Grobstruktursimulation der Biomassevergasung in einer Wirbelschicht am Beispiel von Holz

vorgelegt von
Diplom Ingenieur
Stephan Gerber
aus Potsdam

von der Fakultät III – Prozesswissenschaften
der Technischen Universität Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss
Vorsitzender: Universitätsprofessor Dr.-Ing. Felix Ziegler
Gutachter: Universitätsprofessor Dr. rer. nat. Frank Behrendt
Gutachter: Universitätsprofessor (a.D.) Dr.-Ing. Wolfgang Klose
Gutachter: Dr.-Ing. Michael Oevermann

Tag der wissenschaftlichen Aussprache: 20. Oktober 2011

Berlin 2012
D 83
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Abbildungsverzeichnis</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabellenverzeichnis</td>
<td>ix</td>
</tr>
<tr>
<td>Nomenklatur</td>
<td>xi</td>
</tr>
<tr>
<td>1 Einleitung</td>
<td>2</td>
</tr>
<tr>
<td>1.1 Aufteilung der Arbeit</td>
<td>3</td>
</tr>
<tr>
<td>2 Einführung</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Modellierungssystematik von Gas-Feststoff-Strömungen</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1 Direkte Numerische Simulation</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2 Euler-Lagrange-Modelle</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3 Euler-Euler-Modelle</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Literaturübersicht</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Ziel der Arbeit</td>
<td>19</td>
</tr>
<tr>
<td>3 Bilanzgleichungen und verwendete Modelle der Gas- und Festphase</td>
<td>20</td>
</tr>
<tr>
<td>3.1 Die Gasphase</td>
<td>20</td>
</tr>
<tr>
<td>3.1.1 Homogene Gasphasenchemie</td>
<td>24</td>
</tr>
<tr>
<td>3.2 Die Festphase</td>
<td>28</td>
</tr>
<tr>
<td>3.2.1 Impulsbilanz der Partikel - Bewegungsgleichungen</td>
<td>29</td>
</tr>
<tr>
<td>3.2.2 Partikelkräfte</td>
<td>30</td>
</tr>
<tr>
<td>3.2.3 Partikelkollisionen</td>
<td>38</td>
</tr>
<tr>
<td>3.2.4 Numerische Verfahren zur Lösung der Bewegungsgleichungen</td>
<td>41</td>
</tr>
<tr>
<td>3.2.5 Massen- und Energiebilanz der Partikel</td>
<td>43</td>
</tr>
<tr>
<td>3.2.6 Heterogene Chemie</td>
<td>46</td>
</tr>
<tr>
<td>3.2.7 Aufheizung, Trocknung, primäre Pyrolyse und Schrumpfung der Partikel</td>
<td>49</td>
</tr>
<tr>
<td>3.2.8 Integration des Partikelmodells</td>
<td>58</td>
</tr>
<tr>
<td>3.3 Mapping Algorithmen zwischen den Phasen</td>
<td>59</td>
</tr>
<tr>
<td>3.3.1 Euler → Lagrange Mapping</td>
<td>60</td>
</tr>
<tr>
<td>3.3.2 Lagrange → Euler Mapping</td>
<td>62</td>
</tr>
<tr>
<td>3.3.3 Mapping Algorithmen dieser Arbeit</td>
<td>67</td>
</tr>
<tr>
<td>4 Euler-Lagrange-Simulation</td>
<td>69</td>
</tr>
<tr>
<td>4.1 Programmablauf</td>
<td>69</td>
</tr>
<tr>
<td>4.2 Parallelisierung</td>
<td>73</td>
</tr>
<tr>
<td>5 Simulationsergebnisse</td>
<td>91</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

5.1 Rechengebiet .. 91
5.2 Simulationsergebnisse ... 93

5.2.1 Das Vergleichsszenario 99
5.2.2 Thermische Dynamik der Wirbelschicht - Vergleich dreier Anfangs-

temperaturen der Festphase 113
5.2.3 Variation der Holzzufuhr 123
5.2.4 Einfluss eines verringerten Inertteeranteils 131
5.2.5 Einfluss einer erhöhten Leerrohrgeschwindigkeit im Lufteinlass 136
5.2.6 Einfluss der Wandtemperaturen des Reaktors 142
5.2.7 Einfluss der Einlasstemperatur der Luft 148
5.2.8 Einfluss der Partikelgröße des zugeführten Holzes 153
5.2.9 Einfluss der Partikeltemperatur des zugeführten Holzes 159
5.2.10 Einfluss der Kollisionsparameter 164
5.2.11 Partikelhistorien in einer Wirbelschicht 169
5.2.12 Vergleich der Simulationsergebnisse mit experimentellen Da-

ten bzw. anderen numerischen Modellen 179

6 Zusammenfassung .. 188

6.1 Ausblick ... 189

Literaturverzeichnis .. 193
Abbildungsverzeichnis

3.2 Frequenz der Bewegung über den Partikeldurchmesser bei gegebener modifizierter Stokes-Zahl von fünf nach Gleichung (3.24) 35

3.3 Darstellung des Feder-Dämpfer-Modells für die Normalkraft 38

3.4 Darstellung des Feder-Dämpfer-Modells für die Tangentialkraft 39

3.5 Reaktionsschema der primären Pyrolyse 53

3.6 Vergleich der zeitlichen Temperaturentwicklung mit Hilfe verschiedener Modelle 57

3.7 Partikel in einer Zelle mit ähnlicher Ausdehnung 61

3.8 Partikel mit der Temperatur T_P zwischen zwei Zellen i und $i+1$ mit den Temperaturen T_i und T_{i+1} 65

3.9 Volumenverteilung eines kugelförmigen Partikels anhand eines volumengleichen Würfels 67

4.1 Ablauf des Hauptprogramms 70

4.2 Ablauf der Partikelbewegung aus 4.1 71

4.3 Ablauf der Suche nach Kollisionspartnern 73

4.4 Schablonen zur Orientierung auf dem Rechengitter I (zusammen mit Abb. 4.5) 77

4.5 Schablonen zur Orientierung auf dem Rechengitter II (zusammen mit Abb. 4.4) 77

4.6 Mögliche Gebietsaufteilung die in dieser Arbeit nicht abgebildet werden können (die dicken schwarzen Linien sind Gebietsgrenzen des zerlegten Gitters) 78

4.7 Darstellung der vereinfachten Zell-Nachbarschaftsbeziehungen für die Kollisionsüberprüfung 78

4.8 Ablauf des Algorithmus zur parallelen Kollisionsberechnung aus 4.2 79

4.9 Zelldarstellung des Rechengebietes - Aufteilung für parallele Rechnungen 81

4.10 Speed-up der Simulation für verschiedene Partikelzahlen 90

4.11 Parallele Effizienz der Simulation für verschiedene Partikelzahlen 90

5.1 Schnappschüsse zu Beginn der Simulation für den Referenzfall (Zeitraum zwischen 0.7 s und 0.9 s) 101

5.2 Schnappschüsse zu Beginn der Simulation für den Referenzfall (Zeitraum zwischen 0.95 s und 1.15 s) 101
<table>
<thead>
<tr>
<th>Abbildungsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3 Schnappschüsse am Ende der Simulation für den Referenzfall (Zeitraum zwischen 95 s und 95.2 s)</td>
</tr>
<tr>
<td>5.4 Schnappschüsse am Ende der Simulation für den Referenzfall (Zeitraum zwischen 95.25 s und 95.45 s)</td>
</tr>
<tr>
<td>5.5 Schnappschüsse der Volumenfraktion der Gasphase zu Beginn der Simulation für den Referenzfall (Zeitraum zwischen 0.7 s und 0.9 s)</td>
</tr>
<tr>
<td>5.6 Schnappschüsse der Volumenfraktion der Gasphase zu Beginn der Simulation für den Referenzfall (Zeitraum zwischen 0.95 s und 1.15 s)</td>
</tr>
<tr>
<td>5.7 Schnappschüsse der Volumenfraktion der Gasphase am Ende der Simulation für den Referenzfall (Zeitraum zwischen 95 s und 95.2 s)</td>
</tr>
<tr>
<td>5.8 Schnappschüsse der Volumenfraktion der Gasphase am Ende der Simulation für den Referenzfall (Zeitraum zwischen 95.25 s und 95.45 s)</td>
</tr>
<tr>
<td>5.9 Axialer Schwerpunkt und Höhe von 90 % der Partikelmasse über die Zeit</td>
</tr>
<tr>
<td>5.10 Zeitlicher Verlauf der Auslasskonzentrationen einiger Produkttgase für den Fall 2</td>
</tr>
<tr>
<td>5.11 Zeitlicher Verlauf der Auslasskonzentrationen der Teere für den Fall 2</td>
</tr>
<tr>
<td>5.12 Zeitlicher Verlauf der Auslasstemperatur für den Fall 2</td>
</tr>
<tr>
<td>5.13 Teer 1 für verschiedene Höhenstufen im Reaktor über die Zeit (Fall 2)</td>
</tr>
<tr>
<td>5.14 Teer 2 für verschiedene Höhenstufen im Reaktor über die Zeit (Fall 2)</td>
</tr>
<tr>
<td>5.15 Teer 3 für verschiedene Höhenstufen im Reaktor über die Zeit (Fall 2)</td>
</tr>
<tr>
<td>5.16 Strömungslinien im oberen Reaktorteil</td>
</tr>
<tr>
<td>5.17 Richtung und Größe der Fluidströmung im oberen Reaktorteil</td>
</tr>
<tr>
<td>5.18 Massenanteil des ersten Teeres im oberen Reaktorteil</td>
</tr>
<tr>
<td>5.19 Über den Querschnitt messen gemittelte Feststofftemperaturen über die Zeit aufgetragen (ca. 0.146 m über dem Reaktorboden, Fälle 1 bis 3)</td>
</tr>
<tr>
<td>5.20 Auslasstemperaturen über die Zeit für verschiedene initiale Betttemperaturen (Fälle 1 bis 3 aus Tabelle 5.3)</td>
</tr>
<tr>
<td>5.21 Auslasskonzentrationen des Kohlenmonoxids über die Zeit aufgetragen für die Fälle 1 bis 3</td>
</tr>
<tr>
<td>5.22 Über die letzten 10 s der Simulation gemittelte Auslasskonzentratio- nen der Fälle 1 bis 3</td>
</tr>
<tr>
<td>5.23 Gesamtholzmasse über die Zeit (Fälle 1 bis 3)</td>
</tr>
<tr>
<td>5.24 Gesamtholzkohlemasse über die Zeit (Fälle 1 bis 3)</td>
</tr>
<tr>
<td>5.25 Zeitlicher Verlauf der Produkttgase am Auslass (Fall 1)</td>
</tr>
<tr>
<td>5.26 Zeitlicher Verlauf der Produkttgase am Auslass (Fall 3)</td>
</tr>
<tr>
<td>5.27 Zeitlicher Verlauf der Teere am Auslass (Fall 1)</td>
</tr>
<tr>
<td>5.28 Zeitlicher Verlauf der Teere am Auslass (Fall 3)</td>
</tr>
<tr>
<td>5.29 Auslasstemperaturen über die Zeit für verschiedene Holzmassenströme (Fälle 2 und 6 bis 8 aus Tabelle 5.3)</td>
</tr>
<tr>
<td>5.30 Über die letzten 10 s der Simulation gemittelte Auslasskonzentratio- nen der Fälle 2 und 6 bis 8</td>
</tr>
<tr>
<td>5.31 Gesamtholzmasse über die Zeit (Fälle 2, 6, 7 und 8)</td>
</tr>
<tr>
<td>5.32 Gesamtholzkohlemasse über die Zeit (Fälle 2, 6, 7 und 8)</td>
</tr>
<tr>
<td>5.33 Zeitlicher Verlauf der Produkttgaskonzentrationen am Reaktoraus- lass (Fall 6)</td>
</tr>
<tr>
<td>5.34 Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 6)</td>
</tr>
<tr>
<td>Abbildungsverzeichnis</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>5.35 Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 7)</td>
</tr>
<tr>
<td>5.36 Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 7)</td>
</tr>
<tr>
<td>5.37 Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 8)</td>
</tr>
<tr>
<td>5.38 Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 8)</td>
</tr>
<tr>
<td>5.39 Über den Querschnitt massengemittelte Feststofftemperaturen über die Zeit aufgetragen (ca. 0.146 m über dem Reaktorboden, Fälle 2, 6, 7 und 8)</td>
</tr>
<tr>
<td>5.40 Auslasstemperaturen über die Zeit für verschiedene Inertteeranteile (Fälle 2 und 4 aus Tabelle 5.3)</td>
</tr>
<tr>
<td>5.41 Über die letzten 10 s der Simulation gemittelte Auslasskonzentrationen der Fälle 2 und 4</td>
</tr>
<tr>
<td>5.42 Gesamtholzmasse über die Zeit (Fälle 2 und 4)</td>
</tr>
<tr>
<td>5.43 Gesamtholzkohlemasse über die Zeit (Fälle 2 und 4)</td>
</tr>
<tr>
<td>5.44 Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 4)</td>
</tr>
<tr>
<td>5.45 Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 4)</td>
</tr>
<tr>
<td>5.46 Auslasstemperaturen über die Zeit für verschiedene Leerrohrgeschwindigkeiten (Fall 2 und Fall 10 aus Tabelle 5.3)</td>
</tr>
<tr>
<td>5.47 Über die letzten 10 s der Simulation gemittelte Auslasskonzentrationen der Fälle 2 und 10</td>
</tr>
<tr>
<td>5.48 Gesamtholzmasse über die Zeit (Fälle 2 und 10)</td>
</tr>
<tr>
<td>5.49 Gesamtholzkohlemasse über die Zeit (Fälle 2 und 10)</td>
</tr>
<tr>
<td>5.50 Axialer Schwerpunkt und Betthöhe bei 90 % der Feststoffmasse über die Zeit (Fälle 2 und 10)</td>
</tr>
<tr>
<td>5.51 Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 10)</td>
</tr>
<tr>
<td>5.52 Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 10)</td>
</tr>
<tr>
<td>5.53 Über den Querschnitt massengemittelte Feststofftemperaturen über die Zeit aufgetragen (ca. 0.146 m über dem Reaktorboden, Fälle 2 und 10)</td>
</tr>
<tr>
<td>5.54 Über die letzten 10 s der Simulation gemittelte Auslasskonzentrationen der Fälle 2, 12 und 13</td>
</tr>
<tr>
<td>5.55 Auslasstemperaturen über die Zeit für verschiedene Wandtemperaturen (Fälle 2, 12 und 13 aus Tabelle 5.3)</td>
</tr>
<tr>
<td>5.56 Gesamtholzmasse über die Zeit (Fälle 2, 12 und 13)</td>
</tr>
<tr>
<td>5.57 Gesamtholzkohlemasse über die Zeit (Fälle 2, 12 und 13)</td>
</tr>
<tr>
<td>5.58 Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 12)</td>
</tr>
<tr>
<td>5.59 Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 12)</td>
</tr>
<tr>
<td>5.60 Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 13)</td>
</tr>
<tr>
<td>5.61 Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 13)</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

5.62 Auslasstemperaturen über die Zeit für verschiedene Einlasstemperaturen (Fälle 2 und 11 aus Tabelle 5.3) .. 148
5.63 Über die letzten 10 s der Simulation gemittelte Auslasskonzentratio-

nen der Fälle 2 und 11 .. 149
5.64 Gesamtholzmasse über die Zeit (Fälle 2 und 11) 150
5.65 Gesamtholzkohlemasse über die Zeit (Fälle 2 und 11) 151
5.66 zeitlicher Verlauf der Produktgaskonzentrationen am Reaktoraus-
luss (Fall 11) .. 151
5.67 Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall
11) ... 152
5.68 Über den Querschnitt massengemittelte Feststofftemperaturen über
die Zeit aufgetragen (ca. 0.146 m über dem Reaktorboden, Fälle 2
und 11) ... 152
5.69 Auslasstemperaturen über die Zeit für verschiedene Partikelgrößen
(Fälle 2 und 14 aus Tabelle 5.3) .. 153
5.70 Über die letzten 10 s der Simulation gemittelte Auslasskonzentratio-
nen der Fälle 2 und 14 .. 154
5.71 Gesamtholzmasse über die Zeit (Fälle 2 und 14) 155
5.72 Gesamtholzkohlemasse über die Zeit (Fälle 2 und 14) 156
5.73 Axialer Schwerpunkt und Betthöhe bei 90 % der Feststoffmasse über
die Zeit (Fälle 2 und 14) ... 157
5.74 Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktoraus-
luss (Fall 14) ... 157
5.75 Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall
14) ... 158
5.76 Über den Querschnitt massengemittelte Feststofftemperaturen über
die Zeit aufgetragen (ca. 0.146 m über dem Reaktorboden, Fälle 2
und 14) ... 158
5.77 Auslasstemperaturen über die Zeit für verschiedene initiale Holz-
temperaturen (Fälle 2 und 9 aus Tabelle 5.3) 159
5.78 Über die letzten 10 s der Simulation gemittelte Auslasskonzentratio-
nen der Fälle 2 und 9 .. 160
5.79 Gesamtholzmasse über die Zeit (Fälle 2 und 9) 161
5.80 Gesamtholzkohlemasse über die Zeit (Fälle 2 und 9) 162
5.81 Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktoraus-
luss (Fall 9) ... 162
5.82 Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 9)

5.83 Über den Querschnitt massengemittelte Feststofftemperaturen über
die Zeit aufgetragen (ca. 0.146 m über dem Reaktorboden, Fälle 2
und 9) ... 163
5.84 Auslasstemperaturen über die Zeit für verschiedene Kollisionspara-

meter (Fälle 2 und 5 aus Tabelle 5.3) .. 164
5.85 Über die letzten 10 s der Simulation gemittelte Auslasskonzentratio-
nen der Fälle 2 und 5 .. 165
5.86 Gesamtholzmasse über die Zeit (Fälle 2 und 5) 167
5.87 Gesamtholzkohlemasse über die Zeit (Fälle 2 und 5) 167
5.88 Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktoraus-
luss (Fall 5) ... 168
Abbildungsverzeichnis

5.89 Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 5) 168
5.90 Zeitlicher Verlauf der Partikeltemperatur (jedes 50ste Holzpartikel) 169
5.91 Zeitlicher Verlauf der Partikelmasse (jedes 50ste Holzpartikel) 171
5.92 Zeitlicher Verlauf der Partikeldichte (jedes 50ste Holzpartikel) 171
5.93 Zeitlicher Verlauf des Partikelwasseranteils (jedes 50ste Holzpartikel) 172
5.94 Zeitlicher Verlauf des Partikelholzanteils (jedes 50ste Holzpartikel) 173
5.95 Zeitlicher Verlauf des Partikelholzkohleanteils (jedes 50ste Holzpartikel) 175
5.96 Zeitlicher Verlauf der Partikeltemperatur dreier ausgewählter Holzpartikel 175
5.97 Zeitlicher Verlauf der Partikelmasse dreier ausgewählter Holzpartikel 176
5.98 Zeitlicher Verlauf der Partikeldichte dreier ausgewählter Holzpartikel 176
5.99 Zeitlicher Verlauf des Partikelholzkohleanteils dreier ausgewählter Holzpartikel 177
5.100 Zeitlicher Verlauf des Partikelholzanteils dreier ausgewählter Holzpartikel 177
5.101 Zeitlicher Verlauf der radialen Position dreier ausgewählter Holzpartikel 178
5.102 Zeitlicher Verlauf der axialen Position dreier ausgewählter Holzpartikel 178
5.103 Zeitlicher Verlauf der Reaktortemperatur für verschiedene Höhen (experimentelle Daten) 179
5.104 Zeitlicher Verlauf der Reaktortemperatur für verschiedene Höhen des Standardfalles 180
5.105 Aus 19 verschiedenen Messungen gemittelte Gaszusammensetzung des Reaktors (experimentelle Daten) 181
5.106 Gaszusammensetzung des Standardfalles ohne Teer (Simulationsdaten) 182
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Kinetische Daten der homogenen Gasphasenreaktionen</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Massenanteile der beim Teerzerfall entstehenden Gase nach Rath u. Staudinger (2001)</td>
<td>27</td>
</tr>
<tr>
<td>3.3</td>
<td>Kinetische Daten des Teerzerfalls nach Rath u. Staudinger (2001)</td>
<td>27</td>
</tr>
<tr>
<td>3.4</td>
<td>Ansätze für die Wärmekapazitäten von Holz und Holzkohle</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>Kinetische Daten der heterogenen Reaktionen der Holzkohle</td>
<td>49</td>
</tr>
<tr>
<td>3.6</td>
<td>Kinetische Daten der primären Pyrolyse</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>Massenanteile der bei der primären Pyrolyse entstehenden Gase nach Seebauer (1999)</td>
<td>55</td>
</tr>
<tr>
<td>3.8</td>
<td>Massenanteile am Gesamtteer der bei der primären Pyrolyse entstehenden Teerkomponenten nach Rath u. Staudinger (2001)</td>
<td>55</td>
</tr>
<tr>
<td>5.1</td>
<td>Rand- und Anfangsbedingungen der fluiden Phase</td>
<td>96</td>
</tr>
<tr>
<td>5.2</td>
<td>Parameter und Anfangswerte der festen Phase</td>
<td>97</td>
</tr>
<tr>
<td>5.3</td>
<td>Varierte Parameter der Simulationen für alle 14 Fälle</td>
<td>98</td>
</tr>
<tr>
<td>5.4</td>
<td>Über die letzten zehn Simulationsskunden gemittelte Auslasstemperaturen aller Fälle</td>
<td>113</td>
</tr>
</tbody>
</table>
Tabellenverzeichnis
Nomenklatur

Griechische Buchstaben

<table>
<thead>
<tr>
<th>Buchstabe</th>
<th>Bedeutung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>Volumenanteil der fluiden Phase</td>
<td>1</td>
</tr>
<tr>
<td>$\rho_{\text{Holzkohle}}$</td>
<td>Dichte der Holzkohle im Partikel</td>
<td>kg/m3</td>
</tr>
<tr>
<td>ρ_g</td>
<td>Dichte der fluiden Phase</td>
<td>kg/m3</td>
</tr>
<tr>
<td>ρ_p</td>
<td>Dichte eines Partikels</td>
<td>kg/m3</td>
</tr>
<tr>
<td>ρ_w</td>
<td>Dichte des Holzes im Partikel</td>
<td>kg/m3</td>
</tr>
<tr>
<td>τ</td>
<td>Spannungstensor der fluiden Phase</td>
<td>kg/m3s2</td>
</tr>
<tr>
<td>μ_{eff}</td>
<td>effektive dynamische Viskosität der fluiden Phase</td>
<td>kg/ms</td>
</tr>
<tr>
<td>μ_{lam}</td>
<td>laminare dynamische Viskosität der fluiden Phase</td>
<td>kg/ms</td>
</tr>
<tr>
<td>μ_{turb}</td>
<td>turbulente dynamische Viskosität der fluiden Phase</td>
<td>kg/ms</td>
</tr>
<tr>
<td>Δ</td>
<td>Längenmaß für den LES Ansatz</td>
<td>m</td>
</tr>
<tr>
<td>ω_p</td>
<td>Eigenrotation eines Partikels</td>
<td>1/s</td>
</tr>
<tr>
<td>Buchstabe</td>
<td>Bedeutung</td>
<td>SI Einheit</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>A</td>
<td>Frequenzfaktor</td>
<td>$1/\text{s}$</td>
</tr>
<tr>
<td>c_t</td>
<td>Parameter im Subgridmodell des LES Ansatzes</td>
<td>m</td>
</tr>
<tr>
<td>d_p</td>
<td>Durchmesser eines Partikels</td>
<td>m</td>
</tr>
<tr>
<td>E</td>
<td>Aktivierungsenergie</td>
<td>J/mol</td>
</tr>
<tr>
<td>g</td>
<td>Gravitationskonstante</td>
<td>m/s^2</td>
</tr>
<tr>
<td>h_α</td>
<td>Enthalpie der Komponente α</td>
<td>J/kg</td>
</tr>
<tr>
<td>h</td>
<td>Enthalpie der Gaspase</td>
<td>J/kg</td>
</tr>
<tr>
<td>Δh_α^0</td>
<td>Standardbildungsenthalpie der Komponente α</td>
<td>J/kg</td>
</tr>
<tr>
<td>I_p</td>
<td>Massenträgheitsmoment eines Partikels</td>
<td>kg m2</td>
</tr>
<tr>
<td>F_s</td>
<td>Impulsaustauschterm der Gaspase</td>
<td>kg m2 s2</td>
</tr>
<tr>
<td>F_i</td>
<td>eine am Partikel angreifende Kraft</td>
<td>kg m/s2</td>
</tr>
<tr>
<td>m_p</td>
<td>Masse eines Partikels</td>
<td>kg</td>
</tr>
<tr>
<td>m_{Holz}</td>
<td>Masse des Holzes in einem Partikel</td>
<td>kg</td>
</tr>
<tr>
<td>$m_{\text{Holzkohle}}$</td>
<td>Masse der Holzkohle in einem Partikel</td>
<td>kg</td>
</tr>
<tr>
<td>m_{Wasser}</td>
<td>Masse des Wassers in einem Partikel</td>
<td>kg</td>
</tr>
<tr>
<td>p</td>
<td>Druck der fluiden Phase</td>
<td>Pa</td>
</tr>
<tr>
<td>q</td>
<td>Wärmestrom der Gaspase</td>
<td>$J/\text{m}^2\text{s}$</td>
</tr>
<tr>
<td>\dot{Q}_s</td>
<td>Enthalpiewechselwirkung zwischen Gaspase und Festphase</td>
<td>$J/\text{m}^3\text{s}$</td>
</tr>
<tr>
<td>r_p</td>
<td>Radius eines Partikels</td>
<td>m</td>
</tr>
<tr>
<td>R_α</td>
<td>spezielle Gaskonstante der Komponente α</td>
<td>$J/\text{kg K}$</td>
</tr>
<tr>
<td>R</td>
<td>universelle Gaskonstante</td>
<td>$J/\text{mol K}$</td>
</tr>
<tr>
<td>S_{ij}</td>
<td>Parameter im LES Ansatz</td>
<td>$1/\text{s}$</td>
</tr>
<tr>
<td>T</td>
<td>Temperatur der fluiden Phase</td>
<td>K</td>
</tr>
<tr>
<td>T_i</td>
<td>ein am Partikel angreifendes Moment</td>
<td>kg m2/s2</td>
</tr>
<tr>
<td>T^0</td>
<td>Referenztemperatur der Standardbildungsenthalpie</td>
<td>K</td>
</tr>
<tr>
<td>u_g</td>
<td>Geschwindigkeit der fluiden Phase</td>
<td>m/s</td>
</tr>
<tr>
<td>u_p</td>
<td>Geschwindigkeit eines Partikels</td>
<td>m/s</td>
</tr>
<tr>
<td>$V_{\text{Partikel,Holz}}$</td>
<td>Volumen eines Holzpartikels</td>
<td>m3</td>
</tr>
<tr>
<td>$V_{\text{Partikel,Holzkohle}}$</td>
<td>Volumen eines Holzkohlepartikels</td>
<td>m3</td>
</tr>
<tr>
<td>$V_{\text{Partikel,Wasser}}$</td>
<td>Volumen eines Holzpartikels zu Beginn der primären Pyrolyse</td>
<td>m3</td>
</tr>
<tr>
<td>Symbol</td>
<td>Bedeutung</td>
<td>Einheit</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>$\dot{w}_{\alpha,g}$</td>
<td>Massenquellterm der Komponente α aufgrund homogener Gasphasenreaktionen</td>
<td>kg/m3s</td>
</tr>
<tr>
<td>$\dot{w}_{\alpha,s}$</td>
<td>Massenquellterm der Komponente α aufgrund heterogener Reaktionen auf der Partikeloberfläche</td>
<td>kg/m3s</td>
</tr>
<tr>
<td>x_i</td>
<td>kartesische Raumrichtung</td>
<td>1</td>
</tr>
<tr>
<td>x_p</td>
<td>Position eines Partikels</td>
<td>m</td>
</tr>
<tr>
<td>Y_α</td>
<td>Massenanteil der Komponente α in der fluiden Phase</td>
<td>1</td>
</tr>
</tbody>
</table>
Einleitung

Speziell die thermochemische Zersetzung von Biomasse gilt als interessant, da sie Lignin, als einen häufig und z.T. in hohen Anteilen vorkommenden Bestandteil der Biomasse, zersetzen kann. Lignin tritt insbesondere bei verholzenden Pflanzen auf (Bäume, Sträucher etc.). Weiterhin ist der Umsatzgrad der eingesetzten Biomasse bei der thermochemischen Zersetzung deutlich höher als bei klassischen Biogasanlagen, somit kann ein hoher Anteil der geernteten Biomasse in andere Energieformen (Elektrizität, Wärme, brennbares Schwachgas etc.) umgewandelt werden.

Die Frage warum energietechnisch gesehen eine Vergasung einer anlagentechnisch einfacheren Verbrennung vorgezogen werden sollte, ist unmittelbar an die potentielle Anlagengröße gebunden. Je kleiner die erwartete Leistung, desto eher sollte die
Vergasung der Verbrennung vorgezogen werden, wenn man zusätzlich zur Wärmege-
winnung auch elektrische Energie erhalten möchte. Die nachhaltige Nutzung sowohl
 der Verbrennung als auch der Vergasung von Biomasse ist an kleine Einzugskreise der
Biomasse gebunden, da zum einen die volumetrische Energiedichte im Vergleich zu
fossilen Energieträgern geringer ist und zum anderen auch das Aufkommen der Bio-
masse weniger konzentriert ist als bei fossilen Energieträgern. Diese beiden Punkte
machen eine zumindest in Teilen dezentrale Art der Energiewandlung interessant.

Die thermochemische Zersetzung von Biomasse hat jedoch auch einige Nachteile,
die die kommerzielle Nutzbarkeit dieser Technologie zu teuer (wartungsintensiv, in-
vestitionsintensiv etc.) werden lassen. Einer dieser Nachteile ist die Entstehung von
Teeren und Partikeln sowie deren Austrag aus dem Reaktor während der Vergasung.
Sowohl die stoffliche als auch energetische Nutzung des bei der Vergasung entstehen-
den Produktgases setzen meist Teer- und Partikelanteile in engen Grenzen voraus.
Konzepte wie druckaufgeladene Wirbelschichten mit einer nachfolgenden Nutzung
der Produktgase in Gasturbinen können sehr hohe Teer- und Partikelgehalte tolerie-
ren, sind allerdings deutlich weniger geeignet um dezentral eingesetzt zu werden bzw.
deutlich investitionsintensivere. Die Frage nach der notwendigen Investition zur Er-
richtung von Vergasungsanlagen hängt allerdings nicht nur von den technologischen
Problemen ab sondern auch vom Umfang der Nutzung der entsprechenden Anlagen.
Aus wissenschaftlicher Sicht sind die technologischen Probleme der Holzvergasung
Motivation für diese Arbeit.

1.1 Aufteilung der Arbeit

Kapitel 2 bietet einen Einblick in die CFD-basierte Modellierung von Gas-Feststoff-
Strömungen und verdeutlicht dabei Stärken und Schwächen einzelner Konzepte. Wei-
terhin wird ein Ausschnitt relevanter Literatur gezeigt, der den Stand der Forschung
aufzeigt.

In Kapitel 3 werden die verwendeten Gleichungen für die Gasphase und die Festphase
aufgezeigt. Dabei wird detailliert auf die verwendeten Modelle eingegangen. Es wird
dabei unterschieden in Gleichungen für die Gasphase (siehe Kapitel 3.1). Gleichungen
für die feste Phase (siehe Kapitel 3.2) und dem Mapping zwischen den Phasen (siehe Kapitel 3.3). Die Beschreibung der Gasphase betrifft die Massen-, Energie-, Impuls- und Speziesbilanzen in Kapitel 3.1 sowie die homogenen chemischen Reaktionen der Gasphase in Kapitel 3.1.1.

Die Präsentation der Festphase in Kapitel 3.2 unterteilt sich grob in drei Teile. Zum einen werden die relevanten Partikelbewegungsgleichungen und das Partikelabbrandmodell in den Kapiteln 3.2.1 und 3.2.5 aufgezeigt und zum anderen dann folgend mit den Modellen für die modellierten Vorgänge der Partikelbewegung und des Partikelabbrandes näher beschrieben. Die Beschreibung der Partikelbewegung folgt anhand der Bewegungskräfte (siehe Kapitel 3.2.2), der Partikelkollisionen (siehe Kapitel 3.2.3) und abschließend der Integration der Bewegungsgleichungen (siehe Kapitel 3.2.4). Der Partikelabbrand wird in den Kapiteln 3.2.6 (Beschreibung der heterogenen Chemie der Simulation), 3.2.7 (Beschreibung der Aufheizung, Trocknung, Pyrolyse und Schrumpfung der Partikel) und abschließend wieder in einem Kapitel zur Integration des Modells für den Partikelabbrand (siehe Kapitel 3.2.8) erläutert.

Kapitel 4 erläutert das Gesamtkonzept der Simulation und die Arbeiten an der Parallelisierung. Dabei wird detailliert auf einzelne Berechnungsabläufe eingegangen (siehe Kapitel 4.1) und die Parallelisierung getrennt für die Simulation als ganzes, die Partikelkollisionen und die Verteilung der Partikelvolumina über die Zellen beschrieben (siehe Kapitel 4.2).

Letztendlich wird in Kapitel 6 der Arbeit eine Zusammenfassung gegeben.
Einführung

2.1 Modellierungssystematik von Gas-Feststoff-Strömungen

2.1.1 Direkte Numerische Simulation

Der Begriff der DNS bei reaktiven Gas-Feststoff-Strömungen ist analog zu den oben beschriebenen Vorgängen mit einer numerischen Auflösung aller Phänomene verbunden, jedoch mit dem zusätzlichen Problem, dass die Phasengrenzflächen Ort (Partikel bewegen sich) und Form (Partikel zerbrechen, schrumpfen etc.) ändern. Die Anzahl der Phasengrenzflächen ist ebenfalls deutlich größer als im einphasigen Bereich. Damit verbunden, muss das Rechengitter meist ständig angepasst werden, um den neuen Positionen der Feststoffe gerecht zu werden. Auch im zweiphasigen Bereich bleiben die Anwendungen der DNS auf akademische Fälle beschränkt, auf die hier nicht näher eingegangen werden soll.
2.1.2 Euler-Lagrange-Modelle

Bei den sogenannten Euler-Lagrange-Modellen wird die fluide Phase als Kontinuum betrachtet (Euler’sche Schreibweise) und die Partikel entsprechend ihres materiellen Charakters als disperse Einzelkörper, die in Form der materiellen oder Lagrange’schen Schreibweise behandelt werden. In der Lagrange’schen Schreibweise überführt man die konvektiven Glieder zusammen mit dem Speicherterm einer Bilanz (zum Beispiel die des Impulses) in eine materielle oder Lagrange’sche Zeitableitung der entsprechenden Größe. Der gedachte Beobachter wechselt seine Position also von einem ortsfesten Punkt zu dem betrachteten Einzelkörper, er bewegt sich mit dem Einzelpartikel. Nichts desto trotz werden viele Herleitungen auf Basis der Lagrange’schen Schreibweise durchgeführt und im Nachhinein in ein Euler-System überführt.

Im Unterschied zu der bereits erläuterten Direkten Numerischen Simulation (DNS) von Partikelströmungen wird bei den Euler-Lagrange-Methoden das verwendete Rechengitter nicht verwendet, um die Oberfläche der Einzelpartikel zu approximieren,
sondern es muss sogar so grob sein, dass wenigstens ein Partikel komplett in eine Rechenzelle passt und nicht der Fall auftreten kann, dass einzelne Gebietszellen zu 100 % mit der festen Phase gefüllt sind. Man muss sich hier bei polydispersen Partikelströmungen entsprechend nach dem lokal vorhandenen Maximaldurchmesser der Partikel richten. Die Verwendung von Euler-Lagrange-Methoden mit sehr wenigen Partikeln pro Zelle ist allerdings auch mit einigen Nachteilen verbunden, da trotz der Lagrange’schen Betrachtung der Partikel das Fluid weiterhin als Kontinuum betrachtet wird und somit die Wechselwirkungsterme zwischen den beiden Phasen gewisse Mindestanforderungen erfüllen müssen, um sie bei der Lösung der kontinuierlichen Feldgleichungen des Fluids verwenden zu können.

In der Theorie sollten weiterhin sämtliche Interaktionen der Festkörper im Wirbelbett in ihrer richtigen zeitlichen Reihenfolge modelliert werden, was letztendlich bedeutet, dass man zum einen sehr häufig die zeitliche Reihenfolge bestimmen muss (z.B. kann man dann lokal nur das erste Kollisionspaar identifizieren und muss dann, aufgrund der veränderten Partikeleigenschaften nach der Kollision, neu bestimmen welches Partikelpaar als nächstes kollidiert) und zum anderen muss der eigentliche Kollisionsvorgang selbst zeitlich aufgelöst werden, was sehr schwierig ist, da die Kontaktzeiten zum Teil extrem klein sein können. Eine Kollisionsbehandlung in dichten Gebieten mit Mehrfachkollisionen stellt zusätzliche Schwierigkeiten bereit. Typische mechanische Modelle der Kollision von Partikeln gehen davon aus, dass nur zwei Partikel zeitgleich miteinander kollidieren können, was im dichten Bereich offensichtlich nicht zutreffen muss. Daher bedient man sich häufig der sogenannten Diskreten Elemente Methode. Die Methode verwendet einfache mechanische Elemente (Feder, Dämpfer etc.) zur Modellierung des Kollisionsverhaltens und bringt damit den Vorteil, dass Mehrfachkollisionen abgebildet werden können.

2.1.3 Euler-Euler-Modelle

der Feldgleichungen leicht implementieren, da im Gegensatz zu den Euler-Lagrange-
Methoden ohne weiteres Ableitungen der gesuchten Größen darstellbar sind.

Es gibt allerdings auch Nachteile dieser Methode. Zum einen impliziert der Kontinu-
umsansatz, dass genug Partikel pro Gebietszelle vorliegen, damit Mittelungsopera-
tionen ohne große Fehler durchgeführt werden können. Das Einhalten dieser Bedin-
gung wird bei polydispersen Partikelströmungen in Wirbelschichten umso schwieri-
ger, da nach obigen Anmerkungen, diverse Durchmesserklassen betrachtet werden
müssen. Es ist aber keineswegs notwendig, auch nur annähernd alle Partikeldurch-
messer durch eigene Phasen zu beschreiben. So zeigte z.B. [Fan u. Fox (2009)], dass
es für eine inerte monomodale Partikelverteilung durchaus ausreichend ist, drei bis
vier Festphasen zu betrachten. In wie weit diese rein fluidodynamisch motivierten
Aussagen auch für reaktive Systeme gelten, ist fraglich, da eine für inerte Strömun-
gen geeignete fluidodynamische Beschreibung nicht zwangsläufig auch geeignet sein
muss, um die Einflüsse der modellierten inneren Koordinaten (z.B. die Durchmesser
der Phasen) auf die mittlere Reaktivität der festen Phasen beschreiben zu können.

Des Weiteren ist die Modellierung der Euler-Euler-Modelle als die kompliziertes-
te der hier vorgestellten Methoden einzustufen (Kollisionen, Spannungstensor etc.).
Der Einzelpartikelcharakter der festen Phase geht in dieser Art der Modellierung
komplett verloren, was die Modellierung zum Teil erheblich erschwert. Zudem gibt
es keinerlei Erweiterungen der Theorie für rotationsbehaftete Partikel, was diese
Methode für einige Fälle ungeeignet macht.

2.2 Literaturübersicht

Zur Modellierung der Holzvergasung in der Wirbelschicht wird eine enorme An-
zahl von Modellen für diverse Vorgänge in den betreffenden Phasen gebraucht. So
hat sich der Bereich der inerten Gas-Feststoff-Strömungen in den letzten Jahren
von vorzugsweise zweidimensionalen Beschreibungen zu vermehrt dreidimensionalen
Modellierungen gewandelt, was sicherlich von der steigenden Effizienz aktueller Re-
chenanlagen begünstigt wurde. Dabei ist insbesondere die Impulskopplung zwischen
den Phasen ein entscheidendes Manko, da es zwar viele Korrelationen gibt, diese

Für den Bereich der Simulation des Abbrandes einzelner Biomassepartikel gilt ähnliches. Es gibt eine Vielzahl von Modellen, deren Ergebnisse zum Teil auch durch Experimente validiert wurde. Probleme bestehen allerdings bei der akkurate Beschreibung der Pyrolyse mit der damit gekoppelten Beschreibung der Teerentstehung und des Teerabbaus in den Partikeln selbst. Zusätzlich sind auch die Stoffwerte der beteiligten Substanzen (Holz, Holzkohle, Teere etc.) und deren Abhängigkeit von den Prozessbedingungen und dem Umsatzgrad mit relativ hohen Unsicherheiten verbunden. Die Modellierung des homogenen bzw. heterogenen Abbaus von Pyrolyseteeren steht aufgrund der vielen Komponenten des Teers und der damit verbundenen potentiell komplexen Reaktionsmechanismen erst am Anfang. Selbst die Frage, was als Teer gilt und was nicht, ist nicht unumstritten, was die Vergleichbarkeit der Literaturergebnisse erheblich erschwert.

In einer Reihe von Publikationen von Papadikis u. a. (2008; 2009a,b,c)) wird eine Kombination aus Euler-Euler und Euler-Lagrange Verfahren präsentiert, welche im Rahmen von FLUENT 6.2 durch UDF’s (user defined functions) modelliert
über die Zeit gezeigt. Ein detaillierter Vergleich mit experimentellen Daten oder den Ergebnissen anderer Forschergruppen wird leider nicht präsentiert.

In der Arbeit von [Papadikis u. a. (2009b)] wird der Einfluss der Partikelschrumpfung auf das Verhalten zweier Partikel mit einem Durchmesser von 0.0005 m in einem Wirbelbett aus Sand untersucht. Das Sandbett wird dabei mit Hilfe eines Euler-Ansatzes als eine Phase beschrieben. Die Schrumpfung der Partikel wird mit zwei verschiedenen Parametersätzen modelliert und führt zu zwei bzgl. der scheinbaren Dichte sehr ähnlichen Partikeln mit unterschiedlicher Größe, aber wiederum unvollendeter Pyrolyse (die Endwerte der Dichten, Massen etc. werden leider nicht genannt). Die vorgestellten Daten haben eine zeitliche Dauer von 4 s bzw. 5 s und sind dreidimensional. Das Modell der Gasphase und die entsprechenden numerischen Aspekte (Gitterauflösung, Integration der Partikeltrajektorien etc.) sind wie bei [Papadikis u. a. (2009c)] wenig aufschlussreich dokumentiert. Jedoch zeigt sich, dass das Parti-

In den Publikationen Zhou u. a. (2004a,b, 2003) wird eine Large Eddy Simulation zum Thema Kohleverbrennung vorgestellt, in der die feste Phase mit Hilfe eines diskreten Elementeansatzes modelliert wird. Es werden Simulationszeiten von ca. 2 s präsentiert und im Ganzen 1480 Partikel verfolgt (1460 Sandpartikel und 20 reaktive Kohlepartikel). Die Beschreibung des Modells ist sehr ausführlich dargestellt
und alle wesentlichen Parameter der Simulation werden genannt. Unter anderem
werden die Wärmeleitung zwischen den Partikeln und diverse Reaktionen stickstoff-
haltiger Komponenten berücksichtigt. Der Reaktor selbst ist recht klein mit einer
Breite von ca. 0.05 m und einer Höhe von 0.07 m. Die Gitterauflösung ist mit neun
dreizehn Zellen als grob einzuordnen, wobei die Sandpartikel einen Durchmes-
sen von 0.002 m und die Kohlepartikel Durchmesser zwischen 0.0008 m und 0.002 m
haben. Im ersten Teil der Publikation (Zhou u. a. (2004a)) wird die Wirkung der
varierten Parameter auf die turbulente Struktur der Strömung untersucht. Unter
den varierten Parametern der Simulation befinden sich Größen wie die Einlassge-
schwindigkeit, der Partikeldurchmesser der Kohle sowie die Einlasstemperatur des
fluidisierenden Gases. Näher analysiert wird u.a. das Partikel-Kollisionsverhalten un-
tereinander und an den Reaktorwänden, Partikelgeschwindigkeitsverteilungen, die
mittleren Partikelgeschwindigkeiten sowie die turbulenten Intensitäten der Gas- und
Partikelbewegung. In zweiten Teil der Publikation (Zhou u. a. (2004b) wird der ei-
genentliche Verbrennungsvorgang näher analysiert. Dabei werden u.a. die Heizraten der
Partikel, die energetischen Beiträge zur Partikeltemperatur während der Aufheizung
und des Abbrandes, die Produktkonzentrationen sowie die Übertemperatur der Koh-
lepartikel bzgl. der oben genannten Parametervariation bewertet. Die Energiebilanz
der Kohlepartikel wird vereinfacht als nulldimensional angenommen.

Yu u. a. (2007) untersuchen in ihrer Arbeit die Kohlevergasung mit Hilfe eines Euler-
(2003) entnommen. Das zweidimensionale Rechengebiet wird durch 2200 Zellen dis-
kretisiert. Im Ganzen werden die Ergebnisse von sechs verschiedenen Simulationen
mit variierenden Parametern interpretiert. Variert werden die Brennstoff-, Luft- und
Wasser dampfmas senströme in den Einlässen und die Temperaturen der zugeführten
Ströme. Die Ergebnisse erläutern den Zusammenhang aus Sauerstoffkonzentration
und Betttemperatur in Abhängigkeit von der Betthöhe, die Abhängigkeit der lokalen
Umsatzraten der Reaktionen des Kohlenstoffs mit Sauerstoff, Wasser und Kohlen-
dioxid vom lokalen Volumenanteil der Kohle sowie die örtlichen Konzentrationspro-
file der Hauptbestandteile des Produktgases für die sechs verschiedenen Fälle. Der
Vergleich aus experimentellen Daten und den Simulationsergebnissen liefert Abwei-
chungen bis ca. 20%.

- Modelle der Pyrolyse und der Vergasung sind als Sensitivparameter zu bewerten. Um gute Ergebnisse innerhalb einer Wirbelschichtsimulation zu erhalten, sind detaillierte Aussagen über die Gaszusammensetzung und die Ausbeuten der Pyrolyse für hohe Heizraten und mit der entsprechenden Biomasse bereitzustellen.

• Es gibt keine ausreichende Validierung der Berechnungen durch entsprechende Experimente, insbesondere für größere Anlagen.

2.3 Ziel der Arbeit

Bilanzgleichungen und verwendete Modelle der Gas- und Festphase

3.1 Die Gasphase

3.1 Die Gasphase

Basis zur Vereinfachung der Bilanzgleichungen, da in dieser Arbeit asymptotische Entwicklungen der üblichen Feldgleichungen zur Beschreibung einphasiger Strömungen zu einem verwertbaren Ergebnis führten, nämlich u.a. der Vernachlässigung der materiellen Ableitung des Druckes in der Energiebilanz \[3.6\]

Im Folgenden werden hier die verwendeten Bilanzgleichungen der fluiden Phase und zum Teil auch verwendete Materialgesetze erläutert und vorgestellt.

Die globale Massenbilanz ist gegeben durch:

\[
\frac{\partial \varepsilon \rho_g}{\partial t} + \nabla \cdot (\varepsilon \rho_g \mathbf{u}_g) = \sum \dot{w}_{\alpha,s}, \tag{3.1}
\]

wobei \(\varepsilon\), \(\rho_g\), und \(\mathbf{u}_g\) für den Volumenanteil der Gasphase, die Gasdichte und die Geschwindigkeit der Gasphase stehen.

In engem Zusammenhang mit der Massenbilanz steht die Komponentenbilanz der Gasphase, welche in Gleichung \(3.2\) dargestellt ist.

\[
\frac{\partial \varepsilon \rho_g Y_\alpha}{\partial t} + \nabla \cdot (\varepsilon \rho_g Y_\alpha \mathbf{u}_g) = \dot{w}_{\alpha,g} + \dot{w}_{\alpha,s} \tag{3.2}
\]

\(Y_\alpha\) steht hier für den Massenanteil der Komponente \(\alpha\) in der Gasphase und \(\dot{w}_{\alpha,g}\) für die Netto-Produktionsrate der Komponente \(\alpha\), welche durch homogene Gasphasenreaktionen hervorgerufen wird. Der Term \(\dot{w}_{\alpha,s}\) stellt in Gleichung \(3.2\) den Massenaustauschterm der Komponente \(\alpha\) zwischen der festen Phase und der Gasphase dar. Im hier vorliegenden Fall kann dieser Term - je nach Komponente - sowohl ein positives als auch negatives Vorzeichen haben. Die Pyrolyse und die Trocknung des Holzes rufen ausschließlich positive Terme hervor, wohingegen die am Partikel ablaufenden heterogenen Reaktionen ein negatives Vorzeichen (Edukte der Vergasungsreaktionen) als auch eine positives Vorzeichen des Termes \(\dot{w}_{\alpha,s}\) in Gleichung \(3.2\) verursachen können (Produkte der Vergasungsreaktionen). Details der Berechnung des Termes \(\dot{w}_{\alpha,s}\) in Gleichung \(3.2\) können den Kapiteln \(3.2.6\) und \(3.2.7\) entnommen werden. Die Summe der Massenanteile \(Y_\alpha\) ist definitionsgemäß gleich eins. Diffusive Prozesse wurden vernachlässigt.

Die Impulsbilanz der Gasphase kann als

\[
\frac{\partial \varepsilon \rho_g \mathbf{u}_g}{\partial t} + \nabla \cdot (\varepsilon \rho_g \mathbf{u}_g \mathbf{u}_g) + \varepsilon \nabla p + \varepsilon (\nabla \cdot \mathbf{\tau}) + \varepsilon \rho_g \mathbf{g} = \mathbf{F}_s \tag{3.3}
\]
Kapitel 3 Bilanzgleichungen und verwendete Modelle der Gas- und Festphase

geschrieben werden, wobei \(p, \tau \) und \(g \) Bezeichner für den Druck, den Spannungstensor und die Gravitationskraft sind. \(F_s \) in Gleichung (3.3) steht für den Impulstransport zwischen der festen und gasförmigen Phase und wird wie in der Arbeit von Gerber (2006b) beschrieben berechnet. Der Spannungstensor kann in der herkömmlichen Schreibweise einer einphasigen Strömung verwendet werden als:

\[
\tau = -\mu_{\text{eff}} \left(\nabla u_g + \nabla u_g^T - \frac{2}{3} \nabla \cdot u_g \right),
\]

wobei \(\mu_{\text{eff}} \) die effektive dynamische Viskosität der Gasphase ist. Die effektive dynamische Viskosität ist die Summe aus einem laminaren Wert und einer sogenannten turbulenten dynamischen Viskosität, welche an sich kein Stoffwert ist, sondern aus einem Schließungsansatz für die Turbulenz der Strömung resultiert. In dieser Arbeit wurde der Ansatz von Marchisio u. Fox (2007) verwendet, der sich wie folgt darstellen lässt:

\[
\mu_{\text{eff}} = \varepsilon (\mu_{\text{lam}} + \mu_{\text{turb}}) = \varepsilon \mu_{\text{lam}} + \varepsilon \rho_g (c_t \Delta)^2 \sqrt{S_{ij} : S_{ij}}. \tag{3.4}
\]

\(\Delta \) ist hier als \(\Delta = (\Delta x \Delta y \Delta z)^{1/3} \) definiert und der Term \(S_{ij} \) ist durch

\[
S_{ij} = \frac{1}{2} (\nabla u_g + \nabla u_g^T) \tag{3.5}
\]
gegeben. \(\mu_{\text{lam}} \) und \(\mu_{\text{turb}} \) stehen für die laminare und turbulente Viskosität. Der Ansatz fällt durch seine starke Ähnlichkeit zu dem einphasigen Ansatz aus Smagorinski (1963) auf und kann daher als leichte Modifikation des Originalansatzes unter Berücksichtigung des Volumenanteils des festen Phase gedeutet werden.

Die Energiebilanz wird in dieser Arbeit in Form einer Gesamtenthalpiebilanz behandelt und enthält somit keinerlei chemische Quellterme:

\[
\frac{\partial \varepsilon \rho_g h}{\partial t} + \nabla \cdot (\varepsilon u_g \rho_g h) + \nabla \cdot (\varepsilon q) = \dot{Q}_s. \tag{3.6}
\]

In Gleichung (3.6) stehen \(q \) und \(\dot{Q}_s \) für die phaseninterne Wärmeleitung und den Energieaustauschterm zwischen der festen und gasförmigen Phase. Die Summe aus innerer und chemischer Enthalpie ist durch \(h \) benannt. Ein häufig in Energiebilanzen auftretender Term, die materielle Ableitung des Druckes, wird in dieser Arbeit nicht berücksichtigt, denn in Arbeiten, die sich speziell mit Strömungen geringer Machzahl beschäftigen (Klein (1999); Klein u. a. (2001)), stellte sich heraus, dass dieser Term
mit dem Quadrat der Machzahl skaliert und somit einen vernachlässigbaren Einfluss hat.

Letztendlich wird natürlich trotz der Verwendung einer Gesamtenthalpiebilanz die Temperatur zur Auswertung diverser Gleichungen gebraucht (chem. Kinetiken, Beziehungen der Transportkoeffizienten, Partikelmodell der Festphase etc.), weshalb die Temperatur nach Bestimmung der Gesamtenthalpie mit Hilfe eines Newton-Verfahrens berechnet wird. Die Gesamtenthalpie h ergibt sich als Summe der Gesamtenthalpien der einzelnen chemischen Komponenten h_{α} zu

\[h(T) = \sum_{\alpha} Y_{\alpha} h_{\alpha}(T). \] (3.7)

Jede der Gesamtenthalpien der einzelnen chemischen Komponenten hängt ihrerseits von der Temperatur und der komponentenspezifischen Standardbildungsenthalpie $\Delta h_{0\alpha}$ ab:

\[h_{\alpha}(T) = \Delta h_{0\alpha} + \int_{T_0}^{T} c_{p,\alpha}(T) \, dT, \]

wobei hier die Annahme eines idealen Gases verwendet wurde, da die Enthalpie hier als nicht druckabhängig angenommen wurde (das totale Differential der Enthalpie ergibt i.A. eine Druck und Temperaturabhängigkeit). Die tatsächliche Implementation der Wärmekapazitäten in OpenFOAM beruht allerdings auf einer polynomialen Gleichung in Form der Temperatur und beinhaltet keine explizite Darstellung der Standardbildungsenthalpie $\Delta h_{0\alpha}$.

Um den Satz an Bilanzgleichungen zu schließen, wird die ideale Gasgleichung zur algebraischen Kopplung aus dem thermodynamischen Druck $p_{\text{thermodynamisch}}$, der Temperatur T und der über die Massenanteile der einzelnen Spezies gewichteten speziellen Gaskonstanten $\sum_{\alpha} Y_{\alpha} R_{\alpha}$ verwendet:

\[p_{\text{thermodynamisch}} = \rho g T \sum_{\alpha} Y_{\alpha} R_{\alpha}. \] (3.8)

Der thermodynamische Druck ist in dieser Arbeit entsprechend den Darstellungen in [Klein (1999); Klein u. a. (2001)] als zeitlich und räumlich konstant angenommen worden. Der Druck in Gleichung (3.3) entspricht daher einem dynamischen Druck, wie er in inkompressiblen Systemen berechnet wird und hat somit keinerlei expliziten Einfluss auf Dichte, Temperatur oder Zusammensetzung.
3.1.1 Homogene Gasphasenchemie

Die Verwendung der globalen Kinetiken ist natürlich damit verbunden, dass die Messbedingungen zum Teil Eingang in die hier verwendeten Kinetiken gefunden haben. Der in dieser Arbeit berücksichtigte Reaktionsmechanismus (ohne Teerzerfall) ist in Gleichung (3.9) abgebildet.

\[
\begin{align*}
\text{CO} + \text{H}_2\text{O} & \rightleftharpoons \text{H}_2 + \text{CO}_2 \\
\text{CO} + 0.5 \text{O}_2 & \rightarrow \text{CO}_2 \\
\text{H}_2 + 0.5 \text{O}_2 & \rightarrow \text{H}_2\text{O} \\
\text{CH}_4 + 2 \text{O}_2 & \rightarrow \text{CO}_2 + 2 \text{H}_2\text{O}
\end{align*}
\]

(3.9)

Da nur eine reversible Reaktion in dieser Arbeit berücksichtigt wurde, sind die Ergebnisse unter Umständen stark von dieser Reaktion abhängig bzw. ihrer Gleichgewichtslage abhängig. Aus diesem Grund zeigt Abbildung 3.1 die Gleichgewichtskonstante der Wassergas-Shift-Reaktion (gezeigt wird die Gleichgewichtskonstante der Rückreaktion aus Gleichung (3.9)). Die Gleichgewichtskonstante deutet darauf hin, dass bei niedrigen Temperaturen das Gleichgewicht auf Seite des Kohlendioxids sein wird. Die Gleichgewichtskonstante sinkt bei ca. 1100 Kelvin unter eins und liefert daher Gleichgewichte die mit steigender Temperatur tendenziell immer stärker auf der Seite des Kohlenmonoxids liegen. Da dies rein thermodynamische Betrachtungen
sind, bleibt hier anzumerken, dass bei niedrigen Temperaturen mit deutlich kleineren
Umsatzraten zu rechnen ist als bei hohen.

Die verwendeten Kinetiken für die in Gleichung (3.9) gezeigten Reaktionen sind in
Tabelle 3.1 dargestellt.

Der homogene Zerfall der bei der primären Pyrolyse entstehenden Teere wird an-
Teere von denen zwei als homogen abbaubar angenommen werden. OpenFOAM er-
laubt die Eingabe von Ratenausdrücken im CHEMKIN-Format und hat damit eine
Standardschnittstelle für chemische Kinetiken. Da wie im Kapitel 3.1 beschrieben,
eine Gesamtenthalpiebilanz verwendet wird, gibt es keine explizite Eingabemöglich-
keit für die Reaktionsenthalpie einzelner Reaktionen, da sich die Reaktionsenthalpie
aus den polynomialen Ausdrücken der Wärmekapazitäten der an einer Reaktionen
beteiligten Stoffe ergibt.
Reaktionsnummer und Ratenausdruck	Literaturreferenz
(i) \(r_{[CO]} = -10^{6.44} \cdot e^{-\frac{12.56}{RT}} [CO]^{1.0} [H_2O]^{1.0} \) | Biba u. a. (1978)
(ii) \(r_{[CO]} = -10^{14.6} \cdot e^{-\frac{167.36}{RT}} [CO]^{1.0} [H_2O]^{0.5} [O_2]^{0.25} \) | Dryer u. Glassman (1973)
(iii) \(r_{[H_2]} = -10^{12.3} \cdot e^{-\frac{109.202}{RT}} [H_2]^{1.0} [O_2]^{1.0} \) | Mitani u. Williams (1980)
(iv) \(r_{[CH_4]} = -10^{13.2} \cdot e^{-\frac{202.502}{RT}} [CH_4]^{0.7} [O_2]^{0.8} \) | Dryer u. Glassman (1973)

Einheiten der Ratenausdrücke mol/cm³s, Einheit der Gaskonstante kJ/molK

Tabelle 3.1: Kinetische Daten der homogenen Gasphasenreaktionen

Die Endothermie der Teerzerfallsreaktionen wurde durch die Wahl der beiden zersetzlichen Teere (Ethanol und Propanol) sowie durch die Wahl von C₅H₂ als Produkt festgelegt. Die Wahl von typischen Teersubstanzen (meist Aromaten) als repräsentative Teersubstanzen führt direkt auf stark exotherme Reaktionen, obwohl das Cracken von Teeren als endothermer Prozess bekannt ist.
spezifiziert nur einen Gesamtwert der bei der Teerzersetzungs entstehenden Kohlenwasserstoffe, da sich ansonsten Konsistenzprobleme innerhalb der Ergebnisse ergeben. Die Wahl von C_2H_2 als Produkt an Stelle von CH_4 fiel ebenfalls aufgrund der sich ergebenen Reaktionsenthalpie der Teerzersetzungs (Methan würde die Reaktionsenthalpie ins exotherme verschiben). Die kinetischen Daten des als Reaktion erster Ordnung angenommenen Teerzerfalls sind in Tabelle 3.3 aufgelistet.

<table>
<thead>
<tr>
<th>Gaskomponente</th>
<th>Ethanol</th>
<th>Propanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>0.602</td>
<td>0.534</td>
</tr>
<tr>
<td>CO_2</td>
<td>0.121</td>
<td>0.085</td>
</tr>
<tr>
<td>C_2H_2</td>
<td>0.137</td>
<td>0.211</td>
</tr>
<tr>
<td>H_2O</td>
<td>0.14</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Tabelle 3.2: Massenanteile der beim Teerzerfall entstehenden Gase nach Rath u. Staudinger (2001)

<table>
<thead>
<tr>
<th>Gaskomponente</th>
<th>Ethanol</th>
<th>Propanol</th>
</tr>
</thead>
<tbody>
<tr>
<td>A in $1/s$</td>
<td>$3.076 \cdot 10^3$</td>
<td>$1.13 \cdot 10^6$</td>
</tr>
<tr>
<td>E in kJ/mol</td>
<td>66.3</td>
<td>109.0</td>
</tr>
<tr>
<td>a</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

kinetischer Ansatz $r = A \cdot e^{-\frac{E}{RT}} \cdot A^a$

Tabelle 3.3: Kinetische Daten des Teerzerfalls nach Rath u. Staudinger (2001)

3.2 Die Festphase

Die Bilanzgleichungen der festen Phase sind innerhalb der Euler-Lagrange-Modellierung in einfacher Form gegeben (im Vergleich mit der Euler-Euler-Modellierung) und bieten einen natürlichen Zugang zu den gesuchten Größen. Die gesuchten Größen sind hier die Masse, die Temperatur, die Zusammensetzung, die Größe, die Geschwindigkeit, der Ort und die Rotationsgeschwindigkeit jedes einzelnen Partikels.

Effekte, die die Änderung des Ortes, der Geschwindigkeit und der Rotationsgeschwindigkeit beeinflussen, werden in Kapitel 3.2.1, 3.2.3 und 3.2.2 beschrieben. Kapitel 3.2.1 zeigt die eigentlichen Bewegungsgleichungen (siehe Gleichung (3.10)), wohingegen in den Kapitel 3.2.2 und 3.2.3 die am Partikel angreifenden Kräfte und Momente diskutiert werden. Die Berechnung der Masse, der Temperatur, der Zusammensetzung und der Größe des Partikels wird in den Kapiteln 3.2.5, 3.2.6 und 3.2.7 erklärt. Die Kapitel 3.2.4 und 3.2.8 dokumentieren die Lösungsstrategien der Partikelbewegung und des reaktiven Partikelmodells.

Die Bewegungsgleichungen der Partikel innerhalb der Euler-Lagrange’schen Modellierung basieren auf (semi-) empirischen Gesetzmäßigkeiten, deren Basis häufig in der
3.2 Die Festphase

Lösung spezieller Umströmungsprobleme einer Kugel für schleichende Strömungen und stationäre Bedingungen liegt.

3.2.1 Impulsbilanz der Partikel - Bewegungsgleichungen

Die Bilanz des Impulses eines Partikels wird hier zusammen mit dem Pendant der Drehimpulsbilanz der fluiden Phase behandelt. Die Änderung des Ortes ergibt sich aus der Tatsache, dass die erste materielle Ableitung des Ortes die Geschwindigkeit ist. Zusammenfassend ergeben sich die Bewegungsgleichungen eines Partikels zu:

\[
\begin{align*}
\frac{dx_p}{dt} &= u_p, \\
\frac{dm_p u_p}{dt} &= \sum_{i=1}^{n} F_i, \\
\frac{dI_p \omega_p}{dt} &= \sum_{i=1}^{m} T_i,
\end{align*}
\]

wobei \(x_p\) den Ort, \(u_p\) die Geschwindigkeit, \(\omega_p\) die Rotationsgeschwindigkeit und \(m_p\) die Masse des Partikels bezeichnen. \(I_p = \frac{2}{5} m_p r_p^2\) steht in Gleichung (3.10) für das Massenträgheitsmoment eines Partikels, wobei in dieser Arbeit bzgl. des Massenträgheitsmomentes immer davon ausgegangen wird, dass das Partikel eine isotrope Massenverteilung besitzt und somit Effekte wie die Pyrolyse (es entsteht typischer Weise am äußeren Rand des Partikels zuerst Holzkohle während in der Mitte des Partikels noch Holz sein kann) nicht auf die Bestimmung des Massenträgheitsmomentes einwirken. Der Radius eines Partikels ist durch \(r_p\) gegeben. Die Größen \(F_i\) und \(T_i\) in den Bewegungsgleichungen eines Partikels (3.10) berücksichtigen die an dem Partikel angreifenden Kräfte (Widerstandskraft, Kollisionskräfte etc.) und Momente (Kollisionsmomente etc.). Gleichung (3.10) zeigt, dass die Masse eines Partikels \(m_p\) sowie deren Massenträgheitsmoment \(I_p\) in den zeitlichen Ableitungen der linken Seite stehen und somit die Änderung der Masse (bzw. der Dichte), z.B. durch den Partikelabbrand, und der Durchmessers, z.B. während der Pyrolyse und der Vergasung, direkt auf die zu ermittelnden Trajektorien der Partikel wirken. Zur Lösung dieses Satzes an Bewegungsgleichungen müssen entsprechende Anfangsbedingungen vorgegeben werden.
3.2.2 Partikelkräfte

$$\tau_P = \frac{p_P d_P^2}{18 \mu_F f_D}, \quad (3.11)$$
mit \(f_D \) als Abweichungsfaktor zur Widerstandskraftberechnung bei nicht Stokes’schen Verhalten (keine schleichende Strömung) mit Werten größer eins. Ist dann \(\frac{u_F}{u_c} < 1 \) handelt es sich um eine dünne Strömung, andernfalls um eine dichte.

Es folgt eine kurze Darstellung der am Partikel angreifende Kräfte, deren Details (insbesondere der Implementation in die bestehende Simulationssoftware und der Kraftbeiwerte) in der Arbeit von Gerber (2006a,b) aufgezeigt sind.

Widerstandskraft

Die Widerstandskraft einzelner Partikel in strömenden Fluiden kann hier ohne Überreibung als eine der am besten erforschten Einflüsse einer Strömung auf Partikel dargestellt werden. Diese Kraft vereint sowohl Reibungseffekte als auch Formwiderstandseffekte und wurde bereits sehr früh in der Arbeit von Stokes (1851) für schleichende Strömungen untersucht. Das treibende Potential der Widerstandskraft ist die Differenzgeschwindigkeit zwischen Fluid und Partikel:

\[
F_W = \frac{3 \rho_F m_P C_W (u_F - u_P) |u_F - u_P|}{4 \rho_P D_P}
\]

mit dem Beiwert der Widerstandskraft \(C_W \). Es gibt eine Vielzahl von Relationen zur Bestimmung des Reibungsbeiwertes (z.B. Martin (1980); Schiller u. Naumann (1933)). Generell ist der Beiwert als Funktion der Partikelreynoldszahl, die wie folgt definiert ist, gegeben:

\[
Re_P = \frac{D_P |u_F - u_P|}{\nu_F}
\]

Saffmann-Kraft

Die Saffmannkraft ist in den Arbeiten Saffmann (1965, 1968) untersucht worden. Aufgrund eines Gradienten im anströmenden Fluidgeschwindigkeitsfeld erfährt das Partikel eine Kraft, die senkrecht zur Anströmung wirkt und das Partikel zu höheren Geschwindigkeiten hin treibt. Der Zusammenhang lässt sich als:

\[
F_S = \frac{\rho_F \pi D_P^2 C_S}{8} ((u_F - u_P) \times \omega_F)
\]

darstellen, dabei ist \(\omega_F \) die Rotation der Fluidgeschwindigkeit. Dabei steht \(C_S \) für den Beiwert der Saffmannkraft, der wiederum abhängig ist von der Partikelreynoldszahl und der wie folgt definierten Reynoldszahl der Saffmannkraft:

\[
Re_S = \frac{\omega_F D_P \rho_F}{\nu_F}
\]

Magnus-Kraft

\[
F_M = \frac{\rho F}{8} \pi D_P^2 C_M |u_F - u_P| \frac{\Omega \times (u_F - u_P)}{2},
\]

wobei \(C_M\) der Beiwert der Magnuskraft ist und \(\Omega\) als Differenz der Rotationen des Fluids und des Partikels definiert ist als:

\[
\Omega = \frac{1}{2} \nabla \times u_F - \omega_P.
\]

\[
Re_R = \frac{\Omega |D_P^2|}{\nu_F}
\]

Druckkraft

Eine resultierende Kraft an einem Partikel entsteht durch einen lokalen Druckgradienten, wobei die Längenskala zur Bildung des Gradienten größer als der Partikeldurchmesser sein soll. Der Zusammenhang aus Druckkraft und Druckgradienten ist im Folgenden gegeben:

\[
F_P = -\frac{m_p}{\rho_p} \nabla p.
\]
Added-Mass-Kraft

Ändert ein Partikel in einer Fluidströmung seine Geschwindigkeit so wird zwangsläufig auch ein gewisser Teil des umgebenden Fluids seine Geschwindigkeit ändern. Die Masse des mitbewegten Fluids nennt man ”Added Mass”, da sie sich näherungsweise wie eine zusätzliche Partikelmasse verhält. Der zu berücksichtigende Term innerhalb der Gleichung (3.10) für die Added-Mass-Kraft sieht wie folgt aus

\[F_A = \frac{1}{2} C_A \rho_F \frac{m_P}{\rho_P} \frac{d}{dt} (u_f - u_p), \]
\[(3.20) \]

wobei \(C_A \) ein Beiwert zur Berücksichtigung höherer Partikelreynoldszahlen ist, der der Arbeit von Odar u. Hamilton (1964) entnommen werden kann.

Basset-Kraft

Die Basset-Kraft liegt in der sich instationär verändernden Grenzschicht eines Partikels während einer Geschwindigkeitsänderung begründet. Dabei gilt folgender Ansatz für die Basset-Kraft:

\[F_B = 9 \sqrt{\frac{\rho_F \mu_F}{\pi \rho_p d_p}} C_B \left(\int_0^t \frac{d(u_f - u_p)}{dt} \frac{1}{(t - \tau)^{0.5}} d\tau + \frac{(u_f - u_p)_0}{\sqrt{t}} \right), \]
\[(3.21) \]

wobei \(C_B \) wiederum ein Beiwert ist, der die Berücksichtigung höherer Partikelreynoldszahlen erlaubt und der Arbeit von Odar u. Hamilton (1964) entnommen werden kann. Aus Gleichung (3.21) läßt sich klar erkennen, dass es sich bei der Basset-Kraft um eine Art abklingende Anfangsbedingung handelt (natürlich muss das Geschwindigkeitsfeld des Fluids nicht stationär sein).

Gewichtskraft und Auftrieb

Eine der Kräfte, die in einer Gas-Feststoff-Strömung dominieren, ist durch die folgende Gleichung gegeben:

\[F_G + F_A = V_P (\rho_P - \rho_F) g, \]
\[(3.22) \]

wobei die Auftriebskraft \(F_A \) häufig gegenüber der Gewichtskraft \(F_G \) vernachlässigt wird, da der Einfluss des verdrängten Volumens aufgrund des Dichteverhältnisses zwischen fester und fluider Phase sehr klein ist.
Partikelkontaktkräfte und Partikelkontaktmomente

Diese Art der Kräfte geht auf die Interaktion zwischen den Partikeln zurück und wird ausführlich in Kapitel 3.2.3 beschrieben. Eine Beeinflussung der Kollisionsdynamik durch das umgebende viskose Fluid (siehe z.B. Yang (2006)) wird hier nicht berücksichtigt, da das umgebende Gas deutlich zu dünn ist, um hier nennenswerte Effekte hervorzurufen.

Partikelrotation

Die Eigenrotation der Partikel wird durch die folgende Gleichung beschrieben:

\[T = \frac{\rho_F}{2} \left(\frac{D_P}{2} \right)^5 C_R |\Omega| \Omega, \]

Relevante Kräfte einer Gas-Feststoff-Strömung

\[St = \frac{\mu_F}{\rho_F \omega d_p^2}. \]

In Gleichung (3.24) steht \(\omega \) für die Frequenz, die in den Fourieransätzen für die Fluid- und Partikelgeschwindigkeit als Parameter steht.

Als Beispiel soll hier die genannte modifizierte Stokes-Zahl von fünf gelten und untersucht werden, unter welchen Umständen (Durchmesser der Partikel, Frequenz...
3.2 Die Festphase

die Bewegung) eine Berücksichtigung der angesprochenen Kräfte notwendig wäre. Zur Berücksichtigung der Fluideigenschaften in Gleichung (3.24) wird ein Wert von 0.0002 m²/s für die kinematische Viskosität angenommen, der in der Größenordnung des entsprechenden Wertes für Luft bei ca. 1300 K liegt. Als Partikeldurchmesser sollen Werte zwischen 10 µm und 4 mm betrachtet werden, was ungefähr dem in der Arbeit maximal verwendeten Durchmesserspektrum entspricht. Abbildung 3.2 zeigt die Ergebnisse als zweidimensionale Darstellung, wobei die Frequenz ω über den Partikeldurchmesser dargestellt ist. Aus Abbildung 3.2 kann man bei gegebenen Partikeldurchmesser ablesen, bei welcher Frequenz der Strömung sich eine modifizierte Stokes-Zahl von fünf ergibt und damit nach Sommerfeld (2000b) die Vernachlässigung obiger genannter Kräfte nicht mehr akzeptabel wäre. Für große Partikel reichen offensichtlich relativ kleine Frequenzen der Strömung um die Berechnung von obigen genannten Kräften notwendig zu machen.

Abbildung 3.2: Frequenz der Bewegung über den Partikeldurchmesser bei gegebener modifizierter Stokes-Zahl von fünf nach Gleichung 3.24

Relevante Kräfte vs. Modellierung in dichten Strömungen

Generell lässt sich hier festhalten, dass es keine gültigen Relationen für alle bis hier genannten Partikelkräfte bis auf die Widerstands Kraft für dichte Partikelströmungen gibt. Der Grund liegt wohl zum einen darin, dass derartige Systeme messtechnisch sehr schwer zugänglich sind und zum anderen, dass die Komplexität der Wechselwirkungen so groß ist, dass die oben genannten semiempirischen Ansätze nicht alle wesentlichen Kraft-Potential-Paarungen richtig erfassen bzw. Abhängigkeiten bzgl. mehrerer Potentiale möglich sind.

Nichts desto trotz werden die vorhandenen und hier im Folgenden dargestellten Beziehungen erfolgreich auf inerte und reaktive Systeme angewandt und es können qualitativ Effekte wie z.B. die Entmischung bidisperser Systeme und die Blasenbildung sowie quantitativ z.B. der Druckabfall wiedergegeben werden. Die Beziehungen sind allerdings gerade daraufhin angepasst, dass Werte wie der Druckabfall wieder-
gegeben werden können. Untersuchungen bzgl. der Dynamik des Druckabfalls unter spezifischen Bedingungen sind nicht bekannt.

Die Herkunft der verfügbaren Beziehungen für die Widerstandskraft im dichten Bereich lässt sich nach Li u. Kuipers (2003) in drei Bereiche einteilen:

- Entwicklungen semiempirischer Beziehungen aufgrund von Druckabfallmessungen,
- Entwicklungen semiempirischer Beziehungen aufgrund von Bettexpansionsexperimenten,
- Entwicklungen aufgrund von Direkten Numerischen Simulationen.

\[
F_W = \frac{3 \rho_F m_p C_W (u_F - u_p) |u_F - u_p|}{4 \rho_p D_p} \left(\frac{1}{f(\alpha)} \right). \tag{3.25}
\]

3.2.3 Partikelkollisionen

Dieses Modell geht im Gegensatz zu vielen anderen Kollisionsmodellen davon aus, dass es nach einem zeitlichen Schritt der Partikelbewegung zu Überlappungen der

\textit{Abbildung 3.3: Darstellung des Feder-Dämpfer-Modells für die Normalkraft}
Partikel kommt. Dabei ist es unerheblich, ob sich zwei Partikel oder mehrere Partikel überlappen. Die Idee des Modells zeigt Abbildung 3.3 bzw. 3.4 getrennt für die tangentialen und normalen Komponenten der zwischen den Partikeln entstehenden Kräfte bzw. Momente. Sobald eine Überlappung registriert wird, nutzt man diese Überlappung, um damit eine Feder zu spannen, die dafür sorgt, dass sich die überlappenden Partikel im nächsten Zeitschritt wieder auseinander bewegen. Zusätzlich zu diesem Mechanismus sind die überlappenden Partikel mit einem Dämpfer ausgestattet, der für die Dissipation der kinetischen Energie der Partikel sorgt. Im Folgenden wird das Modell kurz skizziert.

Die Bewegungsgleichungen der Partikel (siehe Kapitel 3.2.1) werden durch zwei Arten auf die Partikel wirkenden Kräfte (bzw. Momente) bestimmt. Zum einen handelt es sich dabei um Wechselwirkungen der Partikel mit dem Fluid F_{Fluid} bzw. T_{Fluid}, welche bereits in Kapitel 3.2.2 beschrieben sind und zum anderen um Kontaktkräfte (oder Kontaktmomente) F_{Kontakt} bzw. T_{Kontakt}, die zwischen dem betrachteten Partikel und seinen Nachbarn durch deren Überlappung zu Stande kommen. Die Kontaktkräfte und -momente der Partikel werden dabei in normale und tangentielle Komponenten zerlegt und getrennt behandelt. Die Normalkraft ist gerade die Kraft in Richtung des Vektors n, der wie folgt definiert ist:

$$n = \frac{x_j - x_i}{|x_j - x_i|},$$ \hspace{1cm} (3.26)
Die relative Geschwindigkeit der beiden Partikel ist durch

\[\mathbf{v}_r = \mathbf{v}_i - \mathbf{v}_j \] (3.27)

definiert, womit sich auch die normale Komponente der Relativgeschwindigkeit als
\[\mathbf{v}_{r,\text{normal},ij} = \mathbf{v}_r \mathbf{n} \] berechnen lässt. Die Normalkraft selbst ergibt sich zu:

\[\mathbf{F}_{\text{Kontakt,normal},ij} = -k_n \delta_{\text{normal},ij} - \eta_n \mathbf{v}_{r,\text{normal},ij}, \] (3.28)

wobei es sich bei \(k_n \) und \(\eta_n \) um die Federsteifigkeit bzw. um die Dämpfungskonstante in normaler Richtung handelt. Die normale Überlappung wurde durch \(\delta_{\text{normal},ij} = \Delta_t \mathbf{v}_{r,\text{normal},ij} \) berechnet. Analog dazu wird die tangentiale Überlappung nach Sadd u. a. (1993) zu \(\delta_{\text{tangential},ij} = \Delta_t \mathbf{v}_{r,\text{tangential},ij} \) berechnet.

Die tangentiale Kraft lässt sich analog zur normalen Kraft als

\[\mathbf{F}_{\text{Kontakt,tangential},ij} = -k_t \delta_{\text{tangential},ij} - \eta_t \mathbf{v}_{r,\text{kontakt},ij} \] (3.29)

berechnen, wobei \(\mathbf{v}_{\text{kontakt},ij} \) durch folgenden Ausdruck gegeben ist:

\[\mathbf{v}_{r,\text{kontakt},ij} = \mathbf{v}_{r,ij} - \mathbf{v}_{r,\text{normal},ij} + (r_i \mathbf{\omega}_i + r_j \mathbf{\omega}_j) \times \mathbf{n} \] (3.30)

und \(k_t \) und \(\eta_t \) die Federsteifigkeit und die Dämpfungskonstante in tangentialer Richtung sind.

Die Dämpferkonstanten werden nach Tsuji u. a. (1993) berechnet:

\[\eta = 2\gamma \sqrt{m_p k}, \quad \gamma = \frac{\alpha}{1 + \alpha^2}, \quad \alpha = \frac{1}{\pi} \ln \frac{1}{e}, \] (3.31)

wobei \(m_p \) für die Partikelmasse, \(k \) für die Federsteifigkeit und \(e \) für den Verlustbeiwert der Kollision steht.

Falls für die nach Gleichung (3.29) bestimmte tangentiale Kraft die Bedingung in Gleichung (3.32) erfüllt ist, wird die tangentielle Kraft nach Gleichung (3.33) bestimmt.

\[|\mathbf{F}_{\text{Kontakt,tangential},ij}| \geq |\mathbf{F}_{\text{Kontakt,normal},ij}| \mu \] (3.32)

Dieser Fall entspricht der Gleitreibung und \(\mu \) steht für den Reibungsbeiwert.

\[|\mathbf{F}_{\text{Kontakt,tangential},ij}| = -\mu |\mathbf{F}_{\text{Kontakt,normal},ij}|, \] (3.33)
Sind alle Überlappungen des Partikels i mit seinen Nachbarn j berechnet worden, kann man die gesamten auf das Partikel i wirkenden Kräfte und Momente wie folgt aufsummieren:

$$\mathbf{F}_{\text{Kontakt},i} = \sum_j \left(\mathbf{F}_{\text{Kontakt,normal},ij} + \mathbf{F}_{\text{Kontakt,tangential},ij} \right),$$

(3.34)

$$\mathbf{T}_{\text{Kontakt},i} = \sum_j \left(\mathbf{r}_i \times \mathbf{n} \times \mathbf{F}_{\text{Kontakt,tangential},ij} \right).$$

(3.35)

3.2.4 Numerische Verfahren zur Lösung der Bewegungsgleichungen

Die Frage nach einem geeigneten Verfahren wird auch in der Literatur zunehmend diskutiert. Dabei geben die folgenden Beiträge einen Einblick in die Problematik und liefern viele weitere wichtige Literaturstellen (siehe z.B. Kruggel-Emden u. a. [2008], Fraige u. Langston [2004], Asmar u. a. [2003], Peters [2003]). Wichtige Aspekte der Auswahl eines geeigneten Verfahrens sind zum Beispiel der numerische Aufwand des Verfahrens, die Stabilität, die Konsistenz (also im wesentlichen die Frage nach der numerischen Ordnung), die Fähigkeit energieerhaltend, impulserhaltend und auch erhaltend bzgl. der Phasenraumdichte zu integrieren (häufig mit dem Begriff eines symplektischen Verfahrens verbunden), die zeitliche Reversibilität und nicht zuletzt die Frage nach einer geeigneten Kombination aus Tracking- und Integrationsverfahren.

Die Auswahl eines geeigneten Verfahrens ist dabei wesentlich mit der diskreten Elemente Methode verbunden, da diese bedingt durch die numerische Auflösung von Partikelkollisionen nach sehr kleinen Zeitschritten verlangt. Kruggel-Emden u. a. [2008] berichtet von einer Kollisionsdauer von 12.5 μs bis 34 μs. Betrachtet wurden dabei 0.26 g schwere Aluminiumoxidkugeln mit einer Anfangsgeschwindigkeit von 3.85 m/s. Generell gilt es bei der Integration der Bewegungsgleichungen (3.10)

In dieser Arbeit wurde, wie auch in vielen anderen Publikationen, mit dem expliziten Euler-Verfahren gerechnet. Die zeitliche Schrittweite der Integration der Bewegungsgleichungen wird explizit vorgegeben (siehe Kapitel 4.1). Jedoch wird eine Neuberechnung der rechten Seite von Gleichung (3.10) vorgenommen, sobald das Partikel in eine neue Zelle eintritt. Die exakte Schrittweite kann also nicht angegeben wer-
3.2 Die Festphase

den, da sie von der Bewegung des Partikels abhängt. Alle in Kapitel 5 gezeigten Ergebnisse beruhen auf Berechnungen mit dem expliziten Euler-Verfahren.

3.2.5 Massen- und Energiebilanz der Partikel

Die Massen- und Energiebilanz der Partikel werden hier zusammen dokumentiert, da beide durch die betrachtete Trocknung, Pyrolyse und heterogenen Reaktionen (siehe Kapitel 3.2.6 und 3.2.7) und deren energetischen Effekte recht stark gekoppelt sind und somit in dieser Arbeit gemeinsam als ein Differentialgleichungssystems gelöst werden. Die notwendigen Zeitschritte sind wegen der Steifheit des Systems und den Genauigkeitsanforderungen unter Umständen noch kleiner als die Zeitschrittweite des dem Verfahren zugrunde liegenden Kollisionsmodells.

Die in dieser Arbeit verwendete Massenbilanz für die Masse eines Partikels m_p teilt sich auf in die Bilanzen der Holzmasse m_{Holz}, der Holzkohlemasse $m_{Holzkohle}$ und der Wassermasse m_{Wasser} eines Partikels. Die Aschebildung während der Pyrolyse bzw. der Vergasung wird hier nicht berücksichtigt, kann aber ggf. leicht als zusätzliche Komponente der Biomasse ergänzt werden. Die Energiebilanz für die Partikeltemperatur T_p ist zum einen durch die Quellterme der ablaufenden Reaktionen und zum anderen durch die Wechselwirkungsterme mit der Umgebung bestimmt. Beide Bilanzen sind in Gleichung (3.36) dokumentiert.

\[
\begin{align*}
\frac{dm_{Holz}}{dt} &= -(\dot{r}_{Holzgas} + \dot{r}_{Teer(g)} + \dot{r}_{Holzkohle}) m_{Holz} , \\
c_{p,Biomasse} m_p \frac{dT_p}{dt} &= \sum_i (\Delta h_i \dot{r}_i) + \alpha A(T_p - T_g) , \\
\frac{dm_{Holzkohle}}{dt} &= -(\dot{r}_{H_2O} + \dot{r}_{O_2} + \dot{r}_{CO_2}) m_{Holzkohle} + \dot{r}_{Holzkohle} m_{Holz} , \\
\frac{dm_{Wasser}}{dt} &= -\dot{r}_{Verdampfung,H_2O}.
\end{align*}
\]

(3.36)

Die Terme \dot{r}_{H_2O}, \dot{r}_{O_2} und \dot{r}_{CO_2} in Gleichung (3.36) stehen stellvertretend für Quellterme der Holzkohlevergasung mit den Gasen H$_2$O, O$_2$ und CO$_2$ und werden im Kapitel 3.2.6 näher erläutert. Die Kinetik der Pyrolyse wird durch die Bildungsraten der Holzkohle $\dot{r}_{Holzkohle}$, des Holzteeres $\dot{r}_{Teer(g)}$ und des Holzgases $\dot{r}_{Holzgas}$ spezifiziert. Weitere Größen in Gleichung (3.36) sind die Wärmekapazität des Partikels.
Die Änderung des Durchmessers, die primäre Pyrolyse und die Trocknung eines Partikels sind in Kapitel 3.2.7 dokumentiert. Zusätzlich zu den hier vorgestellten Bilanzen in Gleichung (3.36) wird für jede mit dem Partikel wechselwirkende Komponente der Gasphase eine Massenbilanz berechnet, die einen Teil der das Partikel umgebenden Gasphase abdecken. Die Bilanzierung betrifft die Komponenten C_2H_2, \text{CH}_4, \text{CO}_2, \text{CO}, \text{O}_2, \text{H}_2\text{O}, \text{H}_2$ und die bei der primären Pyrolyse entstehenden Teere. Die Masse an Stickstoff kann hier als konstant angesehen werden, da das Partikel im Rahmen des hier vorgestellten Modells weder Stickstoff aufnimmt noch abgibt. Da beide Phasen getrennt berechnet werden, kann es Situationen geben, in denen der Umsatz einer Gasphasenkomponente an einem Partikel größer ist als die tatsächliche Menge dieser Komponente in der Umgebung eines Partikels. Eine Bilanzierung dieser Komponenten kann also limitierend auf den Gesamtumsatz dieser Komponenten wirken. Zudem ändern sich die Anteile der Gasphasenkomponenten durch die Umsätze am Partikel, was ebenfalls mit einer Bilanzierung dieser Komponenten innerhalb des Partikelmodells berücksichtigt werden kann.

$c_{p,\text{Biomasse}}$: der Newton’sche Wärmeübergangskoeffizient α sowie die Summe der Reaktionsenthalpien der ablaufenden chemischen Konversionsprozesse $\sum_i (\Delta h_i \dot{r}_i)$.
3.2 Die Festphase

Die Wärmekapazität $c_{p,Biomasse}$ des Partikels in Gleichung (3.36) wird als Wichtung der Wärmekapazitäten von Holz, Holzkohle und Wasser modelliert. Gleichung (3.37) zeigt die der Berechnung zugrunde liegende Formel:

$$c_{p,Biomasse} = \frac{m_{Holz} + m_{Holzkohle}}{m_p} (\eta c_{p,Holz} + (1 - \eta)c_{p,Holzkohle}) + \frac{m_{Wasser}}{m_p} c_{p,Wasser},$$

wobei $\eta = \frac{m_{Holz}}{m_{Holz,0}}$ ist. $m_{Holz,0}$ ist die Holzmasse zu Beginn der Partikelhistorie. Die Wärmekapazitäten von Holz und Holzkohle werden durch polynomiale Ausdrücke entsprechend der Arbeiten von Grønli (1996) und Raznjevic (1976) modelliert, während für Wasser ein fester Wert von 4.2 kJ/kg K angesetzt wurde. Die Ansätze für Holz und Holzkohle sind in Tabelle 3.4 aufgezeigt.
Kapitel 3 Bilanzgleichungen und verwendete Modelle der Gas- und Festphase

\begin{align*}
 c_{p,Holz} &= 1.5 + 1 \cdot 10^{-3}T \\
 c_{p,Holzkohle} &= 0.42 + 2.09 \cdot 10^{-3}T + 6.85 \cdot 10^{-7}T^2 \\
 c_{p,i} &\text{ in } \text{kJ/kgK, } T \text{ in K}
\end{align*}

Tabelle 3.4: Ansätze für die Wärmekapazitäten von Holz und Holzkohle

3.2.6 Heterogene Chemie

\begin{align*}
 &C + O_2 \rightarrow CO_2 \quad \text{(i)} \\
 &C + CO_2 \rightarrow 2 \text{ CO} \quad \text{(ii)} \tag{3.38} \\
 &C + H_2O \rightarrow CO \quad + \text{ H}_2 \quad \text{(iii)}
\end{align*}

Die verwendeten Kinetiken sind in Tabelle 3.5 aufgelistet. Die tabellierten Ratenausdrücke in Tabelle 3.5 sind in der zeitlichen Änderung des Holzkohleumsatzgrades \(X(t) \) geschrieben, der nach DiBlasi (2009) wie folgt definiert wurde:

\[
X(t) = \frac{M_0 - M(t)}{M_0 - M_\infty},
\]

wobei \(M(t) \) für die aktuelle Masse, \(M_0 \) für die initiale Masse und \(M_\infty \) für die Masse des Holzkohlepartikels nach der Vergasung steht. \(M_\infty \) ist in dieser Arbeit zu Null gesetzt, da keine Asche innerhalb der Biomasse modelliert wird. \(M_0 \) ist das Maximum der Holzkohlemasse im Partikel während der gesamten Partikelhistorie.

Die Ratenausdrücke der heterogenen Reaktionen in Tabelle 3.5 sind durch die Definition in Gleichung (3.39) selbst Funktionen des Umsatzgrades der Holzkohle und spiegeln damit die sich ändernde innere Struktur während der Vergasung wider. Eine Umrechnung der dimensionslosen Ratenausdrücke der Vergasungsreaktionen nach Tabelle 3.5 in dimensionsbehaftete Ratenausdrücke ergibt sich mit Hilfe von

\[
r_{\text{dimensionslos}} = -\frac{1}{m_{\text{Holzkohle}}} \frac{dm_{\text{Holzkohle}}}{dt} = \frac{1}{1 - X} \frac{dX}{dt},
\]

zu

\[
r_C = r_{\text{dimensionslos}} \cdot m_{\text{Holzkohle}},
\]

wobei \(r_C \) der Umsatz der Holzkohle in Masseneinheiten pro Zeit ist und damit die Summation über alle in Gleichung (3.38) gezeigten Reaktionen den Gesamtmasseumsatz an Holzkohle ergibt (siehe Kapitel 3.2.5). Um die Ratenausdrücke der Gasphasenkomponenten aus Kapitel 3.2.5 zu erhalten, wird die Massenabbaurate einer Vergasungsreaktion aus Gleichung (3.41) mit Hilfe der Molmassen der an der Reaktion beteiligten Stoffe und den stöchiometrischen Koeffizienten der Reaktionsgleichung aus Gleichung (3.38) umgerechnet. Der Massenummsatz einer Gasphasenkomponente \(i \) aufgrund des Holzkohlemassenumsatzes \(r_{C,j} \) in der \(j \)-ten Reaktion nach Gleichung 3.38 ergibt sich damit zu:

\[
r_{i,j} = r_{C,j} \frac{M_i}{M_C} \nu_{i,j},
\]

wobei hier schon davon ausgegangen wurde, dass der stöchiometrische Koeffizient des Kohlenstoffs in den Reaktionsgleichungen nach Gleichung (3.38) eins ist. In Gleichung (3.42) stehen \(M_C \) für die molare Masse des Kohlenstoffs, \(M_i \) für die molare
Masse der Komponente \(i \) und \(\nu_{i,j} \) für den stöchiometrischen Koeffizienten dieser Komponente \(i \) in der \(j \)-ten Reaktion nach Gleichung (3.38).

Abgesehen von den schon genannten Problemen der in der Literatur verfügbaren Kinetiken, ist es für die Reaktionen von Biomasse generell erstrebenswert, Kinetiken für alle in (3.38) genannten Reaktionen aus einer Publikation zu erhalten, um die hohen Modellunsicherheiten zu reduzieren. Es gibt aber leider praktisch keine Auto-
3.2 Die Festphase

Reaktionsnummer und Ratenausdruck für \(\frac{dX}{dt} \)\(^{1-X} \)

<table>
<thead>
<tr>
<th>Reaktionsnummer</th>
<th>Ratenausdruck</th>
<th>Literaturreferenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>(1.51 \cdot 10^2 e^{-\frac{100}{RT}} \cdot (1 - X)^{1.2} \cdot P_{O_2})</td>
<td>DiBlasi (1999)</td>
</tr>
<tr>
<td>(ii)</td>
<td>(9.1 \cdot 10^6 e^{-\frac{100}{RT}} T^{-0.8} (1 - X)^{\frac{2}{3}} P_{CO_2}^{0.8})</td>
<td>Aarsen u. a. (1985)</td>
</tr>
<tr>
<td>(iii)</td>
<td>(6.57 \cdot 10^3 e^{-\frac{156}{RT}} \cdot P_{H_2O})</td>
<td>Hawley u. a. (1983)</td>
</tr>
</tbody>
</table>

Tabelle 3.5: Kinetische Daten der heterogenen Reaktionen der Holzkohle

ren, die alle drei hier berücksichtigten heterogenen Reaktionen untersucht haben und sehr wenige die zwei der drei Reaktionen untersuchen (z.B. Klose u. Wölki (2005)).

Eine weitere Einschränkung der Gültigkeit der verwendeten Kinetiken ergibt sich durch die Arbeit von Roberts u. Harris (2007), in der der parallele Ablauf zweier Vergasungsreaktionen und die gegenseitige Behinderung der Vergasungsmittel durch die limitierten freien Oberflächenplätze (sogennannte "active sites") untersucht wird. Der Einfluss ist bedeutend, wird aber in dieser Arbeit aufgrund mangelnder Daten vernachlässigt.

Aufgrund der hohen Temperaturen im unteren Bereich des Reaktors tendieren auch Partikel in diesem Bereich zu hohen Temperaturen und damit großen Umsatzraten der heterogenen Reaktionen. Aus diesem Grund wurde bei der Berechnung der effektiven Reaktionsrate der Reaktion von Kohlenstoff mit Sauerstoff auch der Stoffübergang zwischen Gasphase und Partikel berücksichtigt, was eine Limitierung der effektiven Umsatzrate durch den Stofftransport ermöglicht. Diese Limitierung (siehe zum Beispiel Baehr u. Stephan (2002)) ist ohne großen Rechenaufwand möglich, da es sich bei dieser Reaktion um eine Reaktion erster Ordnung handelt (siehe Tabelle 3.5). Der Einfluss der Stoffübergangskoeffizienten für die anderen heterogenen Reaktionen wurde vernachlässigt.

3.2.7 Aufheizung, Trocknung, primäre Pyrolyse und Schrumpfung der Partikel

Will man Biomasse (in dieser Arbeit Holz) zur Vergasung nutzen, durchlaufen die einzelnen Holzpartikel verschiedene Stufen während sie durch die im Reaktor herr-

Der oben beschriebene Ablauf der Aufheizung eines Partikels findet so nur an infinitesimal großen Holzpartikeln statt, da bei Berücksichtigung der Raumdimensionen des Partikels Trocknungs- und Pyrolysefronten in das Holzpartikel laufen, die für das gesamte Partikel betrachtet einen parallelen Ablauf der verschiedenen oben beschriebenen Prozessschritte ermöglichen. Da dieser Arbeit ein nulldimensionales Partikelmodell zugrunde liegt (siehe Kapitel 3.2.5), laufen die einzelnen Prozessschritte sequentiell ab. Während der Trocknung, der Pyrolyse und der anschließenden Vergasung schrumpft das Partikel in unterschiedlicher Art und Weise.

$$\dot{r}_{\text{Verdampfung}, \text{H}_2\text{O}} = \begin{cases} (T_p - T_{\text{Verd.}}) \rho_{\text{Partikel}} \frac{c_{\text{p, Partikel}}}{\Delta h_{\text{Verd.}}} \frac{dT}{dt}, & T_p \geq T_{\text{Verdampfung}} \\ 0, & T_p < T_{\text{Verdampfung}} \end{cases}$$

(3.43)

wobei T_p die Temperatur des Partikels ist, $T_{\text{Verd.}}$ die Temperatur bei der die gesamte Verdampfung stattfindet, ρ_{Partikel} die scheinbare Dichte des Partikels, $c_{\text{p, Partikel}}$ die isobare Wärmekapazität des Partikels, $\Delta h_{\text{Verd.}}$ die Verdampfungsenthalpie und δt der Integrationszeitanschnitt. In dieser Arbeit wurde die Dichte der Biomasse durch die Masse der Biomasse ersetzt, was, da keine Schrumpfung während der Trocknung berücksichtigt wird, keinerlei weitere Auswirkungen hat. Der wesentliche Nachteil von Gleichung (3.43) ist die Unstetigkeit bzgl. der Temperatur, welche Integratoren erfordert, die damit umgehen können.

In einem aktuellen Übersichtsartikel von DiBlasi (2008) werden diverse Modelle für die primäre Pyrolyse von Biomasse vorgestellt und miteinander verglichen. Es gibt demnach vier Typen von Reaktionsmechanismen für die primäre Pyrolyse. Der ein-

3.2 Die Festphase

Abbildung 3.5: Reaktionsschema der primären Pyrolyse

se vom Holzkohleanteil nach Vollendung der primären Pyrolyse berichtet und dies durch die eventuelle Konkurrenz zwischen endothermen und exothermen Prozessen innerhalb des Partikels erklärt. In dieser Arbeit wurde dennoch der in Tabelle 3.6 dargestellte Wert (Annahme einer endothermen Reaktion) als fester Wert verwendet, da die Masse an Holzkohle am Ende der primären Pyrolyse nicht zu Beginn der Simulation bekannt ist.

<table>
<thead>
<tr>
<th>Reaktion Holz zu:</th>
<th>E</th>
<th>A in $1/s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>153</td>
<td>$4.4 \cdot 10^9$</td>
</tr>
<tr>
<td>Holzkohle</td>
<td>112</td>
<td>$3.3 \cdot 10^6$</td>
</tr>
<tr>
<td>Teer</td>
<td>148</td>
<td>$1.1 \cdot 10^{10}$</td>
</tr>
</tbody>
</table>

Ratenausdruck der Form $r = A \cdot e^{-\frac{E}{RT}} \cdot [\text{Holz}]$

Einheiten: Aktivierungsenergie kJ/mol

Reaktionsenthalpie der Pyrolyse kJ/m³ nach Grønli (1996)

Tabelle 3.6: Kinetische Daten der primären Pyrolyse

Die Schrumpfung von Partikeln ist ein in der Literatur leider schlecht dokumentiertes Phänomen. Es werden für gewöhnlich nur Zersetzungskinetiken publiziert, die der Art der Messung wegen, meist nur die Massenabnahme über die Zeit abbilden. Letztendlich ist es aber die Partikeldichte und nicht nur die Masse eines Partikels, welche maßgeblichen Einfluss auf das Fluidisierungsverhalten der Partikel
3.2 Die Festphase

<table>
<thead>
<tr>
<th>Gaskomponente</th>
<th>Massenanteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>0.27</td>
</tr>
<tr>
<td>CO₂</td>
<td>0.386</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.056</td>
</tr>
<tr>
<td>H₂</td>
<td>0.032</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.256</td>
</tr>
</tbody>
</table>

Tabelle 3.7: Massenanteile der bei der primären Pyrolyse entstehenden Gase nach Seebauer (1999)

<table>
<thead>
<tr>
<th>Teerkomponente</th>
<th>Massenanteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>0.327</td>
</tr>
<tr>
<td>Propanol</td>
<td>0.496</td>
</tr>
<tr>
<td>Benzol</td>
<td>0.177</td>
</tr>
</tbody>
</table>

Tabelle 3.8: Massenanteile am Gesamtteer der bei der primären Pyrolyse entstehenden Teerkomponenten nach Rath u. Staudinger (2001)

\[
V_{\text{Partikel}} = \eta V_{\text{Partikel,Holz}_0} + \frac{1}{3} (1 - \eta) V_{\text{Partikel,Holz}_0} \\
\eta = \frac{m_{\text{Holz}}}{m_{\text{Holz}_0}} \tag{3.44}
\]

Die Vergasung hingegen wird durch einen massenproportionalen Ansatz für die Schrumpfung beschrieben, was dem Gedanken folgt, dass während der Vergasung...
tendienziell eher Holzkohle der äußeren Schichten vergast wird und nicht homogen über das gesamte Partikelvolumen vergast wird.

Der Wärmeübergang an das Partikel wurde entsprechend den Darstellung in der Arbeit von Zhou u. a. (2004b) wie folgt modelliert:

\[
\alpha_{\text{Newton}} = 2\varepsilon + 0.69 Re_P^{\frac{1}{2}} Pr^{\frac{1}{3}},
\] (3.45)

wobei die Reynoldszahl \(Re_P \) als

\[
Re_P = \frac{\varepsilon d_P |u - u_P|}{\nu_F}
\] (3.46)

\[
\frac{1}{\alpha} = \frac{1}{\alpha_{\text{Newton}}} + \frac{d_P}{4\pi\lambda_P}
\] (3.47)

Wie man deutlich in Abbildung 3.6 sieht, wird durch die Korrektur des äußeren Wärmeübergangskoeffizienten nach Gleichung (3.47) die integrale Mitteltemperatur
Die Festphase

Abbildung 3.6: Vergleich der zeitlichen Temperaturentwicklung mit Hilfe verschiedener Modelle, $d_p = 4$ mm, $c_p = 1700$ J/kgK, $\rho = 700$ kg/m³, $\alpha = 200$ W/m²K, $\lambda = 0.1$ W/mK, 300 K Anfangstemperatur, 1000 K Umgebungstemperatur

des Partikels deutlich besser beschrieben als mit dem einfachen nulldimensionalen Modell. Die Kerntemperatur des Partikels hingegen wird weiterhin nur unzureichend beschrieben, was allerdings aufgrund des für die numerische Auflösung des Partikels notwendigen Rechenaufwandes nicht weiter betrachtet wird. Der Vorteil in Gleichung (3.47) liegt gerade darin, dass wie bei einem einfachen nulldimensionalen Partikelmodell nur eine Gleichung für die Partikeltemperatur gebraucht wird.

Die Wärmeleitfähigkeit des Partikels in Gleichung (3.47) wird als umsatzgewichtete Mischung der Wärmeleitfähigkeiten von Holz und Holzkohle berechnet:

$$\lambda_P = \eta \lambda_{Holz} + (1 - \eta) \lambda_{Holzkohle} \quad \eta = \frac{m_{Holz}}{m_{Holz,0}},$$

wobei $m_{Holz,0}$ die Anfangsmasse des Holzes im betrachteten Partikel ist. Die Wärmeleitfähigkeiten von Holz (λ_{Holz}) und Holzkohle ($\lambda_{Holzkohle}$) werden als feste, temperaturunabhängige Werte angenommen und haben entsprechend den Darstellungen.
aus der Arbeit von Grønli (1996) eine Höhe von 0.35 W/mK und 0.1 W/mK. Der Wassergehalt des Partikels und die Wärmestrahlung innerhalb des Partikels werden bei der Berechnung der partikelinternen Wärmeleitfähigkeit nicht berücksichtigt.

3.2.8 Integration des Partikelmodells

3.3 Mapping Algorithmen zwischen den Phasen

Als Mapping zwischen den Phasen wird der Algorithmus bezeichnet, der zum einen die Interpolation der Fluiddaten auf die Partikelposition vornimmt und zum zweiten die Partikeldaten wieder auf das Fluidfeld projiziert.
3.3.1 Euler → Lagrange Mapping

Im ersten Fall werden Daten wie die Geschwindigkeit, die Temperatur etc. während der Berechnung der Trajektorie eines Partikels zum Beispiel zur Auswertung der Gleichungen (3.10) und (3.36) benötigt. Der Algorithmus ist also maßgeblich dafür verantwortlich, welche Bedingungen das Partikel während eines Zeitraumes spürt. Es stehen Ansätze verschiedener Güte zur Verfügung, die hier kurz dargestellt werden sollen.

Ein Ansatz, der auch in dieser Arbeit Anwendung findet, bestimmt den Wert der zu interpolierenden Fluiddaten innerhalb einer Gebietszelle aus einem gewichteten Mittel der Werte der Nachbarzellen:

\[
\phi(x) = \frac{1}{\sum_i \gamma_i} \sum_i (\gamma_i \phi_i) \quad \gamma_i = \frac{1}{\max(\delta, |x - c|)},
\]

wobei \(\phi(x)\) für die interpolierte Größe in Abhängigkeit vom Mittelpunkt \(x\) des Partikels, \(i\) für den Index der Nachbarzellen (inklusive der Zelle, die das Partikel beherbergt), \(\delta\) für eine kleine Zahl, die die Division durch Null verhindern soll, und \(c\) für die Zellzentren der Zellen steht, an denen die Größen \(\phi\) gespeichert werden. Dieser
Ansatz ist ebenfalls in [Nordin (2001)] dokumentiert. Dabei werden die Fluiddaten wiederum am Mittelpunkt des Partikels interpoliert, jedoch als Mittel der naheliegenden Zellwerte. Der Ansatz liefert zwar ein unstetiges Feld von Fluiddaten an den Gebietszellengrenzen, aber die oben genannten Probleme treten nicht bzw. nur abgeschwächt auf.

![Diagram](image)

Abbildung 3.7: Partikel in einer Zelle mit ähnlicher Ausdehnung (die Punkte P₁ bis P₄ sind beispielhaft für eine verbesserte Interpolation auf der Partikeloberfläche anstelle des Partikelmittelpunktes gewählt worden)

Der im Verhältnis zur Gitterweite relativ große Partikeldurchmesser verursacht bzgl. der Interpolation ein weiteres Problem, dessen Einfluss auf die Modellgenauigkeit auch in der Literatur nicht dokumentiert ist. Die größten im System befindlichen Partikel haben einen Durchmesser der häufig der Hälfte bzw. einem Drittel der Zellausdehnung entspricht, womit der Radius zwischen einem Viertel bzw. einem Sechstel der Zellausdehnung liegt und somit in der selben Größenordnung wie die Zellausdehnung selbst ist. Der Fehler von Interpolationsverfahren skaliert ebenfalls mit einer Potenz der Gitterweite (je nach Verfahren). Somit ist die Annahme, den Partikelmittelpunkt als Referenzort für die Fluideigenschaften zu verwenden, interpolatorisch mit einem Fehler gleicher Größenordnung behaftet, denn die exakten Fluiddaten auf der Partikeloberfläche ergeben sich aus den integralen Mittelwerten

\[
\phi = \frac{\phi_{P_1} + \phi_{P_2} + \phi_{P_3} + \phi_{P_4}}{4}
\]

3.3.2 Lagrange → Euler Mapping

Das Mapping der Partikeldaten auf das zugrundeliegende Fluidgitter ist ungleich schwerer dem obigen inversen Problem, da erstmals die Infrastruktur von OpenFOAM diesbezüglich deutlich schlechter ausgebaut ist (Standard-OpenFOAM-Löser
3.3 Mapping Algorithmen zwischen den Phasen

vernachlässigten in den momentan vorliegenden Versionen den Volumenanteil der Lagrange’schen Partikel, es ergibt sich also mehr Implementationsaufwand) und zweitens die benötigten Ergebnisse eines Mappings materieller Partikeldaten auf ein Gebiet gewisse Eigenschaften der sich ergebenden Felddaten implizieren (Stetigkeit, Beschränktheit der zeitlichen Änderungen dieser Felder etc.). Das Interpolieren von Felddaten auf der Partikeloberfläche ist nur rechenaufwändig, wohingegen der hier diskutierte Rückweg diverse Probleme mit sich bringt, wie im Weiteren gezeigt wird. Auch in der Literatur ist dieses Problem deutlich weniger dokumentiert als das inverse Mapping, da für eine große Zahl von Anwendungen (Spray’s, molekular-dynamische Simulationen etc.) die Partikelgröße häufig sehr klein im Verhältnis zur Zellgröße ist und somit ohnehin meist mit repräsentativen Konzepten gearbeitet wird. Dadurch wird der Einfluss der Partikelgröße auf die netto in einer Zelle auftretenden Quellterme meist sehr klein.

In der hier vorgestellten Arbeit sind einzelne Partikel potentiell so groß, dass ein Aufteilen des Partikelvolumens eines Partikels auf verschiedene Zellen zwingend notwendig ist. Dies ergibt sich aus mehreren Gründen, die hier näher erläutert werden.

Insbesondere die Volumenfraktion der Festphase (und damit auch der Fluidphase) kann zu extrem großen zeitlichen Sprüngen neigen, wenn man nicht spezielle Maßnahmen ergreift, um dies zu verhindern. Angenommen, man verfolgt das ”Particle source in cell”-Konzept und berücksichtigt das Volumen des Partikels nur in der Zelle, in der der Mittelpunkt des Partikels gerade liegt, so wird ein Partikel, das sehr dicht vor dem Verlassen einer Zelle ist, seinen kompletten Volumenbeitrag nur dieser einen Zelle entziehen (obwohl wie oben dargelegt u.U. nur 12.5 % des Partikel tatsächlich in dieser Zelle sind). Im Fall des Übergangs des Partikelmittelpunktes in die Nachbarzelle wird dann schlagartig das komplette Partikelvolumen der neuen

Da, wie im Kapitel 4.1 dargestellt, die Kopplung der Phasen nicht iterativ gestaltet ist, richtet sich der Massenfluss in ganz wesentlichen Teilen nach der Änderungsrate der Volumenanteile. Eine zu abrupte Änderung der Volumenanteile zieht dementsprechend einen lokal sehr großen Massenfluss nach sich, um die vom oben dargestellten Szenario betroffenen Gebietszellen mit Fluid aufzufüllen bzw. zu entleeren und damit die Massenbilanz zu erfüllen. Dieser Effekt ist schon in der Arbeit von Gerber (2006a,b) für eine zweiphasige Strömung mit einem dichtekonstanten Fluid klar ersichtlich. In der Literatur ist dieser Effekt nur sehr selten dokumentiert bzw. erwähnt (siehe z.B. Darmana u. a. (2006)).

Angenommen, die Geschwindigkeit des Fluids an einem Partikel wird über die Werte der Nachbarzellen und der Zelle interpoliert, die das Partikel beherbergt, so sind Situationen denkbar, bei denen die Partikelgeschwindigkeit gerade zwischen den Wer-

\[T_{i+1} \]
\[T_F \]
\[T_P \]
\[T_i \]

\[i \quad x_P \quad i+1 \]

\textbf{Abbildung 3.8:} Partikel mit der Temperatur \(T_P \) zwischen zwei Zellen \(i \) und \(i+1 \) mit den Temperaturen \(T_i \) und \(T_{i+1} \) (\(T_F \) ist die am Partikelort \(x_P \) interpolierte Fluidtemperatur)
Ein ähnliches Problem wird auch für die Temperatur in der Arbeit von Nordin (2001) dargestellt und soll hier ebenfalls dargelegt werden. Wiederum wird eine Situation angenommen, in der zwei Zellen Temperaturen an ihren Zellzentren haben, die jeweils größer bzw. kleiner als die Temperatur des Partikels sind und aus denen eine interpolierte Fluidtemperatur hervorgeht, die oberhalb der Partikeltemperatur liegt. Das Partikel würde also wärmer werden und den damit verbundenen Wärmestrom den beiden Zellen (angenommen man verteilt den entstehenden Quellterm) entziehen. Dies führt dann für die kältere Gebietszelle zu einem direkten Verstoß gegen den zweiten Hauptsatz der Thermodynamik, da Wärme in diesem Fall offensichtlich vom kälteren Körper zum wärmeren fließen würde. Die hier diskutierte Situation wird in Abbildung 3.8 veranschaulicht, wobei T_P die Partikeltemperatur kennzeichnet, T_F die am Partikelort interpolierte Fluidtemperatur und T_i und T_{i+1} die Fluidtemperaturen in den Zellen i und $i+1$.

Auch bzgl. der Spezies ergibt sich ein ähnliches Bild, da im Fall heterogener Reaktionen auf der Partikeloberfläche (z.B. Vergasungsreaktionen) der Gasphase die Edukte dieser Reaktionen entzogen werden und die Produkte zugeführt werden müssen. Dabei kann die Situation entstehen, in der eine Gebietszelle kein Edukt enthält, jedoch der interpolierte Wert dieses Eduktes im Partikelzentrum ungleich Null ist, da eine (mehrere) Nachbarzelle(n) dieses Edukt enthalten. Folglich würde die Vergasungsreaktion dieses Edukt verbrauchen und den damit entstehenden Massenfluss zumindest teilweise aus der Zelle beziehen, die dieses Edukt gerade nicht mehr enthält. Man würde also de facto eine Komponente umsetzen, die lokal nicht vorhanden ist. Die Pyrolyse spielt in dieser Betrachtung eine untergeordnete Rolle, da dabei hauptsächlich Material vom Partikel in die Gasphase übergeht und nicht umgekehrt (ähnlich wie bei einem Dieselspray).

Die hier dargestellten Probleme der Interpolation innerhalb einer reaktiven zweiphasigen Strömung sind allesamt durch Verwenden des Wertes der Zelle, die den Mittelpunkt eines Partikels enthält, gelöst. Leider bringt dieser Ansatz relativ große Interpolationsfehler mit sich (siehe oben).
3.3.3 Mapping Algorithmen dieser Arbeit

Die exakte Aufteilung der Kugel ist zumindest für den dreidimensionalen Fall recht aufwändig (siehe Wu u. a. (2009)) aber für den zweidimensionalen Fall durchaus praktikabel (siehe Uhl (1999)). Die Approximation einer Kugel durch einen volumengleichen Würfel vereinfacht nicht nur die Berechnung der Volumenanteile in Bezug auf die formelmäßige Auswertung, sondern auch bzgl. der betroffenen Zellen. Es sind Situationen denkbar auf einem kartesischen Gitter, in der die Kugel Volumenanteile in einer Zelle hat, die nicht von der Würfelapproximation betroffen ist und der somit in dieser Arbeit kein Volumenanteil zugeordnet wird.

Abbildung 3.9: Volumenverteilung eines kugelförmigen Partikels anhand eines volumengleichen Würfels
Ein bei zweidimensionalen Euler-Lagrange-Simulationen inhärentes Problem ist die Frage nach der Berücksichtigung dreidimensionaler Körper in einer zweidimensionalen Strömung. Die Unterschiede werden klar, wenn man die dichteste Packung von Kugeln in einem Volumen vergleicht mit der dichtesten Packung von Kreisen in einer Fläche (für monodisperse Systeme). Im ersteren Fall beträgt der größtmögliche Volumenanteil der Kugeln \(\frac{\pi}{\sqrt{18}} \), also ungefähr 0.74. Dies ist ein Mittelwert, welcher lokal, je nach Aufteilung des Gebietes, übertroffen werden kann. Die dichteste Packung von Kreisen in einer Fläche beträgt \(\frac{\pi}{\sqrt{12}} \), also ungefähr 0.91. Nimmt man an, dass diese beiden dichtesten Packungen einander zuzuordnen sind und das nicht Vorhandensein der festen Phase im Zweidimensionalen auch selbiges im Dreidimensionalen bedeutet, ergibt sich die in der Arbeit von Hoomans u. a. (1996) publizierte Gleichung (3.51), die auch dieser Arbeit, trotz der Polydispersität der Festphase verwendet wurde.

\[
\alpha_{3D} = 1 - \frac{2}{\sqrt{\pi \sqrt{3}}} \cdot (1 - \alpha_{2D})^3
\]

(3.51)

In OpenFOAM werden zweidimensionale Gebiete so behandelt, als handele es sich um dreidimensionale mit einer Gebietszelle in Tiefenrichtung. Korrigiert man die Volumenfraktionen nicht mit Gleichung (3.51), so ergeben sich zu kleine Volumenanteile der Partikelphase und das Wirbelbett fluidisiert nicht bei den entsprechenden Gasgeschwindigkeiten. Eine ähnliche Umrechnung müsste auch für die anderen volumenbezogenen Quellterme der festen Phase berücksichtigt werden, jedoch gibt es in der Literatur darüber keine Aussagen und so wurde in dieser Arbeit nur die Volumenfraktion selbst korrigiert. Die Interpolation der Fluidgrößen am Ort des Partikelmittelpunktes wurde wie in Kapitel 3.3.1 dargelegt bewerkstelligt.
Euler-Lagrange-Simulation

4.1 Programmablauf

Das Einfügen der Partikel bei einem Neustart ist relativ aufwändig, da der Ort der Partikel nicht beliebig frei gewählt werden kann. So sollten die Partikel mit einem Mindestabstand zueinander aber auch zu den Berandungen der Geometrie versehen werden, damit der Kollisionsalgorithmus (siehe Kapitel [3.2.3]) nicht unrealistisch große Überlappungen der Partikel mit anderen Partikeln bzw. Geometriewänden detektiert und damit dann entsprechend große resultierende Kräfte entstehen, die unter Umständen deutlich kleinere Zeitschritte erfordern, als für die Simulation eigentlich angedacht. Es ist also darauf zu achten, dass die initialen Partikelpositionen physikalisch sinnvoll sind, d. h. das beispielsweise die initialen Partikelpositionen so gewählt werden sollten, dass sich keine Partikelüberlappungen ergeben.
Einlesen der Anfangs- und Randbedingungen sowie der Geometriedaten

Aufbau der Infrastruktur für die Partikelkollisionen, der Partikelvolumenverteilung und ggf. der Infrastruktur für parallele Simulationen

Initialisierung der Anfangsbedingungen der Partikel (Masse, Durchmesser etc.)

\[\text{while } (t < t_{\text{Ende}}) \]

Integration der Partikeltrajektorien und des Partikelabbrandes

Berechnung der Quellterme der homogenen chemischen Reaktionen

PISO-Schleife zur Berechnung der Energie-, Impuls-, Spezies- und Massenbilanz der Fluids

Speichern der berechneten Partikel- und Fluiddaten

Ende der Simulation

\textit{Abbildung 4.1: Ablauf des Hauptprogramms}

Nachdem alle Größen initialisiert worden sind, beginnt die eigentliche Simulation, welche den Ablauf der Geschehens in der Wirbelschicht vom Anfangszeitpunkt bis zum Simulationsende mit einem konstanten Zeitschritt $\Delta t_Feldgleichungen$ berechnet. Für jeden Zeitschritt $\Delta t_Feldgleichungen$ wird zuerst die Partikelbewegung bzw. der Partikelabbrand berechnet, dann die Feldgleichungen der fluiden Phase gelöst und zuletzt werden die berechneten Daten gespeichert. Die Unterteilung in Partikelbewegung bzw. Partikelabbrand und der Berechnung der Fluidfeldgleichungen impliziert ein zeitliches Splitting dieser beiden Prozesse. Das Splitting ist erster Ordnung bzgl. der zeitlichen Schrittweite $\Delta t_Feldgleichungen$. Die Berechnung der Fluidfeldgleichungen unterteilt sich gemäß Abbildung 4.1 in die Berechnung der homogenen Gasphasen-
Die homogenen Gasphasenreaktionen werden wiederum mit einem zeitlichen Splitting erster Ordnung bzgl. des Zeitschrittes $\Delta t_{\text{Feldgleichungen}}$ getrennt von den eigentlichen Bilanzgleichungen gelöst. Der Zeitschritt dieser getrennten Integration richtet sich nur nach den vorgegebenen Toleranzen und ist damit unabhängig vom Zeitschritt $\Delta t_{\text{Feldgleichungen}}$. Nachdem alle Zeitschritte $\Delta t_{\text{Feldgleichungen}}$ berechnet wurden, endet die Simulation.

Der zeitliche Aufbau der Partikelbewegung bzw. des Partikelabbrandes wird in Abbildung 4.2 verdeutlicht. Zunächst werden die Datenstrukturen initialisiert, die die Quellterme der festen Phase aufnehmen sollen. Der Zeitschritt der Partikelbewegung $\Delta t_{\text{Partikelbewegung}}$ ist typischer Weise nicht identisch mit dem Zeitschritt der Feldgleichungen $\Delta t_{\text{Feldgleichungen}}$, sondern nur ein Bruchteil davon. In dieser Arbeit wurde der Zeitschritt der Partikelbewegung $\Delta t_{\text{Partikelbewegung}}$ immer als ein Drittel des Zeitschrittes $\Delta t_{\text{Feldgleichungen}}$ angenommen, so dass pro Zeitschritt der Feldgleichungsberechnung drei gleichgroße Zeitschritte der Partikelbewegung berechnet werden. Nach jedem einzelnen Zeitschritt $\Delta t_{\text{Partikelbewegung}}$ wird, wie in Abbildung 4.2
dargestellt, eine Kollisionsüberprüfung durchgeführt. Diese Maßnahme garantiert eine enge Kopplung des Kollisionsmodells an die Partikelbewegung und garantiert die für die Partikelkollisionen notwendigen kleinen Zeitschritte, ohne die Berechnung der fluiden Phase unnötig aufwändig zu machen. Alle Partikel in einem Rechengebiet werden innerhalb eines Zeitschrittes der Partikelbewegung sequentiell abgearbeitet. Der Partikelabbrand wird mit dem in Kapitel 3.2.8 vorgestellten Verfahren durchgeführt, das wiederum einen eigenen durch Fehlertoleranzen beeinflussten Zeitschritt verwendet. Die Partikel bewegen sich auf stationären Feldern der fluiden Phase für die Temperatur, die Dichte, die Geschwindigkeit, den Druck und den Volumenanteil.

Während der Bewegung der Partikel werden jedoch die eben genannten stationären Felder durch die in den Zellen registrierten Quellterme der Partikel korrigiert, um zu garantieren, dass das i-te bewegte Partikel in einer Zelle anhand der Bedingungen in der Zelle spürt, dass bereits i-1 Partikel in der Zelle bewegt wurden (die Korrektur wird nur für die Spezies und die Temperatur durchgeführt).

Die in Abbildung 4.2 genannte Kollisionsüberprüfung besteht aus zwei Teilen. Zum einen müssen potentielle Kollisionspartner gefunden werden und zum anderen die Kollisionen berechnet werden. Die Berechnung der Kollisionen ist in Kapitel 3.2.3 dokumentiert. In dieser Stelle soll auf das eigentliche Suchverfahren eingegangen werden. Generell kann ein Partikel \(n \) in einer Zelle \(z \) mit allen anderen Partikeln dieser Zelle und den Partikel der direkten Nachbarzellen kollidieren. Im Zweidimensionalen (auf kartesischen Gittern) kommen damit acht Nachbarzellen in Betracht, die potentielle Kollisionspartner des Partikels \(n \) beherbergen können. Wird die Suche nach Kollisionspartner so durchgeführt, dass zellweise das Gebiet durchlaufen wird, kann man die Nachbarschaftsbeziehungen der Zellen, wie in Abbildung 4.7 gezeigt, vereinfachen. Es müssen de facto pro Zelle nur vier Nachbarzellen mit den darin enthaltenen Partikeln bzgl. eines Kollisionsvorfalls überprüft werden, was den Aufwand fast halbiert (der Suchaufwand innerhalb einer Zelle bleibt davon natürlich unberührt).
Der Ablauf der Kollisionssuche für eine Zelle ist in Abbildung 4.3 verdeutlicht. Für alle Partikel einer Zelle wird zum einen nach potentiellen Kollisionspartnern in der betreffenden Zelle selbst gesucht und zum anderen in den vier Nachbarzellen. Die richtigen Nachbarzellen werden durch die in Abbildung 4.1 gezeigte und zu Beginn der Simulation erstellte Infrastruktur bereitgestellt.

Abbildung 4.3: Ablauf der Suche nach Kollisionspartnern

4.2 Parallelisierung

Partikelbewegung beteiligten Prozessoren arbeiten auf dem selben globalen Rechengebiet. Die eigentliche Parallelisierung findet nur auf Ebene der Berechnung der Partikelbewegung statt. Die Partikel, die einem bestimmten Prozessor zugeordnet sind, können sich beliebig im gesamten Rechengebiet bewegen ohne den zugeordneten Prozessor wechseln zu müssen, da alle Prozessoren Zugriff auf die globalen Felddaten haben. Das Bereitstellen der globalen Felddaten für jeden Prozessor ist zum Beispiel bei großen Rechengebieten mit vielen Recheneinheiten und Felddaten eine sehr speicherintensive wenn überhaupt mögliche Situation, was diese Methode einschränkt.

In Frank (2002) wird jedoch die Rechengebietsverteilung für die Feldgleichungen als generell statisch angenommen, da es sich hier um über die Rechenzeit konstante Belastungen handelt, welche sehr gut zu Beginn der Simulation gleichmäßig aufgeteilt werden können. Generell sind natürlich auch Fälle möglich bei denen die Lastanteile eines Prozessors zum Beispiel durch bewegte Gitter und /oder adaptive Gitterveränderung variieren und sich somit auch für die Domain Decomposition der Feldgleichungen ein dynamisches Aufteilen des Rechengebietes anbieten würde. Diese Aspekte werden in der hier vorliegenden Arbeit nicht näher betrachtet.

SSD und DDD Methoden in der Arbeit von Frank (2002) sind Methoden bei denen nur die Partikellast entweder statisch oder dynamisch verteilt wird. SSD Metho-

Darmana u.a. (2006) zeigt eine mit der "mirror domain technique" parallelisierte Applikation zur Modellierung von Blasenströmungen. Dabei werden ca. 10^5 Partikel auf einem Gitter von ca. 65 000 Zellen betrachtet und die Ergebnisse unter anderem
Kapitel 4 Euler-Lagrange-Simulation

bzgl. der parallelen Effizienz analysiert. Es ergeben sich parallele Effizienzen über 0.6 bei bis zu 32 Prozessoren (der Speedup ist dann bei ca. 20). Weiterhin werden die Abhängigkeiten diverser Größen (Sauterdurchmesser, Schwankungsgeschwindigkeiten etc.) von der Blasenkoaleszenz untersucht. Das Verfahren ähnelt stark dem Quasi-Seriellen Verfahren aus Frank (2002).

Im Folgenden werden die Arbeiten an der Parallelisierung des bestehenden Verfahrens dokumentiert. Die Darstellung hier sollen sich auf die softwareseitige Parallelisierung von (gekoppelten) Feldgleichungssystemen und der Parallelisierung der Partikelbewegung und des Partikelabbrandes (im weitesten Sinn) beschränken.

OpenFOAM bietet zu diesem Zwecke vollständig parallelisierte Löser für verschiedenartige Feldgleichungsprobleme nach dem Prinzip der statischen Domain Decomposition (s.o.). Die Randbedingungen dieser Teilstücke können zum einen aus wirklichen Randbedingungen des ursprünglich betrachteten unaufgeteilten Problems resultieren oder zum anderen durch die Aufteilung des Gebietes im Zuge der Parallelisierung entstehen. Im zweiten Fall sind die Randwerte nur implizit über die Lösung der Nachbargebiete gegeben, welche ihrerseits die entsprechende inverse Abhängigkeit aufweisen. Um die Werte dieser virtuellen Ränder zwischen den Teilgebieten auszutauschen, muss eine Kommunikationsinfrastruktur bereitgestellt werden, die dies leisten kann. OpenFOAM bietet auch hier eine C++ Bibliothek (libPstream, im Weiteren nur Pstream), die diese Kommunikation bewerkstellt.

 Kompassnotation, welche es erlaubt, mit Hilfe eines Zellindexes (in Abbildung 4.4(a) entsprechend die mittlere Zelle) die Indexe der Nachbarzellen zu erhalten. Da es sich bei OpenFOAM um eine auf unstrukturierten Gittern basierende Bibliothek handelt, sind entsprechende Nachbarschaftsbeziehungen nur implizit über die Datenstrukturen des Gitters selbst gegeben. Im Zuge der Arbeit wurden Datenstrukturen erstellt (für jede Gebietszelle), die ein Zugriff ähnlich zur Kompassnotation ermöglichen.
Kapitel 4 Euler-Lagrange-Simulation

(a) Beispiel einer Nachbarschaftsbeziehung aus mehr als zwei Prozessoren (gleich-schraffierte Zellen sehen sich nicht)

(b) Nachbarschaftsbeziehung über eine Prozessorgrenze (die unterlegten, nicht schraffierten Zellen sehen sich nicht)

Abbildung 4.6: Mögliche Gebietsaufteilung die in dieser Arbeit nicht abgebildet werden können (die dicken schwarzen Linien sind Gebietsgrenzen des zerlegten Gitters)

Parallelisierung des deterministischen Kollisionsmodells

Abbildung 4.7: Darstellung der vereinfachten Zell-Nachbarschaftsbeziehungen für die Kollisionsüberprüfung
Das seriell implementierte Kollisionsmodell ist im Kapitel 3.2.3 beschrieben und bietet die Basis der Parallelisierung. Dabei werden in einer seriellen Rechnung zuerst die Partikel den Zellen zugeordnet und dann wird zellbasiert die Suche nach potentiellen Kollisionspartnern begonnen. Kollisionspartner können zum einen in der betrachteten Zelle selbst liegen oder zum anderen in den betroffenen Nachbarzellen (siehe Abbildung 4.7). Die Parallelisierung erweitert dieses Bild um die in Abbildung 4.8 dargestellten Punkte, die ein Senden bzw. Empfangen oder das Berechnen der Kollisionen über die Gebietsgrenzen hinweg beinhalten. Die anfängliche Zuordnung der Partikel zu den Zellen wird im Vergleich zum seriellen Algorithmus um eine Zuordnung der Partikel zu den Randzellen der Nachbargebiete erweitert. Im seriellen Fall ist dies einfach eine Datenstruktur mit dem Index der lokalen Zellen, die entsprechend die Partikel bzw. Zeiger auf die Partikel aufnimmt. Im parallelen Fall werden zusätzlich entsprechend der Anzahl angrenzender Teilgebiete Listen eröffnet, die für die Kollisionsberechnung notwendigen Partikeldaten (Masse, Geschwindigkeit,
Rotationsgeschwindigkeit und Ort eines Partikels) aufnehmen. Anschließend wer-
den diese Daten dem entsprechenden Prozessor zugesandt. Dabei werden, entgegen
dem Vorgehen bei der seriellen Simulation, von beiden Seiten einer Prozessorgren-
ze die Partikeldaten versandt und damit das Rücksenden der Partikeldaten nach
Ausführung der Kollision vermieden. Die versandten Datenstrukturen mit den dar-
in enthaltenen Partikeldaten können nach der Kollisionsberechnung verworfen wer-
den. Nachdem die Partikeldaten den entsprechenden Prozessoren zugesandt wurden,
 wird wie im seriellen Fall auch, innerhalb eines Teilgebietes nach Kollisionspartnern
(Partikel-Partikel und Partikel-Wand) gesucht und die Kollision ggf. berechnet.

Im seriellen Fall ist an dieser Stelle der Algorithmus zur Berechnung der Kollisionen
zu Ende und es folgen die entsprechend nächsten Schritte des Programmablaufs,
wie in Abbildung 4.1 und 4.2 dargestellt. Im parallelen Fall werden die Daten von
den jeweiligen Nachbarprozessoren empfangen, einer Suche nach Kollisionspartnern
unterzogen (nur in den betroffenen Randzellen des Empfängerprozessors) und ggf.
folgt dann die Kollisionsberechnung. Der Ablauf des hier dokumentierten Vorgehens
ist in Abbildung 4.3 veranschaulicht.

Die Trennung des Sendens und Empfangens von Partikeldaten über die Prozessorgren-
zen hinweg garantiert hier einen möglichst zeitsparenden Ablauf des parallelisi-
sierten Programms. Trotz der umfangreichen Arbeiten an der Parallelisierung der
Kollisionen gibt es Situationen, die durch den beschriebenen Ablauf nicht abgebil-
det werden können. So kann es vorkommen, dass bei der Aufteilung des globalen
Rechengebietes, Prozessorgrenzen entstehen, die trotz des verwendeten kartesischen
Gitters nicht geradlinig sind, sondern einzelne Knicke aufweisen (siehe Abbildung
4.6(b)). In diesen Fällen kommt es zu nicht berücksichtigten Zellen, da diese keinen
flächigen Kontakt zur Prozessorgrenze haben und somit nicht erfasst worden sind.
Dies liegt im Wesentlichen daran, dass nach der Zerlegung des Gitters die einzel-
nen Prozessoren nur Informationen bzgl. der Geometrie des Gitters haben, die zu
ihrem lokalen Teilstück gehören. Ansonsten kennt jeder Prozessor nur die direkten
flächigen Nachbarzellen der Nachbargebiete an die er grenzt, so dass Zellen, die die
Prozessorgrenze nur punktuell berühren, nicht erfasst werden. Diese Situation muss
entsprechend umgangen werden, indem die Aufteilung so vorgenommen wird, dass geradlinige Prozessorgrenzen entstehen.

Eine andere Situation, die mit dem bestehenden Algorithmus nicht abgebildet werden kann, ist das Aufeinandertreffen von mehr als zwei Prozessorteilgebieten in einem Punkt (siehe Abbildung 4.6(a)). Dabei tritt ein Problem ähnlich dem weiter oben dokumentierten auf. In den einzelnen Teilgebieten liegen wiederum nur Informationen über die Indizes flächer Nachbarzellen der angrenzenden Prozessorgebiete vor, jedoch fehlen in diesem Fall nicht nur die Indizes der Zellen, die die Prozessorgrenze nur punktuell berühren, sondern auch die Index der Prozessoren, die an diesem Punkt nur punktuell zusammentreffen - es sind einem Prozessor nur die Prozessoren via Index bekannt mit denen ein flächer Kontakt besteht. In der vorliegenden Arbeit wurde das Gebiet entsprechend so eingeteilt, das diese Situation zumindest in dem für die Partikel relevanten Gitteranteil nicht auftritt (das Gebiet wurde nur in eine Raumrichtung zerlegt, siehe Abbildung 4.9).

Ein Nachteil, den auch der serielle Algorithmus hat, stellt sich in der parallelen Version als unter Umständen zusätzlich verlangsamend heraus. Alle wesentlichen Informationen der Partikel einer Randzelle, die eine Prozessorgrenze flachig berührt, werden über die Prozessorgrenze hinweg versandt, was bei kleinen grob diskretisierten Gebieten dazu führt, dass unter Umständen alle Partikel in Randzellen liegen und damit betroffen sind. Hier könnte man in weitergehenden Arbeiten nur randnahe Partikel der betrof-
fenen Randzelle versenden, was erstens die zu versendende Datenmenge verkleinert und zweitens die Suche nach Kollisionspartnern über die Prozessorgrenzen hinweg verkürzt.

Parallele Verteilung der Partikelvolumina

Die Verteilung eines Partikels auf Basis seines Volumens über mehrere Zellen wurde bereits im Kapitel 3.3 beschrieben. Hier soll zusätzlich auf die Problematik des Verteilens über Prozessorgrenzen hinweg eingegangen werden.

Um die im parallelen Fall ablaufenden Berechnungen der Volumenverteilung möglicherst einfach zu halten, werden die gleichen Berechnungen wie im seriellen Fall durchgeführt, jedoch wird zusätzlich mit einem Flag bzw. dessen Differenz zu eins entsprechend der Abbildung 4.5(a) multipliziert. Notwendiger Weise ergeben sich hier zwei Felder für die lokale Volumenverteilung eines Partikels - eines für die betroffenen Zellen innerhalb des lokalen Gitters und eines für die parallele Berechnung. Die Felder für die parallele Berechnung können, bedingt durch den Flag, nur im Fall der Nachbarschaft zu einer Zelle, die nicht im lokalen Teilgebiet liegt, beschrieben werden.

Um letztendlich auch zu wissen, welcher Nachbarprozessor welche Information erhalten soll, wird zusätzlich die in Abbildung 4.5(b) gezeigte Schablone verwendet. Diese enthält die Indexe der Prozessoren, denen die Zellen der fremden Nachbargebiete zugeordnet werden können.

Zusammenfassend zeigen die Abbildungen 4.4 bis 4.5 eine Situation, in der alle nördlichen Zellen außerhalb des Gebietes liegen, alle östlichen Zellen - bis auf die nordöstliche - dem Prozessor mit dem Index "zwei" gehören.

Parallelisierung einer Euler-Lagrange-Simulation

OpenFOAM bietet, wie bereits erwähnt, eine volle Parallelisierung bestehender Feldgleichungsprobleme, was jedoch keineswegs zu der Annahme führen sollte, dass das Erstellen einer parallelen Applikation basierend auf einer vorhandenen funktionsfähigen seriellen Applikation eine Selbstverständlichkeit ist. Die obig dokumen-
tierten Maßnahmen zur Parallelisierung der Partikelbewegung zeigen, dass es recht
aufwändig sein kann, serielle Applikationen in parallele zu überführen - nicht zuletzt
durch die Mehrphasigkeit bedingt.

Der Ablauf zum Ausführen einer lauffähigen parallelen Simulation in OpenFOAM
Parameter (Zahl der Prozessoren, Art der Aufteilung etc.) in einer Datei namens "de-
composeParDict" festgelegt. Danach kann mit dem Programm "decomposePar" der
zu berechnende Fall in seine Teilgebiete zerlegt werden und mit einem entsprechen-
den MPI-Aufruf die Simulation gestartet werden. Nach Beendigung der Simulation
wird mit dem Programm "reconstructPar" das Rechengebiet wieder zusammenge-
setzt und die Daten können visualisiert bzw. ausgewertet werden.

Leider führte dieser Ablauf zu starken Konvergenzproblemen während der Simulati-
on. Kern des Problems ist dabei die Berechnung der Temperatur aus der Gesamtent-
halpie mit Hilfe der Gaszusammensetzung und der entsprechenden Polynomansätze
für die Wärmekapazitäten der betroffenen Spezies. Die Lösung der nichtlinearen
Gleichung in der Temperatur wird durch ein Newton-Verfahren bewerkstelligt. Da-
bei ist es stetig zu Überschreitungen bzw. Unterschreitungen der Temperaturgren-
zen der Polynome der einzelnen Spezies gekommen und damit verbunden zu einem
Abbruch der Simulation. Da die Temperaturgrenzen der Polynome naturgemäß so
gewählt sind, dass sie für technische Probleme geeignet sind (meist zwischen 200
und 5000 Kelvin), stellt sich natürlich die Frage, wie es zu solchen Konvergenzpro-
blemen kommen kann. Bei systematischer Analyse des Problems stellte sich heraus,
dass es keine stetige Entwicklung zu außergewöhnlich hohen bzw. niedrigen Tempe-
raturen gibt, sondern eine abrupte Änderung der Temperatur. Dieses Problem ist
durchaus bekannt im Zusammenhang mit der Anwendung von OpenFOAM (sowohl
in seriellen als auch in parallelen Berechnungen), was auch als einer der Gründe
angesehen werden kann, dass in den folgenden Versionen von OpenFOAM das Ge-
samtenthalpiemodell in ein thermisches Enthalpieproblem umformuliert wurde. Ob
sich mit dieser Änderung in der Formulierung der Ennergiebilanz auch die obigen
Probleme lösen lassen, wurde in der vorliegenden Arbeit nicht untersucht. Damit
bleibt hier festzuhalten, dass eine effiziente Parallelisierung der entstandenen seriel-
len Simulation auf Basis der standardmäßig in OpenFOAM verfügbaren Strukturen nicht innerhalb dieser Promotion realisiert werden konnte und deshalb eine neue Parallelisierungsstrategie entwickelt und implementiert werden mußte.

Da aber erhebliche Arbeitsanteile an die Parallelisierung geknüpft waren, soll hier zumindest auf die wesentlichen Ergebnisse der Parallelisierungsversuche eingegangen werden. Der wesentliche Punkt bei der Beurteilung der Effizienz der Parallelisierung ist das sogenannte Scaling, also die Frage um wieviel mal ein paralleler Gesamtprozess im Vergleich zum seriellen Prozess schneller wird, wenn man ihn mit n Prozessoren bearbeitet. Abgesehen von Sonderfällen kann ein lineares Scaling, also eine n-fache Beschleunigung bei n verwendeten Prozessoren, als theoretisches Maximum angesehen werden. Dies ist dann der Fall, wenn die Kommunikation zwischen den Prozessoren und die durch den parallelen Ablauf evtl. zusätzlich entstehenden Aufgaben einen mit variierender Prozessorzahl konstanten Zeitaufwand an der Gesamtrechenzeit haben.

Der Prozess des Masters muss zusätzlich geeignete Datenstrukturen erstellen, um im weiteren Verlauf der Simulation die Daten der Slaveprozessoren aufnehmen zu können. Zur Bewegung der Partikel müssen grundsätzlich jedem Prozess die Felder der Temperatur, der Spezies, der Dichte und des Volumenanteils der Gasphase auf seinem Gebiet zur Verfügung stehen. Aus diesem Grund werden, nachdem die Mappinginformation eingesammelt worden sind, vom Master die Felddaten den Prozessen übermittelt. Mit Hilfe dieser Daten können die einzelnen Prozesse die ihnen zugewiesenen Partikel bewegen und ggf. austauschen, nachdem sie mit Hilfe des Mapping die globalen Daten auf das betreffende Teilgitter übertragen haben. Nachdem ein Prozess die Bewegung der Partikel beendet hat, werden die aus der Partikelbewegung resultierenden Daten zum Masterprozess versandt. Die Daten bestehen aus den Quelltermen der Partikel für die Speziesgleichungen (und entsprechend in Summe
4.2 Parallelisierung

für die Gasdichte), die Energiebilanz, den neu berechneten Volumenanteilen der Gasphase und den Quelltermen für die Impulsbilanz auf den entsprechenden Teilgebieten der betrachteten Geometrie. Die einzelnen Quellterme werden vom Master empfangen, mit Hilfe der Mappinginformationen zum globalen Feld zusammengefasst und können dann zur Berechnung des Feldgleichungssystems verwendet werden. Nachdem alle Feldgleichungen berechnet worden sind, sendet der Masterprozess allen anderen Prozessen die entsprechenden Ergebnisse (wie zu Beginn der Simulation die Anfangsdaten).

Das Versenden der Daten kann auf verschiedenen Wegen erfolgen. Zum einen kann man dem Masterprozess vor dem Versenden der Daten das Mapping auf die lokalen Gitter der einzelnen Prozesse selbst vornehmen lassen oder aber man kann die globalen Daten versenden und das Mapping von den einzelnen Prozessen erledigen lassen. Selbiges gilt für die Quellterme der Partikelbewegung bzw. des Partikelabbrandes: man kann die einzelnen Prozesse sowohl ihre lokalen Daten versenden lassen und das Mapping dem Masterprozess überlassen oder aber alle Prozesse übernehmen das Mapping selbst und Versenden globale Felder für die Quellterme, die dann auf dem Master nur noch aufsummiert werden müssen.

Die Idee den Masterprozess auf einem kleineren Rechengebiet arbeiten zu lassen als die anderen Prozesse, um damit die Gesamtrechenzeit weiter zu reduzieren, ist nicht sinnvoll durchzuführen, da durch die Partikelbewegung im Wirbelbett die Partikelbelastung pro Prozess stark schwankt und damit mehr oder weniger unvorhersehbar ist, wie das Gebiet aufgeteilt sein müsste. Eine statische Aufteilung innerhalb des Domain Decomposition Verfahrens für die Partikel ist somit zumindest nicht optimal. Typische Strömungssituationen im Wirbelbett lassen es durchaus vorkommen, dass ein Prozess mehr als doppelt so viele Partikel bewegt wie andere Prozesse.

Bewertung der Parallelisierung

Um diese theoretischen Überlegungen mit Zahlen zu untermauern, werden im Folgenden die Abbildungen 4.10 und 4.11 erläutert. Es wurden Rechnungen über eine Sekunde Echtzeit mit 15 000, 30 000, 45 000 und 60 000 Partikeln durchgeführt. Die Anzahl der verwendeten Prozessoren wurden von eins bis sechs variiert. Es wurden keine Rechnungen mit fünf Prozessoren durchgeführt. Abbildung 4.10 zeigt den Speed-up der Simulation für verschiedene Partikelzahlen in Abhängigkeit der verwendeten Prozessoren. Es zeigt sich zum einen, dass der Speed-up mit zwei Prozessoren superlinear ist. Dieses Ergebnis war so nicht zu erwarten, da im Normalfall der
4.2 Parallelisierung

Speed-up maximal zwei betragen sollte. Ein superlineares Scaling kann nur durch Cache-Effekte der verwendeten Hardware entstehen. Mit höherer Partikelanzahl wird der superlineare Speed-up bei zwei Prozessoren kleiner, was ebenfalls die Abhängigkeit dieses Phänomens von der Hardware untermauert.

Anschließend an den superlinearen Bereich bricht der Speed-up unabhängig von der Partikelzahl ein (bei drei Prozessoren) und steigt danach wieder annähernd linear an. Die Zahl der berücksichtigten Partikel in der Wirbelschicht beeinflusst direkt den Speed-up, was sich gut an den Resultaten für sechs Prozessoren zeigen lässt. Je höher die Partikelzahl, desto höher ist auch der Speed-up. Dies ist insofern verständlich, als das der Rechenzeitanteil der nicht parallelisierten Programmenteile (z.B. Feldgleichungsberechnungen) mit zunehmender Partikelzahl kleiner wird. Der Speed-up bei sechs Prozessoren liegt zwischen 3.25 und 4.

Die parallele Effizienz der durchgeführten Rechnungen ist in Abbildung 4.11 aufgezeigt. Es zeigt sich, dass die Effizienz mit höherer Partikelzahl höher wird und generell um 0.6 liegt (Ausnahme bei zwei Prozessoren, s.o.). Die erreichten Werte sind vergleichbar mit denen der Literatur (siehe Frank (2002)). Resümierend lässt sich festhalten, dass ohne die vorgenommene Parallelisierung die Berechnungen des Kapitels 5 zeitlich deutlich aufwändiger gewesen wären und somit der Zweck der Parallelisierung erfüllt wurde.
Abbildung 4.10: Speed-up der Simulation für verschiedene Partikelzahlen

Abbildung 4.11: Parallele Effizienz der Simulation für verschiedene Partikelzahlen
Kapitel 5

Simulationsergebnisse

5.1 Rechengebiet

Der in Abbildung 5.1(a) gezeigte Stutzen der Brennstoffzuführung ist am realen Reaktor zum Teil mit einer Förderschnecke ausgefüllt und wurde daher, wie in Abbildung 5.1(b) zu sehen, in der diskretisierten Reaktorgeometrie nicht berücksichtigt. Das Rechengebiet wird in 1762 (Fälle 1-6) bzw. 2034 (Fälle 7-14) kartesische Zellen eingeteilt und ist für den ersten Fall in Abbildung 5.1(b) dargestellt. Der untere Teil des Reactors wird annähernd äquidistant diskretisiert, wobei der obere rechte am Gasauslass liegende Teil des Rechengebietes zur Wand hin kleinere Zellen aufweist. Der Grund liegt größtenteils darin, dass die Zwischenergebnisse der
(a) Schema der Laboranlage
(b) Diskretisiertes Rechengebiet
während dieser Arbeit durchgeführten Simulationen zeigten, dass sich aufgrund der asymmetrischen Strömungsührung ansonsten ein starkes Randverhalten im Auslass bemerkbar machen würde. Eine Verfeinerung des verwendeten Gitters ist aufgrund der berücksichtigten maximalen Partikeldurchmesser limitiert.

5.2 Simulationsergebnisse

Die Präsentation der Ergebnisse der Simulationen zur Holzvergasung in Wirbelschichten ist in einzelne Vergleichsszenarien aufgeteilt, da insgesamt 14 Fälle (Parametervariationen) berechnet worden sind. Der Basissatz an Parametern der Simula-
Kapitel 5 Simulationsergebnisse

Die Simulationsergebnisse sind in den Tabellen 5.1 bis 5.3 dargestellt. Zusätzlich werden in Kapitel 5.2.11 Partikelhistorien aus einem weiteren Vergleichsszenario gezeigt und diskutiert.

Aufgrund der obigen Darstellung sind nicht alle relevanten Größen innerhalb der hier diskutierten Fälle stationär. Dies beeinflusst natürlich die Allgemeingültigkeit der Simulationsergebnisse. Ob, wie und wann das in dieser Arbeit betrachtete System stationär wird, kann aufgrund der eingeschränkten experimentellen Daten bzw. des eingeschränkten messtechnischen Zuganges nicht oder nur unzureichend beurteilt werden. Nichts desto trotz werden die hier vorgestellten Vergleichsszenarien anhand ihrer zeitlichen Verläufe und der über die letzten zehn Sekunden gemittel-
ten Ergebnisse bewertet. Der Mittelungszeitraum hat natürlich einen Einfluss auf die erhaltenen Werte, da verschiedene die Ergebnisse beeinflussende Phänomene unterschiedliche Wellenlängen haben. Der Einfluss soll in dieser Arbeit nicht näher untersucht werden.

<table>
<thead>
<tr>
<th>Anfangs- oder Randbedingungen</th>
<th>Typ bzw. Wert der Anfangs- oder Randbedingung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur</td>
<td>800</td>
<td>K</td>
</tr>
<tr>
<td>Massenanteil Stickstoff</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Geschwindigkeit</td>
<td>0</td>
<td>m/s</td>
</tr>
<tr>
<td>Druck</td>
<td>100010</td>
<td>Pa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Randbedingungen der Feldgleichungen im Fluid:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wandtemperatur</td>
</tr>
<tr>
<td>Einlasstemperatur</td>
</tr>
<tr>
<td>Massenanteil der Spezies im Auslass</td>
</tr>
<tr>
<td>Massenanteil der Spezies an der Wand</td>
</tr>
<tr>
<td>Massenanteil Sauerstoff im Einlass</td>
</tr>
<tr>
<td>Massenanteil Stickstoff im Einlass</td>
</tr>
<tr>
<td>sonstige Spezies im Einlass</td>
</tr>
<tr>
<td>Druck im Auslass</td>
</tr>
<tr>
<td>Druck im Einlass</td>
</tr>
<tr>
<td>Geschwindigkeit an der Wand</td>
</tr>
<tr>
<td>Geschwindigkeit im Einlass</td>
</tr>
<tr>
<td>Geschwindigkeit im Auslass</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitschritte der Simulationsteile</th>
<th>Wert</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluidfeldberechnungen</td>
<td>$5 \cdot 10^{-5}$</td>
<td>s</td>
</tr>
<tr>
<td>Partikelbewegung</td>
<td>$1/3$ von $5 \cdot 10^{-5}$</td>
<td>s</td>
</tr>
<tr>
<td>Bilanzen des Partikels(Masse etc.)</td>
<td>variabel</td>
<td>-</td>
</tr>
<tr>
<td>homogene Chemie</td>
<td>variabel</td>
<td>-</td>
</tr>
</tbody>
</table>

hom. NR - homogene Neumannrandbedingung, DR - Dirichletrandbedingung

Tabelle 5.1: Rand- und Anfangsbedingungen der fluiden Phase
5.2 Simulationsergebnisse

Anfangswerte der Holzpartikel:

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>scheinbare Dichte</td>
<td>778 kg/m³</td>
</tr>
<tr>
<td>Masse</td>
<td>2.61e-05 kg</td>
</tr>
<tr>
<td>Durchmesser **</td>
<td>4 mm</td>
</tr>
<tr>
<td>Massenanteil Wasser</td>
<td>0.1</td>
</tr>
<tr>
<td>Massenanteil Holz</td>
<td>0.9</td>
</tr>
<tr>
<td>Massenanteil Holzkohle</td>
<td>0.0</td>
</tr>
<tr>
<td>Temperatur **</td>
<td>300 K</td>
</tr>
<tr>
<td>Geschwindigkeit</td>
<td>0 m/s</td>
</tr>
<tr>
<td>Rotationsgeschwindigkeit</td>
<td>0 1/s</td>
</tr>
</tbody>
</table>

Anfangswerte der Holzkohlepartikel:

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Partikel insgesamt (Fälle 1-6)</td>
<td>12 000 -</td>
</tr>
<tr>
<td>Anzahl der Partikel insgesamt (Fälle 7-14)</td>
<td>11 952 -</td>
</tr>
<tr>
<td>scheinbare Dichte</td>
<td>450 kg/m³</td>
</tr>
<tr>
<td>Durchmesser (erste Partikelklasse)</td>
<td>1 mm</td>
</tr>
<tr>
<td>Durchmesser (zweite Partikelklasse)</td>
<td>1.5 mm</td>
</tr>
<tr>
<td>initialer Umsatzgrad</td>
<td>1.0</td>
</tr>
<tr>
<td>Massenanteil Wasser</td>
<td>0.0</td>
</tr>
<tr>
<td>Massenanteil Holz</td>
<td>0.0</td>
</tr>
<tr>
<td>Massenanteil Holzkohle</td>
<td>1.0</td>
</tr>
<tr>
<td>Temperatur **</td>
<td>950 K</td>
</tr>
<tr>
<td>Geschwindigkeit</td>
<td>0 m/s</td>
</tr>
<tr>
<td>Rotationsgeschwindigkeit</td>
<td>0 1/s</td>
</tr>
</tbody>
</table>

Kollisionsparameter Partikel-Partikel:

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federsteifigkeit</td>
<td>600 N/m</td>
</tr>
<tr>
<td>Reibungsbeiwert</td>
<td>0.2</td>
</tr>
<tr>
<td>Verlustbeiwert **</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Kollisionsparameter Partikel-Wand:

<table>
<thead>
<tr>
<th>Eigenschaft</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federsteifigkeit</td>
<td>300 N/m</td>
</tr>
<tr>
<td>Reibungsbeiwert</td>
<td>0.2</td>
</tr>
<tr>
<td>Verlustbeiwert **</td>
<td>0.6</td>
</tr>
</tbody>
</table>

** siehe Tabelle 5.3 bzgl. evtl. varierter Parameter**

Tabelle 5.2: Parameter und Anfangswerte der festen Phase
Kapitel 5: Simulationsergebnisse

Tabelle 5.3: Variierte Parameter der Simulationen für alle 14 Fälle

<table>
<thead>
<tr>
<th>Simulationsfall</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holzkohleanfangstemperatur in K</td>
<td>850</td>
<td>950</td>
<td>1050</td>
<td>950</td>
<td></td>
</tr>
<tr>
<td>Verlustbeiwert Partikel-Partikel-Kollision</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Verlustbeiwert Partikel-Wand-Kollision</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Holzmassenstrom in Partikel pro Sekunde</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.63</td>
<td>0.543</td>
<td>2.17</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>1.09</td>
<td>8.68</td>
</tr>
<tr>
<td>Massenanteil inert Teer</td>
<td>0.177</td>
<td>0.177</td>
<td>0.177</td>
<td>0.0177</td>
<td>0.177</td>
</tr>
<tr>
<td>Wandtemperatur in K</td>
<td>800</td>
<td>900</td>
<td>1000</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>Eingangstemperatur des Holzes in K</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>360</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Einströmgeschwindigkeit der Luft</td>
<td>0.25</td>
</tr>
<tr>
<td>Durchmesser der Holzpartikel in mm</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabelle 5.3: Variierte Parameter der Simulationen für alle 14 Fälle
5.2 Simulationsergebnisse

5.2.1 Das Vergleichsszenario

Der Basisfall, mit dem alle anderen 13 Fälle verglichen werden und auf dessen Basis die Parameter der Tabelle 5.3 variert wurden, ist der Fall 2 der Tabelle 5.3. Einleitend sollen hier die Abbildungen 5.1 und 5.2 herangezogen werden, um die Partikeldynamik innerhalb des Bettes zu Beginn der Simulation zu veranschaulichen. Es zeigt sich, dass zu Beginn der Simulation das Geschehen im Reaktor relativ symmetrisch im Aufbau und die Betthöhe deutlich niedriger als im späteren Verlauf der Berechnungen ist. Dies liegt daran, dass noch kein bzw. wenig Holz im Reaktor vorliegt und somit die Pyrolysegase noch keinen merklichen Anteil an der Gesamtgasströmung ausmachen. Der Boden des Reaktors ist mehr oder weniger gleichmäßig mit Holzkohle bedeckt.

Die Zugabe von Holz im Laufe der Simulation führt zu größeren axialen Bettausdehnungen und zu einem asymmetrischen Geschehen im Reaktor (siehe Abbildungen 5.3 und 5.4) zum Ende der Gesamtsimulationszeit hin (Bilder bei ca. 95 s Simulationszeit). Der Boden des Reaktors ist aufgrund der einseitigen Holzzufuhr links deutlich stärker mit den größeren Holzpartikeln besetzt als im rechten Teil. Dies führt zum einen dazu, dass dort mehr Pyrolysegase entstehen und die Gasgeschwindigkeit damit lokal höher ist und zum anderen, dass dort kleinere Reaktortemperaturen vorliegen, da das Holz große Wärmeströme für die Aufheizung, Trocknung und Pyrolyse benötigt (diese Prozesse wirken allesamt wie eine endotherme Reaktion). Beide Effekte wirken also gegeneinander, da niedrigere Reaktortemperaturen zu höheren Gasdichten und damit niedrigeren Gasgeschwindigkeiten führen, wohingegen die Pyrolyse und Trocknung durch die aus den Partikeln freier werdenden Gase höhere Gasgeschwindigkeiten bedingen (bei ansonsten festen Einlaufbedingungen).

Die Holzablagerungen am Boden des Reaktors zeigen deutlich, dass die Einlaufgeschwindigkeit des Reaktors nicht groß genug ist, um die frischen Holzpartikel zu fluidisieren. Jedoch wird auch deutlich, dass aufgrund der thermischen Zersetzung der Holzpartikel die aus dem Holz entstehenden Holzkohlepartikel fluidisiert werden (die Abbildungen 5.3 und 5.4 zeigen im unteren Bereich deutlich weniger große Holzpartikel als zu diesem Zeitpunkt ohne Zersetzung zu erwarten wären). Die Blasenbildung im Reaktor bringt zumeist Blasen hervor, die fast den Reaktordurchmesser...
erreichen. Der Blasendurchmesser steigt tendenziell mit zunehmender Reaktorhöhe durch das Zusammenwachsen einzelner Blasen. Analog zu den Abbildungen 5.1 und 5.2 bzw. 5.3 und 5.4 zeigen die Abbildungen 5.5 und 5.6 bzw. 5.7 und 5.8 die zeitlich korrespondierenden Situationen aus Sicht des Fluids. Es wird die Volumenfraktion der Gasphase im Reaktor gezeigt, wobei das abgebildete Verhalten in direkter Nachbarschaft zum Reaktorboden ein durch die Visualisierung hervorgerufener Effekt ist. Insbesondere das Anheben ganzer Partikelschichten über den gesamten Reaktordurchmesser hinweg und die großen Unterschiede in den Gasvolumenanteilen geht aus diesen Abbildung deutlich stärker hervor als im Fall der Visualisierung der einzelnen Partikel. Es zeigen sich stark ausgeprägte Abgrenzungen zwischen den dichten Partikelschichten und den dünnen Gasströmungen zwischen den Partikelschichten. Die Unterschiede im Fluidisierungsverhalten zu Beginn und am Ende der Simulation werden durch Abbildung 5.9 zusätzlich verdeutlicht. Es ist klar ersichtlich, dass die Betthöhe zu Beginn der Simulation deutlich kleiner ist als am Ende der Simulation. Sowohl der axiale Schwerpunkt als auch die Höhenmarke unter der 90 % der Partikelmasse liegen, zeigen stationäre Werte erst ab 30 s bis 40 s Simulationszeit. Die höheren Zeiträume, um annähernd stationäre Verhältnisse zu erreichen (verglichen mit inerten Euler-Lagrange-Berechnungen), belegen zudem die starke Abhängigkeit der Betthöhe von den thermischen Vorgängen im Reaktor und damit auch den Einfluss der durch Pyrolyse, Trocknung und Vergasung entstehenden Gase auf die Gesamtgasgeschwindigkeit (und damit auch auf die Betthöhe).

Die Stoffmengenanteile der Produktgase am Auslass sind in Abbildung 5.10 dargestellt. Die Daten in Abbildung 5.10 sehen ab der 50sten Sekunde in etwa stationär aus, wobei relativ starke und hochfrequente Schwankungen aller Signale zu sehen sind. Die korrespondierenden Werte der Teere im Auslass des Reaktors sind in Abbildung 5.11 aufgezeigt. Die Teere unterliegen ebenfalls starken Schwankungen - insbesondere das als inert angenommene Benzen. Auffällig in den Abbildungen 5.10 und 5.11 sind ausgeprägte Anfangsbereiche bis zur 50sten Sekunde, die damit zusammenhängen, dass zum einen der Reaktor mit Stickstoff inertisiert gestartet wurde und anfänglich kein Holz im Reaktor vorhanden war und zum anderen eine fluid-dynamische Einlaufphase existent ist. Die Stoffmengenanteile von Kohlendioxid und Kohlenmonoxid konkurrieren miteinander, was an den leicht steigenden Stoffmen-
5.2 Simulationsergebnisse

Abbildung 5.1: Schnappschüsse zu Beginn der Simulation für den Referenzfall (Zeitraum zwischen 0.7 s und 0.9 s)

Abbildung 5.2: Schnappschüsse zu Beginn der Simulation für den Referenzfall (Zeitraum zwischen 0.95 s und 1.15 s)

... genanteilen des Kohlenmonoxids und den leicht sinkenden Stoffmengenanteilen des Kohlendioxids in Abbildung 5.10 zu erkennen ist. Ferner sind ab der 50sten Sekunde lokale Minima in den Stoffmengenanteilen des Kohlendioxids zeitlich verbunden mit lokalen Maxima der Stoffmengenanteile des Kohlenmonoxids und umgekehrt. Dieser
Abbildung 5.3: Schnappschlüsse am Ende der Simulation für den Referenzfall (Zeitraum zwischen 95 s und 95.2 s)

Effekt lässt sich auf die Wassergas-Shift-Reaktion und die heterogene Vergasung des Kohlendioxids am Kohlenstoff der Holzkohle zurückführen.

Eine fluidmechanische Startphase von ca. 10 s bis 20 s ist auch aus der Literatur bekannt und kann zum Beispiel dadurch verkleinert werden, dass das Bett zu Beginn der Simulation nicht homogen angenommen wird, sondern mit partikelfreien Bereichen initialisiert wird. Dies erleichtert die Fluidisierung des Bettes zu Beginn der Simulation. Die Konzentrationen der Teere im Auslass in Abbildung 5.11 zeigen, dass die beiden reaktiven Teerkomponenten einer deutlichen Zersetzung ausgesetzt sind, da Tabelle 3.8 einen deutlich kleineren Anteil an inerten Teeren zeigt, jedoch Abbildung 5.11 genau das Gegenteil dokumentiert. Insofern ist klar, dass ein Großteil des bei der primären Pyrolyse entstehenden Teeres im Reaktor zersetzt wird. Abbildung 5.12 zeigt die Auslasstemperatur des Reaktors über die Zeit und Tabelle 5.4 den entsprechenden Mittelwert der letzten zehn Simulationssekunden. Die bei
5.2 Simulationsergebnisse

Abbildung 5.4: Schnappschüsse am Ende der Simulation für den Referenzfall (Zeitraum zwischen 95.25 s und 95.45 s)

...den anderen Größen klar erkennbare Einlaufphase ist auch für die Temperatur zu erkennen. Die Schwankungen der Temperatur betragen ca. 30 K. Die hochfrequenten Schwankungen der Temperatur sind im Experiment so nicht zu erwarten, da die Temperatur meist mit Hilfe von Thermoelementen gemessen wird, welche eine nicht zu vernachlässigende thermische Dämpfung besitzen. Insofern werden die experimentellen Temperaturwerte immer deutlich weniger hochfrequente Anteile aufweisen, die zudem auch noch in ihren Amplituden gedämpft sind (typisches PT-Verhalten).

Weiterhin soll hier der Teerabbau und die Teerentstehung anhand der Abbildungen 5.13 bis 5.15 näher beschrieben werden. Alle drei Abbildungen zeigen die höchsten Teeranteile im untersten Teil des Reaktors, was durch die dort stattfindende primäre Pyrolyse bedingt ist. Im Bereich zwischen 150 mm und 325 mm Rektorhöhe findet unter allen hier aufgezeigten Teerkonzentrationen bei verschiedenen Rektorhöhen der stärkste Teerabbau statt (insbesondere wenn man berücksichtigt, dass dieser Bereich 12.5 % kleiner als die anderen Höhenabstände ist und zudem im oberen Re-
aktordeil die Verweilzeit aufgrund der Reaktordurchmessererhöhung größer ist). Die zum Teil starken Schwankungen der Teerkonzentrationen haben in ihren Extrema allesamt einen mit größer werdender Reaktorhöhe zeitliche Versetzung nach rechts, was an der Verweilzeit im Reaktor liegt. Die Teerkonzentrationen in den Höhen von 700 mm, 900 mm und dem Auslass haben alle dicht beieinander liegende Werte. Der Fakt, dass die abgebildeten Werte der Teerkonzentrationen bei 700 mm und 900 mm niedriger liegen als am Auslass, liegt in der Art der Mittelung begründet. Eine Mittelung in dieser Arbeit fand auf Basis von

\[
\bar{\phi} = \frac{\int_A \phi dA}{\int_A dA}
\]

(5.1)

statt, was allerdings dazu führt, dass die lokalen Werte der Dichte und der Geschwindigkeit keine Rolle bei der Berechnung spielen. Dabei ist \(\bar{\phi} \) der Mittelwert, \(A \) das
5.2 Simulationsergebnisse

Abbildung 5.6: Schnappschüsse der Volumenfraktion der Gasphase zu Beginn der Simulation für den Referenzfall (Zeitraum zwischen 0.95 s und 1.15 s)

Gebiet über das gemittelt wird und \(\phi \) die lokale Größe, die gemittelt werden soll. Eine Mittelung, die diese Werte berücksichtigt, kann zum Beispiel mit

\[
\bar{\phi} = \frac{\int_A U_A \rho \phi dA}{\int_A U_A \rho dA}
\]

(5.2)

angegeben werden. Hier stehen \(U_A \) für die Geschwindigkeit senkrecht zum Gebiet \(A \) und \(\rho \) für die Dichte der Phase, aus welcher auch \(\phi \) stammt. Man sieht also, dass die Strömung, wie in Abbildung 5.16 und 5.17 gezeigt, den oberen Teil des Reaktors nicht homogen durchströmt, sondern schlauchartig auf den Auslass zulaufen. Da sowohl eine erhöhte Temperatur als auch eine gesteigerte Verweilzeit den Teergehalt des Produktgases minimieren, zeigt sich, dass im weniger durchströmten Teil des oberen Reaktors der Teergehalt aufgrund der hohen Verweilzeit niedriger ist (siehe Abbildung 5.18). Somit lässt eine Mittelung nur auf Basis der lokalen Werte (ohne Berücksichtigung der lokalen Dichte und Geschwindigkeit) der zu mittelnden Größe falsche Rückschlüsse zu. Eine Teerbildung außerhalb der primären Pyrolyse ist je-
Abbildung 5.7: Schnappschüsse der Volumenfraktion der Gasphase am Ende der Simulation für den Referenzfall (Zeitraum zwischen 95 s und 95.2 s)

doch in dieser Arbeit nicht berücksichtigt worden, so dass die niedrigen Werte des Teergehaltes auf den Höhen 700 mm und 900 mm tatsächlich nur aufgrund der Art der Mittelung zustande kommen. Die letzten Aussagen gelten so für die Abbildungen 5.13 und 5.14 allerdings nicht für Abbildung 5.15. Der als inert angenommene Teer in Abbildung 5.15 ändert seine Konzentration über die Höhe allein aufgrund der inhomogenen Gemischzusammensetzung. Als Erklärungsansatz für diese Änderung in der Teilchenzahl kommen nur der Teerzerfall selbst, sowie die Vergasung der Holzkohle mit Kohlendioxid und Wasser in Frage, da sich nur bei diesen Reaktionen tatsächlich die Teilchenzahl der an den Reaktionen beteiligten Stoffen ändert. Die Vergasung mit Kohlendioxid und Wasser hat aufgrund der Reaktortemperaturen nur einen kleinen Anteil an der Gesamtänderung.

Als Indikatoren für die zeitlich langwelligen Änderungen innerhalb der Wirbelschicht sollen hier die Massen der Holzes und der Holzkohle innerhalb des Reaktors die-
5.2 Simulationsergebnisse

Abbildung 5.8: Schnappschüsse der Volumenfraktion der Gasphase am Ende der Simulation für den Referenzfall (Zeitraum zwischen 95.25 s und 95.45 s)

nen. Beide Größen sind im Experiment nur schwer zu erfassen (Start- und Endwerte lassen sich relativ gut bestimmen) und können somit hier nur zur Beurteilung der Stationarität herangezogen werden. Abbildung 5.23 zeigt die Ergebnisse eines Vergleichsszenarios unterschiedlicher Partikelstarttemperaturen, wobei hier nur die Entwicklung der Holzmasse für den Fall 2 interessieren soll. Die Holzmasse im Reaktor steigt aufgrund der Holzzufuhr am Anfang schnell an, läuft dann zwischen der 30sten und 50sten Sekunde auf ein Plateau und steigt ab der 50sten Sekunde wieder an, jedoch weniger stark als zu Beginn der Simulation. Eine Stationarität ist nicht erkennbar. Abbildung 5.24 zeigt das gleiche Szenario für die Holzkohlemasse. Die Holzkohlemasse im Reaktor nimmt stetig ab und zeigt nur zwischen der 30sten und 50sten Sekunde eine leichte Abnahme der Rate des Holzkohleabbaus. Es zeigt sich also, dass Holz- und Holzkohlemasse innerhalb der hier betrachteten 100 s nicht stationär werden. Allerdings zeigt die Arbeit von [Gerber u.a. (2010),
Abbildung 5.9: Axialer Schwerpunkt und Höhe von 90% der Partikelmasse über die Zeit

dass die Holzmasse potentiell ein PT-ähnliches Verhalten ausbilden wird und sich somit der stationäre Punkt zumindest der Holzmasse im Reaktor durchaus schnell einstellen kann. Mit PT-ähnlich wird hier der aperiodische Fall der Sprungantwort einer linearen Differentialgleichung beschrieben.

Abbildung 5.10: Zeitlicher Verlauf der Auslasskonzentrationen einiger Produktgase für den Fall 2

Abbildung 5.11: Zeitlicher Verlauf der Auslasskonzentrationen der Teere für den Fall 2
Abbildung 5.12: Zeilicher Verlauf der Auslasstemperatur für den Fall 2

Abbildung 5.13: Teer 1 für verschiedene Höhenstufen im Reaktor über die Zeit (Fall 2)
5.2 Simulationsergebnisse

Abbildung 5.14: Teer 2 für verschiedene Höhenstufen im Reaktor über die Zeit (Fall 2)

Abbildung 5.15: Teer 3 für verschiedene Höhenstufen im Reaktor über die Zeit (Fall 2)
Abbildung 5.16: Stromlinien im oberen Reaktorteil
Abbildung 5.17: Richtung und Größe der Fluidströmung im oberen Reaktorteil
Abbildung 5.18: Massenanteil des ersten Teeres im oberen Reaktorteil

Besonderes Augenmerk sollte in den folgenden Kapiteln der Instationarität der Holzmasse zukommen, da sie direkt mit der Produktgasmenge korrespondiert und somit in den im Folgenden diskutierten Vergleichsszenarien Auskunft über die Vergleichbarkeit der Ergebnisse verschiedener Szenarien gibt.
5.2 Simulationsergebnisse

<table>
<thead>
<tr>
<th>Simulationsfall</th>
<th>Temperaturen in K</th>
<th>Simulationsfall</th>
<th>Temperaturen in K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>885</td>
<td>8</td>
<td>885</td>
</tr>
<tr>
<td>2</td>
<td>888</td>
<td>9</td>
<td>890</td>
</tr>
<tr>
<td>3</td>
<td>892</td>
<td>10</td>
<td>906</td>
</tr>
<tr>
<td>4</td>
<td>886</td>
<td>11</td>
<td>877</td>
</tr>
<tr>
<td>5</td>
<td>904</td>
<td>12</td>
<td>944</td>
</tr>
<tr>
<td>6</td>
<td>876</td>
<td>13</td>
<td>985</td>
</tr>
<tr>
<td>7</td>
<td>897</td>
<td>14</td>
<td>877</td>
</tr>
</tbody>
</table>

Tabelle 5.4: Über die letzten zehn Simulationssekunden gemittelte Auslasstemperaturen aller Fälle

5.2.2 Thermische Dynamik der Wirbelschicht - Vergleich dreier Anfangstemperaturen der Festphase

In diesem Kapitel wird der Basisfall (Fall 2 in Tabelle 5.3) mit zwei bis auf die Starttemperatur der Festphase identischen Fällen verglichen (Fälle 1 und 3 in Tabelle 5.3). Die Anfangstemperatur der Festphase kann dabei als eine bezüglich der stationären Bettbedingungen abklingende Anfangsbedingung betrachtet werden, d.h., dass mit zunehmender Simulationsdauer der Einfluss der Starttemperatur abklingen sollte und die Ergebnisse der drei betrachteten Fälle auf identische Werte des stationären Betriebs zulaufen sollten. Somit lässt sich mit den in diesem Kapitel gezeigten Daten die zeitliche Dynamik des Systems beurteilen.

Abbildung 5.20 zeigt die Auslasstemperatur der drei Fälle. Deutlich ersichtlich ist, dass nach ca. 50 s alle drei Fälle Temperatursignale im gleichen Bereich aufweisen und somit die anfänglich unterschiedlichen Feststofftemperaturen abgeklungen sind. Abbildung 5.21 zeigt das zu Abbildung 5.20 korrespondierende CO-Signal am Auslass des Reaktors. Dabei ist ebenfalls ein deutliches Abklingen des Einflusses der Anfangsbedingungen nach ca. 50 s zu verzeichnen. Die relativ geringen Temperaturschwankungen nach 100 s in Abbildung 5.20 (ca. 20 K) gehen mit Schwankungen des CO-Stoffmengenanteils von ca. 5 % einher, was man durchaus als signifikant bezeichnen kann, da der Molenbruch des Kohlenmonoxids zwischen 20 und 25 % liegt und somit die Schwankungen ca. 20 bis 25 % des Gesamtsignals ausmachen. Die über die letzten zehn Sekunden gemittelten Auslasstemperaturen der drei Fälle sind in Tabel-
le aufgelistet und zeigen nur schwache, tendenziell den Partikelstarttemperaturen folgenden Abweichungen untereinander.

Zusätzlich lässt sich aus den Abbildungen 5.20 und 5.21 die deutliche Kopplung der Reaktortemperatur und des Konzentrationsmaßes des Kohlenmonoxids erkennen. Bei höheren Temperaturen sind die Reaktionsraten der Kohlendioxidvergasung höher und damit auch die Kohlenmonoxidkonzentrationen im Auslassstrom. Anhand der über den Reaktorquerschnitt gemittelten Temperaturen auf einer Höhe von 0.146 m über dem Reaktorboden lässt sich gut erkennen, dass sowohl die Kohlenmonoxidkonzentration als auch die Temperatur im Auslass direkt an die Feststofftemperaturen gekoppelt sind (siehe Abbildung 5.19).

Abbildung 5.19: Über den Querschnitt massengemittelte Feststofftemperaturen über die Zeit aufgetragen (ca. 0.146 m über dem Reaktorboden, Fälle 1 bis 3)

Eine zeitliche Mittelung (der letzten 10 Simulationssekunden) der Auslasskonzentrationen aller relevanter Gaskomponenten der drei Fälle ist in Abbildung 5.22 dargestellt und zeigt die nach 100 s immer noch deutlichen Unterschiede in den Simulationsergebnissen. Nimmt man die Stickstoffkonzentrationen als Indikator für die Gesamtmenge an Produktgasen (Stickstoff wird ausschließlich über den Reaktorbo-
5.2 Simulationsergebnisse

...den in den Reaktor eingeschleust und unterliegt keinerlei Konversionsprozessen) ist in Abbildung 5.22 deutlich erkennbar, dass die Gesamtmenge an Produktgasen im Fall 2 kleiner ist als in den Fällen 1 und 3. Ein ähnliches Bild ergibt sich für die am Auslass feststellbaren Teerkonzentrationen. Die Fälle 1 und 3 zeigen gegenüber dem Fall 2 erheblich höhere Teerkonzentrationen. Ethin wird in dieser Arbeit ausschließlich über den homogenen Abbau der reaktiven Teere gebildet und kann daher als Indikator des homogenen Teerabbaus verwendet werden. Die Fälle 1 und 3 zeigen verglichen mit dem Fall 2 nicht nur höhere Teerkonzentrationen sondern auch höhere Konzentrationen des Ethins, d.h., dass der homogene Teerabbau in den Fällen 1 und 3 größere Umsätze generiert als im Fall 2. Selbiges gilt für die Methankonzentration, welche durch den heterogenen Teerabbau bzw. die primäre Pyrolyse erhöht wird. Der Stoffmengenanteil des Kohlenmonoxids ist im Fall 2 größer als in den Fällen 1 und 3 und deutet damit auf höhere Raten der Kohlendioxidvergasung bzw. der primären Pyrolyse hin. Der homogene Teerabbau ist wie oben schon aufgezeigt im Fall 2 kleiner als in den beiden anderen Fällen und kann damit nicht verantwortlich sein für die höheren Konzentration des Kohlenmonoxids im Auslass.

Aufgrund der zum Teil noch instationären Ergebnisse werden die zeitlichen Verläufe der Produktgase und Teere am Auslass des Reaktors für die Fälle 1 und 3 in den Abbildungen 5.25, 5.26, 5.27 und 5.28 hier aufgezeigt. Vergleicht man die Abbildungen 5.25, 5.10 und 5.26 so kann man schlussfolgern, dass je höher die Partikelstarttemperatur der Holzkohle ist, desto instationärer sieht der Verlauf der Produktkonzentrationen über die Zeit aus. Insbesondere die Kohlenmonoxidkonzentration ist ein guter Indikator. Die Teerkonzentration in den Abbildungen 5.27, 5.11 und 5.28 zeigen bei beiden vom Standardfall abweichenden Holzkohlestarttemperaturen eine weniger ausgeprägte Stationarität, was zum einen die obigen Darstellungen bestätigt und zum anderen die Wahl des Falles 2 als Standardfall untermauert.

Abb. 5.20: Auslasstemperaturen über die Zeit für verschiedene initiale Betttemperaturen (Fälle 1 bis 3 aus Tabelle 5.3)

Dies trifft in Abb. 5.23 sehr wohl für die Fälle 1 und 3 zu, allerdings lässt sich Fall 2 nicht entsprechend einordnen. Fall 2 zeigt nach 100 s höhere Werte der Holzgesamtmasse im Reaktor als die Fälle 1 und 3. Fall 1 zeigt aufgrund der niedrigeren Betttemperatur auch eine niedrigere Holzmasse im Reaktor als Fall 3, der von allen drei Fällen am wenigsten Holz im Reaktor aufweist. Fall 2 zeigt entgegen den Erwartungen die größte Holzmasse im Reaktor. Damit lässt sich allerdings Abb. 5.22 besser deuten. Im Fall 2 wurde aufgrund der höheren Holzmasse im Reaktor offensichtlich weniger Holz pyrolysiert und es bildete sich entsprechend weniger Produktgas, was an den recht hohen Stickstoffkonzentrationen in Abb. 5.22 gut sichtbar ist.

Insgesamt zeigen alle drei Fälle für die Gesamtholzmasse einen ausgeprägten transienten Verlauf. Selbiges gilt für die Holzkohlemasse im Reaktor, die für alle drei Fälle in Abb. 5.24 aufzeigt wird. In allen drei Fällen verringert sich die im Wirbelbett vorhandene Holzkohlemasse um ca. 8 %. Die Ergebnisse aus Abb. 5.24 zeigen, dass weniger Holz im Reaktor (bei gleicher Holzzufuhr) mit mehr Holzkohle während
5.2 Simulationsergebnisse

Abbildung 5.21: Auslasskonzentrationen des Kohlenmonoxids über die Zeit aufgetragen für die Fälle 1 bis 3

Abbildung 5.22: Über die letzten 10s der Simulation gemittelte Auslasskonzentrationen der Fälle 1 bis 3

eine höhere Dichte als die Holzkohlepartikel auf, was bei einem fluidisierten System dazu führt, dass sich das Holz im unteren Teil des Reaktors sammelt. In dem hier betrachteten System reicht die Leerrohrgeschwindigkeit der Wirbelschicht nicht aus, um die Holzpartikel in ihrem anfänglichen Zustand zu fluidisieren, d.h. dass die Holzpartikel am Boden des Reaktors liegen bleiben. Die Frage wo genau die Partikel zum Liegen kommen, hängt maßgeblich davon ab, wie stark der Reaktor im unteren Bereich Blasen bildet bzw. fluidisiert ist, was wiederum u.a. von der Pyrolyserate abhängig ist, da das bei der Pyrolyse entstehende Produktgas maßgeblichen Anteil am Gesamtgasstrom im Reaktor hat.

Abbildung 5.23: Gesamtholzmasse über die Zeit (Fälle 1 bis 3)

Abbildung 5.24: Gesamtholzkohlemasse über die Zeit (Fälle 1 bis 3)
Abbildung 5.25: Zeitlicher Verlauf der Produktgase am Auslass (Fall 1)

Abbildung 5.26: Zeitlicher Verlauf der Produktgase am Auslass (Fall 3)
5.2 Simulationsergebnisse

Abbildung 5.27: Zeitlicher Verlauf der Teere am Auslass (Fall 1)

Abbildung 5.28: Zeitlicher Verlauf der Teere am Auslass (Fall 3)
des Reaktors zur Verfügung stehen und somit eine hohe Konzentration des Holzes an
einer Stelle tendenziell lokal niedrigere Betttemperaturen und somit auch niedrige
Pyrolyseraten hervorruft.
5.2.3 Variation der Holzzufuhr

Die Fälle 2, 6, 7 und 8 betrachten das Basisszenario mit drei davon abweichenden Massenströmen des zugeführten Holzes entsprechend den Darstellungen in Tabelle 5.3. Der Massenstrom des Holzes wurde bezogen auf den Fall 2 (Vergleichsszenario) halbiert (Fall 7), verdoppelt (Fall 8) und um 50 % erhöht (Fall 6). Abbildung 5.29 zeigt die Temperatur am Auslass des Reaktors für die vier in diesem Kapitel diskutierten Fälle. Die Auslasstemperatur aller vier Fälle ist relativ unabhängig vom Holzmassenstrom. Die zeitlich gemittelten Auslasstemperaturen sind in Tabelle 5.4 aufgelistet. Für die Fälle 7, 2 und 6 führt ein höherer Holzmassenstrom zu niedrigeren Auslasstemperaturen. Der Fall 8 (max. Holzeintrag) bricht aus diesem Trend aus und hat ähnlich hohe Auslasstemperaturen wie der Fall 2.

Die Auslasskonzentrationen der vier Fälle sind vergleichend in Abbildung 5.30 dargestellt. Es ergibt sich keine lineare Abhängigkeit der Produktgasanteile vom Holzmassenstrom, was allerdings auch nicht zu erwarten ist, wenn man sich die Entwicklung
der Holz- und Holzkohlemasse in den Abbildungen 5.31 und 5.32 anschaut, da diese wie in der letzten Falldiskussion keinen stationären Charakter haben. Lediglich die Fälle 6 und 8 zeigen bezüglich der Entwicklung der Holzkohlemasse einen stationären Verlauf. In diesen beiden Fällen ist davon auszugehen, dass der größere Holzmassenstrom zur Stationarität der Holzkohlemasse führt.

Es wird in den Fällen 6 und 8 so viel Holzkohle gebildet, dass der Holzkohleabbau durch die heterogenen Reaktionen ausgeglichen werden kann. Ein qualitativer Aspekt der auch experimentell bestätigt werden kann. Zusätzlich ist damit zu rechnen, dass höhere Massenströme des Holzes im Einlass des Reaktors zu lokal kleineren Pyrolysetemperaturen führen und somit entsprechend der verwendeten Kinetiken für die primäre Pyrolyse mehr Holzkohle pro umgesetzter Masseneinheit des Holzes entsteht. In den Fällen 2 und 7 wird so offensichtlich (siehe Abbildung 5.32) deutlich weniger Holzkohle gebildet, was dazu führt, dass die gesamte im Reaktor vorhandene Holzkohlemasse mehr oder weniger stetig abnimmt. Die Holzmasse im Reaktor ist für den Fall 7 (der Fall mit dem kleinsten Holzmassenstrom) als statio-

Abbildung 5.30: Über die letzten 10 s der Simulation gemittelte Auslasskonzentrationen der Fälle 2 und 6 bis 8

![Diagramm der Holzmasse über die Zeit für Fälle 2, 6, 7 und 8](image)

Abbildung 5.31: Gesamtholzmasse über die Zeit (Fälle 2, 6, 7 und 8)

Fall 8 niedrigere Stickstoffkonzentrationen liefern als alle drei anderen Fälle. Da dies nicht der Fall ist (Fall 8 zeigt höhere Stickstoffkonzentrationen als Fall 6), deutet dies darauf hin, dass weitere Abhängigkeiten existieren. Da Wasser innerhalb des Reaktors ausschließlich durch die Feuchte innerhalb des Holzes eingetragen wird, kann man anhand von Abbildung 5.30 erkennen, dass für die Fälle 7, 2 und 6 ein höherer Massenstrom des Holzes auch zu größeren Wasseranteilen in der Gasphase führt. Im Fall 8 ist der Wasseranteil im Auslass deutlich kleiner als in den anderen Fällen und liegt somit entweder in Form von im Holz gebundener Feuchte vor oder wurde umgesetzt in Wasserstoff und Kohlenmonoxid (durch Vergasungsreaktionen). Allerdings deuten die Ergebnisse der Wasserstoff- und Kohlenmonoxidkonzentrationen in Abbildung 5.30 darauf hin, dass das Holz im Fall 8 langsamer pyrolysiert wird (bezogen auf den gesamten Holzmassenstrom). Eine Annahme, die auch durch die hohen Werte des im Reaktor vorhandenen Holzes in Abbildung 5.31 unterstützt wird.

Abbildung 5.32: Gesamtholzkohlemasse über die Zeit (Fälle 2, 6, 7 und 8)

Die Analyse der zeitlichen Verläufe der Teerkonzentrationen der hier betrachteten vier Fälle zeigt recht deutliche Unterschiede. Der Fall 7 zeigt eine sehr frühe Sta-
tionarität (ab ca. 30 s) sowohl der Teerkonzentration als auch der Produktgase (Abbildungen 5.36 und 5.35). Die abbaubaren Teere werden zu großen Teilen innerhalb des Reaktors zersetzt, was umso erstaunlicher ist, wenn man sich Tabelle 3.8 ins Gedächtnis ruft. Der inerte Teer hat die mit Abstand größten Konzentrationen, obwohl nur ca. 17 % des bei der primären Pyrolyse entstehenden Teeres als inert angenommen wurde. Auffällig ist zudem, dass beide reaktiven Teere zu annähernd gleichen Konzentrationen am Auslass vorliegen (beide hatten unterschiedliche Anteile an der Gesamtteerproduktion und unterschiedliche Abbaukinetiken). Die Produktgaskonzentrationen sind im Fall 7 insbesondere für Kohlenmonoxid signifikant höher als in vielen anderen Vergleichsfällen (zum Beispiel ca. 20 % mehr CO als im Standardfall). Zudem sind auch die Schwankungen innerhalb der Produktgaskonzentrationen kleiner als im Vergleichsfall. Letztendlich lassen die Ergebnisse nur den Schluss zu, dass die Aufwärzung des in den Reaktor eintretenden Holzes durch den kleineren Holzmassenstrom deutlich verbessert ist und es zu höheren Temperaturen im Bett kommt (siehe auch Tabelle 5.4). Die Fälle 6 und 8 zeigen in den Abbildungen 5.34, 5.33, 5.38 und 5.37 zum Teil stark steigende Konzentrationen der Teere, wobei Fall 8, wie bereits angedeutet, nicht die erwartete Steigerung im Vergleich zu Fall 6 zeigt, da der zur Aufheizung notwendige Wärmestrom nicht zur Verfügung steht. Fall 8 zeigt, entgegen der Ergebnisse des Falles 6, bis zum Ende der Simulationszeit steigende Produktgaskonzentration. Offensichtlich ist Fall 8 also weiter vom stationären Arbeitspunkt entfernt als Fall 6. Der homogene Teerabbau in Fall 8 ist ebenfalls zum Ende hin einer stetigen Steigerung unterworfen, was mit der langsamer anlaufenden primären Pyrolyse und der steigenden Betttemperatur zusammenhängt (siehe Abbildung 5.39). Die zeitlichen Verläufe unterstützen also im Wesentlichen die obigen Darstellungen des vergleichenden Balkendiagramms (Abbildung 5.30).
Abbildung 5.33: Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 6)

Abbildung 5.34: Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 6)
Abbildung 5.35: Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 7)

Abbildung 5.36: Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 7)
Abbildung 5.37: Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 8)

Abbildung 5.38: Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 8)
5.2 Simulationsergebnisse

Abbildung 5.39: Über den Querschnitt massengemittelte Feststofftemperaturen über die Zeit aufgetragen (ca. 0.146 m über dem Reaktorboden, Fälle 2, 6, 7 und 8)

5.2.4 Einfluss eines verringerten Inertteeranteils

nicht vergessen werden, dass die dem homogenen Teerabbau unterliegenden Komponenten gerade so gewählt worden sind, dass nahezu keine thermischen Effekte durch die Reaktionsenthalpien dieser Reaktionen auftreten. Insofern sind thermische Effekte durch Änderung der Teerzusammensetzung weitestgehend minimiert (was ihre mögliche Zersetzung angeht).

Ein Vergleich der Teer- und Produktgaskonzentration in Abbildung 5.41 zeigt jedoch relativ große Unterschiede. So ist die Gesamtteerproduktion im Fall 4 ca. 20 % kleiner als im Standardfall, womit klar gezeigt ist, dass die Größe des fixen Anteiles an inertem Teer einer der Sensitivparameter des Modells ist. Dies ist insofern zu erwarten gewesen, da bei den hier vorliegenden Reaktorbedingungen der Großteil des Holzes zu Teer wird. Der stärkere Abbau des Teeres spiegelt sich zudem in niedrigeren Stickstoffkonzentration am Auslass wieder - ein klares Indiz für gesteigerte Produktgasausbeuten. Auf der anderen Seite zeigen die Verläufe der gesamten Holz- bzw. Holzkohlemasse im Reaktor in den Abbildungen 5.42 und 5.43, dass im Fall 4 weniger Holz im Reaktor vorliegt, also auch aus diesem Grunde größere Produktgas-

Abbildung 5.40: Auslasstemperaturen über die Zeit für verschiedene Inertteeranteile (Fälle 2 und 4 aus Tabelle 5.3)

Abbildung 5.41: Über die letzten 10 s der Simulation gemittelte Auslasskonzentrationen der Fälle 2 und 4
Abbildung 5.42: Gesamtholzmasse über die Zeit (Fälle 2 und 4)

Abbildung 5.43: Gesamtholzkohlemasse über die Zeit (Fälle 2 und 4)
5.2 Simulationsergebnisse

Abbildung 5.44: Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 4)

Abbildung 5.45: Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 4)
5.2.5 Einfluss einer erhöhten Leerohrgeschwindigkeit im Lufteinlass

![Diagramm](image)

Abbildung 5.46: Auslasstemperaturen über die Zeit für verschiedene Leerohrgeschwindigkeiten (Fall 2 und Fall 10 aus Tabelle 5.3)

Abbildung 5.47 zeigt allerdings ein etwas differenzierteres Bild. Die Auslasskonzentration an Kohlenmonoxid ist zwar höher als im Standardfall, jedoch gilt dies nicht für das zweite wichtige Vergasungsprodukt Wasserstoff. Damit einhergehend sind die Kohlendioxid- und Wasserkonzentrationen am Auslass im Fall 10 kleiner als im Standardfall. Die Teerkonzentrationen im Auslass des Falles 10 zeigen in Abbildung 5.47 kumuliert ca. halb so hohe Werte wie im Standardfall. Jedoch ist die Konzentration der Teerabbauprodukte (Methan und Ethin) deutlich kleiner, was auf einen verringerten Teerabbau hindeuten kann. Das dies nicht der Fall ist, zeigt die extrem niedrige Stickstoffkonzentration im Auslass (Abbildung 5.47).

Abbildung 5.47: Über die letzten 10 s der Simulation gemittelte Auslasskonzentrationen der Fälle 2 und 10

Das hier vorgestellte Szenario hat eine um 50 % erhöhte Leerrohrgeschwindigkeit und damit einen um 50 % angehobenen Massenstrom an Stickstoff, welcher von der Stoffmenge her klar in der einströmenden Luft überwiegt. Da der Holzmassenstrom in diesem Szenario unverändert blieb, zeigt Abbildung 5.47 eine niedrige Teerkonzentration durch die Verdünnung aufgrund der eintretenden Luft und der heterogenen Vergasungsprodukte. Zusätzlich ist durch den konstanten Holzmassenstrom der Was-
sereintrag in den Reaktor fast festgesetzt (das Holzgas und der Teerabbau können diesen Wert ebenfalls modifizieren) und daher entsteht keine deutliche Änderung der Wasserstoffkonzentration im Fall 10 verglichen mit Fall 2.

Eine erhöhte Leerrohrgeschwindigkeit kann bei entsprechender Größe dazu führen, dass das in den Reaktor zugeführte Holz sich nicht oder deutlich langsamer im unteren heißen Bereich ablagert. Aufgrund des höheren Eintrages an Sauerstoff erhöht sich aber auch die Betttemperatur und die Auslasstemperatur. Damit einhergehend steigt die mittlere Heizrate während der Pyrolyse, was daran zu erkennen ist, dass Abbildung 5.48 weniger Holz im Reaktor für den Fall 10 als für den Fall 2 zeigt. Die Masse der Holzkohle im Reaktor sinkt im Fall 10 deutlich schneller (mehr Sauerstoff) als im Referenzfall 2 (siehe Abbildung 5.49). Zudem führt eine höhere Leerrohrgeschwindigkeit zu einer besseren Durchmischung, insbesondere in Bezug auf die Vermischung der unterschiedlichen Partikelgrößenklassen und steht damit der Entmischung der Partikeldurchmesserklassen entgegen.

Die zeitlichen Verläufe der Produktgas und Teerkonzentration am Auslass des Reaktors sind in den Abbildungen 5.51 und 5.52 abgebildet.
5.2 Simulationsergebnisse

Abbildung 5.48: Gesamtholzmasse über die Zeit (Fälle 2 und 10)

Abbildung 5.49: Gesamtholzkohlemasse über die Zeit (Fälle 2 und 10)
Abbildung 5.50: Axialer Schwerpunkt und Betthöhe bei 90 % der Feststoffmasse über die Zeit (Fälle 2 und 10)

Abbildung 5.51: Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 10)
5.2 Simulationsergebnisse

Abbildung 5.52: Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 10)

Abbildung 5.53: Über den Querschnitt massengemittelte Feststofftemperaturen über die Zeit aufgetragen (ca. 0.146 m über dem Reaktorboden, Fälle 2 und 10)
5.2.6 Einfluss der Wandtemperaturen des Reaktors

Abbildung 5.54: Über die letzten 10 s der Simulation gemittelte Auslasskonzentrationen der Fälle 2, 12 und 13

Abbildung [5.54] zeigt einige klar auf höhere Wandtemperaturen zurückführbare Effekte. Es zeigt sich, dass je höher die Wandtemperatur ist, desto weniger werden reaktive Teere produziert und desto mehr Kohlenmonoxid entsteht. Das Verhalten der Vergasungsmittel Wasser und Kohlendioxid korreliert weniger stark mit der Wandtemperatur, da zwar der Fall 2 anteilig mehr Wasser und Kohlendioxid hervorbringt, jedoch die Unterschiede zwischen den Fällen 12 und 13 bzgl. der Konzentration der Vergasungsmittel kaum registrierbar sind. Die gesamte Produktgasmengen hat ein Minimum für den Fall 12, da in diesem Fall die Stickstoffkonzentration um einiges

Abbildung 5.55: Auslasstemperaturen über die Zeit für verschiedene Wandtemperaturen (Fälle 2, 12 und 13 aus Tabelle 5.3)

Abbildung 5.56 bestätigt die Erwartungen bezüglich der dynamischen Holzmassenentwicklung über die Zeit. Je höher die Wandtemperatur ist, desto weniger Holz befindet sich im Reaktor. Die Pyrolyse läuft also mit steigender Wandtemperatur schneller ab, obwohl die Wandtemperatur praktisch keinen Effekt auf die Betttemperatur hat. Die zeitliche Entwicklung der Holzkohlemasse in Abbildung 5.57 passt
ebenfalls sehr gut zu den Erwartungen. Mit höherer Wandtemperatur baut sich die Holzkohle im Reaktor schneller ab.

Die zeitlichen Entwicklungen der Produktgas- und Teerkonzentrationen im Reaktorauslass in den Abbildungen 5.58, 5.59, 5.60 und 5.61 im Vergleich mit dem Standardfall zeigen die Tendenz, dass insbesondere Schwankungen für die Teere durch die erhöhte Wandtemperatur gedämpft werden. Außerdem wird mit steigender Wandtemperatur der Unterschied zwischen den zeitlichen Verläufen der Teerkonzentrationen zunehmend kleiner.

Abbildung 5.56: Gesamtholzmasse über die Zeit (Fälle 2, 12 und 13)
5.2 Simulationsergebnisse

Abbildung 5.57: Gesamtholzkohlemasse über die Zeit (Fälle 2, 12 und 13)

Abbildung 5.58: Zeitlicher Verlauf der Produktgaskonzentrationen am Rektorauslass (Fall 12)
Abbildung 5.59: Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 12)

Abbildung 5.60: Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 13)
Abbildung 5.61: Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 13)
5.2.7 Einfluss der Einlasstemperatur der Luft

In diesem Kapitel soll der Einfluss der Einlasstemperatur der Luft auf die Vorgänge innerhalb der Wirbelschicht erläutert werden. Da, wie bereits dargelegt, das dem Reaktor zugeführte Holz die Tendenz zeigt, sich im unteren heißen Teil des Reaktors abzulagern (durch Dichte- und Größenunterschiede zu den Holzkohlepartikeln), sollte eine erhöhte Einlasstemperatur für die primäre Pyrolyse eher ungewollte Resultate zeigen. Das heißt, es sollte zu einer höheren Aufheizrate der Partikel kommen mit einer höheren Teerproduktion und verringriger Holzkohleproduktion.

Abbildung 5.62: Auslasstemperaturen über die Zeit für verschiedene Einlasstemperaturen (Fälle 2 und 11 aus Tabelle 5.3)

Abbildung 5.63 zeigt die Produktgas- und Teerkonzentrationen am Auslass des Reaktors gemittelt über die letzten 10 s. Dabei wird deutlich, dass es zu einer Steigerung der Teerausbeute um ca. 60 % kommt, wobei gleichzeitig auch die Stoffmengenanteile der aus den Teerabbaureaktionen entstehenden Komponenten (Methan und Ethin) steigen. Dies lässt sich auf die erhöhten Reaktortemperaturen zurückführen, die ebenfalls am Auslass des Reaktors zu beobachten sind (siehe Abbildung 5.62).
Die zum Ende der Simulation sinkende Auslasstemperatur geht einher mit einer sinkenden Betttemperatur (siehe Abbildung 5.68). Zusätzlich zeigt Abbildung 5.63 eine niedrigere Stickstoffkonzentration am Auslass, es entstehen also absolut mehr gasförmige Produkte aus dem Betrieb der Anlage in der Simulation von Fall 11 im Vergleich zum Standardfall.

Abbildung 5.63: Über die letzten 10 s der Simulation gemittelte Auslasskonzentrationen der Fälle 2 und 11

Die Abbildungen 5.64 und 5.65 zeigen die zeitlichen Verläufe der Holz- und Holzkohlemassenentwicklung des Falles 11 im Vergleich zum Standardfall. Die zeitliche Holzmassenentwicklung zeigt das erwartete Ergebnis. Es liegt im Fall 11 weniger Holz im Reaktor vor als im Standardfall. Insofern läuft die primäre Pyrolyse im Fall 11 tatsächlich schneller ab. Es fällt zudem auf, dass im Fall 11 die Holzkohle weniger stark abgebaut wurde als im Fall 2. Die Holzkohlemasse im Reaktor kann zum einen vergrößert werden durch die bei der primären Pyrolyse entstehende Holzkohle und zum anderen verkleinert werden durch die Vergasungsmittel Sauerstoff, Wasser und Kohlendioxid. Da nun die primäre Pyrolyse offensichtlich im Fall 11 schneller abläuft, deutet dies auf eine kleinere Holzkohleproduktion pro umgesetzter
Masseneinheit Holz während der primären Pyrolyse hin (eine schnellere Pyrolyse geht einher mit höheren Aufheizraten). Insofern müssen die Reaktionen, die für den Holzkohleabbau verantwortlich gemacht werden können, im Fall 11 deutlich langsamer ablaufen als im Fall 2, da ansonsten die Ergebnisse der Holzkohleentwicklung unplausibel wären. Da die Auslasstemperaturen im Fall 11 größer sind als im Fall 2, bleibt die Vermutung, dass höhere Einlasstemperaturen zu einer vermehrten Oxidation der gasförmigen Pyrolyseprodukte führt und damit weniger Holzkohle mit Hilfe des Sauerstoffs umgesetzt wird. Bestätigen lässt sich die letzte Vermutung in dieser Arbeit nicht, da die Simulation in ihrem jetzigen Zustand keine entsprechenden Daten bereitstellt. Ein Vergleich der Umsätze der einzelnen Reaktionen sollte aber diese Frage klären.

Die zeitlichen Verläufe der Produktgas- und Teerkonzentrationen sind in den Abbildungen 5.66 und 5.67 dargestellt. Der aus Abbildung 5.68 gezeigte Abfall der Betttemperaturen schlägt sich in Abbildung 5.67 auch in höher werdenden Teerkonzentrationen im Auslass nieder.

\[\text{Abbildung 5.64: Gesamtholzmasse über die Zeit (Fälle 2 und 11)}\]
5.2 Simulationsergebnisse

Abbildung 5.65: Gesamtholzkohlemasse über die Zeit (Fälle 2 und 11)

Abbildung 5.66: zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 11)
Abbildung 5.67: Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 11)

Abbildung 5.68: Über den Querschnitt massengemittelte Feststofftemperaturen über die Zeit aufgetragen (ca. 0.146 m über dem Reaktorboden, Fälle 2 und 11)
5.2.8 Einfluss der Partikelgröße des zugeführten Holzes

Die Partikelgröße des zugeführten Holzes ist ein in dieser Arbeit sehr stark vereinfachter Parameter. Es wurde angenommen, dass das zugeführte Holz monodispers als Kugeln zugeführt wird. Dabei wurden in allen Fällen außer dem hier vorgestellten Fall 14 ein Holzkugeldurchmesser von 4 mm angenommen. Der hier vorgestellte Fall betrachtet einen Holzkugeldurchmesser von 2 mm und damit Partikel, die nur ein Achtel des Volumens der Holzkugeln des Standardfalles haben. Um den zugeführten Massenstrom des Holzes konstant zu halten, wurden entsprechend achtmal so viele Holzpartikel im Fall 14 verwendet wie im Standardfall. Im Experiment werden natürlich keine Holzkugeln verwendet und zudem ist der Holzmassenstrom ein polydisperses Partikelgemisch. Kleine Partikel tendieren bei ansonsten gleichen Bedingungen zu höheren Teerproduktanteilen, da die Aufheizung schneller von statten geht (mit entsprechenden Wirkungen auf die Anteile der Produkte der primären Pyrolyse). Zusätzlich wird innerhalb der Partikel die Verweilzeit reduziert, somit

Abbildung 5.69: Auslasstemperaturen über die Zeit für verschiedene Partikelgrößen (Fälle 2 und 14 aus Tabelle 5.3)
kann die sogenannte sekundäre Pyrolyse nicht mehr so effektiv zur intrapartikulären Teerreduktion beitragen.

Abbildung 5.70: Über die letzten 10 s der Simulation gemittelte Auslasskonzentrationen der Fälle 2 und 14

Abbildung 5.69 zeigt vergleichend die zeitlichen Auslasstemperaturverläufe für die Fälle 14 und 2. Auffällig ist die Ähnlichkeit des Temperaturverlaufes des Falles 14 zu den Ergebnissen des Szenarios mit einer erhöhten Lufteingangstemperatur (Fall 11 in Kapitel 5.2.7) und die erhöhten Temperaturen im Vergleich zu Fall 2. Abbildung 5.76 zeigt eine noch deutlichere Ausprägung unterschiedlicher, stationärer Bettemperaturen, bei denen wiederum Fall 2 höhere Temperaturen erreicht. Die zeitlich gemittelten Ergebnisse der Teer- und Produktgaskonzentrationen sind in Abbildung 5.70 aufgezeigt. Auch hier ist die Ähnlichkeit zum Fall 11 sehr stark ausgeprägt - teilweise sehen die Ergebnisse nahezu identisch aus. Im Fall 14 wird allerdings mehr Teer gebildet als im Fall 11, was direkt auf die reduzierte Holzpartikelgröße zurückzuführen ist.

Die zeitlichen Verläufe der Holz- und Holzkohlemassenentwicklung des Falles 14 unterscheiden sich deutlich von denen des Falles 2, wie es die Abbildungen 5.71 und
Die verringerte Holzpartikelgröße führt dazu, dass sich die Holzmasse im Reaktor innerhalb von ca. 10 s auf einen stationären Wert einpegelt (siehe Abbildung 5.71). Insofern bleibt hier zu bemerken, dass Simulationen mit einem polydispersen Holzmasseeintrag bei gleichem Holzmassestrom die Ergebnisse deutlich beeinflussen werden. Die zeitliche Entwicklung der Holzkohlemasse im Fall 14 führt nach 100 s Simulationszeit zu größeren Werten als im Fall 2 und auch zu höheren Werten als im Fall 11.

Abbildung 5.71: Gesamtholzmasse über die Zeit (Fälle 2 und 14)

Bei Zugabe von kleineren Holzpartikeln ist, wie schon erwähnt, wegen der höheren Aufheizraten mit einer absolut größeren Produktion an gasförmigen Komponenten aus der primären Pyrolyse zu rechnen. Diese Gase tragen aufgrund ihres Molvolumens mit zur Fluidisierung der Wirbelschicht bei. Um dies zu verdeutlichen, kann der Bettschwerpunkt in Abbildung 5.73 herangezogen werden. Es zeigt sich, dass beide Maßzahlen für die Bettausdehnung (axialer Schwerpunkt und Betthöhe unter der sich 90 % der Bettmasse befinden) im Fall 14 um einiges größer sind als im Fall 2. Die Bettausdehnung ist im Fall 14 also höher, da mehr Produktgase gebildet werden (sichtbar auch in Abbildung 5.70 anhand der Stickstoffkonzentration).
Korrespondierend mit der frühen Stationarität der Holzmasse im Reaktor zeigen auch die Teer- und Produktgaskonzentrationen in den Abbildungen 5.74 und 5.75 eine sehr frühe Stationarität der Daten. An dieser Stelle kann man, da alle Größen bis auf die Holzkohlemasse ein lang anhaltendes stationäres Verhalten aufweisen, klar sehen, dass die Teerkonzentrationen, auch wenn sie über einen längeren Zeitraum gemittelt stationär aussehen, recht starke Schwingungen aufweisen. Insofern ist es plausibel, dass viele der in dieser Arbeit betrachteten Fälle bei Instationarität der Holzmasse im Reaktor sehr stark schwingende Teersignale aufweisen.

Da das Verhalten des in diesem Kapitel besprochenen Szenarios dem in Kapitel 5.2.7 so ähnlich ist, sind auch die selben Wirkmechanismen wie im Kapitel 5.2.7 heranzuziehen, um die erhaltenen Daten zu deuten.

Abbildung 5.72: Gesamtholzkohlemasse über die Zeit (Fälle 2 und 14)
5.2 Simulationsergebnisse

Abbildung 5.73: Axialer Schwerpunkt und Betthöhe bei 90 % der Feststoffmasse über die Zeit (Fälle 2 und 14)

Abbildung 5.74: Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 14)
Abbildung 5.75: Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 14)

Abbildung 5.76: Über den Querschnitt massengemittelte Feststofftemperaturen über die Zeit aufgetragen (ca. 0.146 m über dem Reaktorboden, Fälle 2 und 14)
5.2.9 Einfluss der Partikeltemperatur des zugeführten Holzes

Die Holzpartikeltemperatur zu Beginn des Abbrandes eines Holzpartikels ist in diesem Kapitel entsprechend Tabelle 5.3 auf 360 K anstelle der 300 K, die in allen anderen Fällen verwendet wurde, gesetzt worden. Der Bereich der möglichen Eintrittstemperaturen ist generell durch das in Kapitel 3.2.7 verwendete Trocknungsmodell begrenzt, da von einer isothermen Verdampfung des Wassers innerhalb des Holzpartikels ausgegangen wird. Dabei wurde die Verdampfungstemperatur auf 373.15 K gesetzt, was der Verdampfungstemperatur von Wasser bei Normaldruck entspricht. Das Thomson'sche Gesetz würde eine klare Abhängigkeit des Verdampfungsdruckes vom Durchmesser der Kapillaren verlangen, was hier nicht berücksichtigt wurde. Zudem impliziert die Verwendung des Normaldruckes, dass die Kapillaren alle nach außen offen sind und dort Normaldruck herrscht. Eine Holzpartikeltemperatur über der hier verwendeten Verdampfungstemperatur des Wassers impliziert, dass kein Wasser mehr im Holzpartikel vorhanden ist. Der Wert der Temperatur der Holzpartikel im Experiment ist nicht bekannt und kann nur geschätzt werden. Das Holz wird im

Abbildung 5.77: Auslasstemperaturen über die Zeit für verschiedene initiale Holztemperaturen (Fälle 2 und 9 aus Tabelle 5.3)
Experiment über eine Förderschnecke in den Reaktor gefahren. Bei den zahlreichen Umbauten am Reaktor wurde allerdings festgestellt, dass innerhalb der Förderschnecke kondensierte Pyrolyseprodukte abgelagert wurden, was entweder auf eine schon in der Förderschnecke beginnende primäre Pyrolyse des Holzes zurückzuführen ist oder darauf, dass Produktgas aus dem Reaktor in die Förderschnecke einströmt und dort kondensiert. Im Modell sollte die erhöhte Temperatur des Holzeintrages einen verringerten Wärmebedarf zur Aufheizung des Partikels zur Folge haben und damit zu lokal höheren Temperaturen im Reaktor führen.

Abbildung 5.78: Über die letzten 10 s der Simulation gemittelte Auslasskonzentrationen der Fälle 2 und 9

Abbildung 5.77 zeigt die Auslasstemperaturen der Fälle 2 und 9 über die Zeit. Der Fall 9 zeigt tendenziell etwas niedrigere Temperaturen als der Fall 2. Die Konzentrationen der Produktgase und Teere in Abbildung 5.78 verdeutlichen, dass der Fall 9 höhere Werte an Teeren, Teerabbauprodukten und den Vergasungsprodukten Kohlenmonoxid und Wasserstoff hervorbringt als der Fall 2. Die Stickstoffkonzentration lässt den Rückschluss zu, dass in Fall 9 insgesamt mehr Produktgas frei wird.
Abbildung 5.79 und 5.80 zeigen die zeitlichen Verläufe der Holz- und Holzkohlemasse der Fälle 2 und 9. Beide Fälle zeigen nach 100 s eine in etwa gleiche Holzmasse im Reaktor, d.h., eventuelle Unterschiede in der gesamten Produktgasentwicklung könnten nicht an der Menge des umgesetzten Holzes liegen. Da die Holzkohleentwicklung der beiden Fälle in etwa parallel abläuft, lassen sich auch hier keine Rückschlüsse auf Unterschiede in Abbildung 5.78 ziehen.

Abbildung 5.80: Gesamtholzkohlemasse über die Zeit (Fälle 2 und 9)

Abbildung 5.81: Zeitlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 9)
Abbildung 5.82: Zeitlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 9)

Abbildung 5.83: Über den Querschnitt massengemittelte Feststofftemperaturen über die Zeit aufgetragen (ca. 0.146 m über dem Reaktorboden, Fälle 2 und 9)
5.2.10 Einfluss der Kollisionsparameter

Abbildung 5.84: Auslasstemperaturen über die Zeit für verschiedene Kollisionsparameter (Fälle 2 und 5 aus Tabelle 5.3)

Innerhalb der Modellierung von Gas-Feststoff-Strömungen hat das Kollisionsverhalten der Partikel eine wesentliche Bedeutung. Variationen in den Kollisionsparametern können zu stark unterschiedlichen Ergebnissen bzgl. der Art und Weise der Fluidisierung führen. In dieser Arbeit ist das Kollisionsverhalten innerhalb der Simulation stark vereinfacht abgebildet worden. So wurden die Partikel als kugelförmig angenommen ohne dabei zu zerbrechen bzw. zu verkleben. Im Experiment sind die Partikel nicht kugelförmig, unter Umständen können die experimentell verwendeten Partikel nicht einmal konvex sein. Das Kollisionsverhalten beliebiger Körper ist deutlich schwieriger zu beschreiben als das von Kugeln, da je nachdem wie der Körper aussieht, damit zu rechnen ist, dass Mehrfachkontakte zwischen zwei Partikeln auftreten, dass flächige anstelle von punktuellen Berührungen vorliegen und die Orientierung der Partikel selbst eine Rolle spielt (dies zieht die Berücksichtigung weiterer Bewegungsgleichungen der Partikel für die Orientierung nach sich). Das Berücksichtigen von asymmetrischen Körpern bei der Berechnung der Kollisi-
onsdynamik führt zwangsläufig dazu, dass der Zeitschritt der Partikelbewegung an die Rotationsgeschwindigkeit der Partikel gebunden ist. Schlussfolgernd lässt sich festhalten: Kollisionsdynamiken beliebiger Körper sind daher auch beliebig kompliziert.

Um überhaupt eine Aussage über die Sensitivität der hier vorliegenden Simulation bzgl. der Kollisionsparameter der Kollision kugelförmiger Partikel zu erhalten, wurden die Parameter der Kollisionsberechnung wie in Tabelle 5.3 aufgezeigt variiert. Die Verlustbeiwerte der Partikel-Partikel- und Partikel-Wand-Kollisionen wurden von 0.8 auf 0.6 (Partikel-Partikel) bzw. von 0.6 auf 0.4 (Partikel-Wand) ausgehend vom Standardfall geändert. Niedrigere Verlustbeiwerte führen im Allgemeinen zu einer stärkeren Clusterbildung in der Wirbelschicht.

Abbildung 5.85: Über die letzten 10 s der Simulation gemittelte Auslasskonzentrationen der Fälle 2 und 5

Abbildung 5.84 zeigt die Auslasstemperaturen der beiden Fälle. Beide Fälle haben in den ersten 70 s ähnliche Temperaturverläufe. In den letzten 30 s entwickeln sich die Temperaturen in unterschiedliche Richtungen, wobei der Fall 5 eine um im Mittel
16 K höhere Temperatur aufweist als der Fall 2 (siehe Tabelle 5.4). Einhergehend mit der Temperatursteigerung in den letzten 30 s zeigt Abbildung 5.82 steigende Teerproduktionen und Abbildung 5.81 steigende Kohlenmonoxid- und sinkende Kohlendioxidkonzentrationen. Zusammenfassend zeigt Abbildung 5.85 den direkten Vergleich der über die letzten 10 s gemittelten Produkt- und Teerkonzentrationen am Auslass des Reaktors. Fall 5 zeigt gegenüber Fall 2 eine absolut höhere Menge an Produktgasen (siehe Stickstoff in Abbildung 5.85) und höhere Konzentrationen aller anderen beteiligten Komponenten. Die höhere Produktgasausbeute in Fall 5 ist allerdings aufgrund der höheren Holzmasse im Reaktor auch zu erwarten (siehe Abbildung 5.86). Die Holzkohlemasse im Reaktor in Abbildung 5.87 entwickelt sich in beiden Fällen sehr ähnlich und lässt daher keine weiteren Rückschlüsse zu. Die gesenkten Verlustbeiwerte schlagen sich also zumindest bezüglich des instationären Charakters dieses Szenarios in höheren Produktgasausbeuten nieder. Weder die Betttemperaturen noch die Schwerpunktdaten der Bettmasse der beiden hier diskutierten Fälle zeigen, entgegen den Erwartungen, deutliche Unterschiede zum Standardfall. Aus diesem Grund werden sie hier nicht gezeigt. Die Übertragung des Verhaltens inerter Wirbelschichten auf das reaktive Wirbelschichten ist also in diesem Punkt zweifelhaft.
Abbildung 5.86: Gesamtholzmasse über die Zeit (Fälle 2 und 5)

Abbildung 5.87: Gesamtholzkohlemasse über die Zeit (Fälle 2 und 5)
Abbildung 5.88: Zeittlicher Verlauf der Produktgaskonzentrationen am Reaktorauslass (Fall 5)

Abbildung 5.89: Zeittlicher Verlauf der Teerkonzentrationen am Reaktorauslass (Fall 5)
5.2.11 Partikelhistorien in einer Wirbelschicht

Einer der Vorteile der Euler-Lagrange-Simulationen gegenüber anderen vereinfachten Simulationsarten (Euler-Euler, Zell- und Zonenmodellen etc.) ist der Zugriff auf die zeitlich aufgelösten Vorgänge einzelner Partikel. Dies soll hier beispielhaft anhand der Prozesse der Aufheizung, Trocknung, Pyrolyse und Vergasung gezeigt werden.

Das verwendete Szenario ist den Fällen 6 und 14 ähnlich. Es werden bei identischen Bedingungen wie im Standardfall 10.33 Holzpartikel/s eines Durchmessers von ca. 2.11 mm in den Reaktor eingebracht. Der Partikeldurchmesser wurde so gewählt, dass das Partikel nach der Schrumpfung den Durchmesser der größten verwendeten Holzkohlepartikel hat (1.5 mm), damit das Partikel zumindest nach der Pyrolyse fluidisiert werden kann. Die Simulationsdauer der hier gezeigten Daten beträgt nur ca. 84 s, da die Daten hier aus einer überarbeiteten Version der Simulation hervorgehen, die ein eindeutiges Identifizieren einzelner Partikel erlaubt.

Abbildung 5.90: Zeitlicher Verlauf der Partikeltemperatur (jedes 50ste Holzpartikel)

Abbildung 5.90 zeigt den Temperaturverlauf einiger Holzpartikel im Reaktor (es wird nur jedes 50ste der eingebrachten Holzpartikel gezeigt), wobei der Start der Histo-

Sobald die Pyrolyse begonnen hat, fällt der Holzanteil und der Holzkohleanteil steigt monoton (siehe Abbildung [5.95]). Nach Ablauf der Pyrolyse heizen sich die Partikel weiter auf und erreichen die Betttemperatur. Diese dritte Phase der Aufheizung ist mit einer höheren Heizrate verbunden, da die primäre Pyrolyse als endotherme
5.2 Simulationsergebnisse

Abbildung 5.91: Zeitlicher Verlauf der Partikelmasse (jedes 50ste Holzpartikel)

Abbildung 5.92: Zeitlicher Verlauf der Partikeldichte (jedes 50ste Holzpartikel)
Reaktion modelliert wurde und daher der Aufheizung entgegengewirkt hat, was nach Vollendung der primären Pyrolyse nicht mehr passiert.

Abbildung 5.90 zeigt, dass es grob eingeteilt zwei Typen von Partikeln gibt: Partikel die schnell aufheizen und schnell pyrolysieren und deren Massenabbau (siehe Abbildung 5.91) daher sehr schnell von statten geht. Bei der zweiten Klasse von Partikeln laufen die Vorgänge langsamer ab und es kommt zu einer deutlich ausgeprägten Schulter im Temperaturverlauf der Partikel bei etwa 700 K (siehe Abbildung 5.90). Diese Schulter hängt unmittelbar mit der Endothermie der primären Pyrolyse zusammen. Die verwendete Kinetik der primären Pyrolyse zeigt eine recht starke Abhängigkeit der Holzkohleausbeute von der Aufheizrate und man kann daher in Abbildung 5.92 Dichteunterschiede von ca. 100 $\frac{kg}{m^3}$ (nach Beendigung der Pyrolyse) sehen, was natürlich direkt auf die Fluidisierung der Partikel zurückwirkt.

Abbildung 5.93: Zeitlicher Verlauf des Partikelwasseranteils (jedes 50ste Holzpartikel)

Die Gründe dafür, dass man die einzelnen Partikel nur schwer in eine vereinfachte, historienfeste Partikelklasse einteilen kann, sollen anhand der Abbildungen 5.96 bis 5.102 erläutert werden. Es werden drei beliebige Partikel hinsichtlich ihrer zeitlichen

Sowohl die finale Temperaturerhöhung von Partikel 1 als auch von Partikel 2 treten zeitgleich mit dem Abheben der Partikel vom Reaktorboden auf. Die niedrige Temperatur direkt am Reaktorboden ist ein Effekt, der durch die Vernachlässigung der Wärmeleitung bzw. Wärmestrahlung innerhalb der Partikel bzw. zwischen Re-
aktorwand und Partikel auftritt. Sehr dicht am Reaktorboden liegt die räumlich interpolierte Außentemperatur eines Partikels sehr nahe an der Lufteinlasstempe-
tur, da der Reaktorboden nicht als Festkörper modelliert wird und damit auch keine eigene über der Lufteingangstemperatur liegende Temperatur hat. Eine erhöhte Re-
aktorwandtemperatur würde über Mechanismen wie Wärmeleitung und Strahlung das Holz schneller pyrolysieren. Zusätzlich korreliert das Abheben von Partikel 1 und 2 in Abbildung 5.101 auch gut mit dem Unterschreiten der ursprünglich angesetzten Holzkohledichte von 450 kg/m^3 (siehe Abbildung 5.98).

Der Massenabbau der Partikel 2 und 3 in Abbildung 5.97 sieht sehr ähnlich aus und erfolgt deutlich langsamer als im Fall des Partikels 1 und führt daher auch zu größeren scheinbaren Partikeldichten als für Partikel 1, wie man Abbildung 5.98 entnehmen kann. Der mit dem Massenabbau der Partikel verbundene Aufbau der Holzkohle innerhalb der Partikel in Abbildung 5.99 sieht für alle drei Partikel mit zunehmender Partikelzahl langsamer werdend aus. Während in Partikel 1 die Holz-
kohle sehr schnell entsteht, entsteht sie in Partikel 2 und 3 über einen deutlich längerem Zeitraum und damit mit einer höheren Ausbeute an Holzkohle. Das sehr leichte Partikel 1 bewegt sich entsprechend seiner Dichte in Abbildung 5.102 zur Bettoberfläche. Partikel 2 folgt Partikel 1 zeitlich versetzt zur Bettoberfläche, da auch die scheinbare Dichte von Partikel 2 kleiner als die angesetzte Dichte der Partikel 2 umgebenden Holzkohlepartikel ist.

Ein wesentlicher Aspekt dieser Ergebnisse ist, dass das gemittelte Abbrandverhalten der Holzpartikel nur schwer mit Hilfe einer einzigen Partikelhistorie beschrieben werden kann, wenn man nicht wesentliche Unterschiede im Partikelverhalten vernach-
lässigen will. Für diesen Zweck ist es zumindest notwendig, mehrere repräsentative Holzpartikel zu betrachten, um mit diesen das gemittelte Abbrandverhalten wieder-
zugeben. Das Beschreiben von Vorgängen an einzelnen Partikeln mit Hilfe repräsen-
tativer Partikel ist in einigen Bereichen der Simulation von Mehrphasenströmungen gängig und führt häufig zu einem erheblich gesteigerten Anwendungsbereich derartiger Simulationen, da der Rechenaufwand meist sehr stark sinkt und somit Anlagen im industriellen Maßstab simulierbar werden.
Abbildung 5.95: Zeitlicher Verlauf des Partikelholzkohleanteils (jedes 50ste Holzpartikel)

Abbildung 5.96: Zeitlicher Verlauf der Partikeltemperatur dreier ausgewählter Holzpartikel
Abbildung 5.97: Zeitlicher Verlauf der Partikelmasse dreier ausgewählter Holzpartikel

Abbildung 5.98: Zeitlicher Verlauf der Partikeldichte dreier ausgewählter Holzpartikel
Abbildung 5.99: Zeitlicher Verlauf des Partikelholzkohleanteils dreier ausgewählter Holzpartikel

Abbildung 5.100: Zeitlicher Verlauf des Partikelholzanteils dreier ausgewählter Holzpartikel
Abbildung 5.101: Zeitlicher Verlauf der radialen Position dreier ausgewählter Holzpartikel

Abbildung 5.102: Zeitlicher Verlauf der axialen Position dreier ausgewählter Holzpartikel
5.2.12 Vergleich der Simulationsergebnisse mit experimentellen Daten bzw. anderen numerischen Modellen

Abbildung 5.103: Zeitlicher Verlauf der Reaktortemperatur für verschiedene Höhen (experimentelle Daten)

sollen im Folgenden mit denen von Gerber u. a. (2010) und experimentellen Daten verglichen werden und die Unterschiede analysiert werden. Als maßgeblicher Fall zum Vergleich mit den Szenarien gilt hier der Fall 2 aus Tabelle 5.3.

Abbildung 5.104: Zeitlicher Verlauf der Reaktortemperatur für verschiedene Höhen des Standardfalles)

Abbildung 5.103 zeigt typische Temperaturverläufe auf verschiedenen Höhen innerhalb der Reaktors. Die Daten zeigen die Startphase des Betriebs inkl. Aufheizen und deuten auf ein stationäres Temperaturprofil zwischen Minute 100 und Minute 120 hin. Nach Minute 120 wurden andere Tests an der Anlage durchgeführt. Es zeigt sich erstens, dass, abgesehen von der in Abbildung 5.103 gezeigten Einlasstemperatur, die Temperatur umso niedriger ist, je höher sie im Reaktor gemessen wird und das die Temperaturen bei 150 mm, 325 mm, 500 mm sehr dicht beieinander liegen. Die Temperaturen bei 700 mm sind etwas niedriger (ca. 20 K) als die drei zuvor genannten und die Temperatur bei 900 mm ist nochmal um ca. 100 K niedriger.

Abbildung 5.104 zeigt die Gastemperaturdaten der Simulation für den Standardfall auf den selben Höhen wie in Abbildung 5.103. In der Simulation sieht das Geschehen
ähnlich zu den hier gezeigten experimentellen Daten aus. Die Temperaturen der ersten drei Höhenstufen liegen alle dicht beieinander, allerdings ca. 90 K niedriger als im Experiment. Die Temperaturen für die Höhenstufen 700 mm und 900 mm liegen in der Simulation ebenfalls dicht beieinander, was sie im Experiment nicht taten. Die Absolutwerte der Temperaturen bei 900 mm zeigen eine sehr gute Übereinstimmung zwischen Experiment und Simulation.

Abbildung 5.105: Aus 19 verschiedenen Messungen gemittelte Gaszusammensetzung des Reaktors (experimentelle Daten)

wechselt von einphasig zu zweiphasig und wird damit intensiver. Da die Temperaturrandbedingungen für die Wände mit relativ großen Unsicherheiten behaftet sind, ergibt sich ein weiterer Einfluss.

Abbildung 5.106: Gaszusammensetzung des Standardfalles ohne Teer (Simulationsdaten)

Vergleicht man die Ergebnisse der experimentell gemessenen Molenfraktionen aus Abbildung 5.105 mit denen des Falles 2 aus Abbildung 5.106 so treten einige Unterschiede auf. Zum einen ist der Anteil an Wasser im Produktgas bei den experimentellen Werten unbekannt, d.h., dass im Folgenden wasserfreie Molenanteile mit nicht wasserfreien Stoffmengenanteilen verglichen werden. Allerdings ist auch der Produktgasanteil an Stickstoff an der Anlage nicht messbar, was implizit bedeutet, dass die Stickstoffdaten in Abbildung 5.105 durch Summenbildung der anderen direkt gemessenen Stoffmengenanteile erfolgt. Der Stickstoffanteil in Abbildung 5.105 ist also vielmehr als Summe aus Stickstoff- und Wasseranteilen (und ggf. anderen nicht gemessenen Komponenten) zu deuten, da der Wasseranteil ebenfalls nicht messbar ist im Reaktor.

Der summierte Wert der Anteile aus Wasser und Stickstoff in Abbildung 5.106 (Simulationsdaten) liegt im unteren Mittelfeld der Stickstoffdaten aus Abbildung 5.105 (experimentelle Daten). Die Ähnlichkeit der Stickstoffwerte kann als Beleg für die Ähnlichkeit der Produktgasmenge gedeutet werden, da sich Stickstoff weitestgehend inert verhält. Die Werte der Hauptvergasungsprodukte Kohlenmonoxid und Wasserstoff in der Simulation sind höher als die der experimentellen Daten in Abbildung 5.105. Kohlenmonoxid hat ca. 2 % höhere Molenanteile als die Maximalwerte aus Abbildung 5.105 und Wasserstoff hat Werte, die am oberen Ende der Maximalwerte aus Abbildung 5.105 liegen. Die Simulationsdaten für Kohlendioxid liegen im oberen Bereich der Minimalwerte der experimentellen Daten für Kohlendioxid. Da die Wasseranteile nicht experimentell bestimmt wurden, bleibt hier die Vermutung, dass die erhöhten Werte an Kohlenmonoxid und Wasserstoff sowie die verringerten Werte an Kohlendioxid auf zu schnelle Ratenausdrücke der heterogenen Vergasungsreaktionen zurückzuführen sind.

Starke Unterschiede zwischen Simulationsdaten und experimentellen Daten zeigen sich bezüglich der Kohlenwasserstoffanteile im Produktgas. Da Methan in dieser Arbeit nicht durch das Cracken der Teere gebildet werden kann und Ethin diese Rolle übernommen hat, sind die Simulationsdaten nur in Bezug auf Massenanteile aussagekräftig, da diese durch die zugrundeliegenden Modelle gegeben sind. Um Stoffmengenanteile aus Massenanteilen zu berechnen, muss die gesamte Mischung
bekannt sein. Insofern beeinflusst die Wahl der beteiligten Stoffe auch die Stoffmen-
genanteile über die unterschiedlichen Molmassen der Komponenten.

Ein weiterer Fall aus der Arbeit von Gerber u. a. (2010), der sich mit den Ergebnissen dieser Arbeit vergleichen lässt, ist die Variation des zugeführten Holzmassenstromes des Reaktors (in dieser Arbeit die Fälle 2, 6, 7 und 8 in Kapitel 5.2.3). Dabei wird hier nicht auf den Fall 8 dieser Arbeit eingegangen, da in diesem Fall die Ergebnisse einen stark instationären Charakter haben und sich daher nicht für einen Vergleich
eignen. In der Arbeit von Gerber u. a. (2010) entstehen bei einer Vergrößerung der Holzzufuhr um \(\frac{2}{7} \) gegenüber dem Referenzfall insgesamt mehr Produkte (geringerer Anteil an Stickstoff im Auslass des Reaktors) und höhere Anteile der Komponenten \(\text{H}_2, \text{CH}_4, \text{CO}, \text{H}_2\text{O} \) und des Teers. Lediglich der Anteil des Kohlendioxids verringert sich leicht. Die Auslasstemperatur bei einer Vergrößerung der Holzzufuhr erhöht sich um 6 K. Bei einer Verringerung der Holzzufuhr um \(\frac{2}{7} \) ändern sich die Ergebnisse dahingehend, dass weniger Produktgase entstehen und die Komponenten \(\text{H}_2, \text{CH}_4, \text{CO}, \text{H}_2\text{O} \) und der Teer in verringerten Anteilen im Auslass vorliegen. Der Anteil des Kohlendioxids ändert sich wiederum kaum, ist aber größer als im Referenzfall. Die Auslasstemperatur sinkt verglichen mit dem Referenzfall um 12 K. Die Temperatur und der Anteil des Kohlendioxids im Auslass sind also in dem untersuchten Bereich relativ unabhängig vom zugeführten Holzmassenstrom im Rahmen des hier vorgestellten Modellers.

Zusammenfassung

In dieser Arbeit wurde ein Euler-Lagrange-Verfahren auf Basis eines Diskreten Elemente Ansatzes erstellt. Die Partikelbewegung wird auf Basis empirischer Beziehungen für die Widerstandskraft und mit Hilfe der Beziehungen für die Gravitationskraft und den Auftrieb berechnet. Der Partikelabbrand wird mit Hilfe eines nulldimensionalen Partikelmodells modelliert. Es wurden Modelle für die Aufheizung, die Trocknung, die Pyrolyse und die Vergasung berücksichtigt. Das entstandene Simulationstool betrachtet das Vorgehen innerhalb des Wirbschichtreaktors vereinfacht als zweidimensional.

Der Einzelpartikelcharakter der partikulären Phase wird zum Beispiel durch den partikelspezifischen und veränderlichen Umsatzgrad der Holzkohle berücksichtigt. Mit Hilfe dieser Modelle kann die Vergasung auf Basis des vereinfachten Partikelsystems wiedergegeben werden. Das Partikelsystem ist dahingehend vereinfacht, dass zu Beginn der Simulation je ca. 6 000 1 mm und 1.5 mm große Partikel der Holzkohle als Bettmasse angenommen wurden. Da es sich bei einer Euler-Lagrange-Methode um eine partikelbasierte Methode um eine partikelbasierte Methode handelt, wurden diverse Ergebnisse bzgl. der festen Phasen dokumentiert und auch der zeitliche Verlauf des Partikelabbrandes einzelner Partikel untersucht.

Die Gasphase wurde mit Hilfe eines Grobstrukturansatzes zur Beschreibung der turbulenten Schwankungen und unter Berücksichtigung eines einfachen Systems an globalen Reaktionsgleichungen modelliert. Das entstandene Simulationstool ist parallelisiert worden und erfolgreich zur Berechnung der in dieser Arbeit gezeigten Ergebnisse
nisse verwendet worden. Bei der Parallelisierung wurden auch die Partikel-Partikel-Kollisionen und die Berechnung der partikulären Volumenanteile berücksichtigt.

6.1 Ausblick

Zum anderen wurden die Wärmeleitung innerhalb der partikulären Phase und die Wärmestrahlung nicht berücksichtigt. In wie fern die Gastemperatur durch die Strahlung der durchströmten Packung der Partikel beeinflusst wird, ist unklar und sollte in weiteren Untersuchungen erfasst werden. Die Wärmeleitung zwischen den Partikeln hatte sich schon während der Arbeit an der Publikation Gerber u. a. (2010) als be-

Des Weiteren ist die Messung von Feststofftemperaturen durch evtl. Ziehen von Partikelproben aus dem Reaktor ein gutes Mittel, um die Temperatur der Partikel und damit auch die Gültigkeit der Modelle innerhalb der Simulationen zu beurteilen. Die Betthöhe wiederum kann als Indikator für die Fluidisierung der Partikel und damit für die Gültigkeit der fluidynamischen Annahmen herangezogen werden.

bei Optimierungsaufgaben in Chemie und Verfahrenstechnik, Universität Heidelberg, Diss., 1999

[Seebauer 1999] Seebauer, V.: Experimentelle Untersuchungen zur Pyrolyse von Kohle und Holz, Graz University of Technology, Diss., 1999

