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Zusammenfassung

In den kiihlen, ausgedehnten Hiillen weitentwickelter Sterne auf dem asymptotischen
Riesenast (AGB) bilden sich kleine Festkorper. Dieser Staub fiihrt durch den auf ihn
wirkenden Strahlungsdruck zu einem massiven Materiestrom bzw. Wind. Eine reali-
stische Beschreibung dieses aus vielen chemischen Komponenten bestehenden Materie-
stroms erfordert die konsistente Behandlung der Hydrodynamik, der Staubbildung, des
Strahlungstransports und der Chemie der Gasphase aller am Wind beteiligten Kompo-
nenten. Das langfristige Ziel, das dieser Arbeit zu Grunde liegt, ist ein Mehrkomponen-
ten-Hydrodynamik-Modell, das den Materiestrom sowohl der einzelnen unterschiedli-
chen Staub bildenden Molekiile, als auch das der daraus gebildeten Staubteilchen mit
den unterschiedlichen Gréflen adédquat beschreibt. In dieser Arbeit wird ein Teilaspekt
behandelt, der die Wechselwirkung zwischen der Gasphase und dem Staubanteil im be-
trachteten Materiestrom untersucht. An Hand eines stationéren, sphérisch symmetri-
schen Modells wird in einem ersten Schritt das Verhalten des Gleichungsystems betrach-
tet. Die Wechselwirkungen der Staub- mit der Gasphase werden durch Austauschterme
dargestellt, die sich aus der detaillierten Darstellung der hydrodynamischen Gleichun-
gen ergeben. Es werden die speziellen Anforderungen und die daraus resultierenden
Schwierigkeiten fiir die numerische Behandlung des erweiterten Gleichungssystems auf-
gezeigt.



Abstract

The outer regions of the cool, extended shells of evolved stars on the asymptotic giant
branch (AGB) are the source of small grains. Driven by radiation, the newly formed
dust leads to a massive outflow, respectively wind from the star. In order to model
this outflow in a realistic way, a consistent description of hydrodynamics, dust forma-
tion, radiative transfer, and chemistry of the gas phase with all involved components is
needed. In the long term, the basic goal consists in a multicomponent model of hydro-
dynamics including all dust-forming molecules as well as their successor dust particles
with individual size and composition. The part of the project exploring the interac-
tions between gas and dust in the outflow is subject matter of this work. Based on
a stationary model in spherical symmetry, the behaviour of the underlying system of
equations is studied. Interactions between the gas and the dust phase are introduced by
coupling terms derived from the detailed elaboration of the hydrodynamic equations.
The specific conditions and the resulting difficulties for the numerical treatment of the
extended system of equations are discussed.



Chapter 1

Introduction

At the end of their lives, all stars lose material in form of excessive temporally non-
regular eruptions, explosive like novae or supernovae or in the form of massive winds.
These materials form new stars and planets or other interplanetary bodies. Stars of
spectral type K, M, S, or C, with a surface temperature lower than that of the Sun, so
called Late Type Stars, are the most important source of interstellar material in the
universe. The gas effusing from these stars is cold and neutral and mainly manifests
as molecules. The outflow cools down by expansion and forms condensates of heavy
elements at temperatures lower than 1000 K. At the moment where the temperature in
the outflow is sufficiently low and the density of condensible material is high enough, its
dynamics will be dominated by radiation pressure. According to the dust-composition
the grains react to the stellar radiation and therefore may exhibit a large radiation
pressure. The gain of momentum due to the dust driven wind is partially transferred
to the surrounding gas via collisions. Observed shells around Late Type Stars are com-
posed of condensate originating from stellar outflows in form of a dense, slow wind with
potential high mass loss rates.

In general, models of physics of circumstellar envelopes treat the gas-dust complex as
an entity assuming gas and dust are completely coupled by friction. Indeed, considering
this coupling as not preassumed, this leads to another description of the problem. Dif-
ferent species and sizes of dust grains implicate different force terms due to interactions
between different species and the gas as well as the radiation field due to the diverse
nature of the considered material. In consequence, any model of physics of circum-
stellar envelopes should include the behaviour of every constituent concerning gas and
dust species as well as the size of the considered dust particle. However, these effects
are commonly neglected. This work deals with the feasibility of a multicomponent
description, and attempts to extend the knowledge of the possibilities of modelling the
outflow of AGB-stars. The purpose consists in analysing both the mathematical and
technical difficulties accompanying the computation of a system of highly non-linear
differential algebraic equations (DAE) in an overdetermined system. To begin with,

11



12 CHAPTER 1. INTRODUCTION

the applied equations are considered in the case of a stationary, spherically symmetric
outflow.

In order to obtain an extensive treatise of the effects due to a multicomponent medium,
the coupled system of conservation equations has to be extended by particular equa-
tions for each involved species and the subsequent resulting coupling terms. Whether
the implementation of a multicomponent description is successfull or the method fails,
the potential of an enhancement applying the multicomponent description compared
to the previous applied models must be questioned and discussed.

Dust formation in circumstellar shells of C-stars is studied by e.g. H.-P. Gail, E.
Sedlmayr. They investigated the dust formation by a spherically expanding stationary
flow using a wind equation which passes dust driven through the sonic point. Dust
formation is devised in a modified form by using the moments of the local size distribu-
tion of the dust particles. The flow consists of one component, where dust and gas are
completely coupled by friction, see e.g. [46], [48], [52], [51] [35], [100], [50], [49], [54],
[98], [47], and [99]. I. Cherchneff et al. focused on the chemistry of dust condensation
simulating the temperature, density, and velocity profiles of evolved stellar envelopes.
They used a theoretical formalism capable of describing the average steady gas density
and flow velocity, cf. [16], [17], [19], and [18].

The first investigation into the outflow in winds of evolved stars on the asymptotic
giant branch (AGB) with respect to the two-fluid nature was done by D. Kriiger [77].
His studies comprise the influences of interactions between gas and dust in a C-rich
environment.

Several subsequent investigations deepened this subject, given that radiative accelera-
tion of newly-formed dust grains and transfer of momentum from the dust to the gas
plays an important role for driving winds of AGB-stars.

The role and effects of the gas-dust interaction on the mass loss and wind formation
are studied in detail the effects of the grain drift in time dependent models by e.g.
Sandin, [94], [95], [96].

Y. Simis et al. presented two-fluid time-dependent hydrodynamics in spherical symme-
try with included equilibrium gas chemistry as well as grain nucleation and growth, [102].

In Chapter 2, an overview of the theoretical part is given. It comprises the hydro-
dynamics, the dust formation, and a short survey of radiation transfer. The treatment
of hydrodynamics includes the special approach with regard to the topics of the work,
i.e. the coupling between the gas and the dust phase determined by derived coupling
terms. These coupling terms are deduced from the completely elaborated conservation
equations of mass, motion, and energy. The section describing dust formation involves
the thermodynamics, as well as the classical nucleation theory completed by the mo-
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ment equations representing the local size distribution of the dust particles.

The numerical treatment of the equations imports characteristics beyond the common
treatment of a system of ordinary differential equations. These will be introduced in
Section 2.4.

The Chapter 3 concentrates on the works with comparable aim, where coupling terms
are introduced, describing interactions between gas and dust. Several examples are
presented.

The purpose of this work is subject of Section 4.1. The applied equations with the
fully derived terms are introduced as well as the differences from previous works. A
program code for the single fluid model was developed which utilises the explicit Euler
method. Subsequent, the model was extended by the multicomponent equations. Fi-
nally, the results comprise the difficulties resulting from the considered complexity of
the system and the conclusion for the treatment of multicomponent fluids.



14

CHAPTER 1. INTRODUCTION



Chapter 2

Theoretical Background

An investigation of dynamical behaviour of circumstellar dust shells starts by appoint-
ing the equations to model the complex of hydrodynamics, dust formation, radiative
transfer, and chemistry of the gas phase. The modeling results in a simultaneous solu-
tion of a coupled system of partial differential equations in conjunction with the equa-
tions of the dust-complex with chemistry. These equations are completed by algebraic
state equations like pressure or describing material properties like opacity. Furthermore
these equations depend on the temperature structure which is specified by solving the
radiative transfer. The influence of multicomponent gas and dust composite on the
coupled system of equations i.e. the interaction between gas and dust is expressed by
coupling terms. Figure 2.1 shows the correlation diagram of the coupled problem of a

dust-driven wind.

2.1 Hydrodynamics

In general, conservation of any physical quantity © may be described in the following
way [1] according to the Reynolds transport theorem

% udV:—/f(u)~ndA+/ng, (2.1)
%4 )% \%4

wherein f(u) denominates the flow, g the source term, V' the considered volume and n
the normal vector of the surface A. With the Gauss theorem

/f(u) - ndA= /v~f(u) dv, (2.2)
\%

)%

equation (2.1) leads to

/(aat“ b fu) — g) v =0, (2.3)
14

15
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Figure 2.1: The coupled problem of a dust-driven wind (adopted from Winters et

al. [109] )
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As this relation is valid for any arbitrary volume, the equation may be written in
differential mode

%u + v-f(u) = g. (2.4)

By neglecting viscosity, vorticity, and heat conduction, the Euler equations of gas dy-
namics can be applied to describe stellar outflows. The following equations describe
the nonlinear conservation laws of gas dynamics in their common use. In addition of
the usually applied equations, new terms are inserted, describing the interactions be-
tween the several components of the gas and the dust phase. The complete elaboration,
leading to the newly derived terms is examplarily given for the gas component in the
Appendix A.

2.1.1 Equation of Continuity

The equation of continuity emanates from mass conservation after the Reynolds trans-
port theorem. If V' is a volume element of a fluid with density p(¢) the mass m(t) can
be obtained by integration

mit) = / o(t) dV. (2.5)

The mass flow per unit time through an infinitesimal surface element is the mass flux
density p(t) v dA. With dA = n dA, wherein n is the normal of the surface, the
equation turns into

p(t) v(t) - dA = p(t) v(t) -n dA. (2.6)

For mass conservation it is essential that the amount of mass leaving the surface of V/
in direction of n dA is equal to the entire change of mass in the considered volume, i.e.

%m(t) = % / p(t) dV = — / p(t) v-n dA. (2.7)

\% oV
Under the condition that p is sufficiently smooth (e.g. derivation in terms of t be-
ing limited), the source term g equals zero and applying the differential conservation
equation (2.4), mass conservation can be written as

0
5P+ v (v()p(t)) = 0. (2.8)
Taking into account time and local dependence, mass conservation takes the following
form 9
ap(r, t)+ v - (v(r,t) p(r,t)) = 0. (2.9)

In case of an extensive chemical mixture, following [58], the equation can be split into
the main constituents namely gas and dust

O pelest) + 7 (vl 1) pules 1)) = agle, 1) (210)
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o palest) + 7+ (Va(r, ) palr,0) = aa(r,) 2.11)

The exchange terms ¢ mean that condensation leads to a depletion of condensible
material in the gas component and to an increase of condensed material of the dust
component. This has to be taken into consideration by solving the mass conservation
equations. With the homogeneous nucleation rate J, (2.120), (2.126) the exchange term
describing the depletion of condensible material in the gas component is the following
mass flux density

gs(r,t) = —Ju(r, t)maq, (2.12)

where myq is the mass of the cluster of the condensed material, expressed by the volume
density of the considered dust species multiplied by the average particle volume of the
cluster as given in equation (2.128)). On the other hand, condensed material equals to
a depletion of condensible material. This leads to

qa(r,t) = —qg(r,t) = Ju(r, t)mq. (2.13)

At last, the equations may be written as a sum over all their components, with m, the
mass of the considered species and n, its number density in the flow. Each gas species
is labeled by 7, between 1 and I, each dust species by 8 and each species 3, between 1
and B, is also subdivided by its size o between 1 and A?, the biggest size bin of the
species 5. Thus,

ngng = pg(r, 1) (2.14)

and
B AP

> > my(a®)ng® (x,1) = par,t), (2.15)

A=1a=1
where a® is the radius of the grain of size «, assumed to be of spherical shape.

Every component can be considered individually with respect to the dependency of
time ¢ and location r. So, for each gas component ¢ the mass conservation equation

gives
0 z n’ i1 ) i
i (1) + 7+ (i (x, )1 (x, 1)) = g (e, 1), (2.16)
And for the dust components 8 with respect to the size « one obtains:
0 B oy00
() )+
V- (my(a®)ng® (v, )P (x, 1) = 43 (x, 1), (2.17)
with
I B AP

S+ 3 de =0 218

B=1a=1
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The exchange terms qé,and gy’ represent not only the exchange between gas and dust,
but also the exchange among several gas species and/or several dust species and/or
dust grain sizes.

2.1.2 Conservation of Momentum

The source terms of the equation of motion are in general the radiative and gravitational
acceleration. In order to set up an equation of motion for both gas and dust, interactions
between the two components of the fluid as well as the source terms have to be described.

2.1.2.1 The Drag Force

Gas and dust particles exchange momentum as a result of collisions between the sev-
eral components. The momentum gain of the gas particles after a collision with a grain
spreads to other gas particles by subsequent random thermal collisions with other gas
particles. So, the momentum gain of the gas phase acts on the entire gas. The mo-
mentum loss of the dust grains acts as a frictional force on individual dust grains. This
causes a deceleration of their relative motion with respect to the gas phase.

The discrete nature of the momentum exchange process induces tiny random velocity
changes of the grains due to the Brownian motion. In a circumstellar environment, the
density of dust particles is not large enough to lead to a significant number of dust-dust
collisions due to Brownian motion. So, irregular motions superposed on the average
motion of the dust grains are negligible in most cases. Further, non-central collisions
between gas particles and a dust particle may provide a torque on the grain in addition
to momentum change. The description of the drag forces bases on [58]. The drag force
is a volume force as a consequence of frictional coupling between dust and gas com-
ponents with significant relative motions between the radiation pressure driven grains
and the gas particles. The drag force measures the momentum transfer from the dust
components to the gas. Therefore, it has to be added in the equation of motion for the
gas and subtracted in the equations of motion for the dust components. The drag force
is related to the different frictional situations of surface interaction of gas and dust
particles. The following specifications describe the transfer of momentum by sticking,
thermal accomodation, and specular or diffuse reflection. Considering collisions, the
description depends on a couple of factors as it involves the masses of the colliding
particles, the collision frequency, and the velocities of each considered component as
well as the ratio between the drift velocity and the thermal velocity. In the following,
the drag force will be introduced under the assumption that only one kind of gas phase
species is present. If the gas phase is a mixture of different species, the entire drag
force has to be determined by summing up the several drag forces for all the involved
species. The applied terms to determine the drag forces are:
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e ma’: the cross section area of the involved dust species with the corresponding
radius a ,
e ng and ng: the number densities of the considered gas and dust species,
e kp: the Boltzmann constant,
e T, and Tjy: the gas and dust temperatures,
e mg: the mass of a grain of the considered dust species,

e my: the mean mass of a gas particle, expressed by the individual particle masses
of the different gas species ¢ and their respective mass fractions 7;

I ’Yi -1

mg = (Z i) : (2.19)

' m,
=1 8

® Vyrift, the drift velocity of the dust with respect to the gas phase

Varies (T, 1) = va(r,t) — vg(r, t), (2.20)

e and S: the ratio between the drift velocity and the thermal velocity

S = Varife/Veh, (2.21)
with the thermal velocity
2kpT,
Vi = 4| 8 (2.22)
Mg

Specular Reflection

If the interaction time between the gas particle and the surface atoms of the dust
particles is short, a collision results only in elastic scattering. The drag force caused by
specular reflection is represented by the following equation

64 1/2 Me My
fdrag,spccular = <97T + SQ) ™ a2 nd(a) m ng Uth Vdrift- (223)
g

Diffuse Reflection

If impinging gas particles are reflected from a dust grain surface with a microscopic
roughness, they return from the grain’s surface with a velocity obeying a comoving
Maxwellian distribution function. So the drag force due to diffuse reflection can be

written as

16

1/2
fdrag,diffuse = <37T + S2> ™ a’ "d(a) Mg Mg Vth Vdrift- (2~24)
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Sticking

The growth of particles bases on impinging gas particles which are not reflected. The
particle sticking would be important for momentum exchange (expressed by the corre-
spondent drag force) between the gas and dust component

4 1/2 Me My
fdrag,sticking = (7‘( + SQ) us a2 nd(a) m Ng Vdrift (225)
g

Thermal Accomodation

Impinging gas particles do not permanently stick on the surface of the grain. Just
like for the diffuse reflection, they return to the gas phase after a period of adsorption
to the surface with a velocity obeying a comoving Maxwellian distribution function.
The temperature of the grains Tq may be different from the gas kinetic temperature Ty
of the gas particles. Therefore the drag force by thermal accomodation follows as

1/2

2
4 1 /T
fdrag,acc =|=|1+5 -4 + 82 ™ a’ na(a) Mg Ng Vth Vdrift- (2.26)
s 3\ Ty

More details can be found in Physics and Chemistry of Circumstellar Dust
Shells by H.P. Gail and E. Sedlmayr [58].

The drag force applied in this work follows Draine [31] and will be discussed in Section
3.1.

2.1.2.2 Equation of Motion

Following the Reynolds transport theorem, the equation of conservation of momentum
is based on the equation (2.4):

0
5P Ov(r 1) +7-((p(r, ) v(r, ) ®v(r,1)) = = V- pg(r, t) + fraa(r, ) — fyrav (1, 2).

(2.27)
Therein p, represents the scalar part of the symmetric pressure tensor (the considered

densities are small) and v(r, t)®v(r, t) denominates the dyadic product of the velocities.

fgrav(r, ) = p(r, 1) g(r, 1) (2.28)

represents the external force per volume influencing the exposed material due to a
gravitational acceleration g directed inwards.

£oa(rt) = % / & (r,t) By (r, 1) dv (2.29)
0
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represents the external force per volume as a radiative acceleration directed outwards
due to the influence of the local spectral radiative momentum flux (1/¢)F,. The ex-
tinction of radiation is expressed by the momentum transfer coefficient &,. In general,
all external forces per volume are vectored.

Considering complete coupling between the gas and dust component (one-fluid ap-
proach), conservation of momentum changes after subtraction of the equation for con-
servation of mass to

p(r,t) <;V(r7t) + (V(I‘, t) ’ V)v(rﬂt)> =—-V pg(rvt)+frad(r7 ) fgrav( ) (2 30)

Just as with mass conservation, in case of an extensive chemical mixture, the equation
can be split into their constituents gas and dust, with m, the mass of the considered
species, n, its number density in the flow. Taking into account the interactions between
the two phases of the fluid, a new source term has to be added, namely the drag force.
The drag force fy;as has to be considered here as the sum of the different frictional
situations of possible processes of surface interaction of gas and dust particles.

With these requirements the equation of motion for the gas turns into

gl ve(r. 1)) + 7 (pules1) vl 1) © vilr, 1)) =
— V- pe(r,t) + £y raa(r,t) — fg grav (v, 1) + farag (v, 1) (2.31)
and for the dust follows
2 (patrpvae. 1) + 9 - (a(r.0) va(e. 1) @ valr, 1) =
farad (T, ?) — fa grav(r, ) — farag (T, 1) (2.32)

Then, using equation (2.10), the equation of motion for the gas component turns after
subtraction of the corresponding equation of mass conservation into

palrt) (Govatr )+ (Vi) 9) vile0)) =

=V Pg(r,t) + £y raa(r, 1) — fg grav (1, ) + £ drag (T, ) — Vg (r, t)gg(r, t)
==V pg(r,t) + fzraa(r, 1) — fg grav(r, t) + fg drag(r: 1) — g ace(r, t) (2.33)
with
Agace = Vg(r, t)qg(r, 1) = —Ji(r,t)mavg(r,t) (2.34)

(see equation (2.12)). Therefore, —gg(r,t) = Ji(r,t)mq leads to a gain of momentum
for the gas phase.
Using (2.11), the equation of motion of the dust turns into

pa(r,t) <§tvd(r,t) + (vq(r,t) - v)vd(r,t)> =
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fd,rad(ra t) - fd,grav<r7 t) - fd,drag(ra t) - Vd<r7 t)Qd(rv t)
= fd,rad(ra t) - fd,grav(ra t) - fd,drag (I‘, t) - qd,acc(ra t) (235)

with
Qd,acc - Vd(r, t)Qd(ra t) - J* (I‘, t)ded(r, t) (236)

(see equation (2.13)). For the dust, the expression gq4(r,t) leads to a loss of momentum
towards the gas phase.

So, the newly derived remanents qQaccgq are due to the added source term in the mass
conservation equation, and represent the gain or loss of momentum from the one to the
other phase as a consequence of particle growth by gas-dust collisions and take into
account the velocity of impinging. Even though interactions between gas and dust by
adsorption are included in the drag force term.

With respect to different species of gas and dust, each one with a specific size, the
equations change into one equation for each species 7, 3, and size «, with mgq, the
mass of the considered species, and ng 4, its number density in the flow. Just as with
the equations of mass conservation (equations (2.14), (2.15)), the equations (2.33),
(2.35) turn into

7 9 % 7 ) %
i r.0) (Va0 + (0.0 OVEE D)) + 7 i)
- é,rad(r7 t) - fé,grav(rv t) + fé,drag(rv t) - qg,acc(n t) (237)

and

= £ (r, ) — £70 (1) —£0, (r1)

57
Qg aee(Ts 1) (2.38)
As for the equations of mass conservation, the momentum exchange terms qgcqg, re-
spectively qf(f q represent not only the exchange between gas and dust, but also the

exchange among the several gas species and/or the several dust species and/or the dust
grain sizes.

In case of assumed spherical symmetry, the system of coupled equations is reduced to a
system of one spatial coordinate r. Therefore, the gravitational acceleration M, G /r?
affecting the gas or dust particles with G, the gravitational constant and M,., the at-
tracting mass at the radial position r, leads to

e
1) = % (1 (239
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and
x

4
frad(ra t) = % /Xz/ H, dv (2.40)
0

(0]
with ¢, the speed of light, H = [ x, H, dv, the integrated Eddington flux over all
0

frequencies v, and Y,,, the opacities of the gas or dust species. In the case of radiative
equilibrium (RE), with 4 7 H = L,/(4 7 r?), the external force due to the radiative

acceleration turns to I
*

= — 2.41

frad 1 o2 NI (2.41)

with the flux weighted mean opacity xg.

2.1.3 Conservation of Energy

The equation of conservation of energy follows the Reynolds transport theorem, based

on the equation (2.4). In this case, the parameter u is represented by the energy density

of the matter per unit mass, consisting of the specific energy e and the specific local
1

kinetic energy ey, = 502 of the hydrodynamical fluid, multiplied by mass density p

% p(r.t) e(r,t)+%v2(rat) +
i e

Va {p(r, t) (e(r, t)+ %UZ(I‘, t)> v(r,t) + p(r, t)v(r, t)] = Qrad(r, 1). (2.42)

The local energy input rate to the internal states of the matter due to absorption and
inelastic scattering of photons, and for the energy loss due to emission of photons is
expressed by the radiative net energy source term Q;,q. This term provides also an
immediate energy transfer to the thermal pool of matter.

The specific energy e consists of the thermal energy from random particle motion, the
internal energy expressed by the internal degrees of freedom, the latent chemical energy
and the kinetic energy due to relative motions of the different components.

The behaviour of the inner energy e can be obtained by scalar multiplication of the
equation of motion (2.30) with v and subsequent subtraction of these equation and of
the replaced mass conservation equation (2.9) from the equation (2.42). In the context
of cool dust forming circumstellar shells Qyad(r,t) = Qrad,int(r,t) does apply. Radiative
cooling or heating concerns only the internal state of matter. Qrad int(r,t) describes the
net loss rate of energy of the radiation field due to these processes

p(r,t) <§te(r,t) +v(r,t)- Ve(r,t)) + p(r,t) 7 -v(r,t) =

V(I‘, t) : fgrav(ra t) - V(I‘, t) : frad(r7 t) + Qrad,int(ry t) = Q(I‘, t) =+ Qrad,int(ry t)' (243)
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The notations (2.42), (2.43) describe the one-fluid conservation equation of energy.
The rate Q(r,t) is derived on the basis of the remanents by scalar multiplication of
the complete equation of motion. It represents the mechanical power density due
to the work performed by the external forces such as gravity and the force due to
radiative acceleration . Therein fg., and f.,q are the vectored volume forces acting on
a considered species and its corresponding hydrodynamic velocity, i.e.

Q(ra t) = Qgrav(r, t) - Qkin,rad(r, t) = V(rv t) : fgrav - V(I‘, t) - frad. (2-44)

These terms are valid for both one-fluid descriptions and multicomponent fluid descrip-
tions, each with a corresponding index for gas or dust.

In order to consider an extensive chemical mixture, the equation can be split in its
constituents gas and dust, which reads

% [Pg(r,t) (6g(r,t) - ;Ug(r’t)ﬂ I

v- [pg<r, B((eg(r,t) + 02(0,0))vg(r, ) + py(r, vi(r. t)} — Quimg(r. ). (2.45)

7t {Pd(r,t) <€d(l‘,t) + ;vg(r,t))] n

v+ [patrnt) (Ccatrs) + 502000 Va0 ) | = Quasmatrt). (240

The equation of conservation of the inner energy e, 4 results in

0
pe(r,t) (aeg(r,t) + vg(r,t) - v eg(r,t)>
- = pg(r7 t) \V4 ‘Vg(rv t) - V(I‘, t)g ' fdmg(r’ t) + V(I‘, t)g : fggraV(r? t) - V(I’, t)g ’ fmd,g(r, t)
- (g (I‘, 13 Ug (I‘, t) - Qg(ra t)eg (I‘, t) + Qrad,int,g(ra t)

)
= - pg(r7 t) A\VAN Vg(r, t) - erag,g(ra t) + Qgrav,g(rv t) - Qrad,g(rv t)
- Qkin,g(ra t) - Qint,g + Qrad,int,g(ra t)

N | —

(2.47)
and
d
pa(r,t) (aed(r,t) + vq(r,t) -7 ed(r,t)>
= — v(r,t)a - farag(r,t) + v(r,t)a - fagrav(r,t) — v(r,t)q - fraa,a(r, t)
— ()3 ) — qa(r ealr, ) + Quagincalr, 1)
= — Qragd(r,t) + Qgrava(r,1)

- Qrad,d(rv t) - Qkin,d (I‘, t) - Qint,d (I‘, t) + Qrad,int,d (I‘, t)-
(2.48)



26 CHAPTER 2. THEORETICAL BACKGROUND

Therein, the part of the equation represented by the equations of motion for the gas
component (2.31) and for the dust component (2.32), scalar multiplied with v, 4, are
replaced by their results. And in the same manner, the part of the equation that
is represented by the mass conservation equations of gas (2.10) and dust (2.11) is
replaced by the corresponding source terms. The term Qyaq,int(r,t) describing the
radiative energy transfer from the internal states of the matter to the radiation field is
represented by

Qrad,int(ra t) = 47T/ ["%I/JI/ - Uip] dl/, (249)
0

with the isotropic spontaneous emission coefficient 7,°, the net absorption coefficient
iy, and the mean spectral intensity J,.

The newly derived remanents of the subtraction of the equations of mass and mo-
mentum conservation in the case of extensive mixture of components lead to a series
of terms besides these of the one-fluid description (see (2.43)). They result from the
added source terms in the mass conservation equation and therefore the added and
derived source terms by treatment of the equation of motion. The remanents introduce
external energy source terms represented by the rates Q.

The term Qarag(r, t) originates from the remanents of the equation of motion. Therein,

Qarag(r;t) = V(r,t)gd - farag(r, t) (2.50)

stands for the volume drag force acting on its corresponding hydrodynamic velocity.
This volume force involves the difference of the velocities of the gas and the dust
component, multiplied by the velocity of the considered species.

The terms 1 1
Qxing(r,t) = qg(r,t)ivg(r,t) = —§v§(r,t) Je(r,t) myq, (2.51)
respectively
Quina(r,1) = qa(r, 1) 0306, 1) = S03(r,1) Ju(re, 1) ma (2.52)

with (2.12 ) and (2.13 ) are the collisional gain and loss of kinetic energy of the gas or
the dust phase due to the mass flux density by newly formed grains, respectively. Also
for the inner energy e the collisional gain or loss leads to the equations

Qint,g(r,t) = gg(r, t)eg(r,t) = —Ji(r,t) mq eg(r,t), (2.53)

Qint,d(r,t) = qa(r,t)eq(r,t) = Ju(r,t) mq eg(r,t). (2.54)

Due to the mass flux density of newly formed grains, this term may represent the
exchange of inner energy by condensation or growth (eyy,) and exitation or deexitation of
internal states (eint). Approaches, whether several terms may be replaced by simplified
assumptions, may be found in [58].

In addition, to specify the extensive mixture of components, the equations may be split
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into their constituents where each one has its own specific size. The equations change
into equations for each species i, 3, and size « as well as for momentum conservation.
Therein mg q represents the mass of the considered species, whereas ng 4 represents its
number density in the flow. Thus, the equations turn into

= - pg(ﬂ t) \V4 'Vé(l‘, t) + inrag,g(ra t) grav g(r t)
+ Qiad,g(n t) - Qf{in,g(n t) - ?fnt,g( ) ) + Qrad,int,g(r’ t)
(2.55)

and

0
g ng (1) 5 oel (r, £) +m2n (e, ) VI (r, 1) - el (x, t) =

erag d( ) + Qgrav d( ) Qrad d( ) 51’1’1 d( ) ant d( ) + Qrad int d( t)
(2.56)

2.1.3.1 Temperature Equations

In order to complete the equations of energy conservation, the temperature equations
follow [58]. The inner energy density e is an extensive quantity, resulting from the
addition of the different energy reservoirs, i.e.

€ = €th + €int + €ch T Erel- (2.57)

In order to take into account the different species along the multicomponent description
of the fluid, the inner energy density e has to be separated into particular reservoirs cou-
pled by exchange terms among these inner energy reservoirs. The inner energy reservoir
esn includes coupling terms due to kinetic collisional heating, and therefore chemical
heating by nucleation or growth. Inelastic collisions between the several species and
particles also provide the excitation of internal states and deexcitation of excited states
of particles of each species ejyt just like nucleation or growth of dust particles, so that
by collision nucleation and growth lead to exchange among the reservoirs by coupling
terms. The same consideration applies to the latent chemical inner energy density ecp.
The coupling terms describe the net release of latent heat by chemical exothermic or
endothermic reaction r producing species 7. Latent chemical energy becomes relevant
only when a large number of species is involved, and when chemical reactions contribute
to the inner energy reservoir, e.g. Has-formation or dissociation. Usually latent chem-
ical energy does not play a significant role in cool dust forming circumstellar shells,
but rather in the shells of WR~ or WC-stars. Assuming the emerging primary clusters
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exhibit behaviour like large molecules and do not have noticeable diffusion or drift ve-
locities relative to the bulk of gas, the energy density from relative motion e,q is set
equal to zero. With these restrictions, the inner energy density e contains the energy
reservoirs ey, and ejnt, SO that the equation turns into

e = ey, + Cint- (2.58)

Even though several energy reservoirs have to be treated almost like open systems, the
internal relaxation to partial equilibrium proceeds much faster in each reservoir than
between different reservoirs. So, in lowest order approximation, each single reservoir
may be considered as being energetically closed, and related to a corresponding spe-
cific heat. The following equations represent energy-temperature relations, where each
particular energy reservoir of a considered species is characterised by a temperature T’
and a corresponding heat capacity c,. As with stellar atmospheres and circumstellar
shells, the thermal reservoirs of each gas species, highly coupled by collisions, form a
local thermal equilibrium for all gas species, so a single thermal temperature may be
defined

1
d €g,th = mi Cy,th,g thh,g7 (259)
g

with mg, the mean mass of a gas particle as defined in equation (2.19). For the dust,
only the internal energy reservoir is of interest. The energy-temperature equation of
the internal state both of the gas and the dust has to be treated differently for each
single considered species in the fluid

. 1 .

d e%nt,g = sz,int,g d 71iznt,g7 (260)
Mg

degm =5z hmadTo" (2.61)
my

The heat capacities ¢, of the considered multiple components are proportional to the
number of degrees of freedom, together with the contribution %kB. For the thermal
energy reservoir e, the translational degrees of freedom of a single particle counts
with the number of 3. Therefore the thermal heat capacity for constant volume leads
to

- 3
Cythg = cf,,th,g =3 kg for all i with fs trans = 3. (2.62)

The identification of the number of degrees of freedom bases on internal energy forms,
like the rotational energy €.t of a molecule due to rotation around an axis through
the center of mass of the particle or the internal energy ey, by oscillation. A diatomic
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molecule with two independent rotational axes possesses two rotational degrees of free-
dom (frot = 2). The rotational energy of a spherical dust grain is assumed to be
negligible. For linear molecules with f degrees of freedom, (f — 5) degrees of freedom
are related to vibrations and (f — 6) for non-linear molecules. The corresponding in-
ternal energy is €. Since there is only one type of oscillation possible, the degrees
of freedom related to vibrations is of the number of f; i, = 1. The number of the
translational degrees of freedom of a single particle is fg trans = 3. Macroscopic solid
grains consisting of IV atoms possess fq int = 3N —6 ~ 3N degrees of freedom as a good
approximation. This number provides a continuous phonon spectrum and so €y}, is the
most important internal energy reservoir. Considering the conditions predominant in
dust forming circumstellar shells, with low temperatures, electronical energy does not
play a role. The internal energy e;, does not play a role in a cool environment. Elec-
tronic degrees of freedom are of interest only in cases, where higher electronic states
are excited.

According to the explanations above, the degrees of freedom for diatomic molecules are

inte = Jrot,g T feibg = 3- (2.63)
This number leads to the internal heat capacities for constant volume

: 3
Cv,int,g = sz,int,g =3 kB. (2.64)

With the knowledge that Debye theory for calculating the specific heat of solids applies
only to particular solid materials, like e.g. iron, the following consideration should
be treated with caution. The heat capacity of probable grain material remains to
be defined. @é describes the Debye temperature of a solid grain, usually @zl < 500 K,
being the internal temperature Tg’a > @é in a circumstellar dust shell. From the results
concerning the number of the degrees of freedom of macroscopic solid grains consisting
of N atoms, the internal heat capacities for constant volume may be calculated with
the number of degrees of freedom for any macroscopic grain with N g’o‘ > 20

=9 265
as
] fj’a .3k Tc{'é ’ Téﬁ}/gzix‘l(eﬁ - 1)_1dm if T4 < ©
CZf?nt L= 4 Jintd B o’ 0 ’ d &’ (2.66)
e if 737 2 0.

According to the expressions for heat capacities, the energy-temperature equation may
be rewritten as

13
d €gth = mi 5 kB d jjthyg. (267)

g
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The energy-temperature equation of the internal state both of the gas and the dust
turns into

d I

g int —

1 3
—3 kg d Ty g (2.68)

By assuming Tg’a > @é (high temperature approximation of Debye theory for the heat
capacity of grains having Debye temperature), for the dust follows

1 .
delf, = —5 3N d T (2.69)

For more explanations see [58].

2.1.3.1.1 Temperature Equations by One-Fluid Description
In order to determine gas temperature equations, with replacement of e by equation
(2.67) and (2.68), the energy equation (2.43) turns into

kg - VTg(r,t) + pe(r,t) 7 -v(r,t) =

3 0 1 3
p(r7t> 5 e §
g

oy b () V) o)
V(I', t) : fgrav(r7 t) - V(I', t) : frad(ra t) + Qrad,int(r’ t) = Q(r) t) + Qrad,int(ra t) (270)

In this case, dust temperature is assumed as being in radiative equilibrium and there-

fore equals radiative temperature T;,q.

2.1.3.1.2 Temperature Equations for (Gas and Dust
As for the one-fluid description, temperature equations for both gas and dust are spec-
ified taking into account the equations (2.67), (2.68), and (2.69).
i, 1 9 i i, Lo i
mint(r,t)— ¢ —T(r,t) +mgng(r,t) — ¢, v(r,t) - VT,
m

i V8 g i V8 8
mg, ot &

= - pé(rv t) \Vau Vé(l‘, t) - inrag,g( ) + Qgrav g( )
iad,g(rv t) - Q%{in,g(rv t) - ilnt,g(ra ) + Qrad,int,g(rv t)
(2.71)

represents the gas energy equation with

1
Qint,g(ra t) = Qg(rv t)ﬁ v,g ng( ) (272)
g
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the remanent of the subtraction of the motion equation from energy equation (2.45)
with gg(r,t), defined in equation (2.12). For the dust energy equation, the replacement
of e by the related temperatures leads to

1 o 0
mg ang’ (r,t) —Fa 3N an’a(r,t)
d

1 .
+my ng® (x,t) —5= BNTY VI (x,t) - T (x,t) =
m K

erag( ) Qgrav d( ) Qrad d( ) Elsd( ) antd( ) Qrad int d( t) (273)

with the remanent of the subtraction

1 .
5 3NDO T (1), (2.74)
d

Qint,a(r,t) = qa(r,t)

wherein ¢q(r,t) means the coupling term applied as in (2.17).

2.2 Dust Complex

Describing dust formation, it is fundamental to specify the conditions of generating a
surface. The conventional way of describing dust formation is to assume a process which
provokes phase transition as an effect of small disturbances. These disturbances with
the objective of energy minimisation lead to an stable state. Classical theory is based on
three fundamentals, namely: new built grains are spherical, density and surface tension
are related to macroscopic values. Cluster size increases by adsorption of monomers
and chemical equilibrium is valid just like thermal equilibrium. The assumption of
a spherical grain in case of nucleation from the gas phase is justified. In the case of
heterogeneous nucleation, the spherical assumption is not founded all the times. The
assumed relation to macroscopic quantities is justified by congruence between theory
and measurements. Thermodynamical description of nucleation appears first by e.g.
Volmer & Weber [108], Becker & Doring [9]. The steps leading to classical nucleation
theory are illustrated in the following.

2.2.1 Thermodynamics

Any supersaturated vapor tends to fluctuations from Brownian motion. This leads
to variations in density, temperature, and pressure and therefore to aggregations of
monomers or molecules. Based on the classical nucleation theory, these aggregations
grow by addition of a single monomer, or evaporate by elimination of a single monomer.
The life cycle of the new formed conglomerates depends from the stability of the as-
sociated thermodynamical state. In case of exceeding the limit of a thermodynamical

critical value, the conglomerate, instead of dissociating, grows by adsorption of further
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monomers or molecules. This newly formed conglomerate is the so called critical clus-
ter.

First, the energetic state of any fluid, which in this case represents our thermodynami-
cal system has to be specified. Each thermodynamical system, e.g. a homogeneous gas
phase, is expressed by the state variable of internal energy, which in case of a closed
system has to be constant, according to the first law of thermodynamics

dU = 5Q + §W. (2.75)

The change of the internal energy dU is equal to the heat absorbed or emitted from the
environment §¢), and the exchange of work §\W done to the system, which includes work
from the exchange of matter dV; through the system boundary. So, the fundamental
relation in thermodynamics for gases is given by

k
dU =T dS —pdV + Y pi dN;. (2.76)
i=1
Herein
TdS =6Q (2.77)
means the second law of thermodynamics with the differential of the entropy dS and
k
oW =—pdV+>_ p; dN;, (2.78)
i=1

the change of volume V' by the pressure p and the exchange of particles IN; with the
chemical potential u; for an i-type particle. Considering that extensive variables, like
eg. V, 5, N, U, are proportional to the absolute size of the system, and, on the other
hand, intensive variables, like e.g. p, T, n, are independent from the involved mass of
the system, the internal energy changes to

if the extensive state variables are multiplicated by an enlargement factor £&. All of
natural variables of the internal energy U are extensive quantities. So, this causes the
fundamental equation of the internal energy to be integrable and it follows from Euler’s
homogeneous function theorem [6], [11], that

U(S,V,N;) =TS —pV +> ;. (2.80)
The quantity

U=U(V,S,N;) (2.81)

is the so called thermodynamical potential.
Based on the fact that all thermodynamic potentials include the same complete in-
formation about the examined thermodynamic system in equilibrium, thermodynamic
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potentials can be determined with respect to specification of the free parameters by
Legendre transformation. Assuming reversible processes with constant temperature
and pressure in a closed state, a new thermodynamical potential with temperature T,
pressure p, and particle species N as natural variables is given by Legendre transfor-
mation as the Gibbs free energy G [97]:

U(V,S,N;) = U(V,S,Ni)—af(V’S’Ni)V