtime

Data Processing
Step Libs

Human Interface

Operation Selection

Visualization

Migr
ati

on
s,

re
sta

rts
, ..

.

Rollbacks

Continuous Delivery
Systems

Human Interface

Execute
Operation

Operation Executor

/proc
Bitflow Operator

Operation

Feedback

Model Repository

E
vent B

us

Figure 7.2: Overview of the ZerOps platform.

fine operations and adding them into the ReCoMe operation knowledge base. For this, ZerOps
provides a human interface where these entries can be done. The ZerOps provides interfaces to
visualize metric data or analysis results via Kibana and Grafana. It provides an overview of the
states of anomalous SuO components and analysis method results to human operators.

7.2 ReCoMe Engine Implementation Details

The interaction between the modules of the ReCoMe engine is a complex and dynamic process
with interfaces to external entities. The engine receives alarms from external anomaly detection,
queries metric data of components reported to be anomalous, identifies anomaly type-specific
symptom patterns, interacts with human experts, and selects feasible operations to resolve the
anomalies. This section provides details that are important for implementing the ReCoMe
engine and its integration into ZerOps.

The ingest control module is the interface between the anomaly detection and the ReCoMe
engine. It receives N �→A and A �→N alarm messages via the event bus of ZerOps. Furthermore,
it communicates to an external RCA module whenever several SuO components are reported to
be anomalous to identify the root cause. Whenever several SuO components are reported to be
anomalous, an external RCA module is requested to identify the root cause component. Based

7.2. ReCoMe Engine Implementation Details 95

on this, it selects one anomalous SuO component to be resolved by the subsequent ReCoMe
modules. First, the RC component is remediated. It requests metric data for this component
from the Bitflow collector and keeps receiving metric data samples whenever available until an
A 7→ N alarm occurs. These data are forwarded to the anomaly symptom recognition, which
should infer the anomaly type based on the observed symptom patterns. If other components
are still anomalous after the remediation of the RC, it initiated the symptom analysis for them
as well. The ingest control can be configured to delegate the anomaly symptom recognition to
another ReCoMe engine. In this case, it buffers the received metric series samples and receives
feedback messages from the operation selection module. If the "unknown" anomaly type is
inferred or if an automatically selected operation could not resolve the anomaly, the ingest
control forwards the buffered metric data to another ReCoMe engine. There, the anomaly
symptom recognition is initiated.

Receive N->A alarm

Symptom Analysis

Alarm

Metric data

Receive feedback

Receive data

Feeback

Receive anomaly type

Analyze symptoms

Anomaly Type Inference

Analysis results

Apply type infernece
policy

Operation Selection
Anomaly type

Receive results

Calculate confidence

Receive anomaly type

Receive meta-information

Operation execution

Feeback

Anomaly type Initiate operation
execution

Operation request

Calculate preference scores

Scored feasible
operation set

Human Operator

Operation

Receive execution result

Alarm

Execution result

Generate feedback

Select next operation

Apply label &
update KB

Meta-info

Load feasible operation set

Request operation

Set is emptySet is not empty

 Receive A->N alarm

Update execution history
Update execution

history

Select operation

SuccessFail

Timeout A->N

Select
anomaly type

Set type
"unknown"

Anomaly type

Figure 7.3: ReCoMe process flow.

The internals of the symptom analysis, anomaly type inference, and operation selection
modules are explained based on the process flow diagram in Figure 7.3. The symptom analysis
receives the metric data series of an anomalous component and tries to recognize anomaly type-
specific symptom patterns. This analysis is applied whenever a metric series sample is received.
The symptom analysis results represent associations of anomaly-type symptoms within the
observed metric series with the symptom patterns from previously observed anomalies. These
symptom analysis results are sent via the event bus to the anomaly type inference module, which
applies a type inference policy. This inference policy application either results in predicting
an anomaly type from the result list or setting the anomaly type as "unknown". After that, a

96 Chapter 7. Integration into an AIOps Platform

confidence value is assigned to the selected anomaly type. The anomaly type and the confidence
value are sent via the event bus to the symptom analysis and operations selection modules.

Based on the anomaly type and meta-information about the anomalous component, the op-
eration selection module should automatically select feasible operations to resolve the ongoing
anomaly. The anomaly type and meta-information are used to query the knowledge base of
available operations. First, operation knowledge base entries that contain the received anomaly
type in their anomaly type column are selected. After that, only entries for which the com-
ponent meta-information match the defined properties in the component selector column. The
outcome is a set of feasible operations. This set can be an empty set if no matches are found.
A human operator is involved in case an empty set is encountered, who must define an opera-
tion to resolve the ongoing anomaly. Otherwise, each operation’s execution history entries are
loaded, and a preference score is calculated for each operation. It results in a set of feasible
operations descendingly sorted by their preference score. Details about the preference score
calculation are described in Subsection 7.2.1 After that, an operation should be selected from
the sorted list. Selecting a concrete operation from this set highly depends on the SuO use case
and the preferences of human experts. It is possible to propose the list as a recommendation
and leave the selection to a human expert or select the operation with the highest preference
score.

After selecting an operation, the operation selection module initiates the execution through
the external operation executor. The outcome of the execution is expected to be reported. This
outcome indicates whether the operation was successfully executed, i.e., no errors occurred
when executing the respective commands of the operation. If the remediation operation exe-
cution fails, the outcome is added to the remediation execution knowledge base, and another
operation is requested. This can involve a human expert. Note that the reported execution result
does not contain any statement whether the anomaly was successfully resolved. If the operation
execution was successful, an A 7→ N alarm is awaited. This process is coupled with a timeout.
If the executed operation cannot resolve the anomaly, an A 7→ N alarm is never received, and
the timeout occurs. This again entails storing the results in the operation execution knowledge
base, whereafter another operation is selected. If no timeout occurs, the receipt of an A 7→ N
alarm indicates the transition of the SuO component from an anomalous to a normal state. In
this case, the executed operation is assumed to successfully resolved the anomaly. The execu-
tion result is stored in the operation execution knowledge base, and respective feedback for the
symptom analysis module is generated.

The feedback message should enhance the symptom analysis for future occurrences of this
anomaly type. The content of the feedback message can be separated into three cases:

1. The predicted anomaly type is unknown. In this case, the human expert is expected to
provide an anomaly type label when an operation is compiled. This label is added to the
feedback message.

2. The predicted anomaly type is incorrect. Therefore, the selected operations will probably
not resolve the anomaly, and a human expert is notified at some point. It is expected that
the expert corrects the misprediction and defines or selects an operation to resolve the
ongoing anomaly. This information is added to the feedback message.

3. The predicted anomaly type is correct. In this case, the automatically selected operation
can resolve the ongoing anomaly. Still, it is possible to configure the operation selection

7.2. ReCoMe Engine Implementation Details 97

to request a confirmation for the predicted anomaly type during the operation selection.
This information is respectively included in the feedback message.

The symptom analysis receives the feedback message and the predicted anomaly type. Based
on the information in the feedback message, it applies the label on the analyzed symptom pat-
terns and accordingly updates the knowledge base. The feedback message is only received
if the anomaly is resolved, i.e., an A 7→ N alarm is received. Therefore, the symptom analy-
sis terminates after applying the labeling of the symptom patterns and storing them into the
knowledge base. At this point, it can be invoked again by the ingest control if anomalies occur.

7.2.1 Preference Score Calculation
Based on the anomaly symptom recognition result, the operation selection module retrieves a
set of feasible operations to resolve the ongoing anomaly. It further calculates a preference score
for each operation in order to rank them. This preference score is a weighted sum of numerical
attributes that are available for each operation. The concept is show in Table 7.1. The weights
and all operations are listed as rows, while the different attributes and the preference score are
arranged as columns. Calculating the preference score vector Σ can be expressed as a matrix
multiplication

Σ = Aw, (7.1)

where A is the matrix of all attribute values from a1,1 until aN,M, w = (w1, . . . ,wM)T is the
weight vector, and Σ = (Σ1, . . . ,ΣN)

T is a vector containing all preference scores.

Table 7.1: Preference score calculation via weighted sum model.
Attribute1 Attribute2 ... AttributeM Preference Score

Weights w1 w2 ... wM

Operation1 a1,1 a1,2 ... a1,M Σ1
Operation2 a2,1 a2,2 ... a2,M Σ2

...
OperationN aN,1 aN,2 ... aN,M ΣN

The attributes represent the numerical properties of the operations. The respective weights
can be interpreted as the importance of the attributes. A higher weight will let the attribute
contribute more to the preference score than a lower weight. Attributes can have a negative
or a positive impact on the preference score. If a fast operation execution time should be pre-
ferred, the execution time of an operation should reduce the preference if the value increases.
A high confidence value should usually increase the preference score. Therefore, the weights
are signed. A negative sign implies a negative impact of the attribute value on the overall score,
while a positive sign represents a positive impact. We define a limited set of attributes that are
used for the preference score calculation. For this set of attributes, the user defines weights
representing the preference towards specific attributes for the preference score calculation. Hu-
man involvement is required since it highly depends on the use case which operations should
be preferred. The following attributes are defined:

1. The confidence value for the prediction anomaly type. This value is the same for all
operations.

98 Chapter 7. Integration into an AIOps Platform

2. The average execution duration in seconds, based on the execution duration property of
the operation execution knowledge base.

3. The ratio of successful executions of this operation to its overall number of executions.
This value is calculated based on the "successfully executed" property of the operation
execution knowledge base.

4. The ratio of executions that successfully resolved the anomaly for this operation to its
overall number of executions. This value is calculated based on the "successfully reme-
diated anomaly" property within the operation execution knowledge base.

After calculating these attributes for each operation of the feasible set, each attribute is
respectively normalized via

ai, j =

{ ai, j−ai,min
ai,max−ai,min

, if ai,max ̸= ai,min

1 , otherwise.
(7.2)

where a j,min and a j,max are the minimum and maximum values of the respective column j.
If all attribute values are equal, we assign 1 to prevent devision by zero. The normalization
is required to make the attributes comparable. Ratios are defined between 0 and 1 while the
execution time in seconds can arbitrary grow, which would result in an unproportionally high
impact of the execution time on the preference score.

7.2.2 Integration into ZerOps
We integrate the ReCoMe engine module into ZerOps to realize the closed-loop control. The
architecture is depicted in Figure 7.4. It shows a compute node that hosts two VMs as the SuO.
All components in the diagram that are marked by the docker symbol are realized as containers.
Dotted lines are used to mark components that are not the explicit focus of this thesis but are
utilized to realize the closed-loop AIOps system. The Bitflow collector containers are deployed
on each compute node and collects runtime metrics from the compute node itself and all VMs
that it hosts. The metrics are respectively provided via endpoints as data input sources. In this
example, the Bitflow collector provides three sources for the compute node and the two VMs.
Whenever additional VMs are started on that compute nodes or if existing VMs are terminated
or migrated, it respectively adds or removes endpoints. Bitflow can provide TCP endpoints,
where a different port is used for each VM and compute node, or HTTP endpoints where the
hostname of the compute nodes or the libvirt identifier of the VMs is used as URL paths.
The collector allows configuring a buffer to store a certain amount of recent metric samples
for each endpoint. The Bitflow operator checks the collector endpoints and adjusts the metric
data processing pipeline. Due to the adding and removal of endpoints, the analysis pipelines
are accordingly adjusted. It enables ZerOps to configure the data analyses according to the
dynamics of the SuO. By utilizing the label matching configuration of the Bitflow operator, it is
possible to define a specific mapping of data sources to processing steps. It is possible to spawn
a one-to-one mapping or use a selector that connects a processing step to several data sources.
The first processing step is anomaly detection, whereby one anomaly detection processing step
is spawned for each Bitflow collector data source.

The modules of the ReCoMe engine are deployed as three containers. Due to their strong
interdependence, the symptom analysis and the anomaly type inference are deployed in the

7.3. Deployment Strategies 99

Compute Node

VM2VM1

Bitflow Collector

Anomaly Detection

Anomaly Symptom
Recognition

Anomaly Symptom

Operation SelectionOperation Executor

RCAIngest Control

ReCoMe Engine

Figure 7.4: Closed-loop AIOps system containing the ReCoMe engine.

same container. The first module of the ReCoMe engine is the ingest control. It is configured
to receive alarms from all anomaly detection processing steps. Furthermore, it is connected
to an RCA module, requested whenever N �→ A alarms from multiple system components are
received. We deploy an ideal root cause analysis throughout our experiments that utilizes the
ground truth to identify the root cause. The ingest control initializes the automated opera-
tion selection to resolve an anomalous component. Thereby, it requests all buffered metric se-
ries samples from the respective Bitflow collector endpoint and transmits them to the anomaly
symptom recognition, which applies the symptom analysis and anomaly type inference. The
results are transmitted to the operation selection, which eventually initializes the operation ex-
ecution through the executor.

7.3 Deployment Strategies
ZerOps utilizes the Biflow operator to manage the monitoring data analysis methods as pro-
cessing steps, which are deployed as Docker containers. The execution of the processing steps
requires computational resources. We want to analyze two deployment concept variants for the
AIOps system. One possibility is to provide dedicated nodes in a data center used to run all
processing steps of the AIOps system. The second possibility is to co-locate processing steps
with the regular workload on the compute nodes.

The two deployment concept variants are depicted in Figure 7.5. Concept 1 is shown on
the left part as a set of compute nodes reserved for regular workload execution and another set
of nodes where the AIOps system is deployed. A possibility is to select a fraction of available
nodes - e.g., 5 % - for this. The advantage of this variant is that there is no interference between
regular and AIOps workload. Also, the nodes’ hard- and software specifications can be special-
ized to allow efficient and fast execution of the metric data processing steps. The disadvantage
of it is that monitoring data need to be sent from compute nodes to the dedicated AIOps node.
For a SuO that is located in a single data center, this aspect might be neglectable. However,
when considering cloud computing systems that are spread across several data centers or fog
environments, the monitoring metrics’ transmission should be reduced. Especially for the lat-

100 Chapter 7. Integration into an AIOps Platform

Deployment variant 1 Deployment variant 2

Compute nodes executing regular and
AIOps workload

Dedicated
AIOps nodes

Compute nodes executing
regular workload

Regular workload

AIOps workload

...

Figure 7.5: Two deployment concept variants.

ter, a major objective is to process data near their origin to prevent transmission via a carrier
network.

Therefore, deployment concept 2 is considered. In Figure 7.5 it is depicted on the right side
as a set of compute nodes that execute both regular and AIOps workload. We refer to it as in-situ
(Latin for in place) data analysis [106]. A similar resource fraction assignment like for variant
1 can be done by reserving a fraction of available computation resources - e.g., 5 % - on each
compute node for AIOps workload execution. Under ideal assumptions, the total amount of re-
served resources for AIOps is the same for variants 1 and 2. However, variant 2 allows a natural
scaling when the system is growing. No additional dedicated AIOps nodes are required. The
reservation of computation resources can be adjusted based on the current requirements, and
unneeded resources can be utilized by regular workload. This variant is streamlined with the
computation paradigms introduced by edge and fog computing, where data should be analyzed
near the source. With variant 2, we emphasize the placement of the monitoring data analysis
steps on the compute node where the metric data are collected. Analyzing data close to their
source also entails low latencies and locality, which are essential when dealing with imminent
system component failures or when the network is unreliable between the fog and edge nodes
and the dedicated AIOps nodes. Disadvantages are the additional placement logic requirement
and the potential inference with a regular workload. A management unit that schedules the
execution of AIOps workload is needed, which is the Bitflow operator. Furthermore, it utilizes
Docker’s ability to limit access to specific resources. Docker realizes the resource limitation via
the "cgroups" feature of the Linux kernel [160]. Although it is possible to limit the utilization
of CPU, memory, disk, and network resources for container processes, the executed workload
and AIOps analysis processes still have inferences in the deeper parts of the system due to
scheduling, the different CPU caching layers, and many others.

A mixture of both variants is possible. Whether analysis steps can be in-situ executed de-
pends on their computational resource requirements. Processes requiring much memory (e.g.,
due to many model parameters) or executing complex CPU-intensive calculations might not fit
the reserved fraction of computation resources. If metric data from several remote sources must
be sent to a single processing step, an in-situ approach is also not ideal. Therefore, we suggest

7.3. Deployment Strategies 101

a mixed deployment concept to benefit from the advantages of both variants while mitigating
the respective disadvantages. Analysis steps can be deployed in-situ if

1. their resource requirements comply with the reserved fraction on the node where it should
be placed, and

2. they do not require metric data from components located outside of the node on which
they are placed.

The former is a hard requirement, while the latter can be relaxed by moving AIOps analysis
steps as close as possible to the data sources.

As presented in Subsection 7.2.2, the closed-loop control consists of different analysis steps.
This modular design allows deploying steps either in-situ or on dedicated AIOps nodes. In the
following, we present two deployment concept of our AIOps system. Both are depicted in
Figure 7.6. As an example, we assume two compute nodes that are hosting virtual machines.
Figure 7.6a and Figure 7.6b show two possible distributions of the processing steps between
the reserved fraction of resources for in-situ analysis and a dedicated AIOps node. Note that the
ReCoMe engine analysis steps are represented as a grouped ReCoMe entity in the diagrams,
but indeed are three separate processing steps.

In Figure 7.6a, the Bitflow collector and the anomaly detection analysis step are deployed
in-situ. Thereby, the metric data of the respective node and the individual VMs are observed
and analyzed by the anomaly detection. Thereby, the anomaly detection can be interpreted as
a filter. It does not raise alarms for normal component states, and monitoring data are not sent
beyond the compute node. Since anomalies are expected to occur infrequently, this is the case
for most of the collected metric data volume. Therefore, this deployment reduces the overhead
caused by transmitting monitoring data to a central AIOps node. If the anomaly detection raises
alarms, the ingest control of the ReCoMe engine requests a fraction of recent monitoring data
of the anomalous SuO component. At the end of ReCeMe’s process of analyzing metric data,
an operation execution is eventually initialized. The operation execution module remotely ex-
ecuted the operation on the respective components. This variant assumes a reliable network
connection between the compute nodes and the AIOps node. The transmission of data to the
AIOps node and the remote operation execution might not be possible if the network connec-
tivity is causing the anomaly. System components that are geographically distributed, as is the
case in fog and edge computing, require options to resolve anomalies even if the network is
unreliable.

In Figure 7.6b, the whole AIOps system is deployed in-situ. This enables autonomy for
the respective compute nodes and must not rely on the network between workload and AIOps
nodes. Considering a geographic distribution of nodes, the in-situ deployment of the whole
AIOps system reduces the latency. A fast local reaction to detected anomalies is possible. The
biggest challenge of this deployment concept is the aspect of limited resource availability. It
demands a high resource efficiency from the utilized monitoring, anomaly detection, and Re-
CoMe processing steps. This requirement effectively excludes the utilization of complex mod-
els. Since anomaly detection is analyzing all monitoring data, this is a common assumption
for anomaly detection models[177, 210, 212, 234, 243]. However, a strict resource limitation
is challenging, especially for the anomaly symptom recognition of the ReCoMe engine, which
should analyze metric series and identify anomaly types based on symptom patterns. Further-
more, anomalies can throttle the internal processes of a compute node. An over-utilization of

102 Chapter 7. Integration into an AIOps Platform

ReCoMe Engine

Operation Execution

AIOps Node

Bitflow Collector

Anomaly Detection ReCoMe Engine

Operation Execution

Compute Node Compute Node

VM VMVM VM VMVM

(a) Deployment concept 1: The ReCoMe engine is deployed on a dedicated AIOps node.

Compute Node Compute Node

VM VMVM VM VMVM

ReCoMe Engine

Operation Execution

Bitflow Collector Anomaly Detection

AIOps Node

(b) Deployment concept 2: Two ReCoMe engines are deployed in-situ and on a dedicated
AIOps node.

Figure 7.6: Two deployment concepts.

available computation resources is an example. Due to the potential internal unresponsiveness,
operation execution from external nodes must be done to resolve the anomaly. Based on these
considerations, we propose a fall-back strategy. Another ReCoMe engine instance, together
with an operation execution module, is located on a dedicated AIOps node. Whenever the
anomaly symptom recognition cannot be done via a resource-efficient local model, the problem
is delegated to the ReCoMe engine running on the AIOps node. There, it is possible to em-
ploy models of higher complexity to perform the pattern analysis. Furthermore, the operation
execution module can execute remediation operations if a compute node cannot perform the re-
mediation locally. This also enables the handling of propagating anomalies, where components
beyond one compute node are affected, by relaying the responsibility to the ReCoMe engine
running on the dedicated AIOps node.

The effect and intensity of advantages and disadvantages of both deployment concepts
highly depend on the use case and the employed AIOps analysis step implementations. With
the proposed design, we aim to allow a flexible and modular AIOps system setup.

7.4. Evaluation 103

7.4 Evaluation

We conduct experiments to evaluate the AIOps system containing our ReCoMe engine. There-
fore, we first analyze the runtime of the two anomaly symptom recognition methods to infer
implications for analysis step placement. It should be investigated which data processing can
be executed in-situ. After that, we describe the experimental design for deployment concept
testing. The evaluation environment is extended to allow a simulation of fog environments.
Thereby, the compute nodes are separated into groups that represent fog and cloud computing
environments. Anomaly injection experiments are conducted there. We test the AIOps sys-
tem by applying the two deployment concepts on the cloud and fog computing environments
and observe the system’s ability to automatically infer anomaly types and automatically select
operations to resolve the anomaly.

7.4.1 Runtime Evaluation

The deployment concepts of the AIOps analysis steps highly depend on their runtime efficiency.
We consider two phases when investigating the analysis step runtime: the training and predic-
tion phase. During training, all available anomaly metric series are used to set up the model.
This is either done by the density grid transformation for the density grid pattern model or
by tuning the GRU RNN model parameters. After that, the model can be employed for pre-
diction, where incoming series are searched for symptom patterns to infer the anomaly type.
We conduct runtime measurements for both models during the training and prediction phase.
Throughout all measurements, the datasets from the experiments described in Subsection 5.4.2
and Subsection 6.4.1 are used.

Both anomaly symptom recognition methods and the metric series augmentation are im-
plemented in Python 7. During our experiments, Python version 3.7.6 8 is used. The density
grid model is a custom implementation. The GRU RNN is realized with PyTorch version
1.7.0 [183]. For the metric series augmentation the libraries statsmodels version 0.12.1 9,
tslearn version 0.5.0.2 10, and recombinator version 0.0.5 11 are used. All model parameters
are set as defined in Chapter 5 and Chapter 6. The time measurement is realized via a perfor-
mance counter. Since the symptom pattern recognition methods are implemented in Python,
Python’s perf_counter is used. It returns a value in fractional seconds of the operating system’s
internal clock. Thereby, the time value reference is not defined, which means that the differ-
ence between the return values of two perf_counter function calls must be calculated to acquire
a valid duration 12.

First, we measure the time that is needed to set up the respective prediction model. The
measurements are performed based on 14 available training examples (corresponds to a 70 %
split) for each component and anomaly type. There are nine components (the compute nodes,
six Clearwarter, and two video on demand services) and eight anomaly types. A model is

7https://www.python.org/ (last access 25 May 2021)
8https://www.python.org/downloads/release/python-376/ (last access 25 May 2021)
9https://www.statsmodels.org/v0.12.1/ (last access 25 May 2021)

10https://github.com/tslearn-team/tslearn/ (last access 25 May 2021)
11https://github.com/InvestmentSystems/recombinator (last access 25 May 2021)
12https://docs.python.org/3/library/time.html#time.perf_counter (last access 25

May 2021)

https://www.python.org/
https://www.python.org/downloads/release/python-376/
https://www.statsmodels.org/v0.12.1/
https://github.com/tslearn-team/tslearn/
https://github.com/InvestmentSystems/recombinator
https://docs.python.org/3/library/time.html#time.perf_counter

104 Chapter 7. Integration into an AIOps Platform

Table 7.2: Runtime results of metric data processing steps during the training phase.

Data Processing Step Time in [s]
Median Mean Standard deviation

Density Grid Pattern Model
Grid Transformation 1.94 1.24 0.11

Metric Data Augmentation 1854.24 1903.98 134.65
GRU Model trained on CPU 7639.37 7621.45 240.29
GRU Model trained on GPU 1549.97 1548.63 11.28

trained for each component to distinguish the eight anomaly types. We measure the time until
all models are trained. The training of each model is executed sequentially. While the grid
transformation is performed on a regular cluster node, we measure the time to train a GRU
model on a cluster node’s CPU and a GPU of an AIOps node. Furthermore, the GRU model
is trained based on augmented anomaly type examples. Thus, the time needed to generate 500
augmented examples is measured as well. Each of the four data processing steps is executed
ten times and we calculate the mean, median, and standard deviation in seconds. The results are
listed in Table 7.2. As expected, the training of the GRU model requires significantly more time
than the grid transformation. The difference lies within three orders of magnitude. Our density
grid model requires 1.24 seconds to process all available anomaly training examples. The GRU
model is trained for 300 epochs, which is the number of iterations over the available training
examples. It requires approximately 2 hours to train it on a CPU and 25 minutes on a GPU.
Furthermore, it takes approximately 30 minutes to generate 500 augmented training examples.
Depending on the availability of computational resources, the augmentation and model training
can be executed in parallel with an initial offset for the training to generate the first batch of
examples. Notably, the standard deviation for the GRU training on the GPU is smaller than
the one for CPU training. This difference is explained by the fact that the GPU is exclusively
reserved for model training calculations. The CPU, on the other hand, is concurrently accessed
by all running processes (at least the operating system and the docker container management)
that are running beside the model training process.

Table 7.3: Runtime results of metric data processing steps during the prediction phase.

Data Processing Step Time in [ms]
Median Mean Standard deviation

Density Grid Pattern Model
Grid Transformation 11.00 11.77 4.34

Density Grid Pattern Model
Grid Pattern Comparison 3.70 11.41 -

GRU Model on CPU 8209.73 8312.97 326.16
GRU Model on GPU 9690.13 9686.75 80.93

Second, we investigate the prediction time. Thereby, the time a model needs to process one
metric series and predict the anomaly type is measured. Again, the models are trained on 14
available examples of each anomaly type (corresponds to a 70 % split) for every component.
After that, the remaining six examples are used for prediction. Each example is processed ten
times resulting in 60 measurements for each anomaly and component. The density grid model

7.4. Evaluation 105

predictions are executed on the CPU of a regular cluster node. Thereby, the series is first trans-
formed into a density grid and eventually compared to the available density grids to calculate
the similarities. We respectively measure the time for both data processing steps. For the over-
all prediction time, they need to be added. The prediction time of the GRU model is measured
when executed on a CPU of a regular cluster node and a GPU of an AIOps node. Thereby, no
sample batching is done. Every sample is processed individually. No metric series augmenta-
tion is applied during the prediction phase. The results are listed in Table 7.3. Note that the
mean, median, and standard deviation are calculated in milliseconds. The prediction time of the
GRU model is two orders of magnitude higher than the density grid prediction time. The mean
time for the grid transformation of a single series is 11.77 milliseconds. For the grid pattern
comparison, a mean time of 11.41 milliseconds is required, resulting in 23.18 milliseconds for
density grid model prediction time. The mean prediction time for the GRU model on CPU and
GPU is 8.2 and 9.7 seconds. The faster prediction on the CPU can be explained by the missing
sample batching. Transferring each sample to GPU and back results in additional overhead and
is eventually reflected in a longer prediction time for an anomaly series. The effect regarding
the higher standard deviation on the CPU compared to GPU can be observed again. The grid
pattern comparison times are heavily skewed, as indicated by the difference between the mean
and median. The calculated standard deviation is 23.79 milliseconds, resulting in negative time
values if we assume a normal distribution. Therefore, we further investigate the reason for the
skew.

Figure 7.7: Runtime results of density grid comparison for each anomaly type.

We analyze the grid pattern comparison runtime depending on the anomaly type, which is
visualized in Figure 7.7. The x-axis depicts all eight anomaly types. The blue bars represent
the measured runtime values for the density grid comparison, while the orange bars show the
density grid sizes, which is the number of non-zero cells in the density grid pattern. The left
and right y-axes are scaled to show the values of the blue and orange bars, respectively. A 0.95

106 Chapter 7. Integration into an AIOps Platform

confidence interval is shown as error bars on top of each bar. A high difference in the runtime
values between anomaly types can be observed. Calculating the grid similarities for the CPU
overutilization anomaly requires a mean value of 0.47 milliseconds, while the calculation for
the disk IO anomaly takes a mean runtime of 52.9 milliseconds. These high differences cause
the skewness of the distribution if collectively considering all anomaly types. We further inves-
tigate the relationship between the density grid size and the density grid comparison runtime,
revealing a Pearson correlation coefficient of 0.97. Therefore, a high correlation between the
amount of non-zero grid cells and the grid pattern comparison runtime exists. This complies
with the theoretical runtime analysis of the density grid model from Subsection 5.1.3. Anoma-
lies that affect multiple computation resources and cause high variation result in higher numbers
of non-zero grid cells, leading to higher grid pattern comparison runtimes.

The runtime analysis result has implications regarding the placement of the anomaly symp-
tom recognition methods. The GRU model has a high computation resource requirement for the
training phase. We argue that an in-situ execution of GRU model training, where the availability
of computing resources is further limited, is not feasible. They should be trained on dedicated
nodes. Furthermore, the time that is needed to train such models poses a limitation for frequent
retraining. Thereby, a trade-off must be made between incorporating recent information and the
high resource utilization during training. The runtime for the density grid model’s training and
prediction is several orders of magnitude lower compared to the GRU model. Consequently,
the density grid model training of and prediction can be executed in-situ due to its efficiency.

7.4.2 Experimental Environment
We utilize the evaluation environment describe in Section 5.3 but adjust it to simulate the prop-
erties of a fog computing system. Furthermore, we add one node to the system equipped with
graphics processing unit (GPU) hardware to accelerate the RNN model training. The hardware
specifications of this node can be found in Table 7.4. We refer to it as GPU node.

Table 7.4: Hardware specifications of compute node for RNN model training.

Resource Type Specification Quantity
Processor Intel Xeon Silver 4208 2.1GHz 8 Cores 1

Graphical Processor Unit NVIDIA Quadro RTX 5000 16GB GDDR6 2
Main Memory DDR4 16GB 2400MHz 6

Storage Micron 2200 M.2 NVMe 1TB 3GB/s 2
Network Intel X550 10GBit Ethernet Controller 2

The experiment is conducted on 17 commodity cluster nodes and one GPU node. We deploy
OpenStack Stein13 as a cloud resource management system on 12 nodes. Three of them are
load balanced with haproxy 14 and used as OpenStack network and controller hosts, while nine
compute nodes host the virtual machines. Two AIOps system nodes are reserved for running
the ZerOps platform services exclusively. One of them is a regular commodity cluster node,
while the other is the GPU node. Three nodes contain the processes that simulate client access,
and one is used as a host for the anomaly injection controller.

13https://releases.openstack.org/stein (last access 06 May 2021)
14http://www.haproxy.org/ (last access 30 May 2021)

https://releases.openstack.org/stein
http://www.haproxy.org/

7.4. Evaluation 107

Since the nodes are located in a LAN, connected via a maximum of three hops over
switches, they do not meet the requirement of a fog environment. We utilize the traffic shaping
tool tcconfig 15 which allows configuring a limited bandwidth, unreliable network, or increased
latency between arbitrary endpoints. The tool is used to configure latencies between nodes to
simulate a fog-like environment. The setup is depicted in Figure 7.8. A cloud environment
group with five compute nodes and two fog environment groups consisting of respectively two
compute nodes provide the computational resources. OpenStack’s host aggregate and availabil-
ity zone functionalities are used to realize the compute node grouping 16. All outgoing packets
of respective groups are delayed to simulate geographical distance. It results in an increased
latency between the respective node groups. The packet delay is only applied between compute
nodes of different groups but not between nodes of the same group. The delay is set to 100 ms
between the client nodes and the fog groups and 150 ms between the client nodes and the cloud
group. Furthermore, a delay of 50 ms is configured between the two fog groups and between
the fog groups and the cloud group. The cloud group contains the OpenStack controller and
network and the AIOps nodes.

Clients

Fog Fog

100 ms 100 ms

50 ms50 ms

50 ms

150 ms

Cloud

Compute node

AIOps node

Figure 7.8: Simulated fog environment.

Both service use cases are deployed on the available compute nodes. For Clearwater, we

15https://github.com/thombashi/tcconfig (last access 22 May 2021)
16https://docs.openstack.org/nova/latest/admin/availability-zones.html (last

access 22 May 2021)

https://github.com/thombashi/tcconfig
https://docs.openstack.org/nova/latest/admin/availability-zones.html

108 Chapter 7. Integration into an AIOps Platform

deploy the bono VMs within each fog group on respectively one compute node. All other
Clearwater service VMs are deployed on the compute nodes within the cloud. The numbers of
Clearwater service VMs are listed in Table 7.5. For the video on demand, two load balancer
VMs and one video server VM are deployed on the other compute node within each fog group.
Furthermore, three video servers are deployed on the compute nodes of the cloud group. The
Clearwater VMs are provided with one virtual CPU, 2GB RAM, and 40GB disk space, while
video on demand VMs run with two virtual CPUs, 4GB RAM, and 80GB disk space. All VMs
operate with Ubuntu 16.04.3 LTS under Linux kernel version 4.4.0-128-generic. Two SIPp
processes are executed on one node of the client group to generate load against Clearwater.
They are configured to generate between 300 and 500 user registrations and call initiations
every second. The other two nodes of the client group execute two video client simulation
processes that simulate between 30 to 50 video requesting users. After finishing a video stream,
a simulated user waits for 10 seconds to 5 minutes to select the next video. The video and its
resolution were randomly selected. The monitoring agents are configured to collect system
metric data at a frequency of 1Hz. All metrics that were collected throughout the experiment
are listed in Table 7.6. The metrics are measured either in bytes, percent %, or a counting value
#.

Table 7.5: Number of VMs for each Clearwater service.
Component bono sprout homer homestead chronos cassandra astaire

Num. of VMs 4 4 2 2 3 3 3

Table 7.6: Metrics that are monitored during the experiment.
Resource Metrics Unit

CPU cpu utilization %
Memory allocated memory %

Disk

written data bytes
read data bytes

I/O operations #
used disk volume %

Network

rx volume bytes
tx volume bytes
rx packets #
tx packets #

In this experiment, the AIOps closed-loop control should be evaluated. We want to test
the system’s ability to recognize anomaly types automatically select operations to resolve the
anomaly. Therefore anomalies were injected into the VMs and compute nodes. A list of injected
anomalies with their parametrization is listed in Table 7.7. Every anomaly was injected 15
times into each Clearwater and video on demand service (i.e., bono, sprout, or video server)
respectively for each group. Furthermore, they were injected respectively 15 times into the three
compute node groups. The duration of every injection was set to three minutes, after which one
minute recovery period without injections was defined. The experiment has an initial 2 hour
period without injections, resulting in an overall experiment duration of 80 hours.

7.4. Evaluation 109

Table 7.7: Description and parametrization of anomalies.
Description

Anomaly Clearwater VMs VoD VMs Compute Nodes
CPU overutilization Utilize all cores at 90 - 100%.

CPU hogging
Step-wise increase the CPU utilization. Increase by 1 %

every second until 100 %.

Memory leak
Step-wise allocate memory. x MB every y seconds until z MB.
x=4, y=1, z=600 x=6, y=1, z=1000 x=20, y=1, z=3000

Memory overutilization
Allocate x MB of memory.

x=600 x=1000 x=3000
Disk IO Start 3 processes that write / read data to / from disk.

Network Overutilization Repeatedly start downloading a large file from the internet.

ZerOps utilizes the Bitflow operator to connect metric data sources and processing steps into
a closed-loop AIOps system. We deploy OpenStack and the service use cases, run the anomaly
injection experiment and store the metric data locally on the respective compute nodes. The
data storage is done to prevent a repeated execution of the experiment Thereby, the origin
(respective VM or the compute node) of the metric data is preserved by storing the metric data
into separate files. After that, we remove OpenStack and deploy Kubernetes version 1.19 17

and ZerOps, whereby the compute and AIOps nodes are defined as Kubernetes worker nodes.
We provide 10 % of the available computation resources in each compute node for the AIOps
processes. No resource limitations are applied on the AIOps nodes. The Biflow collector
is configured to read the locally stored files and provide metric data endpoints. It buffers 45
metric samples, which can be requested by the ReCoMe engine’s ingest control if an anomaly is
detected. Throughout our experiments, we use an ideal anomaly detection based on the ground
truth.

7.4.3 AIOps in Cloud Environments

The cloud group represents the compute nodes that are located in the same data center. Car-
rier networks are not involved when data samples are transmitted between the compute and
AIOps nodes. Therefore, we utilize deployment concept 1, whereby the Bitflow collector and
anomaly detection containers are deployed in-situ, while the ReCoMe engine and the operation
executor are located on a AIOps node. The Bitflow collector is configured to read the metric
data files at a frequency of 1Hz, the original sampling frequency when the data were collected.
For comparison, two ReCoMe engines are deployed respectively utilizing the density grid and
GRU models for anomaly symptom recognition. The engines are deployed separately on the
two available AIOps nodes. Whenever anomalies are detected, the ingest control requests the
buffered samples from the Bitflow collector and forwards them to the anomaly symptom recog-
nition. The GP anomaly symptom recognition is updating its symptom pattern knowledge base
after each observed anomaly. Since the retraining of the GRU model requires more time and
computational overhead, we employ retraining after observing each anomaly type 4, 8, and 12
times. The GRU model is using all recorded metrics while the grid pattern model utilizes a

17https://v1-19.docs.kubernetes.io/ (last access 22 May 2021)

https://v1-19.docs.kubernetes.io/

110 Chapter 7. Integration into an AIOps Platform

partly aggregated subset of the collected metric data, which are: CPU utilization in percent, a
fraction of allocated memory in percent, the sum of disk read and write data volume in bytes,
and the sum of rx and tx network traffic volume in bytes. We assume an empty knowledge
base in the beginning and thus, consider the cold start problem. After the anomaly type is pre-
dicted, the results are sent to the operation selection. In this experiment, we assume a single
operation for each anomaly type to resolve it. If the correct anomaly type is predicted, the op-
eration selection chooses the respective operation and sends this information to the operation
executor. The executor holds the ground truth, compares it with the selected operation, and
sends respective feedback to the operation selection. If the "unknown" type is predicted, no
operation is selected. The operation selection module logs the amount of "unknown" anomaly
type predictions, correct and incorrect operation selections.

(a) Grid pattern anomaly symptom recognition model.

(b) GRU anomaly symptom recognition model.

Figure 7.9: Mispredictions results for the ReCoMe engine using the two different anomaly symptom recognition
models.

First, we evaluate the number of mispredictions and "unknown" predictions depending on
the amount of occurred examples per anomaly type. The results are depicted in Figure 7.9,
whereby Figure 7.9a shows the results for the ReCoMe engine with the density grid anomaly
symptom recognition and Figure 7.9b contains the results of the ReCoMe engine with the GRU
anomaly symptom recognition. The x-axis represents the injection number. Each tick means

7.4. Evaluation 111

that all six anomaly types were injected for the respective amount. The y-axis depicts the
amount of mispredicted examples (orange line), "unknown" predictions (green line), and the
sum of both (blue line). Five Clearwater, one video on demand, and the compute nodes result
in seven injection targets for the six anomaly types, resulting in 42 injected anomalies per x-
axis tick. The plot shows for how many of these 42 injections, operations could not be selected
automatically due to an unsuccessful anomaly symptom recognition. Therefore, the blue line
can be interpreted as the amount of human involvement. The orange line represents incorrect
operation selection while the green line shows human involvement due to false recognition of
known anomaly type as "unknown".

The injection number starts at 1, which means that the knowledge base is empty, i.e., repre-
senting the cold start problem. Thereby, the anomaly type inference receives an empty result list
from symptom analysis and sets the predicted anomaly type as "unknown". Therefore, all 42
injected anomalies are predicted as "unknown". The grid pattern model is updated after every
anomaly is received once, resulting in an ability to predict anomaly types at the second injec-
tion number already. For the second, third, and fourth injection, the mispredictions drop to 30,
21, and 16 whereof 25, 16, 7 are predicted as "unknown". The first training of the GRU model
is applied after the fourth injection. Until then, all anomaly types are predicted as "unknown",
which represents the requirement of human experts to handle these anomalies and thereby cre-
ate a training dataset for the model. The employment of the first trained model can be seen as
a drop in the overall misprediction curve. The trained model is used until injection number 8,
resulting in between 11 and 18 overall mispredictions, whereof between 8 and 9 are predicted
as "unknown". In comparison to that, the grid pattern model’s predictions between injection
numbers 5 and 8 are ranging between 12 and 16 with between 5 and 7 "unknown" predictions.
Another GRU retraining is done after injection number 8, again resulting in a misprediction
drop. Between injection numbers 9 and 12, they range from 2 to 4, compared to 3 to 9 mispre-
dictions of the density grid model. The final retraining of the GRU model is employed after the
12th injection number, whereafter only one misprediction occurs between injection numbers 13
and 15. The number of mispredictions saturate for the density grid model and remains between
3 and 7 mispredictions.

It can be observed that the GRU model requires a more extended warm-up period. The
training after the fourth injection number renders it incapable of performing predictions prior
to that. Contrary to that, the fast knowledge base update of the grid pattern model allows it to be
employed for prediction after the very first occurrences of anomalies. After the fourth injection
number, both models yield a similar misprediction amount. After the eighth injection number,
the GRU model outperforms that density grid model. The GRU model’s ability to capture
complex sequential dependencies in the monitoring data requires more training to come into
effect but allows the model to improve and yield one misprediction after the last retraining. The
density grid model’s fast knowledge base extension allows it to outperform it with few available
training examples. However, its limitations cause a saturation after the 11th injection number
preventing it to improve further.

Next, we investigate the distribution of the mispredictions across the different components.
In this experiment, five Clearwater services and the video servers are deployed on VMs run-
ning on cloud group compute nodes. The results are depicted in Figure 7.10, where Figure 7.10a
shows the grid pattern and Figure 7.10b the GRU model results. We aggregate the mispredic-
tions over ranges of three injection numbers and group the bars based on these ranges. Each bar
represents a service (the five Clearwater services and the video server) or the compute nodes of

112 Chapter 7. Integration into an AIOps Platform

(a) Grid pattern anomaly symptom recognition model.

(b) GRU anomaly symptom recognition model.

Figure 7.10: Distribution of the mispredictions across the different components for the two anomaly symptom
recognition models.

the cloud group. No distinction between mispredictions and "unknown" predictions is made.
Note that the bono and load balancer services are deployed on the fog compute nodes and are
not represented here. Six anomalies are injected on each of the components represented by a
bar. The aggregation over three injection numbers results in a maximum bar height of 18.

For the GRU model, the 18 mispredictions at the 1-3 range are due to the first training
of the model after the fourth injection number. For the grid pattern model, it can be seen
that it performs better on Clearwater services. This is generally the case also for the higher
injection ranges. The same effect can be observed for the GRU model. Clearwater employs a
microservice architecture with a comparably fine-grained separation of responsibilities across
the different services. This decoupling results in an overall homogeneous workload and reduces
the complexity of the observed anomaly type-specific symptoms. More precisely, the intra-type
variation for Clearwater services is smaller than for components that execute heterogeneous
workload, such as the compute nodes hosting VMs with different services deployed within. The
recognition of anomaly types injected on the video servers is increasingly difficult. The video
server reads the locally stored video data, applies the encoding and buffering, and transmits
them via the load balancer to the requesting client. Different videos and resolutions result in

7.4. Evaluation 113

a broader workload spectrum and increase the intra-type variation of anomaly type symptoms.
In most of the depicted injection number ranges, this results in higher misprediction amounts
than the Clearwater services. The compute nodes represent the highest workload variation.
They host different VMs, and the co-location of the VMs differs between the compute nodes,
resulting in the parallel execution of different workloads. Due to the high intra-type variation
of anomaly symptoms, it is hard for models to assign observed symptom patterns to anomaly
types. It requires more examples of each anomaly type to improve the prediction performance
and achieve lower numbers of mispredictions. Even after observing more than ten examples of
each anomaly type, the density grid model mispredicts between 6 and 7 examples for the last
two ranges. In contrast to that, the GRU model mispredicts only one injected anomaly example
in the 12-15 injection number range.

(a) Grid pattern anomaly symptom recognition model. (b) GRU anomaly symptom recognition model.

Figure 7.11: Percentage of cases for which an operation can be automatically selected.

The amount of correctly predicted anomaly types can be interpreted as the number of cases
where operations can be automatically selected to resolve the ongoing anomaly. Therefore, we
calculated the percentage of cases where the anomaly symptom recognition correctly predicts
the anomaly type. The results are depicted in Figure 7.11. Again we distinguish between the
grid pattern model in Figure 7.11a and the GRU model in Figure 7.11b. The x-axis shows
injection number ranges, whereby the correct and incorrect predictions were aggregated over
three injection numbers. The plots show results respectively for the compute nodes, the video
on demand, and the Clearwater services. Note that five Clearwater services exist. Compared to
one video on demand and the compute nodes as injection targets, the Clearwater services have
a higher impact on the overall result. Assuming that a correct anomaly type prediction allows a
selection of operations automatically, we refer to the ratio of correctly predicted anomaly types
to the overall occurred anomaly types as the automation ratio, which is presented in percent.

For the grid pattern model, it can be seen that the homogeneous workload of the Clearwater
services enables a correct recognition of anomaly types if few examples are available. This
yields a early overall automation ratio of 26 %, which further increases to 66 %, 76 %, 87 %,
and 89 %. For the Clearwater services, the grid pattern model can achieve an automation ratio
of 94 %, while the ratio for the compute nodes reaches a maximum of 67 %. Since the GRU
model is trained after the fourth injection number, its automation ratio remains at 0 % for the

114 Chapter 7. Integration into an AIOps Platform

1-3 range. After that, it achieves comparable results to the grid pattern model of 75 % for the
injection range 6-9 and outperforms it for the ranges 9-12 (92 %) and 12-15 (99 %). Again it
can be seen that the grid pattern model yields better results when having few training examples
available. The GRU model requires more examples to meet the early automation ratio results
of the grid pattern model. With the increasing availability of training examples, it can achieve
a higher automation ratio, eventually reaching 99%.

7.4.4 AIOps in Fog Environments

In the following experiments, the services that are deployed on the fog group nodes are eval-
uated. These are the Clearwater bono service, the video on demand balancer and video server
services, and the compute nodes of the two fog groups. Note that each anomaly was injected
15 times into the services and the compute nodes respectively for each fog group. We assume a
geographic distance between the compute nodes of the fog groups and between the fog groups
and the cloud group. Furthermore, we expect the fog environment to have a limited amount of
computation resources available, reflected in the two compute nodes per fog group. In a fog
environment, it is infeasible to separate a whole compute node for AIOps. Also, the monitoring
data should be processed at their origin to reduce monitoring data transfer via the carrier net-
work. Therefore, we utilize the deployment concept 2, whereby the Bitflow collector, anomaly
detection, ReCoMe engine, and operation executor are deployed in-situ. An in-situ deployed
AIOps system must realize the data analysis with a limited amount of resources, which is why
the grid pattern anomaly symptom recognition is used. Due to the limitations of grid pattern
anomaly symptom recognition to recognize complex patterns in the monitoring data series, we
also deploy a ReCoMe engine and an operation executor on one AIOps node in the cloud. The
GRU anomaly symptom recognition is used there.

Matching anomaly types is realized as a two-step approach. First, the Bitflow collector is
configured to read the metric data files at a frequency of 1Hz. Whenever anomalies are detected,
the in-situ ingest control requests the buffered samples from the Bitflow collector and forwards
them to the in-situ anomaly symptom recognition. The recognition results are forwarded to the
in-situ operation selection module, which assumes a single operation for each anomaly type to
resolve it. If the correct anomaly type is predicted, the operation selection chooses the respec-
tive operation and sends this information to the in-situ operation executor. The executor holds
the ground truth, compares it with the selected operation, and sends respective feedback to the
operation selection. If the anomaly is reported to be resolved, i.e., the correct anomaly type was
predicted, the anomaly is assumed to be resolved locally. If the feedback states that an incorrect
operation was chosen or if the anomaly type is predicted to be "unknown", a message to the
in-situ ingest control is sent, transmitting all metric samples that it received until this point to
the ingest control deployed on the remote AIOps node. The remote ingest control initializes the
anomaly symptom recognition on the AIOps nodes. The GRU model is used, which we respec-
tively retrain after each anomaly was observed 4, 8, and 12 times. The in-situ ingest control is
configured to preprocess the metrics as a partly aggregated subset of the collected metric data,
which are: CPU utilization in percent, a fraction of allocated memory in percent, the sum of
disk read and write data volume in bytes, and the sum of rx and tx network traffic volume in
bytes. However, it maintains the original metrics to eventually forward them to the remote in-
gest control, utilizing all recorded metrics. An empty knowledge base is assumed initially, and
thus, the cold start problem is considered. The metric data of observed anomaly type examples

7.4. Evaluation 115

are expected to be available for training both the in-situ and remote anomaly symptom recogni-
tion models. The in-situ and remote operation selection modules log the amount of "unknown"
anomaly type predictions, correct and incorrect operation selections.

(a) In-situ anomaly symptom recognition.

(b) In-situ and remote cloud anomaly symptom recognition.

Figure 7.12: Mispredictions results for the ReCoMe engine using either only the in-situ deployment or the in-situ
on combination with a remote deployment.

First, we examine the anomaly symptom recognition performance of the AIOps system.
Thereby, it is investigated whether the anomaly type can be predicted locally or in combination
with a ReCoMe engine deployed on a dedicated AIOps node in the cloud. The results are de-
picted in Figure 7.12. Figure 7.12a shows the results for the in-situ executed anomaly symptom
recognition while Figure 7.9b represents the combined anomaly symptom recognition. The
x-axis represents the injection number, and the y-axis depicts the amount of mispredicted ex-
amples (orange line), "unknown" predictions (green line), and the sum of both (blue line). The
two fog groups, each containing the bono, load balancer, and video server services together
with the compute nodes, result in eight injection targets. The injection of all six anomaly types
into each target results in 48 injections, which is the maximum number of mispredictions for
each injection number. The plot shows for how many of these 48 injections the correct anomaly
type is predicted. The upper plot shows the result of the in-situ anomaly symptom recognition
only, while the lower plot shows the combined results for in-situ and remote anomaly symptom

116 Chapter 7. Integration into an AIOps Platform

recognition.
The GRU models are retrained after 4, 8, and 12 examples of each anomaly type are avail-

able. Since two fog groups exist, the examples are respectively available at injection numbers 2,
4, and 6. For the in-situ density grid model, the knowledge base is extended after each injection
number. Therefore, the first injection number yields 48 in-situ and remote cloud "unknown"
predictions. After that, the available examples enable the in-situ anomaly symptom recognition
to reduce the mispredictions to 42. Relaying these 42 examples to the GRU anomaly symptom
recognition result is 42 "unknown" predictions since the model is not trained yet. For injection
numbers 3 and 4, the in-situ anomaly symptom recognition mispredicts 36 and 24 examples.
Since the GRU model was trained on four anomaly type examples from both fog groups, it can
reduce the misprediction numbers to 9, and 5 whereof 8 and 4 were predicted as "unknown".
The subsequent retraining of the GRU model is executed after injection number 4. For injection
numbers 5 and 6, the in-situ anomaly symptom recognition mispredicts 19 examples, which are
reduced to 3 and 1 after the remote anomaly symptom recognition is employed. The in-situ
density grid model constantly reduces its mispredictions with additionally available training
examples. It reaches overall misprediction numbers of 10, 7, and 4 for injection numbers 9, 12,
and 15. The final GRU retraining is done after injection number 6. After that, it mispredicts
one example at injection numbers 7 and 13.

Figure 7.13: Percentage of cases for which an operation can be automatically selected distinguished by pure in-situ
and in-situ combined with a AIOps cloud deployment.

Furthermore, we analyze the ability of the two ReCoMe engines to select an operation to re-
solve anomalies automatically. The automation is possible if the anomaly symptom recognition
predicts a correct anomaly type. For the in-situ ReCoMe engine, this means that an anomaly
type can be resolved locally. Remote access is not required, and monitoring data must not
be sent immediately to a central cloud system. The ReCoMe engine deployed on a dedicated
AIOps node in the cloud is a complex model that is considered a fall-back and utilized when-
ever a local resolving is not possible. Therefore, we interpret the amount of correctly predicted
anomaly types as the automation ratio and compare this percentage value for the in-situ AIOps
system and the combination of the in-situ and remote AIOps systems. The results are depicted
in Figure 7.13. The x-axis shows injection number ranges, whereby the correct and incorrect
predictions were aggregated over three injection numbers. The automation ratio is shown on the
y-axis and represents the percentage of correctly predicted anomaly types. The blue line shows
the results for local automation, which means the ratio of correct predictions done by the in-situ

7.4. Evaluation 117

deployed anomaly symptom recognition. The orange line shows the automation ratio for both
the in-situ and remote AIOps anomaly symptom recognition. Whenever the in-situ anomaly
symptom recognition yields a misprediction, the GRU anomaly symptom recognition in the
cloud is requested to predict the anomaly type. Since the GRU anomaly symptom recognition
model has access to training examples from both fog groups, it can be seen that it reaches high
automation ratio percentages after injection number 3. For the injection number range 3-6, it
yields 93 %, and for the higher rages, it can achieve automation ratios between 99 % and 100 %.
The in-situ anomaly symptom recognition has only access to the locally available training ex-
amples. This results in a slower automation ratio growth of 15 %, 54 %, 69 %, 78 %, and 90 %
for the respective injection number ranges.

The in-situ models and training examples are not shared between the fog groups, e.g., for
injection number 2, the density grid model for bono has two available training examples. In
contrast to that, the GRU model has access to the training examples of both fog groups. At
injection number 2, it can access four examples to train the respective GRU models for the
components. Having a central model with access to various remote service instances or com-
pute nodes enables a fast aggregation of training examples for training. In-situ models are
responsible for handling local anomalies and aggregate training examples only from the local
source. Following this, they improve slower than the central model. However, when enough
examples are aggregated, the in-situ AIOps system can handle anomaly symptom recognition
and automatic operation selection locally, reducing dependence on remote AIOps systems. We
consider the availability of a cloud AIOps system as a reasonable fall-back strategy to overcome
the phase where not enough local training data are available.

Chapter 8

Conclusion

This thesis presents an approach for analyzing metric data from components to enable the au-
tomatic selection of operations to resolve anomalies. Our anomaly symptom recognition iden-
tifies specific patterns and uses them to infer the anomaly type. The inference of previously en-
countered and resolved anomaly types enables the automatic selection of operations and even-
tually serves as a support system for human operators. The knowledge base of known anomaly
types is constantly extended by enabling the detection of yet unknown anomalies, which are
resolved via a human-in-the-loop approach. It represents a gradual transfer of knowledge from
human experts into the AIOps system and serves as the concept to resolve the cold start prob-
lem. A framework is introduced for the proposed solutions, which we refer to as ReCoMe
engine. We implement two methods for anomaly symptom recognition, extend both with an
anomaly type inference that enables the recognition of yet unknown anomaly types, and in-
vestigate the applicability of those in experimental environments by integrating them into an
AIOps platform.

The first anomaly type recognition method aggregates the metric series of anomalous sys-
tem components while preserving temporal information. The preservation is achieved via den-
sity grid transformation and results in grid patterns representing anomaly type-specific symp-
toms. Grid patterns of historic anomalies are stored in the knowledge base. We define a sim-
ilarity calculation between grid patterns that tolerates baseline shifts and noise. It is used to
compare grid patterns to infer the anomaly type. Evaluation experiments are conducted in a
self-hosted cloud computing system with a video on demand service and a virtual implementa-
tion of an IMS. The anomaly type recognition is applied to the metric data of the service VMs.
We show that density grid pattern comparison achieves an anomaly type recognition accuracy
of 0.97 for the IMS and 0.94 for the video on demand service.

The second anomaly type recognition method aims to infer anomaly types by analyzing
the sequential dependencies of the anomalous metric series samples. Therefore, an RNN with
GRU cells is used as a model. It analyzes a metric series from an anomalous component and
predicts the probability that the observed patterns represent one of the known anomaly types.
We introduce an augmentation method for metric data, which generates synthetic metric series
examples of anomaly types based on a set of historical observations. The augmentation method
applies a variation of the residuals and subsamples underrepresented decision regions by ap-
plying interpolation between the known examples. These augmentations are used during the
training process of the model. The evaluation is done based on metric data from system compo-
nents that execute heterogeneous workloads. We show that the applied augmentation stabilizes

119

120 Chapter 8. Conclusion

the training procedure of the model and improves the accuracy of recognizing anomaly types,
reaching 0.9.

Both methods are adjusted to recognize yet unknown anomaly types. First, we implement
postprocessing to recognize dissimilarities between grid patterns for the density grid pattern
model. Given the task of identifying yet unknown anomaly types, it yields an accuracy of 0.97
for the IMS and 0.94 for the video on demand service. For the RNN model with GRU cells, a
uniform posterior distribution indicates the inability of the model to assign a known type to the
observed symptom patterns. The evaluation to recognize yet unknown anomaly type is done
for heterogeneous workload and results in an accuracy of 0.66.

We investigate the applicability of the ReCoMe engine by integrating it into an AIOps
platform. Thereby, two deployment concepts are tested, one for a cloud and one for a fog com-
puting environment. The results show that the density grid model can reach a higher anomaly
type inference accuracy with less training data. The availability of additional training examples
results in a better performance of the RNN model. We show that an AIOps system containing
our ReCoMe and utilizing both models can automate the operation selection for up to 99 % of
the anomaly cases.

8.1 Limitations

We emphasize the limited availability of examples for each anomaly type used to train the symp-
tom recognition models. Nevertheless, the requirement of multiple recurrences of anomaly
types is the main limitation of our work. The evaluations show that the required number of
training examples mainly depends on the utilized model and intra-type variations. For a het-
erogeneous load, the density grid model requires between six and ten examples to reach recog-
nition accuracies above 0.8. The RNN model with GRU cells is prone to overfitting, which we
mitigate with metric series augmentation. Thereby, a reasonable sub-sampling of the decision
regions by the available anomaly type examples is required. At least ten examples are required
for the augmentation to allow a trained model to reach an accuracy of above 0.8.

For the in-situ deployment of the AIOps system containing our ReCoMe engine, we as-
sume the reservation of a fraction of available resources for monitoring data analysis. In our
prototype implementation, we utilize Docker for this. It limits our prototype to run on systems
where Docker is available. We consider this as a limitation, especially for utilizing computation
resources of edge devices.

8.2 Future Work

The methods and systems presented in this thesis open options for future research. We identify
three promising directions. First, the utilization of multiple models with the joint objective to
ensure an efficient operable system state must be investigated. Our prototype analyses metric
data to recognize anomaly symptom patterns. Depending on the system, other data sources
such as logs or traces are available. Active probing can be executed on-demand to gather
additional information about system components. Furthermore, other methods for auto-scaling
or intrusion detection might exist. Therefore, the question of how multiple models can be
utilized to jointly ensure an efficient operable state of the system poses a future challenge.

8.2. Future Work 121

Second, our proposed human-in-the-loop approach hinders the complete autonomy of an
AIOps system. The time that is needed to mitigate problems increases whenever humans must
be involved. However, especially in critical fields, problems need to be resolved immediately.
Different strategies must be investigated to reduce and potentially omit the involvement of
human operators. Thereby, the ability to automatically construct remediation and recovery
operations for yet unknown anomalies is a central aspect.

Third, the work on AIOps systems should be investigated from a security perspective.
AIOps systems aim to introduce increased robustness against failures and anomalies, which
is achieved by automation. However, automated execution of operation opens additional at-
tack vectors. An example would be to cause a repeated execution of unnecessary operations
by targeting the decision models via adversarial attacks, which eventually results in a denial of
service. The identification of such attack vectors in combination with mitigation guidelines and
solutions is needed.

Appendix A

Evaluation Result Details

A.1 Symptom Recognition Scores
In the following, we list the evaluation results for anomaly type recognition in the form of
accuracy, F1 score, precision, and recall individually for each service component. The load
balancer (lb) and video server (vs) belong to the video on demand service, while astaire, bono,
chronos, homer, homestead, and sprout belong to Clearwater vIMS. The respective tables show
the scores for a specific model and split.

Table A.1: Density grid pattern model scores for the 10 % split.

lb vs astaire bono chronos homer homestead sprout

Accuracy 0.28 0.29 0.36 0.42 0.35 0.38 0.34 0.36
F1 0.37 0.37 0.45 0.49 0.45 0.48 0.45 0.45

Precision 0.74 0.67 0.78 0.77 0.79 0.80 0.81 0.75
Recall 0.28 0.29 0.36 0.42 0.35 0.38 0.34 0.36

Table A.2: Density grid pattern model scores for the 30 % split.

lb vs astaire bono chronos homer homestead sprout

Accuracy 0.74 0.68 0.74 0.78 0.80 0.75 0.73 0.79
F1 0.78 0.71 0.78 0.82 0.84 0.81 0.80 0.84

Precision 0.92 0.85 0.89 0.93 0.95 0.96 0.95 0.95
Recall 0.74 0.68 0.74 0.78 0.80 0.75 0.73 0.79

123

124 Appendix A. Evaluation Result Details

Table A.3: Density grid pattern model scores for the 50 % split.

lb vs astaire bono chronos homer homestead sprout

Accuracy 0.88 0.82 0.83 0.93 0.86 0.90 0.90 0.91
F1 0.89 0.82 0.85 0.93 0.87 0.91 0.91 0.92

Precision 0.93 0.86 0.90 0.95 0.91 0.94 0.94 0.94
Recall 0.88 0.82 0.83 0.93 0.86 0.90 0.90 0.91

Table A.4: Density grid pattern model scores for the 70 % split.

lb vs astaire bono chronos homer homestead sprout

Accuracy 0.96 0.94 0.97 0.97 0.98 0.97 0.97 0.97
F1 0.96 0.94 0.97 0.98 0.98 0.97 0.97 0.97

Precision 0.97 0.96 0.98 0.98 0.98 0.98 0.98 0.98
Recall 0.96 0.94 0.97 0.97 0.98 0.97 0.97 0.97

Table A.5: Euclidean model scores for the 10 % split.

lb vs astaire bono chronos homer homestead sprout

Accuracy 0.25 0.24 0.18 0.15 0.15 0.31 0.33 0.20
F1 0.27 0.26 0.19 0.17 0.17 0.32 0.34 0.21

Precision 0.31 0.30 0.23 0.20 0.21 0.36 0.38 0.25
Recall 0.25 0.24 0.18 0.15 0.15 0.31 0.33 0.20

Table A.6: Euclidean model scores for the 30 % split.

lb vs astaire bono chronos homer homestead sprout

Accuracy 0.41 0.47 0.40 0.43 0.49 0.47 0.44 0.46
F1 0.41 0.46 0.39 0.43 0.48 0.47 0.44 0.47

Precision 0.44 0.50 0.43 0.47 0.52 0.51 0.47 0.50
Recall 0.41 0.47 0.40 0.43 0.49 0.47 0.44 0.46

Table A.7: Euclidean model scores for the 50 % split.

lb vs astaire bono chronos homer homestead sprout

Accuracy 0.51 0.58 0.55 0.64 0.61 0.59 0.58 0.53
F1 0.49 0.57 0.55 0.64 0.60 0.57 0.56 0.50

Precision 0.53 0.61 0.58 0.67 0.63 0.59 0.58 0.52
Recall 0.51 0.58 0.55 0.64 0.61 0.59 0.58 0.53

A.1. Symptom Recognition Scores 125

Table A.8: Euclidean model scores for the 70 % split.

lb vs astaire bono chronos homer homestead sprout

Accuracy 0.61 0.61 0.57 0.58 0.78 0.71 0.70 0.47
F1 0.58 0.58 0.53 0.54 0.78 0.69 0.68 0.44

Precision 0.59 0.60 0.53 0.55 0.81 0.73 0.71 0.45
Recall 0.61 0.61 0.57 0.58 0.78 0.71 0.70 0.47

Table A.9: DTW model scores for the 10 % split.

lb vs astaire bono chronos homer homestead sprout

Accuracy 0.25 0.23 0.32 0.34 0.33 0.32 0.35 0.33
F1 0.25 0.24 0.32 0.34 0.32 0.31 0.34 0.32

Precision 0.27 0.27 0.35 0.36 0.33 0.33 0.35 0.34
Recall 0.25 0.23 0.32 0.34 0.33 0.32 0.35 0.33

Table A.10: DTW model scores for the 30 % split.

lb vs astaire bono chronos homer homestead sprout

Accuracy 0.50 0.52 0.46 0.52 0.58 0.53 0.55 0.49
F1 0.50 0.51 0.45 0.51 0.56 0.53 0.55 0.49

Precision 0.54 0.54 0.48 0.54 0.59 0.56 0.58 0.53
Recall 0.50 0.52 0.46 0.52 0.58 0.53 0.55 0.49

Table A.11: DTW model scores for the 50 % split.

lb vs astaire bono chronos homer homestead sprout

Accuracy 0.72 0.74 0.78 0.84 0.81 0.83 0.88 0.83
F1 0.72 0.74 0.77 0.84 0.81 0.82 0.88 0.82

Precision 0.75 0.78 0.80 0.87 0.84 0.86 0.90 0.85
Recall 0.72 0.74 0.78 0.84 0.81 0.83 0.88 0.83

Table A.12: DTW model scores for the 70 % split.

lb vs astaire bono chronos homer homestead sprout

Accuracy 0.89 0.87 0.96 0.91 0.92 0.97 0.95 0.91
F1 0.89 0.87 0.97 0.91 0.91 0.97 0.95 0.91

Precision 0.91 0.89 0.97 0.93 0.93 0.97 0.96 0.93
Recall 0.89 0.87 0.96 0.91 0.92 0.97 0.95 0.91

126 Appendix A. Evaluation Result Details

A.2 Unknown Anomaly Type Recognition Accuracy
We list the evaluation results for unknown anomaly type recognition in the form of accuracy
individually for each service component. The load balancer (lb) and video server (vs) belong
to the video on demand service, while astaire, bono, chronos, homer, homestead, and sprout
belong to Clearwater vIMS. The respective tables show the scores for a specific model.

Table A.13: Unknown anomaly type recognition accuracy scores for the density grid pattern model.

lb vs astaire bono chronos homer homestead sprout
Traindata used in %

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30 0.99 0.97 0.98 0.99 1.00 1.00 1.00 0.99
50 0.94 0.93 0.94 0.94 1.00 1.00 1.00 0.93
70 0.92 0.88 0.93 0.89 0.93 0.93 0.93 0.94

Table A.14: Unknown anomaly type recognition accuracy scores for the Euclidean distance model.

lb vs astaire bono chronos homer homestead sprout
Traindata used in %

10 0.74 0.62 0.76 0.65 0.79 0.73 0.71 0.74
30 0.53 0.55 0.59 0.63 0.70 0.78 0.77 0.53
50 0.46 0.44 0.64 0.67 0.74 0.43 0.44 0.68
70 0.42 0.40 0.51 0.64 0.43 0.53 0.43 0.50

Table A.15: Unknown anomaly type recognition accuracy scores for the DTW model.

lb vs astaire bono chronos homer homestead sprout
Traindata used in %

10 0.55 0.54 0.52 0.52 0.65 0.58 0.80 0.47
30 0.38 0.38 0.44 0.44 0.43 0.49 0.48 0.43
50 0.37 0.36 0.38 0.41 0.38 0.46 0.41 0.39
70 0.37 0.27 0.34 0.36 0.39 0.35 0.38 0.30

Bibliography

[1] A. Avizienis and J. -. Laprie and B. Randell and C. Landwehr. “Basic concepts and
taxonomy of dependable and secure computing”. In: IEEE Transactions on Dependable
and Secure Computing 1.1 (2004), pp. 11–33.

[2] Aceto, Giuseppe and Botta, Alessio and De Donato, Walter and Pescape, Antonio.
“Cloud monitoring: A survey”. In: Computer Networks 57.9 (2013), pp. 2093–2115.

[3] Acker, Alexander and Schmidt, Florian and Gulenko, Anton and Kao, Odej. “Online
Density Grid Pattern Analysis to Classify Anomalies in Cloud and NFV Systems”.
In: 2018 IEEE International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE. 2018, pp. 290–295.

[4] Acker, Alexander and Wittkopp, Thorsten and Nedelkoski, Sasho and Bogatinovski,
Jasmin and Kao, Odej. “Superiority of Simplicity: A Lightweight Model for Network
Device Workload Prediction”. In: 2020 15th Conference on Computer Science and In-
formation Systems (FedCSIS). IEEE. 2020, pp. 7–10.

[5] Ahmed, Mohiuddin and Mahmood, Abdun Naser and Hu, Jiankun. “A survey of net-
work anomaly detection techniques”. In: Journal of Network and Computer Applica-
tions 60 (2016), pp. 19–31.

[6] Alhosban, Amal and Hashmi, Khayyam and Malik, Zaki and Medjahed, Brahim. “Self-
healing framework for cloud-based services”. In: 2013 ACS International Conference
on Computer Systems and Applications (AICCSA). IEEE. 2013, pp. 1–7.

[7] Amazon.com, Inc. Press release: Amazon.com Announces Financial Results and
CEO Transition. Tech. rep. https://press.aboutamazon.com/news-
releases / news - release - details / amazoncom - announces -
financial-results-and-ceo-transition (last access 22 April 2021).
2021.

[8] Anderson, James P. Computer security technology planning study. Tech. rep. ANDER-
SON (JAMES P) and CO FORT WASHINGTON PA FORT WASHINGTON, 1972.

[9] Armbrust, Michael and Fox, Armando and Griffith, Rean and Joseph, Anthony D and
Katz, Randy and Konwinski, Andy and Lee, Gunho and Patterson, David and Rabkin,
Ariel and Stoica, Ion and others. “A view of cloud computing”. In: Communications of
the ACM 53.4 (2010), pp. 50–58.

[10] Athreya, Arjun P and DeBruhl, Bruce and Tague, Patrick. “Designing for self-
configuration and self-adaptation in the Internet of Things”. In: 9th IEEE International
Conference on Collaborative Computing: Networking, Applications and Worksharing.
IEEE. 2013, pp. 585–592.

127

https://press.aboutamazon.com/news-releases/news-release-details/amazoncom-announces-financial-results-and-ceo-transition
https://press.aboutamazon.com/news-releases/news-release-details/amazoncom-announces-financial-results-and-ceo-transition
https://press.aboutamazon.com/news-releases/news-release-details/amazoncom-announces-financial-results-and-ceo-transition

128 Bibliography

[11] Aupy, Guillaume and Robert, Yves and Vivien, Frederic and Zaidouni, Dounia. “Check-
pointing strategies with prediction windows”. In: 2013 IEEE 19th Pacific Rim Interna-
tional Symposium on Dependable Computing. IEEE. 2013, pp. 1–10.

[12] Avizienis, Algirdas. “The methodology of n-version programming”. In: Software fault
tolerance 3 (1995), pp. 23–46.

[13] Avizienis, Algirdas and Kelly, John PJ. “Fault tolerance by design diversity: Concepts
and experiments”. In: Computer 17.08 (1984), pp. 67–80.

[14] Avizienis, Algirdas and Laprie, J-C. “Dependable computing: From concepts to design
diversity”. In: Proceedings of the IEEE 74.5 (1986), pp. 629–638.

[15] Avizienis, Algirdas and Laprie, Jean-Claude and Randell, Brian and Landwehr, Carl.
“Basic concepts and taxonomy of dependable and secure computing”. In: IEEE trans-
actions on dependable and secure computing 1.1 (2004), pp. 11–33.

[16] Aviziens, Algirdas. “Fault-tolerant systems”. In: IEEE Transactions on Computers
100.12 (1976), pp. 1304–1312.

[17] Azaiez, Meriem and Chainbi, Walid. “A multi-agent system architecture for self-
healing cloud infrastructure”. In: Proceedings of the International Conference on In-
ternet of things and Cloud Computing. ACM. 2016, p. 7.

[18] Bakhshi, Zeinab and Rodriguez-Navas, Guillermo and Hansson, Hans. “Dependable
fog computing: A systematic literature review”. In: 2019 45th Euromicro Conference
on Software Engineering and Advanced Applications (SEAA). IEEE. 2019, pp. 395–
403.

[19] Ball, Michael O and Colbourn, Charles J and Provan, J Scott. “Network reliability”. In:
Handbooks in operations research and management science 7 (1995), pp. 673–762.

[20] Bari, Md Faizul and Boutaba, Raouf and Esteves, Rafael and Granville, Lisandro Zam-
benedetti and Podlesny, Maxim and Rabbani, Md Golam and Zhang, Qi and Zhani,
Mohamed Faten. “Data center network virtualization: A survey”. In: IEEE communica-
tions surveys & tutorials 15.2 (2012), pp. 909–928.

[21] Barlow, Richard E and HUNTER, LARRY C. Mathematical models for system relia-
bility. Tech. rep. SYLVANIA ELECTRONIC SYSTEMS-WEST MOUNTAIN VIEW
CALIF ELECTRONIC DEFENSE LABS, 1959.

[22] Barroso, Luiz Andre and Hoelzle, Urs. “The datacenter as a computer: An introduc-
tion to the design of warehouse-scale machines”. In: Synthesis lectures on computer
architecture 4.1 (2009), pp. 1–108.

[23] Becker, Soeren and Schmidt, Florian and Gulenko, Anton and Acker, Alexander and
Kao, Odej. “Towards AIOps in Edge Computing Environments”. In: 2020 IEEE Inter-
national Conference on Big Data (Big Data). IEEE. 2020, pp. 3470–3475.

[24] Bennett, Keith and Layzell, Paul and Budgen, David and Brereton, Pearl and Macaulay,
Linda and Munro, Malcolm. “Service-based software: the future for flexible software”.
In: Proceedings Seventh Asia-Pacific Software Engeering Conference. APSEC 2000.
IEEE. 2000, pp. 214–221.

Bibliography 129

[25] Bermbach, David and Pallas, Frank and Pérez, David García and Plebani, Pierluigi
and Anderson, Maya and Kat, Ronen and Tai, Stefan. “A research perspective on fog
computing”. In: International Conference on Service-Oriented Computing. Springer.
2017, pp. 198–210.

[26] Berndt, Donald J and Clifford, James. “Using dynamic time warping to find patterns in
time series.” In: KDD workshop. Vol. 10. 16. Seattle, WA, USA: 1994, pp. 359–370.

[27] Beyer, Betsy and Jones, Chris and Petoff, Jennifer and Murphy, Niall Richard. Site
reliability engineering: How Google runs production systems. " O’Reilly Media, Inc.",
2016.

[28] Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006.

[29] Blank-Edelman, David N. Seeking SRE: Conversations About Running Production Sys-
tems at Scale. " O’Reilly Media, Inc.", 2018.

[30] Bodik, Peter and Goldszmidt, Moises and Fox, Armando and Woodard, Dawn B and
Andersen, Hans. “Fingerprinting the datacenter: automated classification of perfor-
mance crises”. In: Proceedings of the 5th European conference on Computer systems.
2010, pp. 111–124.

[31] Bogatinovski, Jasmin and Nedelkoski, Sasho. “Multi-source anomaly detection in dis-
tributed it systems”. In: International Conference on Service-Oriented Computing.
Springer. 2020, pp. 201–213.

[32] Borg, Anita and Baumbach, Jim and Glazer, Sam. “A message system supporting fault
tolerance”. In: ACM SIGOPS Operating Systems Review 17.5 (1983), pp. 90–99.

[33] Borg, Anita and Blau, Wolfgang and Graetsch, Wolfgang and Herrmann, Ferdinand and
Oberle, Wolfgang. “Fault tolerance under UNIX”. In: ACM Transactions on Computer
Systems (TOCS) 7.1 (1989), pp. 1–24.

[34] Bosilca, George and Delmas, Remi and Dongarra, Jack and Langou, Julien.
“Algorithm-based fault tolerance applied to high performance computing”. In: Jour-
nal of Parallel and Distributed Computing 69.4 (2009), pp. 410–416.

[35] Bouguerra, Mohamed Slim and Gainaru, Ana and Gomez, Leonardo Bautista and Cap-
pello, Franck and Matsuoka, Satoshi and Maruyam, Naoya. “Improving the computing
efficiency of hpc systems using a combination of proactive and preventive checkpoint-
ing”. In: 2013 IEEE 27th International Symposium on Parallel and Distributed Pro-
cessing. IEEE. 2013, pp. 501–512.

[36] Box, George EP and Cox, David R. “An analysis of transformations”. In: Journal of the
Royal Statistical Society: Series B (Methodological) 26.2 (1964), pp. 211–243.

[37] Bridle, John S. “Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition”. In: Neurocomputing.
Springer, 1990, pp. 227–236.

[38] Briscoe, Bob and Brunstrom, Anna and Petlund, Andreas and Hayes, David and Ros,
David and Tsang, Jyh and Gjessing, Stein and Fairhurst, Gorry and Griwodz, Carsten
and Welzl, Michael. “Reducing internet latency: A survey of techniques and their mer-
its”. In: IEEE Communications Surveys & Tutorials 18.3 (2014), pp. 2149–2196.

130 Bibliography

[39] Bruneo, Dario and Distefano, Salvatore and Longo, Francesco and Puliafito, Anto-
nio and Scarpa, Marco. “Workload-based software rejuvenation in cloud systems”. In:
IEEE Transactions on Computers 62.6 (2013), pp. 1072–1085.

[40] Cai, Xingyu and Xu, Tingyang and Yi, Jinfeng and Huang, Junzhou and Rajasekaran,
Sanguthevar. “DTWNet: a dynamic time warping network”. In: Advances in neural
information processing systems 32 (2019).

[41] Calheiros, Rodrigo N and Masoumi, Enayat and Ranjan, Rajiv and Buyya, Rajkumar.
“Workload prediction using ARIMA model and its impact on cloud applications’ QoS”.
In: IEEE transactions on cloud computing 3.4 (2014), pp. 449–458.

[42] Calheiros, Rodrigo N and Ramamohanarao, Kotagiri and Buyya, Rajkumar and Leckie,
Christopher and Versteeg, Steve. “On the effectiveness of isolation-based anomaly de-
tection in cloud data centers”. In: Concurrency and Computation: Practice and Expe-
rience 29.18 (2017), e4169.

[43] Caliva, Francesco and De Ribeiro, Fabio Sousa and Mylonakis, Antonios and De-
mazi’ere, Christophe and Vinai, Paolo and Leontidis, Georgios and Kollias, Stefanos.
“A deep learning approach to anomaly detection in nuclear reactors”. In: 2018 Interna-
tional joint conference on neural networks (IJCNN). IEEE. 2018, pp. 1–8.

[44] Camarillo, Gonzalo and Garcia-Martin, Miguel-Angel. The 3G IP multimedia subsys-
tem (IMS): merging the Internet and the cellular worlds. John Wiley & Sons, 2007.

[45] Candea, George and Kawamoto, Shinichi and Fujiki, Yuichi and Friedman, Greg and
Fox, Armando. “Microreboot - A Technique for Cheap Recovery”. In: Proceedings of
the 6th Conference on Symposium on Operating Systems Design & Implementation -
Volume 6. OSDI 04. USENIX Association, 2004, p. 3.

[46] Castelli, Vittorio and Harper, Richard E and Heidelberger, Philip and Hunter, Steven
W and Trivedi, Kishor S and Vaidyanathan, Kalyanaraman and Zeggert, William P.
“Proactive management of software aging”. In: IBM Journal of Research and Develop-
ment 45.2 (2001), pp. 311–332.

[47] Catal, Cagatay and Diri, Banu. “A systematic review of software fault prediction stud-
ies”. In: Expert systems with applications 36.4 (2009), pp. 7346–7354.

[48] Catchpoint. 2020 SRE Report - The Distributed SRE. https : / / www .
catchpoint.com/sre-report. (last access 26 April 2021). 2020.

[49] Chandola, Varun and Banerjee, Arindam and Kumar, Vipin. “Anomaly detection: A
survey”. In: ACM computing surveys (CSUR) 41.3 (2009), pp. 1–58.

[50] Chang, Victor. “Towards a big data system disaster recovery in a private cloud”. In: Ad
Hoc Networks 35 (2015), pp. 65–82.

[51] Chatzigiannakis, Ioannis and Hasemann, Henning and Karnstedt, Marcel and Kleine,
Oliver and Kroeller, Alexander and Leggieri, Myriam and Pfisterer, Dennis and Roe-
mer, Kay and Truong, Cuong. “True self-configuration for the IoT”. In: 2012 3rd IEEE
International Conference on the Internet of Things. IEEE. 2012, pp. 9–15.

[52] Chen, Liming and Avizienis, Algirdas. “N-version programming: A fault-tolerance ap-
proach to reliability of software operation”. In: Proc. 8th IEEE Int. Symp. on Fault-
Tolerant Computing (FTCS-8). Vol. 1. 1978, pp. 3–9.

https://www.catchpoint.com/sre-report
https://www.catchpoint.com/sre-report

Bibliography 131

[53] Chen, Yixin and Tu, Li. “Density-based clustering for real-time stream data”. In: Pro-
ceedings of the 13th ACM SIGKDD international conference on Knowledge discovery
and data mining. 2007, pp. 133–142.

[54] Cheng, Min and Li, Qing and Lv, Jianming and Liu, Wenyin and Wang, Jianping.
“Multi-Scale LSTM Model for BGP Anomaly Classification”. In: IEEE Transactions
on Services Computing (2018).

[55] Cheng, Shang-Wen and Huang, An-Cheng and Garlan, David and Schmerl, Bradley and
Steenkiste, Peter. “Rainbow: Architecture-based self-adaptation with reusable infras-
tructure”. In: International Conference on Autonomic Computing, 2004. Proceedings.
IEEE. 2004, pp. 276–277.

[56] Chiosi, Margaret and Clarke, Don and Willis, Peter and Reid, Andy and Feger, James
and Bugenhagen, Michael and Khan, Waqar and Fargano, Michael and Cui, Chunfeng
and Deng, Hui and others. “Network functions virtualisation: An introduction, bene-
fits, enablers, challenges and call for action”. In: SDN and OpenFlow world congress.
Vol. 48. sn. 2012, pp. 1–16.

[57] Cho, Kyunghyun and Van Merriënboer, Bart and Gulcehre, Caglar and Bahdanau,
Dzmitry and Bougares, Fethi and Schwenk, Holger and Bengio, Yoshua. “Learning
phrase representations using RNN encoder-decoder for statistical machine translation”.
In: (2014), pp. 1724–1734.

[58] Chung, Junyoung and Gulcehre, Caglar and Cho, Kyunghyun and Bengio, Yoshua.
“Empirical evaluation of gated recurrent neural networks on sequence modeling”. In:
NIPS 2014 Workshop on Deep Learning, December 2014. 2014.

[59] Cohen, Ira and Zhang, Steve and Goldszmidt, Moises and Symons, Julie and Kelly,
Terence and Fox, Armando. “Capturing, indexing, clustering, and retrieving system
history”. In: ACM SIGOPS Operating Systems Review 39.5 (2005), pp. 105–118.

[60] Coit, David W. “Cold-standby redundancy optimization for nonrepairable systems”. In:
Iie Transactions 33.6 (2001), pp. 471–478.

[61] Cotroneo, Domenico and De Simone, Luigi and Iannillo, Antonio Ken and Lanzaro,
Anna and Natella, Roberto and Fan, Jiang and Ping, Wang. “Network function virtu-
alization: Challenges and directions for reliability assurance”. In: 2014 IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops. IEEE. 2014, pp. 37–
42.

[62] Cotroneo, Domenico and De Simone, Luigi and Natella, Roberto. “Dependability cer-
tification guidelines for NFVIS through fault injection”. In: 2018 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE. 2018,
pp. 321–328.

[63] Cotroneo, Domenico and De Simone, Luigi and Natella, Roberto. “NFV-bench: A de-
pendability benchmark for network function virtualization systems”. In: IEEE Trans-
actions on Network and Service Management 14.4 (2017), pp. 934–948.

[64] Cotroneo, Domenico and Natella, Roberto and Rosiello, Stefano. “A fault correla-
tion approach to detect performance anomalies in virtual network function chains”. In:
2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE).
IEEE. 2017, pp. 90–100.

132 Bibliography

[65] Cotroneo, Domenico and Pietrantuono, Roberto and Russo, Stefano and Trivedi,
Kishor. “How do bugs surface? A comprehensive study on the characteristics of soft-
ware bugs manifestation”. In: Journal of Systems and Software 113 (2016), pp. 27–43.

[66] Cristian, Flavin. “Understanding fault-tolerant distributed systems”. In: Communica-
tions of the ACM 34.2 (1991), pp. 56–78.

[67] Cristian, Flaviu and Dancey, Bob and Dehn, Jon. “Fault-tolerance in the advanced au-
tomation system”. In: Proceedings of the 4th Workshop on ACM SIGOPS European
Workshop. 1990, pp. 6–17.

[68] Dai, Yuan-Shun and Yang, Bo and Dongarra, Jack and Zhang, Gewei. “Cloud service
reliability: Modeling and analysis”. In: 15th IEEE Pacific Rim International Symposium
on Dependable Computing. Citeseer. 2009, pp. 1–17.

[69] Dang, Yingnong and Lin, Qingwei and Huang, Peng. “AIOps: real-world challenges
and research innovations”. In: Proceedings of the 41st International Conference on
Software Engineering: Companion Proceedings. IEEE Press. 2019, pp. 4–5.

[70] Dashofy, Eric M and Van der Hoek, André and Taylor, Richard N. “Towards
architecture-based self-healing systems”. In: Proceedings of the first workshop on Self-
healing systems. 2002, pp. 21–26.

[71] Dean, Daniel Joseph and Nguyen, Hiep and Gu, Xiaohui. “Ubl: Unsupervised behavior
learning for predicting performance anomalies in virtualized cloud systems”. In: Pro-
ceedings of the 9th international conference on Autonomic computing. 2012, pp. 191–
200.

[72] Ding, Hui and Trajcevski, Goce and Scheuermann, Peter and Wang, Xiaoyue and
Keogh, Eamonn. “Querying and mining of time series data: experimental comparison
of representations and distance measures”. In: Proceedings of the VLDB Endowment
1.2 (2008), pp. 1542–1552.

[73] Du, Min and Li, Feifei and Zheng, Guineng and Srikumar, Vivek. “Deeplog: Anomaly
detection and diagnosis from system logs through deep learning”. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017,
pp. 1285–1298.

[74] Du, Qingfeng and He, Yu and Xie, Tiandi and Yin, Kanglin and Qiu, Juan. “An ap-
proach of collecting performance anomaly dataset for NFV Infrastructure”. In: Interna-
tional Conference on Algorithms and Architectures for Parallel Processing. Springer.
2018, pp. 59–71.

[75] Eckart, Ben and Chen, Xin and He, Xubin and Scott, Stephen L. “Failure prediction
models for proactive fault tolerance within storage systems”. In: 2008 IEEE Interna-
tional Symposium on Modeling, Analysis and Simulation of Computers and Telecom-
munication Systems. IEEE. 2008, pp. 1–8.

[76] Egwutuoha, Ifeanyi P and Chen, Shiping and Levy, David and Selic, Bran and Calvo,
Rafael. “A proactive fault tolerance approach to High Performance Computing (HPC)
in the cloud”. In: 2012 Second International Conference on Cloud and Green Comput-
ing. IEEE. 2012, pp. 268–273.

Bibliography 133

[77] Epstein, Benjamin and Sobel, Milton. “Life testing”. In: Journal of the American Sta-
tistical Association 48.263 (1953), pp. 486–502.

[78] Etro, Federico. “The economic impact of cloud computing on business creation, em-
ployment and output in Europe”. In: Review of Business and Economics 54.2 (2009),
pp. 179–208.

[79] Evensen, Kristian and Kupka, Tomas and Kaspar, Dominik and Halvorsen, Paal and
Griwodz, Carsten. “Quality-adaptive scheduling for live streaming over multiple ac-
cess networks”. In: Proceedings of the 20th international workshop on Network and
operating systems support for digital audio and video. 2010, pp. 21–26.

[80] Fawaz, Hassan Ismail and Lucas, Benjamin and Forestier, Germain and Pelletier, Char-
lotte and Schmidt, Daniel F and Weber, Jonathan and Webb, Geoffrey I and Idoumghar,
Lhassane and Muller, Pierre-Alain and Petitjean, Franccois. “Inceptiontime: Finding
alexnet for time series classification”. In: Data Mining and Knowledge Discovery 34.6
(2020), pp. 1936–1962.

[81] Fayyaz, Muhammad and Vladimirova, Tanya. “Survey and future directions of fault-
tolerant distributed computing on board spacecraft”. In: Advances in Space Research
58.11 (2016), pp. 2352–2375.

[82] Feldmann, Anja and Gasser, Oliver and Lichtblau, Franziska and Pujol, Eric and Poese,
Igmar and Dietzel, Christoph and Wagner, Daniel and Wichtlhuber, Matthias and Tapi-
ador, Juan and Vallina-Rodriguez, Narseo and others. “Implications of the COVID-19
Pandemic on the Internet Traffic”. In: Broadband Coverage in Germany; 15th ITG-
Symposium. VDE. 2021, pp. 1–5.

[83] Fiondella, Lance and Gokhale, Swapna S and Mendiratta, Veena B. “Cloud incident
data: An empirical analysis”. In: 2013 IEEE International Conference on Cloud Engi-
neering (IC2E). IEEE. 2013, pp. 241–249.

[84] Forecast, GMDT. “Cisco visual networking index: global mobile data traffic forecast
update, 2017–2022”. In: Update 2017 (2019), p. 2022.

[85] Fox, Armando and Griffith, Rean and Joseph, Anthony and Katz, Randy and Konwin-
ski, Andrew and Lee, Gunho and Patterson, David and Rabkin, Ariel and Stoica, Ion
and others. “Above the clouds: A berkeley view of cloud computing”. In: Dept. Elec-
trical Eng. and Comput. Sciences, University of California, Berkeley, Rep. UCB/EECS
28.13 (2009), p. 2009.

[86] Fujimaki, Ryohei and Yairi, Takehisa and Machida, Kazuo. “An approach to spacecraft
anomaly detection problem using kernel feature space”. In: Proceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data mining. 2005,
pp. 401–410.

[87] Ganesh, Amal and Sandhya, M and Shankar, Sharmila. “A study on fault tolerance
methods in cloud computing”. In: 2014 IEEE International Advance Computing Con-
ference (IACC). IEEE. 2014, pp. 844–849.

[88] Gao, Jing and Li, Jianzhong and Zhang, Zhaogong and Tan, Pang-Ning. “An incremen-
tal data stream clustering algorithm based on dense units detection”. In: Pacific-Asia
Conference on Knowledge Discovery and Data Mining. Springer. 2005, pp. 420–425.

134 Bibliography

[89] Garg, Sahil and Kaur, Kuljeet and Batra, Shalini and Aujla, Gagangeet Singh and Mor-
gan, Graham and Kumar, Neeraj and Zomaya, Albert Y and Ranjan, Rajiv. “En-ABC:
An ensemble artificial bee colony based anomaly detection scheme for cloud environ-
ment”. In: Journal of Parallel and Distributed Computing 135 (2020), pp. 219–233.

[90] Garg, Sahil and Kaur, Kuljeet and Kumar, Neeraj and Kaddoum, Georges and Zomaya,
Albert Y and Ranjan, Rajiv. “A hybrid deep learning-based model for anomaly de-
tection in cloud datacenter networks”. In: IEEE Transactions on Network and Service
Management 16.3 (2019), pp. 924–935.

[91] Garlan, David and Cheng, S-W and Huang, A-C and Schmerl, Bradley and Steenkiste,
Peter. “Rainbow: Architecture-based self-adaptation with reusable infrastructure”. In:
Computer 37.10 (2004), pp. 46–54.

[92] Garlan, David and Schmerl, Bradley. “Model-based adaptation for self-healing sys-
tems”. In: Proceedings of the first workshop on Self-healing systems. 2002, pp. 27–32.

[93] Garraghan, Peter and Townend, Paul and Xu, Jie. “An empirical failure-analysis of a
large-scale cloud computing environment”. In: 2014 IEEE 15th International Sympo-
sium on High-Assurance Systems Engineering. IEEE. 2014, pp. 113–120.

[94] Ghosh, Debanjan and Sharman, Raj and Rao, H Raghav and Upadhyaya, Shambhu.
“Self-healing systems–survey and synthesis”. In: Decision support systems 42.4 (2007),
pp. 2164–2185.

[95] Gill, Sukhpal Singh and Chana, Inderveer and Singh, Maninder and Buyya, Rajkumar.
“RADAR: Self-Configuring and Self-Healing in Resource Management for Enhancing
Quality of Cloud Services”. In: Concurrency and Computation: Practice and Experi-
ence (CCPE) (2018).

[96] Gill, Sukhpal Singh and Chana, Inderveer and Singh, Maninder and Buyya, Rajkumar.
“RADAR: Self-configuring and self-healing in resource management for enhancing
quality of cloud services”. In: Concurrency and Computation: Practice and Experience
31.1 (2019), e4834.

[97] Google Cloud Architecture Center. MLOps: Continuous delivery and automa-
tion pipelines in machine learning. https : / / cloud . google . com /
architecture / mlops - continuous - delivery - and - automation -
pipelines-in-machine-learning. (last access 21 May 2021). 2021.

[98] Grambow, Martin and Hasenburg, Jonathan and Bermbach, David. “Public video
surveillance: Using the fog to increase privacy”. In: Proceedings of the 5th Workshop
on Middleware and Applications for the Internet of Things. 2018, pp. 11–14.

[99] Gray, Jim. “A census of Tandem system availability between 1985 and 1990”. In: IEEE
Transactions on reliability 39.4 (1990), pp. 409–418.

[100] Gray, Jim and Siewiorek, Daniel P. “High-availability computer systems”. In: Computer
24.9 (1991), pp. 39–48.

[101] Gregg, Brendan. Systems performance: enterprise and the cloud. Pearson Education,
2014.

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

Bibliography 135

[102] Griwodz, Carsten and Bär, Michael and Wolf, Lars C. “Long-term movie popularity
models in video-on-demand systems: or the life of an on-demand movie”. In: Proceed-
ings of the fifth ACM international conference on Multimedia. 1997, pp. 349–357.

[103] Grubbs, Frank E. “Procedures for detecting outlying observations in samples”. In: Tech-
nometrics 11.1 (1969), pp. 1–21.

[104] Guerraoui, Rachid and Schiper, André. “Software-based replication for fault tolerance”.
In: Computer 30.4 (1997), pp. 68–74.

[105] Gulenko, Anton and Acker, Alexander and Kao, Odej and Liu, Feng. “AI-Governance
and Levels of Automation for AIOps-supported System Administration”. In: 2020
29th International Conference on Computer Communications and Networks (ICCCN).
IEEE. 2020, pp. 1–6.

[106] Gulenko, Anton and Acker, Alexander and Schmidt, Florian and Becker, Soeren and
Kao, Odej. “Bitflow: An In Situ Stream Processing Framework”. In: 2020 IEEE Inter-
national Conference on Autonomic Computing and Self-Organizing Systems Compan-
ion (ACSOS-C). IEEE. 2020, pp. 182–187.

[107] Gulenko, Anton and Kao, Odej and Schmidt, Florian. “Anomaly Detection and Lev-
els of Automation for AI-Supported System Administration”. In: Annual International
Symposium on Information Management and Big Data. Springer. 2019, pp. 1–7.

[108] Gulenko, Anton and Schmidt, Florian and Acker, Alexander and Wallschlaeger, Mar-
cel and Kao, Odej and Liu, Feng. “Detecting anomalous behavior of black-box services
modeled with distance-based online clustering”. In: 2018 IEEE 11th International Con-
ference on Cloud Computing (CLOUD). IEEE. 2018, pp. 912–915.

[109] Gulenko, Anton and Wallschlaeger, Marcel and Schmidt, Florian and Kao, Odej and
Liu, Feng. “A system architecture for real-time anomaly detection in large-scale nfv
systems”. In: Procedia Computer Science 94 (2016), pp. 491–496.

[110] Gulenko, Anton and Wallschlaeger, Marcel and Schmidt, Florian and Kao, Odej
and Liu, Feng. “Evaluating machine learning algorithms for anomaly detection in
clouds”. In: 2016 IEEE International Conference on Big Data (Big Data). IEEE. 2016,
pp. 2716–2721.

[111] Gunawi, Haryadi S and Hao, Mingzhe and Leesatapornwongsa, Tanakorn and Patana-
anake, Tiratat and Do, Thanh and Adityatama, Jeffry and Eliazar, Kurnia J and Laksono,
Agung and Lukman, Jeffrey F and Martin, Vincentius and others. “What bugs live in
the cloud? a study of 3000+ issues in cloud systems”. In: Proceedings of the ACM
Symposium on Cloud Computing. 2014, pp. 1–14.

[112] Hamilton, James Douglas. Time series analysis. Princeton university press, 1994.

[113] Han, Bo and Gopalakrishnan, Vijay and Ji, Lusheng and Lee, Seungjoon. “Network
function virtualization: Challenges and opportunities for innovations”. In: IEEE Com-
munications Magazine 53.2 (2015), pp. 90–97.

[114] Haselboeck, Stefan and Weinreich, Rainer. “Decision guidance models for microser-
vice monitoring”. In: 2017 IEEE International Conference on Software Architecture
Workshops (ICSAW). IEEE. 2017, pp. 54–61.

136 Bibliography

[115] Hassan, Ahmed E and Holt, Richard C. “The top ten list: Dynamic fault prediction”. In:
21st IEEE International Conference on Software Maintenance (ICSM’05). IEEE. 2005,
pp. 263–272.

[116] Hawkins, Douglas M. Identification of outliers. Vol. 11. Springer, 1980.

[117] Hochreiter, Sepp. “The vanishing gradient problem during learning recurrent neural
nets and problem solutions”. In: International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 6.02 (1998), pp. 107–116.

[118] Hochreiter, Sepp and Schmidhuber, Jürgen. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[119] Horn, Paul. “Autonomic computing: IBM’s perspective on the state of information tech-
nology”. In: (2001).

[120] Hosford, John E. “Measures of dependability”. In: Operations Research 8.1 (1960),
pp. 53–64.

[121] Hu, Honglin and Zhang, Jian and Zheng, Xiaoying and Yang, Yang and Wu, Ping.
“Self-configuration and self-optimization for LTE networks”. In: IEEE Communica-
tions Magazine 48.2 (2010), pp. 94–100.

[122] Huang, Kuang-Hua and Abraham, Jacob A. “Algorithm-based fault tolerance for matrix
operations”. In: IEEE transactions on computers 100.6 (1984), pp. 518–528.

[123] Huebscher, Markus C and McCann, Julie A. “A survey of autonomic computing–
degrees, models, and applications”. In: ACM Computing Surveys (CSUR) 40.3 (2008),
pp. 1–28.

[124] Hung, Mark. “Leading the iot, gartner insights on how to lead in a connected world”.
In: Gartner Research 1 (2017), pp. 1–5.

[125] Hur, Junbeom and Kang, Kyungtae. “Dependable and secure computing in medical
information systems”. In: Computer Communications 36.1 (2012), pp. 20–28.

[126] IBM. “An architectural blueprint for autonomic computing”. In: IBM White Paper
31.2006 (2006), pp. 1–6.

[127] Iglesias, Félix and Kastner, Wolfgang. “Analysis of similarity measures in times se-
ries clustering for the discovery of building energy patterns”. In: Energies 6.2 (2013),
pp. 579–597.

[128] Ikeuchi, Hiroki and Watanabe, Akio and Hirao, Tsutomu and Morishita, Makoto and
Nishino, Masaaki and Matsuo, Yoichi and Watanabe, Keishiro. “Recovery command
generation towards automatic recovery in ict systems by seq2seq learning”. In: NOMS
2020-2020 IEEE/IFIP Network Operations and Management Symposium. IEEE. 2020,
pp. 1–6.

[129] Ioffe, Sergey and Szegedy, Christian. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: International conference on machine
learning. PMLR. 2015, pp. 448–456.

[130] Iorga, Michaela and Goren, Nedim and Feldman, Larry and Barton, Robert and Mar-
tin, Michael and Mahmoudi, Charif. Fog Computing Conceptual Model. Tech. rep.
https://doi.org/10.6028/NIST.SP.500-325 (last access 21 April
2021). National Institute of Standards and Technology, 2018.

https://doi.org/10.6028/NIST.SP.500-325

Bibliography 137

[131] Islam, Tariqul and Manivannan, Dakshnamoorthy. “Predicting application failure in
cloud: A machine learning approach”. In: 2017 IEEE International Conference on Cog-
nitive Computing (ICCC). IEEE. 2017, pp. 24–31.

[132] Javadi, Bahman and Abawajy, Jemal and Buyya, Rajkumar. “Failure-aware resource
provisioning for hybrid cloud infrastructure”. In: Journal of parallel and distributed
computing 72.10 (2012), pp. 1318–1331.

[133] Javed, Asad and Heljanko, Keijo and Buda, Andrea and Fraemling, Kary. “Cefiot: A
fault-tolerant iot architecture for edge and cloud”. In: 2018 IEEE 4th world forum on
internet of things (WF-IoT). IEEE. 2018, pp. 813–818.

[134] Jia, Chen and Tan, ChengYu and Yong, Ai. “A grid and density-based clustering algo-
rithm for processing data stream”. In: 2008 Second International Conference on Ge-
netic and Evolutionary Computing. IEEE. 2008, pp. 517–521.

[135] Jia, Tong and Chen, Pengfei and Yang, Lin and Li, Ying and Meng, Fanjing and Xu,
Jingmin. “An approach for anomaly diagnosis based on hybrid graph model with logs
for distributed services”. In: 2017 IEEE International Conference on Web Services
(ICWS). IEEE. 2017, pp. 25–32.

[136] Kaitovic, Igor and Malek, Miroslaw. “Impact of Failure Prediction on Availability:
Modeling and Comparative Analysis of Predictive and Reactive Methods”. In: IEEE
Transactions on Dependable and Secure Computing 17.3 (2018), pp. 493–505.

[137] Kajó, Márton and Nováczki, Szabolcs. “A genetic feature selection algorithm for
anomaly classification in mobile networks”. In: 19th International ICIN conference-
Innovations in Clouds, Internet and Networks. 2016.

[138] Kephart, Jeffrey O and Chess, David M. “The vision of autonomic computing”. In:
Computer 36.1 (2003), pp. 41–50.

[139] Kotliar, A and Kotliar, V. “Event-driven automation and chatops on IHEP computing
cluster”. In: CEUR Workshop Proceedings. 2018, pp. 558–562.

[140] Lan, Zhiling and Li, Yawei. “Adaptive fault management of parallel applications for
high-performance computing”. In: IEEE Transactions on Computers 57.12 (2008),
pp. 1647–1660.

[141] Laprie, Jean-Claude. “Dependable computing and fault-tolerance”. In: Digest of Papers
FTCS-15 (1985), pp. 2–11.

[142] Laranjeira, Luiz A and Malek, Miroslaw and Jenevein, Roy. “On tolerating faults in
naturally redundant algorithms”. In: Proceedings Tenth Symposium on Reliable Dis-
tributed Systems. IEEE Computer Society. 1991, pp. 118–119.

[143] Lavriv, Orest and Klymash, Mykhailo and Grynkevych, Ganna and Tkachenko, Olga
and Vasylenko, Volodymyr. “Method of cloud system disaster recovery based on" In-
frastructure as a code" concept”. In: 2018 14th International Conference on Advanced
Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET).
IEEE. 2018, pp. 1139–1142.

[144] Lee, Peter Alan and Anderson, Thomas. “Fault tolerance”. In: Fault Tolerance.
Springer, 1990, pp. 51–77.

138 Bibliography

[145] Li, Guoqiang and Liao, Lejian and Song, Dandan and Wang, Jingang and Sun, Fuzhen
and Liang, Guangcheng. “A self-healing framework for qos-aware web service com-
position via case-based reasoning”. In: Asia-Pacific Web Conference. Springer. 2013,
pp. 654–661.

[146] Ligus, Slawek. Effective monitoring and alerting. " O’Reilly Media, Inc.", 2012.

[147] Linnainmaa, Seppo. “The representation of the cumulative rounding error of an al-
gorithm as a Taylor expansion of the local rounding errors”. In: Master’s Thesis (in
Finnish), Univ. Helsinki (1970), pp. 6–7.

[148] Liu, Ping and Xu, Haowen and Ouyang, Qianyu and Jiao, Rui and Chen, Zhekang
and Zhang, Shenglin and Yang, Jiahai and Mo, Linlin and Zeng, Jice and Xue, Wen-
man and others. “Unsupervised Detection of Microservice Trace Anomalies through
Service-Level Deep Bayesian Networks”. In: 2020 IEEE 31st International Symposium
on Software Reliability Engineering (ISSRE). IEEE. 2020, pp. 48–58.

[149] Luo, Chuan and Qiao, Bo and Chen, Xin and Zhao, Pu and Yao, Randolph and Zhang,
Hongyu and Wu, Wei and Zhou, Andrew and Lin, Qingwei. “Intelligent Virtual Ma-
chine Provisioning in Cloud Computing”. In: Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-20. 2020, pp. 1495–1502.

[150] Mach, Pavel and Becvar, Zdenek. “Mobile edge computing: A survey on architec-
ture and computation offloading”. In: IEEE Communications Surveys & Tutorials 19.3
(2017), pp. 1628–1656.

[151] Madsen, Henrik and Burtschy, Bernard and Albeanu, G and Popentiu-Vladicescu, FL.
“Reliability in the utility computing era: Towards reliable fog computing”. In: 2013
20th International Conference on Systems, Signals and Image Processing (IWSSIP).
IEEE. 2013, pp. 43–46.

[152] Magalhaes, Joao Paulo and Silva, Luis Moura. “A framework for self-healing and self-
adaptation of cloud-hosted web-based applications”. In: 2013 IEEE 5th International
Conference on Cloud Computing Technology and Science. Vol. 1. IEEE. 2013, pp. 555–
564.

[153] Malek, Miroslaw. “Predictive analytics: a shortcut to dependable computing”. In: In-
ternational Workshop on Software Engineering for Resilient Systems. Springer. 2017,
pp. 3–17.

[154] Mariani, Leonardo and Pezzè, Mauro and Riganelli, Oliviero and Xin, Rui. “Predicting
failures in multi-tier distributed systems”. In: Journal of Systems and Software 161
(2020), p. 110464.

[155] Mark Russinovich. Advancing Azure service quality with artificial intelligence: AIOps.
https://azure.microsoft.com/en-us/blog/advancing-azure-
service- quality- with- artificial- intelligence- aiops/. (last
access 21 May 2021). 2020.

[156] Masood, Adnan and Hashmi, Adnan. “AIOps: Predictive Analytics & Machine Learn-
ing in Operations”. In: Cognitive Computing Recipes. Springer, 2019, pp. 359–382.

https://azure.microsoft.com/en-us/blog/advancing-azure-service-quality-with-artificial-intelligence-aiops/
https://azure.microsoft.com/en-us/blog/advancing-azure-service-quality-with-artificial-intelligence-aiops/

Bibliography 139

[157] Matos, Rubens de S and Maciel, Paulo RM and Machida, Fumio and Kim, Dong Seong
and Trivedi, Kishor S. “Sensitivity analysis of server virtualized system availability”.
In: IEEE Transactions on Reliability 61.4 (2012), pp. 994–1006.

[158] Maurer, Michael and Breskovic, Ivan and Emeakaroha, Vincent C and Brandic, Ivona.
“Revealing the MAPE loop for the autonomic management of cloud infrastructures”.
In: 2011 IEEE symposium on computers and communications (ISCC). IEEE. 2011,
pp. 147–152.

[159] Mell, Peter and Grance, Tim and others. “The NIST definition of cloud computing”. In:
(2011).

[160] Menage, Paul and Jackson, Paul and Lameter, Christoph. cgroups - Linux Kernel Doc-
umentation. https://www.kernel.org/doc/Documentation/cgroup-
v1/cgroups.txt. (last access 21 May 2021). 2004.

[161] Mfula, Harrison and Nurminen, Jukka K. “Self-healing cloud services in private multi-
clouds”. In: 2018 International Conference on High Performance Computing & Simu-
lation (HPCS). IEEE. 2018, pp. 165–170.

[162] Microsoft Corporation. Press Release & Webcast: Earnings Release FY21 Q1 - Mi-
crosoft Cloud Strength Fuels First Quarter Results. Tech. rep. https : / / www .
microsoft.com/en-us/Investor/earnings/FY-2021-Q1/press-
release-webcast (last access 22 April 2021). 2021.

[163] Miorandi, Daniele and Carreras, Iacopo and Altman, Eitan and Yamamoto, Lidia and
Chlamtac, Imrich. “Bio-inspired approaches for autonomic pervasive computing sys-
tems”. In: Workshop on Bio-Inspired Design of Networks. Springer. 2007, pp. 217–
228.

[164] Miorandi, Daniele and Lowe, David and Yamamoto, Lidia. “Embryonic models for
self–healing distributed services”. In: International Conference on Bio-Inspired Models
of Network, Information, and Computing Systems. Springer. 2009, pp. 152–166.

[165] Montani, Stefania and Anglano, Cosimo. “Case-based reasoning for autonomous ser-
vice failure diagnosis and remediation in software systems”. In: European Conference
on Case-Based Reasoning. Springer. 2006, pp. 489–503.

[166] Mosallanejad, Ahmad and Atan, Rodziah and Murad, Masrah Azmi and Abdullah,
Rusli. “A hierarchical self-healing SLA for cloud computing”. In: International Jour-
nal of Digital Information and Wireless Communications (IJDIWC) 4.1 (2014), pp. 43–
52.

[167] Moulding, MR. Fault Tolerant Systems in Military Applications. Tech. rep. ROYAL
MILITARY COLL OF SCIENCE SHRIVENHAM (ENGLAND), 1985.

[168] Mullany, Francis J and Ho, Lester TW and Samuel, Louis G and Claussen, Holger.
“Self-deployment, self-configuration: Critical future paradigms for wireless access net-
works”. In: Workshop on Autonomic Communication. Springer. 2004, pp. 58–68.

[169] Najjar, Walid and Gaudiot, J-L. “Network resilience: A measure of network fault toler-
ance”. In: IEEE Transactions on Computers 39.2 (1990), pp. 174–181.

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.microsoft.com/en-us/Investor/earnings/FY-2021-Q1/press-release-webcast
https://www.microsoft.com/en-us/Investor/earnings/FY-2021-Q1/press-release-webcast
https://www.microsoft.com/en-us/Investor/earnings/FY-2021-Q1/press-release-webcast

140 Bibliography

[170] Nallur, Vivek and Bahsoon, Rami. “A decentralized self-adaptation mechanism for
service-based applications in the cloud”. In: IEEE Transactions on Software Engineer-
ing 39.5 (2012), pp. 591–612.

[171] Nedelkoski, Sasho and Bogatinovski, Jasmin and Acker, Alexander and Cardoso, Jorge
and Kao, Odej. “Self-Attentive Classification-Based Anomaly Detection in Unstruc-
tured Logs”. In: 2020 IEEE International Conference on Data Mining (ICDM). IEEE.
2020, pp. 1196–1201.

[172] Nedelkoski, Sasho and Cardoso, Jorge and Kao, Odej. “Anomaly detection and classi-
fication using distributed tracing and deep learning”. In: 2019 19th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE. 2019,
pp. 241–250.

[173] Nedelkoski, Sasho and Cardoso, Jorge and Kao, Odej. “Anomaly detection from sys-
tem tracing data using multimodal deep learning”. In: 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD). IEEE. 2019, pp. 179–186.

[174] Netti, Alessio and Kiziltan, Zeynep and Babaoglu, Ozalp and Sîrbu, Alina and Bar-
tolini, Andrea and Borghesi, Andrea. “Online fault classification in hpc systems through
machine learning”. In: European Conference on Parallel Processing. Springer. 2019,
pp. 3–16.

[175] Neumann, Peter G. Computer-related risks. Addison-Wesley Professional, 1994.

[176] Newman, Sam. Building microservices: designing fine-grained systems. " O’Reilly Me-
dia, Inc.", 2015.

[177] Nguyen, Hiep and Shen, Zhiming and Tan, Yongmin and Gu, Xiaohui. “FChain: To-
ward black-box online fault localization for cloud systems”. In: 2013 IEEE 33rd Inter-
national Conference on Distributed Computing Systems. IEEE. 2013, pp. 21–30.

[178] Northrop, Linda and Feiler, Peter and Gabriel, Richard P and Goodenough, John and
Linger, Rick and Longstaff, Tom and Kazman, Rick and Klein, Mark and Schmidt,
Douglas and Sullivan, Kevin and others. Ultra-large-scale systems: The software chal-
lenge of the future. Tech. rep. Carnegie-Mellon Univ Pittsburgh Pa Software Engineer-
ing Inst, 2006.

[179] Pallas, Frank and Raschke, Philip and Bermbach, David. “Fog computing as privacy
enabler”. In: IEEE Internet Computing 24.4 (2020), pp. 15–21.

[180] Pandeeswari, N and Kumar, Ganesh. “Anomaly detection system in cloud environment
using fuzzy clustering based ANN”. In: Mobile Networks and Applications 21.3 (2016),
pp. 494–505.

[181] Paparoditis, Efstathios and Politis, Dimitris N. “Tapered block bootstrap”. In:
Biometrika 88.4 (2001), pp. 1105–1119.

[182] Parmar, H. and Thornburgh, M. Adobe’s Real Time Messaging Protocol. https://
wwwimages2.adobe.com/content/dam/acom/en/devnet/rtmp/pdf/
rtmp_specification_1.0.pdf. (last access 20 April 2021). 2012.

https://wwwimages2.adobe.com/content/dam/acom/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf
https://wwwimages2.adobe.com/content/dam/acom/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf
https://wwwimages2.adobe.com/content/dam/acom/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf

Bibliography 141

[183] Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam and Bradbury,
James and Chanan, Gregory and Killeen, Trevor and Lin, Zeming and Gimelshein, Na-
talia and Antiga, Luca and others. “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: Advances in Neural Information Processing Systems 32
(2019), pp. 8026–8037.

[184] Peng, Mugen and Liang, Dong and Wei, Yao and Li, Jian and Chen, Hsiao-Hwa.
“Self-configuration and self-optimization in LTE-advanced heterogeneous networks”.
In: IEEE Communications Magazine 51.5 (2013), pp. 36–45.

[185] Petitjean, Franccois and Ketterlin, Alain and Ganccarski, Pierre. “A global averaging
method for dynamic time warping, with applications to clustering”. In: Pattern recog-
nition 44.3 (2011), pp. 678–693.

[186] Pfandzelter, Tobias and Bermbach, David. “Iot data processing in the fog: Functions,
streams, or batch processing?” In: 2019 IEEE International Conference on Fog Com-
puting (ICFC). IEEE. 2019, pp. 201–206.

[187] Pfandzelter, Tobias and Bermbach, David. “tinyFaaS: A lightweight faas platform
for edge environments”. In: 2020 IEEE International Conference on Fog Computing
(ICFC). IEEE. 2020, pp. 17–24.

[188] Pitakrat, Teerat and Okanovic, Dusan and Van Hoorn, André and Grunske, Lars. “An
architecture-aware approach to hierarchical online failure prediction”. In: 2016 12th
International ACM SIGSOFT Conference on Quality of Software Architectures (QoSA).
IEEE. 2016, pp. 60–69.

[189] Pokharel, Manish and Lee, Seulki and Park, Jong Sou. “Disaster recovery for system ar-
chitecture using cloud computing”. In: 2010 10th IEEE/IPSJ International Symposium
on Applications and the Internet. IEEE. 2010, pp. 304–307.

[190] Psaier, Harald and Dustdar, Schahram. “A survey on self-healing systems: approaches
and systems”. In: Computing 91.1 (2011), pp. 43–73.

[191] Randell, Brian. “System structure for software fault tolerance”. In: Ieee transactions on
software engineering SE-1.2 (1975), pp. 220–232.

[192] Rausand, Marvin and Hoyland, Arnljot. System reliability theory: models, statistical
methods, and applications. Vol. 396. John Wiley & Sons, 2003.

[193] Rennels, David A. “Architectures for fault-tolerant spacecraft computers”. In: Proceed-
ings of the IEEE 66.10 (1978), pp. 1255–1268.

[194] Riiser, Haakon and Endestad, Tore and Vigmostad, Paul and Griwodz, Carsten and
Halvorsen, Pâl. “Video streaming using a location-based bandwidth-lookup service for
bitrate planning”. In: ACM Transactions on Multimedia Computing, Communications,
and Applications (TOMM) 8.3 (2012), pp. 1–19.

[195] Riiser, Haakon and Vigmostad, Paul and Griwodz, Carsten and Halvorsen, Paal. “Com-
mute path bandwidth traces from 3G networks: analysis and applications”. In: Proceed-
ings of the 4th ACM Multimedia Systems Conference. 2013, pp. 114–118.

[196] Robbins, Herbert and Monro, Sutton. “A stochastic approximation method”. In: The
annals of mathematical statistics (1951), pp. 400–407.

142 Bibliography

[197] Robert, Cleveland and William, C and Irma, Terpenning. “STL: A seasonal-trend de-
composition procedure based on loess”. In: Journal of official statistics 6.1 (1990),
pp. 3–73.

[198] Rohn, WB. “Reliability prediction for complex systems”. In: Proceedings of the Fifth
National Symposium on Reliability and Quality Control. 1959, pp. 381–388.

[199] Rumelhart, David E and Hinton, Geoffrey E and Williams, Ronald J. “Learning repre-
sentations by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536.

[200] Rushby, John. “Critical system properties: Survey and taxonomy”. In: Reliability Engi-
neering & System Safety 43.2 (1994), pp. 189–219.

[201] Sadashiv, Naidila and Kumar, SM Dilip. “Cluster, grid and cloud computing: A detailed
comparison”. In: 2011 6th International Conference on Computer Science & Education
(ICCSE). IEEE. 2011, pp. 477–482.

[202] Salfner, Felix. Event-based failure prediction: an extended hidden markov model ap-
proach. dissertation.de, 2008.

[203] Salfner, Felix and Lenk, Maren and Malek, Miroslaw. “A survey of online failure pre-
diction methods”. In: ACM Computing Surveys (CSUR) 42.3 (2010), pp. 1–42.

[204] Salfner, Felix and Malek, Miroslaw. “Proactive fault handling for system availability
enhancement”. In: 19th IEEE International Parallel and Distributed Processing Sym-
posium. IEEE. 2005, 7–pp.

[205] Sandvine. The Global Internet Phenomena Report, October 2019. https://www.
sandvine . com / press - releases / sandvine - releases - 2019 -
global- internet- phenomena- report. (last access 20 April 2021). Oct.
2019.

[206] Sari, Arif and others. “A review of anomaly detection systems in cloud networks and
survey of cloud security measures in cloud storage applications”. In: Journal of Infor-
mation Security 6.02 (2015), p. 142.

[207] Sarle, Warren S. “Stopped training and other remedies for overfitting”. In: Computing
science and statistics (1996), pp. 352–360.

[208] Sauvanaud, Carla and Lazri, Kahina and Kaâniche, Mohamed and Kanoun, Karama.
“Anomaly detection and root cause localization in virtual network functions”. In:
2016 IEEE 27th International Symposium on Software Reliability Engineering (ISSRE).
IEEE. 2016, pp. 196–206.

[209] Scheinert, Dominik and Acker, Alexander. “Telesto: A graph neural network model for
anomaly classification in cloud services”. In: Service-Oriented Computing – ICSOC
2020 Workshops. Springer International Publishing. 2021, pp. 214–227.

[210] Schmidt, Florian and Gulenko, Anton and Wallschlaeger, Marcel and Acker, Alexander
and Hennig, Vincent and Liu, Feng and Kao, Odej. “Iftm-unsupervised anomaly detec-
tion for virtualized network function services”. In: 2018 IEEE International Conference
on Web Services (ICWS). IEEE. 2018, pp. 187–194.

https://www.sandvine.com/press-releases/sandvine-releases-2019-global-internet-phenomena-report
https://www.sandvine.com/press-releases/sandvine-releases-2019-global-internet-phenomena-report
https://www.sandvine.com/press-releases/sandvine-releases-2019-global-internet-phenomena-report

Bibliography 143

[211] Schmidt, Florian and Suri-Payer, Florian and Gulenko, Anton and Wallschlaeger, Mar-
cel and Acker, Alexander and Kao, Odej. “Unsupervised anomaly event detection for
cloud monitoring using online arima”. In: 2018 IEEE/ACM International Conference
on Utility and Cloud Computing Companion (UCC Companion). IEEE. 2018, pp. 71–
76.

[212] Schmidt, Florian and Suri-Payer, Florian and Gulenko, Anton and Wallschlaeger, Mar-
cel and Acker, Alexander and Kao, Odej. “Unsupervised anomaly event detection for
vnf service monitoring using multivariate online arima”. In: 2018 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom). IEEE. 2018,
pp. 278–283.

[213] Schneider, Chris and Barker, Adam and Dobson, Simon. “A survey of self-healing
systems frameworks”. In: Software: Practice and Experience 45.10 (2015), pp. 1375–
1398.

[214] Sefraoui, Omar and Aissaoui, Mohammed and Eleuldj, Mohsine. “OpenStack: toward
an open-source solution for cloud computing”. In: International Journal of Computer
Applications 55.3 (2012), pp. 38–42.

[215] Shangguan, Chong and Tamo, Itzhak. “Error detection and correction in communica-
tion networks”. In: 2020 IEEE International Symposium on Information Theory (ISIT).
IEEE. 2020, pp. 96–101.

[216] Sharma, GN. “Hot redundant versus cold redundant systems”. In: Reliability Engineer-
ing 2.3 (1981), pp. 193–197.

[217] Shkuro, Yuri. Mastering Distributed Tracing. Packt Publishing, 2019.

[218] Sidiroglou-Douskos, Stelios and Misailovic, Sasa and Hoffmann, Henry and Rinard,
Martin. “Managing performance vs. accuracy trade-offs with loop perforation”. In: Pro-
ceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering. 2011, pp. 124–134.

[219] Sillito, Jonathan and Kutomi, Esdras. “Failures and Fixes: A Study of Software System
Incident Response”. In: 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE. 2020, pp. 185–195.

[220] Spiteri, Kevin and Urgaonkar, Rahul and Sitaraman, Ramesh K. “BOLA: Near-optimal
bitrate adaptation for online videos”. In: IEEE/ACM Transactions on Networking 28.4
(2020), pp. 1698–1711.

[221] Srivastava, Nitish and Hinton, Geoffrey and Krizhevsky, Alex and Sutskever, Ilya and
Salakhutdinov, Ruslan. “Dropout: a simple way to prevent neural networks from over-
fitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[222] Su, Ya and Zhao, Youjian and Niu, Chenhao and Liu, Rong and Sun, Wei and Pei,
Dan. “Robust anomaly detection for multivariate time series through stochastic recur-
rent neural network”. In: Proceedings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining. 2019, pp. 2828–2837.

[223] Tanenbaum, Andrew S and Van Steen, Maarten. Distributed systems: principles and
paradigms. Prentice-hall, 2007.

144 Bibliography

[224] Thanigaivelan, Nanda Kumar and Nigussie, Ethiopia and Kanth, Rajeev Kumar and
Virtanen, Seppo and Isoaho, Jouni. “Distributed internal anomaly detection system for
Internet-of-Things”. In: 2016 13th IEEE annual consumer communications & network-
ing conference (CCNC). IEEE. 2016, pp. 319–320.

[225] Tokoro, Mario. Open systems dependability: dependability engineering for ever-
changing systems. CRC press, 2015.

[226] Tran, Lam and Choi, Deokjai. “Data augmentation for inertial sensor-based gait deep
neural network”. In: IEEE Access 8 (2020), pp. 12364–12378.

[227] Troeger, Peter. Unsicherheit und Uneindeutigkeit in Verlaesslichkeitsmodellen.
Springer, 2018.

[228] Tuncer, Ozan and Ates, Emre and Zhang, Yijia and Turk, Ata and Brandt, Jim and
Leung, Vitus J and Egele, Manuel and Coskun, Ayse K. “Diagnosing performance vari-
ations in HPC applications using machine learning”. In: International Supercomputing
Conference. Springer. 2017, pp. 355–373.

[229] Um, Terry T and Pfister, Franz MJ and Pichler, Daniel and Endo, Satoshi and Lang,
Muriel and Hirche, Sandra and Fietzek, Urban and Kulić, Dana. “Data augmentation
of wearable sensor data for parkinson’s disease monitoring using convolutional neural
networks”. In: Proceedings of the 19th ACM International Conference on Multimodal
Interaction. 2017, pp. 216–220.

[230] Upton, Graham and Cook, Ian. A dictionary of statistics 3e. Oxford university press,
2014.

[231] Variabilità, Gini C. “mutuabilità: contributo allo studio delle distribuzioni e delle re-
lazioni statistiche”. In: Bologna (ITA): Tipogr. di P. Cuppini (1912).

[232] Wallschlaeger, Marcel and Acker, Alexander and Kao, Odej. “Silent Consensus: Proba-
bilistic Packet Sampling for Lightweight Network Monitoring”. In: International Con-
ference on Computational Science and Its Applications. Springer. 2019, pp. 241–256.

[233] Wang, Ping and Xu, Jingmin and Ma, Meng and Lin, Weilan and Pan, Disheng and
Wang, Yuan and Chen, Pengfei. “Cloudranger: Root cause identification for cloud na-
tive systems”. In: 2018 18th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID). IEEE. 2018, pp. 492–502.

[234] Wang, Tao and Xu, Jiwei and Zhang, Wenbo and Gu, Zeyu and Zhong, Hua. “Self-
adaptive cloud monitoring with online anomaly detection”. In: Future Generation Com-
puter Systems 80 (2018), pp. 89–101.

[235] Wang, Yu and Ma, Eden WM and Chow, Tommy WS and Tsui, Kwok-Leung. “A two-
step parametric method for failure prediction in hard disk drives”. In: IEEE Transac-
tions on industrial informatics 10.1 (2013), pp. 419–430.

[236] Weng, Jianping and Wang, Jessie Hui and Yang, Jiahai and Yang, Yang. “Root cause
analysis of anomalies of multitier services in public clouds”. In: IEEE/ACM Transac-
tions on Networking 26.4 (2018), pp. 1646–1659.

Bibliography 145

[237] Wensley, John H and Lamport, Leslie and Goldberg, Jack and Green, Milton W and
Levitt, Karl N and Melliar-Smith, Po Mo and Shostak, Robert E and Weinstock, Charles
B. “SIFT: Design and analysis of a fault-tolerant computer for aircraft control”. In:
Proceedings of the IEEE 66.10 (1978), pp. 1240–1255.

[238] Wetzig, René and Gulenko, Anton and Schmidt, Florian. “Unsupervised Anomaly
Alerting for IoT-Gateway Monitoring using Adaptive Thresholds and Half-Space
Trees”. In: 2019 Sixth International Conference on Internet of Things: Systems, Man-
agement and Security (IOTSMS). IEEE. 2019, pp. 161–168.

[239] Wu, Li and Tordsson, Johan and Acker, Alexander and Kao, Odej. “MicroRAS: Auto-
matic Recovery in the Absence of Historical Failure Data for Microservice Systems”.
In: 2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing
(UCC). IEEE. 2020, pp. 227–236.

[240] Wu, Li and Tordsson, Johan and Elmroth, Erik and Kao, Odej. “Microrca: Root cause
localization of performance issues in microservices”. In: NOMS 2020-2020 IEEE/IFIP
Network Operations and Management Symposium. IEEE. 2020, pp. 1–9.

[241] Xu, Haowen and Chen, Wenxiao and Zhao, Nengwen and Li, Zeyan and Bu, Jiahao and
Li, Zhihan and Liu, Ying and Zhao, Youjian and Pei, Dan and Feng, Yang and others.
“Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web
applications”. In: Proceedings of the 2018 World Wide Web Conference. 2018, pp. 187–
196.

[242] Yang, Chi and Liu, Chang and Zhang, Xuyun and Nepal, Surya and Chen, Jinjun. “A
time efficient approach for detecting errors in big sensor data on cloud”. In: IEEE Trans-
actions on Parallel and Distributed Systems 26.2 (2014), pp. 329–339.

[243] Yao, Yuan and Sharma, Abhishek and Golubchik, Leana and Govindan, Ramesh. “On-
line anomaly detection for sensor systems: A simple and efficient approach”. In: Per-
formance Evaluation 67.11 (2010), pp. 1059–1075.

[244] Zamojski, Wojciech and Mazurkiewicz, Jacek and Sugier, Jaroslaw and Walkowiak,
Tomasz and Kacprzyk, Janusz. “Theory and Engineering of Complex Systems and De-
pendability”. In: Conference proceedings DepCoS-RELCOMEX. 2015, p. 125.

[245] Zhu, Qijun and Yuan, Chun. “A reinforcement learning approach to automatic error re-
covery”. In: 37th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’07). IEEE Computer Society. 2007, pp. 729–738.

	Title Page
	Acknowledgements
	Zusammenfassung
	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms and Abbreviations
	Introduction
	Problem Definition
	Contributions
	Outline of the Thesis

	Background
	Dependability of Distributed Systems
	Cloud Computing
	Fog and Edge Computing

	Failure Models
	Fault Tolerance
	Fault Tolerance Policies
	Temporal Analysis of Fault Tolerance Policies

	Related Work
	A Brief History of Fault-Tolerant IT Systems
	Fault Tolerance Methods
	Autonomic Computing
	AIOps
	Anomaly Symptom Analysis
	Automatic Remediation or Recovery

	Anomaly Symptom Recognition in an AIOps System
	Challenges and Assumptions
	Challenges
	Assumptions

	AIOps System
	Closed-Loop Control, Sensors and Effectors
	Anomaly Detection
	Operation Execution

	ReCoMe Engine
	Knowledge Base
	Ingest Control
	Anomaly Symptom Recognition
	Operation Selection

	Modeling Concepts for Anomaly Symptom Recognition
	Classification of System Metric Data
	Classification Model Requirements

	Density Grid Pattern Model
	Anomaly Symptom Analysis
	Preprocessing
	Density Grid Transformation
	Grid Pattern Similarity

	Anomaly Type Inference
	Evaluation Environment
	Cloud Computing System and Monitoring
	Virtual IP Multimedia Subsystem
	Video on Demand Service
	Anomaly Injection

	Evaluation
	Evaluation Scores
	Experiment
	Evaluating Anomaly Symptom Recognition
	Evaluating Unknown Anomaly Type Recognition

	Recurrent Neural Network Model
	Anomaly Symptom Analysis
	Model Architecture
	Model Training

	Anomaly Type Inference
	Metric Series Augmentation
	Local Blurring
	Interpolation

	Evaluation
	Experiment
	Effect of Metric Series Augmentation
	Evaluating Anomaly Symptom Recognition
	Evaluating Unknown Anomaly Type Recognition

	Integration into an AIOps Platform
	Bitflow and ZerOps
	ReCoMe Engine Implementation Details
	Preference Score Calculation
	Integration into ZerOps

	Deployment Strategies
	Evaluation
	Runtime Evaluation
	Experimental Environment
	AIOps in Cloud Environments
	AIOps in Fog Environments

	Conclusion
	Limitations
	Future Work

	Evaluation Result Details
	Symptom Recognition Scores
	Unknown Anomaly Type Recognition Accuracy

	Bibliography

