Megakaryozyten bilden eine funktionelle Komponente der Plasmazellnische im Knochenmark

Von der Fakultät III – Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. –
genehmigte Dissertation

vorgelegt von
Diplom-Ingenieur
Oliver Winter

Promotionsausschuss:
Vorsitzender: Prof. Dipl.-Ing. Dr. Ulf Stahl
Berichter: Prof. Dr. rer. nat. Rudolf Manz
Berichter: Prof. Dr. rer. nat. Roland Lauster

Tag der wissenschaftlichen Aussprache: 16.02.2010

Berlin 2010
D 83
Immer am Wind,
auch bei negativem Log.
Tiefe Schnitte,
in die anrollende See.

Sie liegt gut in der Hand,
sie ist hierfür gemacht.
Herr Schipper, Herr Schipper,
wie tief ist das Wasser?

C.E. Dronson – „Der Eskapismus der SY MARLA“

Für Ellen Mae, Rika Milla und Anna Rosa
1. EINLEITUNG .. 1

1.1. DAS IMMUNSYSTEM .. 1

1.1.1. Angeborene und erworbene Immunität ... 1

1.1.2. Die humorale Immunantwort .. 2

1.1.2.1. B-Zellreifung .. 2

1.1.2.2. B-Zell Aktivierung und terminale Differenzierung zur Plasmazelle 3

1.1.2.3. Aufbau und Funktion der Antikörper .. 5

1.1.2.4. Autoimmunität und die pathologische Rolle von Antikörpern 7

1.1.2.5. Lokalisation und Lebensdauer von Plasmazellen .. 8

1.2. DIE PLASMAZELLNISCHE .. 10

1.2.1. Das Nischenkonzept und potentielle Plasmazellüberlebensfaktoren 10

1.2.2. Aufbau des Knochenmarks ... 12

1.3. MEGAKARYOZYTEN UND THROMBOPOESE .. 13

1.3.1. Megakaryopoese ... 13

1.3.2. Megakaryozyten in der Klinik .. 14

1.4. ZIELSTELLUNG DER ARBEIT .. 15

2. MATERIAL UND METHODEN .. 16

2.1. VERWENDETE MATERIALIEN .. 16

2.1.1. Puffer, Lösungen und Verbrauchsmaterial .. 16

2.1.2. Antigene, Adjuvanz und rekombinante Zytokine .. 16

2.1.3. Antikörper und Fluoreszenzfarbstoffe ... 17

2.1.4. Geräte und Software .. 18

2.2. MAUSSTÄMME UND BEHANDLUNG .. 19

2.2.1. Verwendete Mausstämmle .. 19

2.2.2. Immunisierung .. 19

2.2.3. Induktion der Megakaryopoese durch Thrombopoetinbehandlung 19

2.2.4. Unterscheidung langlebiger und neu gebildeter Plasmazellen mittels BrdU-Einbau 20

2.3. DURCHFLUSSZYTOMETRISCHE ANALYSE ... 20

2.3.1. Herstellen von Einzelzellsuspensionen ... 20

2.3.2. Oberflächenfärbungen ... 21

2.3.3. Intrazelluläre Färbung .. 21

2.3.4. Prinzip der Durchflusszytometrie .. 21

2.3.5. Fluoreszenzaktivierte Zellsortierung .. 22

2.3.6. Zellzahlbestimmung ... 22

2.4. HISTOLOGISCHE ANALYSE VON GEWEBESCHNITTEN .. 23

2.4.1. Anfertigen von Gewebeschnitten ... 23

2.4.2. Immunfluoreszenzfärbung von Gewebeschnitten ... 23

2.4.3. Prinzip der konfokalen Laser Scanning Mikroskopie .. 24

2.5. UNTERSUCHUNGEN IN DER ZELLKULTUR ... 24

2.5.1. Plasmazellkultur ... 24
2.5.2. Plasmazell Kokultur .. 25
2.5.3. Enzyme Linked Immuno Spot Technique (ELISPOT) .. 25
2.5.4. Enzyme Linked Immunosorbent Assay (ELISA) .. 26
2.6. REVERSE TRANSKRIPTASE POLYKETTENREAKTION (RT-PCR) UND QUANTITATIVE (Q)PCR... 27

3. ERGEBNISSE ... 29
3.1. UNTERSUCHUNG DES PLASMAZELLKOMPARTIMENTS IN MILZ UND KNOCHENMARK........ 29
3.1.1. Durchflusszytometrische Analyse von Plasmazellen ... 29
3.1.2. Die Entwicklung des Plasmazellkompartment im Knochenmark .. 30
3.1.3. Histologische Analyse von Plasmazellen .. 32
3.2. ZELLULÄRE CHARAKTERISIERUNG DER PLASMAZELLNISCHE IM KNOCHENMARK 35
3.2.1. Lokalisation von Knochenmarkplasmazellen im Verlauf einer sekundären Immunantwort35
3.2.2. Histologische und durchflusszytometrische Charakterisierung von Megakaryozyten 38
3.2.3. Verteilung von Plasmazellen und Megakaryozyten in Milz und Knochenmark 41
3.2.3. Untersuchung der Kontaktfläche von Plasmazelle und Megakaryozyt auf Zell-Zell Interaktion ... 43
3.2.4. Plasmazellen und Megakaryozyten sitzen gemeinsam in der SDF-1 (CXCL12) positiven perivaskulären Nische .. 44
3.2.5. Megakaryozyten produzieren Plasmazellüberlebensfaktoren ... 46
3.3. DIE TPO REZEPTOR DEFIZIENTE MAUS (C-MPL -/−) .. 50
3.3.1. Das Plasmazellkompartment der c-Mpl−/− Maus in Milz und Knochenmark 50
3.3.2. Analyse des antigenspezifischen Plasmazellkompartment in der c-Mpl−/− Maus nach Primär- und Sekundärimmunisierungen ... 51
3.3.3. Kolokalisationsstudien in der c-Mpl−/− Maus .. 55
3.4. MANIPULATION DER PLASMAZELLNISCHE MITTELS THROMBOPOETIN (TPO) 58
3.4.1. Eine fünftägige TPO Behandlung induziert die Megakaryopoese und führt zu einer Erneuerung des Megakaryozytenkompartment .. 58
3.4.2. Untersuchung der Genexpression des TPO-Rezeptors c-Mpl und der Wirkung von TPO auf Plasmazellen in Kultur .. 61
3.4.3. Die Wirkung der TPO Behandlung auf ausgewählte hämatopoetische Stamm- und Vorläuferzellen, sowie auf reife Leukozyten ... 62
3.4.4. Auswirkung der TPO Behandlung auf pre-existente Plasmazellen 64
3.4.5. Auswirkung der TPO Behandlung auf die Bildung des Gedächtnisplasmazellkompartment in Folge einer Immunisierung .. 65
3.5. PLASMAZELLEN UND MEGAKARYOZYTEN IN KOKULTUR ... 68
3.6. DIE AUSWIRKUNG EINER IMMUNISIERUNG AUF DIE MEGAKARYOPOESE 70

4. DISKUSSION ... 71
4.1. EINLEITUNG ... 71
4.2. DISKUSSION DER METHODIK .. 72
4.2.1. Verwendung der Maus als Modell für immunologische Studien .. 72
4.2.2. BrdU Einbau zur Unterscheidung langlebiger und kurzlebiger Plasmazellen 73
4.2.3. Die Ova bzw. NP Immunisierung als Modell einer Immunreaktion 73
4.2.4. Die c-Mpl defiziente Maus als Modell für beeinträchtigte Megakaryopoese 75
4.2.5. Die wiederholte TPO Applikation zur Stimulation der Megakaryopoese 75
4.3. DISKUSSION DER ERGEBNISSE ... 76
4.3.1. Das Plasmazellkompartment muss sich entwickeln ... 76
4.3.2. Die Plasmazellen im Knochenmark sitzen in der vaskulären Nische assoziiert mit SDF-1 positiven Zellen und ein Teil kolokalisiert mit Megakaryozyten .. 79
4.3.3. Retikuläre SDF-1 positive Zellen bilden das Gerüst der Plasmazellnische 81
4.3.4. Megakaryozyten produzieren Plasmazellüberlebensfaktoren im Knochenmark und sind eine Hauptquelle für IL-6... 82
4.3.5. Die c-Mpl -/- Maus hat ein kleineres Plasmazellkompartment und die schnelle Akkumulation von Plasmazellen in Folge eines wiederholten Antigenkontaktes ist gestört 83
4.3.6. Die TPO Behandlung führt zu einer Depletion pre-existenter langlebiger Plasmazellen und ermöglicht eine verbesserte Besiedlung des Knochenmarks mit neu gebildeten Plasmazellen ... 86
4.3.7. Es gibt ein bidirektionales Zusammenspiel zwischen Immunantwort und Megakaryopoese ... 87
4.3.8. Megakaryozyten können Plasmazellen in der Kultur unterstützen .. 89

5. ZUSAMMENFASSUNG UND MODELL DER MULTIKOMPONENTEN PLASMAZELLNISCHE ... 92

6. AUSBlick ... 95

7. REFERENZEN .. 97

8. ANHANG ... 103
1. Einleitung

1.1. Das Immunsystem

1.1.1. Angeborene und erworbene Immunität

später abstirbt. Teilweise werden jedoch Gedächtniszellen gebildet, die bei einem erneuten Antigenkontakt schneller und effektiver reagieren können.

Dieses hochspezifische immunologische Gedächtnis stellt einen enormen Vorteil des Organismus beim ständigen Kampf gegen die Infiltration durch Umweltpathogene dar.

1.1.2. Die humorale Immunantwort

1.1.2.1. B-Zellreifung

Einleitung

1.1.2.2. B-Zell Aktivierung und terminale Differenzierung zur Plasmazelle

Bindet Antigen an dem komplementären B-Zellrezeptor, wird die B-Zelle aktiviert. Um jedoch die Schwellenwert zur vollständigen Aktivierung zu überschreiten, bedarf es weiterer kostimulatorischer Signale. Diese stammen von mikrobiellen Bestandteilen (TI-Reaktion), können aber auch von T-Helfer- (TH-) Zellen kommen, die auf das gleiche Antigen reagieren (TD-Reaktion).

von der B-Zelle zur Antikörper sezernierenden Plasmazelle geht zudem mit morphologischen Veränderungen der Zelle einher. Um die großen Mengen löslichen Antikörpers zu sezernieren (bis zu 10^4 Moleküle pro Sekunde), wächst das endoplasmatische Retikulum, die Zelle wird größer (10-15 μm), und der Kern wird an den Rand gedrängt, wodurch die Plasmazelle ihre typische ovale Form entwickelt.

1.1.2.3. Aufbau und Funktion der Antikörper

Antikörper treten als membranständiger B-Zell-Rezeptor oder als lösliche Form auf. Letzteres ist das Effektormolekül, welches die spezifische humorale Immunität vermittelt und von Plasmazellen in großer Zahl sezerniert wird.

Die Antigenerkennungsstelle, welche von den aminoterminalen Sequenzen der schweren und leichten Ketten gebildet wird, wird als variable Region bezeichnet. Aufgrund des Y-
Einleitung

Antikörper haben also eine Schlüsselstellung zwischen adaptivem und angeborenem Immunsystem, da sie Antigene hochselektiv erkennen und durch dessen Markierung Zellen des eher unspezifischen angeborenen Immunsystems gezielt auf das Pathogen richten.

Einleitung

1.1.2.4. Autoimmunität und die pathologische Rolle von Antikörpern

1.1.2.5. Lokalisation und Lebensdauer von Plasmazellen

Infolge eines Antigenkontaktes kommt es zu der in 1.1.2.2. beschriebenen Aktivierung der B-Zelle mit anschließender Ausdifferenzierung zur Plasmazelle. Die erste Welle an Plasmazellen produziert schwach affine IgM Antikörper. Im Verlauf der Immunreaktion machen die B-Zellen eine Affinitätsreifung durch. Dabei kommt es zur Änderung des Fc-Teils der produzierten Antikörper, dem so genannten Klassenwechsel, was mit einer Modifikation des Wirkspektrums des Antikörpers einhergeht (siehe 1.1.2.2. und 1.1.2.3.). Neben der B-Zellaktivierung in Follikeln oder der Marginalzone der Follikel sekundärer lymphatischer Organe wie Milz, Lymphknoten oder Peyer Plaques können B-Zellen auch extrafollikulär aktiviert werden. Dieses ist vor allem im Zusammenhang mit den kostimulatorischen Signalen wichtig, die die B-Zelle während der Aktivierung erhält. Insbesondere sei hier die T-Zellhilfe und das Zytokinmiliennu erwähnt. Denn aufgrund unterschiedlicher Aktivierungswege und -orte können sich die Plasmazellen in ihrem Migrationsverhalten, der Ausprägung der Ig Klasse und Adhäsionsmoleküle, sowie dem Potential, langlebig zu werden, unterscheiden [4, 7, 8, 19, 33-35].

Während der Differenzierung zu Plasmazellen verändern B-Zellen ihr Chemokinrezeptorrepertoire, was ihnen ermöglicht, in andere Orte als die der Antigenpräsentation und B-Zellaktivierung zu wandern. Da Chemokine gewebespezifisch bzw. lokal gebildet werden, ermöglichen sie Zellen, die den entsprechenden Rezeptor tragen, aktiv entlang eines Gradienten zu den Orten höchster Konzentration zu wandern. Trotz der Expression von Chemokinrezeptoren während aller Reifestadien, können nur unreife Plasmazellen – die Plasmablasten - nicht aber reife Plasmazellen wandern [36]. Alle Plasmazellen tragen den Rezeptor CXCR4 auf ihrer Oberfläche und können somit gegen

Die unterschiedlichen Potentiale für eine Plasmazelle, langlebig zu werden, bzw. für ein Organ, Plasmazellen lange Zeit am Leben zu halten, ergeben somit intrinsische und extrinsische Faktoren, die das Schicksal der Plasmazelle bestimmen. Die hohe Antikörpersyntheserate führt zu endoplasmatischem Stress, welcher stark apoptotisch wirkt. Um diesem entgegenzuwirken, muss die ungefaltete Protein Antwort (UPR) induziert werden, was maßgeblich über den Transkriptionsfaktor XBP-1 reguliert wird [4, 17]. Die Überlegenheit von Plasmazellen, mit affinitätsgereiften Immunglobulin gegenüber solchen mit schwachaffinen Ig langlebig zu werden, ist unter anderem ein Unterschied zwischen der primären und sekundären Immunreaktion und wurde in vielen Studien gezeigt und diskutiert [2, 8, 42]. Aiolos ist hierfür der entscheidende Transkriptionsfaktor, der zwar nicht die Affinitätsreifung in den B-Zellen beeinflusst, jedoch die Akkumulation von Plasmazellen mit hochaffinen Ig im Knochenmark reguliert [43]. Auch bei gleichem intrinsischem Potential ist die Langlebigkeit für Plasmazellen nicht per se gesichert, sondern hängt von der Stimulation antiapoptotischer Signale durch die Umgebung ab [44]. Die unterschiedliche Verteilung langlebiger Plasmazellen zwischen den einzelnen Organen belegt zudem die ungleichen Kapazitäten der Organe, Milieus mit diesen Stimuli bereitzustellen.

1.2. Die Plasmazellnische
Um überleben zu können, benötigt die Plasmazelle eine permanente Aktivierung antiapoptotischer Signalkaskaden. Diese Stimuli erhält sie aus ihrer Mikroumgebung – der so genannten Überlebensnische –, in der sie für mehrere Monate bis Jahre persistieren kann.

1.2.1. Das Nischenkonzept und potentielle Plasmazellüberlebensfaktoren
Das Konzept einer Nische ist ein weit verbreitetes Modell bei der Hämatopoese [45, 46]. Von der Stammzelle beginnend erhalten die reifenden Zellen Überlebens- und Entwicklungssignale in ihrer Mikroumgebung (siehe Abb. 1) [47]. Diese können jedoch für jeden Entwicklungstand unterschiedlich sein, weshalb die Zellen mittels Chemokin dirigierter Migration in das entsprechende Mikrokompartment eingenommen werden. So prägen Plasmazellen den Chemokinrezeptor CXCR4 aus, was eine Migration gegen CXCL12 (SDF-1) ermöglicht und vor allem für die Wanderung in das Knochenmark wichtig ist [36, 48]. Ein Teil der Plasmazellen trägt auch die Chemokinrezeptoren CCR9, CCR10, welche für die mukosale Migration entscheidend sind, oder CXCR3, welcher die Plasmazellen in entzündete Gewebe dirigiert [33].
Einleitung

Die dritte Faktorengruppe bilden diejenigen Moleküle, welche der Zelle Entwicklungs- bzw. Überlebenssignale vermitteln. Entfernt man Plasmazellen aus ihrer Nische und übersetzt sie in eine Kultur, sterben sie innerhalb weniger Tage. Wie oben bereits erwähnt, benötigen die Plasmazellen daher eine permanente Stimulation antiapoptotischer Signale, wie die ausreichende Induktion der ungefalteten Protein Antwort (UPR), welche dem endoplasmatischen Stress aufgrund der hohen Antikörper Synthese entgegenwirkt. Mittels löslicher Zytokine kann so die durchschnittliche Überlebensrate auf drei bis fünf Tage verlängert werden, wobei IL-6, SDF-1, APRIL und TNF-a die beste Wirkung erzielten. Eine zusätzliche Steigerung der Überlebensrate ließ sich durch Synergieeffekte zwischen IL-6 und CD44 bzw. BCMA Stimulation erreichen [50, 51]. Liganden von CD44 sind die extrazellulären Matrixmoleküle Hyaluronsäure, Kollagen und Fibronektin, welche unter anderem die Eigenschaft haben, Zytokine zu binden und so lokal aufzukonzentrieren [52]. Neben in vitro Studien wurden potentielle Plasmazellfaktoren vor allem in Knock-out Mäusen identifiziert. In diesen Arbeiten konnte auch gezeigt werden, ob ein Faktor essentiell ist, wie z.B. die BCMA Stimulation durch APRIL / BAFF [51], oder sie sich auf die Akkumulation auswirken, wie z.B. CXCR4 oder IL-6 [37, 53, 54].

Einleitung

1.2.2. Aufbau des Knochenmarks

Das Knochenmark befindet sich in Knochenhohlräumen des gesamten Skelettes. Es ist das Hauptorgan der Hämatopoese und daher maßgeblich an der Blutbildung beteiligt.

Die Hämatopoese findet in einem Netzwerk verschiedener Mikrokompartmente - dem roten Knochenmark - statt, während das gelbe Knochenmark aus Fettzellen besteht und nicht an der Blutbildung beteiligt ist.

Aufgrund dieser mikrostrukturellen Aufteilung des Knochenmarks scheinen Plasmazellen über das gesamte Organ verteilt zu liegen, weshalb es einer genauen Untersuchung der Mikroumgebung bedarf.

1.3. Megakaryozyten und Thrombopoese

Häufig wird die Entwicklung der kernhaltigen Thrombozytenproduzenten, der großen polyplazen Megakaryozyten, auch als separater Prozess, der Megakaryopoese, untersucht und beschrieben.

1.3.1. Megakaryopoese

Die Megakaryopoese, welche die Reifung des Megakaryozyten bis zur Abschnürung der Thrombozyten beschreibt, wird maßgeblich durch das Zytokine Thrombopoetin (TPO) angetrieben [66-69]. TPO, welches an den Rezeptor c-Mpl bindet, rekrutiert HSC für die Megakaryopoese und fördert die Zellteilung und die Vervielfältigung der DNA zu polyplazen Kernen (Chromosomensätze (n)= 2 bis 128) [70] [68, 71]. Die Applikation von TPO führt somit zur Erhöhung der Megakaryozytenzahlen in Knochenmark und Milz, zu einer verlängerten Reifung der Megakaryozyten mit höheren Ploidiegraden und zu einem Anstieg zirkulierender Thrombozyten [70]. Die Megakaryopoeseinduktion über TPO ist selbstregulierend, da systemisches TPO, welches konstitutiv in der Leber produziert wird, an c-Mpl auf der Oberfläche von Thrombozyten bindet. Eine Erhöhung der Thrombozytenzahlen...
Einleitung

im Blut führt somit zu einer Erniedrigung der TPO Konzentration und somit zur Abnahme der Megakaryopoese. TPO spielt besonders für die frühe Megakaryopoese eine wesentliche Rolle [68]. Später im Verlauf der fortschreitenden Reifung stabilisieren Knochenmarkstromazellen die Megakaryozyten über Fibronectin und verhindern eine vorzeitige Thrombozytenabschnürung [72, 73]. Für die Abschnürung der Thrombozyten tragen vor allem Faktoren wie SDF-1 und Fibroblast Growth Faktor 4 (FGF-4) bei [57]. Beide sorgen für eine bessere Bindung der VLA-4+ Megakaryozyten in der vaskulären Nische durch die Hochregulation von VCAM-1.

Zytokine wie SCF, IL-11, IL-3 und IL-6 beeinflussen ebenfalls die Megakaryopoese und wirken zum Teil synergistisch mit TPO [72] [74, 75], ermöglichen aber auch eine TPO unabhängige Megakaryopoese [57]. Dieses führt unter anderem dazu, dass es in der c-Mpl Knock-out zu keiner Komplettdepletion von Megakaryozyten kommt [66, 69]. Besonders komplex scheint hierbei die Rolle von IL-6 zu sein. In Kulturexperimenten mit Knochenmarkzellen zeigt sich, dass IL-3 für die frühe Megakaryopoese entscheidend ist und IL-6 vor allem auf die anschließende Proliferation, Differenzierung und das Zellwachstum [74] wirkt. Weiterhin konnte in vitro und in vivo gezeigt werden, dass IL-6 die TPO Synthese in Milzzellen (HepG2) bzw. der Milz von IL-6 behandelten Patienten induziert und zu einer erhöhten TPO Konzentration im Serum führt [76].

1.3.2. Megakaryozyten in der Klinik

Zur Behandlung von thrombozytopenen Patienten werden TPO und insbesondere TPO Mimetika erfolgreich eingesetzt [77].
1.4. Zielstellung der Arbeit

Langlebige Plasmazellen im Knochenmark sorgen für einen persistierenden Antikörpertiter im Blut. Es ist daher das Ziel von Schutzimpfungen, eine möglichst hohe Zahl an langlebigen Gedächtnisplasmazellen im Knochenmark zu etablieren und so einen protektiven Antikörpertiter zu erreichen. Andererseits stellen Autoantikörper bei Autoimmunerkrankungen wie dem systemischen Lupus erythematodes und der Immunthrombozytopenie ein Problem dar. Denn langlebige autoreaktive Plasmazellen sind einer konventionellen immunsuppressiven Therapie häufig nicht zugänglich, was zu einem wesentlich schnelleren Krankheitsrückfall führt.

Ziel der vorliegenden Arbeit war es daher, die zelluläre Umgebung der Knochenmarkplasmazellen zu identifizieren und den molekularen Beitrag an Plasmazellüberlebensfaktoren der Nisenchellen zu untersuchen. Ebenso sollte im Hinblick auf eine Verbesserung von Impfprotokollen und der Therapie von Autoimmunerkrankungen die Nischenzellpopulation manipuliert und die Auswirkung auf das Plasmazellkompartment untersucht werden.
2. Material und Methoden

2.1. Verwendete Materialien

2.1.1. Puffer, Lösungen und Verbrauchsmaterial

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Zusammensetzung</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphatgepufferte Kochsalzlösung (PBS)</td>
<td>8 g/l NaCl, 0,2 g/l KCl, 1,44 g/l Na2HPO4</td>
<td>Roth, D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sigma-Aldrich, D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sigma-Aldrich, D</td>
</tr>
<tr>
<td>PBS mit bovinem Serum Albumin (PBS/BSA)</td>
<td>PBS 0,5 % BSA</td>
<td>Biomol, D</td>
</tr>
<tr>
<td>PBS mit 3% bovinem Serum Albumin (PBS/3% BSA)</td>
<td>PBS 3 % BSA</td>
<td>Biomol, D</td>
</tr>
<tr>
<td>RPMI Plus</td>
<td>RPMI Medium</td>
<td>Life Technologies, GB</td>
</tr>
<tr>
<td></td>
<td>10 mM L-Glutamat</td>
<td>Invitrogen, USA</td>
</tr>
<tr>
<td></td>
<td>10 % fetales Kälberserum</td>
<td>Invitrogen, USA</td>
</tr>
<tr>
<td></td>
<td>20 μM β-Mercaptoethanol</td>
<td>Invitrogen, USA</td>
</tr>
<tr>
<td></td>
<td>100 U/l Penicillin</td>
<td>Invitrogen, USA</td>
</tr>
<tr>
<td></td>
<td>100 μg/ml Streptomycin</td>
<td>Invitrogen, USA</td>
</tr>
<tr>
<td>FITC BrdU Flow Kit</td>
<td>BD Cytofix/Cytoperm Buffer</td>
<td>BD Pharmingen, D</td>
</tr>
<tr>
<td></td>
<td>BD Cytoperm Plus Buffer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD DNase solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BD Perm/Wash Buffer</td>
<td></td>
</tr>
<tr>
<td>Bromodeoxyuridine (BrdU)</td>
<td>Bromodeoxyuridine</td>
<td>Sigma-Aldrich, D</td>
</tr>
<tr>
<td>ELISPOT Substrat</td>
<td>BCIP/NBT</td>
<td>GeneTex, USA</td>
</tr>
<tr>
<td>ELISA Entwicklungspuffer</td>
<td>ALP Kit</td>
<td>Roche, D</td>
</tr>
<tr>
<td>MultiScreen HTS Filter Plates for ELISPOT</td>
<td></td>
<td>Millipore, USA</td>
</tr>
<tr>
<td>LD MACS Säule</td>
<td></td>
<td>Miltenyi, D</td>
</tr>
<tr>
<td>Einbettmedium</td>
<td>O.C.T. Medium</td>
<td>Sakura, USA</td>
</tr>
<tr>
<td>Objektträger</td>
<td>SuperFrost Ultra Plus-Objektträgern</td>
<td>Menzel-Gläser, D</td>
</tr>
</tbody>
</table>

2.1.2. Antigene, Adjuvanz und rekombinante Zytokine

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminiumhydroxid</td>
<td>Thermoscientific, D</td>
</tr>
<tr>
<td>Ovalalbumin</td>
<td>Sigma-Aldrich, D</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>NP-KLH</th>
<th>Sigma-Aldrich, D</th>
</tr>
</thead>
<tbody>
<tr>
<td>rekombinantes IL-6</td>
<td>R&D Systems, USA</td>
</tr>
<tr>
<td>rekombinantes TPO</td>
<td>PreproTech, D</td>
</tr>
</tbody>
</table>

2.1.3. Antikörper und Fluoreszenzfarbstoffe

<table>
<thead>
<tr>
<th>Spezifität</th>
<th>Klon / Wirt</th>
<th>Konjugat</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>APRIL</td>
<td>Kaninchen</td>
<td>ungekoppelt</td>
<td>Stressgen</td>
</tr>
<tr>
<td>B220</td>
<td>RA3.6B2</td>
<td>FITC, Cy5,</td>
<td>BD Pharmingen, D</td>
</tr>
<tr>
<td>BrdU</td>
<td>3D4</td>
<td>FITC</td>
<td>BD Pharmingen, D</td>
</tr>
<tr>
<td>CD138</td>
<td>281-2</td>
<td>Pe</td>
<td>BD Pharmingen, D</td>
</tr>
<tr>
<td>CD150</td>
<td>9D1</td>
<td>Bio</td>
<td>AbD Serotec, D</td>
</tr>
<tr>
<td>CD3</td>
<td></td>
<td>FITC</td>
<td>DRFZ, D</td>
</tr>
<tr>
<td>CD41</td>
<td>MWReg30</td>
<td>FITC, Bio</td>
<td>AbD Serotec, D</td>
</tr>
<tr>
<td>CD48</td>
<td>OX-78</td>
<td>FITC</td>
<td>AbD Serotec, D</td>
</tr>
<tr>
<td>CD61</td>
<td>2C9.G2</td>
<td>FITC</td>
<td>BD Pharmingen, D</td>
</tr>
<tr>
<td>c-Kit</td>
<td>ACK4</td>
<td>Cy5</td>
<td>DRFZ, D</td>
</tr>
<tr>
<td>Endothel</td>
<td>B78</td>
<td>Dig, Cy5</td>
<td>DRFZ, D</td>
</tr>
<tr>
<td>FcγR II / III (CD32/CD16)</td>
<td>2.4G2</td>
<td>ungekoppelt</td>
<td>DRFZ, D</td>
</tr>
<tr>
<td>Fibronectin</td>
<td>Kaninchen</td>
<td>ungekoppelt</td>
<td>Sigma-Aldrich, D</td>
</tr>
<tr>
<td>Gr-1</td>
<td>RB6-8C5</td>
<td>Dig</td>
<td>DRFZ, D</td>
</tr>
<tr>
<td>IgA</td>
<td>Ziege</td>
<td>Bio</td>
<td>Southern Biotech, USA</td>
</tr>
<tr>
<td>IgD</td>
<td>11.26c</td>
<td>Cy5</td>
<td>DRFZ, D</td>
</tr>
<tr>
<td>IgG1</td>
<td>A85-1</td>
<td>FITC</td>
<td>BD Pharmingen, D</td>
</tr>
<tr>
<td>IgM</td>
<td></td>
<td>Bio</td>
<td>BD Pharmingen, D</td>
</tr>
<tr>
<td>IL-4</td>
<td>11B11</td>
<td>Dig</td>
<td>DRFZ, D</td>
</tr>
<tr>
<td>IL-6</td>
<td>MP5-20F3</td>
<td>Dig</td>
<td>DRFZ, D</td>
</tr>
<tr>
<td>κ-leichte Kette</td>
<td>187.1</td>
<td>FITC, Cy5, A405</td>
<td>DRFZ, D</td>
</tr>
<tr>
<td>λ-leichte Kette</td>
<td>JC5-1</td>
<td>FITC</td>
<td>BD Pharmingen, D</td>
</tr>
<tr>
<td>Mac-1</td>
<td>M1/70.15.11</td>
<td>Cy5</td>
<td>DRFZ, D</td>
</tr>
<tr>
<td>Ovalbumin</td>
<td></td>
<td>Cy5</td>
<td>DRFZ, D</td>
</tr>
<tr>
<td>PI</td>
<td></td>
<td></td>
<td>Sigma-Aldrich, D</td>
</tr>
<tr>
<td>SDF-1 α</td>
<td>MAB350</td>
<td>Bio</td>
<td>R&D Systems, USA</td>
</tr>
</tbody>
</table>
Material und Methoden

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sca-1</td>
<td>E13-161.7, PE, BD Pharmingen, D</td>
</tr>
<tr>
<td>Sytox orange</td>
<td>Invitrogen, D</td>
</tr>
<tr>
<td>Ter119</td>
<td>Dig, FITC, DRFZ, D</td>
</tr>
<tr>
<td>TNF-α</td>
<td>MP6-XT22, Bio, DRFZ, D</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>429, Cy5, BD Pharmingen, D</td>
</tr>
<tr>
<td>SA</td>
<td>Cy5, A546, DRFZ, D</td>
</tr>
<tr>
<td>SA</td>
<td>AP, BD Pharmingen, D</td>
</tr>
<tr>
<td>Anti-Dig</td>
<td>Schaf, A405, A546, DRFZ, D</td>
</tr>
<tr>
<td>Anti-FITC</td>
<td>Magnetic Beads, Miltenyi, D</td>
</tr>
<tr>
<td>Anti-Kaninchen</td>
<td>Ziege, A647, A546, Invitrogen, D</td>
</tr>
<tr>
<td>Anti-Ziege</td>
<td>Esel, A647, Invitrogen, D</td>
</tr>
</tbody>
</table>

2.1.4. Geräte und Software

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brutschrank Heraeus 6000</td>
<td>Heraeus, D</td>
</tr>
<tr>
<td>Durchflusszytometer FACS LSR II</td>
<td>BD, D</td>
</tr>
<tr>
<td>konfokales Laser-Scanning Mikroskop,</td>
<td>Leica Microsystems, D</td>
</tr>
<tr>
<td>LSM DM IRE2</td>
<td></td>
</tr>
<tr>
<td>Kryostat Microm HM 500 OM</td>
<td>Microm-Laborgeräte, D</td>
</tr>
<tr>
<td>MidiMACS</td>
<td>Miltenyi, D</td>
</tr>
<tr>
<td>Sterile Werkbank HERA safe</td>
<td>Heraeus, D</td>
</tr>
<tr>
<td>Zellsorter FACS Diva</td>
<td>BD, D</td>
</tr>
<tr>
<td>Zentrifuge Biofuge fresco</td>
<td>Heraeus, D</td>
</tr>
<tr>
<td>Zentrifuge Multifuge 3 S-R</td>
<td>Heraeus, D</td>
</tr>
<tr>
<td>Zellzählgerät Casy DT</td>
<td>Schärfe Systems, D</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Software</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prism 4</td>
<td>GraphPad</td>
</tr>
<tr>
<td>Softmax Pro 3& 5</td>
<td>Molecular Devices, USA</td>
</tr>
</tbody>
</table>
2.2. Mausstämme und Behandlung

2.2.1. Verwendete Mausstämme

2.2.2. Immunisierung

Für die Primärimmunisierung wurde Ova (1 µg/ 1µl PBS) 1:1 mit Alum präzipitiert und 200µl dieser Suspension den Mäusen intraperitoneal (i.p.) appliziert. Drei Wochen später erhielten die Tiere eine Sekundärimmunisierung durch intravenöse Injektion von 100µg Ova in 100µl PBS. Für die NP-Immunisierung erhielten die Tiere einmal oder in einem Abstand von drei Wochen 50µg Alum-präzipitiertes NP-KLH i.p.

Die Sekundärimmunisierung in den Experimenten mit c-Mpl -/- Tieren wurde verändert, da diese sehr stark darauf reagierten und es zu einer hohen Mortalität kam. Daher wurde 30µg/100µl PBS an 100µl Alum präzipitiert und i.p. verabreicht.

2.2.3. Induktion der Megakaryopoese durch Thrombopoetinbehandlung

Zur Induktion der Megakaryopoese wurde BALB/c Mäusen TPO verabreicht. Jedes Tier erhielt an fünf aufeinander folgenden Tagen (Tag 0– 4) eine Injektion (i.p) mit 0,3 µg
Material und Methoden

TPO, gelöst in 100 μl PBS/BSA, was einer Menge von 10μg/kg entspricht. Die Kontrollgruppe erhielt 100ml PBS/BSA.

2.2.4. Unterscheidung langlebiger und neu gebildeter Plasmazellen mittels BrdU-Einbau

2.3. Durchflusszytometrische Analyse

2.3.1. Herstellen von Einzelzellsuspensionen

Nach Töten der Maus durch zervikale Dislokation und der Desinfektion des Fells mit 70%igem Ethanol wurden die Milz, sowie ein Femur und beide Tibia entnommen. Anschließend wurde zur Herstellung einer Einzelzellsuspension die Milz durch ein Zellsieb mit einer Maschengröße von 70 μm (BD Falcon, D) gedrückt und in kaltem PBS/EDTA aufgenommen. Zur Gewinnung des Knochenmarks wurden die Enden der Röhrenknochen entfernt, das Mark mit PBS/EDTA herausgespült und dann ebenfalls durch ein Zellsieb gedrückt. Anschließend wurden die Zellen bei 4°C für 10 min bei 300 g zentrifugiert, das Pellet in PBS/BSA aufgenommen und erneut zentrifugiert.
2.3.2. Oberflächenfärbungen

2.3.3. Intrazelluläre Färbung

Für die intrazelluläre Färbung wurden die Zellen mit BD Cytofix/Cytoperm Buffer (BD Pharmingen, D) nach den Anweisungen des Herstellers fixiert und permeabilisiert. Die daraufhin zugänglichen intrazellulären Antigene konnten anschließend gefärbt werden, und fixierte Zellen verblieben bis zur Analyse in PBS/BSA bei 4°C.

2.3.4. Prinzip der Durchflusszytometrie

2.3.5. Fluoreszenzaktivierte Zellsortierung

2.3.6. Zellzahlbestimmung

2.4. Histologische Analyse von Gewebeschnitten

2.4.1. Anfertigen von Gewebeschnitten

2.4.2. Immunfluoreszenzfärbung von Gewebeschnitten
Material und Methoden

Weiteren Waschschritten wurde das Gewebe mit Einbett-Medium (Fluoreszent Mounting Medium, Dako Cytomation, DK) und Deckgläsern (Menzel-Gläser, D) eingeschlossen. Zum Erreichen der optimalen optischen Eigenschaften musste das Einbettmedium durchhärten. Dazu wurde das Präparat in Dunkelheit an der Luft getrocknet und bis zur Analyse am konfokalen Laser-Scanning Mikroskop ebenso gelagert.

2.4.3. Prinzip der konfokalen Laser Scanning Mikroskopie

2.5. Untersuchungen in der Zellkultur

2.5.1. Plasmazellkultur

Material und Methoden

Die Quantifizierung überlebender Plasmazellen erfolgte durch die unter 2.5.3. beschriebenen ELISPOT Methode.

2.5.2. Plasmazell Kokultur

2.5.3. Enzyme Linked Immuno Spot Technique (ELISPOT)

2.5.4. Enzyme Linked Immunosorbent Assay (ELISA)

2.6. Reverse Transkriptase Polykettenreaktion (RT-PCR) und quantitative (q)PCR

Für die quantitativen Genexpressionsanalysen von B-Zellen (B220+), Makrophagen (CD11b+, F4/80+, Gr1-) und Megakaryozyten (CD41+/ CD61+) wurden 300 bzw. 1000 Zellen von mir mittels FACS Sortierung aufgereinigt und direkt in RT-Puffer sortiert. Anschließend wurden die Zellen auf Trockeneis verschickt und von Dr. Elodie Mohr, Universität Birmingham, auf mRNA für APRIL, IL-6, CD11b und CD41 analysiert. Die Anzahl der spezifischen Transkripte wurde auf β-Aktin bzw. β2 Globulin Transkripte normalisiert. CD11b und CD41 cDNA wurden zur Überprüfung der Reinheit mittels iQ SYBR Green Supermix (Bio-Rad) quantifiziert.

Primer Sequenzen

prdm1/blimp1: Vorwärtsprimer 5’- CCAGGTCTGCCACAAGAGATT-3’
Rückwärtsprimer 5’- TCCGATGACTCATAGAGGCTG -3’

pax5: Vorwärtsprimer 5’- CTGCGACATCTCCAGGCA-3’
Rückwärtsprimer 5’-GACACTATGCTGTGACTG-3’

cd19: Vorwärtsprimer 5’- GCGGAATTCCCTCACAGAAGAGATGCA-3’
Rückwärtsprimer 5’-GCGGGATCCTCGACACTTGAGTAGTTTCAC-3’

c-mpl: Vorwärtsprimer 5’-GCTTCTCCCAAACATTGAGAGA-3’
Rückwärtsprimer 5’- AGCAGGTTCCACACTATCCA -3’

gapdh: Vorwärtsprimer 5’-CTTCCTCCAGAGTGAGACGCAGTCAG-3’
Rückwärtsprimer 5’-GCGGGATCCTCGACACTTGAGTAGTTTCAC-3’

april: Vorwärtsprimer 5’-CGAGTGCTGAGACTGGAATT-3’;
Rückwärtsprimer 5’-AGATACACCTGGACCCCTGTGA-3’;
Sonde 5’-TGCTCTAGTCGAGCCTGTGAGTAGTTTCAC-3’;

il-6: Vorwärtsprimer 5’-TCGGAGGCTTTAATTACACATGTTC-3’;
Rückwärtsprimer 5’-AAGTGCATCATCGTTGTTTCATACA-3’;
Sonde 5’-CAGAATTCCCAAGTCACACTTTCATTCAC-3’;
Material und Methoden

β-actin: Vorwärtsprimer 5’-CGTGAAAAGATGACCAGCATCA-3’;
Rückwärtsprimer 5’-TTGTACGACCAGCCATACAG-3’;
Sonde 5’-TCAACACCCAGCCATGTACGATGC-3’;

β2 microglobulin: Vorwärtsprimer 5’-CATACGCTGAGTAAGTAC-3’;
Rückwärtsprimer 5’-ACATGTCTCTGATCCCATAGTA3’;
Sonde 5’-CAGTATGGCGAGCCCAAGACCG.

cd11b Vorwärtsprimer 5’-ATGGACGCTGATGGCAATACC-3’,
Rückwärtsprimer 5’-TCCCATCAGTCTCTCCCA-3’

cd41: Vorwärtsprimer 5’-TTTCTGCAGCCTAAGGGCC-3’;
Rückwärtsprimer 5’-GGCAGCCACAGCATATCATT-3’.
3. Ergebnisse

3.1. Untersuchung des Plasmazellkompartment in Milz und Knochenmark

3.1.1. Durchflusszytometrische Analyse von Plasmazellen

Zuerst wurde die durchflusszytometrische Analyse von Plasmazellen etabliert. Dazu wurden CD138 und die Immunglobulin leichte Kette kappa (im Folgenden kurz - kappa) zur Identifizierung der Plasmazellen, sowie die Ig Sub-Klassen IgM und IgA gefärbt. Außerdem wurden, um das Alter der Plasmazellen zu untersuchen, Balb/c Mäuse für einen Zeitraum von zwei Wochen vor der Analyse mit dem Basenanalogon BrdU gefüttert. Durch den Einbau von BrdU in die DNA sich teilender Zellen ist es möglich, zwischen reifen langlebigen Plasmazellen (BrdU-) und jungen neu gebildeten Plasmazellen (BrdU+) zu unterscheiden. Für die Verfolgung von induzierten antigenspezifischen Plasmazellen (Ova sekundärimmunisiert) wurde die Identifizierung von Plasmazellen, welche anti-Ova Antikörper produzieren, notwendig.

In Abbildung 2 sind die oben genannten Färbungen und durchflusszytometrischen Analysen dargestellt.
3.1.2. Die Entwicklung des Plasmazellkompartment im Knochenmark

Bei der Analyse stellte sich heraus, dass die Plasmazellzahl sich zwischen einem Alter von drei bis fünf Monaten verdoppelte (Abb.3 oben links). Ebenso nahm das langlebige (BrdU-) Kompartment beständig zu, während die neu gebildeten (BrdU+) Zellen in ihrer Zahl schwankten (Abb.3 oben Mitte und rechts). Interessant ist dabei, dass sich der Anteil
Ergebnisse

langlebiger Plasmazellen bereits ab dem vierten Monat auf 60 Prozent eingegelte im Vergleich zu 30 Prozent im dritten Monat (Abb.4 unten rechts). Auch bei der Zusammensetzung des Plasmazellkompartment in Bezug auf die Immunglobulinklasse zeigen sich Unterschiede. So sind IgA+ Plasmazellen die ersten Plasmazellen, die das Knochenmark besiedeln. Ihre Zahl bleibt über den untersuchten Zeitraum relativ stabil (Abb.3 unten links). Somit stellen IgA+ Plasmazellen eine dominante Ig-Klasse bei unter SPF Bedingungen gehaltenen Mäusen dar. Die Anzahl der IgM+ aber vor allem der IgM-/ IgA- Plasmazellen hat vom dritten bis zum sechsten Monat deutlich zugenommen (Abb.3 unten Mitte und rechts). Wodurch die letztere, die vermutlich zu großen Teilen aus IgG+ Plasmazellen besteht, die zweite große Plasmazellpopulation im Knochenmark darstellt.

Abb.3: Die Entwicklung des Plasmazellkompartment im Knochenmark. Nach zwei Wochen BrdU Fütterung wurde die Plasmazellreife (BrdU- reif/langlebig; BrdU+ unreif) und die Immunglobulinklasse (IgM, IgA) in 3-6 Monate alten Mäusen durchflusszytometrisch untersucht.

Wenn man die prozentuale Zusammensetzung des Plasmazellkompartment betrachtet, kann man mit dem Alter deutlich einen fallenden Trend für IgA+ und einen steigenden Trend für IgA- / IgM- Plasmazellen erkennen.
Abb.4: Die anteilige Zusammensetzung des Plasmazellkompartment im Knochenmark. Darstellung des prozentualen Anteils langlebiger Plasmazellen (BrdU-) und Plasmazellen verschiedener Immunglobulinklassen (IgM, IgA) am Plasmazellkompartment.

Das Plasmazellkompartment braucht demnach vier bis fünf Monate, um sich bei unter SPF Bedingungen gehaltenen Mäusen zu entwickeln und sowohl für die Gesamtplasmazellen als auch für die langlebigen Plasmazellen ein Plateau zu erreichen. Daher wurden für die folgenden Versuche keine jüngeren Tiere als vier Monate verwendet.

3.1.3. Histologische Analyse von Plasmazellen

Um das Plasmazellkompartment histologisch analysieren zu können, mussten Plasmazellen eindeutig im Gewebe identifizierbar sein. Daher wurden aus tiefgefrorenen Geweben angefertigte Kryoschnitte mittels Immunfluoreszenzmikroskopie untersucht.

Plasmazellen produzieren große Mengen an Antikörper, wodurch sie im Durchflusszytometer als kappa ++ Zellen erscheinen (siehe Abb. 2). Jedoch tragen auch B-Zellen Immunglobuline auf ihrer Oberfläche, wodurch auch sie kappa positiv sein können. Um zu überprüfen, ob
Ergebnisse

eine kappa Färbung ausreicht, um Plasmazellen histologisch zu identifizieren, wurden Femurschnitte von Mäusen analysiert, welche GFP unter dem Plasmazell-Reifemarker Blimp1 exprimieren. Wie man in Abbildung 5 erkennen kann, sind die kappa+ Zellen doppelt positiv für GFP/Blimp1. Daher scheint die kappa Färbung hinreichend für die Identifizierung von Plasmazellen im Gewebe zu sein und kann somit für die histologischen Analysen verwendet werden.

Diese Untersuchungen deuten auf Mikrostrukturen im Knochenmark hin, die für die Lokalisation und das Überleben verantwortlich sein könnten. Diese Mikrostrukturen, so genannte Nischen (siehe 1.2.), sollen daher im Folgenden untersucht werden.
3.2. Zelluläre Charakterisierung der Plasmazellnische im Knochenmark

Vorausgegangene Studien haben gezeigt, dass Plasmazellen für ihr Überleben externe Stimuli, z.B. April, IL-6 und SDF-1, brauchen (siehe 1.2.). Zwar gibt es verschiedene Zellen, die diese Faktoren produzieren [79, 80], jedoch ist bisher nicht bekannt, welche Zellen die Stimuli für die Plasmazelle im Knochenmark bereitstellen und damit die Nische für die Plasmazellen bilden. Außerdem ist unbekannt, ob es Fluktuationen in diesem Stromazellkompartiment, welches die Nische bildet, gibt. Wobei in diesem Kontext Stroma linienunabhängig ist und sich einzig über den Beitrag an Entwicklung und Überleben der Plasmazelle definiert. Daher soll in diesem Abschnitt der Zellkontakt der Plasmazelle von der Immigration in das Knochenmark bis zu vier Monate nach ihrer Bildung untersucht und beschrieben werden.

3.2.1. Lokalisation von Knochenmarkplasmazellen im Verlauf einer sekundären Immunantwort

Balb/c Mäuse wurden mit dem Antigen Ovalbumin primär und drei Wochen später sekundär immunisiert (Boost Immunisierung). Die im Verlauf dieser Immunreaktion gebildeten Ovalbumin spezifischen Plasmazellen wurden mittels konfokaler Lasermikroskopie verfolgt (Abb. 7).
Ergebnisse

Abb.7: Lokalisation Ova spezifischer Plasmazellen im Knochenmark. Femurschnitte wurden für kappa (rot), Ova (blau) und einem zu untersuchenden dritten Zellmarker (hier B78, grün) gefärbt. Ova positive Plasmazellen wurden lokalisiert und der Kontakt zu den zu analysierenden Zellen wurde ausgezählt. Die weißen Vierecke zeigen die Vergrößerungsausschnitte und die Pfeile zeigen auf Ova Plasmazellen.

Als erster Analysezeitpunkt wurde Tag 6 nach der Ova Sekundärimmunisierung gewählt, da die unreifen Ova Plasmazellen zu diesem Zeitpunkt im Knochenmark akkumulieren und dementsprechend das Maximum an Ova Plasmazellen gefunden wird. Wohingegen am letzten Analysezeitpunkt, vier Monate nach der Sekundärimmunisierung, nur noch Gedächtnisplasmazellen vorhanden sind, die als langlebig angesehen werden können (siehe 1.1.2.5.).

Mittels spezifischer Färbungen verschiedener Knochenmarkzellen und Ova Plasmazellen wurde das zelluläre Umfeld der Plasmazellen erfasst und durch Auszählen der Zellkontakte statistisch analysiert. Hierbei fiel auf, dass die Plasmazellen zu allen Zeitpunkten Kontakt zu großen B78 schwach positiven Zellen hatten, die als Megakaryozyten identifiziert werden konnten (siehe Abb. 9). Die Kolokalisationsfrequenz zwischen Ova Plasmazellen und verschiedenen Knochenmarkzellen ergaben, dass der häufigste Kontakt mit Granulozyten (60-70%) und der geringste mit B-Lymphozyten (10-20%) stattfindet. Die Kolokalisation zu Megakaryozyten und Endothelzellen liegt bei ca. 30% (Abb. 8 links), wobei die einwandernden unreifen Plasmazellen eine höhere Kontaktfrequenz zu Endothelzellen
haben als die langlebigen Gedächtnisplasmazellen (Abb. 8 links). Allerdings lässt sich sagen, dass sich auch die reifen Plasmazellen selten weiter als 30µm von einem Gefäß entfernt befinden.

Abb.8: Die Kolokalisation von Ova Plasmazellen mit anderen Zellen und deren Vorkommen im Knochenmark. Links: Der Verlauf der Kontaktfrequenz von Ova Plasmazellen mit Endothelzellen (Endo), Granulozyten (Gran), B-Zellen (B) und Megakaryozyten (MK) 6- 130 Tage nach der Sekundärimmunisierung. Rechts: Die Größe der jeweiligen Zellpopulationen im Knochenmark.

Berücksichtigt man die Zellgröße und die Zellzahl der einzelnen Populationen im Knochenmark (Abb.8 rechts), lässt sich die Gesamtoberfläche der einzelnen Populationen berechnen und die Kontakthäufigkeit auf eine Fläche normieren (Tab. 1).
Ergebnisse

<table>
<thead>
<tr>
<th>Zellpopulation</th>
<th>Zellzahl im Knochenmark</th>
<th>Durchmesser [µm]</th>
<th>Zelloberfläche der gesamten Population [mm²]</th>
<th>Kontaktfrequenz [%]</th>
<th>Oberflächen-normierte Kontaktfrequenz [%/mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endothelzellen</td>
<td>30*10^5</td>
<td>unbekannt</td>
<td>unbekannt</td>
<td>30%</td>
<td>unbekannt</td>
</tr>
<tr>
<td>Granulozyten</td>
<td>300*10^5</td>
<td>11 µm</td>
<td>11404 mm²</td>
<td>60%</td>
<td>0.53</td>
</tr>
<tr>
<td>B-Zellen</td>
<td>200*10^5</td>
<td>8 µm</td>
<td>4021 mm²</td>
<td>17%</td>
<td>0.42</td>
</tr>
<tr>
<td>Megakaryozyten</td>
<td>3*10^5</td>
<td>30 µm</td>
<td>848 mm²</td>
<td>30%</td>
<td>3.50</td>
</tr>
</tbody>
</table>

3.2.2. Histologische und durchflusszytometrische Charakterisierung von Megakaryozyten

Aufgrund der unerwartet hohen Kolokalisation zwischen Plasmazellen und Megakaryozyten und zusätzlichen Hinweisen aus der Literatur, wonach Megakaryozyten die Plasmazellüberlebensfaktoren IL-6 und APRIL produzieren können, sollte ihr Potential für die Plasmazellnische untersucht werden.

Dafür wurde zunächst die histologische (Abb. 9) und durchflusszytometrische (Abb. 10) Analyse der Megakaryozyten etabliert. Infolgedessen konnten Megakaryozyten durch Adaption beschriebener Protokolle aufgrund ihrer Morphologie, den linienspezifischen Markern CD41, CD61 und ihrer Polyploidie eindeutig identifiziert werden.
Ergebnisse

Ergebnisse

3.2.3. Verteilung von Plasmazellen und Megakaryozyten in Milz und Knochenmark

Megakaryozyten, Produzenten der Thrombozyten, stellen ähnlich den Plasmazellen eine kleine Population im Knochenmark dar (< 0,5%) und erreichen in der Milz sogar nur ein Zehntel der Knochenmarkzellzahl (Abb. 11 links).

Wenn man die Gesamtplasmazellzahl und die Anzahl an Gedächtnisplasmazellen auf die Megakaryozytenzahl relativiert, erhält man für Milz und Knochenmark die in Abbildung 11 rechts dargestellten Verhältnisse. Obwohl das Verhältnis Gesamtplasmazellen zu Megakaryozyten in der Milz viel höher ist, ist interessanterweise das Verhältnis der Gedächtnisplasmazellen und Megakaryozyten in beiden Organen gleich (Abb. 11 rechts).

Im Knochenmark und Milz fanden sich auch Plasmazellen (kappa+), die nicht Ova spezifisch waren, mit Megakaryozyten kolokalisiert (Abb. 12), wobei im Knochenmark Plasmazellen und Megakaryozyten verteilt sind und in der Regel ein bis zwei Plasmazellen am Megakaryozyt sitzen. In der Milz bietet sich dagegen ein anderes Bild. Dort findet man die Plasmazellen häufig als Cluster vor, die entweder unabhängig oder direkt um den Megakaryozyt lokalisiert sind (Abb. 12). Was die Milz weiterhin vom Knochenmark unterscheidet, ist das Vorhandensein von Thrombozyten im Gewebe, genauer in der Roten Pulpa, welche im Knochenmark fast vollständig fehlen (Vergleich Abb. 12 links und Mitte).
Abb.12: Verteilung der Plasmazellen und Megakaryozyten in Knochenmark und Milz. Links: Im Knochenmark sitzen Plasmazellen (kappa, rot) und Megakaryozyten (CD41, grün) gleichmäßig verteilt. Die Kernfärbung (Sytox Orange, blau) verdeutlicht das geringe Vorkommen beider Zellen (<0,5 % aller Zellen) im Organ. Mitte und Rechts: In der Milz kommen Plasmazellen (kappa, rot) und Megakaryozyten (CD41, grün) häufig als Cluster vor. Ebenso sieht man in der Milz viele Thrombozyten (klein, grün), im Knochenmark jedoch kaum.

Im Knochenmark sind ca. 30% der Ova bzw. Gesamtplasmazellen mit Megakaryozyten kolokalisiert. Der Wert schwankt jedoch zwischen 10-60% (Abb. 13). Bei der Analyse der Kontaktfrequenz für die Plasmazellen unterschiedlicher Immunglobulinklassen zeigt sich, dass IgG1 und IgA Plasmazellen besonders häufig und IgM eher selten mit Megakaryozyten assoziiert sind (Abb.13 rechts).

Ergebnisse

Plasmazellen die durch wiederholten Antigenkontakt entstanden sind (Ova Sekundärimmunisierung), finden sich ab ca. zwei Wochen nach der letzten Immunisierung mehrheitlich im Knochenmark. Ebenso zeigen IgA und IgG1 Plasmazellen, welche den Hauptteil des Plasmazellkompartiments im Knochenmark ausmachen, eine stärkere Assoziation mit Megakaryozyten als IgM. Daher bleibt der Fokus weiterhin auf dem Knochenmark und wird insbesondere auf die Megakaryozyten als potentielle Plasmazellnische gelegt.

3.2.3. Untersuchung der Kontaktfläche von Plasmazelle und Megakaryozyt auf Zell-Zell Interaktion

Um die Kontaktfläche zwischen Plasmazelle und Megakaryozyt zu untersuchen, wurden Knochenmarkschnitte mit Phallodin inkubiert, welches filamentöses Aktin (F-Aktin) anfärbt. F-Aktin ist eine Grundkomponente bei Adhäsionsverbindungen und dient ebenso der örtlichen Fixierung von Rezeptoren an der Membranoberfläche [81]. Durch die Färbung von F-Aktin ist es somit möglich, ein möglichst breit gefächertes Interaktionspektrum abzudecken. In Abbildung 14 kann man gut erkennen, dass die Kontaktfläche zwischen Plasmazelle und Megakaryozyt besonders F-Aktin haltig ist, was auf eine aktive Interaktion hindeutet. In Abbildung 14c sieht man eine häufig beobachtete, intensive Verschmelzung zwischen Plasmazell- und Megakaryozytmembran.
3.2.4. Plasmazellen und Megakaryozyten sitzen gemeinsam in der SDF-1 (CXCL12) positiven perivaskulären Nische

Ergebnisse

3.2.5. Megakaryozyten produzieren Plasmazellüberlebensfaktoren

Im Folgenden sollte untersucht werden, ob Megakaryozyten neben SDF-1 weitere Plasmazell relevante Faktoren produzieren. In der Literatur wurden Megakaryozyten bereits als Produzenten für Plasmazellüberlebensfaktoren wie APRIL oder IL-6 beschrieben (siehe 1.3.). Da diese Daten jedoch oftmals aus humanen Megakaryozytenkulturen stammten, war es notwendig, diese Zytokinproduktion in dem von mir verwendeten Mausstamm ex vivo zu überprüfen. Die dazu durchgeführten histologischen (Abb. 16) und durchflusszytometrischen Analysen (Abb. 17) bestätigten, dass die über CD41 identifizierten Megakaryozyten sowohl APRIL als auch IL-6 produzieren. Diese Zytokinproduktion konnte ebenfalls für durchflusszytometrisch aufgereinigte Megakaryozyten von unserer Kooperationspartnerin Dr. Elodie Mohr (MDC, University of Birmingham, Birmingham UK) mittels qPCR belegt werden (Abb. 17). Des Weiteren ergaben die durchflusszytometrischen und qPCR Analysen, dass Megakaryozyten eine Hauptquelle für IL-6 im Knochenmark sind.
Ergebnisse
Ergebnisse

Abb.16: Histologische Analyse der Zytokinproduktion von Megakaryozyten. Femurschnitte wurden mit anti-CD41 (Megakaryozyten), April, IL-6 oder den entsprechenden Kontrollen, IL-4 (Isotypkontrolle für anti-IL6), Kaninchen IgG (rab-IgG, Kontrolle für anti-APRIL) gefärbt.

Abb.17: Durchflusszytometrische und quantitative Genexpressionsanalyse der Zytokinproduktion von Megakaryozyten. a: Die kernlosen Plättchen wurden über PI ausgeschlossen, und Megakaryozyten über CD41 identifiziert und für IL-4 bzw. IL-6 gegengefärbt. b: Megakaryozyten (CD61+), Makrophagen (CD11b+, F4/80+, Gr1-) und B-Lymphozyten (B220+) wurden durchflusszytometrisch isoliert. c: Die sortierten Zellpopulationen wurden mittels qPCR auf Expression der Plasmazellüberlebensfaktoren April und IL-6 hin untersucht.
Ergebnisse

Der histologische Nachweis für die IL-6 und APRIL Produktion durch Megakaryozyten konnte somit durch die qPCR bestätigt werden, wodurch die Megakaryozyten in der Lage wären, einen funktionellen Beitrag für die Plasmazellnische zu leisten. Interessant ist hierbei weiterhin die Exklusivität für die Zytokinproduktion. Während Megakaryozyten zwar mehr APRIL produzieren als B-Zellen, liegt ihre Syntheserate unter der des Knochenmarksdurchschnitts und der der Makrophagen. Allerdings belegen die qPCR und durchflusszytometrischen Daten, dass Megakaryozyten eine der Hauptquellen für IL-6 im Knochenmark sind, wobei die Transkription von IL-6 im Vergleich zu APRIL stark restringiert ist.

Um die Relevanz der Megakaryozyten für die Plasmazellnische festzustellen, sollte daher im Folgenden das Megakaryozytenkompartiment manipuliert und die daraus resultierende Auswirkung auf die Plasma zellen untersucht werden.
3.3. Die TPO Rezeptor defiziente Maus (c-Mpl -/-)

Die TPO-Rezeptor defiziente Maus (c-Mpl -/-) hat eine Störung in der Megakaryozytenentwicklung, so dass die Zahl reifer Megakaryozyten nur 20% von denen des Wildtyps erreicht (siehe 1.3.1.; [66, 69]). Neben der Beeinflussung der Megakaryozytenlinie durch den Gen Knock-out wurde eine leichte Reduktion des hämatopoetischen Stammzellkompartmentm beschrieben, wobei jedoch die Zahlen der reifen Leukozytenpopulationen vergleichbar mit denen der Wildtypier waren [66]. Somit eignen sich c-Mpl-/- Tiere, um die Auswirkung einer chronischen Störung des Megakaryozytenkompartmentm auf die Plasmazellen zu untersuchen.

3.3.1. Das Plasmazellkompartment der c-Mpl-/- Maus in Milz und Knochenmark

C-Mpl defiziente Tiere wurden drei Wochen mit dem Basenanalogon BrdU gefüttert, um die Auswirkungen einer gestörten Megakaryopoese und der daraus resultierenden geringeren Megakaryozytenzahl auf das Kurz- und Langlebige Plasmazellkompartment zu untersuchen.

In der durchflusszytometrischen Analyse zeigte sich, dass im Knochenmark sowohl BrdU+, als auch BrDU- reduziert waren (Abb. 18), wobei das reife, langlebige BrdU- Kompartment stärker minimiert war (BrdU+ 67% / BrdU- 48%) (Abb. 18). In der Milz waren jedoch weder die BrdU+ noch die reife Plasmazellpopulation verändert (Abb. 18).
Ergebnisse

Das Plasmazellkompartment wurde somit ausschließlich im Knochenmark betroffen, welches ca. 90% aller Megakaryozyten beherbergt (siehe Abb. 11).

3.3.2. Analyse des antigenspezifischen Plasmazellkompartment in der c-Mpl-/- Maus nach Primär- und Sekundärimmunisierungen

Wie man in der Abbildung 19 erkennen kann, ist die frühe Akkumulation sowohl bei der Primär- als auch bei der Sekundärimmunisierung gestört.

Später jedoch (Tag 21 primär/ Tag 28 sekundär) findet man eine vergleichbare Anzahl antigenspezifischer Plasmazellen im Knochenmark von c-Mpl-/- und C57/BL6 Wildtypieren (Abb. 19 und 20). In der Milz findet man allerdings an Tag 21 vierfach höhere Frequenz an Ova Plasmazellen in c-Mpl-/- Tieren als in den Kontrollen, was sich in der Tendenz auch in NP immunisierten Tieren zeigt (Abb. 20).
Ergebnisse

Tag 21

Die Anzahl an Ova spezifischen Plasmazellen in c-Mpl⁻/⁻ Mäusen ist in der Milz doppelt so hoch wie im Knochenmark; bei Wildtypieren ist sie dagegen nur halb so hoch (Abb. 20 unten rechts). Für die NP immunisierten Tiere gibt es leider keine Zellzahlen vom Knochenmark, weshalb sich dieser Vergleich hier nicht durchführen lässt.

Aufgrund der angeglichenen Ova Plasmazellzahlen im Knochenmark und der erhöhten Zahlen in der Milz im vorangegangenen Experiment stellte sich die Frage, ob an Tag 21 nach der Sekundärimmunisierung ausschließlich Gedächtnisplasmazellen vorhanden sind wie in Wildtypieren, oder ob in c-Mpl⁻/⁻ Mäusen die Immunreaktion noch nicht abgeklungen ist und somit Plasmazellformierung in der Milz und Einwanderung unreifer Plasmazellen ins Knochenmark weiterhin stattfindet. Das antigenspezifische Plasmazellkompartiment sollte in Bezug auf die Reife mittels BrdU Einbau und dem Oberflächenmolekül B220, dessen Expression im Verlauf der Reifung herrunterreguliert wird, untersucht werden.
Ergebnisse

Zusätzlich wurde in diesem Experiment (Abb. 21) eine Analyse an Tag 43 durchgeführt, um die Entwicklung im Ova Plasmazellkompartment länger als zuvor zu verfolgen.

Weiterhin wurde das Immunisierungsprotokoll geändert und bei der Sekundärimmunisierung 30µg Ova an 100µg Alum präzipitiert und i.p. verabreicht, anstatt der 100µg Ova i.v. wie im Standardprotokoll. Dieses war notwendig, da es bei der c-Mpl/- Gruppe im vorangegangenen Experiment zu einer hohen Mortalität (66%) in Folge der Sekundärimmunisierung kam. Die Todesursachen war vermutlich eine anaphylaktische Schockreaktion mit letalem Kreislaufkollaps, was im Wiederholungsexperiment unbedingt vermieden werden sollte.

Abb. 21: Die Entwicklung des antigenspezifischen Gedächtnisplasmazellkompartment im Knochenmark bei c-Mpl/- Mäusen in Folge einer Ova Sekundärimmunisierung. Das Ova Plasmazellkompartment wurde an Tag 21 (oben) sowie an Tag 43 (unten) nach der Sekundärimmunisierung auf den Marker B220 untersucht, welcher im Verlauf der Plasmazellreifung runterreguliert wird. In diesem Experiment wurde ein leicht verändertes Immunisierungsprotokoll verwendet, um die Mortalität in der c-Mpl Gruppe zu vermeiden.

Aus beiden Ova Immunisierungen mit unterschiedlichen Protokollen und den Immunisierungen mit NP ist klar erkennbar, dass in den c-Mpl/- Tieren die frühe Akkumulationsphase der Plasmazellen im Knochenmark gestört ist. Beim zweiten experimentellen Ansatz blieb die Anzahl Ova spezifischer Plasmazellen auch spät nach der Immunisierung reduziert. Beides belegt, dass c-Mpl vermittelte Signale beim Aufbau des Gedächtnisplasmazellkompartment eine wichtige Rolle spielen. Weiterhin liegt ein

3.3.3. Kolokalisationsstudien in der c-Mpl-/- Maus

In der c-Mpl-/- Maus ist die Anzahl der Megakaryozyten auf ein Fünftel bzw. ein Achtel im Vergleich zum Wildtyp reduziert [66]. Andererseits ist das Plasmazellkompartiment lediglich auf die Hälfte verringert (siehe 3.3.1.). Daher stellte sich die Frage, ob und wie sich die Zusammenhänge zwischen Megakaryozyten und Plasmazellen in der c-Mpl-/- im Vergleich zum Wildtyp verändert haben.

Die histologischen Analysen ergaben, dass das Knochenmark gut vaskularisiert ist und die Megakaryozyten, welche kleiner als im Wildtyp scheinen, mit den Gefäßen assoziiert sind (Abb. 22). Interessanterweise waren die Plasmazellen ebenfalls sehr häufig (ca. 45%) mit Endothelzellen kolokalisiert, während der Kontakt zu Megakaryozyten im Vergleich zum Wildtyp deutlich geringer war (ca. 10%) (Vergleich Abb. 8, 13 und 22).
Ergebnisse

Megakaryozyten scheinen somit nur eine untergeordnete Rolle für Plasmazellen in der c-Mpl/- Maus zu spielen, während Endothelzellen möglicherweise an Bedeutung gewannen. In diesem Zusammenhang war es sehr interessant, dass in c-Mpl/- Mäusen retikuläre Zellen anstelle der Megakaryozyten die dominante IL-6 Quelle sind, und dass weiterhin die Plasmazellen mit diesen IL-6+ retikulären Zellen kolokalisiert sind (Abb. 23).
Abb.23: In der c-Mpl-/- Maus sind Megakaryozyten nicht die dominierenden IL-6 Produzenten. Femurschnitte von C57/BL6 Wildtypieren und c-Mpl-/- Mäusen wurden auf IL-6 Produktion (IL-6, rot) untersucht. Megakaryozyten (CD41, grün) in c-Mpl-/- Mäusen produzieren IL-6, sind jedoch im Vergleich zum restlichen Knochenmark nicht mehr die dominanten IL-6 Produzenten wie im Wildtyp. Die Plasmazellen (kappa, blau) sind assoziiert mit IL-6 positiven Zellen.
3.4. Manipulation der Plasmazellnische mittels Thrombopoetin (TPO)

Neben den bisherigen Untersuchungen des Plasmazellkompartment bei permanenten Megakaryozytendefizit (c-Mpl/- Maus) sollte die Auswirkung einer gezielten Stimulation des Megakaryozytenkompartment in Wildtypmäusen untersucht werden.

3.4.1. Eine fünftägige TPO Behandlung induziert die Megakaryopoese und führt zu einer Erneuerung des Megakaryozytenkompartment

Ergebnisse

Abb. 24: Kinetik der TPO induzierten Megakaryopoese. Oben: Mäusen wurde an fünf aufeinander folgenden Tagen (0-4) TPO bzw. BSA injiziert und die Anzahl der Megakaryozyten, sowie deren Ploidiegrad wurden zu verschiedenen Zeitpunkten bestimmt. Unten: Die Kinetik in den behandelten Tieren wurde auf die Kontrollgruppe normalisiert (TPO/kont).
Ergebnisse

3.4.2. Untersuchung der Genexpression des TPO-Rezeptors c-Mpl und der Wirkung von TPO auf Plasmazellen in Kultur

3.4.3. Die Wirkung der TPO Behandlung auf ausgewählte hämatopoetische Stamm- und Vorläuferzellen, sowie auf reife Leukozyten

Da wie oben gezeigt B-Zellen und Plasmazellen selbst kein c-Mpl exprimieren und nicht auf direkte Stimulation mit TPO reagieren, erscheint die Injektion von TPO ein geeigneter experimenteller Ansatz, um den Effekt von Änderungen des Megakaryozytenkompartiments auf das Plasmazellkompartment in vivo zu überprüfen.

Die Auswirkung der TPO Behandlung auf andere Zellpopulationen sollte jedoch zuerst getestet werden, um mögliche indirekte Effekte auf Plasmazellen über diese Zellen ausschließen zu können.

Zu den untersuchten Zellpopulationen gehörten multipotente hämatopoetische Vorläuferzellen (I:LSK), hämatopoetische Stammzellen (II:Lin-,CD150+, CD41-, CD48-), welche ebenfalls den TPO-Rezeptor c-Mpl tragen, B-Lymphozytenlinien Zellen (III: B220+), monozytenlinien Zellen (IV: Mac-1+), sowie reife B-Zellen (V: IgD+) und Granulozyten (VI: Gr-1+). Die Analyse erfolgte am letzten Tag der TPO Behandlung (Tag 4), sowie drei Tage später (Tag 7), an dem die Megakaryozytenzahl immer noch signifikant erhöht war (Abb. 27).

Ergebnisse

Ergebnisse

TPO hat somit von den untersuchten Zellen nur auf das Megakaryozytenkompartiment einen längeren und vor allem stimulierenden Einfluss. Drei Tage nach Absetzen von TPO waren neben den Megakaryozyten lediglich die Vorläufer- und Stammzellen verändert, jedoch waren diese anders als die Megakaryozyten reduziert.

3.4.4. Auswirkung der TPO Behandlung auf pre-existente Plasmazellen

Nachdem gezeigt wurde, dass TPO keinen direkten Einfluss auf die Plasmazellen hat (siehe 3.4.2.), sollte in vivo untersucht werden, wie sich die TPO Behandlung auf die Plasmazellkompartimente in Milz und Knochenmark auswirkt. Dazu wurden Balb/c Mäuse nach dem oben beschriebenen Schema (siehe 3.4.3.) behandelt. Zusätzlich wurde das Basenanalogon BrdU in das Trinkwasser gegeben, wodurch neu gebildete (BrdU+) und pre-existent (BrdU-) Plasmazellen durch Anfärben unterschieden werden können.

Ergebnisse

Abb.28: Plasmazellkinetik der fünftägigen TPO Behandlung. Balb/c Mäuse wurden zwei Wochen vor der Analyse mit BrdU gefüttert und erhielten fünf TPO Injektionen (Tag 0-4). a: Die Kinetik der TPO Behandlung ist für die Gesamtplasmazellen, sowie für langlebige (BrdU-) und neu gebildete (BrdU+) Plasmazellen aufgeschlüsselt dargestellt. b: Die behandelten Tiere wurden auf die Kontrollgruppe normalisiert (TPO/cont) und der Verlauf der Kinetik dargestellt. c: Das Verhältnis zwischen neu gebildeten (BrdU+) und langlebigen (BrdU-) Plasmazellen im Verlauf der Kinetik ist hier gezeigt. Der Stern (*) markiert signifikante Unterschiede (p<0.05).

3.4.5. Auswirkung der TPO Behandlung auf die Bildung des Gedächtnisplasmazellkompartiment in Folge einer Immunisierung

Aus den Ergebnissen der Megakaryozytenkinetik (3.4.3.) und dem TPO induzierten Austausch im Plasmazellkompartiment (3.4.4.) wurde folgendes Versuchsschema für die gekoppelte TPO Behandlung und Ova Immunisierung entwickelt (Abb.29a).
Ergebnisse

Balb/c Mäusen wurde nach einer vorausgegangenen fünftägigen TPO Behandlung Ova i.v. injiziert. Die unreifen Plasmazellen beginnen ab Tag 3 im Knochenmark zu akkumulieren und erreichen an Tag 6 ihr Maximum (siehe 1.1.2.5.). Während dieser Zeit ist die Megakaryozytenzahl noch erhöht, sinkt aber bereits wieder auf homöostatisches Niveau, wobei nun das Kompartiment vorwiegend aus neu gebildeten Megakaryozyten besteht (siehe Abb. 24).
Ergebnisse

Dementsprechend wurde Tag 6 als erster Analysezeitpunkt gewählt, da dieser Zeitpunkt wie erwähnt das Maximum der einwandernden Plasmablasten im Knochenmark bei gleichzeitig wieder normalisierten Megakaryozytenzahlen (siehe Abb.24) darstellt. Wie man in Abbildung 29b erkennen kann, ist die Bildung der Ova Plasmablasten in der Milz nicht gestört und auch die Gesamtplasmazellzahl bleibt unverändert. Im Knochenmark ist jedoch sowohl die Ova spezifische als auch die Gesamtplasmazellzahl um 70% erhöht.

Als später Analysezeitpunkt wurde Tag 23 gewählt, da sich das durch die Immunisierung generierte Ova spezifische Plasmazellkompartiment zu diesem Zeitpunkt stabilisiert hat und ausschließlich langlebige Gedächtnisplasmazellen präsent sind (siehe 1.1.2.5.). In der Milz kann man gut die abgeklungene Immunreaktion erkennen, da sich dort kaum noch Ova Plasmazellen finden. Auch im Knochenmark hat die Ova und Gesamtplasmazellzahl abgenommen und ein Plateau erreicht (Abb. 29b). Jedoch finden wir hier, wie schon zum frühen Zeitpunkt, 70% mehr Ova spezifische Plasmazellen in den TPO behandelten Tieren (Abb. 29b).

Somit konnte eindeutig gezeigt werden, dass die TPO Behandlung zu einer annähernden Verdopplung des Ova spezifischen Gedächtnisplasmazellkompartiments führte.
3.5. **Plasmazellen und Megakaryozyten in Kokultur**

Im Vorexperiment hatte sich gezeigt, dass reife Plasmazellen (B220- und MHCII-) aus dem Knochenmark nicht mehr in der Kultur von Megakaryozyten am Leben erhalten werden konnten, jedoch noch auf den lösliche Faktor IL-6 ansprachen.

Da für das Überleben der Plasmazelle vielleicht eine active Kolokalisation mit der Stromazelle, in diesem Fall dem Megakaryozyt, notwendig sein könnte, muss die untersuchte Plasmazelle dementsprechend migrationsfähig sein. Daher wurden für folgende Experimente neu gebildete Plasmazellen aus der Milz verwendet. Diese wurden durch eine Ova Sekundärimmunisierung generiert, da Ova Plasmazellen in vivo bereits die Fähigkeit zur Interaktion mit Megakaryozyten zeigten (siehe 3.2.1.; 3.3.2. und 3.4.5.).

Die Plasmazellen wurden an Tag 4 nach der Sekundärimmunisierung aus der Milz durchflusszytometrisch isoliert (Abb. 30) und in eine Kulturplatte sortiert. Anschließend wurden die Plasmazellen für vier bzw. fünf Tage mit verschiedenen Medium, CD61+ Megakaryozyten, CD61- Kontrollzellen, IL-6 sowie Megakaryozyten+ IL-6 kultiviert. Es zeigte sich, dass in den Megakaryozytenansätzen mehr Plasmazellen vorhanden waren als in den Kulturen mit Medium alleine oder mit der Kontrollpopulation (Abb. 30). Jedoch wurden die meisten Plasmazellen in den Ansätzen, die nur IL-6 enthielten, nachgewiesen.

Das gleiche Bild spiegelte der Antikörpertiter wieder, der aus dem Überstand der Kulturansätze gewonnen wurde. Auch hier war mehr anti-Ova sowie totaler IgG Antikörper in den Megakaryozytenansätzen vorhanden, als in denen mit Medium oder der Kontrollpopulation (Abb. 30). Wobei der höchste Antikörpertiter auch hier in den IL-6 Kulturen zu finden war.
Ergebnisse

Plasmazell Kultur

Abb.30: Plasmazell und Megakaryozyten Kokultur. Unreife Plasmazellen wurden vier Tage nach der Ova Sekundärimmunisierung aus der Milz gewonnen und durchflusszytometrisch in eine Kulturplatte sortiert und mit verschiedenen Zusätzen (Medium, IL-6 [10ng/ml], MK [CD61+ aus fetaler Leberkultur], Kontrollpopulation [CD61- aus fetaler Leberkultur] und MK + IL-6) kultiviert. Nach jeweils vier und fünf Tagen wurde die Anzahl überlebender Ova Plasmazellen und der Antikörpertiter bestimmt. Oben: Ova sensitiver ELISPOT -Daten der verschiedenen Kulturansätze an Tag 4 und 5 Unten: der Ova und IgG Antikörper titier aus den Überständen der Kulturansätze.
Ergebnisse

3.6. Die Auswirkung einer Immunisierung auf die Megakaryopoese

Die bisherigen Versuche hatten zum Ziel, die Auswirkungen auf das Plasmazellkompartiment durch eine Veränderung im Megakaryozytenkompartiment zu untersuchen. Ob es eine gegenseitige, also bidirektionale Regulation gibt, blieb unklar.

Um dieses zu überprüfen, sollte die Auswirkung einer Immunisierung auf das Megakaryozytenkompartiment untersucht werden. Dazu wurden Balb/c Mäuse in drei Versuchsgruppen unterteilt. Die Kontrollgruppe erhielt einen Stich mit der Kanüle in die Schwanzvene, jedoch keine Injektion, die zweite Gruppe erhielt PBS und dritte Gruppe Ova intravenös.

4. Diskussion

4.1. Einleitung

Es stellt sich daher die Frage, welche Plasmazellen zu dem persistierenden Antikörpertiter im Blut beitragen.

Bereits seit den 1980er Jahren gab es Hinweise, dass es sowohl kurzlebige (HW drei Tage)- als auch langlebige (HW 3 Wochen) Plasmazellen gibt ([40]). Das Knochenmark wurde als Organ mit der größten Fraktion langlebiger Plasmazellen identifiziert, was in späteren Studien für systemisch entstandene Gedächtnisplasmazellen bestätigt werden konnte [17, 83].

Es wird spekuliert, ob intrinsische Faktoren, wie Affinitätsreifung [2] [42], Stärke der Blimp-1 Expression oder CD93 Expression über die Fähigkeit der Plasmazelle entscheiden, langlebig werden zu können [84-86]. Jedoch belegen alle bisherigen Untersuchungen, dass die Mikroumgebung im Organ von entscheidender Bedeutung für das Plasmazellüberleben ist.
Das Schicksal der Plasmazelle hängt somit von den Signalen in der Mikroumgebung - der so genannten Überlebensnische - ab.

Die Aufgabe der vorliegenden Arbeit war es daher, das zelluläre Umfeld der Plasmazellen im Knochenmark zu untersuchen, was zur Identifizierung der Megakaryozyten als Teil der Plasmazellnische führte.

4.2. Diskussion der Methodik

Im Rahmen dieser Arbeit kamen verschiedene Methoden und Techniken zum Einsatz, deren Vorzüge und Schwachstellen im Folgenden kurz besprochen werden sollen.

4.2.1. Verwendung der Maus als Modell für immunologische Studien

Die Maus ist ein geeignetes Modell, um spezifische immunologische Fragestellungen zu untersuchen. Insbesondere eignet sie sich, um das humorale Gedächtnis zu analysieren, da beim Menschen ebenfalls langlebige Plasmazellen nachgewiesen wurden [88, 89] und die Plasmazellantwort sich bei Mensch und Maus in Folge einer Sekundärimmunisierung (Tetanus / Ova) ähnelt [88, 90].

Für die Mäuse in derselben Haltung ist die Infektionsgeschichte für alle Tiere vergleichbar, aufgrund der autoklavierten Nahrung und der gefilterten Luft in der für spezifische Pathogene freien Haltung (SPF) wahrscheinlich jedoch geringer als in der Wildbahn. Ein Vergleich der Dynamik des Plasmazellaustausches im Kompartiment zwischen Mensch und Maus ist
aufgrund des unterschiedlichen Pathogendrucks der Umwelt somit vermutlich limitiert. Unter Quarantänebedingungen ließen sich jedoch auch hier multiple Infektionen mit unterschiedlichen Bakterien- und Virenstämmen untersuchen.

4.2.2. BrdU Einbau zur Unterscheidung langlebiger und kurzlebiger Plasmazellen

4.2.3. Die Ova bzw. NP Immunisierung als Modell einer Immunreaktion

Ein weiterer Beleg für die unterschiedliche Reaktion zweier Individuen auf das identische Antigen wird durch die unterschiedliche Polarisierung zwischen einer Th1 und einer Th2 Antwort während der B-Zellaktivierung geliefert. So produzieren C57/BL6 Mäuse mehr Th1 Zytokine wie IL-2, IFN-gamma und TNF-alpha als Balb/c Tiere [13]. Dieses führt zur Präferenz einer zellulären (Th1) bzw. humoralen (Th2) Immunantwort [12] und der
Generierung von Plasmazellen unterschiedlichen Ig Isotyps, IgG1 (Th2), sowie IgG2a und IgG2b (Th1) [92].

 Entscheidend für die TH1/Th2 Polarisierung und die Stärke der Immunantwort ist die Wahl des Adjuvanz [16]. Das in den Experimenten eingesetzte Aluminiumhydroxid (Alum) induziert eine starke Th2 Antwort und ist das meistverwendete Adjuvanz bei der Impfung von Menschen [92-94]. Für die Primärimmunisierung ist die Gabe eines Adjuvanz oftmals essentiell, da es sonst zu keiner ausreichenden Aktivierung/ Stimulation des Immunsystems kommt [95]. Wenn bei der Sekundärimmunisierung ebenfalls Adjuvanz gegeben wird, kann das die Immunantwort ändern oder zumindest verlängern [96].

 Dieses zeigt, wie entscheidend die Wahl des Antigens, des Adjuvanz und des Mausmodells für die Resultate ist. Es verdeutlicht aber auch, dass die gewählte Immunisierung immer nur einen Teil möglicher Immunantworten darstellen kann. Die von mir gewählten Parameter, wie Proteinantigen (Ova) bzw. Proteingekoppeltes Antigen (NP-KLH), Alum als Adjuvanz wie bei einer Tetanusimpfung sollen eine gute Übertragbarkeit der Daten aus dem Mausmodell auf den Menschen ermöglichen.

 Weitere Faktoren wie die Applikationsroute und die Antigenkonzentration beeinflussen ebenfalls die Immunantwort [10, 12, 15, 16, 82, 97]. Hier gibt es einen Unterschied zwischen Mausmodell und der Impfung beim Menschen, da beim Menschen die Applikation meist intramuskulär (i.m.) erfolgt, wohingegen sich in der Maus die intraperitoneale (i.p.) und intravenöse (i.v.) Injektion als adäquate Alternative etabliert hat [95]. Die i.m. Injektion ist mit einer langsameren Resorption verbunden und lässt sich bei der Maus nur nach ausreichender Fixierung durchführen, andererseits ist die i.p. oder i.v. Impfung beim Menschen mit größeren Komplikationsrisiken wie z.B. Anaphylaxie, unbeabsichtigter Organpunktion oder Infektion der Bauchhöhle verbunden.

 Entscheidend ist, dass eine Ova bzw. NP Immunisierung der Maus ähnlich wie die Tetanusimpfung beim Menschen zur Bildung langlebiger Plasmazellen führt.
4.2.4. Die c-Mpl defiziente Maus als Modell für beeinträchtigte Megakaryopoese

Das c-Mpl -/- Mausmodell mit dem defekten TPO-Rezeptor c-Mpl entspricht genetisch der Ursache für die kongenitale amegakaryozytäre Thrombozytopenie (CAMT) beim Menschen [98-100]. Da in einigen Fallstudien diese Erkrankung mit Hypogammaglobulinämie assoziiert ist [101, 102], eignet sich die c-Mpl -/- Maus, um mögliche Auswirkungen von CAMT auf das humorale Immunsystem und insbesondere die Persistenz des Antikörpertiters zu untersuchen.

Ebenso können die allgemeinen Zusammenhänge zwischen Megakaryozyten- und Plasmazellkompartment in der c-Mpl/- Maus untersucht werden. Hier ist jedoch zu beachten, dass im Vergleich zum gesunden Individuum durch die angeborene/ chronische Störung des Megakaryozytenkompartiments die potentielle Funktion der Megakaryozyten in der Plasmazellnische durch andere Zellen kompensiert worden sein könnte.

Bedingt durch die fehlenden c-Mpl Stimulation erreichen die Megakaryozyten in der c-Mpl/- Maus auch keine Reifestadien mit hohem Ploidiegrad und bilden frühzeitig Thrombozyten [103]. Ebenfalls ist es möglich, dass aufgrund der Auswirkung von TPO auf die Reifung der Megakaryozyten, die fehlende c-Mpl Stimulation zu einer Veränderung der Zytokinproduktion in den Megakaryozyten führt. Somit ergibt sich die Möglichkeit, in der c-Mpl/- Maus neben der Auswirkung der reduzierten Megakaryozytenzahl auch potentielle molekularbiologische Wirkmechanismen zu untersuchen.

Für die Übertragbarkeit der Mausdaten auf den Menschen sollte bedacht werden, dass die Störung des TPO - c-Mpl Signalweges bei Patienten mit CAMT unterschiedlich stark ausgeprägt ist [98], während bei der c-Mpl/- Maus die Reduktion der Megakaryozyten 70-85% beträgt [66].

4.2.5. Die wiederholte TPO Applikation zur Stimulation der Megakaryopoese

Die fünftägige Injektion mit niedriger Dosis (0,01µg/kg) induziert eine schwache, aber mehrtägige Stimulation der Megakaryopoese, welche im Peak maximal eine Verdopplung der Megakaryozytenzahl zur Folge hat (siehe 3.4.1.). Diese Art der Stimulation ermöglicht es, die Beziehungen zwischen Megakaryopoese und Plasmazellüberleben unter annähernd physiologischen Bedingungen zu untersuchen. Zukünftig könnten aber auch Studien mit Einzeldosisinjektionen und hoher TPO Konzentration (25-250µg/kg) [70]) interessant werden. Die Injektion von PBS in die Kontrollmäuse führt möglicherweise durch eine Gewebeverletzung und Aktivierung des Immunsystems ebenfalls zu einer Induktion der Megakaryopoese (siehe 3.4.1.), wobei letzteres aufgrund der geringen Stärke vernachlässigbar ist.

4.3. Diskussion der Ergebnisse

4.3.1. Das Plasmazellkompartment muss sich entwickeln

Meine Untersuchungen des Plasmazellkompartiments im Knochenmark haben ergeben, dass der Anteil langlebiger Plasmazellen bis zum vierten Monat deutlich zunimmt und ein stabiles Plateau zwischen 60-70% erreicht. Die Gesamtplasmazellzahl steigt noch bis zum fünften Monat weiter an, wo auch sie einen stabilen Wert erreicht.

Das Gedächtnisplasmazellkompartment im Knochenmark muss sich somit erst entwickeln.

Der Antikörpertiter im Serum ist sicher eine geeignete Methode, um die Persistenz des humoralen Immunsystems zu untersuchen. Andererseits spiegelt der Serumantikörpertiter nicht direkt das Plasmazellkompartment im Knochenmark wider, da IgG eine längere Halbwertszeit als IgM und IgA hat [105] und Plasmaellen aus verschiedenen Organen zum Serumtiter beitragen [106]. Ebenso wird der Titer als Volumenkonzentration dargestellt, wodurch die Zunahme des Blutvolumens und somit die Zunahme der Gesamtmenge an Antikörpern während der kindlichen Wachstumsphase unberücksichtigt bleibt. Bei meinen Analysen des Knochenmarks entspräche dieses daher eher der Plasmazellfrequenz als der Plasmazellzahl.

Eine weitere Komponente, die den Serumtiter beeinflusst, ist der Fcn-Rezeptor, der an der Oberfläche von Blutgefäßen sitzt, Antikörper bindet und so wie eine Art Puffer auf die Antikörperkonzentration wirkt [107].

Interessanterweise korreliert die Kinetik der Serum Antikörper [104] dennoch sehr gut mit der Plasmazellkinetik im Knochenmark (3.1.2.). Beide zeigen eine Plateauberbildung ab dem fünften bzw. sechsten Monat. Ab dem vierten Monat hatte das langlebige Kompartment mit 60-70% bereits einen stabilen relativen Anteil erreicht, das Gesamtkompartment stieg jedoch noch bis zum fünften Monat an (3.1.2.). Ebenso findet Haaijman einen fortgesetzten Anstieg für IgG1 und IgG3 Antikörper im Serum, ähnlich wie ich eine anhaltende Zunahme von IgG Plasmaellen im Knochenmark feststellen konnte (3.1.2.).

In den von mir untersuchten Mäusen wurde das Knochenmark zuerst von IgA Plasmazellen besiedelt. Und da IgA die dominante Ig Klasse bei mukosalen Immunreaktionen ist, sind diese frühen Plasmazellen im Knochenmark möglicherweise durch mukosalen Antigenkontakt entstanden und aus der Mukosa rezirkuliert [33, 109]. Später fanden sich immer mehr IgM und vor allem IgM-/IgA- Plasmazellen im Knochenmark. Die letzteren sind vermutlich IgG Plasmazellen, da IgE und IgD Plasmazellen nur einen verschwindenden Anteil des Plasmazellkompartment im Knochenmark ausmachen [83, 110].

Entscheidend für die Entwicklung des Plasmazellkompartment im Mensch und Maus ist jedoch, dass es bei Beiden früher oder später zu einer Wachstumslimitierung kommt. Das heißt, in beiden Spezies gibt es eine Obergrenze für das humorale Gedächtnis. Der Gesamtantikörpertiter steigt bei beiden Spezies nicht mehr [83, 104], und auch die Anzahl der Knochenmarkplasmazellen in der Maus nimmt nicht mehr zu (3.1.2.).

Dieses spricht entweder für das Vorhandensein von inhibierenden Feedbackmechanismen, wie z.B. über FcγRII-Rezeptor induzierte Apoptose auf Plasmazellen [23] oder eine beschränkte Kapazität der Überlebensnischen. Als möglichen limitierenden Faktor beschreiben Belnoue und Kollegen die APRIL Konzentration im Knochenmark [111], da die Stimulation des APRIL-Liganden BCMA essentiell für das Plasmazellüberleben ist [51]. So zeigen sie eine ansteigende APRIL Konzentration im Knochenmark während der ersten vier Lebenswochen, was mit dem Anstieg des Plasmazellkompartment korreliert. Ebenso ermöglichen APRIL produzierende Neutrophile die Etablierung einer Plasmazellnische in der Mukosa [79].

Zusammenfassend lässt sich somit sagen, dass die von mir untersuchte Entwicklung des Plasmazellkompartment mit der für die Maus beschriebenen Kinetik des Antikörpertiters korreliert, es jedoch Unterschiede in der Beteiligung der verschiedenen Immunglobulinklassen am Titer und am Plasmazellkompartment geben könnte, welche aus den Inproportionalitäten beider Werte resultieren. Die Untersuchungen mittels BrdU Einbau ergaben, dass sich das Verhältnis zwischen langlebigen und neu gebildeten Plasmazellen von 1,5 zu 1 einstellt, bevor die maximale Ausdehnung des Plasmazellkompartment erreicht ist.
4.3.2. Die Plasmazellen im Knochenmark sitzen in der vaskulären Nische assoziiert mit SDF-1 positiven Zellen und ein Teil kolokalisiert mit Megakaryozyten

Die Plasmazellen unterschiedlichen Isotyps sind ungleich mit dem Endothelium assoziiert, aufgrund der starken Vaskularisierung des Knochenmarks sind sie jedoch nie weiter als 30µm von einem Gefäß entfernt (siehe Abb. 7). Daher befinden sie sich makroskopisch betrachtet in der vaskulären Nische [112].

Wie von Tokoyoda et al. beschrieben [55] und auch von mir beobachtet, sind nahezu alle Plasmazellen mit SDF-1 Signalen assoziiert. Da jedoch nur ca. 60% der Plasmazellen langlebig sind (siehe Abb. 4, 28c), kann dieser Kontakt nicht hinreichend sein, um das Überleben zu sichern. Daraus ergeben sich die Möglichkeiten, dass die SDF-1+ Zellen eine heterogene Population darstellen und nur einer oder manche Zellen das Plasmazellüberleben sichern können oder das ein dritter Zelltyp an der Plasmazellnische beteiligt ist. Für die erste Möglichkeit gibt es bisher keine Bestätigung, da einer der Hauptproduzenten von SDF-1 im Knochenmark retikuläre Fibroblasten sind, die sich nicht für weitere Analysen mit dem Durchflusszytometer sortieren ließen. Andererseits konnten SDF-1+ Fibroblasten Plasmazellen in Kokultur für maximal vier Wochen am Leben erhalten [49]. Auch hier bleiben wieder die Möglichkeiten offen, dass die falsche SDF-1+ Zelle verwendet wurde, dass kostimulatorische Signale fehlen oder das ein dritter Zelltyp an der Nische beteiligt ist. Auf die Möglichkeit, dass eine dritte Zelle an der Nische beteiligt ist, könnte hindeuten, dass ca. 30% der Plasmazellen nach dem Austritt aus dem Gefäß mit Megakaryozyten kolokalisiert wurden (siehe 3.2.1.). Allerdings deckt sich diese Frequenz nicht mit den 60% langlebigen Plasmazellen im Knochenmark und auch nicht mit den Ova Gedächtnisplasmazellen, bei denen nahezu alle Zellen langlebig sind, auch wenn man berücksichtigt, dass diese Statistik aus 2D Schnitten gewonnen wurde und die eigentliche Kolokalisationsfrequenz etwas höher liegen könnte.

Diskussion

Megakaryozyten einen entscheidenden Beitrag für die Plasmazellnische liefern. So war es möglich, durch eine TPO Behandlung sowohl das Megakaryozyten- als auch das Plasmazellkompartment transient zu erhöhen (siehe Abb. 24 und 29). Da TPO nicht direkt auf Plasmazellen wirkt (siehe Abb. 26) und die Anzahl an B-Zellen, Monozyten, Stamm- und Vorläuferzellen durch die TPO Behandlung nicht steigt (siehe Abb. 27), liegt die Vermutung nahe, das ein Anstieg der Megakaryozyten die Akkumulation der Plasmazellen im Knochenmark verstärkt. Auf eine Spezifität der „megakaryozytären“ Nische deuten auch die unterschiedlichen Kolokalisationsfrequenzen der verschiedenen Isotypklassen hin (siehe Abb. 13). Ob der molekulare Beitrag, den die Megakaryozyten zur Nische beisteuern, essentiell ist, wird später diskutiert (siehe 4.3.4.), die Megakaryozyten selbst scheinen es jedoch nicht zu sein. So sind in den in den c-Mpl-/- Tieren die Megakaryozytenzahlen auf 30-40% und die der Megakaryozyten mit hohem Ploidiegrad sogar auf 15-20% reduziert [66], während die Zahl der langlebigen Plasmazellen nur auf ca. 50% reduziert ist. Gleichzeitig beträgt in diesen Tieren die Kolokalisationsfrequenz zwischen Megakaryozyten und Plasmazellen nur 10%, was zusätzlich für alternative Nischen und eine Insuffizienz der verbleibende Megakaryozyten in den c-Mpl-/- Mäusen spricht.

Die Tatsache, dass in den Experimenten mit TPO nur ein Teil der langlebigen pre-existenten Plasmazellen durch den erhöhten Austausch im Megakaryozytenkompartment eliminiert wurde, während die sehr reifen polyploiden Megakaryozyten stark dezimiert wurden, spricht für die Theorie, dass Megakaryozyten entweder nur einen Teil der Plasmazellen unterstützen oder dass der Plasmazell-Megakaryozyt Kontakt nicht statisch, sondern dynamisch ist. Das heißt, es wurden entweder nur die Plasmazellen eliminiert, die in einer Megakaryozyten bestückten Nische saßen, oder die neu gebildeten Megakaryozyten waren nur in der Lage, bei 50% der langlebigen Plasmazellen die alten Megakaryozyten als Nischenkomponente zu ersetzen.

Zusammenfassend lässt sich sagen, dass die Plasmazellen in der vaskulären/perivaskulären Nische sitzen und Kontakt zu retikulären SDF-1+, Fibronektin+ Zellen haben. Da jedoch nur ein Teil der Plasmazellen langlebig ist, sichern die SDF-1+ Zellen alleine nicht das Überleben der Plasmazelle. Die Gesamtplasmazellen sind zu ca. 30% mit Megakaryozyten assoziiert, wobei die Kolokalisationsfrequenz zwischen Plasmazellen und Megakaryozyten bei klassengewechselten IgA und IgG Plasmazellen höher (30-40%) ist als bei IgM Plasmazellen (10%). In diesem Zusammenhang ist es interessant, dass IgG die dominante Ig Klasse des humoralen Gedächtnisses darstellt [83] und mehr als die Hälfte der IgG und IgA Plasmazellen im Knochenmark langlebig sind, während IgM Plasmazellen generell eher eine kurze Lebensspanne haben [40].
4.3.3. Retikuläre SDF-1 positive Zellen bilden das Gerüst der Plasmazellnische

Chemokine spielen nicht nur eine Rolle während der Hämatopoese und dem Verlassen des Knochenmarks, sondern auch bei der Rezirkulation reifer Leukozyten wie Plasmazellen [47]. SDF-1+ Fibroblasten umspannen die Knochenmarkkapillare und ermöglichen so wahrscheinlich den einwandernden Plasmazellen die Lokalisation in der vaskulären Nische. Für Plasmazellen ist SDF-1+ jedoch nicht essentiell, da sowohl SDF-1/- als auch CXCR4-/-Mäuse lediglich eine verlangsamte Plasmazellakkumulation im Knochenmark zeigen [33, 37, 48].

Zusammenfassend lässt sich also sagen, dass Fibroblasten ein Gerüst im Knochenmark bilden, ein Teil SDF-1 produziert und über dessen Gradienten die Migration und Lokalisation der Plasmazellen in die vaskuläre Nische gesteuert wird. Der SDF-1+ Fibroblast alleine vermag jedoch nicht das Überleben der Plasmazelle zu sichern, aber möglicherweise fungiert er als Treffpunkt von CXCR4+ Zellen. Wenn diese Zellen, wie z.B. die Megakaryozyten, Plasmazellüberlebensfaktoren produzieren, könnten sie eine weitere Komponente der Plasmazellnische darstellen.
4.3.4. Megakaryozyten produzieren Plasmazellüberlebensfaktoren im Knochenmark und sind eine Hauptquelle für IL-6

Wenn Plasmazellen aus ihrer Nische entfernt und in Kultur genommen werden, sterben sie innerhalb von zwei bis drei Tagen. Auch durch das Zufügen von Überlebensfaktoren wie APRIL oder IL-6 lässt sich das Überleben nur auf ca. eine Woche verlängern, wobei man hier teilweise synergistische Effekte beobachten konnte [50, 51]. Die Plasmazellüberlebensnische im Knochenmark ist daher vermutlich von komplexer Natur und stellt mehrere Faktoren bereit. Die Resultate aus den histologischen, molekularbiologischen und durchflusszytometrischen Untersuchungen belegen, dass Megakaryozyten APRIL und SDF-1 produzieren und für IL-6 eine Hauptquelle im Knochenmark sind (siehe Abb. 16, 17). Die Megakaryozyten stellen in Wildtypmäusen ein Drittel aller IL-6 Produzenten im Knochenmark dar und bei einer Populationsgröße von 0,3% scheint die IL-6 Produktion sehr distinkt zu sein. In der c-Mpl-/- Maus deuten allerdings die histologischen Analysen darauf hin, dass die MKs diese prominente Rolle für die IL-6 Produktion verloren haben (siehe Abb. 23). Interessanterweise sind die Plasmazellen in diesen Knock-out Tieren mit anderen IL-6+ Zellen, möglicherweise Endothelzellen, assoziiert (siehe Abb. 22, 23), und in diesem Zusammenhang ist es aufschlussreich, dass sich auch eine Verschiebung der Kolokalisation von Megakaryozyten zu den Endothelzellen zeigt (siehe 3.2.5. und 3.3.3.). IL-6 wirkt synergistisch mit BAFF und CD44 Stimulation [50, 51] und scheint in vivo vor allem mit klassengewechselten Plasmazellen assoziiert zu sein [89]. Unter anderem induziert IL-6 die Expression von prdm1/ Blimp-1 und xbp1 in Plasmazellen [4], welches beides entscheidende Plasmazelltranskriptionsfaktoren und maßgeblich für das intrinsische Potential für Langlebigkeit verantwortlich sind [86].

Interleukin-6 bzw. gp130 vermittelte Signale könnten somit den Schlüsselmechanismus der Plasmazellnische darstellen. Die Notwendigkeit und somit die Wichtigkeit der gp130 vermittelten Signale für das Plasmazellüberleben ließen sich bisher nicht überprüfen, da ein gp130 Knock-out bereits kurz nach der Geburt letal ist [53]. IL-6 selbst ist redundant, und somit ist es nicht überraschend, dass IL-6/- Mäuse zwar eine gestörte Plasmazellakkumulation, jedoch keinen Langzeiteffekt auf das Plasmazellkompartment zeigen [50]. Anders ist es für die BCMA Stimulation, welche als essentiell nachgewiesen werden konnte [51]. Jedoch wird der für die Langlebigkeit entscheidende BCMA Ligand APRIL [111] von der Plasmazelle selbst gebildet [115]. Deshalb bleibt es unklar, ob von der Umgebung produziertes APRIL tatsächlich essentiell ist, auch wenn es ähnlich wie IL-6 in vitro einen positiven Effekt auf das Plasmazellüberleben hat [51].
Somit leisten Megakaryozyten durch die Produktion von APRIL, SDF-1 und besonders IL-6 einen entscheidenden Beitrag zur Plasmazellnische. Wie sich die Manipulation des Megakaryozytenkompartmentes auf die Plasmazellen auswirkt, wird im Folgenden diskutiert.

4.3.5. Die c-Mpl -/- Maus hat ein kleineres Plasmazellkompartment und die schnelle Akkumulation von Plasmazellen in Folge eines wiederholten Antigenkontaktes ist gestört.
Der TPO-Rezeptor c-Mpl wird auf hämatopoetischen Stammzellen und Zellen der Megakaryozytenlinie exprimiert [66, 69]. Daraus resultiert, dass c-Mpl-/- Mäuse ein deutlich reduziertes Megakaryozytenkompartment und weniger Stamm- und Vorläuferzellen, jedoch eine normale Anzahl reifer Leukozyten haben [66, 69].

Um dieses zu überprüfen, wurden Mäuse sowohl mit NP als auch mit Ova immunisiert, da deren Plasmazellkinetik in Wildtyptieren beschrieben [36] und von mir im Zusammenhang mit Megakaryozyten bereits untersucht wurde (3.2.1. und 3.2.3.).

Die Ova Dosis wurde reduziert und Alum als Adjuvanz verwendet, da beim ersten Experiment mit Ova Sekundärimmunisierung sechs von neun c-Mpl-/- Mäusen starben, was eine Wiederholung des Versuchs mit gleichem Immunisierungsprotokoll aus ethischen und

Wie erklärt sich also, dass vor allem die frühe Akkumulation der Plasmazellen im Knochenmark gestört ist? Das antigenspezifische Plasmazellkompartment ist in den Wildtypieren anfangs sehr viel größer als in den c-Mpl-/- Tieren, fällt dann aber auch wesentlich stärker ab, während es in den Knock-out Tieren lediglich auf die Hälfte reduziert wird. Megakaryozyten könnten also den Eintritt und die Etablierung der Plasmazelle im Knochenmark beeinflussen. Bei der Untersuchung der Migration von Ova Plasmazellen ins Knochenmark waren sie von Anfang an mit Megakaryozyten kolokalisiert, wobei das von den Megakaryozyten produzierte Zytokin IL-6 dabei eine Rolle spielen könnte. Da IL-6 auch ein Proliferationsfaktor ist, könnte die im Vergleich zum Wildtyp anfänglich deutlich geringere Plasmazellzahl im Knochenmark auf einen Wirkmechanismus der Megakaryozyten über IL-6 hindeuten. So findet man eine vergleichbare Verlangsamtung der Plasmazellakkumulation in IL-6/- Mäusen [50].

Diskussion

Weiterhin könnte megakaryozytäres SDF-1 eine Rolle bei der Einwanderung und der Direktion in die Überlebensnische spielen, denn ähnlich wie die c-Mpl-/- Maus zeigt auch die CXCR4-/- Maus eine verlängerte Plasmazellformierung nach der Immunisierung [54]. Ebenso könnte die geringe Kolokalisation von Plasmazellen und Megakaryozyten in der c-Mpl-/- Maus (10% statt 30%) auf den Einfluss megakaryozytäres SDF-1 bei der Einwanderung von Plasmazellen ins Knochenmark hindeuten.

Andererseits ist in der c-Mpl-/- Maus das Plasmazellkompartment und insbesondere das langlebige Plasmazellkompartment reduziert, was bedeuten könnte, dass die Plasmazellen aus der megakaryozytären Nische fehlen, oder dass der Verlust dieser Nische nur teilweise durch andere Zellen kompensiert werden kann. Da die Insuffizienz in der Megakaryozytenlinie durch einen genetischen Defekt bedingt ist, wäre es möglich, dass andere Zellen während der Entwicklung des Plasmazellkompartment die Funktion von Megakaryozyten übernommen haben. So konnte in Kulturversuchen gezeigt werden, dass Osteoclasten das Überleben von Plasmazellen bis zu 12 Tagen stimulieren konnten [118]. Dabei stellte sich heraus, dass der Zell-Zell Kontakt absolut notwendig war. Ob diese Zellen jedoch in vivo mit Plasmazellen kolokalisiert sind, muss noch geklärt werden. Ebenso, ob es einen weiteren essentiellen Faktor gibt, den die Zellen den Plasmazellen zum Überleben liefern, denn APRIL produzieren verschiedenste Zellen im Knochenmark (siehe 3.2.5.) darunter auch die Plasmazellen selbst [115]. Zudem hat sich in der oben genannten Osteoclastenstudie gezeigt, dass die unterstützende Funktion der Osteoclasten nicht über eine BCMA Stimulation vermittelt wird.

Es bleibt jedoch die Frage, warum das Ova Gedächtnisplasmazellkompartment, anders als das restliche langlebige Plasmazellkompartment, in den c-Mpl-/- Mäusen im Vergleich zum Wildtyp kaum verändert ist. Bei der Analyse des Knochenmarks von c-Mpl-/- Mäusen hatte sich gezeigt, dass IgA Plasmazellen besonders stark reduziert waren, IgG nur leicht und IgM Plasmazellen überhaupt nicht (siehe Abb. 18). Dieses Ergebnis deckt sich teilweise mit der früheren Beobachtung in Wildtypieren, bei denen IgA und IgG Plasmazellen besonders häufig (IgA ~40%, IgG ~30%) und IgM Plasmazellen deutlich seltener (~10%) mit Megakaryozyten assoziert waren (siehe Abb. 30.). In der c-Mpl-/- Maus kolokalisieren die Plasmazellen öfter mit dem Endothelium (50%) als mit Megakaryozyten (10%), was wieder darauf hindeutet, dass die unterschiedlichen Plasmazellen auch unterschiedliche Nischen benötigen bzw. bevorzugen. Weiterhin legen die oben genannten Daten die Vermutung...
nahe, das IgG Plasmazellen, die im Wildtyp auch mit Endothelzellen stärker assoziiert waren (30%) als IgA Plasmazellen (10%), besser den Verlust der megakaryozytären Nische kompensieren können. Die Verschiebung der Plasmazellen zu einer stärkeren Kolokalisation mit Endothelzellen, welche unter anderem eine IL-6 Quelle sind, könnte eine mögliche Kompensation darstellen.

Zusammenfassend lässt sich sagen, dass c-Mpl/-/- Mäuse ein kleineres Plazmazellkompartiment als Wildtyptiere haben, und die Reduktion stärker klassengewechselte IgA und IgG Plasmazellen betrifft als IgM Plasmazellen sowie Langlebige stärker als Kurzlebige. Ebenso ist die Akkumulation von antigenspezifischen Plasmazellen in der c-Mpl/-/- Maus ähnlich wie bei IL-6/-/- oder SDF-1/-/- Tieren verlangsamt.

Erste histologische Analysen deuten auch darauf hin, dass Megakaryozyten in c-Mpl/-/- Tieren keine dominante IL-6 Quelle wie in den Wildtypieren sind, was zusammengenommen auf eine potentielle Rolle von megakaryozytärem IL-6 für die Plasmazellnische hindeutet.

4.3.6. Die TPO Behandlung führt zu einer Depletion pre-existenter langlebiger Plasmazellen und ermöglicht eine verbesserte Besiedlung des Knochenmarks mit neu gebildeten Plasmazellen.

Eine TPO Behandlung induziert die Megakaryopoese und führt so zu einer Neubildung und einer verlängerten Reifung und Stabilisierung der vorhandenen Megakaryozyten [68, 70, 119]. Nach Absetzen von TPO stellt sich das homöopathische Gleichgewicht durch Abbau der ältesten Megakaryozyten wieder ein (siehe Abb. 24) [70]. Auf diese Weise kommt es nach einer zeitlich begrenzten Erhöhung letztendlich zum Austausch des Megakaryozytenkompartiments (3.4.1.). Die Untersuchungen des Plazmazellkompartment im Zusammenhang mit der TPO Behandlung haben gezeigt, dass die Plasmazellkinetik der Megakaryozytenkinetik folgt (3.4.1. und 3.4.6.). So findet eine verstärkte Akkumulation neu gebildeter Plasmazellen (BrdU+) im Knochenmark behandelter Tiere bis Tag 8 statt. Sechs Tage nach Beendigung der TPO Behandlung sind die reifen Megakaryozyten mit hohem Ploidiegrad kaum mehr nachweisbar und ausschließlich junge Megakaryozyten mit einem geringeren Ploidiegrad vorhanden. Parallel zu den reifen Megakaryozyten ist auch ein Teil der langlebigen Plasmazellen, die bereits vor der TPO Behandlung im Knochenmark residierten, verschwunden (3.4.6.). Zusammen mit der anfänglichen Zunahme neu gebildeter (BrdU+) Plasmazellen belegt dieses, dass die TPO Applikation zu einem Austausch im Plazmazellkompartment führt (3.4.6.).
Zum späten Analysezeitpunkt (Tag 23) ist das BrdU+ Kompartiment wieder zusammengebrochen, wobei die Ursache dafür sich nicht aus den Ergebnissen ableiten lässt. Möglicherweise spielt hier aber das intrinsische Potential der Plasmazelle für Langlebigkeit eine Rolle (siehe 1.1.2.5.) [2, 42, 84-86, 120].

Eine Kombination aus TPO Behandlung, Sekundärimmunisierung und BrdU Fütterung könnte hier weiteren Aufschluss geben, da die BrdU Fütterung zusätzlich ermöglicht, die durch Bystander Aktivierung generierten Plasmazellen zu erfassen. Diese Plasmazellen stammen in der Regel von Gedächtnis-B-Zellen ab und haben somit das Potential langlebig zu werden [17, 121].

Es lässt sich also zusammenfassen, dass es durch die TPO Behandlung zu einen Austausch im Megakaryozytenkompartment und ebenfalls zu einem Austausch im Plasmazellkompartment kommt. Um jedoch die neu gebildeten und noch unbesetzten Nischen im Knochenmark langfristig besiedeln zu können, müssen die Plasmazellen auch die intrinsische Fähigkeit besitzen, langlebig zu werden.

Die TPO Behandlung ermöglicht daher, pre-existente langlebige Plasmazellen zu eliminieren und den Pool der Gedächtnisplasmazellen bei einer Immunisierung zu vergrößern.

4.3.7. Es gibt ein bidirektionales Zusammenspiel zwischen Immunantwort und Megakaryopoese

In mehreren Versuchen konnte gezeigt werden, dass das Megakaryozytenkompartment das Plasmazellkompartment beeinflusst (siehe 3.3.1./ 3.3.2./ 3.4.5. und 3.4.6.). Insbesondere wurde durch eine gesteigerte Megakaryopoese der Gedächtnisplasmazellpool vergrößert (siehe 3.3.5.). Hierbei fiel auf, dass während der Experimente mit TPO Gabe ohne Immunisierung die Gesamtig Megakaryozytenzahl an Tag 10 in den behandelten Tieren immer
Diskussion

leicht unter den Kontrolltieren lag, in den immunisierten Tieren jedoch darüber (Daten nicht gezeigt). Diese Tendenzen deuteten darauf hin, dass die Immunisierung selbst die Megakaryopoese beeinflusst. Daher stellte sich die Frage, ob eine Immunreaktion die Megakaryopoese stimuliert und somit die Immunreaktion selbst direkten Einfluss auf die Nische nimmt (siehe 3.6.). In der Ova immunisierten Maus gab es einen signifikanten Anstieg der Megakaryozytenzahlen. Ebenso deutete sich in der PBS injizierten Maus ein zunehmendes Megakaryozytenkompartiment an. Das Wachsen der Megakaryozytenpopulation scheint allerdings nicht direkt mit den einwandernden Plasmazellen zusammenzuhängen, da sich zwar im Knochenmark der Ova injizierten Mäuse, jedoch nicht in der PBS Gruppe eine Immigration von Plasmazellen andeutet.

In klinischen Fallstudien wurde die Ursache für die Thrombozytose auf eine Infektion (24%) oder eine chronische Entzündung (10%) zurückgeführt, und bei 42% der Patienten wurde eine Gewebeschädigung als Auslöser festgestellt [122]. Somit sind 34% direkt mit einer laufenden Immunreaktion assoziiert und mögliche weitere 42% mit einer Hybride aus Thrombozyten- und Immunaktivierung im geschädigten Gewebe, was insgesamt 76% aller untersuchten Fälle ergibt. Eine Schnittstelle zwischen Immunantwort und Megakaryopoese könnte das Zytokin IL-6 darstellen, da IL-6 bei der Ova induzierten Immunreaktionen ausgeschüttet wird [11] und IL-6 die Megakaryopoese direkt [74] bzw. durch IL-6 induziertes TPO beeinflusst [76]. Hinzu kommt bei einer Sekundärimmunisierung eine sofortige Stimulation des angeborenen Immunsystems über an aktivierenden Fc Rezeptoren gebundenen Immunkomplexen [22], welches einen Ausstoß inflammatorischer Zytokine wie IL-6 dieser Zellen zur Folge hat.

Die lokalen IL-6 Konzentrationen an den Megakaryozyten selbst und insbesondere an den Hepatozyten, welche durch IL-6 Stimulation TPO produzieren [76], sind hierbei maßgebend, da IL-6 und TPO unterschiedlich auf die Reifung und die Proliferation von Megakaryozyten wirken [74-76, 123, 124]. Zusätzlich beeinflussen weitere kostimulatorische Faktoren wie IL-3, FGF-4, Fibronectin oder SDF-1 die Rekrutierung von Stammzellen, die Megakaryozytenreifung [72, 74, 75], sowie die Abschnürung von Thrombozyten [57]. Daher ist es interessant, dass die SDF-1 mRNA infolge einer Immunisierung zuerst (Tag 4) auf ein Zehntel reduziert wird und später (Tag 16) das Zehnfache des Normalwertes erreicht [125].

Dass bei der Immunisierung ausgeschüttete Zytokine eine mögliche Ursache für die Induktion der Megakaryopoese sind, wäre in Übereinstimmung mit dem tendenziellen Anstieg der Megakaryozytenzahlen in den PBS injizierten Tieren, da auch in diesen Tieren eine Immunantwort einsetzte. Ob IL-6 oder TPO im Serum in Folge meines Behandlungsschemas ansteigt, ließe sich mit einem sensiblen Messsystem nachweisen. Den Weg über IL-6 und die Hepatozyten auszuschließen, bedarf jedoch vielfältiger
Diskussion

Kontrollen, da sowohl IL-6 als auch die Hepatozyten in komplexe systemische Prozesse involviert sind.

Es lässt sich daher zusammenfassend sagen, dass das Immunsystem und die Megakaryopoese verknüpft sind und eine gegenseitige Regulation stattfindet. Die Megakaryopoese wird vermutlich durch Zytokine, die im Zusammenhang mit der Immunreaktion gebildet werden, und nicht durch einwandernde Plasmazellen selbst induziert.

4.3.8. Megakaryozyten können Plasmazellen in der Kultur unterstützen

Dazu wurde eine Kultur mit folgenden Randbedingungen etabliert. Die Plasmazellen wurden als unreife migrationsfähige Plasmablasten nach einer Ova Sekundärimmunisierung aus der Milz gewonnen, da sich im Vorexperiment gezeigt hatte, dass reife Plasmazellen aus dem Knochenmark, welche die Migrationsfähigkeit verloren haben [36] in einer Megakaryozyten Kokultur nicht überleben (Daten nicht gezeigt). In der Literatur wird gerade diese Immobilität der reifen Plasmazelle als Ursache für den Zelltod nach Verdrängung aus der Überlebensnische vermutet [17], daher ist es möglicherweise essentiell, dass die Plasmazelle aktiv Kontakt mit der Stromazelle aufnehmen kann. Ein weiterer Grund für die Verwendung unreifer Plasmazellen war, dass nicht bekannt ist, für welchen Entwicklungsschritt der Kontakt zwischen Plasmazelle und Megakaryozyt wichtig ist. Da jedoch die beiden Zellen sehr früh mit einander assoziiert sind (siehe 3.2.1.) und auch bei der c-Mpl-/- Maus besonders die frühe Plasmazellakkumulation beeinflusst war (siehe 3.3.2.), deutet es auf einen frühzeitige Stimulation bereits der jungen Plasmazellen hin.

Die Megakaryozyten wurden aus einer Kultur fetaler Leberzellen gewonnen, da sich Megakaryozyten aufgrund ihrer Größe zu fragil für eine durchflusszytometrische Aufreinigung gezeigt hatten und auch die Zellzahl im Knochenmark zu gering für eine ausreichende Bodenbedeckung der Kulturgefäße ist. Hieraus ergeben sich jedoch verschiedene Faktoren, welche sich auf die Funktionalität der Kultur auswirken könnten. So beeinflussen kostimulatorische Signale wie TPO, IL-3, IL-6, SDF-1, FGF-4 [57, 74] und Adhäsionsmoleküle wie Fibronektin [72] während der Megakaryopoese die Reifung und Thrombopoese. Daher sind die Kofaktoren eventuell essentiell um eine Stromafunktion für
die Plasmazellen ausüben zu können. Somit sollten die in Kultur generierten Megakaryozyten in ihrer Reifung möglichst den ex vivo isolierten Megakaryozyten ähneln. In der Literatur finden sich allerdings Belege, dass auch Megakaryozyten in Kultur fähig sind, die von mir in vivo nachgewiesenen Zytokine IL-6 und APRIL zu produzieren [62, 63].

Nach drei Tagen in der primären Reifezkultur wurden die Megakaryozyten in die Ansätze für die Plasmazell Kokulturtransferiert und für ca. drei bis vier Stunden vorinkubiert. Anschließend wurden die Plasmazellen zugegeben und für weitere vier bzw. fünf Tage kultiviert. Daraus ergibt sich, dass die Megakaryozytenkultur an den Analysetagen bereits sieben bzw. acht Tage alt war. Somit könnte ein Großteil der Zellen bereits lysiert sein, da Megakaryozyten in reinen TPO Kulturen bereits ab Tag 4 beginnen, Plättchen abzuschnüren [71, 73]. Eine mikroskopische Überprüfung der Kokultur an Tag 5 ergab jedoch, dass der Kulturboden noch zu 40-50% mit intakten Megakaryozyten bedeckt war. Eine Aussage über die Plättchenbildungsrate und die Anzahl der lysierten Megakaryozyten ließ sich hingegen nicht machen.

Es war zu beobachten, dass in den Kokulturansätzen die CD61+ Megakaryozyten die Plasmazellen stärker unterstützt haben als die CD61- Zellen, welche aus derselben fetalen Leberkultur stammten. So fanden sich eine höhere Zellzahl und mehr sezernierte Antikörper in den Megakaryozyten- als in den CD61- sowie den Mediumansätzen (siehe Abb. 30). Da Megakaryozyten, wie oben bereits angesprochen, Nährstoffe und insbesondere IL-6 verbrauchen, könnte dieses erklären, weshalb in der MK+ IL-6 Kultur nicht mehr Plasmazellen vorhanden waren als in den MK Ansätzen ohne IL-6.
In den Megakaryozyten Ansätzen kam es im Gegensatz zu den IL-6 Ansätzen kaum zu einer Reduktion der Plasmazellzahl von Tag 4 auf Tag 5. Daher ist es vorstellbar, dass die Plasmazellen, die in der kritischen Anfangsphase der Kultur schnell genug Kontakt zu einem Megakaryozyten herstellen, besser stimuliert werden als durch IL-6 alleine und somit länger überleben können. Der Großteil der Plasmazellen überlebt jedoch diese kritische Phase vermutlich nicht.

Aus diesem Grund und da in Ansätzen mit löslichem IL-6 die meisten Plasmazellen gefunden werden, sollte versucht werden, die oben besprochenen Parameter der Kokultur weiter zu optimieren. Zusätzlich sollte eine Kinetik zwischen Tag 1 und 7 durchgeführt werden, um kurzfristige Effekte wie Proliferationsstimulation durch IL-6 und langfristige Effekte wie antiapoptotische Wirkungen durch Synergien zwischen Zytokinen und Adhäsionsmolekülen [50] zu untersuchen bzw. zwischen den Kulturen zu unterscheiden.

Eine grundlegende, aber möglicherweise Erfolg versprechende Änderung könnte die Etablierung einer Vielzellkultur aus Plasmazelle, Megakaryozyt, SDF-1α+ Fibroblast und Knochenmarkendothelzelle sein, da Knochenmarkfibroblasten Megakaryozyten über die Produktion von TPO [73] hinaus beeinflussen bzw. stabilisieren [71, 73]. Fibronektin vermittelte Signale sind dabei möglicherweise ein entscheidender Faktor [72]. Ebenso ist die Interaktion der Megakaryozyten mit Knochenmarkendothelzellen, wie sie in der vaskulären Nische vorhanden sind, entscheidend für die Reifung und das Überleben [57].

Die Etablierung dieser vier Zellen als Kokultur könnte helfen, die im Folgenden vorgestellte Theorie der Multi-Komponenten-Plasmazellnische (siehe 4.4) zu überprüfen. Eine selektive Manipulation verschiedener Faktoren und Zellen könnte weiteren Aufschluss über Gestalt, Eigenschaften und Funktionen der verschiedenen Nischenkomponenten liefern.
Diskussion

5. Zusammenfassung und Modell der Multikomponenten Plasmazellnische

Das Thema dieser Arbeit war die Untersuchung der Plasmazellnische im Knochenmark. Im Verlauf dieser Studie wurden die Megakaryozyten als wichtiger Bestandteil der Nische identifiziert.

Plasmazellen sind nicht per se langlebig, denn ihr Überleben hängt von Signalen aus der Mikroumgebung – der so genannten Nische – ab. In genetisch modifizierten Mäusen und in vitro wurden APRIL, IL-6, TNF-alpha, SDF-1 sowie CD44 Liganden als stärkste Plasmazellstimulantien identifiziert. Die Kombination mehrerer Faktoren wirkte in Kultur synergistisch und führte zu Überlebensraten von mehreren Tagen.

Trotz ihrer enormen Bedeutung für das Plasmazellüberleben und demzufolge für protektive sowie autoreaktive Antikörpertiter, ist bislang sehr wenig über den Aufbau und die Funktion der Plasmazellnischen bekannt.

In der vorliegenden Arbeit wurde mittels konfokaler Laser-Scanning Mikroskopie nachgewiesen, dass ein Drittel aller Igκ+ Plasmazellen im Knochenmark mit Megakaryozyten kolokalisiert. Ebenso wurde gezeigt, dass beide Zelltypen an retikulären Fibronektin+ Zellen adhärieren und sich in der vaskulären Nische (definiert als weniger als 30µm vom Endothel entfernt) befinden. Megakaryozyten und Plasmazellen migrieren gegen SDF-1 und waren in Knochenmarkschnitten mit SDF-1 Signalen assoziiert. Aufgrund der hohen F-Aktin Konzentration an der Kontaktfläche zwischen Plasmazelle und Megakaryozyt ist anzunehmen, dass sie nicht nur passive Nachbarn sind, sondern über Ligand-Rezeptor Paare miteinander interagieren. Des Weiteren wurde histologisch, durchflusszytometrisch sowie mittels qPCR nachgewiesen, dass Megakaryozyten die Plasmazellüberlebensfaktoren

Dies bedeutet, dass der TPO/ c-Mpl Signalweg indirekt über die Mikroumgebung auf das Plasmazellkompartment wirkt. Im Zusammenhang mit der direkten Kolokalisation und der Produktion von Plasmazellüberlebensfaktoren liegt es somit nahe, dass die TPO sensiblen Megakaryozyten Teil der Plasmazellnische sind. Die Verknüpfung der Megakaryozyten- und Plasmazellzahlen unterstreicht hierbei die Relevanz der Megakaryozyten für die Plasmazellnische.

Aufgrund des in dieser Studie gezeigten wichtigen Beitrags der Megakaryozyten für die „megakaryozytäre“ Plasmazellnische, welcher in alternativen Nischen möglicherweise durch andere Zellen ersetzt wird, möchte ich das Konzept der Multikomponenten-Plasmazellnische vorstellen (Abb. 32).

Der funktionelle Beitrag der Megakaryozyten könnte unter anderem in der Erhöhung der IL-6 und APRIL Konzentrationen in der Nische liegen. Hierbei sind vor allem IL-6 bzw. gp130 vermittelte Signale zu nennen, da die IL-6 Produktion sehr restriktiv ist und Megakaryozyten eine der Hauptquellen für IL-6 im Knochenmark sind. Zusätzlich könnten Megakaryozyten die Einwanderung und die Direktion der Plasmazellen in die Überlebensnische durch megakaryozytär produziertes SDF-1 steuern.

6. Ausblick

In dieser Studie wurde ein unerwarteter Zusammenhang zwischen humoralem Gedächtnis und Megakaryopoese entdeckt. Aufgrund dieser neuartigen Erkenntnis und den hier beschriebenen vielversprechenden Daten, lassen sich mehrere Ansatzpunkte für fortführende Untersuchungen entwickeln.

So ist es bisher unklar, ob Megakaryozyten die Proliferation, die Reifung oder das Überleben der Plasmazellen stimulieren. Ebenso bedarf es weiterer Untersuchungen, ob in alternativen Plasmazellnischen die molekularbiologische Funktion der Megakaryozyten durch andere Zellen ersetzt wird oder ob unterschiedliche Plasmazellen verschiedene Stimuli zum Überleben benötigen. Die Entschlüsselung der funktionellen sowie molekularen Mechanismen zwischen Plasmazelle, Megakaryozyt und weiteren Nischenkomponenten, ist eine wichtige Aufgabe bei der weiteren Erforschung der Plasmazellnische.

Ebenso sollte eine differenzierte Untersuchung von einzelnen Subpopulationen des Plasmazellkompartmentes im Zusammenhang mit Megakaryozyten stattfinden. Aufgrund der starken Assoziation mit IgA Plasmazellen wären Experimente mit mukosalen Immunantworten interessant.

Ob die Plasmazellüberlebensfaktoren von den Stromazellen in die Umgebung sezerniert werden oder es einen direkten Transfer von Zytokinen über Zell-Zell-Verbindungen gibt, lässt sich durch die Depletion freier Zytokine im Medium mittels anti-Zytokinantikörpern überprüfen.

Wenn die stimulierenden Moleküle, welche die Stromazelle für die Nische liefert, entschlüsselt würden, ließen sich diese therapeutisch gezielt applizieren oder blockieren. Ebenso wäre es dann möglich, in vivo alternative Nischen zu finden, in denen diese Moleküle durch eine andere Zelle bereitgestellt werden. Zusätzlich könnten klinische Daten nach Kreuzvernetzungen zwischen molekularbiologischen Störungen und Immundefizienzen durchsucht werden.

7. Referenzen

8. Anhang

Abkürzungen

(-) negative für einen Merkmal
(+) positiv für einen Merkmal
(++) stark positiv für ein Merkmal
Abb. Abbildung
Alum Aluminiumhydroxid
AP alkalische Phosphatase
APC Antigen präsentierende Zelle
APRIL a proliferation-inducing ligand
BAFF B lymphocyte activation factor
BCMA B cell maturation antigen
bio Biotin
BrdU Bromodeoxyuridin
BSA bovines Serum Albumin
CAMT kongenitale amegakaryozytäre Thrombozytopenie
CC C-Chemokin
CD Oberflächenantigen (cluster of differentiation)
c-Mpl Myeloproliferative leukemia virus oncogene, CD110
CXCL CX-Chemokin
Cy5 Cychrome 5
DAPI 4 `, 6-diamino-2-phenylindole, dilactate
DC Dendritische Zelle
DNA Desoxyribonukleinacid
DNase Desoxyribonuklease
FACS Fluorescence-activated cell sorting
FITC Fluoreszeinisothiocyanat
FSC Vorwärtsstreulicht
IFN Interferon
Ig Immunglobuin
IL Interleukin
i.m. intramuskulär
i.p. intraperitoneal
IP-10 interferon-gamma-inducible protein-10
ITP Immunthrombozytopenie
i.v. intravenös
Kappa Immunglobulin leichte Kette kappa
KLH keyhole limpet hemocyanin
MACS magnetic cell sorting
MALT mucosa-associated lymphoid tissue
MHC major histocompatibility complex
MIP macrophage inflammatory protein
mRNA messenger ribonucleic acid
NP (4-Hydroxy-3-Nitrophenylacetyl)Acetyl
Ova Ovalbumin
PBS phosphate buffered saline
PE Phycoerythrin
PerCP Peridinin-Chlorophyllprotein
qPCR Quantitative poly chain reaction
RNA ribonucleic acid
RPMI Rosewell Park Memorial Institute Medium
RT-PCR Reverse transscriptase poly chain reaction
SA Steptavidin
SDF-1 stromal cell-derived factor-1
SLE Systemischer Lupus Erythematodes
SSC Seitwärtsstreulicht
TH T-Helferzelle
TLR Toll-like Rezeptor
TNF Tumornekrosefaktor
TPO Thrombopoietin
UPR Ungefaltete-Protein Antwort
VCAM vascular cell adhesion molecule
VLA very late antigen
Danksagung

An dieser Stelle möchte ich mich bei all jenen Menschen bedanken die mich bei meiner Promotion unterstützt haben.

Zuerst gilt mein Dank natürlich Rudi Manz, durch dessen intensive und hervorragende Betreuung aus meinen „phantastischen“ Ideen, wissenschaftlich präzise Fragestellungen und logisch stringente Analysen heraus geschliffen wurden. Also vielen Dank Rudi und Deine Metaphern werden mir fehlen.

Bedanken möchte ich mich natürlich auch bei Katrin, Ati und Martin für die tolle Arbeitsatmosphäre und die tatkräftige Unterstützung, wenn es wiedermal etwas mehr zu tun gab.

Allen voran möchte ich meiner Freundin Anna und meinen Töchtern Mae und Milla danken, die mein Leben erst komplett gemacht haben und die die Sonne auch an trüben Tagen aufgehen lassen.

Ein ganz besonderer Dank gilt meinen Eltern, Helmut und Marina Winter, die mich immer bei meinen Plänen unterstützt haben.

Paul und Suse Janositz danke ich herzlich für das Korrekturlesen und all die sonstige Unterstützung.
Publikationen

Vorträge

Winter O. et al. Megakaryocytes constitute a functional component of the plasma cell niche in the bone marrow. 2nd European Congress of Immunology, Berlin, September 2009

Winter O. et al. Plasma cell survival and development in the bone marrow. 37th Annual Meeting of the German Society for Immunology, Heidelberg, September 2007

Poster

Winter O. et al. Modulation of plasma cell homeostasis by megakaryopoiesis in the bone marrow. Joint Annual Meeting of Immunology, ÖGAI, Wien, September 2008

Szyska M., Winter O. et al. Interplay between megakaryopoiesis and plasma cell homeostasis. 2nd European Congress of Immunology, Berlin, September 2009

Ich erkläre an Eides Statt, daß die vorliegende Dissertation in allen Teilen von mir selbständig angefertigt wurde und die benutzten Hilfsmittel vollständig angegeben worden sind.

Oliver Winter