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Zusammenfassung

In den kühlen, ausgedehnten Hüllen weitentwickelter Sterne auf dem asymptotischen

Riesenast (AGB) bilden sich kleine Festkörper. Dieser Staub führt durch den auf ihn

wirkenden Strahlungsdruck zu einem massiven Materiestrom bzw. Wind. Eine reali-

stische Beschreibung dieses aus vielen chemischen Komponenten bestehenden Materie-

stroms erfordert die konsistente Behandlung der Hydrodynamik, der Staubbildung, des

Strahlungstransports und der Chemie der Gasphase aller am Wind beteiligten Kompo-

nenten. Das langfristige Ziel, das dieser Arbeit zu Grunde liegt, ist ein Mehrkomponen-

ten-Hydrodynamik-Modell, das den Materiestrom sowohl der einzelnen unterschiedli-

chen Staub bildenden Moleküle, als auch das der daraus gebildeten Staubteilchen mit

den unterschiedlichen Größen adäquat beschreibt. In dieser Arbeit wird ein Teilaspekt

behandelt, der die Wechselwirkung zwischen der Gasphase und dem Staubanteil im be-

trachteten Materiestrom untersucht. An Hand eines stationären, sphärisch symmetri-

schen Modells wird in einem ersten Schritt das Verhalten des Gleichungsystems betrach-

tet. Die Wechselwirkungen der Staub- mit der Gasphase werden durch Austauschterme

dargestellt, die sich aus der detaillierten Darstellung der hydrodynamischen Gleichun-

gen ergeben. Es werden die speziellen Anforderungen und die daraus resultierenden

Schwierigkeiten für die numerische Behandlung des erweiterten Gleichungssystems auf-

gezeigt.
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Abstract

The outer regions of the cool, extended shells of evolved stars on the asymptotic giant

branch (AGB) are the source of small grains. Driven by radiation, the newly formed

dust leads to a massive outflow, respectively wind from the star. In order to model

this outflow in a realistic way, a consistent description of hydrodynamics, dust forma-

tion, radiative transfer, and chemistry of the gas phase with all involved components is

needed. In the long term, the basic goal consists in a multicomponent model of hydro-

dynamics including all dust-forming molecules as well as their successor dust particles

with individual size and composition. The part of the project exploring the interac-

tions between gas and dust in the outflow is subject matter of this work. Based on

a stationary model in spherical symmetry, the behaviour of the underlying system of

equations is studied. Interactions between the gas and the dust phase are introduced by

coupling terms derived from the detailed elaboration of the hydrodynamic equations.

The specific conditions and the resulting difficulties for the numerical treatment of the

extended system of equations are discussed.



Chapter 1

Introduction

At the end of their lives, all stars lose material in form of excessive temporally non-

regular eruptions, explosive like novae or supernovae or in the form of massive winds.

These materials form new stars and planets or other interplanetary bodies. Stars of

spectral type K, M, S, or C, with a surface temperature lower than that of the Sun, so

called Late Type Stars, are the most important source of interstellar material in the

universe. The gas effusing from these stars is cold and neutral and mainly manifests

as molecules. The outflow cools down by expansion and forms condensates of heavy

elements at temperatures lower than 1000 K. At the moment where the temperature in

the outflow is sufficiently low and the density of condensible material is high enough, its

dynamics will be dominated by radiation pressure. According to the dust-composition

the grains react to the stellar radiation and therefore may exhibit a large radiation

pressure. The gain of momentum due to the dust driven wind is partially transferred

to the surrounding gas via collisions. Observed shells around Late Type Stars are com-

posed of condensate originating from stellar outflows in form of a dense, slow wind with

potential high mass loss rates.

In general, models of physics of circumstellar envelopes treat the gas-dust complex as

an entity assuming gas and dust are completely coupled by friction. Indeed, considering

this coupling as not preassumed, this leads to another description of the problem. Dif-

ferent species and sizes of dust grains implicate different force terms due to interactions

between different species and the gas as well as the radiation field due to the diverse

nature of the considered material. In consequence, any model of physics of circum-

stellar envelopes should include the behaviour of every constituent concerning gas and

dust species as well as the size of the considered dust particle. However, these effects

are commonly neglected. This work deals with the feasibility of a multicomponent

description, and attempts to extend the knowledge of the possibilities of modelling the

outflow of AGB-stars. The purpose consists in analysing both the mathematical and

technical difficulties accompanying the computation of a system of highly non-linear

differential algebraic equations (DAE) in an overdetermined system. To begin with,

11
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the applied equations are considered in the case of a stationary, spherically symmetric

outflow.

In order to obtain an extensive treatise of the effects due to a multicomponent medium,

the coupled system of conservation equations has to be extended by particular equa-

tions for each involved species and the subsequent resulting coupling terms. Whether

the implementation of a multicomponent description is successfull or the method fails,

the potential of an enhancement applying the multicomponent description compared

to the previous applied models must be questioned and discussed.

Dust formation in circumstellar shells of C-stars is studied by e.g. H.-P. Gail, E.

Sedlmayr. They investigated the dust formation by a spherically expanding stationary

flow using a wind equation which passes dust driven through the sonic point. Dust

formation is devised in a modified form by using the moments of the local size distribu-

tion of the dust particles. The flow consists of one component, where dust and gas are

completely coupled by friction, see e.g. [46], [48], [52], [51] [35], [100], [50], [49], [54],

[98], [47], and [99]. I. Cherchneff et al. focused on the chemistry of dust condensation

simulating the temperature, density, and velocity profiles of evolved stellar envelopes.

They used a theoretical formalism capable of describing the average steady gas density

and flow velocity, cf. [16], [17], [19], and [18].

The first investigation into the outflow in winds of evolved stars on the asymptotic

giant branch (AGB) with respect to the two-fluid nature was done by D. Krüger [77].

His studies comprise the influences of interactions between gas and dust in a C-rich

environment.

Several subsequent investigations deepened this subject, given that radiative accelera-

tion of newly-formed dust grains and transfer of momentum from the dust to the gas

plays an important role for driving winds of AGB-stars.

The role and effects of the gas-dust interaction on the mass loss and wind formation

are studied in detail the effects of the grain drift in time dependent models by e.g.

Sandin, [94], [95], [96].

Y. Simis et al. presented two-fluid time-dependent hydrodynamics in spherical symme-

try with included equilibrium gas chemistry as well as grain nucleation and growth, [102].

In Chapter 2, an overview of the theoretical part is given. It comprises the hydro-

dynamics, the dust formation, and a short survey of radiation transfer. The treatment

of hydrodynamics includes the special approach with regard to the topics of the work,

i.e. the coupling between the gas and the dust phase determined by derived coupling

terms. These coupling terms are deduced from the completely elaborated conservation

equations of mass, motion, and energy. The section describing dust formation involves

the thermodynamics, as well as the classical nucleation theory completed by the mo-
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ment equations representing the local size distribution of the dust particles.

The numerical treatment of the equations imports characteristics beyond the common

treatment of a system of ordinary differential equations. These will be introduced in

Section 2.4.

The Chapter 3 concentrates on the works with comparable aim, where coupling terms

are introduced, describing interactions between gas and dust. Several examples are

presented.

The purpose of this work is subject of Section 4.1. The applied equations with the

fully derived terms are introduced as well as the differences from previous works. A

program code for the single fluid model was developed which utilises the explicit Euler

method. Subsequent, the model was extended by the multicomponent equations. Fi-

nally, the results comprise the difficulties resulting from the considered complexity of

the system and the conclusion for the treatment of multicomponent fluids.
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Chapter 2

Theoretical Background

An investigation of dynamical behaviour of circumstellar dust shells starts by appoint-

ing the equations to model the complex of hydrodynamics, dust formation, radiative

transfer, and chemistry of the gas phase. The modeling results in a simultaneous solu-

tion of a coupled system of partial differential equations in conjunction with the equa-

tions of the dust-complex with chemistry. These equations are completed by algebraic

state equations like pressure or describing material properties like opacity. Furthermore

these equations depend on the temperature structure which is specified by solving the

radiative transfer. The influence of multicomponent gas and dust composite on the

coupled system of equations i.e. the interaction between gas and dust is expressed by

coupling terms. Figure 2.1 shows the correlation diagram of the coupled problem of a

dust-driven wind.

2.1 Hydrodynamics

In general, conservation of any physical quantity u may be described in the following

way [1] according to the Reynolds transport theorem

d

dt

∫
V

u dV = −
∫
∂V

f(u) · n dA+

∫
V

g dV, (2.1)

wherein f(u) denominates the flow, g the source term, V the considered volume and n

the normal vector of the surface A. With the Gauss theorem∫
∂V

f(u) · n dA =

∫
V

5 · f(u) dV, (2.2)

equation (2.1) leads to ∫
V

(
∂

∂t
u + 5 · f(u) − g

)
dV = 0. (2.3)

15
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Figure 2.1: The coupled problem of a dust-driven wind (adopted from Winters et

al. [109] )
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As this relation is valid for any arbitrary volume, the equation may be written in

differential mode
∂

∂t
u + 5 · f(u) = g. (2.4)

By neglecting viscosity, vorticity, and heat conduction, the Euler equations of gas dy-

namics can be applied to describe stellar outflows. The following equations describe

the nonlinear conservation laws of gas dynamics in their common use. In addition of

the usually applied equations, new terms are inserted, describing the interactions be-

tween the several components of the gas and the dust phase. The complete elaboration,

leading to the newly derived terms is examplarily given for the gas component in the

Appendix A.

2.1.1 Equation of Continuity

The equation of continuity emanates from mass conservation after the Reynolds trans-

port theorem. If V is a volume element of a fluid with density ρ(t) the mass m(t) can

be obtained by integration

m(t) =

∫
V

ρ(t) dV. (2.5)

The mass flow per unit time through an infinitesimal surface element is the mass flux

density ρ(t) v dA. With dA = n dA, wherein n is the normal of the surface, the

equation turns into

ρ(t) v(t) · dA = ρ(t) v(t) · n dA. (2.6)

For mass conservation it is essential that the amount of mass leaving the surface of V

in direction of n dA is equal to the entire change of mass in the considered volume, i.e.

d

dt
m(t) =

d

dt

∫
V

ρ(t) dV = −
∫
∂V

ρ(t) v · n dA. (2.7)

Under the condition that ρ is sufficiently smooth (e.g. derivation in terms of t be-

ing limited), the source term g equals zero and applying the differential conservation

equation (2.4), mass conservation can be written as

∂

∂t
ρ(t) +5 · (v(t)ρ(t)) = 0. (2.8)

Taking into account time and local dependence, mass conservation takes the following

form
∂

∂t
ρ(r, t) +5 · (v(r, t) ρ(r, t)) = 0. (2.9)

In case of an extensive chemical mixture, following [58], the equation can be split into

the main constituents namely gas and dust

∂

∂t
ρg(r, t) +5 · (vg(r, t) ρg(r, t)) = qg(r, t), (2.10)
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∂

∂t
ρd(r, t) +5 · (vd(r, t) ρd(r, t)) = qd(r, t). (2.11)

The exchange terms q mean that condensation leads to a depletion of condensible

material in the gas component and to an increase of condensed material of the dust

component. This has to be taken into consideration by solving the mass conservation

equations. With the homogeneous nucleation rate J∗ (2.120), (2.126) the exchange term

describing the depletion of condensible material in the gas component is the following

mass flux density

qg(r, t) = −J∗(r, t)md, (2.12)

where md is the mass of the cluster of the condensed material, expressed by the volume

density of the considered dust species multiplied by the average particle volume of the

cluster as given in equation (2.128)). On the other hand, condensed material equals to

a depletion of condensible material. This leads to

qd(r, t) = −qg(r, t) = J∗(r, t)md. (2.13)

At last, the equations may be written as a sum over all their components, with m, the

mass of the considered species and n, its number density in the flow. Each gas species

is labeled by i, between 1 and I, each dust species by β and each species β, between 1

and B, is also subdivided by its size α between 1 and Aβ, the biggest size bin of the

species β. Thus,
I∑
i=1

mi
gn

i
g(r, t) = ρg(r, t) (2.14)

and
B∑
β=1

Aβ∑
α=1

mβ
d(aα)nβ,αd (r, t) = ρd(r, t), (2.15)

where aα is the radius of the grain of size α, assumed to be of spherical shape.

Every component can be considered individually with respect to the dependency of

time t and location r. So, for each gas component i the mass conservation equation

gives
∂

∂t
mi

gn
i
g(r, t) +5 · (mi

gn
i
g(r, t)vi(r, t)) = qig(r, t). (2.16)

And for the dust components β with respect to the size α one obtains:

∂

∂t
mβ

d(aα)nβ,αd (r, t)+

5 · (mβ
d(aα)nβ,αd (r, t)vβ,α(r, t)) = qβ,αd (r, t), (2.17)

with
I∑
i=1

qig +
B∑
β=1

Aβ∑
α=1

qβ,αd = 0. (2.18)
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The exchange terms qig,and qβ,αd represent not only the exchange between gas and dust,

but also the exchange among several gas species and/or several dust species and/or

dust grain sizes.

2.1.2 Conservation of Momentum

The source terms of the equation of motion are in general the radiative and gravitational

acceleration. In order to set up an equation of motion for both gas and dust, interactions

between the two components of the fluid as well as the source terms have to be described.

2.1.2.1 The Drag Force

Gas and dust particles exchange momentum as a result of collisions between the sev-

eral components. The momentum gain of the gas particles after a collision with a grain

spreads to other gas particles by subsequent random thermal collisions with other gas

particles. So, the momentum gain of the gas phase acts on the entire gas. The mo-

mentum loss of the dust grains acts as a frictional force on individual dust grains. This

causes a deceleration of their relative motion with respect to the gas phase.

The discrete nature of the momentum exchange process induces tiny random velocity

changes of the grains due to the Brownian motion. In a circumstellar environment, the

density of dust particles is not large enough to lead to a significant number of dust-dust

collisions due to Brownian motion. So, irregular motions superposed on the average

motion of the dust grains are negligible in most cases. Further, non-central collisions

between gas particles and a dust particle may provide a torque on the grain in addition

to momentum change. The description of the drag forces bases on [58]. The drag force

is a volume force as a consequence of frictional coupling between dust and gas com-

ponents with significant relative motions between the radiation pressure driven grains

and the gas particles. The drag force measures the momentum transfer from the dust

components to the gas. Therefore, it has to be added in the equation of motion for the

gas and subtracted in the equations of motion for the dust components. The drag force

is related to the different frictional situations of surface interaction of gas and dust

particles. The following specifications describe the transfer of momentum by sticking,

thermal accomodation, and specular or diffuse reflection. Considering collisions, the

description depends on a couple of factors as it involves the masses of the colliding

particles, the collision frequency, and the velocities of each considered component as

well as the ratio between the drift velocity and the thermal velocity. In the following,

the drag force will be introduced under the assumption that only one kind of gas phase

species is present. If the gas phase is a mixture of different species, the entire drag

force has to be determined by summing up the several drag forces for all the involved

species. The applied terms to determine the drag forces are:
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• πa2: the cross section area of the involved dust species with the corresponding

radius a ,

• ng and nd: the number densities of the considered gas and dust species,

• kB: the Boltzmann constant,

• Tg and Td: the gas and dust temperatures,

• md: the mass of a grain of the considered dust species,

• mg: the mean mass of a gas particle, expressed by the individual particle masses

of the different gas species i and their respective mass fractions γig

mg =

(
I∑
i=1

γig
mi

g

)−1

, (2.19)

• vdrift, the drift velocity of the dust with respect to the gas phase

vdrift(r, t) = vd(r, t)− vg(r, t), (2.20)

• and S: the ratio between the drift velocity and the thermal velocity

S = vdrift/vth, (2.21)

with the thermal velocity

vth =

√
2kBTg

mg
(2.22)

Specular Reflection

If the interaction time between the gas particle and the surface atoms of the dust

particles is short, a collision results only in elastic scattering. The drag force caused by

specular reflection is represented by the following equation

fdrag,specular =

(
64

9π
+ S2

)1/2

π a2 nd(a)
mg md

mg +md
ng vth vdrift. (2.23)

Diffuse Reflection

If impinging gas particles are reflected from a dust grain surface with a microscopic

roughness, they return from the grain’s surface with a velocity obeying a comoving

Maxwellian distribution function. So the drag force due to diffuse reflection can be

written as

fdrag,diffuse =

(
16

3π
+ S2

)1/2

π a2 nd(a) mg ng vth vdrift. (2.24)
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Sticking

The growth of particles bases on impinging gas particles which are not reflected. The

particle sticking would be important for momentum exchange (expressed by the corre-

spondent drag force) between the gas and dust component

fdrag,sticking =

(
4

π
+ S2

)1/2

π a2 nd(a)
mg md

mg +md
ng vdrift (2.25)

Thermal Accomodation

Impinging gas particles do not permanently stick on the surface of the grain. Just

like for the diffuse reflection, they return to the gas phase after a period of adsorption

to the surface with a velocity obeying a comoving Maxwellian distribution function.

The temperature of the grains Td may be different from the gas kinetic temperature Tg

of the gas particles. Therefore the drag force by thermal accomodation follows as

fdrag,acc =

 4

π

(
1 +

1

3

√
Td

Tg

)2

+ S2

1/2

π a2 nd(a) mg ng vth vdrift. (2.26)

More details can be found in Physics and Chemistry of Circumstellar Dust

Shells by H.P. Gail and E. Sedlmayr [58].

The drag force applied in this work follows Draine [31] and will be discussed in Section

3.1.

2.1.2.2 Equation of Motion

Following the Reynolds transport theorem, the equation of conservation of momentum

is based on the equation (2.4):

∂

∂t
(ρ(r, t)v(r, t)) +5· ((ρ(r, t) v(r, t))⊗v(r, t)) = −5· pg(r, t) + frad(r, t)− fgrav(r, t).

(2.27)

Therein pg represents the scalar part of the symmetric pressure tensor (the considered

densities are small) and v(r, t)⊗v(r, t) denominates the dyadic product of the velocities.

fgrav(r, t) = ρ(r, t) g(r, t) (2.28)

represents the external force per volume influencing the exposed material due to a

gravitational acceleration g directed inwards.

frad(r, t) =
1

c

∞∫
0

ξν(r, t) Fν(r, t) dν (2.29)
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represents the external force per volume as a radiative acceleration directed outwards

due to the influence of the local spectral radiative momentum flux (1/c)Fν . The ex-

tinction of radiation is expressed by the momentum transfer coefficient ξν . In general,

all external forces per volume are vectored.

Considering complete coupling between the gas and dust component (one-fluid ap-

proach), conservation of momentum changes after subtraction of the equation for con-

servation of mass to

ρ(r, t)

(
∂

∂t
v(r, t) + (v(r, t) · 5)v(r, t)

)
= −5· pg(r, t)+ frad(r, t)− fgrav(r, t). (2.30)

Just as with mass conservation, in case of an extensive chemical mixture, the equation

can be split into their constituents gas and dust, with m, the mass of the considered

species, n, its number density in the flow. Taking into account the interactions between

the two phases of the fluid, a new source term has to be added, namely the drag force.

The drag force fdrag has to be considered here as the sum of the different frictional

situations of possible processes of surface interaction of gas and dust particles.

With these requirements the equation of motion for the gas turns into

∂

∂t
(ρg(r, t)vg(r, t)) +5 · (ρg(r, t) vg(r, t)⊗ vg(r, t)) =

−5 · pg(r, t) + fg,rad(r, t)− fg,grav(r, t) + fdrag(r, t) (2.31)

and for the dust follows

∂

∂t
(ρd(r, t)vd(r, t)) +5 · (ρd(r, t) vd(r, t)⊗ vd(r, t)) =

fd,rad(r, t)− fd,grav(r, t)− fdrag(r, t). (2.32)

Then, using equation (2.10), the equation of motion for the gas component turns after

subtraction of the corresponding equation of mass conservation into

ρg(r, t)

(
∂

∂t
vg(r, t) + ( vg(r, t) · 5) vg(r, t)

)
=

−5 · pg(r, t) + fg,rad(r, t)− fg,grav(r, t) + fg,drag(r, t)− vg(r, t)qg(r, t)

= −5 · pg(r, t) + fg,rad(r, t)− fg,grav(r, t) + fg,drag(r, t)− qg,acc(r, t) (2.33)

with

qg,acc = vg(r, t)qg(r, t) = −J∗(r, t)mdvg(r, t) (2.34)

(see equation (2.12)). Therefore, −qg(r, t) = J∗(r, t)md leads to a gain of momentum

for the gas phase.

Using (2.11), the equation of motion of the dust turns into

ρd(r, t)

(
∂

∂t
vd(r, t) + ( vd(r, t) · 5)vd(r, t)

)
=



2.1. HYDRODYNAMICS 23

fd,rad(r, t)− fd,grav(r, t)− fd,drag(r, t)− vd(r, t)qd(r, t)

= fd,rad(r, t)− fd,grav(r, t)− fd,drag(r, t)− qd,acc(r, t) (2.35)

with

qd,acc = vd(r, t)qd(r, t) = J∗(r, t)mdvd(r, t) (2.36)

(see equation (2.13)). For the dust, the expression qd(r, t) leads to a loss of momentum

towards the gas phase.

So, the newly derived remanents qacc,g,d are due to the added source term in the mass

conservation equation, and represent the gain or loss of momentum from the one to the

other phase as a consequence of particle growth by gas-dust collisions and take into

account the velocity of impinging. Even though interactions between gas and dust by

adsorption are included in the drag force term.

With respect to different species of gas and dust, each one with a specific size, the

equations change into one equation for each species i, β, and size α, with mg,d, the

mass of the considered species, and ng,d, its number density in the flow. Just as with

the equations of mass conservation (equations (2.14), (2.15)), the equations (2.33),

(2.35) turn into

mi
gn

i
g(r, t)

(
∂

∂t
vig(r, t) + (vig(r, t) · 5)vig(r, t)

)
+5 · pig(r, t)

= f ig,rad(r, t)− f ig,grav(r, t) + f ig,drag(r, t)− qig,acc(r, t) (2.37)

and

mβ,α
d nβ,αd (r, t)

(
∂

∂t
vβ,αd (r, t) + (vβ,αd (r, t) · 5)vβ,αd (r, t)

)

= fβ,αd,rad(r, t)− fβ,αd,grav(r, t)− fβ,αd,drag(r, t)

−qβ,αd,acc(r, t). (2.38)

As for the equations of mass conservation, the momentum exchange terms qiacc,g, re-

spectively qβ,αacc,d represent not only the exchange between gas and dust, but also the

exchange among the several gas species and/or the several dust species and/or the dust

grain sizes.

In case of assumed spherical symmetry, the system of coupled equations is reduced to a

system of one spatial coordinate r. Therefore, the gravitational acceleration Mr G/r
2

affecting the gas or dust particles with G, the gravitational constant and Mr, the at-

tracting mass at the radial position r, leads to

fgrav(r, t) =
Mr G

r2
ρ(r, t) (2.39)
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and

frad(r, t) =
4 π

c

∞∫
0

χν Hν dν (2.40)

with c, the speed of light, H =
∞∫
0

χν Hν dν, the integrated Eddington flux over all

frequencies ν, and χν , the opacities of the gas or dust species. In the case of radiative

equilibrium (RE), with 4 π H = L?/(4 π r
2), the external force due to the radiative

acceleration turns to

frad =
L?

4 π c r2
χH, (2.41)

with the flux weighted mean opacity χH.

2.1.3 Conservation of Energy

The equation of conservation of energy follows the Reynolds transport theorem, based

on the equation (2.4). In this case, the parameter u is represented by the energy density

of the matter per unit mass, consisting of the specific energy e and the specific local

kinetic energy ekin = 1
2v

2 of the hydrodynamical fluid, multiplied by mass density ρ

∂

∂t

[
ρ(r, t)

(
e(r, t) +

1

2
v2(r, t)

)]
+

5 ·
[
ρ(r, t)

(
e(r, t) +

1

2
v2(r, t)

)
v(r, t) + p(r, t)v(r, t)

]
= Qrad(r, t). (2.42)

The local energy input rate to the internal states of the matter due to absorption and

inelastic scattering of photons, and for the energy loss due to emission of photons is

expressed by the radiative net energy source term Qrad. This term provides also an

immediate energy transfer to the thermal pool of matter.

The specific energy e consists of the thermal energy from random particle motion, the

internal energy expressed by the internal degrees of freedom, the latent chemical energy

and the kinetic energy due to relative motions of the different components.

The behaviour of the inner energy e can be obtained by scalar multiplication of the

equation of motion (2.30) with v and subsequent subtraction of these equation and of

the replaced mass conservation equation (2.9) from the equation (2.42). In the context

of cool dust forming circumstellar shells Qrad(r, t) = Qrad,int(r, t) does apply. Radiative

cooling or heating concerns only the internal state of matter. Qrad,int(r, t) describes the

net loss rate of energy of the radiation field due to these processes

ρ(r, t)

(
∂

∂t
e(r, t) + v(r, t) · 5e(r, t)

)
+ p(r, t)5 ·v(r, t) =

v(r, t) · fgrav(r, t)− v(r, t) · frad(r, t) +Qrad,int(r, t) = Q(r, t) +Qrad,int(r, t). (2.43)
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The notations (2.42), (2.43) describe the one-fluid conservation equation of energy.

The rate Q(r, t) is derived on the basis of the remanents by scalar multiplication of

the complete equation of motion. It represents the mechanical power density due

to the work performed by the external forces such as gravity and the force due to

radiative acceleration . Therein fgrav and frad are the vectored volume forces acting on

a considered species and its corresponding hydrodynamic velocity, i.e.

Q(r, t) = Qgrav(r, t)−Qkin,rad(r, t) = v(r, t) · fgrav − v(r, t) · frad. (2.44)

These terms are valid for both one-fluid descriptions and multicomponent fluid descrip-

tions, each with a corresponding index for gas or dust.

In order to consider an extensive chemical mixture, the equation can be split in its

constituents gas and dust, which reads

∂

∂t

[
ρg(r, t)

(
eg(r, t) +

1

2
v2

g(r, t)

)]
+

5 ·
[
ρg(r, t)((eg(r, t) +

1

2
v2

g(r, t))vg(r, t)) + pg(r, t)vg(r, t)

]
= Qrad,int,g(r, t). (2.45)

and
∂

∂t

[
ρd(r, t)

(
ed(r, t) +

1

2
v2

d(r, t)

)]
+

5 ·
[
ρd(r, t)

(
(ed(r, t) +

1

2
v2

d(r, t)) vd(r, t)

)]
= Qrad,int,d(r, t). (2.46)

The equation of conservation of the inner energy eg,d results in

ρg(r, t)
( ∂
∂t
eg(r, t) + vg(r, t) · 5 eg(r, t)

)
= − pg(r, t)5 ·vg(r, t)− v(r, t)g · fdrag(r, t) + v(r, t)g · fg,grav(r, t)− v(r, t)g · frad,g(r, t)

− qg(r, t)
1

2
v2

g(r, t)− qg(r, t)eg(r, t) +Qrad,int,g(r, t)

= − pg(r, t)5 · vg(r, t)−Qdrag,g(r, t) +Qgrav,g(r, t)−Qrad,g(r, t)

− Qkin,g(r, t)−Qint,g +Qrad,int,g(r, t)

(2.47)

and

ρd(r, t)
( ∂
∂t
ed(r, t) + vd(r, t) · 5 ed(r, t)

)
= − v(r, t)d · fdrag(r, t) + v(r, t)d · fd,grav(r, t)− v(r, t)d · frad,d(r, t)

− qd(r, t)
1

2
v2

d(r, t)− qd(r, t)ed(r, t) +Qrad,int,d(r, t)

= − Qdrag,d(r, t) +Qgrav,d(r, t)

− Qrad,d(r, t)−Qkin,d(r, t)−Qint,d(r, t) +Qrad,int,d(r, t).

(2.48)
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Therein, the part of the equation represented by the equations of motion for the gas

component (2.31) and for the dust component (2.32), scalar multiplied with vg,d, are

replaced by their results. And in the same manner, the part of the equation that

is represented by the mass conservation equations of gas (2.10) and dust (2.11) is

replaced by the corresponding source terms. The term Qrad,int(r, t) describing the

radiative energy transfer from the internal states of the matter to the radiation field is

represented by

Qrad,int(r, t) = 4π

∫ ∞
0

[κ̂νJν − ηsp
ν ] dν, (2.49)

with the isotropic spontaneous emission coefficient ηsp
ν , the net absorption coefficient

κ̂ν , and the mean spectral intensity Jν .

The newly derived remanents of the subtraction of the equations of mass and mo-

mentum conservation in the case of extensive mixture of components lead to a series

of terms besides these of the one-fluid description (see (2.43)). They result from the

added source terms in the mass conservation equation and therefore the added and

derived source terms by treatment of the equation of motion. The remanents introduce

external energy source terms represented by the rates Q.

The term Qdrag(r, t) originates from the remanents of the equation of motion. Therein,

Qdrag(r, t) = v(r, t)g,d · fdrag(r, t) (2.50)

stands for the volume drag force acting on its corresponding hydrodynamic velocity.

This volume force involves the difference of the velocities of the gas and the dust

component, multiplied by the velocity of the considered species.

The terms

Qkin,g(r, t) = qg(r, t)
1

2
v2

g(r, t) = −1

2
v2

g(r, t) J∗(r, t) md, (2.51)

respectively

Qkin,d(r, t) = qd(r, t)
1

2
v2

d(r, t) =
1

2
v2

d(r, t) J∗(r, t) md (2.52)

with (2.12 ) and (2.13 ) are the collisional gain and loss of kinetic energy of the gas or

the dust phase due to the mass flux density by newly formed grains, respectively. Also

for the inner energy e the collisional gain or loss leads to the equations

Qint,g(r, t) = qg(r, t)eg(r, t) = −J∗(r, t) md eg(r, t), (2.53)

Qint,d(r, t) = qd(r, t)ed(r, t) = J∗(r, t) md eg(r, t). (2.54)

Due to the mass flux density of newly formed grains, this term may represent the

exchange of inner energy by condensation or growth (eth) and exitation or deexitation of

internal states (eint). Approaches, whether several terms may be replaced by simplified

assumptions, may be found in [58].

In addition, to specify the extensive mixture of components, the equations may be split
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into their constituents where each one has its own specific size. The equations change

into equations for each species i, β, and size α as well as for momentum conservation.

Therein mg,d represents the mass of the considered species, whereas ng,d represents its

number density in the flow. Thus, the equations turn into

mi
gn

i
g(r, t)

∂

∂t
eig(r, t) +mi

gn
i
g(r, t) vig(r, t) · 5eig(r, t)

= − pig(r, t)5 ·vig(r, t) +Qidrag,g(r, t)−Qigrav,g(r, t)

+ Qirad,g(r, t)−Qikin,g(r, t)−Qiint,g(r, t) +Qirad,int,g(r, t)

(2.55)

and

mβ,α
d nβ,αd (r, t)

∂

∂t
eβ,αd (r, t) +mβ,α

d nβ,αd (r, t) vβ,αd (r, t) · 5eβ,αd (r, t) =

−Qβ,αdrag,d(r, t) +Qβ,αgrav,d(r, t)−Qβ,αrad,d(r, t)−Qβ,αkin,d(r, t)−Qβ,αint,d(r, t) +Qβ,αrad,int,d(r, t).

(2.56)

2.1.3.1 Temperature Equations

In order to complete the equations of energy conservation, the temperature equations

follow [58]. The inner energy density e is an extensive quantity, resulting from the

addition of the different energy reservoirs, i.e.

e = eth + eint + ech + erel. (2.57)

In order to take into account the different species along the multicomponent description

of the fluid, the inner energy density e has to be separated into particular reservoirs cou-

pled by exchange terms among these inner energy reservoirs. The inner energy reservoir

eth includes coupling terms due to kinetic collisional heating, and therefore chemical

heating by nucleation or growth. Inelastic collisions between the several species and

particles also provide the excitation of internal states and deexcitation of excited states

of particles of each species eint just like nucleation or growth of dust particles, so that

by collision nucleation and growth lead to exchange among the reservoirs by coupling

terms. The same consideration applies to the latent chemical inner energy density ech.

The coupling terms describe the net release of latent heat by chemical exothermic or

endothermic reaction r producing species i. Latent chemical energy becomes relevant

only when a large number of species is involved, and when chemical reactions contribute

to the inner energy reservoir, e.g. H2-formation or dissociation. Usually latent chem-

ical energy does not play a significant role in cool dust forming circumstellar shells,

but rather in the shells of WR- or WC-stars. Assuming the emerging primary clusters
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exhibit behaviour like large molecules and do not have noticeable diffusion or drift ve-

locities relative to the bulk of gas, the energy density from relative motion erel is set

equal to zero. With these restrictions, the inner energy density e contains the energy

reservoirs eth and eint, so that the equation turns into

e = eth + eint. (2.58)

Even though several energy reservoirs have to be treated almost like open systems, the

internal relaxation to partial equilibrium proceeds much faster in each reservoir than

between different reservoirs. So, in lowest order approximation, each single reservoir

may be considered as being energetically closed, and related to a corresponding spe-

cific heat. The following equations represent energy-temperature relations, where each

particular energy reservoir of a considered species is characterised by a temperature T

and a corresponding heat capacity cv. As with stellar atmospheres and circumstellar

shells, the thermal reservoirs of each gas species, highly coupled by collisions, form a

local thermal equilibrium for all gas species, so a single thermal temperature may be

defined

d eg,th =
1

mg
cv,th,g dTth,g, (2.59)

with mg, the mean mass of a gas particle as defined in equation (2.19). For the dust,

only the internal energy reservoir is of interest. The energy-temperature equation of

the internal state both of the gas and the dust has to be treated differently for each

single considered species in the fluid

d eiint,g =
1

mi
g

civ,int,g d T
i
int,g, (2.60)

d eβ,αd,int =
1

mβ,α
d

cβ,αv,int,d d T
β,α
d . (2.61)

The heat capacities cv of the considered multiple components are proportional to the

number of degrees of freedom, together with the contribution 1
2kB. For the thermal

energy reservoir eth, the translational degrees of freedom of a single particle counts

with the number of 3. Therefore the thermal heat capacity for constant volume leads

to

cv,th,g = civ,th,g =
3

2
kB for all i with fg,trans = 3. (2.62)

The identification of the number of degrees of freedom bases on internal energy forms,

like the rotational energy εrot of a molecule due to rotation around an axis through

the center of mass of the particle or the internal energy εvib by oscillation. A diatomic
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molecule with two independent rotational axes possesses two rotational degrees of free-

dom (frot = 2). The rotational energy of a spherical dust grain is assumed to be

negligible. For linear molecules with f degrees of freedom, (f − 5) degrees of freedom

are related to vibrations and (f − 6) for non-linear molecules. The corresponding in-

ternal energy is εvib. Since there is only one type of oscillation possible, the degrees

of freedom related to vibrations is of the number of fg,vib = 1. The number of the

translational degrees of freedom of a single particle is fg,trans = 3. Macroscopic solid

grains consisting of N atoms possess fd,int = 3N−6 ' 3N degrees of freedom as a good

approximation. This number provides a continuous phonon spectrum and so εvib is the

most important internal energy reservoir. Considering the conditions predominant in

dust forming circumstellar shells, with low temperatures, electronical energy does not

play a role. The internal energy εvib does not play a role in a cool environment. Elec-

tronic degrees of freedom are of interest only in cases, where higher electronic states

are excited.

According to the explanations above, the degrees of freedom for diatomic molecules are

f iint,g = f irot,g + f ivib,g = 3. (2.63)

This number leads to the internal heat capacities for constant volume

cv,int,g = civ,int,g =
3

2
kB. (2.64)

With the knowledge that Debye theory for calculating the specific heat of solids applies

only to particular solid materials, like e.g. iron, the following consideration should

be treated with caution. The heat capacity of probable grain material remains to

be defined. Θj
d describes the Debye temperature of a solid grain, usually Θj

d < 500 K,

being the internal temperature T j,αd > Θj
d in a circumstellar dust shell. From the results

concerning the number of the degrees of freedom of macroscopic solid grains consisting

of N atoms, the internal heat capacities for constant volume may be calculated with

the number of degrees of freedom for any macroscopic grain with N j,α
d > 20

f j,αint,d = 3N j,α
d , (2.65)

as

cj,αv,int,d =

f
j,α
int,d · 3kB

(
T j,αd

Θjd

)3 T j,αd /Θjd∫
0

x4(ex − 1)−1dx, if T j,αd < Θj
d,

f j,αint,d, if T j,αd ≥ Θj
d.

(2.66)

According to the expressions for heat capacities, the energy-temperature equation may

be rewritten as

d eg,th =
1

mg

3

2
kB d Tth,g. (2.67)
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The energy-temperature equation of the internal state both of the gas and the dust

turns into

d eig,int =
1

mi
g

3

2
kB d T iint,g. (2.68)

By assuming T j,αd > Θj
d (high temperature approximation of Debye theory for the heat

capacity of grains having Debye temperature), for the dust follows

d eβ,αd,int =
1

mβ,α
d

3N j,α d T β,αd (2.69)

For more explanations see [58].

2.1.3.1.1 Temperature Equations by One-Fluid Description

In order to determine gas temperature equations, with replacement of e by equation

(2.67) and (2.68), the energy equation (2.43) turns into

ρ(r, t)
1

mg

3

2
kB

∂

∂t
Tg(r, t) + v(r, t) ρ(r, t)

1

mg

3

2
kB · 5Tg(r, t) + pg(r, t)5 ·v(r, t) =

v(r, t) · fgrav(r, t)− v(r, t) · frad(r, t) +Qrad,int(r, t) = Q(r, t) +Qrad,int(r, t). (2.70)

In this case, dust temperature is assumed as being in radiative equilibrium and there-

fore equals radiative temperature Trad.

2.1.3.1.2 Temperature Equations for Gas and Dust

As for the one-fluid description, temperature equations for both gas and dust are spec-

ified taking into account the equations (2.67), (2.68), and (2.69).

mi
gn

i
g(r, t)

1

mi
g

civ,g
∂

∂t
T ig(r, t) +mi

gn
i
g(r, t)

1

mi
g

civ,g vig(r, t) · 5T ig

= − pig(r, t)5 · vig(r, t)−Qidrag,g(r, t) +Qigrav,g(r, t)

− Qirad,g(r, t)−Qikin,g(r, t)−Qiint,g(r, t) +Qirad,int,g(r, t)

(2.71)

represents the gas energy equation with

Qint,g(r, t) = qg(r, t)
1

mi
g

civ,g T
i
g(r, t), (2.72)
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the remanent of the subtraction of the motion equation from energy equation (2.45)

with qg(r, t), defined in equation (2.12). For the dust energy equation, the replacement

of e by the related temperatures leads to

mβ,α
d nβ,αd (r, t)

1

mβ,α
d

3N j,α ∂

∂t
T β,αd (r, t)

+mβ,α
d nβ,αd (r, t)

1

mβ,α
d

3N j,α vβ,αd (r, t) · 5T β,αd (r, t) =

−Qβ,αdrag(r, t)+Qβ,αgrav,d(r, t)−Qβ,αrad,d(r, t)−Qβ,αkin,d(r, t)−Qβ,αint,d(r, t)+Qβ,αrad,int,d(r, t) (2.73)

with the remanent of the subtraction

Qint,d(r, t) = qd(r, t)
1

mβ,α
d

3N j,α T β,αd (r, t), (2.74)

wherein qd(r, t) means the coupling term applied as in (2.17).

2.2 Dust Complex

Describing dust formation, it is fundamental to specify the conditions of generating a

surface. The conventional way of describing dust formation is to assume a process which

provokes phase transition as an effect of small disturbances. These disturbances with

the objective of energy minimisation lead to an stable state. Classical theory is based on

three fundamentals, namely: new built grains are spherical, density and surface tension

are related to macroscopic values. Cluster size increases by adsorption of monomers

and chemical equilibrium is valid just like thermal equilibrium. The assumption of

a spherical grain in case of nucleation from the gas phase is justified. In the case of

heterogeneous nucleation, the spherical assumption is not founded all the times. The

assumed relation to macroscopic quantities is justified by congruence between theory

and measurements. Thermodynamical description of nucleation appears first by e.g.

Volmer & Weber [108], Becker & Döring [9]. The steps leading to classical nucleation

theory are illustrated in the following.

2.2.1 Thermodynamics

Any supersaturated vapor tends to fluctuations from Brownian motion. This leads

to variations in density, temperature, and pressure and therefore to aggregations of

monomers or molecules. Based on the classical nucleation theory, these aggregations

grow by addition of a single monomer, or evaporate by elimination of a single monomer.

The life cycle of the new formed conglomerates depends from the stability of the as-

sociated thermodynamical state. In case of exceeding the limit of a thermodynamical

critical value, the conglomerate, instead of dissociating, grows by adsorption of further
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monomers or molecules. This newly formed conglomerate is the so called critical clus-

ter.

First, the energetic state of any fluid, which in this case represents our thermodynami-

cal system has to be specified. Each thermodynamical system, e.g. a homogeneous gas

phase, is expressed by the state variable of internal energy, which in case of a closed

system has to be constant, according to the first law of thermodynamics

dU = δQ+ δW. (2.75)

The change of the internal energy dU is equal to the heat absorbed or emitted from the

environment δQ, and the exchange of work δW done to the system, which includes work

from the exchange of matter dNi through the system boundary. So, the fundamental

relation in thermodynamics for gases is given by

dU = T dS − p dV +
k∑
i=1

µi dNi. (2.76)

Herein

T dS = δQ (2.77)

means the second law of thermodynamics with the differential of the entropy dS and

δW = −p dV +
k∑
i=1

µi dNi, (2.78)

the change of volume V by the pressure p and the exchange of particles Ni with the

chemical potential µi for an i-type particle. Considering that extensive variables, like

e.g. V , S, N , U , are proportional to the absolute size of the system, and, on the other

hand, intensive variables, like e.g. p, T , n, are independent from the involved mass of

the system, the internal energy changes to

U(ξS, ξV, ξNi) = ξU(S, V,Ni) (2.79)

if the extensive state variables are multiplicated by an enlargement factor ξ. All of

natural variables of the internal energy U are extensive quantities. So, this causes the

fundamental equation of the internal energy to be integrable and it follows from Euler’s

homogeneous function theorem [6], [11], that

U(S, V,Ni) = TS − pV +
∑
i

µiNi. (2.80)

The quantity

U = U(V, S,Ni) (2.81)

is the so called thermodynamical potential.

Based on the fact that all thermodynamic potentials include the same complete in-

formation about the examined thermodynamic system in equilibrium, thermodynamic
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potentials can be determined with respect to specification of the free parameters by

Legendre transformation. Assuming reversible processes with constant temperature

and pressure in a closed state, a new thermodynamical potential with temperature T ,

pressure p, and particle species N as natural variables is given by Legendre transfor-

mation as the Gibbs free energy G [97]:

Ũ(V, S,Ni) = U(V, S,Ni)−
∂f(V, S,Ni)

∂V
V − ∂f(V, S,Ni)

∂S
S = U+pV −TS = G (2.82)

With equation (2.80) the Gibbs free energy G turns to its integral form

G = TS − pV +
∑
i

µiNi + pV − TS =
∑
i

µiNi. (2.83)

The total derivative of the Gibbs free energy G is given by

dG =
∑
i

dµiNi +
∑
i

µi dNi (2.84)

On the other hand from Legendre transformation results

dG = d(U + pV − ST ) = dU + p dV + V dp− S dT − T dS =

= T dS − p dV +
k∑
i=1

µi dNi + p dV + V dp− S dT − T dS (2.85)

wherein dU is replaced with the fundamental relation in thermodynamics

dG =
k∑
i=1

µi dNi + V dp− S dT. (2.86)

Comparison of these two terms leads to

0 = S dT − V dp+
k∑
i=1

Ni dµi, (2.87)

the so called Gibbs-Duhem-Relation [89].

The differential of a thermodynamic potential can be assumed equal to a differential

of a mechanical potential energy. The equations of state are therefore to be obtained

by thermodynamic potentials. To express equilibrium conditions for simple systems

as well as for integrated systems under the condition that independent variables are

predetermined and constant, the potential has to be completely known. In this case

equilibrium behaviour of the system is well-defined.

In the following the equation of Gibbs free energy G leads to obtaining a state of

equilibrium in a reversible process with constant temperature and pressure in a closed

system. Provided the coexistence of two different phases of a fluid, in equilibrium state
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with constant pressure, and wherein isobaric and isothermal processes simultaneous

proceed, the attention focuses on the change of phase of the two different phases. For

every system the conservation of the amount of material has to be applied. First, the

pressure p and temperature T are assumed as constant, as is the chemical potential,

i.e.

µ1 = µ2 (2.88)

p = const, T = const. (2.89)

This leads to the equation for the derivative of the Gibbs free energy G, which defines

the equilibrium condition

dG = 0. (2.90)

Due to the dependency on the intensive variables T, p, µ1, · · ·µk, which are conjugated

to form the extensive variables S, V,N1, · · ·Nk, it is feasible to eliminate an intensive

variable. When a system with saturation pressure p1(V1) = pS in the volume V1 and

constant temperature (T = const.) undergoes a fractional change in pressure, the Gibbs-

Duhem-Relation implies in the following

0 = −V dp+
k∑
i=1

Ni dµi (2.91)

⇐⇒ V dp =
K∑
i=1

Ni dµi (2.92)

Then for a chemical potential µi the equation turns into

V dpi = Ni dµi, (2.93)

wherein pV = NkBT is the ideal gas law, and the differential of the chemical potential

can be expressed by
1

pi
kB T dpi = dµi. (2.94)

For the chemical potential follows after integration with

p(V2)∫
p(V1)

1

pi
k T dpi =

µ(V2)∫
µ(V1)

dµi (2.95)

a change with pressure:

kB T ln

(
pi(V2)

pi,S

)
= ∆ µi = µi(V2)− µi(V1) = kB T ln (S) , (2.96)
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with pi,S being the saturation vapour pressure. Knowing this, the chemical potential

of the solid phase is associated with µi(N) and the chemical potential of the monomers

with µi(1). This leads to

∆ µi = µi(N)− µi(1) = kB T ln

(
pi
pi,S

)
(2.97)

and determines the difference between the solid and the fluid phase.

By changing a surface area, work has to be performed to modify the inner energy

of the compound. In the case of boundary surfaces, the disposition of forces is highly

anisotropic. This anisotropy is specified by surface tension σ. The surface tension tends

to minimise the volume of the spherical cluster with radius rCl. Inside the volume over-

pressure holds the mechanical equilibrium. This results in an equilibrium of pressure

pout due to surface tension against internal pressure pint

pint dV = pout dV + σdA, (2.98)

pint − pout∆p =
8π rCl σ

4π r2
Cl

=
2σ

rCl
(2.99)

with A = 4πr2
Cl, the surface of the cluster, dA = 8πrCl dr, the differential of the surface

and V = 4
3πr

3
Cl, the volume of the cluster. Assuming a spherical cluster, the Laplace

equation ∆p = 0 is valid, i.e.

pint = pout +
2σ

rCl
. (2.100)

The Laplace equation represents a special case of the Kelvin equation, which sets the

internal pressure of a cluster in relation to saturation pressure p∞ over a flat surface

ln

(
pCl

p∞

)
=

2σ V

rClkBT
. (2.101)

In consequence, differences emerge between the Gibbs-Energies of the two involved

phases, i.e. between the Gibbs-Energies of the solid and the monomers. With Gi(1) =

µi(1) and Gi(N) = N µi(N), the Gibbs-Energies of the monomers and the N -mers,

and the work WA(N) = 4π · r2
N,i · σ to form a surface A(N) = 4πσr2

i with the surface

tension σ. Assuming Gi(N) 6= N · µi(1), then, in general Gi(N) > N · µi(1) is valid.

Furthermore, the difference between the Gibbs-Energies of N monomers and an N−mer
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leads to:

∆ Gi = Gi(N)−Nµi(1)

= N µi(N) +A(N)σ −N µi(1)

= N (µi(N)− µi(1)) +A(N)σ

= A(N)σ −N (µi(1)− µi(N))

= A(N)σ −N∆µi

= A(N)σ −N kBT ln

(
pi
pi,S

)
. (2.102)

With N = 4
3 π r3

i (N) ρimi , the size of the N -mer, the difference of the Gibbs-Energies

can be expressed by

∆ Gi = 4πσr2
i −

4

3
π r3

i (N)
ρi
mi

kB T ln

(
pi
pi,S

)
. (2.103)

In order to obtain the radius of a nucleus with minimal energy, the critical radius r∗i ,

i.e. the minimal size of a cluster, the equation has to be differentiated with respect to

the radius r∗i , i.e.

0 =
d(∆G)∗

dr∗i

∣∣∣∣
ri=r∗i

= 8π σr∗i −
12

3
π r∗2i (N)

ρi
mi
kBT ln

(
pi
pi,S

)
. (2.104)

Therefore, the critical radius turns into

r∗i =
2σmi

ρikBT ln (S)
. (2.105)

Then, with the equation of the critical radius r∗i and with the size of the critical N -mer

N∗ = 4
3 π r

∗3
i (N∗) ρimi , the Gibbs-Energy ∆ G∗i can be determined by

∆ G∗i = 4πσr∗2i −
4

3
π r∗3i (N∗)

ρi
mi

kBT ln

(
pi
pi,S

)
(2.106)

⇐⇒ ∆ G∗i =

(
4 π r∗2i (N∗)− 8

3
π r∗2i (N∗)

)
σ =

4

3
π r∗2i (N∗)σ. (2.107)

This leads to a simple expression for the Gibbs-Energy

∆ G∗i =
1

3
A(N∗) σ, (2.108)

where A(N∗) is the surface of the critical N -mer.

The next step is to specify the nucleation rate. According to Vollmer & Weber [108],
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this is the number of clusters, exceeding the energy barrier of the Gibbs-Energy ∆G∗i per

volume and time unit. Assuming a thermally activated process of fluctuation of sub-

critical nuclei and using the Arrhenius-ansatz, the steady state homogeneous nucleation

rate has been given by

J∗ = φ · Z · ncrit · exp

(
−∆G∗i
kBT

)
, (2.109)

wherein

f̊ = (N∗)ncrit · exp

(
−∆G∗i
kBT

)
(2.110)

represents the equilibrium concentration of critical size nuclei.

φ =
1

4
A(N∗) ni vtherm (2.111)

is the frequency of adsorption of a monomer to form a stable nucleus (with ni, the

value of the effective concentration of the condensing species in the gas phase) and

vtherm =
√

8kBT/(π mi) the thermal velocity. The Zeldovich-factor,

Z =

(
1

2π kBT

(
−∂

2G∗

∂N2

)
N=N∗

)1/2

, (2.112)

corrects the non-equilibrium concentration of critical nuclei. The Zeldovich-factor is the

result of an integral realised in the neighborhood of the critical cluster size. It includes

that the critical cluster size results both from growth and from evaporation depending

on whether the original grain size is smaller or bigger than the critical cluster.

2.2.2 Dust Equations

Based on classical nucleation theory, dust formation, growth, and evaporation is de-

scribed by the modified theory by H.P. Gail & E. Sedlmayr [47]. Dust formation may

be considered as a sequenced process. Small meta-stable clusters are formed from the

gas phase up to a significant lower dimension N∗, the so called critical cluster. From

this dimension, these seeds are able to form macroscopic grains. The formation of a

critical cluster can be considered as a stationary problem (H.P. Gail & E. Sedlmayr [53],

A. Gauger et al. [55]), provided that hydrodynamical time scales are greater than the

growth time scales of the nucleation time scales. The grain growth and formation in

the context of the hydrodynamics can be described by the moments Kj of the local size

distribution of the dust particles f(r,N, t), i.e.

Kj(r, t) =

∞∑
N=Nl

N j/df(r,N, t), (2.113)

where the number of monomers contained in a dust particle defines the grain size N .

Nl is the minimal limit size of grains in the size contribution, i defines the moment



38 CHAPTER 2. THEORETICAL BACKGROUND

number, d the spatial dimension of the particles. The following system of equations

represents the time evolution of the moments:

∂

∂t
K0 + 5 · (vg K0) = J(Nl, t) (2.114)

∂

∂t
Kj + 5 · (vg Ki) = N

j/d
l J(Nl, t) +

i

d

1

τ
Kj−1, j = 0, 1, 2, 3. (2.115)

J(r,Nl, t) is the local formation rate of clusters Nl

J(r,Nl, t) = N
d−1
d

l

1

τ
f(Nl, t). (2.116)

The net growth rate 1
τ is the number of monomers per second, per dust particle and

monomer surface on the dust particle adsorbed or evaporated from the grain (see

also [41]).

1

τ
=

I∑
i=1

iA1 vth(i)α(i)f(i, t)

{
1− 1

Si
1

bi
α∗(i)

}

+

I′∑
i=1

iA1

Mi∑
m=1

vth(i,m)αc(i,m)ni,m

{
1− 1

Si
1

bci,m
αc∗(i,m)

}
.

(2.117)

Herein,

S = n1kB Tg/pS(1) =
p(1, Td)

pS(1)
, (2.118)

means the supersaturation ratio, the ratio of the actual partial pressure of condensible

monomers in the gas component p(1, Td) to the vapor saturation pressure with respect

to the dust temperature pS(1). The quantities bi and bci,m are the generalised departure

coefficients of the actual particle densities of the i-mers. Non-TE effects with exitation

dust temperatures different from the assumed Td are represented by α∗. The net growth

rate comprises the growth rate 1/τgr and the evaporation rate 1/τev:

1

τ
=

1

τgr
− 1

τev
. (2.119)

If 1/τgr < 1/τev the equations (2.114) and (2.115) describe grain destruction caused by

sputtering or evaporation. In case of 1/τgr > 1/τev the equations (2.114) and (2.115)

describe grain nucleation and growth. For conditions typically prevailing in circum-

stellar shells of cool stars one can assume that growth from N∗ to Nl is a stationary

process.

The stationary homogeneous formation rate of critical clusters N∗ at time t per hydro-

gen atom per unit time and unit surface is represented by the nucleation rate

J∗ = Z f̊(N) AN∗

I∑
i=1

i2 f(i) v(i) α(i). (2.120)
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Herein mean the sum over i the sum of all nucleating species, the surface of the critical

cluster is represented by

AN∗ = 4π

(
3Amp

4πρsolid

)2/3

N
2/3
∗ , (2.121)

with the atomic weight A and mp, the proton mass. v(i) is the thermal velocity (see

equation 2.22). The factor α represents the average sticking coefficient for a monomer

of the species i according to H.P. Gail & E. Sedlmayr [46]. Herein f̊(N) denominates

the equilibrium distribution of the involved species

f̊(N) = n1 exp

{
(N − 1) ln S − ΘN

Tg
(N − 1)2/3

}
. (2.122)

Z represents the Zeldovich factor

Z =

(
1

2π

∂2 ln f̊(N)

∂N2

∣∣∣
N=N∗

)1/2

. (2.123)

In order to focus on stationarity, the explicit time dependency is not discussed.

The critical cluster is described as follows

N∗ = 1 +
N∗,∞

8

1 +

[
1 + 2

(
Nf

N∗,∞

)1/3
]1/2

− 2

(
Nf

N∗,∞

)1/3


3

, (2.124)

wherein N∗,∞ = (2Θ∞/3 Tg ln S)3 with Θ∞, according to the classical nucleation

theory, is the surface contribution to the Gibbs-Energy ( equation (2.107))

Θ∞ = σ4πa2
0/kB. (2.125)

S = nmkBT/psat determines the supersaturation ratio with nm the number density

of the monomers m in the gas phase, and psat, the saturation vapour pressure over a

flat surface. In order to include not only homogeneous growth, but also a corn-mantle

heterogeneous growth with several species, the equation turns into

J∗ = Z f̊(N) AN∗

(
I∑
i=1

i2 f(i) v(i) α(i) +

I′∑
i=1

i2
Mi∑
m=1

v(i,m) αcm(i,m) ni,m

)
.

(2.126)

The double sum represents the several species involved in the growth.

The moments are related to the following physical values:

• the number density of monomers condensed in dust particles of size N ≥ Nl

nC = K3, (2.127)
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• the average particle size can be expressed by

〈N〉 = K3/K0, (2.128)

• the related average particle radius

〈a〉 = a0K1/K0, (2.129)

with a0, the hypothetical monomer radius,

• the average particle surface is represented by

〈A〉 = 4 πa2
0K2/K0, (2.130)

and

• the particle density of grains of size N ≥ Nl

nd =

∞∫
Nl

dNf(r,N, t) = K0, (2.131)

with Nl
∼= 102 − 103, the lower limit of the particle size.

2.3 Radiative Transfer

In the following, the radiative transfer is presented in a short version. For more details

see e.g. D. Mihalas [88].

Assuming radiative equilibrium for the entire considered atmosphere, the stratification

of the temperature of the atmospheric layers can be described by conservation of ra-

diation energy. For that, the radiative transfer problem has to be solved for the outer

layers of the star as well as for the circumstellar dust shell. Based on the moment

equations of the radiation intensity, one can obtain an approximation for the strati-

fication of the temperature of the atmospheric layers, according to the work of L.B.

Lucy [84], [83]. The moments of the specific intensity Iν in a non-grey description are

the following:

Jν =
1

2

∫ 1

−1
Idµ, Hν = 2

∫ 1

−1
Iµdµ, Kν =

1

2

∫ 1

−1
Iµ2dµ, (2.132)

Jν , Hν , and Kν are the 0., 1. and 2. moment of the radiation intensity. At a distance

r from the star with a radius R∗, for which µ∗ ≤ µ ≤ 1, is the cosine of the solid angle,

with

µ∗ =

√
1−

(
R∗
r

)2

, (2.133)
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(see Figure 2.2) the moments of intensity can be calculated by using the following

angular splitting

Iν(r, µ) = I+
ν (r) for µ ≥ µ∗ (2.134)

and

Iν(r, µ) = I−ν (r) for µ < µ∗, (2.135)

i.e. with

Iν(r, µ) = Θ(µ− µ∗)I+
ν (r) + Θ(µ∗ − µ)I−ν (r) (2.136)

where Θ is the Heaviside function. The split intensities I+
ν (r) and I−ν (r) describe

the emission of radiation and respectively the irradiation in a spherical atmosphere

surrounding a central, spherical source of radiation [84].

Figure 2.2: Model for the radiation field (adopted from the work of L.B. Lucy [84])

The moments result in

Jν(r) =
1

2
(I+
ν + I−ν )− µ∗

2
(I+
ν − I−ν ), (2.137)

Hν(r) = (I+
ν − I−ν )(1− µ2

∗), (2.138)

Kν(r) =
1

3

[
1

2
(I+
ν + I−ν )− µ2

∗
2

(I+
ν − I−ν )

]
. (2.139)

Elimination of I+
ν I−ν then gives the 1. intensity moment of radiation

Jν(r)− 3Kν +
1

2
µ∗Hν . (2.140)
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The transfer equation (Chandrasekhar, [15]) for a spherical static atmosphere surround-

ing a spherical source of continuum radiation is represented by

µ
∂Iν
∂r

+
1− µ2

r

∂Iν
∂µ

= −κνρ(Iν − Jν), (2.141)

where κν is the mass coefficient of absorption per unit volume. So, the first two moments

are
d

dr
Hν +

2Hν

r
= 0 (2.142)

and
d

dr
Kν +

3Kν − Jν
r

= −1

4
κνρHν . (2.143)

The radiative transfer problem is considered as grey approximation. Assuming local

thermodynamical equilibrium (LTE) in addition, radiative equilibrium (RE) can be

specified by

J =

∫
Jνdν =

∫
νBν(TRE)dν, (2.144)

where Bν(TRE) means the black body radiation field at the radiative equilibrium tem-

perature TRE. Radiative transfer is considered as being time-independent. Assuming

radiative equilibrium, radiative emission is balanced by radiative absorption for the

entire considered atmosphere. Supposing the isothermal limit case, the gas relaxes

without time-delay towards radiative equilibrium. All effects, which may differ from

RE, are not considered in the following. The definition of Lucy’s optical depth yields

dτL
dr

= −κρ
(
R2
∗
r2

)
, (2.145)

wherein κ is the mass absorption coefficient and τL(R∗) = 2/3 and lim
r→∞

τL(r) = 0 are

the boundary conditions for the optical depth. With the Stefan-Boltzmann law

H(R∗) =
σ

4π
T 4
∗ , (2.146)

and under condition lim
r→∞

J(r) = 0, J equals to

J =
σ

π
T 4

RE (2.147)

with the radiative equilibrium temperature TRE in LTE. So the moment

Jν(r) = Hν(R∗)

[
1/2(1−

√
1− R2

∗
r2

) +
3

4

∫ ∞
R∗

κνρ

(
R2
∗
r2

)
dr

]
(2.148)

leads to the temperature distribution in radiative equilibrium

T 4
rad(r) =

1

2
T 4
∗

[
1−

√
1− R2

∗
r2

+
3

2
τL(r)

]
. (2.149)



2.4. THE NUMERICAL PROBLEM 43

2.4 The Numerical Problem

2.4.1 Differential-algebraic Equations

Ordinary differential equations ( [75] [7] [14]) are known in the form of

du

dx
= f(x, u),

wherein u = u(x) represents the unknown function depending on the variable x. The

differential quotient du
dx is called a first order scalar ordinary differential equation. An

existence and uniqueness theorem exists under weak continuity conditions of the right

hand side of the equation, and so, if there are more equations added up, it results in a

system of equations
du

dx
= f(x,u),

with u, the vector of dependent variables. Each system of this type basically comprises

as much equations as unknown functions u. Every system of higher order may be

transformed into an equivalent first order differential equation system by introducing

additional variables, representing the derivatives of the originally dependent variables.

In case of transformation into a global system of ordinary first order differential equa-

tions

F(x,u,u′) = 0,

there is no obligatory assumption of the fact that the number of equations is equal to

that of the unknown functions. Both the theoretical as well as the numerical treatment

lead to results beyond the common form u′ = f(x,u). The behaviour of the system

causes multiple singularities, because of the implicit dependence of u′. Though, for this

system, the question of existence and uniqueness of solutions has to be raised.

The implicit first order differential equation system

F(x,u,u′) = 0, (2.150)

with

x ∈ [x0, xe], u : [x0, xe]→ Rn

the initial conditions. Further,

F : [x0, xe]× Rn × Rn → Rn

has to be continuous and continuously differentiable by u′ = du
dx . By introduction of an

added variable z, the system turns into a semi-explicit form with side conditions

M(u)u′ = f(x,u, z) (2.151)

0 = g(x,u, z), (2.152)
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wherein is M(u) a regular matrix.

This system of equations comprises differential equations and also algebraic equations,

what leads to the notion of DAE, the differential-algebraic-equation system. Each

continuously differentiable function

u(x) : [x0, xe]→ Rn with F(x,u,u′) = 0 and x ∈ [x0, xe]

is called solution of the system of the DAE. The function u(x) is therefore the solution

of the initial value problem, if it solves both the DAE system and the initial conditions.

The initial conditions are called consistent if the related initial value problem has at

least one solution.

For further treatment, the DAE has to be classified by the index of the differentiation.

The index of the differentiation denominates the number of differentiations necessary

to transform the system of ordinary first order differential equations

F(x,u,u′) = 0

by differentiating the equations for x and by algebraic transformations into an explicit

first order ordinary differential equation system.

u′(x) = φ(x,u)

A first order ordinary differential equation system has the index zero. The index is

a measure of the difficulty of the numerical treatment of the DAE by characterising

the algebraic part, [101]. In consequence, the system contains potential constraints

of the form r(x,u). So, the system has to satisfy the initial conditions, the initial

value problem as well as the hidden constraints. It is obvious, that potential differ-

entiations of the algebraic part of the system lead to further independent equations,

i.e. conditions of integrability. In general this problem occurs in the case of a system

of ordinary differential equation of differing order. An added effect consists of further

initial conditions apart from the origin system. So the system has to be treated as

“overdetermined”, even if the originally applied equation system consists of the same

number of equations as unknown functions. Overdetermined means here the same as

for a linear equation system A x = b. If a differential equation system is considered

as a linear equation system, there exist underdetermined or well determined equation

systems. In case of a possible solution, for each matrix A = (m × n) it is valid that

rank A ≤ n and the system contains no more than n independent variables. In case

of a linear equation system with more equations than unknowns has no solution. So,

the system is considered overdetermined and the number of dependent parameters is

greater then that of the free chosen parameters.

2.4.2 Shooting Method

In case of ordinary differential equations, which are required to satisfy boundary con-

ditions for more than one value of the independent variable, the resulting problem is
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a boundary value problem (see [101], [75]). This includes conditions specified at the

endpoints and/or others at interior (usually singular) points. One of the techniques

for solving boundary value problems is the so called “(single) shooting” method, which

integrates the differential equations as an initial value problem with guesses for the

unknown initial values. Since the arbitrarily chosen starting point does not determine

a unique solution, the boundary conditions at the other specified points are not neces-

sarily satisfied.

In the present case the multiple shooting method means the full achievement of two

boundary conditions. The problem consists in satisfying simultaneously the boundary

condition for the singularity of the wind equation and for the boundary values for the

optical depths at the radius of the star and at infinity. These conditions have to be

solved by variating the velocity to be started with. In addition, the luminosity or the

mass loss of the model has to be adjusted for each turn.

The common boundary value problem has to solve a set of N coupled first-order ordi-

nary differential equations, satisfying n1 boundary conditions at the starting point x1,

and a remaining set of n2 = N − n1 boundary conditions at the final point x2. The

differential equations are

du

dx
= φi(x,u) i = 1, 2, ..., N (2.153)

wherein u represents the vector of N dependent variables. At x1, the solution is sup-

posed to satisfy

B1j(x1,u) = 0 j = 1, ..., n1 (2.154)

though at x2, it is supposed to satisfy

B2k(x2,u) = 0 k = 1, ..., n2 (2.155)

The values for all of the dependent variables at one boundary must be consistent with

any boundary conditions, but otherwise they depend on arbitrary, randomly chosen,

free parameters. By integrating the ODE using initial value methods with those initial

values, there are discrepancies from the desired boundary values at the other boundary.

This leads to a multidimensional rootfinding problem. In order to zero the discrepancies

at the other boundary points, the free parameters at the starting point have to be

adjusted. The system of differential equations in the form of

du

dx
= φi(x,u, z) (2.156)

is an eigenvalue problem for differential equations. Here the right-hand side depends

on a parameter z, The integrated solution has to satisfy N + 1 boundary conditions

instead of just N . Thus, the problem is overdetermined. In general there is no solution

for random values of z. Only a few special values of z, the eigenvalues, lead to a
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solution of the equation (2.156). The problem can be reduced to the standard boundary

value problem described by equations (2.153) - (2.155) by introducing a new dependent

variable

uN+1 = z. (2.157)

The new dependent variable leads to the differential equation

duN+1

dx
= 0. (2.158)

The computational algorithm in its basically form starts with solving the differential

equation using a stepping scheme with the initial conditions at x1 and the equation

(2.156).

Step two evaluates the solution u(x2) at x = x2 and compares the obtained value with

the designated value of u(x2).

After adjusting the value at x1 (either smaller or bigger) with a bisection method for

determining values at x1, a desired level of tolerance and accuracy is achieved and the

numerical solution satisfies the initial conditions.

The shooting method (Fig. 2.3) provides a systematic approach to taking a set of shots

allowing to improve the designated result systematically.

Figure 2.3: Shooting method (schematic). Trial integrations satisfying the boundary

condition at one endpoint lead to discrepancies from the designated boundary condition

at the other endpoint. These are used to adjust the starting conditions, until boundary

conditions at both endpoints are satisfied.



Chapter 3

Models Including Interactions

between Gas and Dust

3.1 Stationary Wind Model in Spherical Symmetry

D. Krüger, e. g. [77], investigated the first the influence of the dust component on the

momentum coupling between gas and dust based on a stationary dust driven AGB-star

wind model in spherical symmetry and in Eulerian description. He presented a system

of coupled differential equations including coupling terms. These terms describe the

exchange of momentum and energy between gas and dust particles. The presented

equations are the following:

The radiative transfer is described as grey (see 2.3), and the temperature distribution

follows equation (2.149). First, he uses the mass conservation equation of the gas taking

into account a source term from the mass transfer from gas to condensate:

1

r2

∂

∂r
(r2 vg ρg) = −S. (3.1)

Therein, the physical value −S corresponds equation (2.12). Lately, assuming an

amount of condensible material about 10−3 times the total mass in the wind of an

AGB-star, he set the source term S. equal zero. In consequence, the continuity equa-

tion for the gas phase has to be expressed by the mass loss rate Ṁ∗

r2 ρg vg = Ṁ∗/(4 π). (3.2)

The continuity equation for the dust is given but not applied, since the amount of dust

issuing from condensible material in the wind is assumed to be negligible (see above).

Than one gets
1

r2

∂

∂r
(r2 vd ρd) = mdJ∗. (3.3)

With mdJ∗, corresponding equation (2.12). Referring to the text below, where the dust

velocity is derived from the drift velocity, the equation of mass conservation for the dust

47
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component is not solved. So the mass conservation is assumed to be only represented

by the gas component and by the constant mass loss of the considered stellar object

according to the stationary wind model.

Based on the equation of motion for the gas, including a coupling drag force, the

equation of motion is represented by

ρgvg
∂vg

∂r
= −∂p

∂r
+ fdrag −

G M∗ ρg

r2
. (3.4)

Without remanents resulting from the equation of mass conservation, D. Krüger speci-

fied a coupled motion equation by insertion of energy terms from the applied following

gas energy conservation equation

1

r2

∂

∂r
(r2 eg vg) +

p

r2

∂

∂r

(
r2 vg

)
= qrad + qfric + qacc, (3.5)

which leads to the temperature equation for the gas component

∂Tg

∂r
=

Tg

f vg

(
2 vg

r
+
∂vg

∂r
(v2

g − c2
S)vg

)
= qrad + qfric + qacc (3.6)

with the adiabatic sound velocity cS . The drag force fdrag is defined after B.T.

Draine [32] as

fdrag = ρgndπa
2
dvdrift

[(
4

3
vth

)2

+ v2
drift

]1/2

, (3.7)

and the average thermal velocity vth =
√

8kBTg
πµmH

, with µ being the mean molecular

weight of the gas phase. The coupling terms are qrad, qfric, qacc, representing

qfric =
(

1− α

2

)
fdrag, (3.8)

qacc = αngndπa
2
d

f

2
kB(Td − Tg)

[
v2

th + v2
drift

]1/2
(3.9)

with α ' 0.1. The energy transfer term qacc from accomodation is adopted from

B.T. Draine [31]. The heating-cooling term, describing interactions between dust

components and the radiation field (see equation (2.42 ) et seq.), is derived from

q
vib/rot
rad = 4σr

(
κ

vib/rot
J T 4

rad − κT (vib/rot)T 4
vib/rot

)
, (3.10)

using the Stefan-Boltzmann law.

So, the stated equation of motion is implemented as follows

(v2
g − c2

S)
∂vg

∂r
= vg

[
2c2

S

r
− G M∗ ρg

r2
+

1

ρg
fdrag −

2

f ρgvg
(qrad + qfric + qacc)

]
, (3.11)

However, some simplifications made were not so well introduced. The adiabatic sound

velocity he defines as

γ · c2
T = c2

S , (3.12)
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is not explained. After evaluating the applied equations, the adiabatic coefficient γ has

to be equal to γ = 5/2, as a factor from inserting the temperature equation in (3.4).

Though, he applied this factor in the temperature equation from where its originated

and gave no details on the validity for this value.

The equation of motion for the dust is introduced as

ρd vd
∂

∂r
vd = −G M∗ ρd

r2
+ frad + fdrag +md(vinjection − vd)J∗ (3.13)

with the remanent mdvdJ∗ resulting from the equation of mass conservation, and the

coupling term mdvinjectionJ∗ that should take into account the velocity of impinging

particles. This velocity is assumed to be equal to the newly formed particle velocity, and

therefore the coupling term md(vinjection − vd)J∗ is set equal zero. D. Krüger specified

also an equation for the occurrence of condensible material with the assumption of

carbon as the sole component

1

r2

∂

∂r
(r2
(
εC n(nH+2nH2

) vg)
)

= −NC (3.14)

with NC, the rate of loss of carbon molecules from the gas phase. The rate NC is

specified by the nucleation rate J∗ (see equation (2.120)), md, the mass of a condensed

cluster and mC, the mass of a single carbon atom and can be derived from the dust

equations (2.12) et seq.

The gas temperature is calculated with respect to heating and cooling terms due to the

exchange of energy between gas and dust by friction or accomodating and by exchange

with the radiation field. The dust temperature is set equal to the radiation equilibrium

temperature Td = Trad. The momentum coupling is accomplished by coupling terms

due to energy exchange between gas and dust. D. Krüger applied non-discrete equations

for dust mass conservation and motion.

In consequence of difficulties related to the computing algorithm, he indicated to modify

the system of applied equations at the critical point: Under the condition that the

relaxation time to reach the equilibrium values is minimal, the differential equations of

the dust for the equation of motion as well as the energy equation are both not solved.

In this case, they have to be replaced by their equilibrium conditions and correspond to

a complete momentum coupling between gas and dust. The drift velocity is therefore

solved by an algebraic equation issued from the drag force. But instead of solving the

entire system of equations both for gas and for dust motion beyond the critical point,

the left over of the applied computed models reveals the equilibrium conditions are held

on. More details in the final analysis applied equations follow in Section 4.5.

3.2 Time-Dependent Model

To cite as an example, Y. Simis [102] presented two-fluid time-dependent hydrodynam-

ics in spherical symmetry with included equilibrium gas chemistry as well as grain nu-

cleation and growth. Momentum exchange is introduced by gas-grain collision without
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assumptions regarding the completeness of momentum coupling. No stellar pulsation

was taken into account. The momentum equation respects the loss of momentum of

the gas phase due to the mass transfer from the gas to dust by nucleation. Momentum

transfer is described by the drag force. This force is assumed to be proportional to the

rate of gas-grain-collisions. Radiation pressure on gas is assumed to be negligible in

the circumstellar environment of AGB-stars. They apply a mass conservation equation

for the gas as for the dust

∂

∂t
ρg,d +

1

r2

∂

∂r
(r2ρg,dvg,d) = Scond,g,d(r, t) (3.15)

with Scond,g(r, t) = −Scond,d(r, t). The source term Scond representing the condensation

of dust from the gas is furthermore not specified and correspond the equation (2.12),

respective (2.13). Dust formation is calculated with the equations developed by Gail

& Sedlmayr [47] (see 2.2.2). With

ρd =
4

3
πa3

0ρgrK3 (3.16)

the mass density of the dust is derived from the third moment of the dust formation

K3, ρgr, the grain-mass-density and a0, the hypothetical monomer radius. Therefore

no dust conservation equation is solved. The time dependent momentum equations are

indicated in the following form

∂

∂t
(ρgvg) +

1

r2

∂

∂r
(r2ρgv

2
g) = −∇p+ frad,g + fkin,g − fgrav,g (3.17)

and the same equation for the dust component becomes

∂

∂t
(ρdvd) + vdρd

∂

∂r
vd = frad,d + fdrag,d − fgrav,d + vdScond (3.18)

with fkin,g = −fdrag,d with vdScond,d from the onset of the dust formation, which means

vd = vg = vinject, the velocity of an impinging molecule. These terms correspond the

equations ( 2.33) and ( 2.35) . The problem is solved in the isothermal case. The

absorption coefficient is assumed as grey and grain temperature is not calculated.

Another example is given by C. Sandin [94]. He presents a time dependent model

of a dust driven AGB-star wind with respect to the decoupling of the dust equation

of motion from the gas component. Concerning mass conservation, no equation is

introduced. The conservation of the equations is performed by introducing coupling

terms between the equations of motion of both velocities and for the energy conservation

equation. As presented in [94], the resulting equation of motion for the gas is

∂

∂t
(ρv) +∇ · (ρv v) =

−∇p− GMrρ

r2
+

4π

c
(κg)ρH + fdrag − Scondv (3.19)
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and for the dust
∂

∂t
(ρdvd) +∇ · (ρdvd vd) =

−∇p− GMrρd

r2
+

4π

c
(κd)ρH − fdrag + Scondv. (3.20)

The terms Scond correspond the equation (2.12), respective (2.13). The terms Scond

correspond the equations (2.33) respective (2.35) . The gas opacity follows from

Bowen [13], while the dust opacity follows from (cf. Fleischer et al. [43]). The drag

force is represented by

fdrag = Σ ρ nd
v2

dCd

2
, (3.21)

wherein

Σ = π r2
0 K

2
1/K

2
0 (3.22)

is the cross section of the dust particle with the dust moments K1 and K0 and the drag

coefficient CD introduced by (Bird [10]). The dust equation of internal energy is not

included, the grain temperature is assumed to be determined by radiative equilibrium.

The energy equation is not introduced in particular. For reasons of stability, vd is set

equal v in dust forming regions where the dust/gas ratio is small. The effects of stel-

lar pulsations on the atmosphere are simulated by a sinusoidal radially varying inner

boundary, located at 0.91 R∗. The emulation of the κ-mechanism by piston approxi-

mation provides similiar effects on the dynamics of the wind as levitated atmosphere

and strong shocks. For more details see also Bowen [13].
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Chapter 4

Multi-Component Description of

a Stellar Wind

4.1 Aim

Compared to other models describing flows including multicomponent effects (Chapter

3), in this work, the completely elaborated conservation equations of mass, motion, and

energy lead to a set of remanents. These remanents have to be included in the study of

multicomponent description of winds of AGB-stars on purpose of consistency. In the

case of the equation of mass conservation, this term describes the mass transfer from

gas phase to the condensed components. The equation of motion gets an additional

velocity-dependent term, which may be categorised as a repulsion force from the phase

change, leading to a gain of momentum for the gas phase. The added terms to the en-

ergy conservation equation may be interpreted in the same manner. The newly formed

grains transport kinetic energy. In order to examine the multicomponent description,

the applied equations are considered in the stationary case, assuming spherical sym-

metry and grey radiation transfer. The investigation bases on two models: First, the

model is implemented as a single-fluid model, completely coupled by friction to repro-

duce stationary works (e.g.(Section 3.1)). Second, the finite differences Euler method

model is extended by introducing the separate equations for gas and dust.

In both cases, the model is described by the parameters of the investigated stellar ob-

ject as follows. The mass loss Ṁ∗ and the temperature T∗ are predetermined. The

luminosity L∗ results as eigenvalue from the applied shooting method. The radius R∗
is derived from the Stefan-Boltzmann law from the temperature T∗ and the luminosity

L∗. The initial values for the gas density ρ(R∗) are derived from the free initial param-

eter of the velocity v(R∗) of the gas phase from mass conservation and the mass loss

rate Ṁ∗, assumed to be constant in time. Treating the radiative transfer as introduced

in Section 2.3, there is an additional differential equation to consider as well as two

resulting constraints. First, the value of τL at the position r = R∗, is set equal 2/3, and

53
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for r =∞, the value of τL has to vanish. The pressure of the gas phase is represented

by the ideal gas law

p = ρgkBTg/(µmH), (4.1)

with ρg, the gas density, kB, the Boltzmann constant Tg, the temperature of the gas

phase and µmH, the product of the mean molecular weight of the gas phase and the

atomic weight of the hydrogen atom. The mean molecular weight is determined as

µ ≈ nH + 2nH2 + 4nHe

nH + nH2 + nHe
(4.2)

and furthermore approximated with the constant value of µ = 1.26. That equals to a

ratio of H : He = 10:1. nH, nH2 , nHe are the particle number densities of the considered

species.

4.2 The Restriction To C-Rich Cases

The mechanisms leading to the formation of carbonaceous dust in the stellar outflows

are similar to those important for soot formation in flames, nevertheless the physical

data related with the nucleation of dust grains in circumstellar environments are not

sufficient to describe the processes in an adequate way. Even in C-rich environments,

many questions remain unsolved. The formation of amorphous carbon is deduced from

the conditions of grain formation under laboratory conditions. Thus, nucleation is

treated as combustion or pyrolysis of hydrocarbons. Dust formation begins with nu-

cleation of acetylene molecules. The further accumulation tends to PAH (Polycyclic

Aromatic Hydrocarbon) molecules and through dehydration carbon grains are formed.

In case of metalcarbides, there are laboratory studies investigating various metal-carbon

clusters by laser induced plasma reactor experiments [57]. Results tend to consider a

“cage” structure of the cluster, whatever the hydrocarbon reactant used. The mecha-

nism leading to such a form are not yet well understood.

In the work of H.P. Gail & E. Sedlmayr [58], it is shown that in an oxygen-rich circum-

stellar outflow with dust forming elements like Si, Fe, and Mg, the nucleation of seed

from the gas phase for subsequent growth is rather unlikely.

A.B.C. Patzer et al. [90] pointed out, that despite an enhancement of the nucleation

theory with the inclusion of the effects of chemical non-equilibrium in the gas phase,

different types of laboratory experiments or experimental studies concerning physical

parameters underlying the nucleation process have to be required to benefit from the

developed theoretical treatment.

K.S. Jeong [71] investigated in an oxygen-rich circumstellar environment the formation
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of seed nuclei for subsequent growth of dust grains. The work leaded to the conclusion,

that the formation of seed nuclei is not possible by nucleation of abundant gas phase

species bearing the abundant dust forming element like Si, Fe, and Mg. The most

abundant candidate for nucleation in oxygen-rich circumstellar shells, the SiO molecule

nucleate at temperatures close to 600 K. Though, the alternative solid-forming ele-

ment Al2O3 persisting at very high temperatures seemed to be virtually not present as

monomer in the gas phase.

A. Ferrarotti [39], studied the behaviour of stars with an oxygen rich element mixture,

applying a stationary wind model in spherical symmetry with focus on dust formation.

Instead of solving the entire system of coupled equations at the radius of the star, the

equation of motion is integrated after the sonic point when dust condensation sets in.

Before the sonic point, the velocity is predeterminated on the value of the sound velocity.

Heterogeneous nucleation seems not to apply to silicate grains, since Al2O3 is found as

corundum and amorphous grain in presolar grains [36].

Only carbon grains seem to be suited for heterogeneous nucleation [22]. Other primary

condensates suffer from the problem how to nucleate under the conditions prevailing

in the outflow. Thereore, J.A. Nuth & F.T. Ferguson [70] investigated a new vapor

pressure equation for SiO. The reported increases of the level of supersaturation in

outflows are insufficient to induce SiO nucleation in most circumstellar outflows. They

pointed out that a better understanding of the radiative transfer in a dust-forming stel-

lar outflow would be helpful, as the calculated nucleation rate is very sensitive to the

temperature. Furthermore, they complained problems with both the physical param-

eters used, with the application of classical nucleation theory to silicate condensation,

as well as with the potential violation of the assumptions essential to the derivation of

the model when it is applied to circumstellar outflows. They ask for some version of

classical nucleation theory to provide a working model for silicate condensation.

Woitke et al. [113] pointed out, that the observed magnitude of mass loss-rates from

oxygen-rich AGB-stars can not be reproduced even by detailed dynamical models with

frequency-dependent formation of dirty dust grains. He noted that in case of previ-

ous grey models, e.g K.S. Jeong [71] or A. Ferrarotti and H.P. Gail [40], the radiation

pressure is overestimated by applying Rosseland mean opacities in O-rich cases. Even

a combination of stellar pulsations and radiation pressure are therefore insufficient to

drive a wind with a mass loss of observed strength.

S. Höfner [64] suggested with both estimated and results of dynamical radiation-

hydrodynamical models, that micron-sized Fe-free grains are the solution to drive the

wind. Though, the nucleation is not calculated. The seed nuclei are assumed as already

formed.
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In consequence, nucleation in oxygen-rich outflows is not yet fully understood. There

is still a lack on required data. Hence, for the purpose of this work, the carbon rich

case is exemplarily chosen, where only a single condensing species has to be considered

and the classical theory of homogeneous nucleation can be used. In a first step, the

equations are reduced to a simple two fluid case with gas and dust as components of

the fluid.

4.3 Single Fluid Model

In order to implement the single fluid case, a program code was developed which utilises

the explicit Euler method. The applied equations are presented in the following. The

Euler method based on a finite difference approximation (e.g. [37]). The model was

calculated in several step sizes to verify. Furthermore, the model was implemented

in LIMEX. LIMEX is an extrapolation integrator for the solution of linearly-implicit

differential-algebraic systems, developed by P. Deuflhard and U. Nowak, [34]. The

equations representing the hydrodynamics are treated in stationary case with respect

to spherical symmetry. The density of the gas phase ρg is derived from the time-constant

mass loss Ṁ∗ of the considered stellar object

4 π r2 ρg(r) vg(r) = Ṁ∗. (4.3)

Since the amount of condensible material in the gas phase is assumed to be 10−3 times

the non-condensible, the dust component is not taken into account.

The equation of motion of the gas component is treated as follows with respect to the

singularity of the equation

∂

∂r
vg(r) =

1

vg(r)

{
2c2
T (r)

r
− kB

µmH

∂T (r)

∂r
+
frad(r)

ρg(r)
− fgrav(r)

ρg(r)

}
/
{
v2

g(r)− c2
T (r)

}
.

(4.4)

The term cT denotes the isothermal sound velocity.

cT (r) =

√
kBT (r)

µmH
(4.5)

and µ, the mean molecular weight.

The grain growth and formation are covered by the equations of the moment method

of dust formation as stated in Section 2.2.2 with all terms defined there, represented

by the equations (2.114), respective (2.115).

The gravitational acceleration force fgrav is represented by the equation (2.39), so is the

radiative acceleration frad represented by the equation (2.40), the external force due to

the radiative acceleration in case of radiative equilibrium, with 4 π H = L?/(4 π r
2),



4.3. SINGLE FLUID MODEL 57

and χH are the flux weighted opacities of the gas or dust species. The treatment of

the gas phase follows the work of Fleischer [41]. Considering C-stars, a reduced set

of hydrocarbons, H, H2, C, C2, C2H2, is used to calculate the particle densities of the

condensing species. The included hydrocarbons are treated in chemical equilibrium and

are therefore time-independent. They depend on the temperature and the density of

hydrogen 〈nH〉, and the chemical abundances εi of each element, relative to hydrogen.

The partial pressure of pi is derived from the law of mass action, assuming the validity

of ideal gas law and chemical equilibrium. It yields a system of two quadratic equations,

being aware that the constraint of the set of hydrocarbons leads to an underestimation

of the nucleation rate J∗. The chemistry assumes solar abundances [3].

L∗/L� T∗ (K) C/O ratio

4.35·103 2.0 · 103 2.0

7.64·103 2.0 · 103 2.0

1.28·104 2.0 · 103 2.0

Table 4.1: The implemented models

The radiative transfer as introduced in Section 2.3 (equation (2.145)), leads to an ad-

ditional differential equation for the value τL. This value τL defines the optical depth

applied in the radiative transfer after L.B. Lucy [84], [83].

dτL
dr

= −κρg

(
R2
∗
r2

)
. (4.6)

wherein lim
r→∞

τL(r) = 0 is the boundary condition for the optical depth and κ the mass

absorption coefficient. The value of κ is derived from the third moment of the dust

equations K3 [43], [48]

κ =
3V0

4

K3Q
′(T )

ρg
=
πa3

0K35.9T

ρg
(4.7)

with a0, the hypothetical monomer radius and Q′(T ) [12], the extinction efficiency of

the grain divided by the grain radius.

The Figures 4.1, 4.2, 4.3, 4.6, 4.5, 4.4 show the results for three different stellar lumi-

nosities.
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Figure 4.1: Velocity structure of a stellar wind with a luminosity of 4.35 · 103 · L�
(Euler-method)
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Figure 4.2: Velocity structure of a stellar wind with a luminosity of 7.64 · 103 · L�
(Euler-method)
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Figure 4.3: Velocity structure of a stellar wind with a luminosity of 1.28 · 104 · L�
(Euler-method)
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Figure 4.4: Velocity structure of a stellar wind with a luminosity of 4.35 · 103 · L�
(Limex)
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Figure 4.5: Velocity structure of a stellar wind with a luminosity of 7.64 · 103 · L�
(Limex)
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Figure 4.6: Velocity structure of a stellar wind with a luminosity of 1.28 · 104 · L�
(Limex)
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The LIMEX implementation versus the implementation in the Euler method showed

smaller values for the mass loss due to smaller initial values for the gas velocity. The

comparison of the results is shown in Figure (4.7). The resulting final velocities are

comparable. Then, in addition, these two models are compared with the implemen-

tation as presented by Gail & Sedlmayr (Dust formation in stellar winds III [51]), cf.

Table 4.2. In this case, in comparison with the two other model calculations, the fi-

nal velocities are smaller, though the mass loss was comparable, exceptional for the

luminosity of L∗/L� = 7.64·103. Nevertheless, the similarity of the variations of the

obtained values by the Euler method compared to Limex as to the results presented

by Gail & Sedlmayr and as well as Limex compared to the method as presented by

Gail & Sedlmayr show the same qualitative behaviour. The result of the developed

program code utilising the explicit Euler method is considered being sufficient close

and therefore validated. So, the simple Euler method therefore served as a basic tool

for the next studies.

model L∗/L� v∞/(cm/s) Ṁ/M∗

Euler 4.35·103 1.15·106 5.33·10−6

7.64·103 1.6·106 1.64·10−5

1.28·104 2.55·106 3.3·10−5

Limex 4.35·103 1.84·106 1.83·10−6

7.64·103 2.38·106 7.89·10−6

1.28·104 2.22·106 2.98·10−5

Dust formation 4.35·103 1.28·106 3·10−6

in stellar winds III 7.64·103 1.62·106 1·10−5

[51] 1.28·104 1.83·106 3·10−5

Table 4.2: Comparison of the implemented models
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Figure 4.7: Comparison of the implemented numerical models: E.g. velocity structure

of a stellar wind with a luminosity of 1.28 · 104 · L�

4.4 Two-Fluid-Model

In order to implement the multicomponent description in the Euler method, the equa-

tions of the single fluid model are extended in a first step to a simple two fluid case.

This is applicable in circumstellar shells with a high C/O ratio, and therefore only one

single condensing species has to be considered. The multicomponent model is simpli-

fied to prove the existence of a solution of the coupled system of ordinary differential

equations in conjunction with the equations of the dust-complex with chemistry.

In order to determine the differential-algebraic-equation system in a consistent way, all

terms are derived from setting up the equations. In comparison to e.g. D. Krüger ( see

Section 3.1), who used a simplified two fluid description implemented in a stationary

model, in the present work, all terms are included. The aim is to get a consistent de-

scription in this way. The time-dependent models (e.g. Simis [102]) include exchange

terms for the equation of motion derived from the continuity equation . Otherwise,

the source term, representing the condensation of dust from the gas is furthermore not

specified in these models.
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4.4.1 Applied Equations

The model ist treated in radiative eqilibrium (RE). The following equations represent

the hydrodynamics with the continuity equation, the equations of motion, both for the

gas phase as well as the dust component in stationary case with respect to spherical

symmetry
1

r2

∂

∂r
(r2 ρg(r) vg(r)) = qg(r) (4.8)

and
1

r2

∂

∂r
(r2 ρd(r) vd(r)) = qd(r). (4.9)

Instead of not solving dust conservation equation and deriving the mass density of the

dust from the third moment of the dust formation K3, the applied terms qg(r) and

(qd(r)) are referred to the equations (2.12) and (2.13) in Section 2.1.1. These terms are

not considered in previous works in this form.

All terms involved in the following equations of motion are introduced in Section 2.1.2.2.

The resulting equations for the gas and the dust in stationary case with respect to

spherical symmetry are for the gas component

ρg(r)vg(r)
∂

∂r
vg(r) = − ∂

∂r
pg(r) + fg,rad(r)− fg,grav(r) + fg,drag(r)− qg,acc(r) (4.10)

and the dust motion equation equals to

ρd(r)vd(r)
∂

∂r
vd(r) = fd,rad(r)− fd,grav(r)− fd,drag(r)− qd,acc(r) (4.11)

with the gravitational force fgrav(r) (equation (2.39)), and

qd,acc(r) = vd(r)qd(r) = J∗(r)mdvd(r). (4.12)

The drag force fg,d,drag(r) follows the work of D. Krüger [76]. For reference, see equation

(3.7). The terms qg,acc(r) and qd,acc(r) are introduced in consequence of the exchange

terms resulting from the continuity equations both for gas and for dust. They are defi-

nite by deduction. After total derivation of the ideal gas law (4.1), the two components

are included in the momentum equation. The equation of motion of the gas component

is treated as follows with respect to the singularity of the equation

∂

∂r
vg(r) =

vg(r)

2c2T (r)
r − kB

µmH

∂T (r)
∂r +

fg,rad(r)
ρg(r) −

fg,grav(r)
ρg(r) +

fg,drag(r)
ρg(r) − qg,acc(r)

ρg(r)

v2
g(r)− c2

T (r)
. (4.13)

The term cT denotes the isothermal sound velocity. Since the velocity distribution is

assumed to be proportional to the size of the grains, the size of the drift velocity and
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therefore the drag force is assumed average-sized.

The radiative transfer is introduced in Section 2.3, so is the grain growth and forma-

tion are covered in Section 4.3 with further definitions given there. The set of stellar

parameters follows the single fluid model, and may be seen there (Table (4.1)).

4.4.2 Results of the Two-Component Description

Based on the equations of the last Section (4.4.1), the effect of two components was

studied. The underlying model is realised in a simple Euler method as developed in

the single fluid case, with the model data of Ṁ = 2.4 ·10−5 ·M∗/year, the mass loss per

year and L∗ = 1 · 104L�, the stellar luminosity. With these parameters, the single fluid

model provides a physically solution for the coupled case. For the two-fluid-model, each

component was described by its own equation both for mass and moment conservation

as pointed up. They were coupled as by coupling terms issued from elaboration of the

extended equations for two components as by the drag force. The results are presented

in the form of a reduced figure in order to point out the criticial values at the onset of

dust formation.
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The Figure 4.8 shows, that the results of the implementation suffered from the small

amount of the dust density by dust formation onset. This led to a high influence of

the drag force by decelerating the dust component. The resulting gradient of the dust

velocity was highly negative and leaded to a dust velocity lower than the gas velocity. In

consequence, the drift velocity turned negative and the system of equations collapsed.

Even by substituting the gas density differential equation for the constant mass loss

equation, neglecting the mass exchange between the two components, the results with

regard to the role of the drag force show the same behaviour.

4.5 Decoupled Description of the Dust Component

The disappointing results of the two component description of the fluid leaded to fur-

ther considerations relating to the behaviour of the several parameters at the onset

of dust formation. So, at the beginning, the model is reduced to the decoupled case

leading to different studies analysing the onset values. These studies refer to the work

of D. Krüger (Section 3.1). The equations applied on his work are extended by dust

formation and growth and used for studies about the behaviour of the dust compo-

nent and the influence of, and respective for, the dust velocity in Section 4.4. Though

the equations D. Krüger implemented suggest a two component treatment of the fluid,

most likely he lately applied the equations representing the single fluid case with an

extension for the dust component based on an average grain size. These extensions of

the equations he finally applied are extracted by the left over of his computed models.

The Figure (4.9) shows a reproduction D. Krüger similarly had applied of a decoupled

fluid with derived drift velocity. In this reproduction however, the dust moments are

calculated.

The principal equations are these from the Section 4.3 with assumptions and restric-

tions indicated there. In addition to these basic equations, the following equations

are implemented without coupling with the gas component. The extension component

consists therefore of a mass flux differential equation for the dust component, repre-

sented by the dust velocity vd multiplied by the density of the dust component ρd.

They describe the dust component for the density as well as for its velocity. To begin

with the mass flux j, it is assumed that the product of velocity and density is treated

as an entity. The resulting equations in their time independent, spherical symmetric

description are stated as follows:

1

r2

∂

∂r
(r2 ρd(r) vd(r)) =

1

r2

∂

∂r
(r2 jd(r)) = 4 π · J∗(r) ·md. (4.14)

The equation of motion of the dust component provides the equilibrium equation be-

tween deceleration by moment transfer, the gravitation and the radiative acceleration

fdrag(r) = −G M∗ ρd(r)

r2
+ frad(r). (4.15)
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Figure 4.9: The decoupled model with derived drift velocity with a stellar luminosity

of 1 · 104 · L�

So, the equilibrium between deceleration by moment transfer, the gravitation on the

one hand and the radiative acceleration on the other hand is used to calculate the drift

velocity vdrift using the drag force fdrag [32], (Section 3.1)

fdrag(r) = ρg(r)nd(r)πa2
d(r)vdrift(r)

[(
4

3
vth(r)

)2

+ v2
drift(r)

]1/2

. (4.16)

The drift velocity vdrift is the result of an algebraic equation. The dust velocity is

derived by the drift velocity with vdrift(r) = vd(r) − vg(r) . Since the product of

velocity and density is treated as an entity the calculated mass flux density j divided

by the dust velocity vd provides the dust density

ρd(r) =
jd(r)

vd(r)
. (4.17)

The mass of a dust grain is represented by md = mC · a3
0 · K33

K03
, wherein mC determines

the mass of a carbon monomer and a0 the hypothetical monomer radius. In the model

Krüger applied, the size of the grain is predetermined and therefore does not refer to
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the moment equations. The model parameters are applied as follows: The mass M∗
is set equal M�, the stellar temperature amounts to 2000 K and Ṁ = 2.4 ·M∗/year,

the mass loss per year. The C/O ratio is set equal 2.0. At the radius of the star,

the velocity starts with the value of v0 = 1.236·102cm/s and reaches the value of

v∞ = 2.069·106cm/s at the radius of 100 R∗. The critical point is located at 1.73 times

the radius of the star. Without exception, these values (Figure 4.10) are valid for the

following studies.
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Figure 4.10: Velocity structure of a stellar wind with a luminosity of 1 ·104 ·L� (Euler-

method)

This ansatz is used as a basis to modify the results from the single-fluid-model. The

aim is to elaborate some onset conditions for starting the two-fluid-model, and clarify

the resulting difficulties calculating the drag force. The aim is to avoid the difficulties

based on the high influence of decreasing back coupling by the drag force in the two-

fluid-model.
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4.5.1 Results of the Decoupled Description and Consequences for the

Two Fluid Description

The following study of the mass flux description is focused on the behaviour around the

onset point of dust formation. Due to the modality of treatment of the dust equation

of motion, further exceeding results are not expected, though the equilibrium equation

does not apply for outer regions where the gradient of the dust velocity is not expected

to vanish.

r/R∗ ρg/(g/cm3) ρd/(g/cm3) vdrift/(cm/s)

1.707000e+000 5.997842e-014 0.000000e+000 0.000000e+000

1.707350e+000 5.974379e-014 1.563831e-028 0.000000e+000

1.707360e+000 5.973709e-014 3.127704e-028 0.000000e+000

....

1.745000e+000 3.564853e-014 6.484791e-022 0.000000e+000

1.746000e+000 3.481854e-014 6.729802e-022 0.000000e+000

1.747000e+000 3.422216e-014 7.002767e-022 3.734633e-003

1.748000e+000 3.366699e-014 7.270024e-022 1.009205e-002

1.749000e+000 3.313413e-014 7.527687e-022 1.699015e-002
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Figure 4.11: Gas and drift velocity structure
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The Table 4.5.1 shows the resulting dust density around the onset point in the range of

10−28g/cm3. The nature of the equilibrium equation allows a solution for the drift ve-

locity just for radiative acceleration terms L∗ ·κd/(4 π c) greater than the gravitational

term G ·M∗. The Figure 4.11 shows the gas and drift velocity structure calculated by

the equilibrium equation. This model forms the basis of the modified two-fluid-system.

In comparison to the results of the original two-fluid-model, the starting values of the

dust density with 10−28g/cm3 and 10−29g/cm3 are almost about the same range. So,

if in case of decoupled description the size of the dust density onset does not increase

in a considerable dimension, the two fluid model was not expected to provide other

results as shown before. In order to examine the behaviour of the equations, the model

was now varied just around the onset of dust formation. There, the two fluid model

is calculated as coupled single fluid. The equations are these of Section 4.4.1. As the

drag force tended to get collapsed the system of equations, the equilibrium equation

as had applied by D. Krüger is used to obtain a value for the drift velocity, (equation

4.16). The grain formation and growth is described as indicated in Section 2.2.2.

If ever the acceleration term due to the two fluid description exceeds this one of the

single fluid description, the model is expected to run on the two fluid description ap-

plying the full set of equations of the two fluid model (Section 4.4.2). The Figures 4.12,

4.13, 4.14 show the behaviour of single aspects of the fluid and the related values.
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The listed figures show the non-consistency of the change between the two methods.

The desired smooth changeover lacks by the jump around the onset of the two fluid

description located around 2.649 R∗. The Figure 4.12 shows a single peak of increasing

dust density. Then, after leaping, the dust density increases below the value before.

In addition, the gas density increases in a non-realistic way. The resulting calculated

mass loss Ṁ therefore is incorrect. Given that frad(r) represents the acceleration term,

coupled by friction, and fg,rad(r) + fg,drag(r)− qg,acc(r) represents the acceleration due

to the two-fluid description, the Figure 4.13 does not show any congruence of the values

of acceleration for both cases. The coupling term −qg,acc(r) does not provide a signif-

icant change in the amount of acceleration. Therefore, the drag force fdrag increases

immediately when the acceleration term due to the two fluid description exceeds this

one of the single fluid description. The gas velocity increases due to the acceleration

term ( Figure 4.14).

The abandonment of the differential equation for the gas phase does not improve the

result either. The following Figure 4.15 shows a fortified increase of the dust density

after leaping, exceeding the value of the gas density. The velocity structure resembles

the structure with differential equation for the gas phase. As for the fully described

system, the equations turned to collapse.
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Figure 4.15: Density structure of the model without a differential equation for the gas

component calculated as coupled single fluid around the onset of dust formation
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The results of the study indicate a need to clarify the behaviour of the equations

at the onset point of the dust formation. At the point where the coupled case has to

be substituted by the two component equations, the drag force and the coupling term

increase in consequence of the non-realistic increasing dust density.

4.6 Closer Inspection of the Equations of the Model

Given that the results of the two-component description suffer from the lack of con-

sistency, the equations underlying the model are analised in detail. Operating on the

premise that the product of the dust velocity and the dust density was represented

by the mass flux density j(r) = ρd(r) · vd(r) = nd(r) ·mC · vd(r), as well as the dust

density may be neglected against the gas density, two different approaches to obtain

data both for dust density and velocity are applied in one model. The model bases

on the single fluid data velocity structure with added equations from Section 4.5 with

the luminosity of L∗ = 104 · L� and the mass loss Ṁ = 2.04 · 10−5M∗/year (Figure

4.10). The comparison consists in two cases where the mass flux density provides along

with the moment equations for the dust formation the dust density as well as the dust

velocity and besides the drag force.

On the one hand, the dust density is derived by the third moment of the dust formation

and growth equations ρd(r) = K3(r) · ρsolid · a3
0 · π · 4

3 , with a0, being the hypothetical

monomer radius and ρsolid, the density of the grain material. This equation refers to

the work of Simis, Section 3.2. The mass of a dust grain is calculated by md = K3
K0
·mC.

Herein means mC the mass of a monomer (see equation 2.128 ). The velocity of the

dust vd(r) is the result of the division of the mass flux density j(r) by the density of

the dust ρd(r). So, the resulting drift velocity leads to the drag force fdrag (equation

4.16).

On the other hand, the mass flux density applied to the velocity structure of the coupled

single fluid model yields the values for the drift velocity vdrift by an algebraic equation

(and therefore the dust velocity) based on the equilibrium equation for the gradient

of the dust velocity (see Section 4.5). The dust formation is calculated as stated in

Section 4.3. The result of the mass flux density divided by the dust velocity provides

the dust density ρd(r) = j(r)
vd(r) . The aim of the study is to examine the obtained results

around the dust formation onset in order to compare the equality of the approaches.

The resulting Table 4.3 and Figures 4.16, 4.17, and 4.18, show the differences between

the two methods describing the drift velocities as well as the dust densities around the

onset of dust formation. Both methods bases on the moments of the dust formation
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equations and are coupled by the nucleation rate J∗.

The effect on the acceleration term reveals the excessive driving force on the gas phase

in the beginning dust formation zone. The drift velocity based on the equilibrium

equation for the dust differential equation starts at 1.747 R∗.

n term. The drift velocities derived from the moment equations of dust formation

and growth are in the order of vdrift ≈ 1011. These values do not seem realistic. The

comparison between the values of the dust density for both cases are in the order 106.

So, these results lead to the suggestion that different types of description not only result

in non-realistic values, but also may not allow a bidirectional conversion between.
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4.7 Results of the Studies

By extending the single fluid model system of equations, this new system of equations

leads to further restricting conditions apart the origin single fluid system in the coupled

case. These initial respective boundary conditions apply twice: for the first time at the

so called critical point where the velocity gradient results in a singularity and for the

second time at the onset of dust formation.

The attempt to yield a physical solution like in the coupled case, the assumption is

made that the driving force on the gas at the critical point is the same as in the

coupled single fluid description. So, the coupling terms in the two fluid case, including

drag force, radiation pressure on the gas component and coupling term due to the fully

elaboration of the conservation equations, have to be substituted by the driving force

as in the coupled case.

ρg(r)vg(r)
∂

∂r
vg = − ∂

∂r
pg(r) + fg,rad(r)− fg,grav(r) + fg,drag(r)− qg,acc(r)

= − ∂

∂r
pg(r)− fg,grav(r) + frad,coupled(r). (4.18)

This leads to an algebraic expression for the drag force at the critical point:

fg,drag(r) =
L?

4 π c r2
χd,H − J∗(r)md vg(r). (4.19)

In the case of the dust density, there is no algebraic condition serving as boundary

condition at this point.

At the onset of dust formation, the dust velocity is assumed to be the same size as the

gas velocity

vd = vg. (4.20)

The dust density on the other hand, is not well-defined, the assumption of no dust at

this point does surely not correspond the real situation.

The informations of dust densities from observation are neither available at dust forma-

tion onset nor at the critical point, and the calculated value on the dust formation onset

depends strongly on the applied description. So, these conditions are not sufficient to

provide unique conditions for the shooting method.

The realisation of a two fluid description in the actual implementation does not seem

feasible. The calculated drag force term does not allow a coupling between the two

components that correspond the radiative coupling in the single fluid case. Further-

more, the back-coupling on the dust component leads to a decrease of the dust velocity

gradient in consequence of a small amount of dust at the dust formation onset.

The coupling term due to the full elaboration of the conservation equations of mass
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and motion adds only an amount of 10−8 times the value of the acceleration term (see

Figure 4.13). So this term may not play a significant role.

It still needs to be clarified whether the full set of equations is not in the ability to start

the driving force. The coupled case of the single-fluid-model only works with positive

values, whereas the two component model yields negative results for the equation of

dust motion. The huge momentum transfer decelerates the wind and lead to the col-

lapsing system of equations due to the dag force to the gas component as a consequence

of a small amount of dust.

In order to avoid the negative values for the dust velocity gradient, the change be-

tween different types of description as performed in the studies above suffers from the

lack of consistency. This behaviour of the equations does not allow a physical solution

in a stationary description.
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Chapter 5

Conclusions and Outlook

All modeling descriptions of dust formation in circumstellar shells are in need of well-

defined data. Discrepancies between observed and calculated physical parameters of

outflows from AGB-stars such as mass loss or the nature of the dust grains question

the possible accuracy of the description of theses outflows based on the physical data so

far. Many studies investigated the lack of both data and theoretical enhancement (e.g.

J.A. Donn & B. Nuth [28], A.B.C. Patzer [91]) in order to allow future researches the

complete description of dust formation in stellar outflows. Even in C-rich cases, derived

from examination of presolar grains in meteorites, many of the formation processes in

heterogeneous dust formation are not yet well repeatable.

Applying nonequilibrium condensation theory involving chemical reactions to the gas

outflows from carbon-rich AGB-stars, the formation of TiC and graphite grains was

investigated in order to reproduce the solar TiC core-graphit-mantle spherules extracted

from the Murchison meteorite by T. Chigai & T. Yamamoto [21]. They identified a

discrepancy of a third of the size between the observed corn/mantle ratio and the

predicted values. In addition, the amount of the total gas pressure at the formation

site is considered to be slightly higher than those applied by A.J. Fleischer [43] or I.

Cherchneff [19] .

Despite these general deficiencies of knowledge, the enhancement of theoretical equip-

ment to describe the dust formation region would be preferred and essential. The

partial extension of the generally applied single fluid model has been performed in the

hydrodynamic case by C. Sandin [94], [95], [96], or Y. Simis, [102], e.g.

The stationary case of the two fluid case, though it is stated by D. Krüger [77], is not

achieved. He only applied a single fluid model with derived back-calculated values for

the drift velocity without applying the moment equations for the dust formation. His

thesis suffered from the lack of problem definition and suggested a successful completion
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of the two fluid implementation in restricted form.

So, the present thesis attempts the first implementation of a two fluid description of

a circumstellar stationary outflow. The implementation consists of fully elaborated

equations with coupling terms and dust formation based on the moment equations. In

order to obtain a consistent outflow, the results from different studies indicate diffi-

culties both from the configuration of the system of equations and from the incoming

coupling terms like the drag force.

The configuration of the equations leads to negative gradients of the dust velocity due

to the back coupling of the drag force. The momentum transfer to the gas component

leads to these inadvertent gradients. Even a restriction to positive values by substi-

tuting the dust moment equation for the equilibrium equation for the dust moment

around the crucial interval, does not provide any amelioration.

The lack of consistency of the results of the two-component description leaded to fur-

ther detailed analyses of the equations underlying the model.

Therefore, two different approaches to obtain data both for dust density and velocity

are applied in one model. On the one hand, the dust density was derived by the third

moment of the dust formation and growth equations. The mass flux density and the

density of the dust provided the velocity of the dust and the drag force.

The other path utilised the mass flux density applied to the velocity structure of the

coupled single fluid model from where the values for the drift velocity are therefore

derived by an algebraic equation. So, the derived values both result from the moment

equations and from the simplified hydrodynamical equations. The divergent values

for the dust density, and apparently unrealistic results for the drift velocity, suggested

therefore a fundamental lack of equal value of the two ways of description. The coupling

term due to the full elaboration of the conservation equations of mass and motion was

too small to support the lack of acceleration from the drag force. The two fluid model

system of equations leaded to further restricting conditions apart the origin single fluid

system in the coupled case. The obtained values from Section 4.6 for the dust density

as initial values for the shooting method were not well-defined and therefore unsuitable

to start the integration.

In consequence, the attempt to implement the two fluid case in stationary and spher-

ical symmetry description with the available system of equations even in the carbon-

restricted case, does not succeed.

However, the results of this work cleared the way for revision and adaptation of the

present system of equations in order to allow a consistent description of multicomponent

fluids. Here, new approaches concerning the coupling terms are needed, providing a

compatible value to the single fluid description. The problem of the influence of the

dust density on the drag force has to be clarified. In case of perpetuated investigation of

a multicomponent fluid system, it has to be sustained by further studies on the coupling
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terms, the missing initial conditions, a reconsideration of the nucleation theory, and,

in addition, more data are required.
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Appendix A

In order to exemplify the elaboration of the conservation equations, the following equa-

tions are treated in detail for the gas phase.

To begin with:
∂

∂t
ρg(r, t) +5 · (vg(r, t) ρg(r, t)) = qg(r, t) (A.1)

Multiplication with vg(r, t) yields

vg(r, t)
∂

∂t
ρg(r, t) + vg(r, t) ρg(r, t)5 ·vg(r, t) + (vg(r, t) · 5 ρg(r, t))vg(r, t)

= qg(r, t)vg(r, t) (A.2)

Elaboration of

∂

∂t
(ρg(r, t)vg(r, t)) +5 · (ρg(r, t) vg(r, t)⊗ vg(r, t)) =

−5 · pg(r, t) + fg,rad(r, t)− fg,grav(r, t) + fdrag(r, t) (A.3)

leads to

ρg(r, t)
∂

∂t
vg(r, t)+vg(r, t)

∂

∂t
ρg(r, t)+2 vg(r, t) ρg(r, t)5·vg(r, t)+(vg(r, t)·5 ρg(r, t))vg(r, t)

= −5 · pg(r, t) + fg,rad(r, t)− fg,grav(r, t) + fdrag(r, t) (A.4)

and after subtraction of the mass conservation equation, the equation turns into

ρg(r, t)
∂

∂t
vg(r, t) + vg(r, t) ρg(r, t)5 ·vg(r, t)

= −5 · pg(r, t) + fg,rad(r, t)− fg,grav(r, t) + fdrag(r, t)− qg(r, t)vg(r, t). (A.5)

The simplified final equation follows as

ρg(r, t)

(
∂

∂t
vg(r, t) + vg(r, t) 5 ·vg(r, t)

)
= −5 · pg(r, t) + fg,rad(r, t)− fg,grav(r, t) + fdrag(r, t)− qg(r, t) · vg(r, t). (A.6)
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with qg(r, t) = −J∗md, and therefore −qg(r, t) = J∗md leads to a gain of momentum

for the gas phase.

The same procedure has to be applied to the energy equation.

∂

∂t

[
ρg(r, t)

(
eg(r, t) +

1

2
v2

g(r, t)

)]
+

5 ·
[
ρg(r, t)((eg(r, t) +

1

2
v2

g(r, t))vg(r, t)) + pg(r, t)vg(r, t)

]
= Qrad,int,g(r, t) (A.7)

leads to

ρg(r, t)
∂

∂t
eg(r, t) + eg(r, t)

∂

∂t
ρg(r, t) + ρg(r, t)

∂

∂t

(
1

2
v2

g(r, t)

)
+

1

2
v2

g(r, t)
∂

∂t
ρg(r, t) + ρg(r, t)eg(r, t)5 ·vg(r, t)+

ρg(r, t)vg(r, t) · 5eg(r, t) + eg(r, t)vg(r, t) · 5ρg(r, t)+

1

2
v2

g(r, t)ρg(r, t)5·vg(r, t)+
1

2
v2

g(r, t)vg(r, t)·5ρg(r, t)+vg(r, t)ρg(r, t)vg(r, t)5·vg(r, t)+

pg(r, t)5 ·vg(r, t) + vg(r, t) · 5pg(r, t) = Qrad,int,g(r, t). (A.8)

After rearranging it yields

ρg(r, t)

(
∂

∂t
eg(r, t) + vg(r, t) · 5eg(r, t)

)
+

1

2
v2

g(r, t)

(
∂

∂t
ρg(r, t) +5 · (vg(r, t) ρg(r, t))

)
+eg(r, t)

(
∂

∂t
ρg(r, t) +5 · (vg(r, t) ρg(r, t))

)
+

vg(r, t)

(
ρg(r, t)

(
∂

∂t
vg(r, t) + vg(r, t) 5 ·vg(r, t)

)
+5 pg(r, t)

)
+pg(r, t)5 ·vg(r, t) = Qrad,int,g(r, t). (A.9)

The final version consists in

ρg(r, t)

(
∂

∂t
eg(r, t) + vg(r, t) · 5eg(r, t)

)
= −1

2
v2

g(r, t)qg − eg(r, t)qg

−vg(r, t) · (fg,rad(r, t)− fg,grav(r, t) + fdrag(r, t)− qg(r, t)vg(r, t))

−pg(r, t)5 ·vg(r, t) +Qrad,int,g(r, t)

= −1

2
v2

g(r, t)qg(r, t)−eg(r, t)qg(r, t)−vg(r, t)·frad,g(r, t)+vg(r, t)·fg,grav(r, t)−vg(r, t)·fdrag(r, t)

−qg(r, t) vg(r, t) · vg(r, t)− pg(r, t)5 ·vg(r, t) +Qrad,int,g(r, t)

= −Qkin,g(r, t)−Qint,g −Qrad,g(r, t) +Qgrav,g(r, t)−Qdrag,g(r, t)−Qacc,g(r, t)

−pg(r, t)5 · vg(r, t) +Qrad,int,g(r, t) (A.10)

with the replacements both for the mass conservation equation and for the motion

equation and the definition of the newly inserted terms.
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