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Abstract 

We consider parallel machine scheduling problems where the jobs are 

subject to precedence constraints, and the processing times of jobs are gov- 

erned by independent probability distributions. The objective is to mini- 

mize the weighted sum of job completion times }), w; Cj in expectation, 

where w; > 0. Building upon an LP-relaxation by Méhring, Schulz, and 

Uetz (J. ACM 46 (1999), pp. 924-942) and an idle time charging scheme 
by Chekuri, Motwani, Natarajan, and Stein (SIAM J. Comp., to appear) 

we derive the first approximation algorithms for this model. 

1 Preliminaries 

Denote by V = {1,...,n} a set of jobs which must be scheduled on m parallel 
machines. Precedence constraints are given by an acyclic digraph G = (V, A). 

In the stochastic model, a job processing time p; is known only upon completion 

of the job, however, the distribution of the corresponding random variable p; 

is given beforehand. Let p = (pi,..-,pn), and denote by p = (p1,.--,Dn) a 
particular realization of the processing times. A scheduling policy consists of an 

online process of decisions which must not anticipate future information; we refer 

to [2] for details. A given policy eventually yields a feasible m-machine schedule 

for each realization p. Let S;(p) and C;(p) denote the start and completion 
times of job j for a given realization p, and let S;(p) and Cj(p) denote the 
associated random variables. 

2 List scheduling with idle time charging 

Given a priority list LZ, Graham’s classical list scheduling algorithm schedules 

the first available job(s) from the list whenever a machine falls idle. Hence, 
jobs may be scheduled ‘out of order’ w.r.t. the given list Z. For the makespan 
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objective, Graham’s list scheduling achieves a performance ratio of 2 — 1/m, 

which is also true for the stochastic setting. The weighted completion time ob- 

jective, however, turns out to be more difficult to approximate. In particular, no 

approximation result is known for the parallel machine setting with precedence- 

constraints and stochastic processing times. In order to derive approximation 

bounds for the weighted completion time objective in deterministic scheduling, 

a refined list scheduling algorithm has been suggested by Chekuri et al. [1]. 

The idea is to extend Graham’s list scheduling in such a way that a job may be 

scheduled out of order (w.r.t. the given list L) only if ‘enough’ idle time has accu- 

mulated. The analysis of the algorithm relies on a charging scheme for idle time. 

We show that an appropriate adaption of the list scheduling algorithm from [1], 

based on an optimal solution to a generalized LP-relaxation from [3], leads to 

constant worst-case performance guarantees also for the stochastic model. The 

algorithm proceeds over time, starting at time ¢ = 0, until all jobs have been 

planed. As usual, a job is called available at time ¢ if all predecessors have 

already been completed by ¢, and for a given realization p, the earliest point 

in time when job 7 is available in the schedule constructed by Algorithm 1 is 

denoted by r;(p). 

Algorithm 1 (DELAy LIsT [1]). 
while there are unscheduled jobs do: let t be the earliest point in time when a 

machine falls idle, or the next tentative decision time (see case (c)), whatever 
occurs first; let j be the first unscheduled job and i the first unscheduled and 

available job (if any) in the list L; 
(a) if j ts available, then start j at time t and charge all uncharged idle time 

in the interval [r;(p),t] to J; 
(b) else, if there is at least 6 Elp;] uncharged idle time in the interval [r;(p), t], 
then start i at time t and charge all uncharged idle time in [ri(p), t] to i; 

(c) else define the next tentative decision time as the first point in time when 

(b) applies to i. 

3 Analysis 

We analyze the outcome of Algorithm 1 point-wise, that is, for every realization 

p of processing times; the analysis is job-by-job. Like in [1], denote by B; and 
A; the set of jobs that come before and after job j in the list L, respectively 

(by convention, B; also includes j). For a given realization p, let O;(p) C Aj be 

the set of jobs in A; that Algorithm 1 starts before job j. The basic idea is to 

partition the time interval [0,C;(p)] into two disjoint categories: time intervals 
f, where a chain j1,j2,---,jn = j of predecessors of j is in process (as in 

Graham’s analysis); the total length of this chain is denoted by ¢;(p). The total 
processing in the remaining time intervals [r;(p),S(p)], & = j1,---, jn, which 
are denoted by J2, can be partitioned into three categories: processing of jobs 

in Bj, processing of jobs in O;(p), and idle time. It follows from the analysis 
in [1] that any job k is charged no more than GE|p,| idle time. Moreover, there 
is no uncharged idle time in [r;(p), S;,(p)], and the idle time in [rz(p), S,(p)] is 
charged only to jobs in B,. This holds in particular for k = j1,...,j,. Since 

Bj, C++: C B;, = Bj, the total amount of idle time in Iz is bounded from 
above by B Dic p, = [pi]. Hence, we obtain for every realization p of processing



times 

Ci(r) <G() +4 (¥ (+ 8Efpil) + Dv). (1) 
t€B; 1€0;(p) 

Before we take expectations in (1), we concentrate on the term )/jco,(p) Pi- 
First, we require: 

Lemma 1. E [Zico ip) P| =E [Dicos 0) Efpil| . 

Proof. We can write Dico; (p) Pi equivalently as ies; 6;(p) p;, where 6;(p) is 

a binary random variable which is 1 if and only if i € O;(p). Linearity of ex- 

pectation yields E( Vico; (p) pil = ied; E|6;(p) p;]. But 6;(p) is stochastically 

independent of the processing time p; — when job i is started, it is already 

decided whether i € O;(p). In particular, this decision is independent of the 

actual processing time of job i (processing times are independent). Hence, 

Dies, E[6i(P) pi] = Vica, Pr € Oj) Epi] = E[Lico,(p) Elpil)- O 

Next, as in [1], it can be shown that the amount of idle time in [0, S;(p)] 
charged to jobs in A; is bounded by (m — 1)é;(p). If a job 7 is scheduled out 
of order w.r.t. j (that is, 1 € O;(p)), then 6E[p;| idle time is charged to 2. 
Hence, we obtain 8)’ ico, (p) lpi] < (m — 1) £;(p). Taking expectations in (1), 
Lemma 1 now yields 

E[C;(p)] < (1+ 33) E[G@)] +42 YO Epi. (2) 
1€B; 

4 Linear programming relaxation 

To obtain a priority list L as input for Algorithm 1, Chekuri et al. [1] use a single 

machine relaxation. This approach does not help in the stochastic setting, since 

the single machine problem does not necessarily provide a lower bound for the 

parallel machine problem (see [3] for an example). Instead, we use an LP- 

relaxation which extends the one proposed in [3] by adding inequalities which 

represent the precedence constraints. Define f : 2” > IR by 

FW) = se (( Biel) + ¥ Hp) 

— tea Y Hp), WC. 

Here, A > 0 is an upper bound on Var'\p,]/E[p;|* for all j, where Var[p;] = 
Elp;] — Elp;]° is the variance of p;. It follows from [3] that the inequalities 
jew Elp;| E[Cj@)] = f(W) are valid for all W C V and any scheduling 
policy. Hence, the following is a valid LP-relaxation for the problem at hand 

min > Wj cy 
jEV 

8.t. >» Elps)Cy? = f(W), W CY, (3) 
JEW 

CYP > Cy? + Elpy], (i,j) € A. (4)



We assume that job 1 is artificial with p, = 0, predecessor of all other jobs, and 

fixed at time 0, then (4) yields C}? > Elp,] for all jobs j. Since inequalities (3) 
can be separated in time O(nlogn), see [3], this LP-relaxation can be solved 

in polynomial time. From an optimum solution to the LP-relaxation, we define 

a priority list L according to non-decreasing ‘LP completion times’ C}?’. Using 
Algorithm 1 with input L, we obtain: 

Theorem 1. LP-based list scheduling using algorithm DELAY LIST is an a- 

approzimation, where 

a=1+ 45 + (1+ 6)(1 +max{1, "tA}). 

Proof. Use (2) and [3, Lemma 4.2] in order to obtain an upper bound on 

1/m Diez, Elpi] in terms of the LP-completion time C}*. The fact that E[¢;(p)] 
is a lower bound on the expected completion time of job j for any scheduling 

policy then yields the desired result. O 

Using 8 = 1/V2, this yields a constant worst-case performance bound of a < 

5.83 if A < 1, which is the case, e.g., for exponentially distributed processing 

times, or more generally for so-called NBUE distributions (that is, the expected 

remaining processing time of a job never exceeds its total expected processing 

time). 

5 Final Remarks 

The presented results can be slightly improved by a more involved analysis, 

which also allows to recover the single machine results mentioned in [3]. With 
minor modifications our results also carry over to problems with release dates. 

Finally, improved results can be obtained for in-tree precedence constraints 

using similar ideas as in [1, Sec. 4.4]. 
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