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Abstract

The present dissertation treats the topic of sound field synthesis. The focus lies
thereby on serving human listeners although the results can be also exploited in
other applications such as underwater acoustics or ultrasonics. A fundamental for-
mulation of the problem is derived based on standard integral equations and the
single-layer potential approach is identified as a useful tool in order to derive a
general solution. An explicit solution is derived exemplarily for inward-radiating
spherical distributions of secondary sources.

The drawback of the single-layer potential approach is the fact that it requires
secondary source distributions which enclose the receiver volume. Extensions to
the single-layer potential approach are proposed which allow for a derivation of ex-
plicit solutions for circular, planar, and linear distributions of secondary sources.
Based on above described formulation it is shown that the two established analyt-
ical approaches of Wave Field Synthesis and Near-field Compensated Higher Order
Ambisonics constitute specific solutions to the general problem which are covered
by the single-layer potential solution and its extensions.

The physical theory of the single-layer potential approach requires that the em-
ployed distributions of secondary sources are continuous. Such continuous distribu-
tions can not be implemented in practice with today’s available loudspeaker tech-
nology but discrete distributions of loudspeakers have to be used. The consequences
of this spatial discretization of the secondary source distribution are analyzed in
detail for all above mentioned geometries in different spatial frequency domains, in
temporal frequency domain, and in time domain. Two fundamental results are de-
rived: Firstly, the discretization leads to repetitions of the secondary source driving
function in a spatial frequency domain which is determined by the geometry of the
secondary source distribution under consideration. And secondly, the bandwidth of
the driving function with respect to the according spatial frequency domain has es-
sential influence on the properties of the synthesized sound field. As a consequence,
the concept of categorizing sound field synthesis approaches according to the band-
width of the driving function into narrowband, wideband, and fullband approaches
is proposed.

It is finally shown how different types of spatial bandwidth limitation can be
employed in order to locally increase the accuracy of the synthesized sound field.
This concept is termed local sound field synthesis.

This thesis presents an instrumentalized analysis of the fundamental physical
properties of the problem. Although the presented work aims at audio presentation
to human listeners, perception can only be marginally be considered. However, care
was taken that the results are presented such that they can be directly used as a
basis for experimental perceptual evaluation.





Zusammenfassung

Die vorliegende Dissertation behandelt das Thema der Schallfeldsynthese. Im Fokus
steht dabei die Darbietung von Audiosignalen. Die vorgestellten Ergebnisse lassen
sich jedoch in anderen Gebieten wie z.B. der Unterwasserakustik oder Ultraschall-
technik anwenden. Eine grundlegende Formulierung des Problems auf Basis von
etablierten Integralgleichungen wird erarbeitet. Die Verwendung der Methode des
Einschichtpotentials als zweckdienliche allgemeine Lösungsmethode wird vorgeschla-
gen. Eine explizite Lösung wird beispielhaft für einwärts strahlende kugelförmige
Sekundärquellenverteilungen erarbeitet.

Den Nachteil der Einschichtpotentialmethode stellt der Umstand dar, dass
die behandelten Sekundärquellenverteilungen das Zielvolumen einschließen müssen.
Es werden Erweiterungen der Einschichtpotentialmethode vorgeschlagen, welche
Lösungen für kreisförmige, ebene und zeilenförmige Sekundärquellenverteilungen
ermöglichen. Anhand dieser Ergebnisse wird gezeigt, dass die beiden etablierten
analytischen Methoden der Wellenfeldsynthese und des Near-Field-Compensated-
Higher-Order-Ambisonics Spezialfälle der allgemeinen Lösung darstellen und in der
Lösung über die Einschichtpotentialmethode enthalten sind.

Die physikalischen Grundlagen der Einschichtpotentialmethode erfordern, dass
die betrachteten Sekundärquellenverteilungen kontinuierlich sind. Solche kontinuier-
lichen Verteilungen lassen sich mit der zur Verfügung stehenden Lautsprechertech-
nologie praktisch nicht umsetzen. Es müssen diskrete Lautsprecherverteilungen
verwendet werden. Die Auswirkungen dieser räumlichen Abtastung der Sekundär-
quellenverteilung wird detailliert für alle oben genannten Geometrien im Raumfre-
quenzbereich, im Zeitfrequenzbereich sowie im Zeitbereich untersucht. Zwei grund-
legende Ergebnisse werden erarbeitet: Erstens, die Abtastung führt zu Wiederho-
lungen der Sekundärquellenansteuerungsfunktion in einem Raumfrequenzbereich,
der durch die Geometrie der betrachteten Sekundärquellenverteilung bestimmt ist.
Und zweitens, die räumliche Bandbreite der Sekundärquellenansteuerungsfunktion
hat grundlegenden Einfluss auf die Eigenschaften des synthestisierten Schallfeldes.
Deshalb wird vorgeschlagen, die verschiedenden Methoden der Schallfeldsynthe-
se anhand der räumlichen Bandbreite der Ansteuerungsfunktion in schmalbandige,
breitbandige und vollbandige Methoden einzuordnen.

Letztlich wird gezeigt, wie verschiedene Arten der räumlichen Bandbreitenein-
schränkung angewendet werden können, um lokal die Genauigkeit des synthetisierten
Schallfeldes zu erhöhen. Dieses Konzept wird lokale Schallfeldsynthese getauft.

Die vorliegende Dissertation stellt eine instrumentalisierte Analyse der grundle-
genden Eigenschaften des Problems dar. Obwohl die behandelten Methoden primär
auf den Menschen als Empfänger abzielen, kann die menschliche Wahrnehmung
der synthetisierten Schallfelder nur marginal berücksichtigt werden. Die Ergebnisse
wurden jedoch derart aufgearbeitet, dass sie direkt als Basis für eine weiterführende
experimentelle Evaluierung der Wahrnehmung dienen können.
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Chapter 1

Introduction

1.1 The History of Audio Presentation

Since the invention of the telephone, the first electro-acoustic communication device
patented by Alexander Graham Bell in 1876 (Bell, 1876), a great variety of audio
presentation methods have evolved.

Due to the single loudspeaker which is employed in the telephone only monaural
auditory information can be provided which limits the presentable spatial infor-
mation (Blauert, 1997). As early as in 1881, two parallel telephone channels were
used in order to transmit performances from the Paris Opera House (du Moncel,
1881; Torick, 1998). The service was commercialized a few years later and termed
Théâtrophone. The enabled provision of binaural auditory information essentially
extends the transmittable spatial information.

Later on, two and more loudspeakers were used in stereophony which bases on
the work of Alan Blumlein carried out in the 1930s (Alexander, 1999). Up to
now, stereophony is still the most wide-spread audio presentation method which
provides binaural cues. An extension of Stereophony was used in 5.1 systems (em-
ploying 5 regular loudspeakers plus one subwoofer) and larger systems (e.g. 22.2
with 22 regular loudspeakers plus 2 subwoofers (Rumsey, 2001; Hamasaki et al.,
2005)) installed mainly in cinemas. A further milestone was set by Snow’s acoustic
curtain (Steinberg & Snow, 1934) which formed the basis for advanced sound field
synthesis techniques like Wave Field Synthesis (see below). The initial idea com-
prised a high number of transducers but practical implementations employed only a
few and have not received wide attention. From the 1970s on, Quadraphony (Torick,
1998) and Ambisonics (Gerzon, 1973) were developed in order to provide a domestic
surround experience which stereo was not capable of delivering at that time.

Although all above mentioned approaches were initially motivated from a physi-
cal perspective, later research showed that their success can be largely attributed to
psycho-acoustical properties of the human auditory system, e.g. (Theile, 1980). In
order to achieve balanced presentation over a larger listening area than stereophony
and alike permit, methods targeting the physical synthesis of sound fields over an
extended area have evolved in the recent decades. The best known representa-
tives of the latter are Near-field Compensated Higher Order Ambisonics (NFC-HOA)
(Daniel, 2001) and Wave Field Synthesis (WFS) (Berkhout et al., 1993). Due to the
high number of loudspeakers employed which can reach several hundred channels

1



2 1. Introduction

or even more (de Vries, 2009), the latter approaches are also referred to as massive
multichannel audio presentation methods, or holophony, or sound field synthesis.
The latter term is used in this thesis for convenience. When frequencies in the au-
dible range are considered sound field synthesis generally indeed addresses human
listeners. Ultrasonic methods find application in medical imaging and underwater
acoustics, e.g. (Jones, 2001). This thesis focuses on the audible frequency range and
thus on applications serving human listeners.

All of above mentioned loudspeaker-based presentation methods can be inter-
preted as employing a loudspeaker setup which – partly or fully – encloses the lis-
tening area. Recently, outward radiating loudspeaker setups become more and more
popular. Typically, spherical arrangements are used and the primary target is the
synthesis of the radiation properties of a given sound source (Pollow & Behler, 2009;
Zotter, 2009a). Although the work presented in this thesis can be straightforwardly
extended to such radiation synthesis, it is not the primary focus.

Alternatively to the loudspeaker-based methods, headphone-based methods were
proposed which elaborate the ideas behind the Théâtrophone. The acoustical prop-
erties of the human body, most notably the head and the outer ears, are imitated
in order to create auditory events with specific spatial attributes. These acoustical
properties are described by head-related transfer functions (HRTFs) and are indi-
vidual for one person (Blauert, 1997). Typically, a given scene is recorded with a
mannequin or a person with ear-mounted microphones, or HRTFs obtained from
measurements are imposed on the signals (Hammershøi & Møller, 2002). This ap-
proach is also referred to as binaural presentation.

Headphones are particularly suited for such presentation since the signals at
both ears can be controlled individually. When loudspeakers are used, appropriate
cross-talk has to be applied which exhibits fundamental limitations (Gardner, 1997;
Nelson & Rose, 2005; Kim et al., 2006).

Different ways of categorizing above mentioned approaches are possible consid-
ering e.g. the number of listeners addressed, the size of the preferred listening area,
whether the method itself employs HRTFs or addresses the listeners’ HRTFs, or
whether a physical synthesis of a sound field or rather the evocation of a specific
perception is targeted.

The choice of categories depends on the considered situation and purpose of
categorization and is not further discussed in this thesis.

1.2 Motivation of the Presented Research

The ultimate goal of research in the field of audio presentation in the recent decades
has been the creation of an authentic and plausible auditory perception both in
terms of timbre and spatial attributes. Authenticity refers to the degree to which
the perception is consistent with the perception of a given original. Plausibility
refers to the degree to which the perception of a given artificial scene is consistent
with the experience and expectations a listener.

An undisputable prerequisite for spatial presentation is the capability of a
method of producing binaural auditory cues. This prerequisite is fulfilled by all
of the audio presentation methods presented in Sec. 1.1 which employ more than
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one loudspeaker (either in space or in a headphone). The perceptual evaluation es-
pecially with respect to spatial perception is still at an early stage but has received
more attention during the last few years (Gabrielsson & Sjgren, 1979; Rumsey, 2002;
Rumsey et al., 2005; Lindau et al., 2007; Wittek, 2007; Bertet, 2009). An extensive
characterization of the different methods in terms of their perceptual properties has
not been available.

What is common to all methods – potentially apart from sound field synthesis
methods – is the fact that the size of the optimal listening area can not be arbitrarily
extended. Stereophony, Quadraphony, and Ambisonics exhibit a pronounced sweet
spot in the center of the loudspeaker setup outside of which presentation quality is
deteriorated (Dutton, 1962; Bamford & Vanderkooy, 1995). A similar limitation for
headphone-based and crosstalk-cancelation based methods is obvious.

The psycho-acoustical mechanisms in the perception of stereophony, Quadra-
phony, Ambisonics, and similar methods have not been ultimately revealed and
open questions persist (Theile, 1980; Blauert, 1997). However, the available results
suggest that it is not possible to arbitrarily extend the preferred listening area and
even balanced and fully predictable presentation for two or more listeners seems
questionable.

The perceptual evaluation of sound field synthesis methods like NFC-HOA and
WFS has not received much attention yet. The literature is restricted to a number of
localization experiments such as (Start, 1997; de Brujin, 2004; Sanson et al., 2008)
and a limited number of more sophisticated investigations like (Wittek, 2007; Bertet,
2009). Although sound field synthesis methods can potentially satisfy arbitrarily
large listening areas, this capability has not been proven due to unavoidable artifacts
in practice. As will be discussed in detail in Chap. 4, the properties of the arising
artifacts can be influenced so that e.g. regions with only weak artifacts can be
created by the cost of stronger artifacts elsewhere. A more or less even distribution
of artifacts over the entire listening area can also be achieved.

Neither the detailed properties nor the perception of such artifacts have been
investigated so far. A common conceptual framework for methods like NFC-HOA
and WFS has not been available and the methods are treated as distinct concepts.
Since the fundamental relations between different methods have not been revealed
a transfer of results obtained for a specific method to other methods can not be
performed and analyses have to be performed distinctly such as e.g. in (Daniel
et al., 2003).

This thesis presents a fundamental physical concept which clearly reveals the
relationships between the different methods and allows for the transfer of results.
Furthermore, a detailed – yet instrumentalized – analysis of the arising artifacts is
performed. The motivation is to lay the basis for an experimental perceptual in-
vestigation. Such an investigation may in turn lead to the provision of criterions
for optimization of the presentation quality by an appropriate shaping of the un-
avoidable artifacts. It might thereby be possible to create a preferred listening area
which is significantly larger than for other methods so that multiple listener can be
satisfied.

Note that numerical sound field synthesis methods such as (Kirkeby & Nelson,
1993; Ward & Abhayapala, 2001; Daniel, 2001; Poletti, 2005; Hannemann & Dono-
hue, 2008; Kolundžija et al., 2009) are not treated in this thesis. The properties of
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such methods especially with respect to artifacts in practice can not be predicted
but specific scenarios have to be considered individually. Deduction of fundamental
properties is thus difficult.

1.3 Nomenclature

This thesis employs the following notational conventions.

For scalar variables, lower case denotes the time domain, upper case the time-
frequency domain, e.g. s(x, t) vs. S(x, ω). Vectors are denoted by lower case bold-
face, e.g. k. The three-dimensional position vector in Cartesian coordinates is given
as x = [x y z]T ; the coordinate systems employed are presented in App. A. The
definition of the Fourier transform is outlined in App. B. In order to emphasize
which frequency domain is considered in a given situation it is explicitly referred to
time-frequency domain and space-frequency domain.

When it is referred to a sound field s(x, t) in this thesis, it is referred to the
sound pressure, i.e. the local pressure deviation from the ambient pressure (in the
present case the atmospheric pressure) caused by a sound wave. The SI (Système
international d’unités) unit of sound pressure is the pascal (1Pa = 1 N

m2 ) (Bureau
International des Poids et Mesures, 2006). The time-frequency spectrum of a sound
field S(x, ω), i.e. the spectral amplitude density of s(x, t), is thus given in Pa ·s or Pa

Hz

respectively (Girod et al., 2001). For convenience, S(x, ω) is referred to as a “sound
field in time-frequency domain” or “sound pressure in time-frequency domain” in
this thesis.

Angles are given in radians if not indicated as different.

The following two examples of a plane wave and a spherical wave sound field
illustrate further notational conventions. The sound pressure deviation Spw(x, ω) in
time-frequency domain caused by a plane wave sound field propagating in direction
kpw is given by

Spw(x, ω) = Ŝpw(ω) e−ikT
pwx , (1.1)

with

kT
pw = [kpw,x kpw,y kpw,z] (1.2)

= kpw · [cos θpw sin φpw sin θpw sinφpw cosφpw] (1.3)

and (θpw, φpw) being the propagation direction of the plane wave in spherical coor-
dinates. i denotes the imaginary unit (i2 = −1).

The right hand side of (1.1) is composed of two components:

1. A time-frequency component Ŝpw(ω) which represents the information with
respect to time such as a sine wave or a music signal.

2. A spatial transfer function e−ikT
pwx representing the spatial information.

The spatial transfer function e−ikT
pwx as used in (1.1) is of dimension 1 so that Ŝpw(ω)

has to be of the unit Pa
Hz

in order that (1.1) is correct.
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Now consider an outgoing spherical wave sound field Ssw(x, ω) originating from
the coordinate origin given by

Ssw(x, ω) = Ŝsw(ω)
e−i ω

c
r

r
. (1.4)

The spatial transfer function in (1.4) is of unit 1
m

so that Ŝsw(ω) has to be of unit Ns
m

.
This inconsistency is a consequence of the simplifying notational conventions.

In order to explicitly account for the physical meaning of the involved functions,
quantities like the density of the medium in which the sound wave propagates and
alike have to be considered explicitly (Williams, 1999). For notational simplicity, this
thesis employs the convention applied widely in the scientific literature of exclusively
considering the spatial transfer function of a given sound field or similar quantity
under consideration neglecting the time information as well as any constant factors.
The explicit composition of the involved time components such as Ŝpw(ω) and Ŝsw(ω)
is not relevant in the presented investigation and is therefore not treated. The reader
is referred to (Williams, 1999).

The results derived e.g. in Chap. 3 are thus not driving signals for the individual
secondary sources of a given secondary source distribution but driving functions.
Exclusively, scenarios which are spatially static are considered in this thesis so that
in order to derive the driving signal D̂(x0, ω) for a secondary source at position x0

from the driving function D(x0, ω), the driving function has to be applied to the
input signal Ŝin(ω) (which represents the information with respect to time) as

D̂(x0, ω) = Ŝin(ω) ·D(x0, ω) (1.5)

in time-frequency domain or as

d̂(x0, t) = ŝin(t) ∗t d(x0, t) (1.6)

in time domain whereby the asterisk ∗t denotes convolution with respect to time.
As is common in electrical engineering, complex notation is used for purely real

harmonic time-domain signals (Girod et al., 2001). I.e. a unit amplitude cosine wave
ŝcos(t) of radian frequency ω0 = 2πf0 is notated as

ŝcos(t) := eiω0t . (1.7)

The actual time-domain signal is then obtained by considering exclusively the real
part of ŝcos(t) as

ℜ{ŝcos(t)} = cos(ω0t) . (1.8)

A list of the most frequently used symbols can be found below.
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c speed of sound in air
i imaginary unit, i =

√
−1

∇ gradient defined in (2.4) and (2.10)
ℜ{·} real part
ℑ{·} imaginary part
G(x− x0, ω) free-field Green’s function for excitation at x0

Y m
n (β, α) spherical harmonic of n-th degree and m-th order, de-

fined in (2.15)

S̊m
n (r, ω) spherical harmonics expansion coefficients of sound field

S(x, ω), defined in (2.20)

S̆m
n,i(ω) or S̆m

n (ω) interior expansion coefficients of sound field S(x, ω), de-
fined in (2.21a)

S̆m
n,e(ω) exterior expansion coefficients of sound field S(x, ω), de-

fined in (2.21b)

S̃(kx, ky, z, ω) sound field S(x, ω) considered in wavenumber domain
with respect to kx and ky

Š(·) angular spectrum representation of S(·), defined
in (2.38a)

Pm
n (·) associated Legendre function of n-th degree and m-th

order (Gumerov & Duraiswami, 2004)

(I|I)m m′

n n′ (·) translation coefficient for interior-to-interior translation

(E|I)m m′

n n′ (·) translation coefficient for exterior-to-interior translation
(α, β) direction given by azimuth α and colatitude β

sinc x Sinc function, sinc x = sin(πx)
πx

〈·〉 inner product (Weisstein, 2002)
x = [x y z]T position vector in Cartesian coordinates (App. A)
xT transposition of vector x
|x| absolute value (Weisstein, 2002)
|x| vector norm (Weisstein, 2002)
~ex unit vector pointing in x-direction
δ(·) Dirac delta function
δnn′ Kronecker Delta, defined in (2.18)
∂Ω boundary enclosing volume Ωi

Ωi volume enclosed by boundary ∂Ω
Ωe domain exterior to boundary ∂Ω
γm1,m2,m

n1,n2,n Gaunt coefficient, defined in (D.6)
(

j1 j2 j3
m1 m2 m3

)

Wigner 3j-Symbol as defined in (Weisstein, 2002)

E
(
m1 m2 m3

n1 n2 n3

)

E-symbol, defined in (D.7)

(·)! factorial (Gumerov & Duraiswami, 2004)
∂
∂n

gradient in direction n, refer to (2.44)
dA(x0) infinitesimal surface element



Chapter 2

Physical Fundamentals of Sound
Fields

2.1 The Wave Equation

2.1.1 General

In order for a sound field s(x, t) to be physically possible it has to satisfy the scalar
wave equation in the domain (i.e. the volume) of interest. When source-free do-
mains are considered, the wave equation is termed being homogeneous and is given
by (Morse & Feshbach, 1953)

∇2s(x, t) +
1

c2
∂2s(x, t)

∂t2
= 0 . (2.1)

c denotes the speed of sound in air which is assumed to be 343m
s

throughout this
thesis. The zero on the right hand side of (2.1) indicates the absence of sources.
Consistently, when (2.1) exhibits a source term on the right hand side, it is termed
inhomogeneous.

The Laplacian ∇2 is a scalar differential operator yielded by applying twice the
gradient ∇. Explicit expressions for ∇ will be introduced in Sec. 2.1.2 and 2.1.3
in conjunction with the solutions to the wave equation with respect to different
coordinate systems.

Assuming steady-state conditions and harmonic time dependence and applying
a temporal Fourier transform as defined in App. B on the time domain wave equa-
tion (2.1) yields the scalar Helmholtz equation which is given by (Morse & Feshbach,
1953)

∇2S(x, ω) + k2S(x, ω) = 0 . (2.2)

Eq. (2.2) will play a central role in this thesis. k is termed wavenumber (although it
is rather a coefficient than a number) and is of unit rad

m
. It is related to the radian

frequency ω via

k2 =
(ω

c

)2

. (2.3)

The radian frequency ω is related to the time frequency f via ω = 2πf and is of
unit rad

s
. The wavelength λ, measured in m, is given by λ = c

f
= 2π

k
.

7
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Note that exclusively sound propagation in homogeneous and non-dissipative
(i.e. lossless) media is considered throughout this thesis. Finally, the wave equa-
tion (2.1) and the Helmholtz equation (2.2) assume that the medium which is air
in the present case is perfectly linear. This assumption is only met for infinitesimal
sound pressures so that (2.1) and (2.2) are essentially approximations. However,
it has been shown that (2.1) and (2.2) provide useful results when sound pressures
are considered which are below the threshold of pain of the human auditory sys-
tem (Gumerov & Duraiswami, 2004, p. 2-3).

2.1.2 Solutions in Cartesian Coordinates

The gradient ∇ in Cartesian coordinates is given by (Weisstein, 2002)

∇ =
∂

∂x
~ex +

∂

∂y
~ey +

∂

∂z
~ez , (2.4)

whereby ~ei denotes the unit vector in indexed direction. Refer to App. A for an
illustration of the coordinate system.

Solutions to the Helmholtz equation (2.2) in Cartesian coordinates are given
by (Williams, 1999, p. 21)

S(x, ω) = Ŝ(ω) e−i(kxx+kyy+kzz) = Ŝ(ω) e−ikT x , (2.5)

and thus consitute plane waves.
Eq. (2.5) is satisfied as long as the dispersion relation

k2 = k2
x + k2

y + k2
z (2.6)

is fulfilled. Thus, the wavenumber k represents the length of the propagation vector
k = [kx ky kz]

T . Eq. (2.6) can be rearranged to read

k2
y = k2 − k2

x − k2
z . (2.7)

Note that there is no restriction on the values of k2
x and k2

z in (2.7) provided that
they are real (Williams, 1999, p. 21). Taking the square root of (2.7) yields

ky =

{

±
√

k2 − k2
x − k2

z for k2 ≥ k2
x + k2

z

±i
√

k2
x + k2

z − k2 for k2
x + k2

z ≥ k2
(2.8)

since k is non-negative.
The first case in (2.8) represents a propagating or homogeneous plane wave.

The vector k points into the direction of propagation. Refer to Fig. 2.1(a) for a
simulation.

The second case in (2.8) (with complex ky) represents an evanescent or inhomo-
geneous wave. Inserting ky into (2.5) yields

Spw(x, ω) = Ŝpw(ω) e±
√

k2
x+k2

z−k2y e−i(kpw,xx+kpw,zz) . (2.9)

Note that the first exponential in (2.9) is purely real. For y > 0, the positive
exponent in the first exponential in (2.9) is non-physical since it blows up for y →
+∞ so that the solution is restricted to the decaying term (the negative exponent)
for this case (Williams, 1999). Refer to Fig. 2.1(b) for a simulation of an evanescent
wave decaying in y direction.
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(a) Propagating plane wave; kpw = [k 0 0]T .
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(b) Evanescent wave;

kpw =
[√

1.01k − i
√

0.01k 0
]T

.

Figure 2.1: Propagating and evanescent waves of frequency fpw = 1000 Hz. A cross-section
through the horizontal plane is shown.

2.1.3 Solutions in Spherical Coordinates

The gradient ∇ in spherical coordinates is given by (Weisstein, 2002)

∇ =
∂

∂r
~er +

1

r

∂

∂β
~eβ +

1

r sin β

∂

∂α
~eα . (2.10)

Refer to App. A for an illustration of the coordinate system.
Solutions to the Helmholtz equation (2.2) in spherical coordinates are obtained

by separation of variables (Gumerov & Duraiswami, 2004, p. 41) and are of the form

S(x, ω) = Π(r) Θ(α) Φ(β) . (2.11)

The radial solutions Π(r) are given by the spherical Bessel functions jn
(

ω
c
r
)

and
the spherical Neumann functions yn

(
ω
c
r
)

of order n ∈ N0. Another set of solutions
is given by the spherical Hankel functions

h(1,2)
n

(ω

c
r
)

= jn

(ω

c
r
)

± iyn

(ω

c
r
)

. (2.12)

Refer to Fig. 2.2 for illustrations.
It can be shown that h

(2)
n

(
ω
c
r
)

represents outgoing waves and h
(1)
n

(
ω
c
r
)

represents
incoming waves for the definition of the Fourier transform used in this thesis (refer
to App. B). jn

(
ω
c
r
)

represents standing wave solutions and

jn

(ω

c
r
)

=
1

2

(

h(1)
n

(ω

c
r
)

+ h(2)
n

(ω

c
r
))

(2.13)

holds.
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Figure 2.2: Bessel, Neumann, and Hankel functions for 0 ≤ n ≤ 5. Brighter color indicates
a higher order n.

In certain situations the large-argument approximation of the spherical Hankel
functions given by (Gumerov & Duraiswami, 2004, p. 59)

h(1,2)
n

(ω

c
r
)

≈ (∓i)(n+1) e
±i ω

c
r

ω
c
r

= (∓i)nh
(1,2)
0

(ω

c
r
)

∀ ω

c
r → +∞ (2.14)

will be employed in order to simplify problems. In the present context (2.14) con-
stitutes a far-field/high-frequency approximation.
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(a) n = 0, m = 0 (b) n = 1, m = 1

(c) n = 2, m = 0 (d) n = 3, m = −2

Figure 2.3: |ℜ{Y m
n (β, α)}| for a selection of n and m.

The azimuthal solutions Θ(α) in (2.11) are given be the exponentials eimα with
m ∈ Z and the colatitudinal solutions Φ(β) are given by the associated Legendre
functions Pm

n (cosβ). Both the exponentials eimα and the associated Legendre func-
tions are orthogonal for a given order m.

The only fundamental property of associated Legendre functions mentioned here
is the fact that they vanish for |m| > n. General properties of eimα and the associated
Legendre functions can be deduced from the illustrations of spherical harmonics in
Fig. 2.3 (see explanations below).

The solutions of the Helmholtz equation for the angular variables α and β are
typically combined together with normalization factors into the spherical surface
harmonics or spherical harmonics Y m

n (β, α). In this thesis, the definition of the
spherical harmonics from (Gumerov & Duraiswami, 2004) is employed which is
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given by

Y m
n (β, α) = (−1)m

√

(2n+ 1)

4π

(n− |m|)!
(n+ |m|)! P

|m|
n (cosβ) eimα . (2.15)

Like the associated Legendre functions, spherical harmonics Y m
n (β, α) vanish for

|m| > n. Refer to Fig. 2.3 for an illustration of selected spherical harmonics.
Note that other variants of the definition (2.15) exist which differ mainly with

respect to the factor (−1)m, e.g. (Condon & Shortley, 1935; Arfken & Weber, 2005;
Williams, 1999). The choice of this factor is not essential but is rather made upon
practical considerations.

The advantage of definition (2.15) is the fact that it inherently handles negative
m and avoids the case differentiation which is required in alternative definitions.
Furthermore, the complex conjugate Y m

n (β, α)∗ can be expressed by negating the
degree m as (Gumerov & Duraiswami, 2004)

Y m
n (β, α)∗ = Y −m

n (β, α) . (2.16)

Spherical harmonics are orthonormal so that the relation

2π∫

0

π∫

0

Y m
n (β, α) Y −m′

n′ (β, α) sin β dβ dα = δnn′δmm′ (2.17)

holds (Williams, 1999), whereby δnn′,mm′ denotes the Kronecker Delta defined
as (Weisstein, 2002)

δnn′

{

1 for n = n′

0 for n 6= n′
. (2.18)

Furthermore, spherical harmonics satisfy the completeness relation (Williams, 1999)

∞∑

n=0

n∑

m−=n

Y m
n (β, α) Y −m

n (β ′, α′) = δ(α− α′) δ(β − β ′) . (2.19)

2.2 Representations of Sound Fields

2.2.1 Representation of Sound Fields as Series of Spherical
Harmonics

As mentioned above, spherical harmonics constitute an orthonormal and complete
set of solutions to the Helmholz equation (2.2). Any solution S(x, ω) (i.e. any
sound field) can thus be expressed by its according expansion coefficients S̊m

n (r, ω)
as (Arfken & Weber, 2005, p. 790)

S(x, ω) =

∞∑

n=0

n∑

m=−n

S̊m
n (r, ω) Y m

n (β, α) . (2.20)

The representation of a function S(x, ω) as such a double series is a generalized
Fourier series known as a Laplace series (Arfken & Weber, 2005, p. 790).
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It can be shown that interior and exterior problems have to be considered sepa-
rately (Williams, 1999, p. 207, 217). Interior problems are problems which consider
domains which are free of sound sources and obstacles, i.e. all sound sources and ob-
stacles are located outside the considered domain. Exterior problems on the other
hand consider domains which are exterior to a distribution of sound sources and
obstacles. Exterior problems do not necessarily extend to infinity. They can thus
as well be interior with respect to a second sound source distribution. In the latter
case, this interjacent problem is then described as a superposition of an interior and
an exterior problem.

When considering series of spherical surface harmonics the boundaries to inte-
rior and exterior problems are spherical and are centered around the origin of the
coordinate system employed. The interior domain is thus a sphere centered around
the origin of the coordinate system which is tangent to the closest sound source of
a source distribution and which does not cut through the source distribution at any
point. The precise definition of the exterior domain is accordingly. Refer to Fig. 2.4
for an illustration.

sound
source

Ωi

(a) Interior domain Ωi.

sound
source

Ωe

(b) Exterior domain Ωe.

Figure 2.4: Examples of interior and exterior problems. Shaded areas denote the domains
of interest. The cross indicates the origin of the coordinate system.

Any sound field S(x, ω) can be described in the interior domain Ωi by

Si(x, ω) =
∞∑

n=0

n∑

m=−n

S̆m
n,i(ω) jn

(ω

c
r
)

Y m
n (β, α) , (2.21a)

and in the exterior domain Ωe by

Se(x, ω) =
∞∑

n=0

n∑

m=−n

S̆m
n,e(ω) h(2)

n

(ω

c
r
)

Y m
n (β, α) . (2.21b)

Note that the existence of an exterior domain suggests that the sound source or
the sound source distribution which evokes the sound field under consideration has
finite spatial extent.
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The coefficients S̆m
n,i(ω) and S̆m

n,e(ω) respectively can be obtained by exploiting
the orthogonality of the spherical harmonics as

S̆m
n,i(ω) =

1

jn
(

ω
c
r
)

2π∫

0

π∫

0

S(x, ω)Y −m
n (β, α) sinβ dβ dα (2.22)

for the interior problem and accordingly for the exterior problem. This thesis con-
siders mainly interior problems and the index “i” is generally dropped for notational
convenience except for specific situations.

Since expansions (2.21) converge uniquely and uniformly, the order of summation
may be exchanged (Gumerov & Duraiswami, 2004, p. 75). If the spherical harmonics
Y m

n (β, α) are then expressed by their explicit formulation (2.15), the Fourier series
which is inherent to (2.21) is revealed. It is given by

S(x, ω) =

∞∑

m=−∞

∞∑

n=|m|

S̆m
n (ω) jn

(ω

c
r
)

(−1)m

√

(2n+ 1)

4π

(n− |m|)!
(n+ |m|)! P

|m|
n (cosβ)

︸ ︷︷ ︸

= S̊m(r,β,ω)

eimα . (2.23)

exemplarily for the interior expansion. The Fourier series expansion coefficients of
S(x, ω) are denoted by S̊m(r, β, ω). As mentioned in Sec. 2.1.3, the basis functions
eimα of the Fourier series are orthogonal for m ∈ Z. Furthermore, they constitute a
complete set and the orthogonality relation (Williams, 1999)

1

2π

∞∑

m=−∞

eimαe−imα′

= δ(α− α′) (2.24)

holds. The inverse operation to (2.23) is given by

S̊m(r, β, ω) =
1

2π

2π∫

0

S(x, ω) e−imα dα . (2.25)

The expansions of the most basic sound fields in free-field, namely spherical and
plane waves, are (Williams, 1999; Gumerov & Duraiswami, 2004)

e−i ω
c
|x−xs|

|x− xs|
=

∞∑

n=0

n∑

m=−n

(−i)ω
c
h(2)

n

(ω

c
rs

)

Y −m
n (βs, αs)

︸ ︷︷ ︸

= S̆m
n,sw,i

jn

(ω

c
r
)

Y m
n (β, α)

∀ r < rs (2.26a)

e−i ω
c
|x−xs|

|x− xs|
=

∞∑

n=0

n∑

m=−n

(−i)ω
c
jn

(ω

c
rs

)

Y −m
n (βs, αs)

︸ ︷︷ ︸

= S̆m
n,sw,e

h(2)
n

(ω

c
r
)

Y m
n (β, α)

∀ r > rs (2.26b)
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for a spherical wave originating from (rs, αs, βs) and

e−ikT
pwx =

∞∑

n=0

n∑

m=−n

4πi−nY −m
n (φpw, θpw)

︸ ︷︷ ︸

= S̆m
n,pw

jn

(ω

c
r
)

Y m
n (β, α) (2.27)

for a plane wave with propagation direction (θpw, φpw). For plane waves no exterior
expansion exists since the source is assumed to be at infinite distance, thus making
the interior domain infinite.

Occasionally in this thesis, a given sound field will be considered with respect to
two different coordinate systems. The spherical harmonics expansions of the given
sound field with respect to the two coordinate systems are related by a translation
operation. This translation of coordinate systems is not straightforward. App. E.1
summarizes one compact representation thereof. Selected alternative representa-
tions are outlined in Sec. 3.2.3 and 3.3.3. An extensive treatment can be found
in (Gumerov & Duraiswami, 2004).

2.2.2 Selected Properties of Bandlimited Spherical Har-
monics Series

Consider a bandlimited series

S(x, ω) ≈
N−1∑

n=0

n∑

m=−n

S̊m
n (r, ω) Y m

n (β, α) . (2.28)

Above a certain threshold Nmin, (2.28) converges uniformly for given r and
ω (Kennedy et al., 2007; Gumerov & Duraiswami, 2004) so that any such ban-
dlimited series constitutes an approximation of S(x, ω) the error of which decreases
with increasing N > Nmin. In the case of (2.28), i.e. S̊m

n (r, ω) = 0 ∀ n > N−1, one
speaks of an N-truncated sum (Gumerov & Duraiswami, 2004, p. 75), an expansion
with spatial bandwidth N −1, or an (N −1)-th order expansion. When simulations
are presented in this thesis which depict quantities of infinite order, the order of the
simulations is chosen such that the result becomes indistinguishable from the exact
representation.

A thorough analysis of accuracy and properties of bandlimited expansions
like (2.28) is cumbersome since the properties strongly depend on a number of factors
including the propagation direction of the sound field S(x, ω) under consideration
in the domain of interest. The reader is referred to (Gumerov & Duraiswami, 2004,
chap. 9) for an extensive mathematical treatment. An explicit review of this treat-
ment is waived here since the perceptual consequences of such a spatial bandwidth
limitation can not be deduced from mathematical treatments.

In the following the most basic properties of spatially bandlimited expansion
which are important in the context of this thesis are summarized. Note that the
properties presented below can not be seen as general. They are valid only if the
stated assumptions are met.
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Figure 2.5: A monochromatic plane wave sound field S(x, ω) with propagation direction
(
−π

2 , π
2

)
of frequency f = 1000 Hz (Fig. 2.5(a)) and bandlimited approxima-

tions thereof with different bandwidths (Fig. 2.5(b)–(d)). The dotted circles
bound the rN-1-region. A cross-section through the horizontal plane is shown.

Interior Expansions

The properties of interior spherical harmonics expansions can be summarized as
follows: Low orders generally describe the represented sound field close to the ex-
pansion center (i.e. the origin of the coordinate system), and higher orders describe
the represented sound field at locations at far distances of the expansion center.

This circumstance is directly reflected by the properties of the spherical Bessel
functions jn(·) (refer to Fig. 2.2(a) in Sec. 2.1.3): The higher the order n of the
Bessel function, the higher is the argument ω

c
r at which the maximum value is

reached (Abramowitz & Stegun, 1968).

Typically, the domain inside which a bandlimited sound field description is con-
sidered to be comparable to its full-band analogon is assumed to be inside the radius
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rN-1 at which (N−1) = ω
c
rN-1, whereby (N−1) is the highest order contained in the

expansion (Gumerov & Duraiswami, 2004, p. 427). In the remainder of this thesis,
the domain bounded by a sphere of radius rN-1 will be referred to as rN-1-region.
Note that rN-1 is directly proportional to the time frequency f .

Note furthermore that a bandlimited approximation is exact at the expansion
center – i.e. the origin of the coordinate system – since the only mode which con-
tributes there is the zero-th order mode. At the origin all higher modes are equal
to zero.

Fig. 2.5 depicts a monochromatic plane wave with propagation direction
(
−π

2
, π

2

)

(Fig. 2.5(a)), a 25th-order approximation of the plane wave (Fig. 2.5(b)), a 12th-
order approximation of the plane wave (Fig. 2.5(c)), and the magnitude of the latter
(Fig. 2.5(d)). The circles bound the corresponding rN-1-region. It can be seen that
the approximation with larger bandwidth describes the original sound field over a
larger volume. As apparent especially in Fig. 2.5(d), outside the rN-1-region the
amplitude of the bandlimited approximation can be higher than that of the exact
representation. This circumstance constitutes Gibbs phenomenon (Weisstein, 2002).

From Fig. 2.5(c) and 2.5(d) it is evident that the approximation can exhibit very
low amplitude in those locations which are outside of the rN-1-region and which are
not along the channel of propagation of the sound field which crosses the rN-1-region.

Consider now a sound field carrying a signal which is broadband with respect
to the time frequency. When the spatial bandwidth of the sound field is constant
over the entire time-frequency range, then the sound field has a larger “extent” at
low frequencies than at high frequencies. At positions closer to the expansion center
more energy is apparent at higher time frequencies than at farther positions.

Exterior Expansions

In the following it is assumed for convenience that the sound source under consid-
eration is located in the origin of the coordinate system.

An elementary type of sound source is a point source the spatio-temporal transfer
function of which is given by (Williams, 1999; Gumerov & Duraiswami, 2004)

e−i ω
c
r

r
= −iω

c
h

(2)
0

(ω

c
r
)

= −
√

4π i
ω

c
h

(2)
0

(ω

c
r
)

Y 0
0 (β, α) , (2.29)

and thus employs only 0-th order.
For illustration of the properties of sound sources with more complex radiation

properties consider a sound source whose spatio-temporal transfer function is given
by (Ahrens & Spors, 2010b)

Ğm
n,e(ω) =

{

(−1)(m+n)i−n (N−1)!N !
(N+n)!(N−n−1)!

Y −m
n (βor, αor) ∀ n ≤ N − 1

0 elsewhere .
(2.30)

Note that (2.30) was derived from the in-phase driving function in Ambisonics am-
plitude panning (Daniel, 2001). (αor, βor) denotes the main radiation direction of
the source, i.e. its nominal orientation. Eq. (2.30) represents a purely real spatio-
temporal transfer function.
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Refer to Fig. 2.6 which depicts the sound field radiated by sources whose spatio-
temporal transfer functions are given by (2.30) for (αor, βor) =

(
0, π

2

)
and N = 4

and N = 21 respectively. The far-field directivities of the two sound sources are
also depicted (refer to Sec. 2.2.4 for a treatment of far-field radiation). It can be
seen especially in Fig. 2.6(c) that the emitted sound field exhibits very high values
in the vicinity of the sound source which is located in the origin of the coordinate
system. This circumstance is also represented in Fig. 2.2(c) by the fact that the
higher the order n of a Hankel function the larger is its magnitude especially for low
arguments.

The high pressure values apparent in Fig. 2.6(a) and Fig. 2.6(c) are caused by
the evanescent components of the sound field. Note that the sound pressure in
Fig. 2.6(c) clips over a larger area than in Fig. 2.6(a). Considerable evanescent field
components indicate the vicinity of vibrating surface (i.e a sound source) (Williams,
1999). Larger bandwidths thus suggest a larger spatial extent of a source. Note
however that this is not a general rule.

Finally, it can be seen from Fig. 2.6 that the directivity of the source with
bandwidth N = 21 exhibits a stronger focus in the main radiation direction.

A strong frequency dependency like with the properties of interior expansion
treated above is not present here.

2.2.3 Multipoles

Radiating solutions to the Helmholtz equation can be represented by multipole ex-
pansions, i.e. by combinations of monopoles located at infinitesimal distance from
each other (Gumerov & Duraiswami, 2004). Lower order multipoles are also referred
to as monopoles, dipoles, quadrupoles, octopoles, etc.

Multipole expansions are closely related to spherical harmonics expansion with
the fundamental difference that the former are not unique and thus do not form a
basis in the strict sense. Multipole expansions will only play a marginal role in the
context of this thesis and are therefore not treated in detail but only their existence
is mentioned. The reader is referred to (Gumerov & Duraiswami, 2004) for a more
extensive treatment.

2.2.4 Far-Field Radiation

As outlined in Sec. 2.2.1, the spatio-temporal transfer function of any stationary
sound source of finite spatial extent can be represented in the exterior domain by a
series of spherical harmonics Y m

n (β, α) and appropriate coefficients, eq. (2.21b). In
the remainder of this section it is assumed that the sound source under consideration
is located in the origin of the coordinate system.

When the spatio-temporal transfer function is evaluated in the far-field, i.e. for
ω
c
r → +∞, then the large-argument approximation of the spherical Hankel func-

tions (2.14) can be applied on (2.21b) (Williams, 1999). This results in

G(x, ω) ≈ h
(2)
0

(ω

c
r
) ∞∑

n=0

n∑

m=−n

in Ğm
n,e(ω) Y m

n (β, α) . (2.31)
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Figure 2.6: Sound fields the horizontal plane and far-field signature functions of monochro-
matic sound sources with a spatio-temporal transfer function given by (2.30).

Thus, at sufficient distance any stationary sound source of finite spatial extent
radiates like a point source (h

(2)
0 (·) ∼ 1

r
e−i ω

c
r, see (2.29)) whereby the angular de-

pendency of the transfer function is given by an appropriate summation of the
coefficients Ğm

n,e(ω).

Note that it is actually not rigorous to apply the large-argument approximation
on (2.21b) since the former does not hold uniformly in n. Rigorous treatments can
be found in (Colton & Kress, 1998; Gumerov & Duraiswami, 2004) which also lead
to (2.31). The detailed derivation of (2.31) is not performed here since it is not
relevant for the remainder of this thesis.

It is a remarkable property of the coefficients Ğm
n,e(ω) that they serve both as an
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exact representation of a sound field (as in (2.21b)) as well as a far-field represen-
tation (as in (2.31)). The double summation as used in (2.31) is also referred to as
far-field signature function or simply signature function (Gumerov & Duraiswami,
2004). Furthermore, (2.31) proves that the signature function corresponds to what
is commonly referred to as directivity or directivity function (Williams, 1999; Black-
stock, 2000) and constitutes the two-dimensional equivalent of polar diagrams.

Examples of far-field signature functions are depicted in Fig. 2.6.

2.2.5 The Wavenumber Domain

The spatial Fourier transform S̃(·) of a sound field S(x, ω) is defined in (B.3) and
is stated here again for convenience as

S̃(kx, y, z, ω) =

∞∫

−∞

S(x, ω) eikxx dx (2.32)

exemplarily for the x-dimension. The inverse operation to (2.32) is given by (B.4)
in App. B. The spatial Fourier domain is also referred to as wavenumber domain or
k-space (Williams, 1999).

Note that the existence of the Fourier transform of a given function S(x, ω) is
not explicitly proven in this thesis. A strict formalism requires showing that S(x, ω)
fulfills specific prerequisites (Girod et al., 2001). It is implicitly assumed throughout
this thesis that the latter is the case.

Due to the separability of the Cartesian coordinate system (Morse & Feshbach,
1953), the spatial Fourier transform can be applied independently along all three
dimensions of space. The dependent variables of a given quantity in the space-
frequency domain indicate with respect to which dimension the space-frequency
domain is considered. E.g. S̃(kx, y, z, ω) means that S(x, ω) is considered in the
wavenumber domain only with respect to kx; S̃(kx, ky, z, ω) means that S(x, ω) is
considered in the wavenumber domain with respect to kx and ky.

Note that the forward and inverse spatial Fourier transforms as used in this
thesis ((2.32) and (B.4)) use signs in the exponent which are reversed with respect
to the forward and inverse temporal Fourier transforms defined in (B.1) and (B.2)
respectively. The motivation to do so is related to the propagation direction of plane
waves as explained in the following.

The inverse spatial Fourier transform over a function S̃(k, ω) with respect to all
three spatial dimensions is given by

S(x, ω) =
1

(2π)3

∞∫∫∫

−∞

S̃(k, ω) e−ikT x dkxdkydkz . (2.33)

The exponential function in (2.33) can be interpreted as the spatial component of a
plane wave propagating in direction k (refer to (2.5) and App. C.1). Thus, the spatial
Fourier domain constitutes a plane wave representation of a sound field with respect
to a three-dimensional space. The wave vector k = k · [cos θ sinφ sin θ sin φ cosφ]T

then points into the direction of propagation of the plane wave component under
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consideration. The latter is also represented by the colatitude φ and the azimuth θ.
Using signs in the exponent of the spatial Fourier transform similar to the temporal
one as e.g. in (Rabenstein et al., 2006) results in the angles φ and θ describing the
direction the plane wave is “coming from”, which is considered less elegant.

In order to illustrate the physical meaning of the wavenumber ki, the analogies
of the spatial Fourier transform (2.32) and the temporal Fourier transform defined
in (B.1) are outlined below exemplarily for the x and kx-dimensions respectively.

The frequency variable in the time Fourier transform is the radian time frequency
ω which is related to the time frequency f via ω = 2πf . In practice, the time-
frequency scale (not the radian frequency scale) is used in order to refer to specific
values.

The frequency variable in the spatial Fourier transform is the wavenumber in
x-direction kx. kx can thus be interpreted as the spatial radian frequency and is of
unit rad

m
. Via the relation kx = 2πfx, a space frequency fx can be established.

Note that λx = 2π
kx

= 1
fx

is termed trace wavelength in x direction and kx is

termed trace wavenumber in x direction (Williams, 1999).

2.2.6 The Angular Spectrum Representation

Consider a sound field S(x, ω) which is given by its spatial spectrum S̃ (kx, y, kz, ω)
at any plane y = const. as

S(x, ω) =
1

4π2

∞∫∫

−∞

S̃ (kx, y, kz, ω) e−i(kxx+kzz) dkxdkz . (2.34)

Due to the separability of the Cartesian coordinate system (Arfken & Weber, 2005),
the Helmholtz equation (2.2) may be considered independently for each dimension
of the Cartesian coordinate system. Inserting S̃ (kx, y, kz, ω) into the Helmholtz
equation (2.2) reformulated exclusively for the y-coordinate yields

∂2

∂y2
S̃ (kx, y, kz, ω) + k2

yS̃ (kx, y, kz, ω) = 0 , (2.35)

whereby

ky =
√

k2 − k2
x − k2

z , ∀ k2
x + k2

z ≤ k (2.36a)

ky = i
√

k2
x + k2

z − k2, ∀ k2
x + k2

z > k . (2.36b)

A propagating sound field is described when (2.36a) is satisfied and an evanescent
sound field is described when (2.36b) is satisfied.

There are two solutions to (2.35) which are given by

S̃1 (kx, y, kz, ω) = Š1 (kx, kz, ω) eikyy (2.37a)

S̃2 (kx, y, kz, ω) = Š2 (kx, kz, ω) e−ikyy . (2.37b)
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Introducing (2.37) into (2.34) yields two expressions for S(x, ω) which are given by

S(x, ω) =
1

4π2

∞∫∫

−∞

Š1 (kx, kz, ω) e−i(kxx+kzy+kzz) dkxdkz (2.38a)

S(x, ω) =
1

4π2

∞∫∫

−∞

Š2 (kx, kz, ω) e−i(kxx−kzy+kzz) dkxdkz . (2.38b)

Š1 (kx, kz, ω) and Š2 (kx, kz, ω) are termed the angular spectrum representation or
plane wave spectrum of S(x, ω) in a source-free half-space (Nieto-Vesperinas, 2006).
The integral (2.38a) is convergent for y ≥ 0 and represents S(x, ω) in the case that
all sound sources are located at y < 0. Eq. (2.38b) is convergent for y ≤ 0 and
represents S(x, ω) in the case that all sound sources are located at y > 0.

Substituting kx, kz, and kz by k cos θpw sinφpw, k sin θpw sin φpw, and k cosφpw

respectively clearly reveals the motivation for terming it angular representation. The
angular spectrum represents the decomposition of a sound field which is specified
over a given plane into a continuum of plane waves with given (complex) amplitudes
and directions of propagation. For simplicity the reference plane is typically assumed
to be one of the planes containing two of the coordinate axes.

In the remainder of this thesis exclusively the case that all sound sources are
located at y < 0 will be considered. The index in the angular spectra is therefore
omitted so that Š(·) = Š1(·).

Eq. (2.38) takes the form of a two-dimensional inverse Fourier transform and
can thus be inverted by the forward transform as indicated in App. B. Setting then
y = 0 yields

Š (kx, kz, ω) =

∞∫∫

−∞

S(x, 0, z, ω) ei(kxx+kzz) dxdz , (2.39)

which represents the relation between the boundary value S(x, 0, z, ω) of the sound
field S(x, ω) at the reference plane (in this case the x-z-plane) and its angular
spectrum representation Š (kx, kz, ω).

Introducing (2.39) into (2.38a) yields

S(x, ω) =
1

4π2

∞∫∫

−∞

S(x0, ω)

∞∫∫

−∞

e−i(kx(x−x0)+kzy+kz(z−z0)) dkxdkz

︸ ︷︷ ︸

= P(x−x0,ω)

dx0dz0 , (2.40)

with x0 = [x0 0 z0]
T . P(x−x0, ω) is termed wavefield propagator (Nieto-Vesperinas,

2006).
Eq. (2.40) describes the relationship between the sound field S(x, ω) at an ar-

bitrary point x in the half-space y ≥ 0 and its boundary value S(x, 0, z, ω) at the
reference plane.

An extensive literature exists regarding the theoretical limits on applicability
of, and analytical solutions to, the angular spectrum decomposition. Refer to the
standard literature on Fourier optics such as (Nieto-Vesperinas, 2006) for references.
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Note finally that spherical harmonics expansion coefficients, the wavenumber
domain, and the angular spectrum representation amongst others are termed spatial
spectra or space-frequency domains since they describe the spatial composition of a
given sound field.

2.3 Boundary Conditions

Boundary conditions are imposed on solutions to the wave equation (2.1) in order to
consider the physical properties of the boundary of the domain under consideration.
In internal or interior problems this domain is finite (refer to Sec. 2.3.1 and 2.3.2),
in external or exterior problems it is infinite (Sec. 2.3.3).

The possible range of boundary conditions can be classified into two fundamental
categories:

1. homogeneous boundary conditions

2. inhomogeneous boundary conditions

Homogeneous boundary conditions describe stationary boundaries; inhomogeneous
boundary conditions describe vibrating boundaries. Problems involving mixtures
of the two categories can be solved by a superposition of the two corresponding
solutions and are also referred to as mixed problems.

The following sections give a brief overview of those boundary conditions which
are important in the context of this thesis. Only the most fundamental types of
boundary conditions are stated. Refer to (Gumerov & Duraiswami, 2004; Morse &
Feshbach, 1953) for a detailed treatment.

2.3.1 Dirichlet Boundary Condition

Dirchlet boundary conditions affect the sound pressure. The homogeneous Dirchlet
boundary condition is given by

S(x, ω) = 0 ∀ x ∈ ∂Ω (2.41)

and describes sound-soft (i.e. pressure-release) boundaries. It states that the sound
pressure S(x, ω) vanishes at the boundary ∂Ω.

The inhomogeneous Dirchlet boundary condition

S(x, ω) = fD(x, ω) ∀ x ∈ ∂Ω (2.42)

states that the sound pressure S(x, ω) equals an arbitrary square integrable function
fD(x, ω) at boundary ∂Ω.

2.3.2 Neumann Boundary Condition

The homogeneous Neumann boundary condition is given by

∂S(x, ω)

∂n(x)

∣
∣
∣
∣
∂Ω

= 0 (2.43)
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and describes sound-hard (thus rigid) boundaries. For interior problems n(x) de-
notes the inward pointing surface normal on the boundary ∂Ω. The operator ∂

∂n(x)

is termed directional gradient or directional derivative and is given by (Morse &
Feshbach, 1953; Weisstein, 2002)

∂

∂n(x)
S(x, ω) = 〈∇S(x, ω),n〉 , (2.44)

whereby the brackets 〈·〉 indicate inner product (Weisstein, 2002). In the present
case, the latter can also be interpreted as scalar (dot) product. The inner product of

∇ =
[

∂
∂x
, ∂

∂y
, ∂

∂z

]T

and n(x) = [nx, ny, nz]
T = [cosαn sin βn, sinαn sin βn, cosβn]

T

is given by

〈∇,n(x)〉 = cosαn sin βn
∂

∂x
+ sinαn sin βn

∂

∂y
+ cosβn

∂

∂z
. (2.45)

Ωi

Ωe

∂Ω

n

Figure 2.7: Illustration of interior domain Ωi which is enclosed by boundary ∂Ω. Ωe is the
domain exterior with respect to ∂Ω. n denotes the inward pointing surface
normal on ∂Ω.

Eq. (2.43) states that the gradient of the sound pressure in direction of the normal
n(x) on the boundary pointing into the domain of interest vanishes at the boundary
∂Ω. Note that the directional gradient of a pressure field is directly proportional to
the particle velocity (Williams, 1999). A vanishing directional gradient of the sound
pressure means also a vanishing particle velocity and thus a rigid boundary. Refer
to Fig. 2.7 for an illustration of the interior example.

Finally, the inhomogeneous Neumann boundary condition is given by

∂S(x, ω)

∂n(x)

∣
∣
∣
∣
∂Ω

= fN (x)
∣
∣
∣
∂Ω

(2.46)

and imposes an arbitrary square integrable function fN(x) on the directional gradi-
ent of the sound pressure S(x, ω) at the boundary ∂Ω.

2.3.3 Sommerfeld Radiation Condition

The Sommerfeld radiation condition is given by (Gumerov & Duraiswami, 2004)

lim
r→+∞

r

(
∂

∂r
S(x, ω) + i

ω

c
S(x, ω)

)

= 0 (2.47)



2.4. Green’s Functions 25

for the definitions of the Fourier transform used in this thesis. It is employed in
exterior problems and provides a boundary condition at infinity. A sound field
S(x, ω) satisfying (2.47) is composed of outgoing waves only. In simple words, the
Sommerfeld radiation condition takes care that no energy contributions to the sound
field under consideration stem from infinity.

2.4 Green’s Functions

In the context of this thesis, solutions G(x
∣
∣x0, ω) to the inhomogeneous Helmholtz

equation

∇2G(x
∣
∣x0, ω) + k2G(x

∣
∣x0, ω) = −δ(x− x0) (2.48)

are termed Green’s functions (Gumerov & Duraiswami, 2004). δ(x− x0) denotes a
three-dimensional Dirac delta function at position x0 with represents excitation of
space at x0. Green’s functions thus describe the response of the domain of interest to
a spatial Dirac excitation and thus the way sound propagates. When considered in
time domain (i.e. g(x

∣
∣x0, t)), they can be interpreted as the spatial impulse response

of the domain.

Under free-field conditions G(·) is typically denoted by G0(·) and given by

G0(x− x0, ω) =
1

4π

e−i ω
c
|x−x0|

|x− x0|
. (2.49)

Note that G0(x−x0, ω) is shift-invariant (G0(x−x0, ω) vs. G0(x
∣
∣x0, ω)) (Williams,

1999). G0(x− x0, ω) can be interpreted as the spatio-temporal transfer function of
a monopole sound source located at x0 (Williams, 1999).

When G(x
∣
∣x0, ω) satisfies given Neumann boundary conditions, one speaks of a

Neumann Green’s function and accordingly for Dirichlet conditions.

The directional gradient ∂G0(x,ω)
∂ei

of G0 (x, ω) in a given direction ei will also
occasionally be of importance in this thesis. Exemplarily, the gradient of G0 (x, ω)
in x-direction is given by

∂G0 (x, ω)

∂x
=

1

4π

(

i
ω

c
− x

r

) e−i ω
c
r

r2
. (2.50)

Eq. (2.50) can be interpreted as the spatio-temporal transfer function of a dipole
source whose main axis is along the x-axis (Williams, 1999). The far-field signature

function of ∂G0(x,ω)
∂x

is similar to Fig. 2.3(b).

Since exclusively the free-field Green’s function is employed in this thesis, the
index 0 is omitted in the remainder.

2.5 The Kirchhoff-Helmholtz Integral

The Kirchhoff-Helmholtz Integral (or Kirchhoff Integral or Helmholtz Integral) is one
of the essential theorems in acoustics. For interior problems it is given by (Williams,
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1999)

a(x)P (x, ω) =

−
∮

∂Ω

(

G(x|x0, ω)
∂

∂n(x0)
S(x, ω)

∣
∣
∣
x=x0

− S(x0, ω)
∂

∂n(x0)
G(x|x0, ω)

)

dA(x0) ,

(2.51)

with

a(x) =







1 if x ∈ Ωi

1
2

if x ∈ ∂Ω
0 if x ∈ Ωe

.

∂Ω denotes a surface enclosing the source-free volume Ωi, A(x0) an infinitesimal sur-
face element of ∂Ω, x0 a point on ∂Ω; Ωe denotes the domain outside ∂Ω, G(x|x0, ω)
a Green’s function fulfilling the given boundary conditions, and ∂

∂n(x0)
the gradient

in direction of the inward pointing surface normal n(x0). Refer to Fig. 2.7. An
according formulation of (2.51) for exterior problems exists (Williams, 1999).

The Kirchhoff-Helmholtz Integral (2.51) represents solutions to the homogeneous
Helmholtz equation (2.2) with inhomogeneous boundary conditions. The sound field
P (x, ω) described by (2.51) equals S(x, ω) ∀ x ∈ Ωi provided that S(x, ω) is source-
free in Ωi.

The Kirchhoff-Helmholtz Integral thus states that the sound pressure S(x, ω)
evoked by a sound source distribution located outside an enclosing surface ∂Ω is
uniquely determined inside ∂Ω by the sound pressure S(x, ω) on ∂Ω and the gradient
of the sound pressure in direction of the inward pointing surface normal on ∂Ω. The
sound field in the exterior domain Ωe is not described by the Kirchhoff-Helmholtz
Integral (a(x) = 0 if x ∈ Ωe). The latter can therefore not be employed for backward
problems (Williams, 1999).

Under free-field conditions, i.e. when the boundary ∂Ω is acoustically transparent,
then G(x|x0, ω) is given by the free-field Green’s function (2.49).

2.6 Problem Formulation

The Kirchhoff-Helmholtz Integral (2.51) presented in Sec. 2.5 provides a direct
method for sound field synthesis. As mentioned in Sec. 2.4, under free-field condi-
tions the Green’s function G (x− x0, ω) employed in the Kirchhoff-Helmholtz Inte-
gral can be interpreted as the spatio-temporal transfer function of a monopole sound
source and its directional gradient ∂

∂n
G(·) as the spatio-temporal transfer function

of a dipole sound source whose main axis lies parallel to n (Williams, 1999). Rein-
terpreted in terms of sound field synthesis, by means of an enclosing acoustically
transparent continuous layer of secondary monopole sources and an according layer
of secondary dipole sources, any source-free sound field can by synthesized inside
this enclosing boundary. The term secondary source represents the fact that such a
sound source is not the primary source of the auditory event which is desired to be
evoked in the listener. It is rather such that an ensemble of such secondary sources
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synthesizes a sound field which exhibits specific properties which in turn lead to the
desired auditory event.

However, this approach to sound field synthesis requires two layers of secondary
sources which is considered inconvenient. Typically, it is desired to avoid the dipole
layer since it is more difficult to implement in practice. The fact that the sound
field synthesized via the Kirchhoff-Helmholtz Integral is zero outside the secondary
source distribution and thus that the acoustical properties of the listening room are
negligible is only a theoretical benefit (Fazi & Nelson, 2007).

It is thus rather desired to employ a monopole-only formulation. In the following
sections it is shown that methods exist which may be employed in order to solve
the problem of sound field synthesis which avoid the necessity of secondary dipole
sources. An overview over the fundamental formulations is provided and the prop-
erties of the different approaches are discussed and compared and finally the choice
of the single-layer potential approach presented in Sec. 2.6.3 is justified.

2.6.1 Wave Field Synthesis

Wave Field Synthesis (WFS) (Berkhout et al., 1993) is an established approach for
sound field synthesis. The initial formulation considered infinitely extended planar
distributions of secondary sources and was then extended to the employment of
linear distributions and finally to more complex one dimensional distributions like
circles and alike (Start, 1996). For didactical purposes, the following review of the
fundamentals of WFS is not chronological.

Planar Secondary Source Distributions

The initial formulation of WFS is derived from Rayleigh’s integral formulas, most
notably Rayleigh’s first integral formula (Berkhout et al., 1993). The latter states
that the sound field S(x, ω) evoked by any arbitrary sound source distribution which
is located outside a given half-space is uniquely determined by the gradient of the
sound field under consideration evaluated on the planar boundary of that half-space.
The gradient has to be taken in direction of the normal vector pointing into the
source-free half-space.

Mathematically, Rayleigh’s first integral formula is given in time-frequency do-
main by (Williams, 1999; Berkhout et al., 1993)

P (x, ω) = −
∫

∂Ω

∂

∂n
S(x, ω)

∣
∣
∣
∣
x=x0

· G(x− x0, ω) dA(x0), (2.52)

x0 denotes a position on the plane ∂Ω; S(x, ω) denotes an arbitrary sound field which
is source-free in one of the half-spaces bounded by ∂Ω. The latter is referred to as
target half-space. Refer to Fig. 2.8 for an illustration. Due to the close relationship
between (2.52) and the angular spectrum representation presented in Sec. 2.2.6, the
properties of both representations with respect to convergence are similar (Nieto-
Vesperinas, 2006).

∂
∂n

denotes the gradient in direction of n, the unit length normal vector on
the plane ∂Ω pointing into the target half-space. And finally, P (x, ω) is the sound



28 2. Physical Fundamentals of Sound Fields

pressure evoked by the planar monopole distribution. P (x, ω) is perfectly symmetric
with respect to ∂Ω and is identical to S(x, ω) for all positions inside the target half-
space.

x

y

z

← y = 0

n

Figure 2.8: Illustration of Rayleigh’s first integral formula. For convenience it is assumed
that the boundary ∂Ω of the target half-space is situated along the x-z-plane.
It is indicated by the grey shading and has infinite extent. The target half-
space contains the positive y-axis.

Reinterpreted in terms of sound field synthesis, Rayleigh’s first integral formula
states that the sound field of any arbitrary virtual source distribution which is
located outside of the target half-space can be perfectly synthesized by a continuous
planar distribution of secondary monopole sources which are driven with the driving
function (Berkhout et al., 1993)

D(x0, ω) = − ∂

∂n
S(x, ω)

∣
∣
∣
x=x0

. (2.53)

In practical implementations, loudspeakers with closed cabinets are employed which
behave approximately like monopole sources when lower frequencies are considered.
An analytical method compensating for deviations of the loudspeaker radiation char-
acteristics from omnidirectionality was proposed in (de Vries, 1996). However, the
latter approach constitutes an approximation due to the involved application of the
stationary phase approximation (Williams, 1999).

The secondary source driving function (2.53) is only valid for planar secondary
source distributions. This constitutes an essential drawback.
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Arbitrary Convex Secondary Source Distributions

The extension of WFS to non-planar secondary source distributions is typically de-
rived via the Kirchhoff-Helmholtz integral presented in Sec. 2.5 (Start, 1996; Spors
et al., 2008). In order to avoid the necessity of the employment of secondary dipole
sources as it is required by the Kirchhoff-Helmholtz integral, it is assumed that the
secondary source distribution is acoustically rigid (i.e. Neumann boundary condi-
tions apply). The drawback is the fact that this assumption does not permit the
employment of secondary monopole sources but requires that the secondary source
exhibit a spatio-temporal transfer function equal to the according Neumann Green’s
function. The latter is dependent on the geometry under consideration. In the
present context this means that the required radiation properties of the employed
secondary sources are dependent on the shape of the secondary source contour. A
closed form solution for this Neumann Green’s function can only be found for sim-
ple geometries like cylinders and spheres (Williams, 1999). For convenience, an
alternative interpretation is presented below which yields the same result.

As pointed out in (Fazi et al., 2009), it is helpful to approach WFS by considering
the equivalent problem of scattering of sound waves at a sound-soft object whose
geometry is identical to that of the secondary source distribution. Sound-soft objects
exhibit ideal pressure release boundaries, i.e. a homogeneous Dirichlet boundary
condition is assumed.

When the wavelength λ of the wave field under consideration is much smaller than
the dimensions of the scattering object and when the object is convex the so-called
Kirchhoff approximation or physical optics approximation can be applied (Colton &
Kress, 1998). The surface of the scattering object is divided into a region which is
illuminated by the incident wave, and a shadowed area. The problem under consid-
eration is then reduced to far-field scattering off the illuminated region whereby the
surface of the scattering object is assumed to be locally plane. The shadowed area
has to be discarded in order to avoid an unwanted secondary diffraction (Colton &
Kress, 1998). The convexity is required in order to avoid scattering of the scattered
sound field.

For such small wave lengths any arbitrary convex enclosing secondary monopole
distribution may also be assumed to be locally plane. Consequently, a high-frequency
approximation of the driving function for the synthesis of a given desired sound field
may be derived from (2.53) when only those secondary sources are employed which
are located in that region which is illuminated by the virtual sound field.

The better the assumptions of the physical optics approximation are fulfilled,
most notably the wave length under consideration being significantly smaller than
the dimensions of the secondary source distribution, the smaller is the resulting
inaccuracy.

The illuminated area can be straightforwardly determined via geometrical con-
siderations as indicated in Fig. 2.9 for a virtual plane wave. The area illuminated
by a virtual plane wave is bounded by two lines parallel to the propagation vector
kpw of the plane wave passing the secondary source distribution in a tangent-like
manner.
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kpw

kpw

A

B

Figure 2.9: Secondary source selection for a virtual plane wave with propagation direction
kpw. Thick solid lines indicate the area which is illuminated by the virtual
plane wave. The illuminated area corresponds to the active secondary sources.
The dashed line indicates the shadowed part of the secondary source distribu-
tion. The two dotted lines are parallel to kpw and pass the secondary source
distribution in a tangent-like manner. In case A tapering has to be applied,
in case B not.

The driving signal is thus approximately given by

D(x0, ω) ≈ −w(x0)
∂

∂n
S(x, ω)

∣
∣
∣
x=x0

, (2.54)

whereby the window function w(x0) = 1 if x0 belongs to the illuminated area or
w(x0) = 0 if x0 belongs to the shadowed area. Explicitly, w(x0) for a virtual plane
wave with propagation vector kpw is given by (Spors et al., 2008)

w(x0) =

{

1 if 〈kpw,n(x0)〉 > 0

0 elsewhere
. (2.55)

If the proper tangent on the boundary of the illuminated area is not parallel to
kpw or is not defined (like the boundary of a planar distribution of finite size) a
degenerated problem is considered (case A in Fig. 2.9). That means, the illuminated
area is incomplete and artifacts have to be expected. The perceptual prominence
of such spatial truncation artifacts can be reduced by the application of tapering,
i.e. an attenuation of the secondary sources towards the edges of the illuminated
area (Start, 1997).

It has been shown that the illuminated area does not need to be smooth. Corners
are also possible with only little additional error introduced (Verheijen, 1997).

Accuracy

As mentioned above, the better the assumptions of the physical optics approximation
are fulfilled, most notably the wave length under consideration being significantly
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smaller than the dimensions of the secondary source distribution, the smaller is the
resulting inaccuracy. This circumstance is illustrated in the following.

The sound field synthesized by a theoretical continuous spherical secondary
source distribution of radius R = 1.5 m driven in order to synthesize a monochro-
matic virtual plane wave of unit amplitude and with propagation direction
(θpw, φpw) =

(
−π

2
, π

2

)
is depicted in Fig. 2.10. This radius of the secondary source

distribution corresponds to the wavelength of a sound wave of around 230 Hz. That
means that for frequencies much higher than 230 Hz, the physical optics approx-
imation is justified and it is expected that the error is negligible. Consequently,
for frequencies of around 230 Hz and below a considerable inaccuracy has to be
expected (Ahrens & Spors, 2009c).

The derivation of the sound fields depicted in Fig. 2.10 is only briefly outlined
since the details are not relevant for the remainder of this thesis. The synthesized
sound fields were derived in the spherical harmonics domain via (3.4) and then
composed using (2.21). The spherical harmonics representation was obtained via
analytical spherical harmonics transforms of the driving function and the window
w(x0) and using (D.9).

Fig. 2.10(a) shows the synthesized sound field for a plane wave of fpw = 200 Hz.
Indeed, some distortion of the wave front occurs especially for −1 < y < 0 m. For
a plane wave of fpw = 1000 Hz on the other hand no considerable error is apparent
as can be seen in Fig. 2.10(b) (Ahrens & Spors, 2009c).
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(a) fpw = 200 Hz
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(b) fpw = 1000 Hz

Figure 2.10: WFS of a virtual plane wave for different frequencies via a continuous spher-
ical secondary source distribution. A cross-section through the horizontal
plane. The solid line indicates the area with active secondary sources, i.e. the
area which is illuminated by the virtual sound field; the dotted line indicates
the shadowed area.
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21/2-dimensional Synthesis

For many practical applications of WFS it is sufficient to restrict the synthesis
to the horizontal plane and employing a linear distribution of secondary sources.
This situation is then referred to as 21/2-dimensional synthesis (Start, 1997). The
term “21/2-dimensional” reflects the fact that the synthesis is neither purely two-
dimensional nor purely three-dimensional but rather something in between. In the
remainder of this subsection the 21/2-dimensional driving function will be derived
from the three-dimensional one.

The WFS synthesis equation is given by (2.52) which is reformulated here as

P (x, ω) =

∞∫∫

−∞

D(x0, ω) · 1

4π

e−i ω
c
|x−x0|

|x− x0|
dz0dx0 . (2.56)

In order to simplify the notation it is assumed that the secondary source distribution
is located in the x-z-plane, i.e. x0 = [x0, 0, z0]

T and that synthesis in that part of
the horizontal plane is targeted which contains the positive y-axis, i.e. z = 0, y > 0.
Refer also to Fig. 2.8.

Eq. (2.56) can be approximated in the horizontal plane via the stationary phase
approximation as (Berkhout et al., 1993)

P
(
x
∣
∣
z=0

, ω
)
≈

∞∫

−∞

D
(

x0

∣
∣
z0=0

, ω
)
√

2π

iω
c

4
√

(x− x0)2 + y2

︸ ︷︷ ︸

= D2.5D(x,y,ω)

1

4π

e−i ω
c
|x−x0|

|x− x0|

∣
∣
∣
∣
z0=0

dx0 .

(2.57)
as outlined in detail in App. E.3. The planar secondary source distribution has
thus degenerated to a linear one which is located along the x-axis. Note that (2.57)
constitutes a high-frequency approximation (Williams, 1999).

Assigning all factors which arose due to the stationary phase approximation

in (2.57) to the driving function D
(

x0

∣
∣
z0=0

, ω
)

yields the 21/2-dimensional driving

function D2.5D(x, y, ω). However, D2.5D(x, y, ω) is dependent on the listening posi-
tion (x, y). Typically, it is desired that the synthesis satisfies an extended receiver
area. The driving function is therefore referenced to a given distance dref > 0 by
setting the square root in (2.57) to

√
dref. Refer to Sec. 3.5.4 for an interpretation

of this referencing.
The 21/2-dimensional driving function D2.5D(x, y, ω) is finally given by (Berkhout

et al., 1993)

D2.5D(x, y, ω) =

√

2πdref

iω
c

D
(

x0

∣
∣
z0=0

, ω
)

. (2.58)

The 21/2-dimensional correction of the driving function D
(

x0

∣
∣
z0=0

, ω
)

is equal for

all secondary sources and can therefore be applied on the input signal before the
latter is distributed to the individual secondary sources. Refer also to Sec. 3.3.2 and
3.5.2 for a more detailed treatment of 21/2-dimensional synthesis.

Note that (2.58) only holds for linear secondary source distributions. In order to
allow for the employment of convex one-dimensional contours, the physical optics
approximation presented above can be applied.
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2.6.2 Simple Source Formulation and Equivalent Scattering
Problem

The simple source formulation of the problem is obtained by constructing two
equivalent but spatially disjunct problems (Williams, 1999). Besides the interior
Kirchhoff-Helmholtz Integral (2.51), an equivalent exterior Kirchhoff-Helmholtz In-
tegral is formulated with the same boundary ∂Ω but with outward pointing normal
vector (Williams, 1999). It is further assumed that the sound pressure is continuous
and the directional gradient is discontinuous when approaching the boundary ∂Ω
from both sides. The latter assumptions represent the distribution of secondary
sources on ∂Ω. Additionally, the exterior sound field caused by the source distribu-
tion has to satisfy the Sommerfeld radiation condition (2.47).

Subtracting the resulting interior from the exterior problem formulation under
free-field assumptions results in

P (x, ω) =

∮

∂Ω

D(x0, ω) G(x− x0, ω) dA(x0) , (2.59)

whereby D(x0, ω) denotes the driving function of the secondary sources. Note that
only the monopole layer is apparent in (2.59).

The continuity conditions for the pressure and its gradient on the boundary ∂Ω
can be interpreted in terms of an equivalent scattering problem (Fazi et al., 2009).
Here, the secondary source distribution is replaced by a sound-soft object (i.e. Dirich-
let boundaries are assumed) that scatters the impinging sound field S(x, ω). Inside
the boundary ∂Ω, the scattered sound field P (x, ω) corresponds to the impinging
virtual sound field S(x, ω).

The driving signal D(x0, ω) (or source strength (Williams, 1999)) is then given
by

D(x0, ω) =

(
∂Se(x, ω)

∂n(x0)
− ∂S(x, ω)

∂n(x0)

)∣
∣
∣
∣
x=x0

. (2.60)

n(x0) denotes the inward pointing surface normal and Se(x, ω) the scattered field in
the exterior domain. Inside ∂Ω, the synthesized sound field P (x, ω) coincides with
the desired sound field S(x, ω).

Although the simple source approach has not received considerable attention in
sound field synthesis so far - except for (Poletti, 2005) - it is of special interest since
it links the well documented results from scattering theory to sound field synthesis
and therefore provides interesting insights into the general problem. The drawback
is the fact that an exterior field Se(x, ω) has to be constructed from the desired
interior field S(x, ω) in order to find the driving function D(x0, ω).

2.6.3 Potential Theory

The Kirchhoff-Helmholtz Integral (2.51) can be split into two integrals which are
given by (Colton & Kress, 1998)

Smonopole(x, ω) =

∮

∂Ω

Dmonopole(x0, ω) G (x− x0, ω) dA(x0) . (2.61)
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and

Sdipole(x, ω) =

∮

∂Ω

Ddipole(x0, ω)
∂G (x− x0, ω)

∂n(x0)
dA(x0) . (2.62)

when free-field conditions are assumed; x0 ∈ ∂Ω. n(x0) denotes the inward pointing
surface normal at x0. Smonopole(x, ω) and Sdipole(x, ω) are termed acoustic single-
layer and double-layer potential respectively and are widely used in a number of
disciplines especially in the solution to scattering problems (Colton & Kress, 1998).
Dmonopole(x0, ω) and Ddipole(x0, ω) are termed density of the potentials.

The relation between a vector field V(x, ω) and its scalar potential S(x, ω) is
given by (Gumerov & Duraiswami, 2004, p. 3)

V(x, ω) = −∇S(x, ω) . (2.63)

As stated by Euler’s equation (Williams, 1999, p. 15), V(x, ω), i.e. the negative
sound pressure gradient in time-frequency domain, is directly proportional to the
particle velocity in time-frequency domain. Sloppily speaking, the sound pressure
S(x, ω) is the potential of the particle velocity, thus a harmonic velocity potential.

The term single-layer used above reflects the fact that exclusively one layer of
secondary monopoles is considered for the given free-field conditions. The term
double-layer reflects the fact that fact that the directional gradient ∂G(x−x0,ω)

∂n
of the

free-field Green’s function can be interpreted as a secondary dipole source which in
turn can be represented by a combination of two monopoles. I.e. the double layer
can be described as two single layers of monopoles (refer to Sec. 2.2.3 and 2.4).

Again, D(x0, ω) denotes the driving function of the secondary source distribu-
tion.

The double-layer potential (2.62) is inconvenient for the problem of sound field
synthesis since it requires secondary dipoles (refer also to Sec. 2.6). As mentioned
above, a double layer may be interpreted as a combination of single layers.

Therefore, the remainder of this section concentrates on the single-layer formu-
lation (2.61). The index “monopole” in (2.61) is omitted for convenience.

In order to find the solution to (2.61), i.e. in order to find the appropriate driving
function D(x, ω) which synthesizes the desired sound field S(x, ω), it is assumed
at first stage that S(x, ω) is considered exclusively on the boundary ∂Ω, i.e. x ∈
∂Ω (Morse & Feshbach, 1953).

Eq. (2.61) can be interpreted as an operator A acting on D(x, ω) as (Morse &
Feshbach, 1953)

(AD)(x, ω) =

∮

∂Ω

D(x0, ω) G
(
x
∣
∣x0, ω

)
dA(x0) . (2.64)

A is a Fredholm operator which is acting on a Sobolev space if

• its range is closed;

• its kernel is of finite dimensions;

• its cokernel is of finite dimensions.
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From the equivalent scattering problem it is known that A (Giroire, 1982)

• is a Fredholm operator of zero index;

• is an isomorphism if and only if ω is not an eigenvalue of the interior Dirichlet
problem,

so that it can be concluded that A constitutes a compact operator.
Such a compact operator can be expanded into a series of basis functions ψn(x)

as (Morse & Feshbach, 1953)

(AD)(x, ω) =
N∑

n=1

〈
ψ̄n(x), D(x, ω)

〉

︸ ︷︷ ︸

= D̃n(ω)

G̃n(ω) ψn(x) ∀ 1 ≤ N ≤ ∞ , (2.65)

whereby 〈·〉 denotes the scalar product and ψ̄n(x) the adjoint of ψn(x). For the
Green’s functions considered in this thesis, ψ̄n(x) = ψn(x)∗, whereby the asterisk ∗

denotes complex conjugation. G̃n(ω) are the eigenvalues of A and ψn(x) constitutes
a complete set of solutions to the wave equation which is orthogonal on ∂Ω. The
orthogonality relation

∮

∂Ω

ψ̄n(x0)ψm(x0) dA(x0) = anδnm (2.66)

and the completeness relation

N∑

n=1

anψ̄n(x)ψn(x0) = δ(x− x0) (2.67)

thus hold, whereby an is a normalization constant; δnm denotes the Kronecker delta
and δ(x− x0) a multidimensional Dirac pulse.

The projection D̃n(ω) of the driving function D(x, ω) onto the basis functions
ψn(x) is obtained via (Morse & Feshbach, 1953)

D̃n(ω) =
〈
ψ̄n(x), D(x, ω)

〉
=

∮

∂Ω

D(x0, ω)ψ̄n(x0) dA(x0) , (2.68)

so that D(x, ω) can be represented by D̃n(ω) as

D(x, ω) =
N∑

n=1

D̃n(ω) ψn(x) . (2.69)

Similarly, it can be shown that the Fredholm kernel G(x, ω) can be represented
as (Morse & Feshbach, 1953)

G(x, ω) =
N∑

n=1

G̃n(ω) ψn(x)ψ̄n(x0) . (2.70)
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The solution to (2.61) is obtained by expanding all involved quantities – the desired
sound field S(x, ω), the driving function D(x, ω), and the Green’s function G(x, ω)
– into series of the basis functions ψn(x) as

N∑

n=1

S̃n(ω) ψn(x) =

∮

∂Ω

N∑

n=1

D̃n(ω) ψn(x0)

N∑

n′=1

G̃n′(ω) ψn′(x)ψ̄n′(x0) dA(x0)

=
N∑

n=1

D̃n(ω)
N∑

n′=1

G̃n′(ω)ψn′(x)

∮

∂Ω

ψn(x0)ψ̄n′(x0) dA(x0) (2.71)

Due to orthogonality (2.66), the last integral in (2.71) vanishes unless n′ = n so that

N∑

n=1

S̃n(ω) ψn(x) =

N∑

n=1

anD̃n(ω) G̃n(ω) ψn(x) . (2.72)

In order that (2.72) holds, all coefficients have to be equal, thus

S̃n(ω) = an D̃n(ω) G̃n(ω) . (2.73)

The comparison of coefficients in (2.73) is also termed mode-matching since ψn(x)
are referred to as modes. Eq. (2.73) can be rearranged to be (Spors & Ahrens,
2008b)

D̃n(ω) =
S̃n(ω)

anG̃n(ω)
, (2.74)

provided that G̃n(ω) does not vanish. The driving function D(x, ω) is finally ob-
tained from (2.74) via (2.69).

Note that above reviewed procedure can also be interpreted to be a singular
value decomposition (Fazi et al., 2008b).

As stated above, (2.74) only holds on the contour ∂Ω, i.e. on the secondary source
contour. Since the Fredholm operator A is an isomorphism as stated above, it can
be concluded that the solution (2.74) holds in the entire interior domain Ω, i.e. for
x ∈ Ω (Morse & Feshbach, 1953; Giroire, 1982).

The solution (2.74) has the following fundamental properties.

• Non-uniqueness : At the eigenfrequencies of the interior Dirichlet prob-
lem (2.74) is non-unique. These eigenfrequencies represents resonances of
the cavity under consideration. The solutions in this case are given by the
null-space of operator A. It is reported the non-uniqueness is not a severe
problem (Copley, 1968; Giroire, 1982). Actually, it has not been reported that
consequences of the non-uniqueness have been observed in practice.

• Ill-conditioning : Small eigenvalues G̃n(ω) can give rise to ill-conditioning.
Modes with vanishing eigenvalues can not be controlled at all. A counter-
measure is regularization or discarding of problematic modes (Fazi & Nelson,
2010). As with the non-uniqueness, the practical consequences of this ill-
conditioning are not clear.
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2.6.4 Numerical Approaches

A number of numerical approaches such as (Kirkeby & Nelson, 1993; Ward & Ab-
hayapala, 2001; Daniel, 2001; Poletti, 2005; Hannemann & Donohue, 2008; Kol-
undžija et al., 2009) have been proposed for the problem of sound field synthesis.
Typically, an equation system is derived either directly or in a transformed domain.
The former is then solved using a given optimization criterion. Such methods are
typically very flexible in terms of the secondary source layout. Typical optimization
criterions are the minimization of a given error signal.

The fundamental drawbacks are firstly the fact that so far, the proposed opti-
mization criterions are restricted to measures the relation of which to perception is
unclear. Secondly, the optimization criterions are not aware of fundamental phys-
ical restrictions of the secondary source setup under consideration such as 21/2-
dimensionality or consequences of the spatial discrete property of real-world setups
(refer to Chap. 4). This circumstance leads in practice to an increased amount of
regularization which has to be applied in order that the energy of the loudspeaker
driving signals stays at moderate levels.

At moderately low frequencies all proposed methods have been shown to provide
comparable results, see e.g. (Fazi & Nelson, 2007). The synthesis at high time
frequencies where an accurate physical synthesis of the desired sound field is not
possible with discrete secondary source setups has hardly been investigated apart
e.g. from (Kolundžija et al., 2009). The properties of different optimization criterions
in such critical situations are not known and can not be predicted.

2.7 Summary

Based on the physical fundamentals outlined in Sec. 2.1–2.5 four analytical concepts
for sound field synthesis were presented:

1. Direct implementation of the Kirchhoff-Helmholtz integral (Sec. 2.5),

2. Wave Field Synthesis (Sec. 2.6.1),

3. The simple source formulation (Sec. 2.6.2), and

4. The single-layer potential approach (Sec. 2.6.3).

Ad 1.: As discussed in the introduction of Sec. 2.6, direct implementation of the
Kirchhoff-Helmholtz integral is inconvenient in practice.

Ad 2.: WFS generally represents a high-frequency approximation.

Ad 3.: The simple source formulation requires the construction of an exterior
problem according to the interior problem under consideration.

The single-layer potential approach can therefore be identified as a promising
candidate for the solution to the problem of sound field synthesis and will be elabo-
rated with a concrete example in Sec. 3.2. One benefit of WFS over the single-layer
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potential approach is the fact that WFS does not require secondary source distribu-
tions which enclose the receiver area. As will be shown in Sec. 3.3–3.5, modifications
of the single-layer potential approach enable the employment of non-enclosing sec-
ondary source distributions for both three-dimensional as well as 21/2-dimensional
synthesis.

What is common to approaches 2.–4. in theory and to all above mentioned ap-
proaches in practice is the fact that interaction of the synthesized sound field with
the listening room has to be expected. This circumstance can have essential impact
on perception. It is not useful to consider the acoustical environment via applica-
tion of the according boundary conditions on the employed Green’s function. This
is due to the fact that these boundary conditions exhibit considerable time vari-
ance, e.g. persons can move inside the room, windows and doors can be opened, and
temperature changes affect the speed of sound in air (Petrausch et al., 2005).

For simplicity, free-field conditions are typically assumed for the synthesis and
methods which actively compensate for the influence of the listening room are
additionally applied. Such methods work preferably adaptively and examples
are (Kirkeby et al., 1998; Betlehem & Abhayapala, 2005; Lopez et al., 2005; Corteel,
2006; Gauthier & Berry, 2006; Spors et al., 2007). This thesis does not consider the
problem of listening room compensation but focuses on the fundamental physical
properties of sound field synthesis systems. Free-field conditions are assumed in the
remainder for convenience.



Chapter 3

Continuous Secondary Source
Distributions

3.1 Introduction

The single-layer potential solution presented in Sec. 2.6.3 requires continuous distri-
butions of secondary sources. Such continuous distributions can not be implemented
in practice with today’s available loudspeaker technology but discrete setups have
to be used. However, the investigation of continuous secondary source distributions
gives valuable insights into the fundamental physical properties of the problem and is
therefore treated in this chapter. The spatial discretization of the secondary source
distribution as performed in practice is treated in Chap. 4.

The theory presented in Sec. 2.6.3 is very flexible in terms of the geometry of
the secondary source contour under consideration provided that the latter simply
encloses the receiver area. Although the solutions to such potentially complicated
contours are mathematically well understood, the required basis functions are only
available for simple geometries like spheroids and similar.

Actually, the complexity of practical implementation restricts the useful geome-
tries to spherical secondary source distributions. These are treated in Sec. 3.2.
However, geometries like circles, planes, and lines of secondary sources have also
been proven to be useful in practice (de Vries, 2009). These latter geometries do
not fulfill the assumptions under which the single-layer potential solution is valid
as explained further below. Modifications of the single-layer potential solution pro-
vide solutions for such imperfect geometries whereby certain restrictions apply as
investigated in detail in Sec. 3.3–3.5.

3.2 Spherical Secondary Source Distributions

When continuous spherical secondary source contours are considered all prerequisites
for the application of the single-layer potential solution presented in Sec. 2.6.3 are
fulfilled.

The sound field S(x, ω) synthesized by a spherical secondary source contour of
radius R centered around the coordinate origin is given by (Ahrens & Spors, 2008a;

39
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Fazi et al., 2009; Zotter et al., 2009)

S(x, ω) =

2π∫

0

π∫

0

D (x0, ω) G (x− x0, ω) sin β dβ dα , (3.1)

with x0 = R [cosα0 sin β0 sinα0 sin β0 cos β0]
T . Refer to Fig. 3.1 for an illustration

of the setup. Eq. (3.1) is generally also referred to as synthesis equation.

x

y

z

R

R

Figure 3.1: Spherical secondary source distribution of radius R centered around the coor-
dinate origin.

Note that, for convenience, an additional restriction is introduced in (3.1) com-
pared to (2.61). Eq. (3.1) implies that G (·) is shift-invariant (G (x− x0, ω) vs.
G
(
x
∣
∣x0, ω

)
in (2.61)). For the considered free-field conditions, this does not consti-

tute a constraint. It will be of relevance for the treatment presented in Sec. 3.2.3.
Reformulating (3.1) explicitly in spherical coordinates as

S(x, ω) =

2π∫

0

π∫

0

D (α0, β0, ω) G (r, R, α− α0, β − β0, ω) sin β dβ dα (3.2)

reveals that for this particular secondary source contour, the invariance has to be
apparent with respect to a rotation around the coordinate origin. Note that (3.2)
may also be formulated as a rotation as it is done in (Driscoll & Healy, 1994; Rafaely,
2004).

3.2.1 Derivation of the Driving Function

Following the procedure outlined in Sec. 2.6.3 requires that S(x, ω), D (x0, ω), and
G (x− x0, ω) are expanded into appropriate orthogonal basis functions in order to



3.2. Spherical Secondary Source Distributions 41

derive a mode-matching equation similar to (2.73). For the geometry under consider-
ation these orthogonal basis functions are given by the spherical surface harmonics
presented in Sec. 2.1.3. This procedure can indeed be straightforwardly applied
yielding the desired result. As will be shown in the treatment of non-enclosing
secondary source contours such as circular, planar, and linear ones it is useful to
derive the mode-matching equation via an alternative yet equivalent procedure as
presented below (Ahrens & Spors, 2008a).

Eq. (3.2) and (3.1) can be interpreted as a convolution along the surface of a
sphere as

S(x, ω) = D
(
x
∣
∣
r=R

, ω
)
∗sph G

(

x− x0

∣
∣
α0=0,β0=0

, ω
)

. (3.3)

In that case, the convolution theorem

S̊m
n (r, ω) = 2πR

√

4π

2n+ 1
D̊m

n (ω) · G̊0
n(r, ω) , (3.4)

applies (Driscoll & Healy, 1994). The convolution theorem (3.4) directly corresponds
to the mode-matching equation (2.73) whereby the former facilitates the interpre-
tation of the involved quantities.

Comparing (3.4) and (3.3) reveals the meaning of the individual quantities ap-
parent in (3.4):

• S̊m
n (r, ω): Spherical harmonics expansion coefficients of the synthesized sound

field.

• D̊m
n (ω): Spherical harmonics expansion coefficients of the driving function.

• G̊0
n(r, ω): Spherical harmonics expansion coefficients of the spatio-temporal

transfer function of the secondary source positioned at (α0 = 0, β0 = 0), i.e. at
the north pole of the secondary source distribution, expanded around the origin
of the coordinate system.

The asymmetry of the convolution theorem (3.4), S̊m
n (r, ω) vs. G̊0

n(r, ω) is a con-
sequence of the definition of (3.1) as left convolution. An according convolution
theorem for right convolutions exists (Driscoll & Healy, 1994).

Rearranging (3.4) yields

D̊m
n (ω) =

1

2πR

√

2n+ 1

4π

S̊m
n (r, ω)

G̊0
n(r, ω)

. (3.5)

When introducing the explicit expressions for the coefficients S̊m
n (r, ω) and G̊0

n(r, ω)
given by (2.21a) into (3.5),

D̊m
n (ω) =

1

2πR

√

2n+ 1

4π

S̆m
n (ω) · jn

(
ω
c
r
)

Ğ0
n(ω) · jn

(
ω
c
r
) , (3.6)

it can be seen that the parameter r appears both in the numerator as well as in
the denominator in (3.6) in the Bessel function jn

(
ω
c
r
)
. For jn

(
ω
c
r
)
6= 0, jn

(
ω
c
r
)

and thus r cancel out directly. For ω
c
r = 0, de l’Hôpital’s rule (Weisstein, 2002)
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can be applied to proof that jn(0) also cancels out. The driving function is thus
independent from the receiver position in these cases.

However, in particular situations, i.e. when jn
(

ω
c
r
)

= 0 and ω
c
r 6= 0, (3.6)

can be undefined. In this case forbidden frequencies arise (Williams, 1999; Fazi &
Nelson, 2010) which represent resonances of the spherical cavity. A mathematical
workaround to get rid of forbidden frequencies and therefore to avoid computational
instabilities in practical implementations is to reference the synthesized sound field
to the center of the secondary source distribution (Williams, 1999). Then, all Bessel
functions in (3.5) cancel out yielding

D̊m
n (ω) =

1

2πR

√

2n+ 1

4π

S̆m
n (ω)

Ğ0
n(ω)

. (3.7)

In order that (3.7) holds, Ğ0
n(ω) may not exhibit zeros which is fulfilled under free-

field conditions.
The secondary source driving function D(α, β, ω) for the synthesis of a desired

sound field with expansion coefficients S̆m
n (ω) is then (Ahrens & Spors, 2008a; Fazi

et al., 2009; Zotter et al., 2009)

D(α, β, ω) =
∞∑

n=0

n∑

m=−n

1

2πR

√

2n+ 1

4π

S̆m
n (ω)

Ğ0
n(ω)

︸ ︷︷ ︸

= D̊m
n (ω)

Y m
n (β, α) . (3.8)

Note that, in practical applications, the summation in (3.8) can not be performed
over an infinite number of addends but has to be truncated. Further discussion of a
suitable choice of summation bounds is carried out in Sec. 4.3.

3.2.2 Synthesized Sound Field

Eq. (3.8) can be verified by inserting it into (3.1). After interchanging the order
of integration and summation and exploitation of the orthogonality of the spherical
harmonics, one arrives at

S(x, ω) =
∞∑

n=0

n∑

m=−n

S̆m
n,i(ω)jn

(ω

c
r
)

Y m
n (β, α) ∀ r < R , (3.9)

which proves perfect synthesis in the interior domain. In the exterior domain, the
synthesized sound field can be determined to be

S(x, ω) =
∞∑

n=0

n∑

m=−n

S̆m
n,i(ω)

Ğ0
n,e(ω)

Ğ0
n,i(ω)

h(2)
n

(ω

c
r
)

Y m
n (β, α) ∀ R < r . (3.10)

Fig. 3.2 depicts the sound field synthesized by a continuous spherical secondary
source distribution or radius R = 1.5 m driven in order to synthesize a virtual
plane wave of unit amplitude. The according coefficients are given in explicit form
in (2.26) and (2.27). Both the interior and exterior domain are shown in Fig. 3.2.
Note that the sound field in the exterior domain corresponds to the scattered field
in the equivalent scattering problem Sec. 2.6.2.



3.2. Spherical Secondary Source Distributions 43

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x (m)

y
(m

)

(a) ℜ{S(x, ω)}

 

 

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−10

−5

0

5

10

x (m)

y
(m

)

(b) 20 · log10 |S(x, ω)|; Values are clipped as indicated
by the colorbar.

Figure 3.2: A virtual plane wave of unit amplitude and of frequency fpw = 1000 Hz propa-
gating into direction (θpw, φpw) =

(
−π

2 , π
2

)
synthesized by a continuous distri-

bution of secondary monopole sources. A cross-section through the horizontal
plane is shown. The black line indicates the secondary source distribution.

3.2.3 Incorporation of Secondary Sources With Complex
Radiation Properties

The solutions derived in Sec. 2.6.3 and 3.2.1 assume a single layer of a harmonic
sound pressure potential which can be interpreted as a layer of monopole sound
sources. However, the latter are generally not available in practice when the en-
tire audible frequency range is considered. Practical implementations rather employ
loudspeakers with closed cabinets. These can indeed be assumed to be omnidirec-
tional as long as the considered wavelength is significantly larger that the dimensions
of the loudspeaker, thus at low frequencies. At higher frequencies, complex radiation
patterns evolve (Fazi et al., 2008a).

As mentioned in Sec. 2.2.3, sound sources of finite spatial extent can also be rep-
resented by multipoles which are combinations of monopoles located at infinitesimal
distance from each other. If an appropriate combination of acoustically transparent
single-layer potentials – thus a multi-layer potential – is assumed secondary sources
with complex radiation properties can be handled as shown below. Recall that
G(x, ω) has to be shift-invariant in order for the derivation outlined in Sec. 3.2.1 to
hold. This means that all employed secondary sources have to exhibit equal radi-
ation characteristics and have to be orientated appropriately. Note that in a strict
sense, it is not appropriate to term G(x, ω) a Green’s function when it is represented
by a multipole since a multipole does not satisfy (2.48). For convenience, the symbol
G(x, ω) is used nevertheless.

It was mentioned in Sec. 3.2.1 that the coefficients Ğ0
n,i(ω) apparent in the driving

function (3.8) represent the spatio-temporal transfer function of a secondary source
which is positioned at the north pole of the sphere, thus at x0 = [0 0 R]T . The
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expansion center is the origin of the coordinate system. This follows directly from
the convolution theorem (3.3) or (3.4) respectively.

However, typical loudspeaker directivity measurements such as (Fazi et al.,

2008a) or similar yield the coefficients Ğ′
m′

n′,e(ω) (see below) of an expansion of the
loudspeaker’s spatio-temporal transfer function around the acoustical center of the
loudspeaker. The acoustical center of a loudspeaker is referred to as the position
of the latter in the remainder. For convenience, it is assumed in the following that
the loudspeaker under consideration is positioned at x0 = [0 0 R]T and is orientated
towards the origin of the global coordinate system.

x

y

z

x′

y′
z′

R

R

Figure 3.3: Local coordinate system with origin at position x0 = [0 0 R]T . The sphere
indicates the secondary source distribution.

A local coordinate system is established with origin at x0 which can be
transformed into the global coordinate system via a simple translation (refer to
Fig. 3.3) (Ahrens & Spors, 2010b). Then, the spatio-temporal transfer function
Ge(x

′, ω) of the considered loudspeaker with respect to the local coordinate system
can be described as

Ge(x
′, ω) =

∞∑

n′=0

n′
∑

m′=−n′

Ğ′
m′

n′,e(ω) h
(2)
n′

(ω

c
r′
)

Y m′

n′ (β ′, α′) (3.11)

with respect to the local coordinate system. Note that

x′ = x′(x) = x + ∆x = x− R~ez , (3.12)

with ∆x = [0 0 R]. ~ez denotes the unit vector pointing into positive z-direction.
The translation of the coordinate system required in order to obtain the coef-

ficients Ğ0
n,i(ω) required by the secondary source driving function (3.8) from the

directivity coefficients Ğ′
m′

n′,e(ω) can be performed using the translation theorem de-

scribed in (E.3) and (E.4). Doing so results in a presentation of Ğ0
n,i(ω) which is
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dependent on all coefficients Ğ′
m′

n′,e(ω). As will be shown below, an alternative for-
mulation provided by (Gumerov & Duraiswami, 2004) leads to a representation of

Ğ0
n,i(ω) which requires only a subset of Ğ′

m′

n′,e(ω).
The required translation from the local coordinate system to the global one

takes place coaxially in negative z-direction. This can be expressed in terms of a
translation in positive z-direction as (Gumerov & Duraiswami, 2004, (3.2.54), p. 103;
(3.2.86), p. 113)

Gi(x, ω) =

∞∑

n=0

n∑

m=−n

∞∑

n′=|m|

Ğ′
m

n′,e(ω) (−1)n+n′

(E|I)m
n n′ (∆r, ω)

︸ ︷︷ ︸

= Ğm
n,i(ω)

jn

(ω

c
r
)

Y m
n (β, α) ,

(3.13)
whereby (E|I)m

n n′ (∆r, ω) are termed coaxial translation coefficients. The notation
(E|I) indicates that the translation represents a change from an exterior expansion
to an internal expansion. Note that m′ is replaced with m in (3.13) for convenience.

From the driving function (3.8) it can be deduced that not all coefficients Ğm
n,i(ω)

are needed but only Ğ0
n,i(ω)

Ğ0
n,i(ω) =

∞∑

n′=|m|

Ğ′
0

n′,e(ω) (−1)n+n′

(E|I)0n n′ (∆r, ω) . (3.14)

This reveals that only the subset Ğ′
0

n′,e(ω) of the secondary source directivity coef-

ficients Ğ′
m′

n′,e(ω) need to be known. The former represent those modes of G(x′, ω)
which are symmetric with respect to rotation around the vertical axis through the
expansion center.

This fact further facilitates the translation significantly. The required zonal
translation coefficients can be computed from combinations of the initial val-
ues (Gumerov & Duraiswami, 2004, (3.2.103), p. 116; (3.2.96), p. 115)

(E|I)0
n 0(∆r, ω) = (−1)n

√
2n + 1 h(2)

n

(ω

c
∆r
)

(3.15)

(E|I)00 n′(∆r, ω) =
√

2n′ + 1 h
(2)
n′

(ω

c
∆r
)

(3.16)

via the recursion formula (Gumerov & Duraiswami, 2004, (3.2.90), p. 113)

an′−1(E|I)0
n n′−1(∆r, ω)− an′(E|I)0n n′+1(∆r, ω)

= an(E|I)0
n+1n′(∆r, ω)− an−1(E|I)0

n−1n′(∆r, ω) , (3.17)

with (Gumerov & Duraiswami, 2004, (2.2.8), p. 67)

an =
n+ 1

√

(2n+ 1)(2n+ 3)
. (3.18)

Note that a−1 = 0.
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It can be shown that the zonal translation coefficients are of the form (Ahrens
& Spors, 2010b)

(E|I)0nn′ (∆r, ω) =
n′
∑

l′=0

cl
′,n,n′

h
(2)
n+2l′−n′

(ω

c
∆r
)

, (3.19)

whereby cl
′,n,n′

is a real number derived from (3.15)–(3.18).
In order that the driving function (3.8) is defined neither mode Ğ0

n,i(ω) may

exhibit zeros. From (3.14) it can be seen that each mode of Ğ0
n,i(ω) is given by

a summation over all coefficients Ğ′
0

n′,e(ω) multiplied by the respective translation

coefficient (E|I)0
n n′ (R, ω). The translation coefficients (E|I)0n n′ (R, ω) are linear

combinations of spherical Hankel functions of the same argument but of different
orders (refer to (3.19)). Spherical Hankel functions of different orders are linearly
independent (Williams, 1999). Thus, since spherical Hankel functions do not ex-
hibit zeros, a linear combination of spherical Hankel functions and therefore the
translation coefficients do not exhibit zeros either. The fact of whether Ğ0

n,i(ω) van-
ishes or not is thus essentially dependent on the properties of the secondary source

directivity coefficients Ğ′
0

n′,e(ω).

Secondary source directivity coefficients Ğ′
0

n′,e(ω) yielded from measurements of
real loudspeakers do not per se result in a well-behaved driving function. Therefore
(preferably frequency dependent) regularization has to be applied in order to yield
a realizable solution. Contrary to conventional multichannel regularization, the pre-
sented approach allows for independent regularization of each mode n of the driving
function. Thereby, stable modes need not be regularized while the regularization of
individual unstable modes can be assumed to be favorable compared to conventional
regularization of the entire filter (Ahrens & Spors, 2010b).

The fact that only the coefficients Ğ′
0

n′,e(ω) need to be measured or modeled
provides potential to facilitate the implementation of the presented approach in

practice. Conventional methods of measuring Ğ′
m′

n′,e(ω) such as (Fazi et al., 2008a)
employ spherical microphone arrays which require an enormous amount of micro-
phones even for a moderate spatial resolution. It might be possible to exploit the

rotational symmetry of the basis functions for the coefficients Ğ′
0

n′,e(ω) in order to
significantly reduce the number of microphones employed in the measurement so
that e.g. an arch of microphones is sufficient instead of a full sphere.

Recall that a method enabling the employment of secondary sources with com-
plex radiation characteristics in WFS was proposed in (de Vries, 1996). Contrary
to this method the approach outlined above does not constitute an approximation
but provides exact results.

Example

In order to illustrate the general properties of the presented approach a spherical
distribution of highly directional secondary sources whose spatio-temporal transfer

function is given by the coefficients Ğ′
m′

n′,e(ω) given by (2.30) with (α′
or, β

′
or) = (0, π)

and N ′ = 13 is considered in the following. The normalized far-field signature
function of G(·) is depicted in Fig. 3.4(a).
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(a) Normalized far-field signature func-
tion of the secondary sources employed in
Fig. 3.4(b).
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(b) Sound field synthesized using secondary
sources exhibiting the transfer function de-
picted in Fig. 3.4(a). A cross-section through
the horizontal plane is shown. The black line
indicates the secondary source distribution.

Figure 3.4: Synthesis of a virtual plane wave of unit amplitude and of frequency fpw =
700 Hz propagating into direction (θpw, φpw) =

(
−π

2 , π
2

)
using secondary

sources with complex radiation properties.

Fig. 3.4(b) depicts a continuous spherical distribution of secondary sources with
a directivity as explained above synthesizing a virtual plane wave of fpw = 700 Hz.
As theoretically predicted, the virtual sound field is indeed perfectly synthesized
inside the secondary source distribution. Outside the secondary source distribution
the synthesized sound field is considerably different to that sound field synthesized
by secondary monopoles in Fig. 3.2(a).

3.2.4 Near-Field Compensated Higher Order Ambisonics

The Ambisonics approach was proposed in the early 1970s in order to provide a
three-dimensional listening experience, e.g. (Gerzon, 1973). Although initially mo-
tivated from a physical perspective – though without explicit physical justification
– it employed a number of simplifications in order to yield simple practical solu-
tions. The most essential simplification applied is the assumption that the sec-
ondary sources radiate plane waves which results in pure amplitude panning driving
functions for simple secondary source setups (Daniel, 2001).

Practical implementations were typically realized with only a handful of loud-
speakers, so that one can not speak of a physical synthesis of a sound field. The
success of Ambisonics has later been attributed to psycho-acoustical properties of
the human auditory system (Gerzon, 1992) and psycho-acoustic criteria have been
included into the approach (Gerzon, 1980).

In (Bamford, 1995; Daniel, 2001), the traditional Ambisonics approach was then
extended by systematically undoing the simplifications which were initially carried
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out and increasing the resolution to Higher Order Ambisonics (HOA). The term
higher order reflects the fact that the latter approach employs higher orders than
first order as in the traditional approach.

Finally, the secondary sources were modeled as monopole sources which lead to
the approach which is referred to as Near-field Compensated Higher Order Ambison-
ics (NFC-HOA) (Daniel, 2003) and the term sound field synthesis is justified here.
The term near-field in this particular context represents the fact that the secondary
sources are not assumed to be at infinite distance.

In the NFC-HOA approach, the secondary sources are typically located on the
surface of a sphere. Mathematically, the involved quantities are expanded into series
of spherical harmonics which allows for a mode-matching procedure which leads to an
equation system that is solved for the optimal loudspeaker driving functions. These
drive the loudspeakers such that their superposed sound fields best approximate the
desired one in a given sense:

S(x, ω) =

L−1∑

l=0

D (xl, R, ω) ·G (x− xl, ω) , (3.20)

where S(x, ω) denotes the desired sound field, D(xl, R, ω) the driving function of
the loudspeaker located at position

xl = R · [cosαl sin βl sinαl sin βl cosβl]
T ,

and G(x − xl, ω) its spatio-temporal transfer function. Typically, numerical algo-
rithms are employed to find the appropriate loudspeaker driving functions.

Modern formulations of NFC-HOA, e.g. (Fazi et al., 2009; Zotter et al., 2009),
assume a continuous secondary source distribution and the mode-matching is solved
analytically. Reformulating (3.20) in an analytical manner leads directly to (3.1).
The convolution theorem (3.4) is the analog to the mode-matching which is per-
formed in the NFC-HOA approach.

It can therefore be concluded that modern formulations of NFC-HOA and com-
parable constitute the single-layer potential solution to the problem of sound field
synthesis employing spherical secondary source contours thus retroactively physi-
cally justifying these approaches.

From a modern perspective, the terms Lower-resolution Ambisonics for the con-
ventional approach including HOA and Higher-resolution Ambisonics for NFC-HOA
seem more appropriate since the application of the near-field compensation is a more
fundamental property than the number of orders considered.

3.3 Circular Secondary Source Distributions

Sound field synthesis systems are frequently restricted to synthesis in the horizontal
plane and secondary sources are arranged on a circle. In this case, the propagation
direction of the synthesized sound field can only be controlled in the horizontal
plane. For such a setup the free-field Green’s function required by the single-layer
approach presented in Sec. 2.6.3 can be interpreted as the spatial transfer function
of a line source perpendicular to the target plane (Williams, 1999). This case is
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treated e.g. in (Poletti, 2000; Wu & Abhayapala, 2009). A variety of such purely
two-dimensional problems are treated in (Spors, 2005; Rabenstein et al., 2006).

However, horizontal implementations of sound field synthesis systems usually
employ loudspeakers with closed cabinets whose spatial transfer function is three-
dimensional. This secondary source type mismatch prevents perfect synthesis of
arbitrary source-free sound fields inside the receiver plane since the assumption
of an enclosing distribution on which the single-layer potential approach bases is
violated and a 21/2-dimensional scenario is considered. Refer also to Sec. 2.6.1.

As will be shown below, the procedure of finding the single-layer potential so-
lution to the problem as presented in Sec. 3.2.1 leads to a useful solution which
is yet imperfect as a consequence of the underlying fundamental physical limita-
tions (Ahrens & Spors, 2008a).

For convenience, it is assumed in the following that only horizontally propagating
sound fields are desired to be synthesized. The question of how such a perceptually
adequate horizontal projection of a three-dimensional sound field can be obtained
has not been investigated in detail so far.

3.3.1 Derivation of the Driving Function

For a circular secondary source distribution of radius R which is located inside
the horizontal plane and centered around the origin of the coordinate system, the
synthesis equation is given by (Ahrens & Spors, 2008a)

S(x, ω) =

2π∫

0

D(α0, ω) ·G(x− x0, ω) R dα0 (3.21)

=

2π∫

0

D(α0, ω) ·G
(

r, R, α− α0, β −
π

2
, ω
)

R dα0 , (3.22)

with x0 = R [cosα0 sinα0 0]T . Refer to Fig. 3.5.

x

y

z

R

Figure 3.5: Circular secondary source distribution of radius R in the horizontal plane and
centered around the coordinate origin.

Eq. (3.22) can be interpreted as a circular convolution and thus the convolution
theorem (Girod et al., 2001)

S̊m(r, ω) = 2πR D̊m(ω) G̊m(r, ω) (3.23)
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and therefore

D̊m(ω) =
1

2πR

S̊m(r, ω)

G̊m(r, ω)
(3.24)

relating the Fourier series expansion coefficients D̊m(ω), S̊m(r, ω), and G̊m(r, ω) ap-
plies.

Comparing (3.23) and (3.22) reveals the meaning of the individual quantities
apparent in (3.23):

• S̊m(r, ω): Fourier-series expansion coefficients of the synthesized sound field.

• D̊m(ω): Fourier-series expansion coefficients of the driving function.

• G̊m(r, ω): Fourier-series expansion coefficients of the spatio-temporal transfer
function of the secondary source positioned at

(
α0 = 0, β0 = π

2

)
, i.e. at x0 =

[R 0 0]T .

With (3.24) and (2.24), D(α, ω) can be determined to be

D(α, ω) =
∞∑

m=−∞

1

2πR

S̊m(r, ω)

G̊m(r, ω)
eimα . (3.25)

Introducing the explicit formulation of the Fourier series expansion coefficients
S̊m(r, ω) and G̊m(r, ω) given by (2.23) into (3.25) yields the explicit driving function
D(α, ω). Analysis of the latter reveals that unlike the case of spherical secondary
source distributions treated in section Sec. 3.2.1, the radius r does not cancel out. r
appears both in the numerator as well as in the denominator in the summation over
n in the argument of the spherical Bessel function jn

(
ω
c
r
)
. The driving function is

therefore dependent on the receiver position. This finding has already been derived
in (Ward & Abhayapala, 2001). It is thus required to reference the synthesized
sound field to a specific radius which is then the only location where the synthesis
is correct. For convenience, the center of the secondary source distribution (r = 0)
is chosen.

At a first stage, setting r = 0 in (3.25) leads to an undefined expression of
the form 0

0
for n 6= 0 since spherical Bessel functions of argument 0 equal 0 ∀n 6=

0. Application of de l’Hôpital’s rule (Weisstein, 2002) proves that the expression
is defined for r = 0 and finally yields the driving function D2.5D(α, ω) for 21/2-
dimensional synthesis as (Ahrens & Spors, 2008a)

D2.5D(α, ω) =

∞∑

m=−∞

1

2πR

S̆m
|m|(ω)

Ğm
|m|(ω)

eimα . (3.26)

Note that the summation over n in (2.23) reduces to a single addend with n =
|m| (Gumerov & Duraiswami, 2004, p. 49).

As with the driving function for spherical secondary source distributions treated
in Sec. 3.2.1, the summation in (3.8) can not be performed over an infinite num-
ber of addends in practical applications. Further discussion of a suitable choice of
summation bounds is carried out in Sec. 4.4.
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3.3.2 Synthesized Sound Field

The sound field S2.5D(x, ω) synthesized by the circular secondary source distribution
can be deduced from (3.23), (3.26) and (2.23) as (Ahrens & Spors, 2008a)

S(x, ω) =

∞∑

n=0

n∑

m=−n

S̆m
|m|,i(ω)

Ğm
n,i(ω)

Ğm
|m|,i(ω)

jn

(ω

c
r
)

Y m
n (β, α) ∀ r < R , (3.27)

and

S(x, ω) =
∞∑

n=0

n∑

m=−n

S̆m
|m|,i(ω)

Ğm
n,e(ω)

Ğm
|m|,i(ω)

h(2)
n

(ω

c
r
)

Y m
n (β, α) ∀ R < r . (3.28)

Fig. 3.6 depicts the sound field synthesized by a continuous circular secondary
monopole distribution with R = 1.5 m driven in order to synthesize a virtual plane
wave of fpw = 1000 Hz with propagation direction (θpw, φpw) =

(
−π

2
, π

2

)
.
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(a) ℜ{S2.5D,pw(x, ω)}

 

 

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−5

0

5

10

x (m)

y
(m

)

(b) 20 · log10 |S2.5D,pw(x, ω)|

Figure 3.6: Sound pressure S2.5D,pw(x, ω) of a continuous circular distribution with radius
R = 1.5 m of secondary monopole sources synthesizing a virtual plane wave
of fpw = 1000 Hz and unit amplitude with propagation direction (θpw, φpw) =
(
−π

2 , π
2

)
referenced to the coordinate origin. The secondary source distribution

is indicated by the black line.

From Fig. 3.6(a) it can be seen that the wave fronts of S(x, ω) in the interior
domain are not perfectly straight inside the horizontal plane but slightly concave.
An amplitude decay of approximately 3 dB per doubling of the distance is apparent
when following the propagation path of the plane wave (Ahrens & Spors, 2008a).
Fig. 3.6(b) further illustrates this amplitude decay by depicting the magnitude of
the sound pressure in logarithmic scale. This inherent amplitude error is typical for
21/2-dimensional synthesis and is also known from WFS (Sonke et al., 1998). Further
investigation of the synthesized sound field reveals that subtle spectral alterations
are present in the temporal broadband case. Refer also to Sec. 4.4.3 for a further
analysis.
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3.3.3 Incorporation of Secondary Sources With Complex
Radiation Properties

x

R

y

z

x′

y′
z′

Figure 3.7: Local coordinate system with origin at x0 = [R 0 0]T . The gray line indicates
the secondary source distribution.

Similarly to the case of spherical secondary source distributions treated in
Sec. 3.2.3, a multi-layer potential has to be assumed if secondary sources with com-
plex radiation characteristics have to be considered.

As outlined in Sec. 3.3.1, the coefficients Ğm
|m|,i(ω) apparent in the driving func-

tion (3.26) describe the spatio-temporal transfer function of a secondary source
which is positioned at x0 = [R 0 0]T . The expansion center is the origin of the
coordinate system. This follows directly from the convolution theorem (3.23).

In order to derive the coefficients Ğm
|m|,i(ω) apparent in the driving function in

terms of the coefficients Ğ′
m′

n′,e(ω) (Sec. 3.2.3) a local coordinate system with origin
at x0 is established which can be transformed into the global coordinate system by
a simple translation (Ahrens & Spors, 2009a). Refer to Fig. 3.7.

Then, the spatio-temporal transfer function G(x′, ω) of the considered loud-
speaker can be described by (3.11) with respect to the local coordinate system.
In this case,

x′ = x′(x) = x + ∆x , (3.29)

with ∆x = [R 0 0], ∆r = R, ∆α = 0, and ∆β = π
2
.

As with spherical secondary source distributions in Sec. 3.2.3, it is beneficial
to employ the formulation presented in (Gumerov & Duraiswami, 2004) for the
translation of the coordinate system instead of using (E.4). In the present case, the
translation from the local coordinate system to the global one takes place coaxially
in negative x-direction.

As shown in App. E.1, G(x, ω) can be expressed in the interior domain with
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respect to the global coordinate system as

G(x, ω) =

∞∑

n=0

n∑

m=−n

∞∑

n′=0

n′
∑

m′=−n′

Ğ′
m′

n′,e(ω) (−1)n+n′

(E|I)m m′

n n′ (∆x, ω)

︸ ︷︷ ︸

= Ğm
n,i(ω)

jn

(ω

c
r
)

Y m
n (β, α) . (3.30)

From the driving function (3.26) it can be deduced that not all coefficients Ğm
n,i(ω)

are required but only Ğm
|m|,i(ω) so that

Ğm
|m|,i(ω) =

∞∑

n′=0

n′
∑

m′=−n′

Ğ′
m′

n′,e(ω) (−1)|m|+n′

(E|I)m m′

|m|n′ (∆x, ω) . (3.31)

This facilitates the translation because the sectorial translation coeffi-
cients (E|I)m m′

|m|n′ (∆x, ω) are easier to calculate than the tesseral coefficients

(E|I)m m′

n n′ (∆x, ω) (Gumerov & Duraiswami, 2004, p. 108). The symmetry rela-
tion (Gumerov & Duraiswami, 2004, eq. (3.2.49), p. 103)

(E|I)m m′

|m|n′ (∆x, ω) = (−1)|m|+n′

(E|I)−m′ −m
n′|m| (∆x, ω) (3.32)

can be exploited.
The sectorial translation coefficients on the right hand side of (3.32) can be com-

puted recursively from combinations of the initial value (Gumerov & Duraiswami,
2004, eq. (3.2.5), p. 95)

(E|I)m′ 0
n′ 0 (∆x, ω) =

√
4π (−1)n′

h
(2)
n′

(ω

c
∆r
)

Y −m′

n′ (∆β,∆α) (3.33)

via the recursion formulae (E.6) and (E.7) given in App. E.2.
Also required is the initial value (Gumerov & Duraiswami, 2004, eq. (3.2.51),

p. 103)

(E|I)0 m
0 |m|(∆x, ω) =

√
4π h

(2)
|m|

(ω

c
∆r
)

Y m
|m| (∆β,∆α) . (3.34)

It can be shown that the sectorial translation coefficients are of the form (Ahrens &
Spors, 2009a)

(E|I)m m′

|m|n′ (∆x, ω) =

|m|
∑

l′=0

cl
′,m′,n′,mh

(2)
n′−|m|+2l′

(ω

c
R
)

Pm′−m
n′−|m|+2l′(0) , (3.35)

whereby cl
′,m′,n′,m is a real number derived from (3.33), (3.34), (E.6), (E.7),

and (E.8). All factors in (3.35) are always different from zero except for Pm′−m
n′−|m|+2l′(0)

which exhibits zeros wherever n′−|m|+2l′ +m′−m is odd (Abramowitz & Stegun,
1968). The latter is equivalent to the case of n′ + m′ being odd. To take account
for this, the summations in (3.31) are modified as

Ğm
|m|,i(ω) =

∞∑

n′=0

n′
∑

k′=0

Ğ′
2k′−n′

n′,e (ω) (−1)|m|+n′

(E|I)m, 2k′−n′

|m|, n′ (∆x, ω) . (3.36)
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(a) Normalized far-field signature function of the
secondary sources employed in Fig. 3.8(b).
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(b) Sound field synthesized using secondary
sources exhibiting the transfer function de-
picted in Fig. 3.8(a). A cross-section through
the horizontal plane is shown. The black line
indicates the secondary source distribution.

Figure 3.8: Synthesis of a virtual plane wave of unit amplitude and of frequency fpw =
700 Hz propagating into direction (θpw, φpw) =

(
−π

2 , π
2

)
using secondary

sources with complex radiation properties.

This reveals that only the coefficients Ğ′
2k′−n′

n′,e (ω) have to be known in order to
compute the directivity filter which potentially facilitates practical measurement or
modeling.

The properties of Ğ′
2k′−n′

n′,e (ω) in the present case are similar to those of the
coefficients apparent with spherical secondary source distributions so that the reader
is referred to Sec. 3.2.3 for details (Ahrens & Spors, 2009a).

Example

In order to illustrate the presented approach a circular distribution of highly di-
rectional secondary sources whose spatio-temporal transfer function is given by the

coefficients Ğ′
m′

n′,e(ω) (eq. (2.30)) with (α′
or, β

′
or) =

(
π, π

2

)
and N ′ = 13. The nor-

malized far-field signature function of G(·) is depicted in Fig. 3.8(a).

The translation theorems presented in App. E.1 were employed in the simulation
in Fig. 3.8(b) in order to determine the coefficients S̆m

n (ω) for n 6= |m|.
Fig. 3.8(b) depicts a continuous circular distribution of secondary sources with

a directivity as explained above synthesizing a virtual plane wave of fpw = 700 Hz.
Inside the secondary source distribution, the synthesized sound field is similar to
that sound field synthesized by secondary monopoles (Fig. 3.6(a)). Outside of the
secondary source distribution the two sound fields differ considerably.
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3.4 Planar Secondary Source Distributions

In order find the driving function for planar secondary source distributions, the
single-layer potential formulation from Sec. 2.6.3 is modified. Assume a volume en-
closed by a uniform single layer. The boundary consists of a disc Ω0 and a hemisphere
Ωhemi of radius rhemi as depicted in Fig. 3.9 (Williams, 1999, p. 275). As rhemi →∞,
the disc Ω0 turns into an infinite plane and the volume under consideration turns
into a half-space. The latter is referred to as target half-space. Additionally, the
Sommerfeld radiation condition (2.47) is invoked, i.e. it is assumed that there are no
contributions to the desired sound field to be synthesized which originate from infin-
ity so that only the planar part of the boundary needs to be considered (Ahrens &
Spors, 2010c). Note that similarity of the considered scenario to the one represented
by the Rayleigh integral (2.52).

Ωi

Ω0

Ωhemi

rhemi

Figure 3.9: Cross-section through a boundary consisting of a hemisphere and a disc.

As a consequence, arbitrary sound fields which are source-free in the target half-
space and which satisfy the Sommerfeld radiation condition may now be described
by an integration over the infinite plane Ω0. For convenience, it is assumed in
the following that the boundary of the target half-space (i.e. the secondary source
distribution) is located in the x-z-plane, and the target half-space is assumed to
include the positive y-axis as depicted in Fig. 3.10.

3.4.1 Derivation of the Driving Function

The synthesis equation for an infinite uniform planar secondary source distribution
is given by (Ahrens & Spors, 2010c; Ahrens & Spors, 2010d)

S(x, ω) =

∞∫∫

−∞

D(x0, ω) ·G(x− x0, ω) dx0dz0 . (3.37)

with x0 = [x0 0 z0]
T . Here, (3.37) implies that G(·) is invariant with respect to trans-

lation along the secondary source contour (Williams, 1999). Note the resemblance
of (3.37) to the Rayleigh integral (2.52) (Berkhout, 1987; Williams, 1999).
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x

y

z

← y = 0

Figure 3.10: Illustration of the setup of a planar secondary source situated along the x-
z-plane. The secondary source distribution is indicated by the grey shading
and has infinite extent. The target half-space is the half-space bounded by
the secondary source distribution and containing the positive y-axis.

Eq. (3.37) essentially constitutes a two-dimensional convolution along the spatial
dimensions x and z respectively. This fact is revealed when (3.37) is rewritten
as (Ahrens & Spors, 2010c; Ahrens & Spors, 2010d)

S(x, ω) =

∞∫∫

−∞

D
(
[x0 0 z0]

T, ω
)
G
(
[x y z]T − [x0 0 z0]

T, ω
)
dx0dz0

=

∞∫∫

−∞

D(x0, 0, z0, ω) G(x− x0, y, z − z0, ω) dx0dz0

= D
(

x
∣
∣
y=0

, ω
)

∗x∗z G(x, ω) , (3.38)

where the asterisk ∗i denotes convolution with respect to the indexed spatial dimen-
sion (Girod et al., 2001). Thus, the convolution theorem

S̃ (kx, y, kz, ω) = D̃ (kx, kz, ω) · G̃ (kx, y, kz, ω) (3.39)

holds (Girod et al., 2001).
The secondary source driving function D̃ (kx, kz, ω) in wavenumber domain is

given by

D̃ (kx, kz, ω) =
S̃ (kx, y, kz, ω)

G̃ (kx, y, kz, ω)
, (3.40)
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and in time-frequency domain by (Ahrens & Spors, 2010c; Ahrens & Spors, 2010d)

D(x, z, ω) =
1

4π2

∞∫∫

−∞

S̃ (kx, y, kz, ω)

G̃ (kx, y, kz, ω)
e−i(kxx+kzz) dkxdkz . (3.41)

In order that D̃(kx, kz, ω) and D(x, z, ω) are defined G̃(kx, y, kz, ω) may not exhibit
zeros.

Note that G̃ (kx, y, kz, ω) is the spatial spectrum of the secondary source located
at the coordinate origin. This follows directly from (3.38) and (3.39). The in-
corporation of measured or modeled complex secondary source transfer functions is
straightforward and does not require a translation of the coordinate system as it was
the case for spherical and circular secondary source contours (Sec. 3.2.3 and 3.3.3,
respectively).

Eq. (3.41) suggests that D(x, z, ω) is dependent on the distance y of the receiver
to the secondary source distribution since y is apparent on the right hand side
of (3.41). It will be shown in Sec. 3.4.3 that under certain circumstances, y does
indeed cancel out making D(x, z, ω) independent from the location of the receiver.

3.4.2 Physical Interpretation

Integrals like (3.37) are termed Fredholm integrals (Morse & Feshbach, 1953). One
remarkable fundamental property of Fredholm integrals is the fact that – contrary
to the Fredholm operators which represent enclosing secondary source distributions
as discussed in Sec. 2.6.3 – the solution always exists (Morse & Feshbach, 1953).
Practically speaking, resonances in the target volume can not evolve.

Since the physical fundamentals given by the Fredholm integral theory suggest
that any sound field satisfying the Sommerfeld radiation condition (Sec. 2.3.3) can be
perfectly synthesized by a continuous planar distribution of appropriate secondary
sources, the driving function (3.41) must be independent of y. It is therefore justified
to set y = 0 in (3.41) which yields

D(x, z, ω) =
1

4π2

∞∫∫

−∞

S̃ (kx, 0, kz, ω)

G̃ (kx, 0, kz, ω)
︸ ︷︷ ︸

= Ď(kx,kz,ω)

e−i(kxx+kzz) dkxdkz . (3.42)

Comparison of (3.42) and (2.38a) reveals that the ratio of S̃ (kx, 0, kz, ω) and
G̃ (kx, 0, kz, ω) constitutes the angular spectrum representation Ď(kx, kz, ω) of the
driving function D(x, z, ω).

Comparison of (3.37) and (2.40) suggests that the driving function D(x, z, ω)

acts as a representation of S
(

x
∣
∣
x=0,z=0

, ω
)

on the secondary source contour. The

relation of S
(

x
∣
∣
x=0,z=0

, ω
)

to the sound field S (x, ω) in the target half-space is

represented by the Green’s function G (x− x0, ω) which serves as propagator.
Finally, the angular spectrum representation outlined in Sec. 2.2.6 can signifi-

cantly facilitate the derivation of driving functions. As mentioned in Sec. 2.2.6, the
angular spectrum representation constitutes a representation of a given sound in
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terms of a continuum of plane waves with respect to a reference plane. That means
if the reference plane coincides with the secondary source distribution and the ac-
cording angular representation of the sound field under consideration is known, then
the driving function for synthesis of this sound field can be obtained from the driv-
ing function of a plane wave. Plane waves have to be combined according to the
sound field’s angular representation. An explicit solution to (3.37) for the sound
field under consideration is therefore not required.

Refer to Sec. 3.4.3 for the calculation of the plane wave driving function.

3.4.3 Synthesized Sound Field And Example Driving Func-
tion

The sound field synthesized by a continuous planar secondary monopole distribution
driven according to (3.41) is yielded by inserting (3.41) into (3.37). To solve the
integrals one has to substitute u = x0 − x and v = z0 − z and follow the procedure
outlined in appendix C.2. One arrives then at (C.2) proofing perfect synthesis in
the target half-space (Ahrens & Spors, 2010d).

In the remainder of this section, the derivation of the driving function for a
sample plane wave of given propagation direction to be synthesized by a continuous
planar distribution of secondary point sources is demonstrated.

The explicit expressions for S̃(kx, y, kz, ω) and G̃(kx, y, kz, ω) are derived in the
appendices and are given by (C.4) and (C.9). Due to the constrained validity of the
involved transformations, the following equations are only valid for kpw,y > 0 (refer
to App. C), i.e. for plane waves propagating into the target half-space.

Inserting (C.4) and (C.9) into (3.40) and exploiting the sifting property of the
delta function (Girod et al., 2001) yields

D̃(kx, kz, ω) = 8π2jkpw,y · δ(kx − kpw,x) δ(kz − kpw,z) 2πδ(ω − ωpw) . (3.43)

Note that D̃(kx, kz, ω) is indeed independent from y under the given assumptions.
Finally, the driving function is given by

D(x, z, ω) = 2jkpw,y e
−jkpw,xx e−jkpw,zz 2πδ(ω − ωpw) . (3.44)

Transferred to the time domain and formulated for broadband signals using (Girod
et al., 2001), (3.44) reads (Ahrens & Spors, 2010c; Ahrens & Spors, 2010d)

d(x, z, t) =
2

c
sin θpw sinφpw

∂

∂t
ŝ
(

t− x

c
cos θpw sinφpw −

z

c
cosφpw

)

, (3.45)

where ŝ(t) denotes the time domain signal that the plane wave carries. Thus, the
driving signal for a secondary source at a given location is yielded by differentiating
the time domain input signal with respect to time and weighting and delaying it. The
differentiation and the weight are independent from the position of the secondary
sources and can therefore be performed on the input signal. The delay is depen-
dent both on the propagation direction of the desired plane wave as well as on the
position of the secondary source. It therefore has to be performed individually for
each secondary source. This constitutes a computationally efficient implementation
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scheme compared to the numerical approaches in (Ward & Abhayapala, 2001; Han-
nemann & Donohue, 2008; Kirkeby & Nelson, 1993). The implementation scheme
of the presented approach is similar to that of WFS (Spors et al., 2008) (refer also
to Sec. 2.6.1).

Finally, note that the temporal differentiation in (3.45) compensates for the
spatial integration taking place in (3.37).

3.5 Linear Secondary Source Distributions

Despite the simple driving function for the planar secondary source array, this setup
will be rarely implemented due to the enormous amount of loudspeakers necessary.
Typically, audio presentation systems employ linear arrays or a combination thereof.
For convenience, the secondary source array is assumed to be along the x-axis (thus
x0 = [x0 0 0]T , refer to Fig. 3.11).

x

y

z

y = yref

տ

Figure 3.11: Illustration of the setup of a linear secondary source situated along the x-
axis. The secondary source distribution is indicated by the grey shading and
has infinite extent. The target half-plane is the half-plane bounded by the
secondary source distribution and containing the positive y-axis. Thin dotted
lines indicate the reference line (see text).

3.5.1 Derivation of the Driving Function

For above described setup the synthesis equation is given by (Ahrens & Spors, 2010c;
Ahrens & Spors, 2010d)

S(x, ω) =

∞∫

−∞

D(x0, ω) ·G(x− x0, ω) dx0 . (3.46)

Similarly to (3.37), (3.46) can be interpreted as a convolution along the x-
axis (Berkhout, 1987; Verheijen, 1997; Girod et al., 2001) and the convolution
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theorem

S̃(kx, y, z, ω) = D̃(kx, ω) · G̃(kx, y, z, ω) (3.47)

holds. The secondary source driving function in wavenumber domain is thus given
by

D̃(kx, ω) =
S̃(kx, y, z, ω)

G̃(kx, y, z, ω)
, (3.48)

and in temporal spectrum domain by (Ahrens & Spors, 2010c; Ahrens & Spors,
2010d)

D(x, ω) =
1

2π

∞∫

−∞

S̃(kx, y, z, ω)

G̃(kx, y, z, ω)
e−jkxx dkx . (3.49)

Again, G̃(kx, y, z, ω) may not exhibit zeros.

3.5.2 Synthesized Sound Field And Example Driving Func-

tion

In the following, the synthesis of a virtual plane wave of unit amplitude and given
propagation direction is considered. S̃(kx, y, z, ω) and G̃(kx, y, z, ω) for a plane wave
and secondary monopole sources are given by (C.3) and (C.8).

Inserting (C.3) and (C.8) into (3.49) and applying the sifting property of the
Dirac delta function yields (Ahrens & Spors, 2010d)

D̃(kx, ω) =
2πδ(kx − kpw,x)e

−jkpw,y |y|e−jkpw,zz

− j
4
H

(2)
0

(√
(ωpw

c

)2 − kpw,x
2
√

y2 + z2

) 2πδ(ω − ωpw) . (3.50)

H
(2)
0 (·) denotes the cylindrical Hankel function of second kind (Williams, 1999).

Note that y and z are apparent in the expression for the driving function (3.50)
suggesting that (3.46) can only be satisfied for positions on the surface of a cylinder
determined by d =

√

y2 + z2.
However, with such a linear secondary source distribution, the kx, ky and kz com-

ponents of the synthesized sound field can not be controlled individually (Williams,
1999). The secondary source distribution radiates conical wave fronts which have

only one degree of freedom. The term
(ωpw

c

)2−k2
pw,x in (3.50) is constant for a given

radian frequency ωpw and given kpw,x and the relations

(ωpw

c

)2

− k2
pw,x= k2

pw,y + k2
pw,z (3.51)

= k2
pw(sin2 θpw sin2 φpw + cos2 φpw)
︸ ︷︷ ︸

= k2
pw,ρ

(3.52)

= const

hold due to the dispersion relation (2.6). In order to illustrate (3.51) and (3.52)
the problem is reformulated in cylindrical coordinates. It is assumed that the linear
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axis of the coordinate system coincides with the secondary source distribution. kpw,ρ

denotes the radial wavenumber.
Relation (3.52) states that the radial wavenumber kpw,ρ is solely dependent on

the time frequency and the kpw,x component of the virtual plane wave. For a given
azimuth θpw of the propagation direction of the desired virtual plane wave, the zenith
angle φpw is determined by relations (3.51) and (3.52) and vice versa.

In other words, when a correct propagation direction of the synthesized virtual
plane wave is desired, (3.46) can only be satisfied for receiver positions on a straight
line parallel to the secondary source distribution (Ahrens & Spors, 2010c; Ahrens
& Spors, 2010d). In spherical coordinates, this receiver line is determined by d =
√

y2 + z2 and (α = θpw , β = φpw). This finding is in analogy to the synthesis
of a plane wave by a circular arrangement of secondary point sources where the
synthesized sound field has to be referenced to a point (refer to Sec. 3.3.1). As a
consequence, a correct propagation direction of the synthesized sound field can only
be achieved inside a target half-plane containing the secondary source distribution
and the reference line.

The horizontal half-plane containing the positive y-axis is chosen as target half-
plane, thus y > 0, z = 0. Consequently, also the propagation directions of the
desired plane wave have to be restricted to the horizontal plane (φpw = π

2
or kpw,z =

0). Furthermore, y in (3.50) is set to the reference distance yref > 0 (Fig. 3.11).
As mentioned in Sec. 3.3, this type of synthesis is typically referred to as 21/2-
dimensional synthesis.

With above mentioned referencing, (3.50) simplifies to

D̃(kx, ω) =
4j · e−jkpw,yyref

H
(2)
0 (kpw,yyref)

· 2πδ(kx − kpw,x) 2πδ(ω − ωpw) , (3.53)

and finally

D(x, ω) =
4j · e−jkpw,yyref

H
(2)
0 (kpw,yyref)

· e−jkpw,xx 2πδ(ω − ωpw) . (3.54)

Transferred to the time domain and formulated for broadband signals, (3.54)
reads (Ahrens & Spors, 2010c; Ahrens & Spors, 2010d)

d(x, t) = f(t) ∗t ŝ
(

t− x

c
cos θpw sinφpw −

yref

c
sin θpw sinφpw

)

. (3.55)

f(t) denotes a filter with frequency response

F (ω) =
4j

H
(2)
0 (kpw,yyref)

, (3.56)

the asterisk ∗t denotes convolution with respect to time, and ŝ(t) the time domain
signal that the plane wave carries. Thus, the time domain driving signal for a
secondary source at a given location is yielded by applying a delay and a filter on
the time domain input signal. The transfer function F (ω) of the filter has high pass
characteristics with a slope of approximately 3 dB per octave.

F (ω) is exclusively dependent on the propagation direction of the desired plane
wave and on the amplitude reference distance yref. It is therefore equal for all
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secondary sources and it is sufficient to perform the filtering only once on the input
signal before distributing the signal to the secondary sources. The delay is dependent
both on the propagation direction of the desired plane wave and on the position of the
secondary source. It therefore has to be performed individually for each secondary
source.

As with planar secondary source distributions, this constitutes a computationally
efficient implementation scheme compared to the numerical approaches in (Ward &
Abhayapala, 2001; Hannemann & Donohue, 2008; Kirkeby & Nelson, 1993).

Inserting (3.54) into (3.46) yields the sound field synthesized by a continuous
linear secondary monopole source distribution driven to synthesize the sample plane
wave. Solving the integral as indicated in Sec. 3.4.3 yields

S(x, ω) =
e−jkpw,yyref

H
(2)
0 (kpw,yyref)

e−jkpw,xxH
(2)
0

(

kpw,y

√

y2 + z2
)

. (3.57)

For y = yref and z = 0 equation (3.57) exactly corresponds to the desired sound field.
However, for y 6= yref or z 6= 0 the synthesized sound field differs from the desired
one. The arising artifacts are easily identified when the far-field/high-frequency

region is considered (kpw,yyref ≫ 1, kpw,y

√

|y|2 + z2 ≫ 1).

There, the Hankel functions apparent in (3.57) can be replaced by their large

argument approximation H
(2)
n (z) =

√
2
πz
e−j(z−n π

2
−π

4
) (Williams, 1999). The approx-

imated synthesized sound field reads then (Ahrens & Spors, 2010d)

Sappr(x, ω) =

√

yref
√

y2 + z2
e−jkpw,xxe−jkpw,y

√
y2+z2

. (3.58)

In the horizontal plane (the target plane, z = 0) in the far-field/high-frequency
region, the amplitude of the synthesized sound field S(x, ω) shows a decay propor-

tional to
√

|y|−1
, i.e. of approximately 3 dB with each doubling of the distance

to the secondary source array – the classical amplitude decay for 21/2-dimensional
plane wave synthesis (Sec. 3.3.2). In the near-field/low-frequency region the ampli-
tude decay is slightly different and additionally, some subtle spectral deviations are
apparent. The latter circumstance is further discussed in Sec. 4.6.3.

Refer to Fig. 3.12. It depicts the real part and the magnitude of the sound
pressure of a continuous linear distribution of secondary point sources synthesizing
a virtual plane wave of fpw = 1000 Hz and unit amplitude with propagation direction
(θpw, φpw) =

(
π
4
, π

2

)
referenced to the distance yref = 1.0 m.

3.5.3 Incorporation of Secondary Sources With Complex

Radiation Properties

The incorporation of secondary sources with complex radiation characteristics into
the driving functions for planar and linear secondary source distributions (3.41)
and (3.49) is less cumbersome than for spherical and circular arrays (Sec. 3.2.3
and 3.3.3). The driving functions in the former cases incorporate G̃(·) which is
the spatio-temporal transfer function of the secondary source located at the origin
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Figure 3.12: Sound pressure S(x, ω) of a continuous linear distribution of secondary point
sources synthesizing a virtual plane wave of fpw = 1000 Hz and unit ampli-
tude with propagation direction (θpw, φpw) =

(
π
4 , π

2

)
referenced to the dis-

tance yref = 1.0 m. The secondary source distribution is indicated by the
black line. Only the horizontal plane is shown. The values are clipped as
indicated by the colorbars.

of the coordinate system. This transfer function can be directly obtained from
measurements, e.g. employing a linear array of microphones in the horizontal plane
and parallel to the x-axis at distance yref.

In the following example a linear distribution of secondary sources is assumed
whose spatio-temporal transfer function G(x, ω) is given by (2.30) with (αor, βor) =
(

π
2
, π

2

)
and N = 13. The far-field signature function is depicted in Fig. 3.13(a).

The secondary source distribution is driven in order to synthesize a virtual plane
wave with propagation direction (θpw, φpw) =

(
π
4
, π

2

)
. G̃ (kx, y, z, ω) has been calcu-

lated numerically in the simulation since an analytical treatment is not straightfor-
ward. A simulation of the synthesized sound field is shown in Fig. 3.13(b).

The synthesized sound fields are very similar inside the target half-
plane for secondary monopoles (Fig. 3.12(a)) and complex secondary sources
(Fig. 3.13(b)) (Ahrens & Spors, 2010a). The latter exhibits slight irregularities
close to the secondary source distribution.

For the distribution of monopoles, the sound field synthesized in the half-space
other than the target half-space is a perfect mirrored copy of the sound field in target
half-space. For the distribution of complex sources, the sound field synthesized in
the other half-space differs from the perfect mirrored copy with respect to amplitude
and phase (Ahrens & Spors, 2010a). The wave fronts are perfectly straight inside
the horizontal plane at sufficient distance from the secondary source distribution.
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(a) Normalized far-field signature function of the
secondary sources employed in Fig. 3.13(b).
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(b) Sound field synthesized by secondary sources
exhibiting the transfer function depicted in
Fig. 3.13(a).

Figure 3.13: Sound fields in the horizontal plane synthesized by continuous distributions
of secondary sources. Desired sound field is a monochromatic plane wave
of frequency fpw = 1000 Hz with unit amplitude and propagation direction
(θpw, φpw) =

(
π
4 , π

2

)
.

3.5.4 A Note on Wave Field Synthesis Employing Linear

Secondary Source Distributions

Deriving the WFS driving function for a monochromatic plane wave with radian
frequency ωpw propagating into the direction

(
θpw,

π
2

)
for a linear secondary source

distribution yields (Ahrens & Spors, 2010d)

DWFS,2.5D(x, ω) =
√

8πyref

√

ikpw sin θpwe
−jkpw,xx · 2πδ(ω − ωpw) . (3.59)

Recall that 21/2-dimensional WFS constitutes a high-frequency approximation of the
underlying problem (Sec. 2.6.1). In order to compare the WFS solution with the
solution presented in Sec. 3.5.1 the high-frequency approximation of the latter is
considered, which is given by

Dappr,2.5D(x, ω) =
√

8πyref

√

jkpw

√

sin θpwe
−jkpw,xx · 2πδ(ω − ωpw) . (3.60)

As a consequence of the fact that the driving functions of the two approaches differ
by an amplitude factor, the synthesized sound fields differ as well by the same factor.

The synthesized sound fields can only be compared in the high-frequency re-
gion because the WFS driving function only holds there. It can indeed be shown
that (Ahrens & Spors, 2010d)

SWFS, pw(x, ω) =
√

sin θpw · Sappr, pw(x, ω) . (3.61)

where Sappr, pw(x, ω) is given by (3.58). From (3.57) and (3.58) it can be seen that
the presented approach provides the desired result: A sound field which coincides
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with the desired one on the receiver line. It can therefore be concluded that the
standard WFS driving function for virtual plane waves (3.59) has to be corrected
by a factor of

√
sin θpw in order to perform comparably to the presented approach

in the high-frequency region (Ahrens & Spors, 2010d).
The source of deviation in WFS seems to lie in the stationary phase approxima-

tion in (2.57). In the traditional WFS formulation like (de Vries, 1996; Verheijen,
1997; Start, 1997) the result of this stationary phase approximation is interpreted
as a referencing of the synthesized sound field to a line which is parallel to the
secondary source distribution. From (2.57) it becomes clear that the synthesized
sound field in WFS is actually not referenced to a line but to a circle around the
individual secondary sources. The apparent consequence is the incorrect amplitude
when

√
sin θpw 6= 1. This amplitude deviation is low for

√
sin θpw ≈ 1 but can reach

several dB for
√

sin θpw deviating strongly from 1, i.e. for virtual plane wave fronts
which are not approximately parallel to the secondary source distribution.

This type of systematic amplitude error has not been investigated for virtual
sound fields other than plane waves. However, the property of the present approach
being exact on the reference line unlike WFS has been exploited in various ways,
e.g. (Spors & Ahrens, 2010b; Spors & Ahrens, 2010a).

3.5.5 Truncated Linear Secondary Source Distributions

Unlike the secondary source distributions treated in Sec. 3.5.2, practical implementa-
tions of sound field synthesis systems can not be of infinite length. The consequences
of this spatial truncation are treated in this section. For convenience, a continuous
linear secondary source distribution which is truncated in x-dimension is explicitly
considered.

The spatial truncation is modeled by multiplying the secondary source driving
function D(x0, ω) with a suitable window function w(x0) (Start, 1997). Incorporat-
ing w(x0) into equation (3.46) yields the sound field Str(x, ω) of a truncated planar
source distribution as

Str(x, ω) =

∞∫

−∞

w(x0) D(x0, ω) G(x− x0, ω) dx0 . (3.62)

The convolution theorem (3.47) then reads (Girod et al., 2001)

S̃tr(kx, y, z, ω) =
1

2π

(

w̃(kx) ∗kx
D̃(kx, ω)

)

︸ ︷︷ ︸

= D̃tr(kx,ω)

G̃(kx, y, z, ω) , (3.63)

whereby the asterisk ∗kx
denotes convolution with respect to the space frequency

variable kx.
The finite extent of a secondary source distribution of length L centered around

x = 0 can be modeled by a rectangular window wR(x) as

wR(x) = rect
(x

L

)

=

{

1 for |x| ≤ L
2

0 elsewhere .
(3.64)
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The Fourier transformation of wR(x) with respect to x is (Williams, 1999)

w̃R(kx) = L · sin
kxL
2

kxL
2

= L · sinc

(
kxL

2π

)

. (3.65)

For the interpretation of (3.63) again the synthesis of a virtual plane wave is con-
sidered. Recall D̃(kx, ω) given by (3.53). The convolution of D̃(kx, ω) with w̃R(kx)
is essentially a spatial low pass filtering operation smearing D̃(kx, ω) along the kx-
axis. The Dirac δ(kx − kpw,x) apparent in (3.53) turns into a sinc(·). The truncated
secondary source distribution therefore exhibits distinctive complex radiation prop-
erties. Due to the wavenumber domain representation of the synthesized sound
field in (3.63) the properties of the synthesized sound field S̃tr(kx, y, z, ω) can be
directly obtained from the properties of the truncated driving function D̃tr(kx, ω)
as discussed below.

The main lobe of the sinc(·) function points into the propagation direction of the
desired virtual plane wave. However, the synthesized sound field will not exhibit
perfectly plane wave fronts but a certain curvature due to the smearing of the energy
of the spatial spectrum (Ahrens & Spors, 2010d). The side lobes of the sinc(·)
function result in components in the synthesized sound field propagating into other
directions than the desired virtual plane wave. Note that the side lobes exhibit
alternating algebraic sign (i.e. the lobes are not in phase) and that there are zeros
between the lobes.
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Figure 3.14: Sound pressure Str(x, ω) of a continuous linear distribution of secondary point
sources and of length L = 2 m synthesizing a virtual plane wave of fpw =
1000 Hz and unit amplitude with propagation direction (θpw, φpw) =

(
π
4 , π

2

)

referenced to the distance yref = 1.0 m. The secondary source distribution is
indicated by the black line.

Refer to Fig. 3.14. It depicts the sound field synthesized by a continuous trun-
cated linear secondary monopole source distribution. In Fig. 3.14(b), the directivity
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lobes due to truncation are clearly apparent. It is also evident from Fig. 3.14 that
the local propagation direction of the synthesized sound field strongly depends on
the position of the receiver.

Real-world implementations of planar sound field synthesis systems are of course
also truncated in z-dimension. Due to the separability of the Cartesian coordinate
system (Morse & Feshbach, 1953), the truncation in the two dimensions can be
treated independently. The procedure outlined above has to be applied also on the
z-dimension.

Further analysis reveals that truncation artifacts can be interpreted as additional
sound sources located at the ends of the secondary source distribution (Verheijen,
1997). Of course, other window functions than the rectangular one can be applied
some of which provide potential to shape truncation artifacts in order to make them
perceptually less disturbing. This process is an established technique in WFS and
is referred to as tapering (Verheijen, 1997). Typically, windows with cosine-shaped
shoulders are applied.

3.6 Approximate Solution for Arbitrary Convex

Secondary Source Distributions

The argumentation via the physical optics approximation presented in Sec. 2.6.1
can be employed in order to find an approximate solution for arbitrary convex two-
dimensional secondary source distributions based on the solution for planar contours
presented in Sec. 3.4 and to find an approximate solution for arbitrary convex one-
dimensional secondary source distributions based on the solution for linear contours
presented in Sec. 3.5.
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Figure 3.15: Sound fields in the horizontal plane synthesized by two continuous linear
distributions of secondary sources which make up an angle of π

2 . Desired
sound field is a monochromatic plane wave of frequency fpw = 1000 Hz with
unit amplitude and propagation direction (θpw, φpw) =

(
π
2 , π

2

)
.
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For illustration, Fig. 3.15 depicts the sound field synthesized by a combination
of two adjoined infinite linear secondary source distributions. It has already been
shown in the context of WFS in (Verheijen, 1997) that non-smooth illuminated
areas do not introduce a considerable additional error. Similar situations have been
investigated in the field of Fourier optics in the context of Kirchhoff diffraction
(Arfken & Weber, 2005; Nieto-Vesperinas, 2006).

3.7 Summary

The single-layer potential solution to the problem of sound field synthesis was
demonstrated for continuous spherical secondary source contours. It was concluded
that this solution corresponds to the well established method of Near-field Compen-
sated Higher Order Ambisonics.

The single-layer potential approach was then extended to infinite planar sec-
ondary source distributions whereby certain restrictions with respect to the propa-
gation direction of the synthesized sound field had to be accepted.

Furthermore, the concept of 21/2-dimensional synthesis was presented for circu-
lar and linear distributions of secondary sources. 21/2-dimensional synthesis em-
ploys one-dimensional distributions of secondary sources in order to perform two-
dimensional synthesis employing secondary sources with three-dimensional spatio-
temporal transfer functions. The typical artifacts for 21/2-dimensional synthesis
well-known from the WFS context have been confirmed. The most prominent arti-
fact is a generally incorrect amplitude decay of the synthesized sound field.

The solution for planar secondary source distributions was found to be closely
related to the well-established concept of angular spectrum representation.

Consequences of spatial truncation of infinite planar and linear secondary source
distributions were discussed.

For all geometries discussed, methods for considering the radiation properties
of the employed secondary sources were presented. It is emphasized that unlike
previously published approaches, the presented methods are not a compensation
for deviations of the loudspeaker radiation characteristics from certain assumptions
(e.g. omnidirectionality). It is rather such that the formulation of the approach
allows for an explicit consideration thereof.



Chapter 4

Discrete Secondary Source
Distributions

4.1 Introduction

The continuous secondary source distributions treated in Chap. 3 can not be im-
plemented with today’s available technology. Continuous distributions have to be
approximated by a finite number of discrete loudspeakers. The consequences of this
circumstance are the topic of this chapter.

Commonly, loudspeakers with closed cabinets are employed in practice which
are assumed to be omnidirectional, i.e. monopole pressure sources. This assump-
tion is indeed fulfilled for low frequencies of a few hundred Hertz but at higher
frequencies, complex radiation patterns evolve (Fazi et al., 2008a). For simplicity,
the present chapter investigates the consequences of discretization of the secondary
source distribution under the assumption that ideal secondary monopole sources are
employed. Spherical secondary source distributions are treated in Sec. 4.3, circular
ones in Sec. 4.4, planar ones in Sec. 4.5, and linear ones in Sec. 4.6.

In order to avoid unnecessary redundancies, time-domain properties of the
synthesized sound fields with a focus on human auditory perception (Sec. 4.4.4
and 4.6.3) as well as an advanced technique termed local sound field synthesis are
exclusively treated for circular and linear contours (Sec. 4.4.5 and Sec. 4.6.5 respec-
tively). The general properties of spherical contours in this context can be deduced
from the results for circular contours; the properties of planar contours can be de-
duced from the results for linear contours.

4.2 Excursion: Discretization of Time-Domain

Signals

As outlined in (Verheijen, 1997), it is useful to emphasize analogies between spatial
discretization and discretization of time-domain signals. Therefore, the latter is
briefly reviewed in this section.

Assume a continuous time-domain signal s0(t) whose time-frequency spectrum

69
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is given by

S0(ω) =

∞∫

−∞

s0(t) e
−iωt dt . (4.1)

In order that s0(t) can be stored in a digital system it is discretized in time at
sampling frequency fs, i.e. with the constant sampling interval Ts = 1

fs
, as (Girod

et al., 2001; Zayed, 1993)

s0,S(t) = s0(t)

∞∑

µ=−∞

δ (t− Ts µ)

︸ ︷︷ ︸

= ξ(t)

. (4.2)

The time-frequency spectrum S0,S(ω) of the sampled signal is given by

S0,S(ω) =

∞∫

−∞

s0(t) ξ(t) e
−iωt dt . (4.3)

Eq. (4.3) constitutes a Fourier transform of the product of two functions. The multi-
plication theorem of the Fourier transform states that the result can be expressed as
a convolution of the time-frequency spectra S0(ω) and ⊥⊥⊥(ω) of the two functions
with respect to the frequency (Girod et al., 2001). Explicitly,

S0,S(ω) =
1

2π
S0(ω) ∗ω ⊥⊥⊥(ω) . (4.4)

The Fourier transform ⊥⊥⊥(ω) of the sampling pulse train ξ(t) is given by (Girod
et al., 2001)

⊥⊥⊥(ω) =

∞∫

−∞

∞∑

µ=−∞

δ(t− Ts µ) e−iωt dt (4.5)

=
2π

Ts

∞∑

µ=−∞

δ

(

ω − 2π

Ts

µ

)

, (4.6)

so that S0,S(ω) is finally given by

S0,S(ω) = S0(ω) ∗ω
1

Ts

∞∑

µ=−∞

δ

(

ω − 2π

Ts
µ

)

=
1

Ts

∞∑

µ=−∞

S0 (ω − 2πfs µ) . (4.7)

Eq. (4.7) states that the time-frequency spectrum S0,S(ω) of a time-discrete signal
is given by repetitions of period ωs = 2πfs of the time-frequency spectrum S0(ω) of
the initial continuous signal. For µ = 0, (4.7) corresponds to S0(ω), the spectrum
of the continuous signal s0(t), scaled by 1

Ts
.
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f

fn−fn

|S0(ω)|

(a) Magnitude |S0(ω)| of the spectrum of the continuous-time signal.
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|S0,S(ω)|

(b) Magnitude |S0,S(ω)| of the spectrum of the discrete-time signal.

f

|S0,A(ω)|

(c) Magnitude |S0,A(ω)| of the reconstructed spectrum using filter A
from Fig. 4.1(b). Reconstruction is perfect.

f

|S0,B(ω)|

(d) Magnitude |S0,B(ω)| of the reconstructed spectrum using filter
B from Fig. 4.1(b). The reconstruction of signal s0(t) suffers from
artifacts.

Figure 4.1: Sampling of a purely real bandlimited time-domain signal.

It is possible to perfectly reconstruct the initial time-domain signal s0(t) from the
discretized signal s0,S(t) if certain assumptions are met. The procedure is indicated
in Fig. 4.1(a). Fig. 4.1(a) sketches the time-frequency spectrum S0(ω) of continuous
time-domain signal s0(t). The according time-frequency spectrum S0,S(ω) of the
discretized signal s0,S(t) is indicated in Fig. 4.1(b). Note that it is assumed that
s0(t) is bandlimited such that its energy is exclusively contained at frequencies at
or below fn = fs

2
. fn is termed Nyquist frequency (Girod et al., 2001).

Due to the bandlimitedness of s0(t), the spectral repetitions of the discretized sig-
nal do not overlap. By applying an appropriate lowpass filter (the transfer function
of which is indicated by the dotted line marked FA in Fig. 4.1(b)), the continuous
time domain signal s0(t) can be perfectly reconstructed as indicated in Fig. 4.1(c).
The filter FA is also termed interpolation filter or reconstruction filter.

Two circumstances lead to a corrupted reconstruction of s0(t): (Girod et al.,
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(a) Magnitude of the spectrum of the continuous-time signal.

f
fn fs−fn−fs

|S0,S(ω)|

(b) Magnitude |S0,S(ω)| of the spectrum of the discrete-time signal.

Figure 4.2: Sampling of a signal exhibiting energy above fn.

2001)

1. If the passband of the reconstruction filter is wider than 2fn = fs like the
filter whose transfer function is marked FB in Fig. 4.1(b), then the spectral
repetitions are not perfectly suppressed in the reconstruction. This type of
error is generally referred to as reconstruction error.

2. If s0(t) exhibits energy above fn the spectral repetitions overlap and interfere.
Refer to Fig. 4.2 for a sketch. It is not possible to separate the baseband from
the discretized signal and the reconstruction is corrupted by aliasing.

The reconstruction S0,S,rec(ω) from the time-discrete representation S0,S(ω) can
be represented in time-frequency domain by as (Girod et al., 2001)

S0,S,rec(ω) = S0,S(ω) · FA(ω) , (4.8)

whereby FA(ω) the denotes the transfer function of the reconstruction filter. If
the bandwidth of S0(ω) and the properties of the reconstruction filter FA(ω) are
according then S0,S,rec(ω) = S0(ω) and the reconstruction is perfect.

Fig. 4.3 summarizes the process of sampling a continuous time-domain signal
S0(ω) and reconstructing the signal S0,S,rec(ω) from the time-discrete representation
S0,S(ω) via a reconstruction filter with transfer function FA(ω).

In the remainder of this chapter, the investigation of discretization of a time-
domain signal is adapted to the spatial discretization of the secondary source distri-
butions investigated in Chap. 3. For convenience, spatial discretization is modeled
by a discretization of the corresponding driving function. Thus, a continuous dis-
tribution of secondary sources is assumed which is driven at discrete points. The
essential benefit of this approach is the fact that all integral and convolution theo-
rems exploited in Chap. 3 are still valid. The consequences of spatial discretization
can therefore be deduced from a investigation of the properties of the discretized
driving functions.
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Figure 4.3: Schematic of the process of discretization and reconstruction of the contin-
uous time-domain signal S0(ω). FA(ω) denotes the transfer function of the
reconstruction filter.

4.3 Spherical Secondary Source Distributions

4.3.1 Discretization of the Sphere

In contrast to the sampling of time-domain signals outlined in Sec. 4.2, it is not
obvious how sampling of a spherical secondary source distribution can be performed
in a favorable way. Generally, the discretization grid shall be such that the orthog-
onality relation of the spherical harmonics (2.17) holds (Driscoll & Healy, 1994).
Eq. (2.17) reformulated using a discretized integral is given by

∑

l

wl Y
m
n (βl, αl) Y

−m′

n′ (βl, αl) = δnn′δmm′ . (4.9)

The weights wl compensate for a potentially uneven distribution of the sampling
points.

It can be shown that sampling schemes can be found for which (4.9) does in-
deed hold when spatially bandlimited functions are considered (Driscoll & Healy,
1994). An exact uniform sampling is exclusively provided by layouts based on one
of the five platonic solids tetrahedron, cube, octahedron, dodecahedron, and icosa-
hedron (Weisstein, 2002).

In general, the available sampling strategies can be categorized into (quasi) uni-
form and non-uniform approaches. The most popular approaches are hyperinterpola-
tion, quadrature, and the (weighted) least-squares solution; all of which exhibit bene-
fits and drawbacks (Zotter, 2009b). For convenience, a non-uniform layout given by
the Gauß sampling scheme is chosen here due to its relatively simple mathematical
description (Mohlenkamp, 1999; Driscoll & Healy, 1994).

When a Gauß sampling scheme with 2L2 sampling points is assumed, the azimuth
angle α0 is sampled equiangularly at 2L locations and the zenith angle β0 is sampled
at L locations. This results in a sampling grid which is symmetric with respect to
the horizontal plane.

Mathematically, the Gaußian sampling grid Φ(α, β, L) is given by (Driscoll &
Healy, 1994)

Φ(α, β, L) =
π

2L2

2L−1∑

l1=0

δ (α− αl1)
L−1∑

l2=0

wl2δ (β − βl2) (4.10)

with

αl1 =
2πl1
2L

. (4.11)
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The angles βl2 are computed as the zeros of the L-th degree Legendre polynomial

PL (cosβl2)
!
= 0. Refer to Fig. 4.4 for an example grid.

Figure 4.4: Gauß sampling grid for L = 9. The sampling points are represented by the
intersections of the lines. The thick line indicates the equator.

The process of calculating the weights wl2 is outlined in (Driscoll & Healy, 1994).
Note that in the simulations in this chapter, the MATLAB scripts provided by (The
Chebfun Team, 2009) are employed.

4.3.2 Discretization of the Driving Function

The analysis of the consequences of spatial discretization of a representation of a
sound field on the surface of a sphere has been performed in (Rafaely et al., 2007). An
alternative approach will be presented below which allows for a frequency-dependent
modal decomposition of the synthesized sound field.

It can be shown via (3.4) from Sec. 3.2.1 that the expansion coefficients S̆m
n (ω) of

the synthesized sound field are given by a multiplication of the spherical harmonics
expansion coefficients D̊m

n (ω) of the driving function and the expansion coefficients
Ğm

n (ω) of the spatio-temporal transfer function of the secondary sources. Thus, if
it is possible to determine the coefficients D̊m

n,S(ω) of the sampled driving function
DS(x, ω), the synthesized sound field S(x, ω) can be determined via its expansion
coefficients S̆m

n (ω).
The spherical harmonics transform of the sampled driving function D(x, ω) is

given by

D̊m
n,S (R, ω) =

2π∫

0

π∫

0

Φ(α, β, L) D(x, ω) Y −m
n (β, α) sinβ dβdα . (4.12)

Eq. (4.12) constitutes the spherical harmonics transform of a product of the functions
Φ(α, β, L) and D(x, ω). As derived in App. D.2, this spherical harmonics transform
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can be formulated in terms of the spherical harmonics expansion coefficients Φ̊m
n (L)

and D̊m
n (ω) as

D̊m
n,S (R, ω) =

∞∑

n1=0

n1∑

m1=−n1

∞∑

n2=0

Φ̊m1
n1

(L) D̊m−m1
n2

(R, ω) γm1,m−m1,m
n1,n2,n , (4.13)

whereby γm1,m−m1,m
n1,n2,n denotes the Gaunt coefficient and is given by (D.6).

The spherical harmonics transform Φ̊m1
n1

(L) of the Gauß sampling grid can be
determined via

Φ̊m1
n1

(L) =

2π∫

0

π∫

0

Φ(α, β, L) Y −m1
n1

(β, α) sinβ dβdα . (4.14)

The integrals in (4.14) can be solved independently as

2π∫

0

2L−1∑

l1=0

δ

(

α− 2πl1
2L

)

e−im1α dα =

2L−1∑

l1=0

e−im12π
l1
2L

=

{

2L ∀ m1 = µ2L, µ ∈ Z

0 elsewhere
,

and

π∫

0

L−1∑

l2=0

wl2δ (β − βl2) P
|m1|
n1

(cosβ) sin β dβ =
L−1∑

l2=0

wl2P
|m1|
n1

(cosβl2) sin βl2 . (4.15)

From the parity properties of the sampling locations βl2 , the associated Legendre
functions, and the sine function in (4.15), it can be deduced that the result equals
zero for m1 + n1 being odd.

The spherical harmonics expansion coefficients Φ̊m1
n1

(L) of the sampling grid are
finally given by

Φ̊m1
n1

(L) =
{

π(−1)m1

L+1

√
2n1+1

4π
(n1−|m1|)!
(n1+|m1|)!

∑L−1
l2=0wl2P

|m1|
n1 (cos βl2) sin βl2 ∀ m1 = µ2L

0 elsewhere
. (4.16)

Introducing (4.16) into (4.13), changing the order of summations, and considering
selection rule 2 from Sec. D.2 yields

D̊m
n,S (R, ω) =

∞∑

µ=−∞

∞∑

n2=|m−µ2L|

D̊m−µ2L
n2

(R, ω) Υµ,m
n2,n(L) , (4.17)

with

Υµ,m
n2,n(L) =

n+n2∑

n1=|n−n2|

Φ̊µ2L
n1

(L) γµ2L,m−µ2L,m
n1,n2,n . (4.18)
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Via the selection rules of the Gaunt coefficient outlined in App. D.2 and the sym-
metry relations of the involved Wigner3j-Symbols (Weisstein, 2002) it can be shown
that D̊m

n,S (R, ω) given by (4.17) is composed of the coefficients D̊m
n (R, ω) of the

continuous driving function plus repetitions with respect to n and m of D̊m
n (R, ω).

The period of the repetitions both in n and m is 2L. It can furthermore be shown
that D̊m

n,S (R, ω) = D̊m
n (R, ω) for the case of µ = 0. For convenience, simulations of

a sample scenario are presented below for illustration of above outlined properties
of D̊m

n,S (R, ω).

The sound field S̊m
n,S(r, ω) synthesized by the discrete secondary source distribu-

tion is given in spherical harmonics domain by (3.4), which is stated here again for
convenience as

S̊m
n,S(r, ω) = 2πR

√

4π

2n + 1
D̊m

n,S(ω) · G̊0
n(r, ω) . (4.19)

Note the similarity between (4.19) and (4.8): A discretized function being composed
of repetitions of the underlying continuous function is weighted in a transformed
domain in order to yield the desired quantity.

This analogy greatly facilitates the interpretation of (4.19). The discretization
of the secondary source distribution leads to repetitions in the spatial spectrum of
the driving function. When these repetitions do not overlap – and thus do not
corrupt the base band – and the properties of the spatio-temporal transfer function
of the employed secondary sources are such that these repetitions are suppressed,
then the synthesized sound field is unaffected by the discretization. The spatio-
temporal transfer function G̊0

n(r, ω) of the employed secondary sources can thus be
interpreted as the analogon of the reconstruction filter denoted FA(ω) in the time
discretization example in Fig. 4.3. Fig. 4.5 depicts an adaptation of Fig. 4.3 to the
present situation.

D(x0, ω)

∆x

DS(x0, ω)

G̊0
n(r, ω)

SS(x, ω)

Figure 4.5: Schematic of the spatial discretization process for spherical secondary source
distributions.

In order to illustrate the properties of the repetitions which occur in the angular
domain due to the discretization of the driving function, the scenario of a discrete
spherical distribution of radius R = 1.5 m composed of 1568 secondary monopole
sources on a Gauß grid (L = 28) synthesizing a virtual plane wave with propagation
direction (θpw, φpw) =

(
−π

2
, π

2

)
is considered. In this case, the spherical harmonics

coefficients D̊m
n (ω) of the continuous driving function D(x, ω) are given by

D̊m
n (ω) =







2i
R

√
2n+1
4π

i−nY −m
n (π

2
,−π

2 )
ω
c

h
(2)
n (ω

c
R)Y 0

n (0,0)
∀ n, |m| ≤M

0 elsewhere
, (4.20)
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whereby (2.26a) and (2.27) were used. The choice of the bandlimit M is yet to be
determined. It is introduced since an infinite bandwidth as suggested by (3.8) can
generally not be implemented in practice. The driving function (3.8) for spherical
secondary source distributions is thus finally given by

D(α, β, ω) =
M∑

n=0

n∑

m=−n

D̊m
n (ω) Y m

n (β, α) . (4.21)

Fig. 4.6(a) depicts the magnitude of D̊m
n (ω) given by (4.20) for M → +∞. Note

that in Fig. 4.6 (as well as in Fig. 4.7) the magnitude is indicated both via brightness
as well as via transparency. Values below the lower limit indicated by the errorbars
are fully transparent; opacity increases proportionally to the magnitude and reaches
full opacity for values above the upper limit indicated by the errorbars.

When sampling of the driving function is considered, it can be seen from
Fig. 4.6(b) that parts of the spectral repetitions with considerable energy overlap
and interfere. The period of the repetitions of 2L = 56 with respect to both n and
m is also apparent. Since the repetitions also leak into the baseband of D̊m

n,S(ω)
spatial aliasing occurs.

Choosing a spatial bandlimit of the driving function as M ≤ L prevent the
spectral repetitions from corrupting the baseband of D̊m

n,S(ω) and thus suppresses

spatial aliasing as depicted in Fig. 4.7. Since G̊0
n(r, ω) is not bandlimited – as

can be deduced from (2.26a) – the spectral repetitions are not suppressed and the
synthesized sound field suffers from a reconstruction error.

Note that it is common in sound field synthesis to refer to this reconstruction
error as spatial aliasing, e.g. (Verheijen, 1997; Pueo et al., 2007; Zotter et al., 2009;
Wu & Abhayapala, 2009). This thesis does not follow this convention and em-
ploys a strict segregation of aliasing and reconstruction errors. Strictly speaking,
aliasing constitutes a corruption of the baseband due to overlapping spectral repe-
titions (Girod et al., 2001). Artifacts which are a consequence of the circumstance
that the reconstruction filter does not perfectly suppress spectral repetitions are
termed reconstruction error. Therefore, the notion of a spatial aliasing frequency as
commonly used (Verheijen, 1997; Theile, 2004; Pueo et al., 2007), i.e. the frequency
below which on considerable artifacts arise, is not appropriate here. Refer to Sec. 4.2
for a discussion of the terminology in the time discretization example.

4.3.3 Properties of the Synthesized Sound Field in Time-

Frequency Domain

The discussion of the properties of the discretized driving function in Sec. 4.3.2 sug-
gests that the spatial bandwidth of the employed continuous driving function has
essential impact on the properties of the sound field synthesized by a discrete distri-
bution of secondary sources. This circumstance is indeed evident from Fig. 4.8 which
depicts the synthesized sound field for different bandwidths and time frequencies.
The synthesis of a plane wave with parameters outlined in Sec. 4.3.2 is considered.
The synthesized sound field was derived using (4.17) and (3.4).

At rather low frequencies, no considerable difference between the case of M =
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(a) 20 log10

∣
∣
∣D̊m

n (ω)
∣
∣
∣

(b) 20 log10
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∣D̊m

n,S(ω)
∣
∣
∣, L = 28

Figure 4.6: Illustration of the properties of the driving function; M → +∞

L in Fig. 4.8(a) and the case of M → +∞ in Fig. 4.8(b) is apparent. Obvious
differences arise at higher frequencies as discussed in the following.

As mentioned in Sec. 4.3.2, a spatial bandlimit of M ≤ L leaves the lower orders
of the driving function and thus of the synthesized sound field uncorrupted. A
region of nearly artifact-free synthesis arises around the center of the secondary
source distribution as evident in particular from Fig. 4.8(c) and 4.8(e). Recall that
the lower orders typically describe the sound field around the center of the expansion
(refer to Sec. 2.2.2). In the present case, the latter coincides with the center of the
secondary source distribution.

This region of nearly artifact-free synthesis is bounded by a sphere of radius rM .
For a bandwidth of the driving function of M → +∞ artifacts arise over the entire
interior domain at higher frequencies (Fig. 4.8(f)).

A further detailed analysis of the synthesized sound fields is not performed here.
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(b) 20 log10
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∣D̊m

n,S(ω)
∣
∣
∣, L = 28

Figure 4.7: Illustration of the properties of the driving function; M = 28

As will be shown in Sec. 4.4, the properties of circular secondary source distributions
with respect to spatial discretization are very similar to those of spherical ones. For
convenience, further detailed discussion is performed ibidem.

Due to the fundamental impact of the spatial bandwidth of the driving function
on the properties of the synthesized sound field, it is proposed to categorize the
synthesis with respect to the spatial bandwidth of the continuous driving function
into spatially narrowband, wideband, and fullband synthesis. The term narrowband
is applied when the bandwidth of the continuous driving function is so low that the
spectral repetitions due to spatial discretization do not overlap, i.e. M ≤ L (as in
Fig. 4.8(a), 4.8(c), or 4.8(e)).

The term fullband (M → +∞) reflects the fact that the spatial bandwidth of
the driving function is so large that a further increase of the bandwidth does not
lead to considerable changes in the domain of interest (as in Fig. 4.8(b), 4.8(d), or
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(a) Narrowband M = L, f = 1000 Hz.
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(b) Fullband M →∞, f = 1000 Hz.
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(c) Narrowband M = L, f = 2000 Hz.
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(d) Fullband M →∞, f = 2000 Hz.
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(e) Narrowband M = L, f = 5000 Hz.
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(f) Fullband M →∞, f = 5000 Hz.

Figure 4.8: Synthesized sound field in the horizontal plane for the synthesis of a plane
wave for different bandwidths of the driving function. The marks indicate
the positions of those secondary sources which are contained in the horizontal
plane. The dotted lines bound the r27-region in the narrowband case. L = 28,
thus 1568 secondary sources are employed.
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4.8(f)).
Driving functions with L ≪ M ≪ +∞ may be termed spatially wideband.

Wideband driving functions exhibit thus a significantly larger spatial bandwidth
than narrowband driving functions (so that overlaps of the spectral repetitions oc-
cur); but a further increase of the bandwidth does considerably change the properties
of the synthesized sound field.

The spatial bandwidth limitation does not need to be a sharp truncation as
performed above but a smooth fade-out towards higher orders may also be applied.
This latter approach is especially promising for wideband driving functions. The
properties of the latter can not be investigated in this thesis and are subject to
future work.

Note that the near-field compensated higher order Ambisonics approach as it
is typically applied (e.g.in (Daniel, 2001; Zotter et al., 2009; Fazi et al., 2009))
constitutes narrowband synthesis.

4.4 Circular Secondary Source Distributions

In this section, the procedure outlined in Sec. 4.3 is adapted to circular secondary
source contours. Again, the employment of a discrete secondary source distribution
is modeled by a discretization of the driving function. For circular contours, uni-
form sampling can straightforwardly be achieved via equiangular sampling with a
sampling interval equal to an integer fraction of 2π.

4.4.1 Discretization of the Driving Function

In the following, it is assumed that the circular secondary source contour under
consideration is sampled equiangularly at L points. The sampling interval is thus
∆α = 2π

L
. The discretized driving function DS(α, ω) is given by (Girod et al., 2001)

DS(α, ω) =
1

L

L−1∑

l=0

δ

(

α− l

L
2π

)

︸ ︷︷ ︸

= Ψ(α,L)

D(α, ω) . (4.22)

The Fourier series expansion coefficients D̊m,S (ω) of the discretized driving function
DS(α, ω) are given by (Williams, 1999)

D̊m,S (ω) =
1

2π

2π∫

0

Ψ(α, L) D(α, ω) e−imαdα . (4.23)

Eq. (4.23) constitutes the Fourier series transform of a product of the functions
Ψ(α, L) and D(α, ω). As derived in App. D.1, this Fourier series transform can be
formulated in terms of the Fourier series expansion coefficients Ψ̊m(L) and D̊m(ω)
as

D̊m,S (ω) =
∞∑

m1=−∞

Ψ̊m1(L) D̊m−m1(ω) . (4.24)
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The Fourier series transform of the equiangular sampling grid Ψ(α, L) is given
by (Weisstein, 2002)

Ψ̊m1(L) =
1

2π

2π∫

0

1

L

L−1∑

l=0

δ

(

α− 2πl

L

)

e−im1α dα

=
1

L

L−1∑

l=0

e−im12π l
L

=

{

1 ∀ m1 = µL, µ ∈ Z

0 elsewhere
,

so that D̊m,S (ω) is finally given by (Girod et al., 2001; Spors & Rabenstein, 2006;
Ahrens & Spors, 2008a)

D̊m,S(ω) =
∞∑

µ=−∞

D̊m−µL(ω) . (4.25)

The spatial spectrum D̊m,S(ω) of the sampled driving function is thus composed

of repetitions of the spatial spectrum D̊m(ω) of the continuous driving function
(eq. (4.25)) with a period of L.

According to (3.23), the synthesized sound field S̊m,S(r, ω) in Fourier series do-

main is given by D̊m,S(ω) weighted by the spatio-temporal transfer function G̊m(r, ω)
of the secondary sources as

S̊m,S(r, ω) = 2πR D̊m,S(ω) G̊m(r, ω) . (4.26)

Eq. (4.26) constitutes the analogon to (4.8) and (4.19). The adaptation of Fig. 4.3
and 4.5 to the present situation is depicted in Fig. 4.9.

D(α0, ω)

∆α

DS(α0, ω)

G̊m(r, ω)

SS(x, ω)

Figure 4.9: Schematic of the spatial discretization process for circular secondary source
distributions.

In order to illustrate the consequences of the repetitions which occur in the
Fourier series domain due to the discretization of the driving function, the scenario
of a discrete circular distribution of radius R = 1.5 m composed of L = 56 equian-
gularly spaced secondary monopole sources synthesizing a virtual plane wave with
propagation direction (θpw, φpw) =

(
−π

2
, π

2

)
is considered.

It was noted in Sec. 3.3.1 that the summation in the driving function (3.26) can
not be performed over an infinite amount of coefficients in practice. The Fourier
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coefficients D̊m(ω) of the continuous driving function therefore have to be chosen to
be

D̊m(ω) =







2i
R

i−|m|Y −m
|m| (π

2
,−π

2 )
ω
c
h
(2)
|m|(

ω
c

R)Y −m
|m| (π

2
,0)

∀ |m| ≤M

0 elsewhere
, (4.27)

whereby (2.26a) and (2.27) were used. The driving function (3.26) for circular
secondary source contours is thus finally given by

D2.5D(α, ω) =

M∑

m=−M

D̊m(ω) eimα . (4.28)

The choice of the bandlimit M is discussed below.
The Fourier coefficients D̊m(ω) of the continuous driving function are illustrated

in Fig. 4.10(a) for different frequencies for M → +∞. Fig. 4.10(b) depicts the
Fourier coefficients of the discretized driving function and for M → +∞. It can the
seen that for this infinite angular bandwidth, the spectral repetitions overlap and
interfere and thus spatial aliasing in the strict sense occurs (Spors & Rabenstein,
2006; Spors & Ahrens, 2008a; Ahrens & Spors, 2008a).

Such an overlapping of the spectral repetitions can be avoided by limiting the
angular bandwidth M (i.e. the order) of the driving function (4.27) as (Spors &
Rabenstein, 2006; Spors & Ahrens, 2008a; Ahrens & Spors, 2008a)

M ≤
{

L
2
− 1 for even L

L−1
2

for odd L
. (4.29)

For the current setup of L = 56 discrete sampling points (i.e. loudspeakers), a choice
of M ≤ 27 is thus suitable. The Fourier coefficients of the continuous bandlimited
driving function are depicted in Fig. 4.10(c), and those of the discretized bandlimited
driving function in Fig. 4.10(d). Note that a spatial bandwidth limitation of the
driving function can also be achieved by a bandwidth limitation of the desired sound
field.

The properties of the spatio-temporal transfer function G̊m(r, β, ω) of the sec-
ondary source have essential influence on the synthesized sound field (eq. (4.26)).
When G̊m(r, β, ω) suppresses the spectral repetitions of the driving function in
the case of (4.29), the synthesized sound field is unaffected by the discretization.
G̊m(r, β, ω) is illustrated in Fig. 4.11 for r = R

2
and r = R in the horizontal plane

(β = π
2
). It can be seen that G̊m(r, β, ω) is not bandlimited so that the spectral

repetitions in D̊m,S(ω) are not suppressed and the synthesized sound field suffers
from a reconstruction error.

Similarly to the case of spherical secondary source distributions presented in
Sec. 4.3.2, a driving function with a spatial bandwidth M which satisfies (4.29)
is termed spatially narrowband driving function (refer to Fig. 4.10(c)); a driving
function with a spatial bandwidth M → +∞ is termed spatially fullband driving
function (refer to Fig. 4.10(b)). Driving functions with L

2
≪ M ≪ +∞ may be

termed spatially wideband.
As with spherical secondary source contours, the spatial bandwidth limitation

does not need to be a sharp truncation but a smooth fade-out towards higher orders
may also be applied.
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Figure 4.10: Illustration of the properties of the driving function.

4.4.2 On the Spatial Bandwidth of Wave Field Synthesis
With Circular Secondary Source Distributions

Before the detailed analysis of the properties of the sound field synthesized by a
discrete secondary source distribution is performed, the spatial bandwidth of WFS
is investigated in order to facilitate the integration of the obtained results into
previously published results on WFS such as (Start, 1997; de Brujin, 2004; Sanson
et al., 2008; Wittek, 2007).

As discussed in Sec. 2.6.1, WFS constitutes a high-frequency approximation of
the problem under consideration when non-planar distributions of secondary sources
are considered and minor deviations from the desired sound field occur for continuous
distributions. 21/2-dimensional WFS constitutes a further high-frequency approxi-
mation which only holds at distances to the secondary source distribution which are
significantly larger than the wavelength under consideration.

As has been discussed in Sec. 4.3.2 and 4.4.1, the spatial bandwidth of the
driving function is expected to have essential influence on the evolving discretization
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artifacts. This section investigates the spatial bandwidth of WFS with enclosing
secondary source distributions on the example of a circular contour. The properties
of WFS with respect to spatial discretization can then be directly deduced based on
the results from the analysis presented in Sec. 4.3.3, 4.4.3, and 4.4.4.

Assume a continuous circular secondary source distribution of radius R centered
around the coordinate origin as depicted in Fig. 3.5. Combining (2.54) and (2.58)
yields an approximation for the 21/2-dimensional driving function D(x0, ω) as

D(x0, ω) ≈ w(x0)

√

2πyref

iω
c

D3D(x0, ω) . (4.30)

In order to get an indication of the spatial bandwidth of D(x0, ω) the latter has to
be transformed to the according space-frequency domain as

D̊m(ω) =
1

2π

2π∫

0

D(x0, ω)e−imα dα . (4.31)

As evident from (4.30), (4.31) constitutes a Fourier series transform over the product
of two functions. As derived in App. D.1, the result of such a transform is given
by a convolution of the Fourier series expansion coefficients of the two functions
(eq. (D.3)). For the present case, this means

D̊m(ω) =

∞∑

m1=−∞

ẘm1 D̊m−m1(ω) . (4.32)

Assuming a virtual plane wave with propagation direction
(
θpw,

π
2

)
to be synthesized,

w (α) is given by (Spors et al., 2008)

w (α, θpw) =

{

1 for α− π
2
≤ θpw ≤ α + π

2

0 elsewhere
. (4.33)
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The Fourier expansion coefficients ẘm (θpw) of w (α, θpw) can be determined to
be (Ahrens & Spors, 2008b)

ẘm (θpw) =

{
1
2

for m = 0

i e−imθpw

2πm
(i−m − im) for m 6= 0

. (4.34)

Since ẘm (θpw) never vanishes the result of the convolution in (4.32) and thus the
WFS driving function has always infinite spatial bandwidth. This proofs that WFS
constitutes fullband synthesis. Similar results can be obtained for spherical sec-
ondary source distributions and other non-planar and non-linear geometries.

4.4.3 Properties of the Synthesized Sound Field in Time-

Frequency Domain

For convenience, only the interior domain is considered in the following. The sound
field SS(x, ω) which is synthesized by a discrete circular secondary source distribution
as described in Sec. 4.4.1, can be calculated by inserting (4.25) into (3.23) and
composing SS(x, ω) from its Fourier coefficients S̊S(r, β, ω) as indicated in (2.23).
Exchanging then the order of summation yields

SS(x, ω) = 2πR

∞∑

n=0

n∑

m=−n

D̊m,S(ω) Ğm
n (ω) jn

(ω

c
r
)

Y m
n (β, α) (4.35)

From (4.25) and (4.35) and the simulations depicted in Fig. 4.12 it can be deduced
that

• As outlined in Sec. 4.4.1, D̊m,S(ω) is never bandlimited. Thus, SS(x, ω) always
exhibits infinite bandwidth.

• If a narrowband driving function is chosen, D̊m,S(ω) = D̊m(ω) holds for all
|m| ≤ M , so that the lower orders n ≤ M stay uncorrupted (the summation
over m is bounded to the interval [−n n]) (Spors & Ahrens, 2008a; Ahrens
& Spors, 2008a). A region of nearly artifact-free synthesis arises around the
center of the secondary source distribution. Recall that the lower orders typ-
ically describe the sound field around the center of the expansion (refer to
Sec. 2.2.2). This region is bounded by a circle of radius rM . Fig. 4.12(a),
4.12(c), and 4.12(e) depict this case for different time frequencies.
For low frequencies, the rM -limit fills the entire interior domain (Fig. 4.12(a))
and gets smaller proportional to the frequency (Fig. 4.12(c)), 4.12(e)). The
higher orders of the synthesized sound field – and thus locations beyond rM

– are corrupted since the properties of the secondary sources do not perfectly
suppress the spectral repetitions (Sec. 4.4.1). The energy of the artifacts
outside rM is not evenly distributed and regions arise with an amplitude
with several dB below that of the desired component (e.g. around position
x = [0.5 − 1 0]T m in Fig. 4.12(e) and Fig. 4.13(a)). The location of these
regions of significantly lower amplitude is dependent on the frequency. The
arising artifacts can be locally interpreted as plane wave fronts with different
propagation direction than the desired virtual plane wave (e.g. around position
x = [1 − 0.5 0]T m in Fig. 4.12(e)).
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Figure 4.12: Synthesized sound field in the horizontal plane for the synthesis of a virtual
plane wave for different bandwidths of the driving function. The marks in-
dicate the positions of the secondary sources. The dotted circle bounds the
rM region in the narrowband case. L = 56 secondary sources are employed.
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• A fullband driving function also allows for a synthesis which is free of consid-
erable artifacts at lower frequencies as shown in Fig. 4.12(b). This is due to
the fact that no considerable energy from the spectral repetitions leaks into
the lower orders at lower frequencies (refer also to Fig. 4.10(b)).
At higher frequencies also the lower orders are corrupted and artifacts are
distributed over the entire receiver area. The spatial structure of the arising
artifacts can not be interpreted. The overall amplitude of the resulting sound
field is more balanced over the entire receiver area than with narrowband
synthesis (compare Fig. 4.13(a) to Fig. 4.13(b)).

• Evaluating (4.35) exclusively for µ = 0 represents the desired component of
the synthesized sound field. All cases of µ 6= 0 represent discretization arti-
facts. Thorough inspection of Fig. 4.13(a) suggests that spatial discretization
artifacts can be beneficial in narrowband synthesis since such artifacts provide
energy in regions which would exhibit very low amplitude if discretization ar-
tifacts were absent. The latter circumstance is also referred to as friendly
aliasing (Zotter & Pomberger, 2010).
Note that in Fig. 4.13(a) only that “ray” of the synthesized sound field which
passes the center belongs to the desired sound field. All other components are
due to spatial discretization.

• Finally, note that if only the horizontal plane is considered, circular secondary
source distributions are capable of achieving results which are comparable to
those of spherical secondary source distributions (Fig. 4.8) with a fraction of
the number of loudspeakers (1568 vs. 56).
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Figure 4.13: Magnitude 20 log20 |SS(x, ω)| of the sound fields depicted in Fig. 4.12(e) and
Fig. 4.12(f); The dotted circle bounds the rM region in the narrowband case.
f = 5000 Hz.

Fig. 4.14 depicts the magnitude of the transfer function of the discrete secondary
source distribution for different receiver positions. The scenario considered is the
same as in Fig. 4.12. Fig. 4.14(a) and 4.14(c) show the transfer function for receiver
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points which are distributed over the entire interior domain. Fig. 4.14(b) and 4.14(d)
show positions which are in the vicinity of each other. It can be seen that:

• For the narrowband driving function, the transfer function is indeed perfectly
flat at the center of the secondary source distribution (see the black line in
Fig. 4.14(a)).

• Other positions in the narrowband scenario show some minor deviations of the
transfer function from a perfectly flat response at low frequencies (Fig. 4.14(a)
and 4.14(b)). Above a frequency of approximately 2000 Hz strong deviations
from the flat response with wide gaps and peaks arise (Fig. 4.14(a)). The
transfer function exhibits very little local variation (Fig. 4.14(b)).

• In the fullband examples (Fig. 4.14(c) and 4.14(d)), the transfer functions
exhibits as well minor deviations from the perfectly flat response below 1000 Hz
for all receiver positions.

• Above approximately 1500 Hz, narrow peaks and gaps arise with the fullband
driving function with large global variation (Fig. 4.14(c)). Strong local varia-
tion is also apparent in Fig. 4.14(d) above a few kHz. This large local variation
has already been detected in WFS (Wittek, 2007). Since the perceived sound
coloration is significantly less than the simulations suggest, it is assumed that
some kind of averaging takes place in the human auditory system which evens
out the transfer function (Wittek, 2007). Note that this interpretation does
not hold for narrowband synthesis as shown in Fig. 4.14(b). It has therefore
to be expected that the latter case leads to significantly stronger coloration
than fullband synthesis.

• For all receiver positions in fullband synthesis, the transfer function exhibits
a highpass behavior with a slope of approximately 3 dB per octave above
1500 Hz. Since this slope is similar for all receiver positions it can be com-
pensated for by an appropriate pre-filtering of the input signal. This general
compensation for the highpass slope is a standard method in WFS (Spors &
Ahrens, 2010a).

4.4.4 Properties of the Synthesized Sound Field in Time

Domain

The analyses presented in Sec. 4.4.3 revealed the spectral characteristics of spa-
tial discretization artifacts. It has recently been shown in (Geier et al., 2010) that
the time-domain characteristics of spatial discretization artifacts in synthetic sound
fields can have essential influence on perception. In the time domain, such artifacts
can occur as correlated signals arriving before (pre-echoes) or after (echoes) the de-
sired wave front. So far, pre-echoes have only be observed in the synthesis of focused
virtual sound sources in WFS (Spors et al., 2009). Echoes have been observed in
the synthesis of virtual point sources in WFS (Vogel, 1993).
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Figure 4.14: Transfer function of a circular distribution of 56 monopoles driven in order to
synthesize a virtual plane wave for different listening positions. x1 = [0 0 0]T ,
x2 = [0.7 0 0]T m, x3 = [0 0.7 0]T m, x4 = [0 0.69 0]T m, x5 = [0 0.71 0]T m

Since an analytical treatment in time domain is not straightforward, the sample
scenario considered in Sec. 4.4.3 is numerically transferred to time domain and the
result is analyzed below.

Note that time-domain simulations of WFS (and thus of fullband synthesis,
Sec. 4.4.2) have also been presented in the classical WFS literature such as (Vogel,
1993) and simulations of NFC-HOA have been presented in (Daniel, 2003). However,
detailed analysis and comparison have not been performed.

The critical property of the human auditory system to mention at this point is
the precedence effect which is a fundamental mechanism in spatial hearing (Wal-
lach et al., 1949; Haas, 1951; Blauert, 1997). The precedence effect describes the
phenomenon that the direction of a perceived sound is not altered by echoes of this
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sound which may arrive from different directions in a time window of 1–40 ms after
the leading wave front. Furthermore, the echoes are not perceived as such but as
a room impression, so that in the time window of 1–40 ms fusion to one auditory
percept occurs. In the case of sound field synthesis the possibility hence exists that
the spatial discretization artifacts have no influence on the perceived direction of
the auditory event and are not perceived as echoes. This means also that pre-echoes
are more critical than echoes, because they arrive before the desired wave front and
can influence the perceived direction due to triggering of the precedence effect.

On the other hand, the precedence effect only occurs if the relative level of the
echoes occurring after the leading wave front is not higher than 10–15 dB. Thus, if
the amplitude of the desired wave front is much higher than the amplitudes of the
pre-echoes, the pre-echoes will be perceived as an additional auditory event.

Fig. 4.15 shows still images of the spatio-temporal impulse response of the loud-
speaker system under consideration when driven in order to synthesize a virtual
plane wave with propagation direction (θpw, φpw) =

(
−π

2
, π

2

)
for different time in-

stances. A cross-section through the horizontal plane is shown. Fig. 4.15(a), 4.15(c),
and 4.15(e) show narrowband synthesis, Fig. 4.15(b), 4.15(d), and 4.15(f) show full-
band synthesis.

Fig. 4.16 shows impulse responses of the loudspeaker system for a specific lis-
tening position in narrowband synthesis (Fig. 4.16(a) and 4.16(c)) and fullband
synthesis (Fig. 4.16(b) and 4.16(d)). Fig. 4.16(c) and 4.16(d) show the impulse re-
sponses from Fig. 4.16(a) and 4.16(b) respectively but lowpass and highpass filtered
with cutoff frequencies fcutoff as indicated. In all figures the absolute value of the
sound pressure is shown in dB, i.e.

20 log10 |ℜ{sS(x, t}| . (4.36)

The time t is chosen such that the virtual plane wave front passes the center of the
loudspeaker array at t = 0 ms.

As described above, the major findings which can be deduced from time domain
simulations are the properties of the first arriving wave fronts and the occurrence of
additional and correlated wave fronts (echoes). The latter are a consequence of the
chosen spatial bandwidth of the driving function in combination with the fact that
a finite number of spatially discrete loudspeakers is employed.

As outlined in Sec. 4.4.3, considerable artifacts have to be expected above a
given time frequency fa. In fullband synthesis, fa is approximately constant over
the entire listener area. For the present setup it lies between fa = 1400 Hz and
fa = 2500 Hz depending on the receiver position.

This situation is more complicated in narrowband synthesis. There, it is such
that an almost artifact-free region evolves around the center of the secondary source
distribution which gets smaller with frequency. For frequencies below 1400 Hz, this
artifact-free region fills the entire receiver area and reaches the size of a human head
at approximately 10 kHz for the present loudspeaker array.

In the following, the observations deduced from the illustrations in Fig. 4.15 and
Fig. 4.16 are summarized and interpreted in terms of perception.
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(a) narrowband synthesis, t = −2.7 ms
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(b) fullband synthesis, t = −2.7 ms
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(c) narrowband synthesis, t = 0 ms
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(d) fullband synthesis, t = 0 ms
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(f) fullband synthesis, t = 2.7 ms

Figure 4.15: Impulse responses of the loudspeaker system in the horizontal plane when
driven in order to synthesize a virtual plane wave with propagation direction
(θpw, φpw) =

(
−π

2 , π
2

)
. The absolute value of the time domain sound pressure

is shown in dB for different instances of time. The left column shows nar-
rowband synthesis, the right column shows fullband synthesis. The marks
indicate the positions of the loudspeakers.
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(d) fullband synthesis, fcutoff = 2000Hz

Figure 4.16: Impulse responses of the loudspeaker system at position x = [1 0 0]T m when
driven in order to synthesize a virtual plane wave with propagation direction
(θpw, φpw) =

(
−π

2 , π
2

)
. Fig. 4.16(c) and 4.16(d) show the impulse responses

from Fig. 4.16(a) and 4.16(b) but highpass (’hp’) and lowpass (’lp’) filtered
with a cutoff frequency of fcutoff. The absolute value of the sound pressure is
shown in dB. The plane wave passes the center of the array at t = 0 ms with
amplitude 0 dB.

First wave front and echoes

Fullband synthesis exhibits a pronounced first wave front at all listening positions.
Above fa, this first wave front is slightly distorted but keeps its straight shape.
Spatial discretization artifacts in the form of high-frequency echoes follow the first
wave front for all listening positions above fa. As pointed out in (Berkhout et al.,
1993), WFS (which is fullband synthesis, Sec. 4.4.2) can be seen as wave front
synthesis.
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The broadband first wave front is followed by a dense sequence of echoes of
approximately similar amplitude for 0 ms < t < 0.2 ms (refer to Fig. 4.15(d)).
This dense sequence is followed by a slightly sparser sequence of high-frequency
echoes for 0.2 ms < t < 6 ms with decreasing amplitude. The time interval between
successive echoes in the sparser part of the impulse response is in the order of some
hundred µs. These high-frequency echoes arrive from various directions and are
rather homogeneously distributed over the entire receiver area. It can be shown
that each of the active loudspeakers produces one of these echoes (Vogel, 1993).
Consequently, larger loudspeaker setups lead to longer impulse responses and a
larger loudspeaker spacing leads to longer intervals between the echoes.

In narrowband synthesis the plane wave front is accurately synthesized around
the central listening position (refer to Fig. 4.15(c)). At other listening positions,
especially at positions lateral to the center, the synthesized sound field consists of a
number of echoes which impinge at different times and from different directions on
the listener.

Comparison of Fig. 4.15(c) with the simulations in Fig. 4.12(a), 4.12(c),
and 4.12(e) reveals that the first wave front arriving carries the low time-frequency
content. This is also confirmed by the impulse response of the narrowband sce-
nario, as depicted in Fig. 4.16(c). The thick black curve represents energy below
fcutoff = 2200 Hz, the thin gray curve represents energy above fcutoff. The virtual
plane wave is accurately synthesized at these low time frequencies whereby it ex-
hibits a slightly concave shape containing some distortion for positions lateral to the
center.

After the first wave front, a number of echoes arrive successively from a direction
which approximately coincides which the direction of that loudspeaker at which
the virtual plane wave first “touches” the loudspeaker contour. Comparison of
Fig. 4.15(c) with monochromatic simulations in Fig. 4.12(a), 4.12(c), and 4.12(e)
reveals that these echoes contain high time frequencies. Again, this is confirmed by
Fig. 4.16(c). Note that the ampitude of the loudest echo is at almost 15 dB above the
first wave front (Fig. 4.16(a)). The distance in time between the adjacent wave fronts
is significantly lower than 1 ms for the loudspeaker system under consideration. A
wider loudspeaker spacing leads to a larger distance between the wave fronts.

It is evident from inspection of Fig. 4.15 (and Fig. 4.16(a) and 4.16(b)) that
the impulse response of the system is significantly shorter for narrowband synthesis
than for fullband synthesis for a given listener position. While no considerable
energy is present at all positions for y > 0 m in narrowband synthesis for t = 2.7 ms
in Fig. 4.15(c) the discretization artifacts in fullband synthesis are still obvious
(Fig. 4.15(d)).

Recall finally that, as explained in Sec. 4.4.3, the energy distribution over the
entire receiver area is very inhomogeneous for frequencies above fa. At certain
locations dependent on the considered frequency, the synthesized sound field exhibits
a significantly lower amplitude than desired.

Perception

The accurate synthesis of the first wave front in fullband synthesis leads to very
good auditory localization for non-focused virtual sources over the entire listening



4.4. Circular Secondary Source Distributions 95

area (Start, 1997; de Brujin, 2004; Sanson et al., 2008). This is in accordance with
the conclusion that was drawn above based on the precedence effect. The high-
frequency echoes due to spatial discretization are not perceivable as echoes nor do
they change the perceived direction of the virtual plane wave. Recall that the echoes
arrive in a time window smaller than 6 ms, are lower in amplitude, and contain fewer
spectral components than the first wave front. Informal listening confirms absence of
perceivable echoes, but the echoes do add some sense of spaciousness. This is another
well-known phenomenon of the precedence effect and enables humans to properly
localize auditory events in non-anechoic environments (Blauert, 1997). Due to the
unnatural pattern of echoes and the corresponding comb filtering of the transfer
function also slight coloration is perceivable.

For narrowband synthesis a separation in time between the wave fronts for low
and high frequencies takes place. Therefore, there exists no spectral overlap be-
tween the first wave front and the later echoes. This leads to a weaker precedence
effect (Litovsky et al., 1999). Also the high-frequency echoes are 15 dB higher in
amplitude than the first wave front. This suggests that the high time-frequency
content of the synthesized sound field is localized in direction of the loudspeakers
producing these echoes (see above). This is in contrast to the low frequency content
which impinges from the desired direction.

Informal listening shows that high and low time-frequency contents are indeed
localized at different directions for listening positions lateral to the center. The
auditory event is thus split into two. One event is composed exclusively of the
high time-frequency content, the other event is composed of the low time-frequency
content.

In general, it is expected that narrowband synthesis provides a less homogeneous
perception than fullband synthesis when the entire listening area is considered. On
the other hand, at the center of the loudspeaker array, narrowband synthesis is
expected to cause less coloration than fullband synthesis due to the absence of any
echoes at this location in narrowband synthesis.

4.4.5 Optimizing the Synthesis with Respect to a Given Re-

ceiver Location

It was shown in Sec. 4.4.3 that the synthesis of a sound field which is bandlimited
according to (4.29) leads to a region around the center of the secondary source
distribution which is free of considerable discretization artifacts. It will be shown
in this section that a bandlimitation with respect to an expansion around any given
location inside the area surrounded by the secondary source distribution does indeed
also lead to such a region of high physical accuracy at the according location (Ahrens
& Spors, 2009b).

This approach is only presented for circular secondary source distributions and
not for spherical ones since the situation is similar for both geometries.
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Limiting the Spatial Bandwidth with Respect to a Local Coordinate Sys-
tem

Limiting the spatial bandwidth of a sound field S(x, ω) with respect to an expansion
in a local coordinate system with origin at the global coordinate xc yields (Ahrens
& Spors, 2009b)

SN ′(x′, ω) =
N ′−1∑

n′=0

n′
∑

m′=−n′

S̆ ′
m′

n′ (ω)jn′

(ω

c
r′
)

Y m′

n′ (β ′, α′) , (4.37)

whereby N ′− 1 denotes the local angular bandwidth. Again, the spatial bandwidth
limitation does not need to be a sharp truncation but a smooth fade-out towards
higher orders may also be applied. For simplicity, sharp truncation is applied.

r′ and α′ denote the position coordinates with respect to a local coordinate
system whose origin is at xc = [xc yc 0]T and which is obtained by a translation of
the global coordinate system. A similar situation is depicted in Fig. 3.7 whereby
in the present case, xc is not necessarily on the x-axis. Note that r′ = r′(x) and
α′ = α′(x).

For the calculation of the driving function (4.28) the coefficients S̆m
|m|(ω) with

respect to expansion in the global coordinate system are required. The expan-
sion (4.37) has therefore to be expressed in the global coordinate system. Similar
to (E.3), this translation is given by

SN ′(x, ω) =

∞∑

n=0

n∑

m=−n

N ′−1∑

n′=0

n′
∑

m′=−n′

S̆ ′
m′

n′ (ω) (−1)n+n′

(I|I)m m′

n n′ (∆x, ω)

︸ ︷︷ ︸

= S̆m
n (ω)

jn

(ω

c
r
)

Y m
n (β, α) ,

(4.38)
so that the coefficients S̆m

|m|(ω) required by the driving function are given by

S̆m
|m|,N ′(ω) =

N ′−1∑

n′=0

n′
∑

m′=−n′

S̆ ′
m′

n′ (ω) (−1)n+n′

(I|I)m m′

|m|n′ (∆x, ω) . (4.39)

Two spatial bandlimitations are apparent in the driving function: (Ahrens & Spors,
2009b)

1. SN ′(x, ω) is bandlimited with respect to an expansion around xc. The band-
limit is denoted by N ′. From (4.38) it can be deduced that SN ′(x, ω) never-
theless exhibits infinite spatial bandwidth with respect to expansion around
the global coordinate origin.

2. The driving function (4.28) on the other hand is bandlimited with respect to
expansion around the coordinate origin. This bandlimit is denoted by M . The
desired component of the synthesized sound field is bandlimited in both senses.

Spatial discretization properties

The spatial bandwidth limitation introduced in (4.37) leads to favorable spatial dis-
cretization properties as described in this section. For convenience, the synthesis of



4.4. Circular Secondary Source Distributions 97

a virtual plane wave with propagation direction (θpw, φpw) =
(
−π

2
, π

2

)
is considered.

The coefficients S̆ ′
m′

n′ (ω) in this case correspond to the coefficients S̆m
n,pw(ω) given

by (2.27).
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Figure 4.17: Magnitude of the Fourier coefficients with respect to the expansion around
the origin of the global coordinate system. rc = 0.75 m, N ′ = 15

In Fig. 4.17 it can be seen that the energy of the angular spectrum D̊m(ω) of the
continuous proposed driving function is distributed such that the spectral repetitions
due to spatial sampling overlap only in regions of low energy. This enables the appli-
cation of a driving function (4.28) with a bandlimit M significantly higher than M
in the narrowband case still avoiding considerable overlap (Ahrens & Spors, 2009b).
Generally, a choice M → +∞ will be made which leads to a locally bandlimited
fullband driving function. Since the spectral repetitions do nevertheless introduce
considerable energy into the lower orders of the driving function, the synthesized
sound field will suffer from considerable spatial aliasing and other reconstruction
errors. Since no interference of the high-energy regions occurs, spatial aliasing and
the reconstruction errors evolve in spatial locations at significant distance from the
local expansion center.
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Figure 4.18: Sound fields synthesized by a circular distribution of L = 56 discrete loud-
speakers and with radius R = 1.5 m synthesizing a plane wave of frequency
f = 2000 Hz with propagation direction (θpw, φpw) =

(
−π

2 , π
2

)
. The black

marks indicate the positions of the secondary sources; white circles indicate
xc, the centers of the local coordinate systems.

Two examples of the application of the proposed driving function are shown in
Fig. 4.18. It can be seen that regions of high accuracy do indeed evolve around the
expansion centers xc marked by the white circles. These regions have a radius of
rN ′.

Outside these regions, strong deviations from the desired sound field arise. Sim-
ilar like with the conventional driving function, the regions of increased accuracy
become smaller with increasing time frequency of the synthesized sound field. When
comparing Fig. 4.18(b) to the application of the conventional narrowband and full-
band driving functions illustrated in Fig. 4.12(c) and 4.12(d), it can be seen that the
locally bandlimited approach indeed enables the accurate synthesis of the desired
sound field in locations where the conventional approach fails to do so. The syn-
thesis can thus be optimized with respect to a given – potentially dynamic – target
area.

This approach is referred to as local sound field synthesis.

Efficient Implementation

For the efficient implementation of (potentially dynamic) local sound field synthesis,
a reformulation of the coordinate translation from Sec. 3.3.3 for interior-to-interior
((I|I)) translation can be employed (Gumerov & Duraiswami, 2004). All relations
for the coefficients (E|I) given in Sec. 3.3.3 hold on a similar manner for (I|I)
whereby initial values (Gumerov & Duraiswami, 2004, eq. (3.2.9), p. 96)

(I|I)m′ 0
n′ 0 (∆x, ω) =

√
4π (−1)n′

jn′

(ω

c
∆R
)

Y −m′

n′ (∆β,∆α) (4.40)
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and (Gumerov & Duraiswami, 2004, eq. (3.2.52), p. 103)

(I|I)0 m
0 |m|(∆x, ω) =

√
4π j|m|

(ω

c
∆r
)

Y m
|m| (∆β,∆α) . (4.41)

have to be employed instead of (3.33) and (3.34).

4.5 Planar Secondary Source Distributions

An infinite discrete planar secondary source array of constant spacing between adja-
cent secondary sources of ∆x and ∆z in x- and z-direction respectively is considered
in this section. The spatial discretization is modeled by a sampling of the driving
function as (Spors, 2006)

DS(x, z, ω) =

∞∑

η=−∞

δ(x−∆xη)

∞∑

ν=−∞

δ(z −∆zν) ·D(x, z, ω) . (4.42)

Similarly like in (4.7), it can be shown that D̃S(kx, kz, ω) is then (Ahrens & Spors,
2010d)

D̃S(kx, kz, ω) =

∞∑

η=−∞

∞∑

ν=−∞

D̃

(

kx −
2π

∆x
η, kz −

2π

∆z
ν, ω

)

, (4.43)

and spectral repetitions in kx-kz-domain become apparent. According to (3.39), the
synthesized sound field S̃S is given by

S̃S (kx, y, kz, ω) = D̃S (kx, kz, ω) · G̃ (kx, y, kz, ω) (4.44)

Eq. (4.44) constitutes the analogon to (4.8), (4.19), and (4.26). The adaptation of
Fig. 4.3, 4.5, and 4.9 to the present situation is depicted in Fig. 4.19.

D(x0, ω)

∆x

DS(x0, ω)

G̃ (kx, y, kz, ω)

SS(x, ω)

Figure 4.19: Schematic of the spatial discretization process for planar secondary source
distributions.

For convenience, the example of the synthesis of a unit amplitude plane wave
with propagation vector kpw (refer to (1.2)) is considered in the following. The sound
field SS(x, ω) synthesized by a discrete secondary source distribution as described
above is yielded by inserting (3.43) into (4.43), and the result and (C.9) into (3.37).
Applying then an inverse Fourier transform along kx and ky finally yields (Ahrens
& Spors, 2010d)

SS(x, ω) = 2ikpw,y

∞∑

η=−∞

∞∑

ν=−∞

G̃

(
2π

∆x
η + kpw,x, y,

2π

∆z
ν + kpw,z, ω

)

× e−i( 2π
∆x

η+kpw,x)xe−i( 2π
∆z

ν+kpw,z)z · 2πδ(ω − ωpw) . (4.45)
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Figure 4.20: Illustration of G̃(kx, y, kz , ω) reflecting the properties of discrete planar secondary source distributions (eq. (4.45)). The vector

kpw,x,z = [kpw,x kpw,z]
T represents the propagation direction of the synthesized plane wave projected onto the kx-kz-plane. The

dots • indicate synthesized components. Black solid lines and black dots represent quantities occurring with continuous secondary
source distributions. Grey lines and dots represent quantities occurring additionally due to the spatial discretization. The grey
shading indicates the amplitude of G̃(·). Locations outside the circle represent evanescent sound fields, locations inside the circle
represent propagating sound fields.
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SS(x, ω) is thus given by a summation over a multiplication of three factors. The
latter describe the synthesized sound field along each individual dimension of space.
Eq. (4.45) evaluated for (η = 0, ν = 0) constitutes the desired plane wave. The other
terms in the sum for η 6= 0 and ν 6= 0 are a consequence of spatial discretization.

For each individual order η and ν, the synthesized sound field in x- and z-
direction is given by complex exponential functions. The amplitude is therefore
constant along the respective dimension and the phase changes harmonically. The
synthesized sound field along the y-dimension is determined by the secondary source
transfer function G̃(kx, y, kz, ω) given by (C.9). Since G̃(kx, y, kz, ω) essentially de-
termines the properties of SS(x, ω), the investigation is limited to the properties of
the former (Ahrens & Spors, 2010d).

Fig. 4.20 illustrates G̃(kx, y, kz, ω) in the kx-kz-plane. For ease of illustration,
a schematic is used here instead of a simulation. Note that the properties of the
involved quantities are investigated more in detail in conjunction with linear sec-
ondary source distributions in Sec. 4.6.1. The essential mechanisms are similar with
linear distributions but detailed illustration of the latter is more convenient due to
the lesser degrees of freedom. A basic analysis is given in the following.

For a fixed time frequency ω, kx = 2π
∆x
η + kpw,x is represented by straight lines

perpendicular to the kz-axis in Fig. 4.20. kz = 2π
∆z
ν+kpw,z is represented by straight

lines perpendicular to the kx-axis. G̃(kx, y, kz, ω) has a pole on a circular region of
radius ω

c
centered around the origin of the coordinate system.

The different components of SS(x, ω) are given by the intersections of the above
described lines in the kx-kz-plane. The desired plane wave is indicated in Fig. 4.20
by the intersection of the two lines inside the circle of radius ω

c
.

Two categories of discretization artifacts can be identified: a) Evanescent com-
ponents and b) propagating plane wave components which are additional to the
desired one.

Artifacts belonging to category a) are illustrated in Fig. 4.20. They are repre-
sented by intersections of lines occurring at locations where

√
k2

x + k2
z >

∣
∣ω

c

∣
∣. It can

be seen from (C.9) that SS(x, ω) is evanescent for exactly these locations. Note that
the exponent in (C.9) is purely real for

√

k2
x + k2

z >
∣
∣ω

c

∣
∣. The existence of evanescent

components in the synthesized sound field has already been indicated in (Pueo et al.,
2007).

Since neither η nor ν is bounded, these evanescent discretization artifacts can
not be avoided. Due to the monotonically decreasing amplitude of G̃(kx, y, kz, ω)
(indicated by the grey shading in Fig. 4.20) for

√

k2
x + k2

z >
∣
∣ω

c

∣
∣, the higher the orders

η and ν of the discretization contributions are, the lower are their amplitudes.

The discretization artifacts of category b) occur only in special situations: When
the distance ∆x or ∆z between adjacent loudspeakers is so large, respectively if the
time frequency ω is so high that lines other than those for (η = 0, ν = 0) intersect
inside the circular region bounded by the pole of G̃(kx, y, kz, ω). In this case, the
discretization artifacts are additional plane wave contributions whose propagation
direction is determined by the location of the points of intersection and is therefore
dependent on the radian frequency ω.

Note that this situation is not apparent in Fig. 4.20. For ease of clarity ∆x, ∆z,
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and ω in Fig. 4.20 where chosen such that the lines for η 6= 0 and ν 6= 0 only intersect
outside the circular boundary between the regions of propagating and evanescent
components.

A segregation of spatial aliasing in the strict sense (as explained in Sec. 4.3.3)
and other reconstruction errors is not useful in the present case of planar secondary
source distributions synthesizing plane waves. This is due to the fact that the spatial
spectrum of the continuous driving function is given by a single delta function and
thus an overlap for repetitions can not occur. Since it is practically significantly
more relevant whether the arising artifacts are propagating or evanescent, the term
spatial aliasing may be employed when propagating artifacts are considered.

It is not straightforward to derive a revealing analytical anti-aliasing condition
for planar secondary source distributions which prevents the synthesis of unwanted
propagating components. This is due to the fact that the sampling in x-dimension
and the sampling in z-dimension interact and can not be treated independently. The
conditions (Ahrens & Spors, 2010d)

(ω

c

)2

<

(
2π

∆x
− |kpw,x|

)2

+ k2
pw,z (4.46a)

(ω

c

)2

< k2
pw,x +

(
2π

∆z
− |kpw,z|

)2

(4.46b)

both have to be met.
The concept of narrowband and wide-/fullband driving functions as it was pro-

posed for spherical and circular secondary source distributions (Sec. 4.3.2 and 4.4.1)
is not useful here since a bandwidth limitation restricts the possible propagation
directions of the synthesized sound field. Recall that the driving function for the
synthesis of a plane wave (3.43) consists of Dirac delta functions in kx and ky. A
limitation of the spatial bandwidth can generally only be applied by a transposition
of the delta function to lower space frequencies which results in a change of the
propagation direction.

As will be shown in Sec. 4.6, the spatial sampling properties of planar and linear
secondary source distributions are essentially similar. In order to avoid redundancies,
detailed analyses are only presented for linear distributions in Sec. 4.6.

4.6 Linear Secondary Source Distributions

4.6.1 Discretization of the Driving Function

Applying the procedure outlined in Sec. 4.5 to linear secondary source distributions
leads to a discretized driving function D̃S(kx, ω) given by (Spors, 2006)

D̃S(kx, ω) =

∞∑

η=−∞

D̃

(

kx −
2π

∆x
η, ω

)

, (4.47)

and spectral repetitions in kx-domain become apparent. According to (3.47), the
synthesized sound field S̃S is given by

S̃S(kx, y, z, ω) = D̃S(kx, ω) · G̃(kx, y, z, ω) (4.48)
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Eq. (4.48) constitutes the analogon to (4.8), (4.19), (4.26), and (4.44). The adapta-
tion of Fig. 4.3, 4.5, 4.9, and 4.19 to the present situation is depicted in Fig. 4.21.

D(x0, ω)

∆x

DS(x0, ω)

G̃ (kx, y, z, ω)

SS(x, ω)

Figure 4.21: Schematic of the spatial discretization process for linear secondary source
distributions.

As with planar secondary source distributions, the synthesis of a virtual plane
wave propagating inside the horizontal plane is considered in the following. Insert-
ing (3.53) into (4.47) and the result and (C.8) into (3.46) yields the synthesized
sound field SS(x, ω) given by (Ahrens & Spors, 2010d)

SS(x, ω) =
4ie−ikpw,yyref

H
(2)
0 (kpw,yyref)

· 2πδ(ω − ωpw)

∞∑

η=−∞

e−i( 2π
∆x

η+kpw,x)x

× G̃
(

2π

∆x
η + kpw,x, y, z, ω

)

. (4.49)

Again, SS(x, ω) is given by a complex exponential function along the x-dimension.
The properties of the secondary sources reflected by G̃(kx, y, z, ω) given by (C.8)
determine SS(x, ω) in radial direction, i.e. along

√

y2 + z2.

The situation for discrete linear secondary source distributions is very similar
to that of discrete planar distributions discussed in Sec. 4.5: The considered region
of the wavenumber space, in this case the kx-axis, is divided into regions implying
different properties of the synthesized sound field. i) Locations where |kx| <

∣
∣ω

c

∣
∣

represent a combination of propagating and evanescent sound fields, ii) locations
where |kx| >

∣
∣ω

c

∣
∣ represent purely evanescent sound fields.

This finding is deduced from the properties of the secondary source transfer
function G̃(kx, y, z, ω). For |kx| <

∣
∣ω

c

∣
∣, G̃(kx, y, z, ω) is given by the zero-th order

Hankel function of second kind H
(2)
0 (·) (refer to (C.8)). This indicates a combination

of a propagating and an evanescent sound field (Williams, 1999). For |kx| >
∣
∣ω

c

∣
∣,

G̃(kx, y, z, ω) is given by the zero-th order modified Bessel function of second kind
K0(·). K0(·) is purely real and decreases strictly monotonically with increasing ar-
gument, i.e. with increasing distance

√

y2 + z2 to the secondary source distribution.

Fig. 4.22 illustrates G̃(kx, y, z, ω) in the horizontal plane, i.e. for z = 0 for two
different distances y. The edges for the triangular structure in Fig. 4.22 correspond
to |kx| =

∣
∣ω

c

∣
∣.

It can be deduced that the magnitude of G̃(kx, y, z, ω) drops quickly when the
evanescent region is entered whereby the slope is less steep closer to the secondary
source, i.e. for smaller y. Obviously, evanescent components are more pronounced
in the vicinity of the source.
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Figure 4.22: 20 log10

∣
∣
∣G̃(kx, y, z, ω)

∣
∣
∣ for z = 0 and varying y.

Furthermore, it can be deduced from (4.49) and Fig. 4.22 that all propagating
components of the synthesized sound field (i.e. components triggering the region of
G̃(kx, y, z, ω) inside the triangular structure) have comparable amplitude.

The locations kx = 2π
∆x
η+kpw,x in (4.49) are represented by black dots in Fig. 4.23.

Locations where |kx| <
∣
∣ω

c

∣
∣ represent the synthesis of the combination of a propa-

gating and an evanescent sound field as described by the Hankel function. Locations
where |kx| >

∣
∣ω

c

∣
∣ indicate the synthesis of a purely evanescent component. As with

planar secondary source distributions, the purely evanescent components can not be
avoided since η is not bounded. Again, higher orders η lead to lower amplitudes of
the contributions in the purely evanescent region |kx| >

∣
∣ω

c

∣
∣.

kx− 2π
∆x

− π
∆x

π
∆x

2π
∆x

տ
ււ ց

kpw,x − 2π
∆x

kpw,x kpw,x + 2π
∆x

−ω
c

ω
ckpw,x

0

↓

Figure 4.23: Illustration of the consequences of the discretization of the secondary source
distributions for linear distributions by means of illustrating G̃(kx, y, z, ω) .
The dots • indicate synthesized components. Black solid lines and black
dots represent quantities occurring with continuous secondary source distri-
butions. Grey lines and dots represent quantities occurring additionally due
to the spatial discretization. The grey shading indicates the amplitude of
G̃(·) . The vector kpw,x = [kpw,x] represents the propagation direction of
the virtual plane wave projected onto the kx-axis. Locations outside the in-
terval

[
−ω

c ; ω
c

]
represent evanescent sound fields, locations inside represent

propagating sound fields.

If only η = 0 falls into the region where |kx| <
∣
∣ω

c

∣
∣, the synthesized propagating

sound field consists exclusively of the desired sound field plus an according evanes-
cent component. This situation is illustrated in Fig. 4.23. Note that all synthesized
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propagating components are accompanied by an additional evanescent component
as described by the Hankel function in (4.49).

However, if the spacing ∆x between adjacent secondary sources is large enough,
respectively if the radian frequency ω is chosen high enough, then also synthesized
components for η 6= 0 fall into the region where |kx| <

∣
∣ω

c

∣
∣. In this case, propa-

gating discretization artifacts arise which are accompanied by an according evanes-
cent component as discussed above. This situation is not illustrated in Fig. 4.23.
These propagating discretization artifacts constitute additional wave fronts which
are straight inside the horizontal plane. Informally, one speaks of additional plane
waves.

The according location inside the region where |kx| <
∣
∣ω

c

∣
∣ determines the kx-

component of the propagation direction of the additional wave fronts. Note that the
propagation directions of the additional wave fronts are dependent on the radian fre-
quency ω. This finding has been derived in (Spors, 2008) for purely two-dimensional
synthesis.

For reasons similar to those discussed in Sec. 4.5 for planar secondary source
distributions, segregation of spatial aliasing in the strict sense and other reconstruc-
tion errors is not useful either for linear secondary source distributions synthesizing
virtual plane waves.

The anti-aliasing condition preventing undesired propagating aliasing contribu-
tions can be graphically deduced from Fig. 4.23. It is given by

ω <
2πc

∆x (1 + | cos θpw|)
. (4.50)

Eq. (4.50) has already been derived in (Spors, 2006) for purely two-dimensional
synthesis and in (Verheijen, 1997; Start, 1997; Pueo et al., 2007; Ahrens & Spors,
2010d) for 21/2-dimensional synthesis.

As with planar secondary source distributions outlined in Sec. 4.5, the concept
of narrowband and wide-/fullband driving functions is not useful with linear distri-
butions.

4.6.2 Properties of the Synthesized Sound Field in Time-

Frequency Domain

Refer to Fig. 4.24 for simulations of the sound field synthesized by a discrete linear
secondary source distribution when driven in order to synthesize a virtual plane
wave.

For a loudspeaker spacing of ∆x = 0.2 m and a frequency of f = 1000 Hz
as depicted in Fig. 4.24(a), 4.24(c), and 4.24(e), exclusively evanescent spatial dis-
cretization artifacts are apparent.

A higher frequency of f = 1500 Hz evokes an additional propagating wave which
propagates in direction θ ≈ 2 rad ≈ 115◦ with an amplitude similar to the desired
sound field. Refer to Fig. 4.24(b), 4.24(d), and 4.24(f). The evanescent discretization
artifacts in this situation exhibit very low amplitude and are not visible in the figures.

Choosing an even higher frequency or a larger secondary source spacing results
in more propagating artifacts each of which with an individual propagation direction
as discussed in Sec. 4.6.1.
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(b) synthesized sound field, f = 1500 Hz
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(e) discretization artifacts, f = 1000 Hz

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x (m)

y
(m

)

(f) discretization artifacts, f = 1500 Hz

Figure 4.24: Sound field synthesized by a discrete linear secondary source distribution;
∆x = 0.2 m, (θpw, φpw) =

(
π
4 , π

2

)
, yref = 1 m; the marks indicate the sec-

ondary sources.
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4.6.3 Properties of the Synthesized Sound Field in Time
Domain

Fig. 4.25(a) shows a still image of the impulse response of a discrete linear secondary
source distribution with a loudspeaker spacing of ∆x = 0.2 m. Fig. 4.26 shows the
impulse response for a specific receiver position. The secondary source distribution
is driven in order to synthesize a virtual plane wave with propagation direction
(θpw, φpw) =

(
π
4
, π

2

)
. The absolute value of the time-domain sound pressure is shown

in dB, i.e.
20 log10 |ℜ{sS(x, t}| . (4.51)

The representation of the driving function in time domain was obtained using (3.55)
and applying a numerical Fourier transform on (3.56).

The observations are similar to those found in fullband synthesis using circular
secondary source distributions discussed in Sec. 4.4.4. The discussion is kept brief
and the reader is referred to Sec. 4.4.4 for details.

From Fig. 4.25(a) and 4.26 it can be deduced that:

• The synthesized wave front is perfectly straight. As with fullband synthe-
sis with circular secondary source distributions discussed in Sec. 4.4.4, this
suggests good localization due to the precedence effect.

• After the initial wave front high frequency echoes arise the strongest of which
generally arrive from similar directions. The echoes are likely to produce
coloration since they arrive at intervals below 1 ms.

• Note that contrary to fullband synthesis with circular secondary source dis-
tributions, the impulse response of the linear secondary source contour has
infinite length (Fig. 4.26).

• As pointed out in Sec. 3.5.4, WFS exhibits similar properties like the solution
presented in Sec. 3.5 with slightly less accuracy in the lower frequencies. The
analysis above confirms once more that WFS indeed constitutes a method for
synthesis of wave fronts (Berkhout et al., 1993).

From the transfer function of the above described system to three different re-
ceiver positions along the y-axis depicted in Fig. 4.25(b) it can be deduced that:

• The transfer function is perfectly flat below a given frequency fa at yref. For
other positions, slight deviations arise. These deviations are individual for
each position (actually for each distance to the secondary source distribution)
and can therefore not be compensated for.

• The amplitude decay with distance y is apparent in the transfer function.

• Above fa, densely spaced prominent notches and peaks of 10 dB or more occur.

• Above fa, the transfer function exhibits a highpass character with a slope
of approximately 3 dB per octave for all listening positions. As with full
spatial bandwidth synthesis using circular secondary source distributions, this
highpass character can be compensated for (Spors & Ahrens, 2010a).
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(a) Still image of the impulse response.
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Figure 4.25: Impulse response and transfer function of a discrete secondary source distri-
bution driven in order to synthesized a virtual plane wave with propagation
direction (θpw, φpw) =

(
π
4 , π
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)
. The secondary source spacing is ∆x = 0.2 m;

the white marks indicate the secondary sources.
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pass (lp) and highpass (hp) filtered with cutoff
frequency fcutoff = 1000 Hz.

Figure 4.26: Impulse response of a discrete infinitely long linear secondary source distri-
bution with a spacing of ∆x = 0.2 m driven in order to synthesize virtual
plane wave with propagation direction (θpw, φpw) =

(
π
4 , π

2

)
. The considered

location is x = [0 1 0]T m.
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• Although not apparent from the simulations, it can be shown that the transfer
function exhibits strong local variation especially at frequencies significantly
above fa. This variation is similar to that arising in fullband synthesis with
circular secondary source distribution depicted in Fig. 4.14(d).

4.6.4 Spatial Discretization in Wave Field Synthesis Em-
ploying Linear Secondary Source Distributions

Sec. 3.5.4 has shown that – apart from a systematic amplitude deviation – the WFS
driving function for the synthesis of a virtual plane wave using a linear distribution
of secondary sources is essentially similar to the driving function investigated in
Sec. 4.6.1 and 4.6.3. Consequently, the properties of WFS with linear secondary
source distributions with respect to spatial discretization are essentially similar and
can therefore be deduced from Sec. 4.6.1 and 4.6.3.

4.6.5 Optimizing the Synthesis with Respect to a Given Re-
ceiver Location

In Sec. 4.4.5 local sound field synthesis employing discrete circular secondary source
distributions was shown. The local increase of physical accuracy was achieved by
concentrating the energy of the continuous driving function (or correspondingly the
energy of the desired sound field) at a small region in the space-frequency domain
in order to avoid overlaps of the inevitable spectral repetitions. Since also spectral
repetitions occur with discrete planar and linear secondary source distributions,
spatial bandwidth limitation of the driving function can avoid the overlap of regions
containing considerable energy. For convenience, this technique is only demonstrated
for linear secondary source distributions but not for planar ones.

The driving function for the synthesis of a virtual plane wave by a linear dis-
tribution of secondary monopoles is given by (3.53). It is composed of a weighted
Dirac delta function in the kx-domain which makes a bandlimitation impossible
without changing the propagation direction of the synthesized sound field. There-
fore, the synthesis of the sound field of a virtual monopole source is considered in
the following.

The generic diving function D̃(kx, ω) in wavenumber domain for linear secondary
source distributions is given by (3.48). The spatial spectrum S̃ (kx, y, z, ω) of the
sound field of a monopole sound source located at xs = [xs ys 0]T can be deduced
from G̃0 (kx, y, z, ω) given by (C.8) via the shift theorem of the Fourier transform
as (Girod et al., 2001; Spors & Ahrens, 2010b)

S̃ (kx, y, z, ω) = eikxxs G̃0 (kx, y − ys, z, ω) , (4.52)

so that the driving function D̃(kx, ω) explicitly reads

D̃(kx, ω) = eikxxs ×







H
(2)
0

(√

(ω
c )

2
−kx

2(yref−ys)

)

H
(2)
0

(√

(ω
c )

2
−kx

2yref

) for 0 ≤ |kx| <
∣
∣ω

c

∣
∣

K0

(√

kx
2−(ω

c )
2
(yref−ys)

)

K0

(√

kx
2−(ω

c )
2
yref

) for 0 <
∣
∣ω

c

∣
∣ < |kx|

. (4.53)
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In the following, a virtual point source at xs = [0 − 1 0]T m and yref = 1 m is
considered. Eq. (4.53) for these parameters is depicted in Fig. 4.27(a) and the cor-
responding synthesized sound field in Fig. 4.28(a). Note that the latter was derived
via a numerical Fourier transform since an analytical expression is not available.
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(a) Continuous secondary source distribution;
no bandwidth limitation applied.

 

 

−50 0 50
0

500

1000

1500

2000

2500

3000

−50

−40

−30

−20

−10

0

10

kx (rad/m)

f
(H

z)

(b) Discrete secondary source distribution; no
bandwidth limitation applied.
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metrical bandwidth limitation applied.
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Figure 4.27: 20 log10

∣
∣
∣D̃(kx, ω)

∣
∣
∣ for continuous (Fig. 4.27(a)) and discrete linear secondary

source distributions (Fig. 4.27(b)–(d)); ∆x = 0.2 m; yref = 1 m.

Since D̃(kx, ω) is not bandlimited with respect to kx, discretization of the driving
function leads to an interference of the spectral repetitions above approximately
800 Hz for a secondary source spacing of ∆x = 0.2 m (Fig. 4.27(b)) and thus a
corruption of the synthesized sound field (Fig. 4.28(b)). A bandlimitation with
respect to kx can be straightforwardly performed by setting selected components
of D̃(kx, ω) to zero. Of course, more advanced weighting may also be applied.
For simplicity, only the former approach is treated here. Note that such a spatial
bandwidth limitation in order to reduce distcretization artifacts has been proposed
in (Verheijen, 1997) though detailed properties of the synthesized sound field have
not been investigated.
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(a) Continuous secondary source distribu-
tion; no bandwidth limitation applied.
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(b) Discrete secondary source distribu-
tion; no bandwidth limitation applied.
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(c) Discrete secondary source distribu-
tion; symmetrical bandwidth limitation
similar to Fig. 4.27(c) applied.
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(d) Discrete secondary source distribu-
tion; non-symmetrical bandwidth limita-
tion similar to Fig. 4.27(d).

Figure 4.28: Illustration of the influence of the bandwidth of the driving function for the
synthesis of a virtual point source at position xs = [0 − 1 0]T m emitting a
monochromatic signal of f = 1300 Hz; ℜ{S(x, ω)} is shown. In the contin-
uous case Fig. 4.28(a), the secondary source distribution is indicated by the
black line; In the discrete cases in Fig. 4.28(b)–(d), the marks indicate the
secondary sources. The secondary source spacing is ∆x = 0.2 m.

Narrowband synthesis (avoiding overlaps of the spectral repetitions) is achieved
with a passband of the continuous driving function with a width of smaller than 2π

∆x
.

For a secondary source spacing of ∆x = 0.2 m as employed in Fig. 4.28 this means
that the passband has to be smaller or equal to approximately 31 rad

m
.

Limiting the spatial bandwidth of D̃(kx, ω) in a manner symmetrical to kx = 0
(Fig. 4.27(c)) results in a synthesized sound field which is less corrupted by spatial
aliasing artifacts but the energy of which propagates primarily in direction perpen-
dicular to the secondary source distribution. As a consequence, the amplitude of
the synthesized sound field is significantly too low a certain locations in the target
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half-plane.
Limiting the spatial bandwidth of D̃(kx, ω) in a manner which is not symmetrical

to kx = 0 (Fig. 4.27(d)) allows for a steering of the primary propagation direction
of the synthesized sound field into a given direction. The synthesis can therefore be
optimized with respect to a given location of the receiver (e.g. the listener).

Local sound field synthesis is thus also possible using linear distributions of sec-
ondary sources.

4.7 Further Aspects of Discretization and Spa-

tial Truncation With Planar and Linear Sec-

ondary Source Distributions

In order to assess the properties of spatially truncated discrete secondary source
distributions (which is in fact what is found in real-life), the findings derived in
Sec. 3.5.5 and 4.5 (or Sec. 4.6 respectively) have to be combined (Pueo et al., 2007;
Ahrens & Spors, 2010d). For convenience, a discrete linear secondary source distri-
bution which is truncated in x-dimension is explicitly considered.

From (3.63) and (4.43) it can be deduced that the synthesized sound field
S̃S,tr(kx, y, z, ω) of a truncated discrete linear secondary source distribution is given
in wavenumber domain by

S̃S,tr(kx, y, z, ω) =
1

2π

(
∞∑

η=−∞

w̃(kx) ∗kx
D̃

(

kx −
2π

∆x
η, ω

))

︸ ︷︷ ︸

= D̃S,tr(kx,ω)

G̃(kx, y, z, ω) . (4.54)

For the interpretation of (4.54) again the synthesis of a plane wave is considered.
Recall the plane-wave driving function given by (3.54). The spatial truncation does
not only smear the energy of the desired components along the kx but also the rep-
etitions due to discretization. It can thus happen that such a contribution due to
discretization which is propagating for an infinite discrete secondary source distri-
bution is partly smeared into the evanescent region 0 <

∣
∣ω

c

∣
∣ < |kx| (Pueo et al.,

2007; Ahrens & Spors, 2010d). Vice versa, a contribution due to discretization
which is evanescent for an infinite discrete secondary source distribution can partly
be smeared into the propagating region where 0 < |kx| <

∣
∣ω

c

∣
∣. As a consequence,

the interaction of spatial sampling and truncation results in a reduced spatial fine
structure of the synthesized sound field.

It has to be noted that the undesired evanescent components in the synthe-
sized sound field exhibit an amplitude which is decaying rapidly with the distance
to the secondary source array. They become negligible already at moderate dis-
tances (Williams, 1999; Spors & Ahrens, 2007).

Above derived findings are supported by results from (Kennedy et al., 2007)
where it is shown that a bandlimited sound field has a limited complexity in a given
spherical region. Thus, it can be resynthesized by a limited number of secondary
sources. Inversely, a limited number of secondary sources – e.g. a truncated sampled
array – is then only capable of synthesizing a sound field with limited complexity.
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Due to the complex structure of the sound field of a truncated secondary source
distribution as discussed in Sec. 3.5.5, the amplitude of the individual propagating
aliasing components is strongly dependent on the location of the receiver as is the
amplitude of the desired component (Spors, 2006; Pueo et al., 2007).

Fig. 4.29 shows a combination of the conditions depicted in Fig. 3.14 and 4.24(b),
i.e. the sound field synthesized by a truncated discrete secondary source distribution
at a frequency where propagating discretization artifacts arise. The desired virtual
plane wave propagates mainly in direction (θpw, φpw) =

(
π
4
, π

2

)
. The propagating

discretization artifacts propagate into an essentially different direction. Only at
locations close to the secondary source distribution do the two components of the
synthesized sound field overlap.
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Figure 4.29: Sound pressure SS,tr,pw(x, ω) of a discrete linear distribution of secondary
point sources synthesizing a virtual plane wave of fpw = 1000 Hz and unit
amplitude with propagation direction (θpw, φpw) =

(
π
4 , π

2

)
referenced to the

distance yref = 1.0 m. The secondary source distribution is located along the
black line. L = 2 m, ∆x = 0.2 m.

4.8 On the Spatial Bandwidth of Numerical So-

lutions

The numerical approaches for sound field synthesis mentioned in Sec. 2.6.4,
i.e. (Kirkeby & Nelson, 1993; Ward & Abhayapala, 2001; Daniel, 2001; Poletti,
2005; Hannemann & Donohue, 2008; Kolundžija et al., 2009) all employ local op-
timization criteria. As shown above, such a local optimization is achieved via a
limitation of the spatial bandwidth of the secondary source driving function. De-
pending on the location and shape of the region for which the synthesis is optimized
either classical narrowband synthesis takes place which is similar to the one treated
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in Sec. 4.3.2 and Sec. 4.4.1 or local sound field synthesis as treated in Sec. 4.4.5 and
Sec. 4.6.5 takes place.

4.9 Summary

In this chapter, the consequences of spatial discretization of the continuous sec-
ondary source distributions as treated in Chap. 3 on the synthesized sound field
were investigated. It was found common for all geometries of secondary source con-
tours that the discretization leads to repetitions in the spatial spectra of the driving
function. With spherical contours, the repetitions occur in the spherical harmonics
domain, with circular contours in the Fourier series domain, with planar contours
in the wavenumber domain with respect to two dimensions, and similarly in the
wavenumber domain with respect to one dimension with linear secondary source
contours.

Typical practical implementations of sound field synthesis methods use loud-
speaker spacings of several centimeters. This results in considerable discretization
artifacts above a few thousand Hertz. Since the audible frequency range can be
assumed to significantly exceed 15 kHz the synthesized sound field will always be
corrupted when the entire potential receiver area is considered.

The most fundamental conclusion which can be drawn from the presented results
is the fact that the spatial bandwidth of the desired sound field – and thus of the
driving function – has essential influence of the synthesized sound field. The concept
of categorizing the methods with respect to their spatial bandwidth into narrowband,
wideband, and fullband methods was proposed and elaborated.

Narrowband methods avoid overlaps of the spectral repetitions and typically lead
to regions in the receiver area in which the accuracy of the synthesis is significantly
higher than at other locations. Fullband methods create artifacts which are rather
evenly distributed over the receiver area. The category of wideband methods (meth-
ods with a bandwidth in between narrowband and fullband) was not investigated in
detail and is subject to future work.

The established method of near-field higher order Ambisonics was found to be a
narrowband method; Wave Field Synthesis was found to be a fullband method. It
can not be decided at this stage if a high or low spatial bandwidth of the driving
function is preferable in a specific situation.

The representation of the synthesized sound field in wavenumber domain when
planar and linear secondary source distributions are considered allowed for a seg-
regation of artifacts in terms of propagating and evanescent components. Such an
analysis is not straightforward for spherical and circular distributions.

Further considerations on the spatial bandwidth led to the concept of local sound
field synthesis which locally increases the accuracy by the cost of stronger artifacts
elsewhere.



Chapter 5

Conclusions and Outlook

The physical fundamentals of sound field synthesis were treated in this thesis. Ex-
plicit solutions for the driving functions for continuous spherical, circular, planar,
and linear distributions of secondary sources were derived based on the single-layer
potential solution and modifications thereof. It was shown that continuous spherical
and planar secondary source distributions allow for a perfect synthesis of a given
desired source-free sound field with minor systematic limitations.

Circular and linear distributions on the other hand exhibit essential limitations
most notably in terms of the possible propagation directions of the synthesized sound
field and in terms of the amplitude decay of the latter. However, for such a 21/2-
dimensional synthesis no general underlying theory is available which allows for a
detailed prediction of the properties of the synthesized sound field. Each situation
has to be investigated individually.

Near-field compensated higher-order Ambisonics was identified to be the single-
layer potential solution for spherical secondary source distributions. The Wave Field
Synthesis solution to the problem constitutes a high-frequency approximation of the
presented approach.

Continuous secondary source distributions as mentioned above can not be imple-
mented in practice but discrete distributions of loudspeakers have to be used. The
analysis of the properties of such discrete secondary source distributions revealed
that the spatial discretization leads to repetitions of the spatial spectrum of the driv-
ing function. The spatial bandwidth of the secondary source driving function has
thus essential impact on the properties of the synthesized sound field. It was there-
fore proposed to categorize sound field synthesis approaches with respect to their
spatial bandwidth into narrowband, wideband, and fullband approaches. Modifica-
tions of the spatial bandwidth of the driving function allow for a local increase of
the accuracy of the synthesis.

The investigation of the influence of the radiation properties of the employed
loudspeakers on the synthesized sound field was beyond the scope of the present
thesis and is subject to future work.

The presented work is restricted to a mainly instrumentalized analysis of the
properties of the investigated synthetic sound fields. Some prediction of human
perception of simple scenarios could be given based on an analysis of the evolv-
ing wave fronts. However, in order to better understand the perception extensive
experimental investigations have to be performed.
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Appendix A

Coordinate Systems
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Figure A.1: The coordinate systems used in this paper.

The coordinate systems used in this thesis are depicted in Fig. A.1. The spherical
coordinates (r, α, β) are related to the Cartesian coordinates [x , y , z]T by (Weisstein,
2002)

r =
√

x2 + y2 + z2 (A.1a)

α = arctan
(y

x

)

(A.1b)

β = arccos
(z

r

)

, (A.1c)

where r ∈ [0,∞), α ∈ [0, 2π), and φ ∈ [0, π], and the inverse tangent must be
suitably defined to take the correct quadrant of (x, y) into account (Weisstein, 2002).

The Cartesian coordinates [x , y , z]T are related to the spherical coordinates
(r, α, β) by

x = r cosα sin β (A.2a)

y = r sinα sin β (A.2b)

z = cosβ. (A.2c)

The angles α and θ are termed azimuth, β and φ are termed spherical polar angle,
or zenith angle, or colatitude.
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Appendix B

Definition of the Fourier
Transform

The temporal Fourier transform used in this work is defined as (Bracewell, 2000)

S(x, ω) =

∞∫

−∞

s(x, t) e−iωt dt . (B.1)

The inverse temporal Fourier transform is therefore

s(x, t) =
1

2π

∞∫

−∞

S(x, ω) eiωt dω . (B.2)

The spatial Fourier transform is defined as

S̃(kx, y, z, ω) =

∞∫

−∞

S(x, ω) eikxx dx (B.3)

exemplarily for the x-dimension. The corresponding inverse spatial Fourier trans-
form is

S(x, ω) =
1

2π

∞∫

−∞

S̃(kx, y, z, ω) e−ikxx dkx . (B.4)

Note that reversed exponents are used in the spatial Fourier transform compared to
the temporal one. The motivation for this choice is outlined in Sec. 2.2.5.
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Appendix C

Fourier Transforms of Selected
Quantities

C.1 Fourier Transforms of a Plane Wave

A monochromatic plane wave with radian frequency ωpw and wave vector kpw is
given by (Williams, 1999)

s(x, t) = e−ikT
pwx · eiωpwt (C.1a)

= ei
ωpw

c (ct−n
T
pwx) , (C.1b)

with npw denoting the unit length vector pointing in the same direction like kpw,
i.e. in propagation direction of the plane wave. The term in brackets in (C.1b) is
termed Hesse normal form of a plane propagating in direction npw with speed c

(Weisstein, 2002).
The Fourier transform of s(x, t) with respect to t yields (Girod et al., 2001)

S(x, ω) = e−ikT
pwx · 2πδ(ω − ωpw) . (C.2)

A further Fourier transform with respect to x yields

S̃(kx, y, z, ω) = 2πδ(kx − kpw,x) e
−ikpw,yy e−ikpw,zz · 2πδ(ω − ωpw) , (C.3)

a further Fourier transform with respect to z yields

S̃(kx, y, kz, ω) = 4π2δ(kx − kpw,x) e
−ikpw,yy δ(kz − kpw,z) · 2πδ(ω − ωpw) , (C.4)

and finally a further Fourier transform with respect to y yields

S̃(k, ω) = 8π3δ(k− kpw) · 2πδ(ω − ωpw) . (C.5)

C.2 Fourier Transforms of the Free-Field Green’s

Function

The three-dimensional free-field Green’s function for excitation at the coordinate
origin is given in time domain by (Williams, 1999)

g(x, t) =
1

4π

δ
(
t− r

c

)

r
. (C.6)
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The temporal Fourier transform of (C.6) is then

G(x, ω) =
1

4π

e−i ω
c
r

r
. (C.7)

The Fourier transform with respect to x is calculated by applying Euler’s for-
mula (Weisstein, 2002) and using (Gradshteyn & Ryzhik, 2000, (3.876-1) and (3.876-
2)) and (Morse & Feshbach, 1953, p. 1323). It is given by

G̃(kx, y, z, ω) =







− i
4
H

(2)
0

(√
(

ω
c

)2 − kx
2
√

y2 + z2

)

for 0 ≤ |kx| <
∣
∣ω

c

∣
∣

1
2π
K0

(√

kx
2 −

(
ω
c

)2√

y2 + z2

)

for 0 <
∣
∣ω

c

∣
∣ < |kx| .

(C.8)

H
(2)
0 (·) denotes the zero-th order Hankel function of second kind, K0(·) the zero-th

order modified Bessel function of second kind (Williams, 1999). A further Fourier
transform with respect to z is yielded using (Gradshteyn & Ryzhik, 2000, (6.677-3),
(6.677-4), and (6.677-5)). It is given by

G̃(kx, y, kz, ω) =







− i
2

e
−i

√
( ω

c )2−k2
x−k2

z ·y
√

(ω
c )

2
−k2

x−k2
z

for 0 ≤
√

k2
x + k2

z <
∣
∣ω

c

∣
∣

1
2

e
−

√
k2
x+k2

z−(ω
c )2·y

√

k2
x+k2

z−(ω
c )

2 for 0 <
∣
∣ω

c

∣
∣ <

√

k2
x + k2

z .

(C.9)

Note that (C.9) is only valid for y > 0 (Gradshteyn & Ryzhik, 2000).
Finally, G̃(k, ω) is yielded using (Gradshteyn & Ryzhik, 2000, (3.893-2)). It is

given by

G̃(k, ω) = G̃(k, ω) =
1

k2 −
(

ω
c

)2 . (C.10)



Appendix D

Convolution Theorems

D.1 Fourier Series Domain

A representation of the Fourier series expansion coefficients H̊m(r, β, ω) of a function
H(x, ω) which is given by a multiplication of two functions F (x, ω) and G(x, ω) as

H(x, ω) = F (x, ω) ·G(x, ω) (D.1)

in terms of the Fourier series expansion coefficients F̊m(r, β, ω) and G̊m(r, β, ω) of
F (x, ω) and G(x, ω) respectively is derived in this section. Applying (2.25) yields

H̊m(r, β, ω) =
1

2π

2π∫

0

F (x, ω)G(x, ω) e−imα dα

=
1

2π

2π∫

0

∞∑

m1=−∞

F̊m1(r, β, ω) eim1α
∞∑

m2=−∞

G̊m2(r, β, ω)eim2α e−imα dα

=
1

2π

∞∑

m1=−∞

∞∑

m2=−∞

F̊m1(r, β, ω)G̊m2(r, β, ω)

2π∫

0

ei(m1+m2−m)α dα .

(D.2)

The integral in (D.2) vanishes unless m1 +m2−m = 0 or m2 = m−m1 respectively.
In these cases it equals 2π so that finally (Girod et al., 2001)

H̊m(r, β, ω) =

∞∑

m1=−∞

F̊m1(r, β, ω) G̊m−m1(r, β, ω) = F̊m(r, β, ω) ∗m G̊m(r, β, ω) ,

(D.3)
which represents a convolution theorem for the Fourier series expansion.

D.2 Spherical Harmonics Domain

The procedure outlined in Sec. D.1 is adapted here in order to obtain a representation
of the coefficients H̊m

n (r, ω) of a function H(x, ω) which is given by a multiplication
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of two functions F (x, ω) and G(x, ω) as

H(x, ω) = F (x, ω) ·G(x, ω) (D.4)

in terms of the coefficients F̊m
n (r, ω) and G̊m

n (r, ω) of F (x, ω) and G(x, ω) respec-
tively. Applying (2.22) yields

H̊m
n (r, ω) =

2π∫

0

π∫

0

F (x, ω)G(x, ω) Y −m
n (α, β) sinβ dβ dα

=

2π∫

0

π∫

0

∞∑

n1=0

n1∑

m1=−n1

F̊m1
n1

(r, ω)Y m1
n1

(α, β)

∞∑

n2=0

n2∑

m2=−n2

G̊m2
n2

(r, ω)

×Y m2
n2

(α, β) Y −m
n (α, β) sinβ dβ dα

=
∞∑

n1=0

n1∑

m1=−n1

∞∑

n2=0

n2∑

m2=−n2

F̊m1
n1

(r, ω)G̊m2
n2

(r, ω)

×
2π∫

0

π∫

0

Y m1
n1

(α, β)Y m2
n2

(α, β)Y −m
n (α, β) sinβ dβ dα

︸ ︷︷ ︸

= γ
m1,m2,m
n1,n2,n

. (D.5)

Integrals like the one in (D.5) often appear in problems in quantum mechanics
and their properties are well investigated (Arfken & Weber, 2005). The result
is a real number and these integrals are also referred to as Gaunt coefficients
γm1,m2,m

n1,n2,n (Sébilleau, 1998). The integral form of γm1,m2,m
n1,n2,n as given in (D.5) is in-

convenient for evaluation since it can not be solved analytically. More convenient is
the representation (Gumerov & Duraiswami, 2004, eq. (3.2.28), p. 99)

γm1,m2,m
n1,n2,n =

1

4π

√

(2n1 + 1)(2n2 + 1)(2n+ 1)

4π
E
(
m1 m2 −m
n1 n2 n

)

. (D.6)

The E-symbol E(·) is defined as (Gumerov & Duraiswami, 2004, eq. (3.2.27), p. 99)

E
(
m1 m2 m3

n1 n2 n3

)

= 4πεm1εm2εm3

(
n1 n2 n3

0 0 0

)(
n1 n2 n3

m1 m2 m3

)

(D.7)

with

εm = im+|m| =

{

(−1)m ∀ m ≥ 0

1 ∀ m ≤ 0
(D.8)

and
(

. . .

. . .

)

denoting the Wigner 3j-Symbol. The Wigner 3j-Symbol is defined

in (Weisstein, 2002). The MATLAB simulations presented in this thesis employ
the script provided by (Kraus, 2008).

The E-symbol and thus the Gaunt coefficients γm1,m2,m
n1,n2,n satisfy the following

selection rules:

1. m2 = m−m1.
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2. |n− n2| ≤ n1 ≤ n+n2 (triangle inequalities or triangle rule (Weisstein, 2002)).

3. n+ n1 + n2 is even or zero.

If these rules are not satisfied then γm1,m2,m
n1,n2,n = 0. Actually, it can be shown that

γm1,m2,m
n1,n2,n vanishes in more cases than stated above (Gjellestad, 1955; Gumerov &

Duraiswami, 2004). In order to retain notational clarity the selection rules are only
occasionally explicitly considered.

Reformulating (D.5) by explicitly considering rule 1 reads then (Arfken & Weber,
2005; Shirdhonkar & Jacobs, 2005)

H̊m
n (r, ω) =

∞∑

n1=0

n1∑

m1=−n1

∞∑

n2=0

F̊m1
n1

(r, ω) G̊m−m1
n2

(r, ω) γm1,m−m1,m
n1,n2,n (D.9)

= F̊m
n (r, ω) ∗mn G̊m

n (r, ω) . (D.10)

Eq. (D.9) constitutes a convolution theorem for the spherical harmonics expansion.
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Appendix E

Miscellaneous Mathematical
Considerations

E.1 Translation of Spherical Harmonics Expan-

sions

∆α

∆β

x

y

z

x′

y′

z′

∆r

∆x

Figure E.1: Illustration of the local coordinate system employed in (E.1).

Assume the coefficients S̆ ′
m′

n′,e(ω) represent an exterior sound field S(x, ω) with
respect to a local coordinate system with origin at ∆x which can be transformed
into the global coordinate system by a simple translation as depicted in Fig. E.1.
Then S(x′, ω) can be described as (refer to (2.21b))

S(x′, ω) =

∞∑

n′=0

n′
∑

m′=−n′

S̆ ′
m′

n′,e(ω) h
(2)
n′

(ω

c
r′
)

Y m′

n′ (β ′, α′) (E.1)

with respect to the local coordinate system. Note that x′ = x′(x) = x + ∆x .
It is now desired to describe S(x, ω) by means of a spherical harmonics expansion

around the origin of the global coordinate system. This translation of the coordinate
system is described below.
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Assuming that the origin of the global coordinate system is located in the exterior
domain with respect to the local coordinate system, then it must be possible to
expand the term h

(2)
n′

(
ω
c
r′
)
Y m′

n′ (β ′, α′) with respect to the global coordinate system
as (Gumerov & Duraiswami, 2004, ch. 3.2)

h
(2)
n′

(ω

c
r′
)

Y m′

n′ (β ′, α′) =

∞∑

n=0

n∑

m=−n

(−1)n+n′

(E|I)m m′

n n′ (∆x, ω) jn

(ω

c
r
)

Y m
n (β, α) ,

(E.2)
since this term constitutes a solution to the wave equation. The notation (E|I) indi-
cates that the translation represents a change from an exterior expansion to an inte-
rior expansion (Williams, 1999; Gumerov & Duraiswami, 2004). The factor (−1)n+n′

arises since the coefficients (E|I) are defined in (Gumerov & Duraiswami, 2004) for
translation in opposite direction. Refer also to (ibidem, eq. (3.2.54), p. 103).

Inserting (E.2) in (E.1) and re-ordering of the sums reveals the general form of
S̆m

n (ω) as

S(x, ω) =

∞∑

n=0

n∑

m=−n

∞∑

n′=0

n′
∑

m′=−n′

S̆ ′
m′

n′,e(ω) (−1)n+n′

(E|I)m m′

n n′ (∆x, ω)

︸ ︷︷ ︸

= S̆m
n (ω)

jn

(ω

c
r
)

Y m
n (β, α) . (E.3)

From (Gumerov & Duraiswami, 2004, eq. (3.2.30), (3.2.36); p. 100, 101) it can be

deduced that the translation coefficients (E|I)m m′

n n′ (∆x, ω) are given by

(E|I)m m′

n n′ (∆x, ω) =

n′+n∑

n′′=|n′−n|

in+n′′−n′

√

(2n+ 1)(2n′ + 1)(2n′′ + 1)

4π

× E
(
m′ −m m−m′

n′ n n′′

)

h
(2)
n′′

(ω

c
∆r
)

Y m′−m
n′′ (∆β,∆α) . (E.4)

E(·) is defined in (D.7).
Similar considerations like above yield the translation coefficients (E|E) and (I|I)

for exterior-to-exterior and interior-to-interior translation respectively as (Gumerov
& Duraiswami, 2004, eq. (3.2.18), (3.2.46); p. 97, 102)

(E|E)m m′

n n′ (∆x, ω) = (I|I)m m′

n n′ (∆x, ω)

=
n′+n∑

n′′=|n′−n|

in+n′′−n′

√

(2n+ 1)(2n′ + 1)(2n′′ + 1)

4π

× E
(
m′ −m m−m′

n′ n n′′

)

jn′′

(ω

c
∆r
)

Y m′−m
n′′ (∆β,∆α) . (E.5)

Note that every second addend in the summations in (E.4) and (E.5) is zero. This
is not explicitly indicated to retain notational clarity.

Eq. (E.4) and (E.5) do not represent the most efficient translation operators.
However, they are employed in this thesis since they are the most compact expres-
sions. Refer to (Gumerov & Duraiswami, 2004) for alternatives.
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E.2 Recursion Formulae for Exterior-to-Interior

Sectorial Translation

As outlined in Sec. 3.3.3, the sectorial translation coefficients (E|I)m m′

|m|n′ (∆x, ω) can
be computed using (Gumerov & Duraiswami, 2004, eq. (3.2.79), p. 109)

bm−m (E|I)m′, m
n′, |m| (∆x, ω)

= bm
′

n′ (E|I)m′+1, m+1
n′−1, |m+1| (∆x, ω)− b−m′−1

n′+1 (E|I)m′+1, m+1
n′+1, |m+1| (∆x, ω) , (E.6)

for m ≤ 0 and (Gumerov & Duraiswami, 2004, eq. (3.2.78), p. 108)

b−m
m (E|I)m′, m

n′, m (∆x, ω)

= b−m′

n′ (E|I)m′−1, m−1
n′−1, m−1 (∆x, ω)− bm′−1

n′+1 (E|I)m′−1, m−1
n′+1, m−1 (∆x, ω) , (E.7)

for m ≥ 0 with (Gumerov & Duraiswami, 2004, eq. (2.2.10), p. 68)

bmn =







√
(n−m−1)(n−m)
(2n−1)(2n+1)

for 0 ≤ m ≤ n

−
√

(n−m−1)(n−m)
(2n−1)(2n+1)

for − n ≤ m < 0

0 for |m| > n .

(E.8)

E.3 The Stationary Phase Approximation Ap-

plied to the Rayleigh I Integral

The objective of this section is approximating the Rayleigh I integral (2.56) in the
horizontal plane. Consider the integral over z0 in (2.56) assuming that the driving
function D(x0, ω) is independent from z0, thus (Berkhout et al., 1993)

∞∫

−∞

1

4π

e−i ω
c
|x−x0|

|x− x0|

∣
∣
∣
∣
z=0

dz0 . (E.9)

Such an integral can be approximated by the stationary phase approxima-
tion (Williams, 1999). The latter provides an approximative solution to integrals of
the form

I =

∞∫

−∞

f(z0) e
iζ(z0) dz0 (E.10)

which is given by

I ≈
√

2πi

ζ ′′(zp)
f(zp) e

iζ(zp) . (E.11)

ζ ′′(z0) denotes the second derivative of ζ(z0) with respect to z0. zp denotes the
stationary phase point which corresponds to the zero of ζ ′(z0).
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In the present case (z = 0),

f(z0) =
1

4π
· 1
√

(x− x0)2 + y2 + z2
0

, (E.12)

ζ(z0) = −ω
c

√

(x− x0)2 + y2 + z2
0 , (E.13)

ζ ′(z0) = −ω
c

1
√

(x− x0)2 + y2 + z2
0

z0 . (E.14)

Thus zp = 0.

ζ ′′(z0) = −ω
c

1
√

(x− x0)2 + y2 + z2
0

+
ω

c

z2
0

((x− x0)2 + y2 + z2
0)

3
2

(E.15)

so that (Berkhout et al., 1993)

ζ ′′(zp) = −ω
c

1
√

(x− x0)2 + y2
. (E.16)

Inserting above results in (E.11) and the result in (2.56) yields the 21/2-dimensional
approximation of the Rayleigh I integral (2.57).
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