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Abstract

The experimental assessment of absorption, distribution, metabolism, excretion, toxicity and
related physiochemical properties of small molecules is counted among the most time- and
cost-intensive tasks in chemical research. Computational approaches, such as machine learn-
ing methods, represent an economic alternative to predict these properties, however, the
limited accuracy and irregular error rate of these predictions restrict their use within the re-
search process. This thesis introduces and evaluates new ideas to enhance the acceptance
and usage of kernel-based machine learning models in chemical research.

The first part of the thesis investigates different approaches to improve the quality of ma-
chine learning predictions in drug discovery. By taking the precise chemical application into
account we derive a new virtual screening algorithm, StructRank, which enables to focus on
the correct ranking of compounds with high binding affinities. Then, the limits of single and
ensemble learning methods are analyzed in the context of hERG inhibition. Since the drug
discovery process often requires the assessment of new chemical series different to previ-
ously examined structures, we introduce and evaluate a clustered cross-validation scheme
that stresses the extrapolation capacity of models. We present a local bias correction to in-
corporate new measurements efficiently and without the need for model retraining.

The second part of the thesis is concerned with two different approaches to assess the re-
liability and interpretability of kernel-based prediction models. The first approach builds
on the visual interpretation of predictions based on the most relevant training compounds.
A compact method to calculate the impact of training compounds on single predictions is
derived and the resulting visualizations are evaluated in a questionnaire study. The second
approach addresses interpretability in terms of chemical features. Here, local gradients are
employed to measure the local influence of specific chemical features on a predicted prop-
erty. The capacity of this approach to identify local as well as global trends in Ames muta-
genicity data, and, to reveal unique characteristics of compound classes such as steroids is
depicted. Finally, we show that the potential of the developed methods extends beyond drug
discovery by using local gradients to enhance the assessment of reaction rates in transition
state theory.

While computational chemistry remains a challenging field of application for machine learn-
ing, the present work introduces methods to improve and assess the quality of machine
learning predictions in order to increase the usage of these methods in chemical research.





Zusammenfassung

Die Untersuchung komplexer pharmakokinetischen Eigenschaften, wie Absorption, Dispo-
sition, Metabolismus oder Toxizität, ist bei Arzneistoffen mit einem enormen experimentel-
len Aufwand und erheblichen Kosten verbunden. Computergestützte Vorhersageverfahren,
wie maschinelle Lernverfahren, können diese Eigenschaften vorhersagen und stellen somit
eine effiziente Alternative zum experimentellen Ansatz dar. Allerdings werden diese Ver-
fahren aufgrund ihrer oft unklaren und wechselhaften Genauigkeit nur zögerlich einge-
setzt. Ziel dieser Arbeit ist es, die Akzeptanz und die Anwendungsmöglichkeiten von
maschinellen Lernverfahren in der chemischen Forschung zu erweitern.

Im ersten Teil der Arbeit steht die Verbesserung von kernbasierten maschinellen Lenver-
fahren in Bezug auf die Anwendungen in der Wirkstoffforschung im Vordergrund. Im er-
sten Kapitel wird ein neuer Algorithmus, StructRank, für das virtuelle Screening entwickelt.
Dieser Algorithmus ist ideal an die Anforderungen des virtuellen Screenings angepasst, da
er eine Rangordnung von Molekülen vorhersagt und Moleküle mit einer hohen Bindungs-
affinität besonders stark berücksichtigt. Das zweite Kapitel beschäftigt sich mit dem Ver-
gleich und der Kombination von Lernverfahren zu einem leistungsstärkeren Ensemble. An-
hand von Daten zur Inhibition des hERG Rezeptors werden die Grenzen und Möglichkeiten
verschiedener Verfahren untersucht. Eine lokale Bias-Korrektur kristallisiert sich hierbei als
ein schnelles und effizientes Verfahren zur Einbindung neuer Messergebnisse ohne erneute
Anpassung des Modells heraus. Im Rahmen dieser Studie wird auch ein neues Kreuz-
Validierungs-Schema untersucht, welches das Extrapolationsvermögen von Prädiktionsmo-
dellen stärker berücksichtigt. Das Extrapolationsvermögen ist in der chemischen Forschung
von besonderer Bedeutung, da die neu zu untersuchenden Verbindungen sich oftmals deut-
lich von allen zuvor untersuchten Molekülen unterscheiden.

Im zweiten Teil der Arbeit werden neue Ansätze zur Bewertung und Interpretation com-
putergestützter Vorhersagen untersucht. Zunächst wird ein Verfahren zur Berechnung des
Einflusses einzelner Trainingsdatenpunkte auf eine Vorhersage hergeleitet. Anschließend
werden die einflussreichsten Verbindungen als Erklärungshilfen zusammen mit der Vorher-
sage visualisiert und dieser Erklärungsansatz in einer empirischen Studie evaluiert. Lokale
Gradienten repräsentieren einen zweiten neuen Ansatz zur Interpretation von Vorhersagen.
Sie messen den lokalen Einfluss einzelner chemischer Eigenschaften auf die Vorhersage.
Mit diesem Verfahren werden sowohl globale als auch lokale Tendenzen auf einem Daten-
satz zur Ames Mutagenität erfasst und Besonderheiten von Verbindungsklassen, wie z.B.
Steroiden identifiziert. Eine Studie zur Berechnung von Reaktionsraten mit Hilfe von lokalen
Gradienten im Rahmen der Theorie des Übergangszustandes verdeutlicht abschießend die
Relevanz der erarbeiteten Verfahren außerhalb der Wirkstoffforschung.

Insgesamt beinhaltet diese Arbeit neue Ideen und Methoden zur Beurteilung und Verbesse-
rung von maschinellen Lernverfahren, um die Anwendungsmöglichkeiten dieser Verfahren
in der chemischen Forschung nachhaltig zu erweitern.
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Preface

Machine learning (ML) is a branch of artificial intelligence concerned with the development
of cost-efficient computing systems with learning capability. Nowadays these systems can
be found in automated mail sorting programs, voice-controlled writing applications, recom-
mender system of online stores like Amazon, computer firewalls and many other parts of
our everyday live. Especially data-rich areas of science like bioinformatics, image process-
ing or neuroscience benefit from the automated knowledge acquisition of machine learning
algorithms.
In chemistry, machine learning algorithms are predominantly employed in the area of drug
discovery. Nonlinear machine learning methods like support vector machines, neural net-
works, random forests, and Gaussian processes can be used to predict ADMET (absorption,
distribution, metabolism, excretion, and toxicity) and related physicochemical properties
[89, 48, 29, 115, 113]. In drug discovery an early assessment of these properties is highly im-
portant in order to prioritize compounds thereby save costs, time and controversial animal
experiments.
Due to the complexity of chemical systems, the vast space of chemical compounds and the
limited amount of experimental data, however, current approaches fail to provide predic-
tion models of general accuracy for complex chemical properties. Moreover, there exist no
accurate confidence estimates for the single predictions of these systems. Thus, machine
learning methods find only limited application in industrial research and can support, but
not substitute laboratory experiments.

This thesis aims to extend the acceptance and usability of kernel-based machine learning
methods in chemical research. Based on a close analysis of chemical problems and experi-
mental data, we derive new algorithms and methods to enhance machine learning predic-
tions and to asses their reliability.
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Chapter 0. Preface

Roadmap

CHAPTER 1 The first chapter gives a brief introduction to chemoinformatics, drug discov-
ery and machine learning. The special requirements of machine learning methods arising in
chemical applications are discussed and related to the author’s contributions.

CHAPTER 2 In the second chapter we build on the framework of structured-learning and a
metric used in information retrieval to derive a novel algorithm for virtual screening. In con-
trast to previous approaches this algorithm directly ranks compounds and focuses strongly
on high binding affinities. The capability of the new algorithm StructRank is illustrated on
three different screening datasets with different label distributions.

CHAPTER 3 This chapter is concerned with ensemble models and local correction ap-
proaches in the context of hERG inhibition. Moreover, a typical research scenario, where the
compounds of interest are not directly related to the training data, is simulated in order to ex-
amine the differences between standard and the newly introduced clustered cross-validation
framework.

The second part of this thesis investigates methods to assess the reliability and applicability
of ML predictions:

CHAPTER 4 A visual approach to explaining kernel-based predictions is introduced. The
most relevant training compounds are visualized along with the predicted value in order to
allow for an intuitive understanding and interpretation of single predictions. A question-
naire study on Ames mutagenicity prediction is performed to illustrate how this approach
can help to spot wrong labels, detect poor model applicability and discover important chem-
ical characteristics of the training data.

CHAPTER 5 In the fifth chapter local gradients are used to measure the local importance
of chemical features in nonlinear classification models. The relevance of local gradients for
chemical prediction models is illustrated on Ames mutagenicity data. The results reveal that,
in contrast to common feature importance measures, this new approach allows to detect local
as well as global trends within chemical data.

CHAPTER 6 Support vector machines and local gradients are introduced to transition state
theory. We demonstrate how these methods can improve the assessment of the transition
surface and reaction rates.

iv
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Chapter 1

Introduction

1.1 Machine Learning

The field of machine learning (ML) seeks to infer and generalize dependencies from data
using computing systems with learning capability. ML is concerned with many research
questions arising in the field of statistics, data mining and psychology, but with differences
of emphasis. Statistics focuses on understanding the data generating process, often with
the goal of testing hypotheses, whereas data mining seeks to find patterns in the data and
psychological studies aspire to understand the mechanisms underlying human learning be-
haviors [26]. In contrast, the machine learning methods investigated in the following are
primarily concerned with predictive modeling, where a model is built to mimic and gen-
eralize a certain characteristic of the data generating process. More precisely, the goal is to
predict the label y for some test sample x by taking a given training set D into account.

Types of Learning

The training set D may consist of

• samples with associated labels (supervised learning scenario),

• solely of samples without labels (unsupervised learning scenario),

• labeled and unlabeled samples (semi-supervised learning scenario).

Within this thesis, we focus on supervised learning scenarios. The training sets usually con-
sist of small molecules represented as vectors of chemical descriptors with associated exper-
imental measurements of physical or chemical properties. The constitution of the measure-
ment values y determines the type of learning task: Quantitative measurements result in
regression tasks, whereas classification tasks are determined by qualitative measurements. The
class of ranking tasks discussed in Chapter 2 forms an exception where the labels are contin-
uous values as in regression tasks but the prediction is a ranking of compounds according
to their unknown labels.

The Frequentist and the Bayesian Approach

A fundamental basis of machine learning is statistical inference, i.e. the process of drawing
conclusions from observable data that are subject to random variation. There are two differ-
ent views on inference in statistics resulting from different definitions of probability.

1



Chapter 1. Introduction

For a frequentist a statistical model equals a function y = f(x; θ), where f represents a class
of parametric functions with parameters θ processing input sample x. The strategy for learn-
ing is based on determining the parameters θ such that f is optimal with respect to certain
likelihood terms or loss functions.

From a Bayesian point of view the parameters θi are not fixed but distributed according to a
known prior distribution P (θ). An initial model is designed based on this prior information
and then adapted in light of the observed data. The model provides a representation of our
prior knowledge about the system and the information derived from the data [8]. Thus the
prediction takes the form of a predictive distribution P (y|x) which can be interpreted as an
expression of our degrees of belief in the various possible outcomes y [83].

Over the last decades a huge amount of research publications addressed machine learning
and respective theory, building on the work of Vapnik [138] and Rosenblatt [100]. The Ap-
pendix provides an overview of the main concepts and ideas of the machine learning meth-
ods implemented in this thesis. For a comprehensive introduction into the field of machine
learning we refer to the literature [46, 8, 81, 28] for further reading.

1.2 Chemoinformatics and the Drug Discovery Process

Chemoinformatics

Chemoinformatics (also cheminformatics) is a young research area at the interface of chem-
istry and informatics [148, 36, 13] that employs mathematical and statistical methods to ex-
tract information from chemical data [35]. In the 1970’s chemists started to discover comput-
ers as tools for chemical research. From the very beginning, however, it could be observed
that there was a split between theoretical chemists using computers for quantum mechani-
cal calculations and chemists using computers for information processing and data analysis
[36]. The first group of theoretical chemists founded the research area of computational
chemistry, while the latter group denominated their research as chemoinformatics. The two
fields, however, are highly related and the differences only vaguely defined.

In chemoinformatics machine learning methods are predominantly applied to problems aris-
ing in the context of drug discovery and design. However, as exemplified in Chapter 6, the
field of theoretical chemistry provides opportunities for machine learning as well.

Drug Discovery Process

The drug discovery and development process of a single new drug encompasses between
ten and fifteen years of research and costs about 1.8 billion dollars (Paul et al. [91]).
The first step in drug discovery comprises the selection and confirmation of a target, a single
molecule, often a protein, which is involved in the disease mechanism and can potentially
interact with a drug molecule to affect the disease. In the following screening step one seeks
to find hits, small molecules that interact with the target. The most common approach is
high-throughput screening (HTS) where screening robots are used to perform a chemical
assay on millions of compounds. Alternatively, virtual screening or molecular modeling
techniques are applied. Here, computational methods (in silico methods) are implemented to
assess the potential of compounds.
After the effect of the identified hits on the target has been confirmed in laboratory exper-
iments, the first safety tests are performed on the most promising compounds (hit-to-lead
phase). ADMET (absorption, distribution, metabolism, excretion, and toxicity) and related

2



1.2. Chemoinformatics and the Drug Discovery Process

Figure 1.1: Sketch of the drug discovery process.

properties are investigated in order to exclude dangerous side effects. The most promising
compounds are then determined as leads.
During lead optimization these lead structures are modified to improve efficacy and en-
hance their ADMET profile. A successful drug needs to be absorbed into the bloodstream,
distributed to the proper organs, metabolized efficiently and effectively and then be excreted
from the body without any toxic side effects. The mutual optimization of these highly related
drug properties is the key challenge in lead optimization. Finally, about 2% of the originally
identified hits enter the preclinical trials where laboratory and animal experiments are per-
formed to determine if the compound is safe enough for human testing.
The subsequent phases of clinical trials are denoted as the drug development process. Starting
from groups of 20 to 100 healthy volunteers (phase 1) over small groups of patients (phase
2) to large studies including 1,000 to 5,000 of patients (phase 3) the drug candidate is exten-
sively tested to determine risks, efficacy and dosing. A successful drug candidate is then
approved as new drug and enters the market.

A key problem of todays pharmaceutical industry is the productivity of this drug develop-
ment process [91]. While the number of newly approved innovative drugs is decreasing the
loss of revenues due to patent expirations for successful products and rising development
costs are limiting research activities [39]. Following the “fail early—fail cheap” paradigm,
companies now try to consider ADMET properties (using e.g. ML methods) as early as pos-
sible in the drug development process.

3



Chapter 1. Introduction

1.3 Machine Learning in Drug Discovery

Different areas within drug discovery benefited from utilizing machine learning technolo-
gies (see Wale [142] for a review). Among them are:

• Virtual screening: In virtual screening machine learning techniques are applied to rank
or filter compounds with respect to different properties (Melville et al. [79] reviews ap-
plications in ligand-based and structure-based virtual screening). Especially in ligand-
based virtual screening, where no structural information about the target is available,
machine learning methods enhance similarity search—even if only very few reference
compounds are given [50]. Additionally, ML methods may be applied to create diverse
compound libraries that can serve as input for virtual screening (library design) [105].

• Quantitative structure-activity relationship (QSAR) and quantitative structure-property
relationship (QSPR): QSAR and QSPR models are statistical models used to infer de-
pendencies between chemical structures and their biological activity or physicochem-
ical properties. Within the last decades machine learning models like neural networks
or support vector machines became popular in this area of research.

• Prediction of protein structure, function and interaction: Machine learning methods
have found extensive applications in biochemical tasks like protein structure predic-
tion, protein function prediction and characterization of protein-protein interaction.
Though these problems are related to drug discovery, we will subsequently restrict
ourselves solely to machine learning applications on drug-like compounds. However,
most of the challenges discussed in the following occur in all three areas of application.

Challenges of ML in Drug Discovery

In order to generate an operational prediction model for chemical applications multiple chal-
lenges of chemical data have to be addressed, mainly:

Representation of chemical structures
Chemical compounds are flexible three-dimensional structures that change shape and
conformation as they interact with the environment. In order to apply statistical meth-
ods, the compounds are represented as vectors of molecular descriptors. These num-
bers reflect shape, charge, connectivity, weight and various other properties derived
from the 2D and/or 3D structure of the molecules [131]. Some methods also allow
to work directly on the 2D or 3D graph structures by using, e.g., graph kernels [101].
Unfortunately, both approaches are not able to capture the flexibility of molecules and
the special characteristics of chemical compounds exhibiting several graph structures
(tautomers) or several 3D structures (conformers) are not considered.

Constitution of empirical measurements:
A collection of empirical data like laboratory measurements is exposed to different
sources of error: inaccurate labeling, systematic measurement errors and the inherent
error of the measuring system. Thus, each modeling approach requires a thorough
pre-processing including outlier analysis, visual data inspection and if necessary nor-
malization.

Amount and distribution of data:
In early stages of the drug discovery process there is little knowledge about the target
and the available datasets are small and of low diversity. Prediction models build on
this kind of data are prone to overfitting and show a low generalization capacity.
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Though the dataset grows stepwise with the ongoing development, the newly inves-
tigated compounds commonly lie beyond previously examined series of compounds.
Thus, prediction results stay inaccurate due to missing information in the chemical
space of interest.

Complexity of chemical interactions:
Machine learning in drug discovery relies on the assumption that similar molecules
exhibit similar activity. This implies that the activity value changes continuously over
chemical space and can be pictured as a smooth surface. Unfortunately, very similar
compounds may in some cases possess extremely different activities leading to rugged
canyons called “activity cliffs” in the activity landscape [76]. The detection and mod-
eling of such activity cliffs is a problem of ongoing research.

On the one hand it is highly desirable to strive for a statistical model meeting all these chal-
lenges (and a lot of ongoing research addresses these problems). On the other hand one
has to keep in mind that it is unrealistic to find such a model. Chemists and physicists are
still discovering new chemical phenomena and modes of molecular interaction. Our current
chemical knowledge is somehow incomplete and we can not expect a perfect model on the
basis of incomplete information.

Thus, the question arises how to deal with the imperfection of data in chemoinformatics
and the resulting inaccuracy of prediction models. In the following chapters this problem is
addressed from an use-oriented point of view.

1.3.1 Thesis Scope and Contributions

In the first part of this thesis we analyze how one can incorporate the limited amount of data
in a (kernel-based) prediction model such that it optimally fits the conditions and require-
ments of virtual screening and lead optimization.

Virtual screening aims to rank molecules in terms of their binding coefficients for the inves-
tigated drug target, such that the top-k molecules can be selected for further investigation.
Thus, we derive a new screening algorithm StructRank which directly predicts a ranking for a
given set of compounds and allows to focus on high binding affinities (Chapter 2). In con-
trast to other ligand-based screening algorithms the new approach is based on the relative
binding affinity and makes better use of the information encoded in the training data if only
few highly binding compounds are available.

In lead optimization and hit-to-lead optimization the exact prediction of chemical proper-
ties related to unfavorable side-effects is required. With every new batch of experiments
more training data becomes available but the requested predictions commonly concern new
molecules beyond this dataset. To estimate the prediction accuracy in such an application
scenario we present a clustered cross-validation scheme (Section 3.4.1 and A.3) and compare it
to standard cross-validation. Moreover, we show how the newly received data can be ben-
eficially incorporate using local bias correction (Chapter 3). On the basis of hERG inhibition
data this method is evaluated and compared to ensemble learning approaches.

The introduced methods significantly improve prediction models by extracting the most
relevant information of a given (incomplete) dataset with respect to a certain application in
drug discovery. Nevertheless, they can not reach perfect accuracy and a validity measure for
single predictions is needed in order to to prioritize compounds correctly within the research
process.

Thus the second part of this thesis is dedicated to the interpretability, knowledge of the do-
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main of applicability1, and estimation of confidence in machine learning based predictions.
In Chapter 4 we develop and validate a method for the interpretation of kernel-based prediction
models. The most influential training compounds are identified and visualized for individ-
ual predictions as foundation of interpretation. As a consequence of this interpretability,
the method helps to assess regions of insufficient coverage or activity cliffs, to spot wrong
labeling, and to determine relevant molecular features as illustrated on Ames mutagenicity
data.

Subsequently, local gradients are introduced as a tool for interpretation in terms of chemical
features (Chapter 5). They facilitate the understanding of prediction models by indicating
the chemical input features with the greatest impact on the predicted value. Given a well-
founded prediction model the local gradients allow to deduce global and local structure
elements of the chemical space and thereby facilitate compound optimization. The frame-
work presented and evaluated in Chapter 5 allows to calculate such local gradients for any
classification model.

Finally, we illustrate the utility of the developed methods beyond drug discovery and de-
sign. Transition state theory is known as a semi-classical approach to assess the transition
surface and reaction rate within the field of theoretical chemistry. In Chapter 6 support vec-
tor machines and local gradients are for the first time applied to enhance the sampling of
the potential energy surface. The new sampling approach accelerates the assessment of the
transition surface and improves the resulting reaction rate.

1The domain of applicability of a model refers to the part of the chemical space where the model provides
reliable predictions.
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Chapter 2

A Ranking Approach for
Ligand-Based Virtual Screening

2.1 Introduction

Screening large libraries of chemical compounds against a biological target, typically a re-
ceptor or an enzyme, is a crucial step in the process of drug discovery.

Besides high-throughput screening, the physical screening of large libraries of chemicals,
computational methods, known as virtual screening (VS), [144] gained attention within the
last two decades and were applied successfully as an alternative and complementary screen-
ing tool [93, 102].

The task in VS, also known as “early recognition problem” [136, 84], can be characterized
as follows: Given a library of molecules, the task is to output a ranking of these molecules
in terms of their binding coefficient for the investigated drug target, such that the top k
molecules can be selected for further investigations. As a standard, current quantitative
structure-activity relationship (QSAR) regression models are applied to predict the level of
activity: They learn a function f : x 7→ y, f : Rd → R that predicts a label for any molecule
given its features. To establish the subset of candidate molecules, predictions are made for
all molecules in the database. In a second step an ordered list is generated based on these
predictions. This two step approach is shown in Figure 2.1 (top). Finally the top k ranked
compounds are selected to be investigated in more detail.

Figure 2.1: Two different ways to solve the ranking task of virtual screening: a) State-of-the-
art approaches use a 2-step approach. In the first step a regression model is used to predict
binding coefficients for all molecules in the library. In a second step the molecules are sorted
according to their predictions. b) The new ranking approach directly predicts the ranking
within a single step.
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However, virtual screening approaches primarily aim to find molecules exhibiting high
binding affinities with the target while the predictive accuracy with respect to the labels
y is only of secondary interest. Although a perfect regression model would also imply a per-
fect ranking of the molecules of interest, the impact of suboptimal regressors on the ranking
is not easily captured as equal models in terms of their mean squared error could give rise
to completely different rankings. Thus, the question rises whether the detour via regression
is necessary and whether the task can be addressed in a more natural way. In this chapter, a
top k ranking algorithm, StructRank, that directly solves the ranking problem and that focuses
on the most promising molecules (cf. 2.1, bottom) is derived and evaluated on three virtual
screening datasets.

2.2 Methods

The formal problem setting of ranking for virtual screening is as follows: Let {(xi, yi)ni=1} be
a given set of nmolecules, where xi ∈ Rd denotes the feature vector of the i-th molecule con-
taining the molecular descriptors, and yi ∈ R is a scalar representing the biological/chemical
property of that molecule, e.g. binding affinity.

Based on this set we aim at learning a function f : X → P that takes any set of molecules
x̃ = {x1, . . . ,xm} ∈ X and returns a ranking p ∈ P1 of these molecules according to the bio-
logical/chemical property of interest. Moreover, as the purpose of virtual screening methods
is to rank actives early in an ordered list (see “early recognition problem” [136, 84]), we want
the learning machine to focus on the top k molecules in the ranking.

In the following we derive a top k ranking SVM meeting these requirements for QSAR. The
approach builds on work by Chapelle et al. [20] and Tsochantaridis [137].

2.2.1 Evaluate Rankings Using NDCG

The definition of an adequate quality measure for rankings of molecules is of crucial impor-
tance in the development of a ranking algorithm suitable for virtual screening. We propose
to use a popular ranking measure that originates from the information retrieval community:
Normalized Discounted Cumulative Gain (NDCG). Given the true ranking p̄, a predicted
ranking p̂ and a cut-off k, NDCG is given by the DCG (Discounted Cumulative Gain) for the
predicted ranking normalized by the DCG of the true ranking:

NDCGk(p̄, p̂) =
DCGk(p̂)

DCGk(p̄)
, DCGk(p) =

k∑
r=1

2p[y]r − 1

log2(1 + r)
(2.1)

where p[y]r is the binding coefficient yi of the molecule xi ranked at position r.

Originally, NDCG [56] was introduced to evaluate the results of web searches. It measures
how similar a predicted ranking is compared to the true ranking. NDCG has several impor-
tant properties:

• NDCGk only evaluates the first k positions of predicted rankings, thus an error on
positions below rank k is not punished.

• Furthermore the first k positions are weighted, which means that errors have different
influence on the final score depending on which position of the ranking they occur.

1In the following a ranking is described as a permutation p, i.e. for a given set of molecules x̃ and a vector y
of corresponding binding coefficients, p[y] gives ideally the vector of binding coefficients in decreasing order.
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Naturally position one is the most important, with lower positions discounted by the
log of their rank r: log2(1 + r).

• Finally, NDCG is normalized, thus if the predicted ranking equals the true ranking
the score is 1. To translate NDCG into a loss function we simply use ∆(p, p̂) = 1 −
NDCG(p, p̂).

In summary, NDCG aims at pushing the molecules with the highest binding affinity on top
of the ranking.

2.2.2 Structured Support Vector Machines for QSAR

Let us reconsider the ultimate target of learning a function f : X → P that maps a set of
molecules onto a ranking. In order to establish f , we utilize the basic concepts of Structured
SVMs (see Tsochantaridis et al. [137]), a very flexible learning machine that has been applied
to many different learning tasks in information retrieval [20, 152], natural language parsing
[10], and protein sequence alignment [151]. Structured SVMs learn a discriminant function
F : X × P → R. F can be thought of as a compatibility function, that measures how well
a certain ranking p fits the given set of molecules x̃. The final prediction is given by the
ranking p that achieves the maximal score F (x̃,p). Thus we have

f(x̃) = argmax
p∈P

F (x̃,p).

F is defined over a combined space of sets of molecules and corresponding rankings, a so
called “joint feature space”. To be able to learn F directly in that combined space, we define
a function Ψ that maps each pair of a set of molecules x̃ together with a ranking p (of x̃) onto
one corresponding data point in the joint feature space

Ψ(x̃,p) =
n∑
i=1

φ(x̃i)A(pi) (2.2)

where the function φ is a mapping into a Hilbert space corresponding to a kernel function
k(xi,xj) and A(r) = max(0, k + 1 − r) weights the molecules according to their ranks as
proposed by Chapelle [20]. Only molecules corresponding to the first k ranks are incorpo-
rated.

Given the joint feature map Ψ, F is defined as a linear function in the joint feature space:

F (x̃,p) = wTΨ(x̃,p),

F is the scalar product of the corresponding joint feature map of x̃ given a particular ranking
p and the learned parameter vector w.

Modeling F can be casted as follows: Given a set of molecules x̃ we want the true ranking p̄
to score highest among all possible rankings p ∈ P transforming into constraints

wT (Ψ(x̃, p̄)−Ψ(x̃,p)) ≥ 0 ∀p ∈ P \ p̄.

Alike classic SVMs for classification [138] this can be turned into a maximum-margin prob-
lem, where we want the difference between the true ranking p̄ and the closest runner-up
argmaxp6=p̄ wTΨ(x̃,p) to be maximal (cf Section A.2, support vector classification). Also we
want different p’s to get separated according to the degree of their falseness: A predicted
ranking with only two ranks interchanged compared to the true ranking is much better than
a predicted ranking with all ranks interchanged. We thus require the latter to get further sep-
arated with a larger margin from the true ranking than the first one. This is accomplished by

9
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replacing the constant margin formulation with the loss-dependent margin (margin scaling
[137, 127]):

wT (Ψ(x̃, p̄)−Ψ(x̃,p)) ≥ ∆(p, p̄) ∀p ∈ P \ p̄ (2.3)

where 1-NDCGk is used for ∆(p, p̄). Furthermore a slack variable ξ is introduced that re-
flects the maximal error made for the set of constraints (see eq.(2.3)). Finally, to improve
performance, we employ a boosting approach: We randomly draw m different subsets x̃j of
molecules from the training set. Applying the methodology described so far to each subset
j we obtain the final optimization problem

min
w,ξ

1

2
wTw + C

m∑
j=1

ξj (2.4)

subject to wT (Ψ(x̃j , p̄j)−Ψ(x̃j ,p)) ≥ ∆(p̄j ,p)− ξj ∀j,∀p 6= p̄j

ξj ≥ 0.

The corresponding dual is given by

max
α

−1

2
αTLα + bTα (2.5)

subject to
∑
p∈P

αjp ≤ C, αjp ≥ 0 ∀j,∀p 6= p̄j

where we have an α for each possible ranking p of subset x̃j . The matrix L consists of entries
(L)ip,jp′ = (Ψ(x̃i, p̄i)−Ψ(x̃i,p))T (Ψ(x̃j , p̄j)−Ψ(x̃j ,p′)) and bip = ∆(p̄i,p).

Note that there is a very high formal similarity to the original SVM formalization (compare
eq. (2.4) and eq. (A.14) in the introduction) with the differences: (a) margin rescaling, (b)
joint feature map and (c) very large quantity of constraints. A conceptual comparison of this
StructRank and other SVM approaches is visualized in Figure 2.2.

For a set x̃ with n molecules, there exist n! possible ways of ranking these molecules. Im-
posing a constraint for each possible ranking would lead to problems becoming too big for
being solved. Therefore, Tsochantaridis et al. [137] proposed a cutting plane approach that
iteratively adds new constraints which violate the current solution. They show that there
exists a polynomially sized subset of constraints whose solution fulfills all constraints of the
full optimization problem. Astonishingly, the optimization problem can be solved efficiently,
an example is the cutting-plane approach used in our implementation of StructRank.

2.2.3 Baseline Models

The novel ranking approach is compared to two algorithms both belonging to the family
of support vector machines: support vector regression (SVR), a state-of-the-art regression
method, often used for virtual screening and ranking SVM (RankSVM), another ranking
approach.

Support Vector Regression (SVR)

Support vector regression [27] is an adaption of classic support vector classifiers for regres-
sion. Like their classification counterpart they follow the Structural Risk Minimization prin-
ciple introduced by Vapnik [138], finding a trade-off between model complexity and training

10



2.2. Methods

Figure 2.2: Comparison of different support vector machines: a) Support vector machines for
classification learn a linear hyperplane wTφ(x) = b with maximum margin ∆ that optimally
separates active from inactive molecules. b) Support vector regression learns a function
wTφ(x) that predicts binding affinities for each molecule as correct as possible. c) Ranking
SVM generates difference vectors of all possible pairs of molecules. Afterwards similar to
a) a linear hyperplane is learned that separates correctly and incorrectly ordered pairs. d) Ψ
takes a set of molecules x̃ and a ranking p of this set and maps it onto a point in the joint
feature space. StructRank learns a function wTΨ(x̃,p) which assigns the highest score to the
point representing the true ranking.
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error. SVRs learn a linear function f in some chosen kernel feature space [108]. The final pre-
dictor is given by

f(x) =

N∑
i=1

αik(xi,x) + b. (2.6)

The α’s weight the influence of training points xi on the prediction f(x). An ε-sensitive loss
function is minimized, penalizing only predictions ŷ = f(x) that differ more than ε from the
true label y:

`(y, ŷ) = |(y − ŷ)|ε =

{
|(y − ŷ)| for |(y − ŷ)| > ε

0 else.
(2.7)

See Figure 2.2b) for a visualization of SVR. Different studies [24, 74, 150, 67] showed that
SVRs can outperform multiple linear regression and partial least squares and perform on
par with neuronal networks. As implementation LIBSVM together with a Matlab interface
available from http://www.csie.ntu.edu.tw/˜cjlin/libsvm/ (currently in version
3.0, 03.11.2010) is used.

Ranking SVM

As a second baseline we consider a second ranking approach: Ranking SVM [49, 59]. Falling
into the category of pairwise ranking approaches, it maximizes the performance measure
Kendall’s τ . It measures the number of correctly ordered pairs within a ranking of length n,
taking into account all possible n(n−1)

2 pairs. Kendall’s τ has two crucial differences compared
to NDCG: All positions of the ranking have an influence on the final performance unlike for
NDCG, where only the top k positions matter. Additionally all positions have the same
weight, unlike for NDCG, where higher positions are more important. The principle of
Ranking SVM is visualized in Figure 2.2c). In this study the implementation of Chapelle
(available from http://olivier.chapelle.cc/primal/ranksvm.m, accessed on the
03.11.2010) was extended for the use of kernels, according to [19].

2.2.4 Further Approaches and Alternatives

In virtual screening studies a model, generated based on a small number of labeled molecules,
is used to screen large libraries of compounds. These libraries can be considered as unla-
beled data which can be integrated into model generation using semi-supervised learning
approaches. The framework of structured SVMs offers the possibility to integrate semi-
supervised techniques like co-learning [9, 10]. Since this study is directed to the idea of
ranking in virtual screening the aspect of semi-supervised techniques is not discussed and
remains a promising direction of further investigations.

The structure-based ranking SVM with the NDCG loss presented in this work is only one
possible approach to meet the requirements of virtual screening. An alternative approach to
put more emphasis on compounds with a high binding affinity is based on the standard SVR
model and simply re-weights the molecules within the SVR loss function according to their
binding affinity. This leads to a stronger penalization of prediction errors for highly active
molecules compared to molecules offering a low binding affinity. However, experiments
based on this approach led to no performance gain.
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2.3 Data

Sutherland et al. [125] tested spline-fitting together with a genetic algorithm to establish
a good classifier on five virtual screening datasets. Out of these datasets a subset of three
datasets most suitable for regression was selected: The benzodiazepine receptor (BZR), the
enzymes cyclooxygenase-2 (COX-2) and dihydrofolate reductase (DHFR). All datasets were
assembled from literature in order to mimic realistic HTS, i.e. possess high diversity and a
low number of actives. Additionally almost all molecules can be considered drug-like sat-
isfying Lipinski’s rule of five [73]. Compounds with inexact measurements (pIC50 < value
instead of pIC50 = value) which are not suitable for regression approaches were removed
from the original dataset. Table 2.1 summarizes the resulting datasets. A brief description of
the biological function of each target is given below.

Table 2.1: Virtual Screening Datasets

Endpoint Original Source Exact
Measurementsa pIC50 Range

BZR 405 molecules measured by Haefely et al. and
Cook et al. 340 4.27 – 9.47

COX-2 467 molecules measured by Khanna et al. 414 4 – 9

DHFR 756 molecules measured by Queener et al. 682 3.03 – 10.45

ainexact measurements (pIC50 < value instead of pIC50 = value) are excluded from the study

BZR The benzodiazepine receptor (BZR) or GABAA receptor is an ion channel located in
the membrane of various neurons. The opening of BZR induced by its endogenous ligand
GABA causes a membrane hyper polarization which increases the firing threshold. Drugs
like benzodiazepine can bind in addition to GABA in their own allosteric binding site. They
increase the frequency of channel opening thereby amplifying the inhibitory effect of GABA
[118].

COX-2 The enzyme dyclooxygenase 2 (COX-2) together with it’s isoform COX-1 [149]
takes part in the synthesis of prostanoids. While COX-2 is an adaptive enzyme which is
only produced in response to injury or inflammation, COX-1 is a constitutive enzyme which
is produced constantly and provides for a physiological level of prostaglandins [25]. Unspe-
cific COX inhibitors like aspirin produce gastrointestinal side-effects while specific COX-2
inhibitors were shown to reduce gastrointestinal side-effects at the price of increased cardio-
vascular risk [57].

DHFR The enzyme dihydrofolate reductase (DHFR) is involved in the syntheses of purins
(adenine and guanine), pyrimidins (thymine) and some amino acids like glycine. As rapidly
dividing cells like cancer cells need high amounts of thymine for DNA synthesis they are
particularly vulnerable to the inhibition of DHFR. Methotrexat, for example, is a DHFR-
inhibitor which is used in treatment amongst others of childhood leukemia and breast cancer
[7].

2.3.1 Descriptor Generation and Data Preparation

As in previous studies [111, 112] a subset of Dragon blocks (1, 2, 6, 9, 12, 15, 16, 17, 18, and 20
generated by Dragon version 5.5.) is used to represent the molecules. This yielded 728–772
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Figure 2.3: The distribution of binding coefficients for the virtual screening datasets. The
x-axis shows the binding coefficients (scaled into the range [0,3] for each dataset). The y-axis
shows the number of molecules having that certain binding coefficient. Depending on the
number of molecules with very high binding coefficients we refer to them as “dense” (COX-
2), “medium” (BZR) and “sparse” (DHFR).

descriptors, depending on the dataset. The feature vectors are normalized to zero mean and
unit variance on the training set. In order to keep the results between datasets comparable
the binding coefficients are scaled for each dataset into the range [0, 3] as this is a typical range
when NDCG is used as scoring function for information retrieval datasets [56].

If we examine the distribution of binding coefficients for each dataset (see Figure 2.3), we
can distinguish different types of distributions: For COX-2 we observe a high number of
molecules with high binding coefficients, thus this dataset is called “dense” in the following.
DHFR on the other hand has only a low number number of molecules with high binding
coefficients, thus this dataset is denoted as “sparse”. BZR is in between with few molecules
possessing very high binding coefficients (“medium” ). We will make use of this distinction
later in the result section.

2.3.2 Test Framework

A k-fold cross-validation is implemented to assess performance for the virtual screening
datasets. In order to have similar training set sizes (about 225 molecules), the number of
folds is varied for each dataset: BZR is split into three and COX-2 into two folds. Each
of these folds is once used as test set, whereas the remaining two folds (fold) are used for
training. Then an inner cross-validation with five folds is applied on the training set to
determine the optimal hyperparameters.
For DHFR three folds are employed in the outer cross-validation loop but the single folds are
used for training and the other two form the test set, thus also getting about 225 molecules
in the training set. These cross-validations were performed seven times for DHFR and BZR,
and ten times for COX-2.

As all three approaches share the same underlying SVM framework, they need to determine
the same parameters within the inner cross-validation loop; for the RBF kernel

k(xi,xj) = exp

(
−(xi − xj)

T (xi − xj)

2dσ2

)
. (2.8)

the parameters are σ2 ∈ {0.1, 1, 10} and d given by the number of descriptors. The SVM-
parameter C controlling the model complexity is chosen from the set {0.01, 0.1, 1, 10, 100}.
For the SVR the tube width is varied between {0.01, 0.1, 1}. For the StructRank approach 10,
10 and 30 ranks are considered during optimization.
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2.3.3 Alternative Performance Measures

Besides NDCG two performance measures well known in the virtual screening community
are evaluated: Enrichment Factor (EF) [92] and Robust Initial Enhancement (RIE) [116]. As
shown by Truchon et. al. [136], the area under the ROC Curve is not suitable for the “early
recognition problem” of virtual screening.

RIE and ER only distinguish between active and inactive molecules, contrary to NDCG,
which takes precise binding affinities into account. To separate molecules into actives and
inactives we chose 8.5 pIC50 (BZR), 8.0 pIC50 (COX-2) and 7.5 pIC50 (DHFR) resp as activity
thresholds. The resulting datasets provide for challenging ranking problems with 60, 70 and
38 actives (BZR, COX-2 and DHFR).

The Enrichment Factor measures how many more actives are found in a defined fraction ζ
of the ordered list, relative to a random distribution. Like NDCG it only takes the top k
positions of the ranking into account, but weights each position equally. The Enrichment
Factor is defined as

EF =

∑n
i=1 δi
ζ · n

(2.9)

where n is the number of actives; δi is 1 if the active is ranked within the defined fraction
of the list and 0 otherwise. Robust Initial Enhancement measures how much better a given
ranking of actives is compared to their random distribution within the ranking. It consid-
ers the complete ranking, but like NDCG weights positions descending (depending on the
parameter α, see eq. (2.10)). It is given by

RIE =

∑n
i=1 e−αri

〈
∑n

i=1 e−αri〉r
(2.10)

where ri is the relative rank (i.e. the rank divided by the length of the ranking), and 1/α is the
fraction of the list that is most important for the final score, which has a similar meaning as
the cutoff k of NDCG. The denominator is the mean score when the actives are distributed
randomly across the ordered list.

2.3.4 Toy Example

Before analyzing real-world VS data we consider toy examples that reproduce a set of dif-
ferent label distributions typically found in virtual screening datasets: Datasets which pos-
sess only a low number of molecules with high binding affinities, and those which contain
a medium or high number of those molecules. 300 training sets (100 of each type) with
distribution of labels as outlined above were generated. Each training set consisted of 75
examples. Figure 2.4 shows the histograms, each averaged over all 100 sets. The aim is to
compare the influence of the different label distributions on ranking performance. Thus val-
idation and test sets were drawn with uniform label distributions for all three types of train-
ing sets (models were trained on the training set for different parameter combinations and
the validation set is used to select the optimal parameter combination). Using the resulting
model, ranking performance was measured out of sample on a left out test set. The function
used to generate these datasets was randomly drawn from the space of 4-dimensional poly-
nomials: f(x) = ax41 − bx32 − cx23 − dx44. Inputs were sampled from the 4-dimensional unit
cube x ∈ {[−1, 1]4} and the training sets were normalized. Labels again were scaled into the
range [0,3].
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Figure 2.4: The histograms show the average label distribution for all three types of training
sets (cf. text). The y-axis shows the number of elements having label given by the x-axis.

Table 2.2: Results for the virtual screening datasets for the two baseline models and the new
StructRank approach (highlighted in gray). Bold numbers mark significant improvements
with p-value ≤ 0.05 over approaches given as superscript: 1 =̂ SVR and 2 =̂ RankSVM. For
all performance measures higher numbers indicate better results.

Method COX-2 BZR DHFR

NDCG10

SVR 0.920 0.877 0.8722

RankSVM 0.928 0.9011 0.798
StructRank 0.921 0.9191 0.9051,2

ER10

SVR 5.452 3.955 16.0612

RankSVM 5.583 4.3101 13.966
StructRank 5.326 4.5271 17.1681,2

RIE
SVR 4.692 3.481 11.9391

RankSVM 4.736 3.575 11.010
StructRank 4.595 3.698 12.6041,2

2.4 Results

The comparative evaluation of support vector regression (SVR), Ranking SVM and the pro-
posed StructRank approach on the virtual screening datasets, published by Sutherland et al.
[125] is discussed in the next paragraphs. Afterwards the toy example will be evaluated to
shed some light on the results obtained for the virtual screening datasets.

2.4.1 Virtual Screening Datasets

Table 2.2 summarizes the ranking performance measured in terms of NDCG, ER and RIE for
both baseline models and the new ranking approach StructRank. Only the first 10 ranks are
taken into account, which means cutoffs of 10 forNDCG10 andER10, as well as a parameter
α for RIE, which puts the most weight on the top 10 ranks. Note that the k-fold cross-
validation described before was applied to optimize all three approaches were with respect
to NDCG. The barplot in Figure 2.5 shows the results in terms of NDCG, where error bars
indicate standard error.

Starting with the dense dataset COX-2 we observe that all three approaches perform nearly
equally well in terms of NDCG, with no approach gaining a significant advantage over
the others. These results are confirmed by the two “virtual screening” performance mea-
sures ER and RIE. For BZR, which could be classified as “medium” in terms of the high
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Figure 2.5: Averaged ranking performance measured in NDCG for the virtual screening
datasets. Error bars indicate standard error.

labeled molecules, the new approach performs better than both baseline algorithms in terms
of NDCG. Both ranking approaches RankSVM and StructRank improve significantly over
SVR. These results are confirmed by ER but not by RIE. Finally, for the “sparse” dataset
DHFR, the new approach exceeds both baseline methods in terms of all three performance
measures. RankSVM is notably inferior to the others with a p-value below 0.001.

Subsuming our observations, we state that the new ranking approach outperforms both
baselines on the BZR and the DHFR set while on the “dense” dataset COX-2, all approaches
perform equally well. This dataset contains many molecules with high labels, thus the event
that one of these molecules is ranked high by chance is very likely. For BZR we see (Fig-
ure 2.3) that the topmost bins, representing molecules with the highest labels, are sparsely
populated. But subsequent bins, representing molecules with slightly lower labels, show a
dense population like for COX-2. But these “sparse” bins seem to make it harder to obtain
the perfect ranking, as performance drops in terms of NDCG for SVR and RankSVM. For
the “sparse” dataset DHFR we observe another decline in terms of ranking performance.
Containing only very few molecules with high labels, this dataset seems to be the hard-
est but also the most realistic virtual screening scenario. Thus we observed a continuous
decline of performance of the baseline methods with decreasing number of highly labeled
molecules.

2.4.2 Toy Example

The NDCG results obtained for SVR, RankSVM and StructRank on the three different arti-
ficial label distributions (described in 2.3.1) are illustrated in Figure 2.6. The results reveal
nearly the same behavior as for the real world virtual screening datasets. The “dense”-type
dataset has a big number of data points with large label and is therefore comparable to COX-
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Figure 2.6: Ranking performance of support vector regression (SVR), ranking support vector
machine (RankSVM) and structural ranking (StructRank) for three different types of training
sets. The region with high labeled examples was covered either sparsely, medium or densely.
Error bars indicate standard error.

2. Like for COX-2 all approaches perform equally well. The “medium”-type dataset has less
data points with large labels and is comparable to BZR. Performance drops for both base-
lines, whereas StructRank’s performance stays nearly the same. Also like for BZR RankSVM
performs slightly better than SVR.

Finally the “sparse”-type dataset is comparable to DHFR, having the lowest number of data
points with large labels. Being the most difficult dataset all approaches display a drop in
ranking performance. Nevertheless for StructRank the drop is small compared to the other
models, which are both clearly outperformed. Interestingly, SVR and RankSVM display the
same behavior as for the virtual screening datasets: While RankSVM has the lead over SVR
for the “medium” dataset, SVR has the lead over RankSVM for the “sparse” dataset.

2.4.3 Run Time Comparison

This section gives an overview of the CPU time needed by each approach for training and
prediction. The given values represent average values received for the virtual screening
datasets, i.e. a model is trained on about 225 molecules to obtain a prediction for the re-
maining test set. SVR requires the least CPU time to train a model since it needs to solve
only one optimization problem. RankSVM has to solve a much more complex optimization
problem which is reflected in the increased time needed. For StructRank the optimization
problems become too big to be solved within one step. Thus an iterative branch-and-bound
technique [137] is applied, where for each iteration a convex quadratic subproblem has to be
solved. This repeated convex optimization step is the reason for the increase of CPU time by
the factor of 25 compared to the SVR. For prediction time we have inverse results with the
ranking approaches performing fastest.
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Table 2.3: Average CPU time for training/prediction for the virtual screening datasets.

SVR RankSVM StructRank

Training 0.18 s 1.71 s 2.32 s
Prediction 0.31 s 0.05 s 0.05 s

To investigate the dependency of time needed to train a model on the size of the training
set the largest dataset, DHFR, is used. Increasing the training set in steps of 100 molecules
revealed (cf. Table 2.4) that CPU time scales linearly with the size of the training set. This
indicates, that StructRank can be applied to much larger virtual screening datasets with rea-
sonable performance.

2.5 Discussion

This work investigated the use of ranking approaches when building QSAR-models for
ligand-based virtual screening. Two ranking approaches, optimizing NDCG (StructRank)
and Kendall’s τ (RankSVM), were compared to one state-of-the-art approach for virtual
screening: support vector regression. The performance was measured using NDCG as well
as two established VS metrics: Enrichment Factor and Robust Initial Enhancement.

This was the first time a ranking approach similar to StructRank was used within the field
of QSAR modeling. Regarding the mathematical concept, using a ranking approach like
StructRank offers two advantages for virtual screening:

1. Direct optimization of rankings: StructRank directly optimizes a ranking measure,
compared to the indirect optimization of regression approaches, which in the first place
optimize a regression performance measure.

2. Focus on highly binding compounds: Because of its composition, NDCG focuses on
molecules with high binding coefficients, whereas regression approaches like SVR or
ranking approaches like RankSVM pay equal attention to each molecule owing to the
structure of their loss functions. Thus necessary complexity for solving the problem
may be wasted uniformly over the data instead of focusing the algorithms complexity
on high rank entries.

Furthermore runtime seems to be no real obstacle, as it scales linearly with training set size.
Thus even for much larger datasets a competitive performance is probable. To encourage fu-
ture work on this assumption the source code of StructRank together with a documentation
has been made publicly available2.

The evaluation results demonstrate that for datasets which possess only a small or medium
number of molecules with high binding coefficients (e.g. BZR and especially the “sparse”
DHFR) the new approach performs significantly better than the baseline methods. For

2See http://doc.ml.tu-berlin.de/structrank/

Table 2.4: CPU time for training a model on DHFR for different training set sizes

100 200 300 400 500 600 672

CPU Time 0.90s 0.99s 1.07s 1.16s 1.33s 1.54 1.62
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datasets which show a high density for these molecules, ranking approaches deliver no real
advantage (e.g. for COX-2). These findings are underlined by the toy example.

In summary, structural ranking represents a promising new approach in chemoinformatics
that is very natural for virtual screening. From a machine learning point of view this study
indicates that ranking approaches in general may outperform regression approaches on a
ranking task if the underlying dataset shows a “sparse” data distribution with very few
elements on top of the label range.
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Chapter 3

Optimal Combination of Models

3.1 Introduction

A multitude of approaches to model drug absorption, distribution, metabolism, excretion,
toxicity and other properties relevant in drug design have been published within the last two
decades [34, 87, 130, 115, 86, 72]. The data analyzed in this study concerns a potassium chan-
nel which is of critical importance for the repolarization of cardiac muscle cells [32, 104].
Blocking the human ether-a-go-go1 related gene-encoded potassium channel (hERG chan-
nel) results in an abnormal activity of the heart characterized by a prolonged QT interval in
the electrocardiogram. QT prolongation enhances the risk of potentially fatal “torsades de
pointes”. A number of drugs such as terfenadine or cisapride were withdrawn from the mar-
ket due to QT prolongation induced by an unwanted blockade of the hERG channel.

Therefore, it is highly desirable to identify compounds which exhibit hERG inhibition early
in the discovery process [121], and many in silico methods have been developed and es-
tablished to either cope with limited capacities for in-vitro testing or to assess virtual com-
pounds (see [4, 5, 55, 52, 53] for a detailed review). Though the usage of different machine
learning techniques and descriptor sets comprises different ideas and concepts, the resulting
models for hERG inhibition almost all reached the same level of accuracy. So far less efforts
have been made to investigate how the individual regression models can be fused to obtain
more robust and/or accurate models. In machine learning so called ensemble methods like
random forests or bagging approaches build on a similar idea: a prediction model is built
by combining the strengths of a set of simpler base models [46]. For categorical models,
ensemble or consensus approaches often outperform individual models [88]. In general the
advantage lies in the accumulation of many weak learners which require very low compu-
tational costs. In contrast this chapter is concerned with different ways to fuse advanced
regression models used in drug design.

The most straight forward approach to ensemble modeling calculates the average prediction
of all models [96]. This way underestimates and overestimates may mutually compensate
to yield a good average performance. Alternatively, one can select the model that will most
likely exhibit the lowest prediction error for each individual compound. The model is se-
lected according to the similarity to the closest member of a set of reference compounds
with known experimental values. This approach was proposed by Kühne and coworkers
and applied to water solubility [68]. The similarity to a set of reference compounds can be

1 William D. Kaplan named a gene found in Drosophila fly and related to the later discovered hERG gene
“Ether-a-go-go gene” inspired by the reaction flies with mutations in this gene show when anaesthetized with
ether: their legs start to shake, like the dancing popular in the 1960s at the Whisky A Go-Go nightclub in West
Hollywood, California [126].
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exploited in an alternative approach to correct each individual prediction by a local bias es-
timate. This refers to the idea of associative or correction libraries that has been recently
introduced and applied to different ADMET endpoints [128, 129, 99, 14].

In this chapter we extend the concept of model selection to the development of a biased
model in which the expected prediction error of the selected model is used as a local correc-
tion term. Moreover, alternative ensemble predictions are compared to the corresponding
single results and the impact of data- and method diversity on ensemble performance is
discussed. Additionally, the estimate of the predictivity of our models is improved by per-
forming clustered cross-validation with multiple random partitions in addition to standard
cross-validation experiments.

3.2 Data

Two datasets entered the pre-processing process: The first one included 563 compounds
with pIC50 in-house measurements of hERG inhibition performed by Boehringer Ingelheim
Pharma GmbH (the experimental protocol is given in [43]). The second consists of 113 mea-
surements of hERG inhibition for drug like compounds that were gathered from the litera-
ture by Kramer et al. [66]. In order to merge and further process these data all compounds
are first represented as vectors of molecular descriptors and then computationally analyzed
for overlaps and outliers.

3.2.1 Molecular Descriptors & Pre-Processing

To cover different aspects of chemical information we included descriptor sets derived from
the 2D structure of the molecule as well as a 3D characterization of interaction between the
molecule and its surroundings. Descriptors were generated as follows: All compounds were
ionized at pH 7.4 according to ChemAxon’s pKa predictor (JChem pKa plugin, ChemAxon
Kft, Budapest, Hungary). Then a single 3D conformation was generated with Corina (Ver-
sion 3.4, Molecular Networks GmbH, Erlangen, Germany) to calculate descriptors based on
the 3D structure of a molecule. The conformational energy was minimized in the MMFF94x
force field available in MOE (MOE 2007.09, Chemical Computing Group, Montreal, Canada).
Chemical properties based on the 1D and 2D representation of the molecule such as size,
weight, lipophilicity, atom and ring counts, and topological features were taken from the
2D subset of the QSAR descriptors available in MOE. The 2D topological arrangement of
pharmacophoric interaction points was characterized by ChemAxon pharmacophoric fin-
gerprints (ChemAxon Kft, Budapest, Hungary) and CATS descriptors [106]. To assess the
interaction energy of the molecule with its environment, we employed the VolSurf package
(vsplus 0.4.5a, Molecular Discovery Ltd, UK), using four standard chemical probes (water,
hydrophobic probe, carbonyl oxygen, and amide nitrogen [23, 33]).

All descriptors were pre-processed as follows: Constant features, i.e. those that do not change
over all compounds, were removed. Counts in MOE 2D descriptors and ChemAxon phar-
macophoric fingerprints were log scaled, i.e. x = log(abs(x) + 1) · sgn(x). Finally, all features
were normalized in the following way: From each feature the median of this feature over
all data was subtracted and the feature was normalized such that the largest absolute value
was smaller than four (in preliminary studies this approach turned out to be more robust
compared to common standardization when the distribution of the descriptors is skewed).
All three descriptor sets, the ChemAxon pharmacophoric fingerprints, the CATS descriptors
and the VolSurf descriptors were concatenated to one vector for each compound.
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In cross-validation runs and for evaluation purposes the pre-processing was done on the
training part of the data only. The results from the training set were then applied to the
respective test data (i.e. remove those features that were constant in the training data and
normalize using the parameters calculated on the training data).

3.2.2 Comparison of in-house and literature data

The literature and the in-house data span a similar range of pIC50 values. Moreover, on
the ten reference compounds present in both sets the measurements show a correlation of
r2 = 0.9 (deviation below 0.5 log units for seven of them).

Though both sets are comparable with respect to the pIC50 labels, the PCA plot in 3.1 reveals
that the two sets are centered in different regions of the chemical space. Thus the predictive
power of separate machine learning models for the two sets and a single model built using
data from both sets was evaluated. In a standard cross-validation setting, it was not possible
to use the in-house data to predict literature data and vice versa. On the in-house data alone,
i.e., train and test set from in-house data, the performance is slightly better than on the liter-
ature data alone (presumably since the in-house data are more consistent). The performance
of models built using all data is very close to this single set performance on the correspond-
ing datasets. Altogether these results indicate that literature and in-house data can safely be
pooled in one dataset.

Figure 3.1: Projection of the dataset on the first and second component of a PCA model
using all descriptors. The in-house and literature set are marked to illustrate the different
distributions.

3.2.3 Analysis of Outliers

The outlier analysis is based on visual inspection of the raw descriptors, different PCA vi-
sualizations and the κ, γ and δ indices2 introduced by Harmeling et al. [45]. All measures
indicated that several percent of all compounds in the dataset might be outliers. The δ-index
which quantifies the amount of extrapolation necessary to predict the corresponding data
point was then applied to define a set of outliers. The distributions of δ-indices computed

2 κ is the distance to the mth nearest neighbor; γ is the mean distance to m nearest neighbors; δ captures if a
point is well embedded by its neighbors.
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for each set of descriptors separately using m = 7 neighbors is shown in Figure 3.2. After
visual inspection, the number of outliers was set to the top 50, i.e. by this working definition,
a compound is an outlier if its δ-index is in the top 50 of δ-indices for any of the four sets
of descriptors. The complete evaluation of single models (see Evaluation Strategy) was then
performed twice, once including and once excluding the outliers.

Figure 3.2: Histograms of δ outlier scores for each descriptor set (from left to right:
ChemAxon, CATS, MOE, and Volsurf) using m = 7 neighbors. Dashed vertical lines in-
dicate the respective cut-off corresponding to treating the 50 compounds with the highest
scores as outliers.

3.3 Methods

The hERG pIC50 inhibition value was measured for the given set of chemical compounds.
Based on these measurements we aim to predict the pIC50 inhibition value of new chemical
compounds. More precisely, we look for a regression function f which can predict the pIC50

inhibition value for any compound represented as descriptor vector x.

3.3.1 Single Modeling Approaches

In a first step four standard machine learning algorithms were used to build regression mod-
els:

• Ridge regression model,

• Gaussian process model,

• Support vector regression model and

• Random forest.

(See Chapter A of the appendix for a description of these methods.)

Kernels For the support vector regression model a radial basis function kernel, which
showed good performance with SVR in previous QSAR studies (e.g. [115]), was selected.
In the case of the Gaussian process we applied a combination of the radial basis function
and the rational quadratic kernel function

k(x, x′) = η exp
(
−‖x− x′‖2

σ2

)
+ (1− η)

(
1 +

d∑
i=1

wi(xi − x′i)2
)−v

,

with η ∈ [0, 1].
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Baseline Model All modeling approaches are compared to a baseline model. This model
predicts identical values for each compound, namely the average target value seen in the
training data.

3.3.2 Ensemble Modeling Approaches

The individual models listed above can be combined in different ways to obtain ensemble
models. Following the work by Kühne et al. [68] we assume the following general setting:
Several single models fi, i = 1, . . . , l have been generated on training data and evaluated
on disjoint test sets. For all compounds in the test set, the true value is known. Now an
unknown compound t is added to the test set.

The central idea is to derive a prediction f∗(xt) for the unknown compound t by considering
the performance of the models on the neighboring compounds within the test set. Thus, the
test set can be considered as correction set. When validating such an approach we employ
cross-validation, i.e. the test set of each cross-validation run is considered as correction set.
Each compound of the correction set is left out once, and its predicted value is deduced from
the neighboring compounds in the correction set.

To determine the neighborhood of each compound a measure of molecular similarity is re-
quired. In this work the distance of two chemical compounds a and b is defined as the Eu-
clidean distance of the corresponding descriptor vectors taking a reduced set of normalized
features into account

‖ xa − xb ‖red . (3.1)

Due to the curse of dimensionality, measuring the Euclidean distance in the whole descrip-
tor space of more than 400 dimensions would result in unspecific distances. To diminish this
effect, the descriptor vector is reduced to a small selection of descriptors which are most rel-
evant in the context of hERG inhibition. Initial experiments showed that a set of 54 features
with the highest weighting factors according to automatic relevance determination [97] in
the GP model forms an appropriate set of descriptors (all names of the features are listed in
supporting information of [43]).

Ensemble Models

The following ensemble modeling approaches were evaluated:

Selection by MAE (MAE Model) The single model with the lowest mean absolute error on the
neighboring compounds is selected to predict the desired inhibition value [68]. The k nearest
neighbors are selected based on the distance measure introduced in Equation 3.1, and the
mean absolute error (MAE) is calculated as:

MAE(fi) =
1

k

k∑
j=1

| fi(xj)− yj | . (3.2)

Here fi refers to one of the l trained single models. The predicted value f∗(xt) of this ensem-
ble model is given by

f∗(xt) = fminMAE(xt) with fminMAE = argmin
fi i=1,..,l

(MAE(fi)). (3.3)

If not stated otherwise, we set the number of nearest neighbors k that are considered in this
or any other of the following ensemble approaches to k = 10.
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Weighted Model This model is based on the idea that a weighted sum of all predictions of the
different single models may result in a greater improvement than selecting the prediction of
only one model. In the simplest way, all individual predictions can be combined with equal
weighting, i.e. the average predicted value is calculated from all models. Here we determine
the weight of each model, υfi , according to the inverse mean absolute error a model achieves
on the neighboring compounds:

υfi =
1

MAE(fi)

 l∑
j=1

1

MAE(fj)

−1 with
l∑

i=1

υfi = 1. (3.4)

The prediction of the weighted model is then given by

f∗(xt) =

l∑
i=1

υfifi(xt). (3.5)

The higher the accuracy of a model fi in the neighborhood of xt, the greater the impact of
the model fi on the predicted value.

Bias Corrected Model In this approach one single model is selected according to the min-
imum mean absolute error on the neighboring compounds—similarly to the MAE model.
Then the prediction of the selected model is corrected by the mean error on the neighbors. To
incorporate the distance between the unknown compound t and its neighbors we define a
distance weight dj for each of the k nearest neighbors as

dj =
1

‖ xt − xj ‖red

(
k∑
i=1

1

‖ xt − xi ‖red

)−1
j = 1, . . . , k. with

k∑
j=1

dj = 1. (3.6)

This way close compounds receive high distance weights. The selected model is now given
as

fweightedDist = argmin
fi i=1,..,l

1

k

k∑
j=1

‖ fi(xj)− yj ‖red
dj

 . (3.7)

The prediction is given as the prediction of fweightedDist reduced by the prediction error on
the neighborhood

f∗(xt) = fweightedDist (xt)−
1

k

k∑
j=1

fweightedDist (xj)− yj
dj

. (3.8)

This approach is closely related to the concept of correction libraries [99, 14].

Average KNN Model and Random Choice Model These reference models quantify the
improvement achieved by applying ensemble models. In the Random Choice model the
prediction of one single model is chosen randomly as the predicted value.
Unlike all other models, the Average KNN model predicts the value for the unknown com-
pound without considering any single models fi. The average over the labels of the neighbor-
ing compounds

f∗(xt) =
1

k

k∑
j=1

yj (3.9)

serves as prediction.
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3.4 Evaluation Strategy

3.4.1 Evaluation of Single Models

In order to test and compare the performance of all modeling approaches that have been
introduced so far, two cross-validation schemes are applied: First all models are evaluated
in standard cross-validation setting with three folds and 50 repetitions. Then the standard error
and the variance of different performance measures over all 50 trials is calculated.

Additionally, we evaluate the models in a clustered cross-validation setting. The dataset is
grouped into 15 equally sized clusters using the geo-clust algorithm [146] and the similarity
measure introduced in Equation 3.1. Each cluster is then randomly allocated into three folds,
each composed of five clusters and processed as in a standard three-fold cross-validation
setting. This form of cross-validation helps to prevent too optimistic performance estimates
by avoiding very similar compounds in both the training and the test set.

Hyperparameter For the ridge regression model and the support vector regression a three-
times five-fold nested cross-validation is implemented to determine hyper-parameters that re-
sult in good generalization on unseen data. In case of ridge regression, the parameter λ is
optimized, while for support vector regression, the hyper-parameters λ, σ and ε need to be
determined (see Machine Learning Methodology). The implementation of the random for-
est is based on the algorithm introduced by Breiman [11]. Each tree is trained on the full
training set and the parameters are kept constant. Contrary to the other learning techniques,
all parameters in the Gaussian process are estimated on the fly using marginal likelihood
maximization and not specified a priori or in an inner cross-validation loop.

3.4.2 Evaluation of Ensemble Models

In order to evaluate the impact of model- and data-diversity on performance improvements
we consider two different settings: First a support vector regression, a random forest and a
Gaussian process model are trained on the same set of compounds and then combined. In
a second run we fuse several models that were obtained from the same learning algorithm
but trained on different sets of compounds. This way we can distinguish between the per-
formance improvement which results from the variety of machine learning methods and the
improvement which originates from differences in the training sets. In the second setup the
discussion is restricted to random forests; the evaluation of our single models shows that
similar results can be expected for SVR of GP models (see below).

As in the evaluation of the single models, all ensemble models are evaluated in three-fold
clustered cross-validation over 50 repetitions. In each cross-validation loop, the five left-out
clusters represent the correction set. In the second ensemble setting we use the training set
(composed of 10 clusters) to create 20 different subsets using a bagging approach, i.e. sub-
sets are sampled with replacement. Each of the 20 different subsets is then used to train
a regression model of the same type, e.g., a random forest. The ensemble of 20 bagged
random forests is evaluated on the left out correction set as described in the first ensemble
setup.

Performance Measures Models are evaluated with respect to the following performance
criteria:
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• RMSE: The root mean squared error defined as√
1

n

∑
i

(yi − f(xi))2. (3.10)

• Correlation: The r2 value or squared correlation coefficient defined as

r2 =
(
∑

i((yi − ȳ)(f(xi)− f̄(x)))2∑
i(yi − ȳ)2

∑
i(f(xi)− f̄(x))2.

(3.11)

where yi are the labels, f(xi) are the predictions and x̄ denotes the respective mean
values.

• LOG-ε: The fraction of predictions within a specific interval ε around the true value.

3.5 Results and Discussion

3.5.1 Single Models

Table 3.1 compares the average performance (measured via RMSE, r2, LOG05 and LOG1)
of the five single models in standard cross-validation and in clustered cross-validation. The
distribution of RMSE values is illustrated in Figure 3.3, the relation between prediction and
measured pIC50 value is visualized in Figure 3.4.

standard cross-validation

Method RMSE r2 LOG05 LOG1

Baseline Model 0.86 - 0.50 0.77
ridge regression 0.91 0.25 0.51 0.79
Gaussian process 0.62 0.49 0.66 0.92
support vector regression 0.62 0.48 0.66 0.91
random forest 0.63 0.48 0.64 0.91

clustered cross-validation

Method RMSE r2 LOG05 LOG1

Baseline Model 0.87 - 0.49 0.77
ridge regression 1.15 0.11 0.38 0.65
Gaussian process 0.73 0.30 0.54 0.85
support vector regression 0.73 0.29 0.55 0.84
random forest 0.73 0.31 0.55 0.85

Table 3.1: Evaluation of Single Model Approaches: Different error measures applied in the
standard cross-validation setting and the clustered cross-validation setting. RMSE denotes
the root mean squared error, r2 the correlation coefficient and LOG05 and LOG1 the frac-
tion of predictions falling within 0.5 and 1 (log) units of the true value, respectively. The
corresponding standard errors across all 50 repetitions are all below 0.01. See text for details.

Complexity of models and data The ridge regression model does not perform very well,
moreover, it is outperformed by the baseline model. In contrast, all other models yield re-
sults significantly improving upon the baseline prediction. Hence, a linear model seems to be
too ”simple”, i.e. it has not enough flexibility to capture the complex molecular mechanisms
which determine the inhibition of the hERG channel. Although the dataset is relatively
small, and taking the complexity of the biological mechanism into account, the nonlinear
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Figure 3.3: Box-plot depiction of the root mean squared error (RMSE) in the standard (left)
and clustered (right) cross-validation setting over 50 repetitions. The box covers 50% of the
actual data, the box height being the interquartile range, the horizontal line denotes the
median. The whiskers are at most 1.5 times the interquartile range. Points outside this range
are marked as outliers.

methods yield models where up to two thirds of all predictions are within 0.5 log units of
the experimental value. The results across all 50 repetitions of our cross-validation experi-
ments are very consistent, showing only a small “within-method” and “between-method”
variance. From this we conclude that all models are close to the performance which is achiev-
able on this dataset. Notably, this holds true when comparing the kernel-based learners SVR
and GP and the density-based random forest.

Outliers The model performances when using training sets with and without the outliers
identified by the δ-indices did not differ significantly for GP, SVR and RF models. The learn-
ing algorithms seem to be robust enough to deal with the outliers included in the present set
of data. Hence, results obtained on the limited dataset are not discussed any further.

Clustered cross-validation The clustered cross-validation and the standard cross-validation
show the same tendencies but the latter one yields more optimistic performance estimates—
especially for ridge regression. As shown in Figures 3.4 and 3.5 the spread of the predicted
y-values is significantly smaller in the clustered cross-validation leading to larger errors on
the tails of the pIC50 value distribution. When leaving out whole clusters of compounds
from the training set the most informative neighboring points of each test compound are
taken away, a higher amount of extrapolation is necessary and predictions drift towards the
mean value. A similar effect has been observed in many practical applications of QSAR mod-
els: During application, contrary to the validation results, a model tends to miss out on the
tails, i.e. the high and low values, of the target distribution. This underpins that a clustered
cross-validation yields more realistic performance estimates for a real world application. In
fact, in a realistic application scenario in drug research, prediction models are often applied
to new chemical series which might be significantly dissimilar to the compounds that have
entered the model training process.

29



Chapter 3. Optimal Combination of Models

Figure 3.4: Relation between predictions and true values for baseline, ridge regression and
random forest model evaluated in the standard cross-validation setting (top) and the clus-
tered cross-validation setting (bottom) over 50 repetitions. Note that the random forest
model outperforms the other two approaches and the clustered cross-validation yields less
optimistic results. The plots for the Gaussian process and the support vector regression
model (not shown) nearly equal the one of the random forest model.
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3.5. Results and Discussion

Figure 3.5: Relation between predictions and true values for the Random Choice model, the
Bias corrected model and the Weighted model evaluated in the clustered cross-validation
setting over 50 repetitions: The Bias corrected model improves the prediction especially in
less frequent regions of extreme pIC50 values.

The performance of a prediction model applied on a cluster not represented in the training
set differs highly between the individual clusters. Figure 3.6 shows the squared correlation
coefficient between predictions and measured pIC50 values calculated on each cluster sepa-
rately. There is a large spread in the performance depending on the cluster. Clusters 7 and
11 can be predicted very well, whereas the model fails on other clusters (e.g. 4, 8, 13).

Assuming that the clusters group structurally similar compounds, this finding resembles
some of our experiences when applying QSAR models of this type: the interaction between
members of certain structural classes and the hERG channel is in some cases only partially
covered by the molecular descriptors and our models, whereas the structure-activity rela-
tionships revealed by other structural classes are much better reproduced. It is interesting
to note that there is no direct correlation between the cluster composition into proprietary
and public domain data and the corresponding model performance (data not shown). How-
ever, a more thorough analysis of the structural classes represented by each cluster and their
putative mode of interaction with the hERG channel is beyond the scope of this paper.

3.5.2 Ensemble Models

Benchmarks for Ensemble Models To allow for more insights into the performance gain
achieved by different ensemble strategies we compare them not only to both baseline models
(Average KNN and Random Choice) but also to the following two quantities:

- The RMSE of a single random forest model is taken as an upper benchmark: The ensem-
bles are expected to achieve a RMSE that is smaller than this upper bound.

- The RMSE of a leave-one-out cross-validated random forest model is taken as a lower bench-
mark. This model is trained on all compounds in the training set and all (but one) com-
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Figure 3.6: Calculation of the squared correlation coefficient on the clustered cross-validation
results for each cluster separately.

pounds in the correction set. Since only one test compound is left out in each iteration
the model has almost full knowledge (contrary to the ensembles which are validated
in clustered cross-validation).

Combination of Different Single Models Trained on Equal Training Sets

Figure 3.7 visualizes the distribution of the RMSE over 50 repetitions for different ensemble
approaches when training three single models on identical datasets. The Random Choice
model does not improve over any single model since all single models (GP, SVR and random
forest) perform about equally well (see Table 3.2).

Also the Weighted as well as the Selection by MAE approach do not perform significantly
better than a random forest (dashed line) or any other single model. The reason for this
behavior is illustrated in Figure 3.8: The prediction errors of the individual models are highly
correlated, i.e. if one model yields an inaccurate prediction, the other single models show
similar prediction errors. Hence, a mutual compensation of prediction errors by combining
single model predictions is not possible.

In contrast, the Average KNN and the Bias corrected model significantly improve over the sin-
gle model approaches—the Bias corrected model even outperforms the random forest model
evaluated in leave-one-out cross-validation (lower dashed line). Considering the fact that
the Bias corrected consensus model is based on about 30% less data points than the leave-one-
out random forest model makes this result remarkable. We conclude that the way in which
data enters the model can be more important than the number of data points. Here the
separate retrospective inspection of only 10 nearest neighbors using bias correction works
best—even better than considering all data points from the beginning.

So far the evaluation was focused on ensemble models which incorporate a neighborhood
of ten compounds. To determine the influence of the neighborhood size on the quality of the
model the number of neighbors is varied and the evaluation repeated. The results are sum-
marized in Figure 3.9: The Average KNN and the Bias corrected model are strongly dependent
on the number of neighbors, where an optimal number of neighbors seems to be 5. However,
the RMSE does not significantly decrease when more neighbors are taken into account. The
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Figure 3.7: Combination of random forest, Gaussian process and SVR model trained on equal
sets: Box-plot depiction of the root mean squared error (RMSE) of the different ensemble
methods in the clustered cross-validation setting over 50 repetitions. The dashed lines refer
to the RMSE of the underlying single random forest model (upper line) and the RMSE of a
random forest model trained in leave-one-out cross-validation (lower line). For more details,
see also Figure 3.3.

MAE and the Weighted model do not improve with the size of the neighborhood. This may
again be caused by the highly correlated prediction errors (c.f. 3.8).

Combination of Single RF Models Trained on Different Training Sets

In this section we evaluate the performance of ensemble models which combine the predic-
tions of 20 random forests trained on different parts of the training set (see bagging approach
in Section 3.4). The main results of this evaluation are summarized in Table 3.2 and Figure
3.10. Due to the different training sets, stronger deviations between each pair of single mod-
els occur. Some errors of the single models are now compensated in the ensemble model.
However, the distribution of RMSE values shows similar tendencies as in the previous set-
ting: For the Random Choice model we observe a worse performance than for a single model
(upper dashed line). The Weighted model again only achieves a small improvement. In con-
trast to the previous observation, the Selection by MAE model now shows a somewhat larger
improvement with respect to the single model. The Bias corrected model again reveals the
best performance of all ensemble methods.

3.6 Conclusions

In this study the performance of several machine learning algorithms in single and ensem-
ble model settings was investigated to address hERG inhibition. Single Gaussian process,
support vector regression, and random forest models which were trained on the combined
dataset of literature and in-house data gave RMSE values of roughly 0.6 in standard cross-

33



Chapter 3. Optimal Combination of Models

0 1 2 3
0

1

2

3

Gaussian Process absolute error

S
V

R
 a

b
s
o
lu

te
 e

rr
o
r

0 1 2 3
0

1

2

3

Gaussian Process absolute error

R
a
n

d
o

m
 F

o
re

s
t 
a

b
s
o

lu
te

 e
rr

o
r

Figure 3.8: Visualization of the strong correlation between the absolute error of the GP and
SVR model (left) and the GP and the random forest model (right). The corresponding corre-
lation coefficients amount to 0.96 (GP versus SVR), 0.86 (GP versus random forest) and 0.82
(SVR versus random forest).
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Figure 3.9: Influence of the number of considered neighbors on the ensemble model perfor-
mance. The Average KNN and Bias corrected model are more sensitive to the neighborhood
size than the other models.
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combination of GP, SVR and random forest

Method RMSE r2 LOG05 LOG1

Random Choice 0.73 0.30 0.55 0.85
Selection by MAE 0.7 0.35 0.58 0.87
Weighted 0.71 0.33 0.56 0.86
Bias corrected 0.57 0.54 0.71 0.93
Average KNN 0.63 0.44 0.62 0.9
single random forest 0.73 0.31 0.55 0.85
leave-one-out random forest 0.6 0.726 0.66 0.92

combination of random forest models trained on different sets

Method RMSE r2 LOG05 LOG1

Random Choice 0.76 0.26 0.52 0.84
Selection by MAE 0.7 0.35 0.56 0.86
Weighted 0.74 0.31 0.53 0.85
Bias corrected 0.57 0.55 0.69 0.93
Average KNN 0.63 0.46 0.63 0.91
(bagging) single random forest 0.76 0.26 0.52 0.83
leave-one-out random forest 0.6 0.726 0.66 0.92

Table 3.2: Evaluation of Ensemble Model Approaches: RMSE denotes the root mean squared
error, r2 the correlation coefficient and LOG05 and LOG1 the fraction of predictions falling
within 0.5 and 1 (log) units of the true value, respectively. The corresponding standard errors
across all 50 repetitions are all below 0.02. See text for details.
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Figure 3.10: Combination of 20 bagging random forest models trained on different sets: Box-
plot depiction of the root mean squared error (RMSE) of the different ensemble methods in
the clustered cross-validation setting over 50 repetitions. For details, see also Figure 3.3.
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validation and about 0.7 in clustered cross-validation, whereas the linear ridge regression
model was not able to discover a relationship between the molecular descriptors and hERG
inhibition.

Although all three nonlinear models are based on different ideas and algorithms, their pre-
diction errors are highly correlated. Thus the performance of a consensus model based on
these three single models only slightly exceeds the single model performance, especially if
standard cross-validation is applied. In the more realistic clustered cross-validation setting,
combining different models improves the performance of the final model. This can be ob-
served for an ensemble whose individual models are trained with the same dataset as well
as for an ensemble based on different training subsets. In both cases, a local bias correction
yields the best results.

From a machine learning point of view the results reveal the impact of the test set and single
models on ensemble modeling in the presence of correction sets. Even if the single models
are highly correlated ensemble modeling can improve the prediction, especially if the test
compound is not optimally covered by training data. In this case the utilization of addi-
tional data in a local bias correction method is more powerful than a model retrained on
the complete dataset including the additional information. Further investigations are neces-
sary to evaluate in which cases the bias corrected approach is adequate and in which cases
retraining should be preferred.

For chemical researchers these findings are encouraging in two aspects: First, they indicate
that local bias correction may be a good way to cope with the influence of subtle struc-
tural modifications on the interaction with the hERG channel while global trends such as
the overall influence of compound lipophilicity [145, 38, 55] are still covered. Second, the
calculation of a simple local bias correction from new measurements can substitute time-
consuming retraining of a model using the expanded dataset, as proposed also in earlier
studies [99].

All QSAR models that have been discussed in this study only hardly give practical hints
which molecular features should be altered during compound optimization to overcome
hERG interaction. They are rather intended to provide a fast and reliable method for as-
sessing large compound sets which originate from HTS and virtual screening campaigns
or combinatorial libraries. Of course, a variety of experimental high-throughput methods
such as competitive binding, rubidium efflux, or high-throughput automated patch clamp
assays are available for these tasks [120, 12]. However, well-tuned in silico models which
were trained on high-quality experimental data can be of use especially in an early stage of
a drug discovery project. They can be applied for virtual compounds before they are syn-
thesized or purchased from external vendor catalogs. Moreover, in silico methods are faster
and cheaper to run. Since the accuracy of the experimental values may suffer from sample
impurities, poor solubility, poor chemical stability, a tendency to stick to surfaces or other
properties, a predictive in silico model may be a valuable alternative to support decisions
such as the prioritization of HTS clusters, selection of compounds from vendor data bases,
or even to assist medicinal chemists in prioritizing synthesis plans.

36



Chapter 4

Structure-based Explanation of
Nonlinear Classifiers

4.1 Interpretability of Predictions in Chemoinformatics

In the previous chapters we explored new algorithms and enhancements to improve the
prediction performance of machine learning methods in chemical applications. The next
two chapters are dedicated to the interpretation of such machine learning predictions. In
chemoinformatics the interpretability of predictions is a subject of growing attention since
it enables one to assess model applicability, reliability of single predictions, and relevant
characteristics of the compound in question.

The applicability domain [135, 124, 134] of a model refers to the chemical structure space in
which a model makes predictions with a given reliability. In drug discovery the investi-
gated compounds commonly lie beyond the region covered by previously examined series
of compounds. Thus, prediction results become inaccurate due to missing information in the
chemical space of interest. Furthermore, the variable constitution of “activity landscapes”
[76] reduces the reliability of predictions. Most modeling techniques capture major trends
(“rolling hills”) and fail to recognize “activity cliffs” (Figure 4.1).

Figure 4.1: Sketch of predictions on changing activity landscape; gray surface: true activity
landscape; black grid: prediction model based on training set (small markers); black filled di-
amonds: three potential test points. The left and right test point are not accurately predicted
due to activity cliffs and missing training data.

Given an accurate prediction the question of feature importance arises in the context of com-
pound optimization [143]. The chemical characteristics most relevant for the predicted prop-
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erty are analyzed to deduce new chemical hypotheses and to design compounds with im-
proved activity. Acceptance of computational models thus depends not only on rigorous
verification (determining whether an implementation correctly computes the underlying
mathematical model) and statistical validation (determining whether the model adequately
represents the modeled phenomena), but also on the ability of the user to understand its
predictions and evaluate their quality. The latter is strongly affected by the model inter-
pretability. In brief, interpretable models allow for appropriate utilization and a better un-
derstanding of the algorithms as well as general acceptance of in silico predictions.

However, not all prediction models are easy to interpret. Especially kernel-based models,
like support vector machines, are often treated as black boxes [29]. In contrast to linear
models, they can capture nonlinear relations between hundreds of chemical features and
take local activity trends into account. This flexibility and non-linearity makes them both
more powerful in terms of solving a larger class of problems and more challenging in terms
of interpretation. Namely interpretation of a nonlinear prediction model needs to be local,
a straight forward global explanation in terms of features - similarly to a linear prediction
model - is systematically unfeasible.

The following two chapters address this challenge in different ways: The method presented
in this chapter quantifies the influence of each training sample on a single prediction in order to
visualize the most relevant training compounds along with a predicted value. This approach
primarily evaluates the reliability of single predictions and identifies weaknesses of models
due to missing training data, high complexity of the underlying chemical effect or mislabeled
training data points.

The next chapter emphasizes the interpretation and understanding of prediction models in
order to gain chemical insights on the modeled property. Local gradients are used to deter-
mine feature importance for kernel-based predictors. In contrast to other feature importance
measures this method allows for the detection of local trends, i.e. the chemical features
that severely affect complex biochemical properties, like binding affinity, of a certain class of
compounds yet have no significant influence with respect to the entire chemical space.

4.2 The Idea of Structure-Based Explanations

In supervised machine learning a training set is used to fit a prediction model. Thus any
prediction depends on these training samples.
The idea of the following study is to (i) identify the training compounds most relevant to
a single prediction by taking the influence measures introduced in Section 4.3 into account,
and then to (ii) visualize these compounds along with the corresponding predictions (see
Schroeter [110]).
This approach allows to explain nonlinear classifiers to users in terms of chemical com-
pounds—elements of their domain of expertise. Though the visual inspection of relevant
compounds may allow for insights into the reasoning of prediction methods the beneficial
effect of this approach is hard to quantify. The questionnaire study discussed in Sections
4.4 and 4.6 quantifies the impact of visual explanations in the context of Ames mutagenicity
prediction. There, the visual information significantly improved the participants ability to
identify unreliable predictions.
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4.3 Measuring Influence in Predictions of Kernel-Based Models

In this section the influence of training compounds on kernel-based predictions is analyzed
and exemplarily calculated for Gaussian process models.

The mean function (or prediction function) µ(x) of a Gaussian process model (Equation
A.18) can be expressed as a linear combination of kernel function values1

µ(x) = kT∗ (K + λI)−1y︸ ︷︷ ︸
α

= kT∗ α =
n∑
i=1

αik(x,xi). (4.1)

In this representation we can associate each summand with the contribution of a training
sample to the predicted value: The factor αi comprises information about noise, labels and
input features derived from the training data and the kernel function value k(x,xi) measures
the similarity between the new input and the i-th training compound. The product of both
reflects the desired contribution of the i-th training compound to the prediction.

For a large class of learning methods, i.e. SVMs and related methods2, such sums of con-
tributions can be calculated. The representer theorem3 ensures for these methods that a
representation of the prediction as a linear combination of training data exists.

Alternatively, only certain parts of the summands in Equation 4.1 are considered as contri-
bution weights: The factors αi for example are independent of the test data and represent a
kind of general importance weights of the training samples. In sparse models, these contri-
bution weights are set to zero for most of the training samples.
Another option is to reinterpret the mean function as a linear combination of labels

µ(x) = kT∗ (K + λI)−1︸ ︷︷ ︸
β(x)T

y =
n∑
i=1

β(x)i yi. (4.2)

in order to define a weight function β(x) which measures the contribution of each label yi.
This weight function4 can be viewed as a nonlinear analogon of the leverage term in linear
regression. It is of special interest in defective regression tasks where extreme label values of
outliers may dominate the summands.

In this study we only consider classification tasks, hence the absolute values of the first
option (whole summand) and the last option (β(x)i) coincide. The weight vector for the
normalized contribution of the training compounds is defined as

Definition 1
β̂ :=

abs(β(x))∑n
i=1 | β(x)i |

, (4.3)

where abs(β(x)) denotes the component-wise absolute value of the vector β(x). In the fol-
lowing, this normalized contribution is used to identify the most relevant compounds for
single predictions.

1In order to calculate the most relevant compounds of the training set, we focus on the predictive mean µ
used in classical GPs and disregard the subsequent transformation of the latent predictor applied in the case of
GP classification (GPC), cf. Section A.2.

2 In general these methods display a regularizer which is a nondecreasing function of the L2 norm [3], see
also methods in Table A.1.

3 A representer theorem has first been stated by Kimeldorf and Wahba [63] in 1971. It has been extended by
O’Sullivan et al. [90] and generalized by Schölkopf et al. [109]. For the definition used here and a discussion in
the context of Gaussian processes see Rasmussen and Williams [97, Chapter 6].

4 The weight function is sometimes also called an equivalent kernel, although it is not a kernel function in the
strict sense of being positive definite, see also Rasmussen and Williams [97, Chapters 2.6 and 7.1].
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4.4 Evaluation of Compound Relevance Weights

Recall that the main idea of this study is to visualize the most influential training compounds
in order to explain predictions of kernel-based models in terms of chemical structures. The
questionnaire study described in the following section was conducted to assess the impact
of such visualizations.

Questionnaire Study on Mutagenicity Predictions

The questionnaire study evaluates the participants’ ability to identify reliable predictions
using our visual explanations. Participants are asked to judge the reliability of a prediction
on Ames mutagenicity [2] generated by a Gaussian process model for classification (GPC
model).

This task implies two potential sources of bias: First, each person holds an individual level
of general trust in computer-based predictions, e.g., due to personal experiences. Second,
showing additional information besides the predicted value might let the user judge the
prediction differently. Therefore, participants are asked to decide between two contradict-
ing predictions, i.e., one model predicts the compound in question to be “mutagenic”, and
the other one to be “non-mutagenic”. In this forced design, there is no option to vote for or
against machine predictions as such, eliminating the first source of bias. The prediction val-
ues (“mutagenic” / “non-mutagenic”) are presented together with several explaining com-
pounds. To measure the effect of these visual explanations’ on participants’ decision making,
placebos are used: In 20 of the 40 test cases the visual explanations’ are informative, while the
remaining 20 cases are presented with non-informative “placebo explanations”. Figure 4.2
presents an annotated screen shot of the questionnaire as presented to participants. All types
of test samples are equally represented in the test set of 40 compounds (ten mutagenic com-
pounds with informative explanations, ten mutagenic compounds with non-informative ex-
planations, and two corresponding sets of ten non-mutagenic compounds).

Figure 4.2: The elements of information in the questionnaire study for deciding on Ames
mutagenicity: The compound in question and two contradicting GPC model predictions are
shown. For each prediction, the three most relevant training compounds and their respec-
tive importance in percent is given. The background color indicates the classification: dark
gray for mutagenic, and light gray for non-mutagenic. For the 20 non-informative “placebo
explanations”, the true explaining compounds are replaced by randomly selected training
compounds of the same mutagenicity class.
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Each test compound is presented in turn to the human participant. The presentation is per-
muted at random for every new user. Moreover, no feedback on correctness is given to
participants5. For more details on study design, machine learning models, and datasets see
Hansen et al. [44] .

To address different levels of chemical knowledge, participants were grouped according to
profession into different levels of expertise: “pharmaceutical science” (included one of “tox-
icology”), “chemistry”, “medicine”, and “layman” (remaining disciplines). Since the deci-
sions on the test compounds are assumed independent from each other and the order of
presentation of the compounds is randomized for each new participant, every single deci-
sion of all humans is taken into account.

To assess the questionnaire study a multinomial logistic regression model [78] is fitted to the
outcomes of the human decisions,

E[g(y)|x] = ϑ0 +
k∑
i=1

ϑixi + ε. (4.4)

The dependent variable y falls into one of the categories “hit” or “miss” for each participant
on an individual test compound. There are five binary predictor variables xi, i ∈ {1, . . . , 5}
involved, namely “layman”, “chemistry”, “medicine”, “pharmaceutical science”, and “ex-
planation”. The first four specify the expertise level of the participant. The last one equals
1 for the decision on test compounds with the relevant training compounds shown (i.e., the
true explanations), and 0 in the cases of random compounds (the “placebo explanations”).
The parameters ϑi, i ∈ {0, . . . , 5} are fitted to the experimental results by logistic regression
using the logit function

y =
1

1 + e−(ϑ0+
∑k

1 ϑixi)
. (4.5)

For each level of expertise, the odds-ratios of making a correct decision are calculated in
the presence of the true explanations as well as in the presence of random“placebo expla-
nations”. The odds-ratios are obtained from the logistic regression model parameters for
each predictor variable P(hit)

P(miss) = exp(ϑi), i ∈ {1, . . . , 5}. As a baseline, 10 unbiased random
guesses of the label for each test compound are generated automatically. The odds-ratio
gives the respective odds of making the correct decision in comparison to random guessing
(the null hypothesis). The results are considered statistically significant if the probability to
generate them under the null hypothesis is smaller than 5% (p-value < 0.05 using a likeli-
hood ratio test).

Results

The decisions of 71 human participants were evaluated. Most of them were chemical scien-
tists working in industry or PhD students at German universities. Table 4.1 summarizes the
numbers of participants, grouped by their level of expertise.

5The questionnaire study is available online under http://doc.ml.tu-berlin.de/toxpoll/ (in Ger-
man only)
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expertise participants finished decisions
Layman 35 21 906
Chemistry 17 12 498
Medicine 3 2 83
Pharm. Sc. 16 15 606
Total 71 50 2093

Table 4.1: Participants grouped by expertise

The results of the human decision performance with informative explanations and with
“placebo explanations” are listed in Table 4.2. The achieved odds-ratios of making a cor-
rect decision in comparison to the baseline of random guessing and the levels of significance
are shown.
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Acc
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0 0 0 0 0 195 205 49%
1 0 0 0 0 273 180 60%
1 0 0 0 1 346 107 76%
0 1 0 0 0 133 114 54%
0 1 0 0 1 182 69 73%
0 0 1 0 0 26 15 63%
0 0 1 0 1 34 8 81%
0 0 0 1 0 209 94 69%
0 0 0 1 1 228 75 75%

odds-ratio 1.67 1.32 2.02 2.01 1.93
p-value 0.056 0.23 0.14 0.03 0.01

Table 4.2: Contingency of observed decision performance. First row refers to the random
guessing baseline, the following to the questionnaire results of the participants grouped by
expertise. Access to true explanations of the model predictions results in a 93% improve-
ment of decision performance (red, significant p-value 0.01). Pharmacists showed a doubled
chance to identify Ames mutagenicity of the test compounds correctly (blue, significant p-
value 0.03).

There are two significant improvements in decision performance: Being a pharmacist and
access to the explaining visualizations have the strongest and most significant impact. Being
a pharmacist roughly doubled the chance to correctly identify Ames mutagenicity of the test
compounds (p-value of 0.03). Seeing the most relevant training compounds as determined
by our algorithm increases performance by 93% (p-value of 0.01).

Pharmacists, who start at the highest level of accuracy, still benefit from the explaining com-
pounds (increase in accuracy from 69% to 75%). In summary, explaining the model classi-
fications by visualizing the most relevant training compounds significantly improved deci-
sion performance. Even users with profound prior knowledge profited from the explana-
tions.
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4.5 Related Work

The visualization of training compounds most relevant for prediction is connected to various
techniques and problems in chemoinformatics. We briefly discuss relations to techniques for
interpretation of kernel-based models, sensitivity analysis, training set visualization, and
confidence estimation.

Model interpretability is often discussed in conjunction with feature importance and selec-
tion [40]. In nonlinear modeling, feature selection methods are used to identify features
which improve the overall prediction performance (e.g., Byvatov and Schneider [16]) or to
extract the most relevant features for single predictions [17]. In Chapter 5 feature gradients
are applied to estimate the local importance of single features. In contrast, the visual expla-
nations of this chapter do not refer to individual features, but visualize complete compounds
from the training set. The approach provides information on the objects that form the basis
of the nonlinear classifier predictions. Thus, human experts are able to judge the prediction
with their expertise about these objects holistically, possibly identifying and recruiting more
or different features than those available to the model.

The rating of the elements in the training set is the conjoint necessity of the explanation
approach and sensitivity analysis: In outlier sensitivity [41], the effects of removing single
data points on estimated parameters are evaluated by an influence function. In regression
problems, leverage analysis detects leverage points which have the potential to give a large
impact on the estimate of the regression function. In contrast to outliers, removing a leverage
sample may not actually change the predictor, if its response is very close to the predicted
value; e.g., for linear regression the samples whose inputs are far from the mean are the
leverage points.
These sensitivity analysis techniques examine the impact of data points on the model and do
not detect the local trends covered by the visual explaining approach. However, the notion
of relevance defined in Equation (4.2) can be interpreted as a kernelized version of leverage
analysis: If the compound relevance vectors β are computed for the whole training set and
arranged side by side, a hat matrix is generated and may be used for a nonlinear leverage
analysis:

ŷ = µ(X) = KT (K + λI)−1︸ ︷︷ ︸
H

y. (4.6)

To assess the reliability of model predictions, distance measures between training and test
examples are commonly used [117]. Sushko et al. [124] evaluate several distance-based mea-
sures to estimate the domain of applicability of QSAR models, as well as more sophisticated
approaches. The applicability of Gaussian process models can be estimated using their built-
in estimate of predictive variance [114]. All of these approaches quantify the confidence in
single predictions as a numeric value. In contrast, our approach does not provide a single
number as confidence measure. It visualizes the specific molecules that determine a pre-
diction on a per-compound basis and allows practitioners to take personal knowledge into
account to assess the reliability of predictions.

In this work we address interpretability of kernel-based predictions and exemplarily illus-
trate our approach on Ames mutagenicity data. The point of our study is not to predict Ames
mutagenicity with the best possible performance. There are more powerful tools available to
estimate Ames mutagenicity [42] than the predictors used in our evaluation. Rather, we fo-
cus on and recreate a situation where not enough training data are available (e.g., predicting
new chemical compound series). For this, we trained the two GPC models on a relatively
small set of 1000 compounds to allow for contradicting predictions.
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Chapter 4. Structure-based Explanation of Nonlinear Classifiers

Principled visualization algorithms have proven useful to visualize multi-dimensional train-
ing sets [64, 77]. Additionally, there are interactive tools that allow to display and decompose
chemical compounds in a set, as well as to graphically analyze their varying properties [65].
Our algorithm ranks the training compounds according to their relevance for prediction. The
simple structural visualization used in the questionnaire might be improved by interactive
tools for more detailed chemical analysis.

4.6 Discussion

Locality of explanation The width parameter σ of the used squared exponential kernel
(also called radial basis function kernel Eq. A.11) determines the number of training com-
pounds the model uses primarily to infer predictions for new test compounds. Cross-validation
experiments were performed on the training set to determine an appropriate trade-off be-
tween model locality and model accuracy.
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Figure 4.3: Contribution of the 10 most relevant training compounds to the prediction for
a given test compound. For a width parameter of σ = 0.0302 the first seven compounds
dominate the prediction. If the width parameter is too small (σ = 0.0015) all training com-
pounds almost uniformly influence the predicted value by a small amount. (illustrated for
GPC model 1, GPC model 2 behaves similarly).

Figure 4.3 shows how the width parameter σ influences the 10 training compounds most
relevant for a given test compound. The chosen kernel width of σ = 0.0302 ensures that suf-
ficiently local models are generated. This procedure is appropriate in this context because
mutagenicity is an inherently local property.6 When transferring the methodology to differ-
ent datasets, it may be worth checking whether such vicinity dependent behavior dominates
the problem in question.

Individual test cases The results of the questionnaire study indicate that a visual model
explanation improves the judgment on model predictions significantly over the baseline.
We discuss this observation on the basis of individual examples.

In the test setting, a participant is asked to judge the Ames mutagenicity of a compound
based on his personal knowledge and the conflicting predictions of two models. Note that
we consider only the most difficult cases here. The two GPC models agree on most eval-
uation compounds and predict their mutagenicity correctly. The test set used in the ques-
tionnaire study is a selection of compounds on which the classifiers disagree and yield less

6Local in the sense that the chemical features which determine mutagenicity vary locally in the chemical
space, e.g. containing epoxides generally tends to make non-steroids mutagenic, but we do not observe this
effect for steroids [6].
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confident predictions7. These compounds may lie outside the domain of applicability of at
least one classifier.

Figure 4.4: The non-mutagenic test compound 15,16-dihydro-11-n-butoxy-
cyclopenta(a)phenanthren-17-one from the questionnaire study.

Figure 4.5: Mutagenic azo dye sudan red from the questionnaire study.

Figures 4.4 and 4.5 illustrate the behavior of the explaining compounds in such situations:
In Figure 4.4, the second classifier displays a peculiar mixture of compounds barely related
to the compound in question. Moreover, the percental impact of these compounds (given
below the structures) is small, indicating a low relation of the test compound to most training
compounds. The explaining visualization thus indicates a misclassification of the second
classifier due to insufficient coverage of the training data. In Figure 4.5, the second classifier
also operates out of its domain of applicability.

However, the assessment of the first classifier is more difficult: On the one hand, the first ex-
plaining compound equals the compound in question except for the 2,4 (meta/meta) methyl-
substitution instead of a 1,3 (ortho/para) methyl-substitution at the lower ring, and is non-
mutagenic. On the other hand, the second explaining compound is also very similar (meta-

7The Gaussian process classifier outputs for each compound the probability of being in the positive class.
Outputs around 0.5 are considered as less confident.

45



Chapter 4. Structure-based Explanation of Nonlinear Classifiers

but not para-substituted), but shows a different mutagenicity. In this case the explaining
compounds indicate a chemically complex situation, such as activity cliffs. Therefore, the
given explanation can serve as a red flag and further laboratory experiments or literature
research are advisable to determine mutagenicity. While the prediction itself is unreliable,
the explaining compounds reveal valuable information and ideas for optimization, e.g. they
indicate a strong effect of the meta-methyl group position at the lower ring on mutagenicity.

Figure 4.6: The mutagenic test compound rhamnetin from the questionnaire study.

After demonstrating the advantages of visual explanations we investigate possible short-
comings of our approach. Since the information captured in the training set is not complete,
it is possible that the classifier makes a prediction that is reasonable from its limited perspec-
tive, but wrong. We found only one example for this situation, the mutagenic rhamnetin [21]
(Figure 4.6). The second classifier refers to a different class of compounds, and is therefore
neglected. The other classifier displays reasonable examples: The first two compounds (hort-
ensin and hispidulin), both flavonoids like the compound in question, show a high similar-
ity, and are consistently marked as “non-mutagenic”. The classification as “non-mutagenic”
seems plausible (all pharmacists in the poll voted for “non-mutagenic”), but the explaining
compounds are rather misleading. In this case the complex behavior of flavonoids is not re-
flected in the training set. In such a situation, we recommend to verify the relevant training
data in order to exclude errors, and to update the model afterwards.

Finally, the users expertise influences the impact of the visual approach. In Figure 4.7, both
sets of explaining compounds look equally plausible at first sight. However, the pharmacists
more often correctly assessed the high influence of the aromatic nitrogen substitution on the
mutagenicity (see upper row of explaining compounds), and voted correctly for the lower
predictor. The laymen in contrast performed poorly. This example shows that visual expla-
nations can not turn the layman into an expert, but can support the expert with valuable
information. In summary, the new visual explanations enhance interpretation of nonlinear
prediction models. We have used GPs as one possible example of nonlinear models; the
techniques can be transferred to other nonlinear models in a straight forward manner. Vi-
sual explanations may support practitioners in their work with machine learning models by
detecting and resolving weaknesses of the models, as well as discovering important charac-
teristics of the training data.
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Figure 4.7: The mutagenic test compound anti-phenanthrene-1,2-diol-3,4-epoxide from the
questionnaire study.

4.7 Conclusions

In this chapter a new approach to interpret kernel-based predictors was investigated. The
method measures the influence of individual training compounds (explaining components)
on single model predictions. The impact of finding and showing these explaining compo-
nents was confirmed by a questionnaire study of human decision performance on Ames
mutagenicity classification. By applying the general representer theorem [109], such expla-
nations can be given for a large class of nonlinear machine learning methods, including e.g.
Gaussian processes, support vector machines, kernel partial least squares and kernel ridge
regression. The questionnaire study employed Gaussian processes with the squared expo-
nential kernel. The analysis of other kernel methods and kernels are candidates for further
research. Access to the molecular evidence behind a prediction facilitates understanding of
the predictions validity in a given context.

The examination of individual test cases suggests that the provided explanation enables
human experts to make an informed decision on difficult instances, where automatic confi-
dence estimation might fail. Looking into the explaining components of individual predic-
tions may prove useful to spot wrong labeling and insufficient coverage of specific regions
in large complex datasets. Thus visualizing explaining components could be applied as a
generic tool of quality assurance to validate nonlinear in silico model predictions for specific
application areas. Understanding nonlinear predictors as such furthermore allows not only
to assess the domain of applicability, it may also provide general ideas on enhancements
of machine learning approaches, e.g., in the field of kernel design and descriptor genera-
tion.
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Chapter 5

Interpretation in Terms of Local
Feature Importance

In the previous chapter (Section 4.1) we already discussed the importance and different
facets of interpretability in chemoinformatics. In this chapter single predictions are not in-
terpreted in terms of chemical compounds but in terms of physicochemical features. We
analyze which features of the compound in question influence the prediction applying local
gradients. Again Gaussian processes are used to illustrate the approach.

5.1 Methods

Definition of Explanation Vectors

We first consider a regression model f(x) learned from examples {(x1, y1), . . . , (xn, yn)} ∈
Rd×R with f first-order differentiable w.r.t. x 1. This situation is pictured for two-dimensional
inputs in Figure 5.1: The x1- and x2-axes describe the chemical space of compounds, the
vertical axis represents the experimentally measured property of interest y (label), and the
learned prediction function f(x) is shown as a wavy surface.

In order to investigate the importance of input features we consider the local gradients as
explanation vectors. The local gradient of a data point x0 is defined to be the derivative of f
with respect to x at x = x0, or formally,

ηf (x0) := ∇f(x)|x=x0 . (5.1)

Note that η(x0) is a d-dimensional vector just like x0 and points towards the steepest as-
cent of the prediction function f . Thus the sign of each of its individual entries indicates
whether the prediction would increase or decrease when the corresponding feature of x0 is
increased locally and each entry’s absolute value gives the amount of influence in the change
in prediction. Figure 5.1 illustrates how the importance of features may change for different
inputs.

The vector η(x0) defines a vector field over the chemical input space that characterizes the
flow towards the function’s maximum in each point. This maximum is not necessarily the
global maximum since the gradient denotes the strongest improvement around x0. As long
as the model f is not wiggly due to over-fitting, the explanation vector captures trends
within small regions of the chemical space, e.g., compound classes.

1Most kernel-methods are first-order differentiable; an approximation techniques for kernels that are not
first-order differentiable is discussed in Section 5.1)
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Figure 5.1: Sketch of local gradients for feature importance: The x1- and x2-axes describe
the chemical space of compounds, the vertical axis represents the experimentally measured
property of interest y (label), and the learned prediction function f(x) is sketched as a wavy
surface. Following the local gradients (direction of blue arrows) in order to increase the
predicted value requires either a modification of only a single property (x1 or x2) or a joint
adjustment of both.

In case of binary classification we define local explanation vectors in an analog manner as lo-
cal gradients of the probability function p(x) of the learned model for the positive class:

ηp(x0) := ∇p(x)|x=x0 with p(x) = P (Y = 1 | X = x). (5.2)

Here p : Rd → [0, 1] refers to the probability function of a classification model learned from
examples {(x1, y1), . . . , (xn, yn)} ∈ Rd×{−1,+1}. In this section we discuss alternatives that
are applicable if this function is not available for a given classification method. By Definition
(5.2) the explanation vector η is a d-dimensional vector that gives the direction of the steepest
ascent from the test point to higher probabilities for the positive class. The negative version
−ηp(x0) indicates the changes in features needed to increase the probability for the negative
class which may be especially useful for x0 predicted to be in the positive class.

We remark that η(x0) becomes a zero vector, for example, when p is equal to a constant in
some neighborhood of x0. The explanation vector fits well to classifiers where the probabil-
ity function P (Y = 1 | X = x) is usually not completely flat in some regions. In the case
of deterministic classifiers, despite of this issue, Parzen window estimators with appropri-
ate widths (Section 5.1) can provide meaningful explanation vectors for many samples in
practice.

For an example we apply the Definition 5.2 to model predictions learned by Gaussian pro-
cess classification (GPC). GPC does model the class probability function p directly. For other
classification methods, such as support vector machines, that do not provide a probability
function as its output, we give an example for an estimation method later in this section.
The local gradients of the GPC probability function can be calculated analytically for differ-
entiable kernels as we discuss next.

In the case of the probit likelihood term defined by the error function, the probability for
being of the positive class p(x) is defined for GPC in equation A.19. The derivation of this
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function with respect to x at x = x0 yields the local gradient

∇p(x)|x=x0 =
exp

(
−µ(x0)2

2(1+var(x0))

)
√

2π

(
∇µ(x)|x=x0√
1 + varf (x0)

− 1

2

µ(x0)

(1 + var(x0))
3
2

∇var(x)|x=x0

)
. (5.3)

As a kernel function choose, for example, the radial basis function (RBF) kernel k(x0,x1) =

e−w ‖x0−x1‖2 , which has the derivative

∂

∂x0,j
k(x0,x1) = −2w e−w ‖x0−x1‖2 (x0,j − x1,j) for j ∈ {1, . . . , d}.

Then the elements of the local gradient∇µ(x)|x=x0 are

∂µ

∂x0,j
= −2w

n∑
i=1

αie
−w(x0−xi)

2
(x0,j − xi,j) for j ∈ {1, . . . , d}.

Figure 5.2 illustrates the local gradients of this GPC model on a toy example.

In summary explanation vectors let us locally understand the the prediction function of clas-
sification and regression problems.

Estimating Explanation Vectors

Several classification methods directly estimate the decision rule, which often has no interpre-
tation as a probability function. For example decision trees provide the class label directly
and support vector machines [138, 107, 82] estimate the distances to a high-dimensional
hyperplane. In the following, we will explain how explanations can be obtained for such
classifiers.

Suppose we learned a classification function g that assigns a class label c ∈ −1, 1 to each
compound vector x. For test data points z1, . . . , zm ∈ Rd which are assumed to be sampled
from the same unknown distribution as the training data, the function g estimates labels
g(z1), . . . , g(zm). Now, instead of trying to explain the classifier g, we suggest to approxi-
mate g by another classifier ĝ, the actual form of which resembles a Bayes classifier with a
probability function.

There are several choices for ĝ, for example, GPC, logistic regression, and Parzen win-
dows.2

2For the special case of support vector machines Platt [95] a sigmoid function is fitted to map the outputs on
probabilities. The approximation of g by methods like Parzen windows, as introduced in this study, defines a
more general approach for estimating explanation vectors [6].
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(c) Local explanation vectors
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Figure 5.2: Explaining object classification with local gradients: (a) training data of a simple
object classification task, blue points are labeled −1 and red points +1; (b) probability func-
tion for the positive class learned using GPC; (c,d) local gradient explanation vectors of the
model together with the elevation profile of the probability function; in panel (d) vectors are
normalized. (c) Along the hypotenuse and at the corners of the triangle explanations from
both features interact towards the triangle class while along the edges the importance of one
of the two feature dimensions dominates. At the transition from the negative to the positive
class the length of the local gradient vectors represents the increased importance of the rele-
vant features. In panel (d) we see that explanations close to the edges of the plot (especially
in the right hand side corner) point away from the positive class. However, panel (c) shows
that their magnitude is very small.

The approach has the advantage that we can use our estimated classifier g to generate any
amount of labeled data for constructing ĝ. Even in high dimensions the classifier g can be
exactly resembled. For the classifier ĝ the explanation vectors are calculated as described
previously and interpreted as explanations for the original classifier g.

In an analog manner a non-differentiable regression function f can be locally imitated by a
first-order differentiable regression function f̂ to estimate the explanation vectors.
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(b) aromatic amine
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(d) aliphatic nitrosamine
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(e) aromatic nitrosamine
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(f) epoxide
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Figure 5.3: Distribution of local importance of selected features across the test set of 4512
compounds. Nine out of ten known toxicophores [61] exhibit positive local gradients. This
indicates a mutagenic effect of toxicophores learned in the GPC model.

5.2 Evaluation of Explanation Vectors

In the following we investigate the task of predicting Ames mutagenic activity using the
local gradient explanation methodology. The aim of this analysis is to find structure specific
to the problem domain that has not been fed into training explicitly but is captured implicitly
by the GPC model.
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Chapter 5. Interpretation in Terms of Local Feature Importance

The GPC model is generated as follows: Each compound of the Ames dataset is represented
by a vector of 142 molecular descriptors (counts of molecular substructures calculated us-
ing the DRAGON software [132]). The 6512 data points are randomly split into 2000 train-
ing and 4512 test examples such that the two classes (mutagenic and non-mutagenic) are
balanced within the training set (stratified cross-validation). Additionally, the balance of
steroid compounds in the train and test set is enforced. Ten additional random data splits
are investigated separately to confirm the results presented below. Training and test set are
normalized using the mean and variance of the training set before a GPC model with RBF
kernel is trained. Finally, the explanation vector for each test point is calculated together
with the prediction. The performance of the GPC models on the test points averaged out at
84 % area under curve (which equals the performance level reached in previous studies of
GPC models for Ames mutagenicity [42]). The remainder of this section is an evaluation of
the calculated local explanations.

The distribution of the local importance of single features is analyzed in Figures 5.3 and 5.4:
For each input feature a histogram of local importance values is generated taking the corre-
sponding entry in the explanation vector of each of the 4512 test compounds into account.
The features examined in Figure 5.3 are counts of substructures known to cause mutagenic-
ity. The figure shows all approved “specific toxicophores” introduced by Kazius et al. [61]
that are also present in the DRAGON set of features. With the exception of 5.3(e) all his-
tograms picture a high frequency of positive importance values and almost no negatives.
Thus these toxicophores also have a toxifying influence according to the GPC prediction
model. Feature 5.3(e) seems to be mostly irrelevant for the prediction of the GPC model on
the test points3.
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(b) sulfonic acid
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Figure 5.4: Distribution of local importance of selected features across the test set of 4512
compounds. All five known detoxicophores exhibit negative local gradients which corre-
sponds to an non-mutagenic effect within the GPC model.

3We found that only very few compounds with this feature are present in the dataset. Consequently, detection
of this feature is only possible if enough of these few compounds are included in the training data. This was not
the case in the random split used to produce the results presented above.
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In contrast the substructures known to detoxify certain toxicophores (detoxicophores [61])
have a negative influence on the prediction outcome of the GPC model (see Figure 5.4).

Compared to the remaining features the detoxicophores and toxicophores are among the fea-
tures with the strongest effect on the GPC model. Hence the knowledge about toxicophores
and detoxicophores is not only confirmed but also (re)discovered exclusively from the analysis
of explanation vectors.

So far the conclusions drawn from the explanation vectors refer to global trends in the
dataset. In the following paragraph we discuss steroids4 as an example of an important
compound class for which the meaning of features differs from this global trend, so that
local explanation vectors are needed to correctly identify relevant features.

(a) epoxide feature: steroid vs. non-steroid (b) aliphatic nitrosamine feature: steroid vs. non-
steroid

Figure 5.5: The local distribution of feature importance differs significantly between
steroids and non-steroid compounds for two known toxicophores (epoxide and aliphatic
nitrosamine): The small local gradients found for the steroids (shown in blue) indicate that
the presence of each toxicophore is irrelevant to the molecules toxicity. For non-steroids
(shown in red) the known toxicophores exhibit larger positive local gradients.

Figure 5.5 displays the difference in relevance of epoxide (a) and aliphatic nitrosamine (b)
substructures for the predicted mutagenicity of steroids and non-steroid compounds. In con-
trast to the non-steroid compounds, almost all epoxide containing steroids do not follow the
global distribution (see Figure 5.3(f)) and exhibit gradients just below zero. The difference
between these two distributions is confirmed by a p-value below 0.005 of the corresponding
Kolmogorov-Smirnoff (KS) test5. This “immunity” of steroids to the epoxide toxicophore is
an established fact and has first been discussed by Glatt et al. [37]. For aliphatic nitrosamine,
the situation in the GPC model is less clear but still the toxifying influence seems to be less in
steroids than in many other compounds (p-value of KS test below 0.005). To our knowledge,
this phenomenon has not yet been discussed in the pharmaceutical literature.

In conclusion, we can learn from the explanation vectors that:

4Steroids are natural products and occur in humans, animals, and plants. They have a characteristic backbone
containing four fused carbon-rings. Many hormones important to the development of the human body are
steroids, including androgens, estrogens, progestagens, cholesterol and natural anabolics. These have been
used as starting points for the development of many different drugs, including the most reliable contraceptives
currently on the market.

5The Kolmogorov-Smirnoff test gives the probability of error when rejecting the null hypothesis that both
relative frequencies are drawn from the same underlying distribution.
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• Toxicophores tend to make compounds mutagenic.

• Detoxicophores tend to make compounds non-mutagenic.

• Steroids are immune to the presence of some toxicophores (epoxide, possibly also
aliphatic nitrosamine).

From a methodological point of view the analysis exhibits that:

• Local explanations can reveal the global importance of input features.

• Local explanations can capture local trends within the dataset.

5.3 Related Work

Assigning potentially different explanations to individual data points distinguishes our ap-
proach from conventional feature extraction methods. Most feature extraction methods ex-
tract global features that are relevant for all data points, that is, those features that allow to
achieve a small overall prediction error [40]. In this work the notion of explanation is not re-
lated to the prediction error, but only to the label provided by the prediction algorithm. Even
if the error is large, the new framework is able to answer the question why the algorithm has
decided on a data point the way it did.

In recent decades, explanation of results by expert systems has been an important topic in
the artificial intelligence community. Especially for expert systems based on Bayesian belief
networks, such explanation is crucial in practical use. In this context sensitivity analysis has
also been used as a guiding principle [51]. There the influence is evaluated by removing a
set of variables (features) from the evidence and the explanation is constructed from those
variables that affect inference (relevant variables). For example, Suermondt [122] measures
the cost of omitting a single feature Ei by the cross-entropy

H−(Ei) = H(p(D|E);P (D|E\Ei) ) =
N∑
j=1

P (dj |E) log
P (dj |E)

p(dj |E\Ei)
,

where E denotes the evidence and D = (d1, . . . , dN )T is the target variable. The cost of
a subset F ⊂ E can be defined similarly. This line of research is more connected to our
work, because explanation can depend on the assigned values of the evidence E, and is thus
local.

Similarly Robnik-S̆ikonja and Kononenko [98] and Štrumbelj and Kononenko [141] try to
explain the decision of trained k-nearest neighbor models, SVMs, and artificial neural net-
works for individual instances by measuring the difference in their prediction with sets of
features omitted. The cost of omitting features is evaluated as the information difference, the
log-odds ratio, or the difference of probabilities between the model with knowledge about
all features and with omissions, respectively. To know what the prediction would be without
the knowledge of a certain feature the model is retrained for every choice of features whose
influence is to be explained. To save the time of combinatorial training Robnik-S̆ikonja and
Kononenko [98] propose to use neutral values which have to be estimated by a known prior
distribution of all possible parameter values. As a theoretical framework for considering
feature interactions, Štrumbelj and Kononenko [141] propose to calculate the differences be-
tween model predictions for every choice of feature subset.

Byvatov and Schneider [16] improved SVM performance by selecting features based solely
on the set of support vectors and their gradients. For multi-layer perceptrons Féraud and
Clérot [31] measure the importance of individual input variables on clusters of test points.
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Therefore the change in the model output is evaluated for the change of a single input vari-
able in a chosen interval while all other input variables are fixed. Lemaire and Féraud [71]
use a similar approach on an instance by instance basis. By considering each input variable
in turn there is no way to measure input feature interactions on the model output (see LeCun
et al. [70]).

The principal differences between our approach and these frameworks are: (i) We consider
continuous features and no structure among them is required, while some other frameworks
start from binary features and may require discretization steps with the need to estimate
parameters for it. (ii) We allow changes in any direction, that is, any weighted combination
of variables, while other approaches only consider one feature at a time or the omission of a
set of variables.

5.4 Discussion

We observed that explanation vectors are useful in a variety of situations. In the following
we discuss their limitations.

Dealing with the Zero Derivatives

Where multiple clusters of compounds from the positive and negative class interfere, the
decision function exhibits local minima and maxima. In contrast, broad clusters of a single
class lead to flat regions in the decision function. Both local minima as well as flat regions
lead to zero gradients. In the first case the Hessian matrix (the second derivative of the de-
cision function) can be used to find “interesting” directions. The eigenvector corresponding
to the largest eigenvalue of the Hessian matrix points towards the direction of the largest
curvature and causes strong changes in the decision function. In flat regions gradient and
Hessian will be zero and no meaningful explanation can be obtained by the gradient-based
approach. Practically, by using Parzen window estimators with larger widths, the explana-
tion vector can capture coarse structures of the classifier and give meaningful gradients in
these regions.

Implicit Limitations of Analytical Gradients

Far from the training data, GPC models always predict a probability of 0.5 for the positive
class. When one approaches the boundaries of the space populated with training data in
an area of negative prediction values, explanation vectors will point away from any train-
ing data and therefore also away from areas of positive prediction. This behavior can be
observed in Figure 5.2(d), where unit length vectors indicate the direction of explanation
vectors. In the right hand side corner, arrows point away from the triangle. However, we
can see that the length of these vectors is so small that they are not even visible in Figure
5.2(c). Moreover, the predictive variance of the GPC model is high at the boundaries of the
space populated with training data and can be used to detect these regions. Consequently,
this property of GPC models does not pose a restriction for identifying the locally most in-
fluential features using local gradients.
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5.5 Conclusions

In this chapter a method to explain local decisions taken by arbitrary (possibly) nonlinear
prediction algorithms was introduced. The estimated explanations are local gradients that
characterize how a data point has to be moved to change its predicted label. For models
where such gradient information cannot be calculated explicitly, we employ a probabilistic
approximate mimic of the learning machine to be explained.

To validate the methodology we applied the new method to a challenging drug discov-
ery problem. The results on that data fully agree with existing domain knowledge, which
was not available to the method. Even local peculiarities in chemical space (the extraordi-
nary behavior of steroids) were discovered using the local explanations given by our ap-
proach.
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Chapter 6

Learning Transition States

6.1 Introduction

The various methods in computational chemistry operate on different length scales starting
from atom vibrations to macromolecular interactions [58]. To overcome the gaps between
these distinct levels of modeling remains one of the great challenges in computational chem-
istry.

Transition State Theory (TST) is a semi-classical approach which addresses the gap be-
tween classical molecular dynamics (MD) simulations and the rare events of chemical re-
actions observable on a microscopic level [30, 147, 62]. Assuming that nuclei are infinitely
heavier than electrons the Born-Oppenheimer approximation allows to view a chemical reac-
tion as nuclei moving on a potential energy surface [58]. Based on this approximation we can
associate each configuration of a chemical system in phase space (position and momentum
of each nucleus) with a potential energy value. Neglecting the momentum, as most often
done in TST, the potential energy of a N -atom system can be viewed as a 3N -dimensional
surface. Figure 6.1(a) illustrates the relevant elements of a potential energy surface (PES) for a
2-dimensional system space: A product or reactant corresponds to a minimum on the PES
and reactive trajectories refer to paths which connect the product with the reactant basin
by following the surface gradient in each point. The easiest and most likely path from one
minimum two another is along the reaction path or minimum energy path. The highest
point along a minimum energy path is a saddle point and almost all reactive trajectory have
to pass through the so called bottle neck regions very close around these saddle points. In
literature, especially older textbooks, the system configuration in a saddle point is often
called transition state. More precisely, the transition state (TS) of a system with N atoms is
defined as the 3N-1 dimensional surface separating reactants and products—even though
the surface sometimes appears lower dimensional if it is perpendicular to some degrees of
freedom.

One intention of transition state theory is to estimate reaction rates using statistical mechan-
ics. For a given transition state hypersurface the rate of reaction is approximated by the
equilibrium flux out of this TS as

kTST =
1

2
〈δ(x− x∗)|v̄|〉R , (6.1)

where 〈...〉R is a Boltzmann average over the reactant region, x = x∗ is the location of the TS
surface and v̄ is the average velocity through it. The kTST calculated according to 6.1 only
equals the true reaction rate if
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• every reactive trajectory passes the TS only once and

• every point on the TS dividing surface leads to a single reactive trajectory.

Violation of any of these assumptions leads to an overestimation of the true rate. In any
complex system, however, finding the exact TS is a difficult problem. Even for systems in
which the reaction mechanisms are known, an analytic expression of the TS surface can be
intractable. Given a suboptimal surface not all crossing points will lead to reactive trajec-
tories, and reactive trajectories may also re-cross the surface especially in high dimensional
or high friction systems. Given that there are at least as many crossing points as reactive
trajectories, the TST rate is always an overestimation of (or equal to) the true rate:

kTrue = κ kTST κ ∈ [0, 1], (6.2)

where the transmission coefficient, κ ∈ [0, 1], represents the fraction of trajectories that orig-
inate in the reactant basin and arrive in a product basin. The relation 6.2 is helpful for im-
proving TS surfaces, for any dividing surface can be variationally optimized to minimize the
TST rate and approach the true rate.

The choice of a dividing surface can be nontrivial even for simple systems and there is no
common approach to this problem. In general, prior information on the reaction mechanism
is used to approximate the TS surface for each specific chemical system. If, for example,
an atom is being transferred from a donor to an acceptor, the TS would then be defined by
a particular value of the distances from the transferring atom to the donor and acceptor.
In this case the reaction mechanism is simple enough that a geometric quantity can be de-
termined which quantifies the reaction progress. If motion of other atoms in the molecule
were important for the reaction, this TST rate would be a poor approximation of the true
rate. Hence, a major challenge in TST is to find good dividing surfaces in high-dimensional
systems [60].

(a) (b)

Figure 6.1: The contour lines indicate a potential energy surface in a 2-dimensional system.
The gray line in (a) represents the run of a reactive trajectory from the reactantR to a product
basin P1 passing through the bottleneck region at the crest. In (b) the transition state TS1,
placed along an assumed reaction coordinate x, separates reactantR and product P1 but fails
to describe the transition to P2. TS2 is a surface which can be determined by training a SVM
to distinguish a set of points as reactant or product.

In this chapter we introduce machine learning techniques to transition state theory in order
to identify the TS surface in a fast and accurate way, without requiring detailed knowledge
about the underlying reaction mechanisms.
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6.2 Transition State Surface Estimation via Binary Classification

Let us describe the different states of a system consisting of n atoms by the 3n-dimensional
vectors x1, . . . xN ∈ R3n, where each xi denotes a row vector of the Cartesian coordinates of
all atoms or nuclei in the system. For a given set of such system states, each system state xi is
assigned to one of the classes products or reactants (yi ∈ {−1, 1}) by following the steepest
descent paths to the local minimum. Then a SVM is trained based on this dataset to separate
the product from the reactant area. This way the decision boundary of the SVM is placed
along the desired transition surface if an appropriate training set is given. In contrast to
other approaches that are based on prior knowledge or planar TS surfaces, the SVM decision
boundary is nonlinear and may capture small cavities in the TS surface (Figure 6.1 illustrates
this idea).

An informative training set which covers all bottle neck regions is not obtained easily. One
of the principal tools in the theoretical study of molecular systems is the method of molecular
dynamics (MD) simulations. This technique aims at generating a representative sampling of
a system at finite temperature (see Jensen [58] for details). Starting from an initial system
configuration defined by coordinates and velocities of each atom MD methods simulate the
development of the system according to Newton’s second equation at a series of finite time
steps. The resulting series of time-correlated points in phase space (trajectories) may be used
to determine macroscopic quantities of the system based on the ergodic hypothesis1.

A MD simulation at low temperature tends to only sample the regions in phase space close
to the starting conditions and it is very unlikely to observe the rare event of crossing the tran-
sitions state surface. Whereas high temperature MD results in various reactive trajectories
but doesn’t provide information about the low temperature bottleneck regions and reaction
rates we are interested in.

In order to reduce sampling time of low temperature MD and focus on informative sys-
tem states a biased sampling approach is applied and combined with an iterative SVM up-
date: An initial training set is generated by sampling the potential energy surface (PES) with
high-temperature MD. The NVT2 canonical ensemble is sampled in all cases with the Bussi-
Donadio-Parrinello thermostat [15]. Points xi are collected regularly from independent MD
trajectories and minimized in order to determine yi. These points are used to generate an
initial SVM hypersurface.

From this initial sampling of the PES, the SVM is refined by sampling along the decision
boundary (or approximated dividing surface). The system is initially placed on the surface
and an MD trajectory is then initiated with a total force given by

F (x) = −∇U(x) + Fsurf , (6.3)

where U(x) refers to the potential energy surface and Fsurf describes an additional force
that pulls the system towards the SVM decision boundary. The force −∇U(x) in contrast
influences the system in the direction of lower potential energy - like a marble placed on
a surface is pulled downhill by gravity. While the latter force grows the steeper the PES,
the force Fsurf is independent of the PES and increases with growing distance to the SVM
decision boundary.

To calculate the direction of Fsurf we calculate the local gradient of the SVM model as de-
fined in the previous chapter. Coming from the negative class the gradient of the classifi-
cation model ∇f(x) points towards the positive class, i.e. in the direction of the decision

1The ergodic hypothesis implies that time average over a single particle (as done in MD) is equivalent to an
average of a large number of particles at any given time snapshot.

2NVT refers to the constant number of molecules (N), volume (V) and temperature (T).

61



Chapter 6. Learning Transition States

Figure 6.2: The process of sampling/re-learning a hypersurface is demonstrated graphically
for the Voter97 potential. An initial surface (A), defined by a set of support vectors (B), is
generated from high temperature dynamics. The final surface (C) is defined by a small set
of support vectors (D) along the reaction bottlenecks.

boundary; coming from the positive class the direction of Fsurf is given by the negative gra-
dient −∇f(x). The magnitude of Fsurf is proportional to the distance between x and the
transition state x0. Since f(x0) = 0, we can approximate f like in Newton’s method by its
tangent line through x and estimate the distance d(x, x0) as |f(x)|

‖∇f(x)‖ . The spring force Fsurf
from x towards the decision surface is accordingly defined as

Fsurf = −ks
f(x)∇f(x)

‖∇f(x)‖2
(6.4)

where ks is a spring constant for the restraint.

In this manner, the sampling of additional training points is restricted to the region near
the SVM hypersurface. After each sampling cycle the SVM is retrained on the full dataset
and a new surface is generated. Note that the sampling is inherently parallelizable and
that multiple independent trajectories at different temperature can be simulated at the same
time. Therefore, we may apply a method called parallel tempering (or replica exchange) to
make configurations at high temperatures available to the simulations at low temperatures
and to sample the low energy configurations efficiently [123]. This approach is compared to
the standard MD sampling in the result section.

By iterating through the multiple re-learning cycles, the problem of identifying a dividing
surface is transformed from one of parametrization to one of sampling, which is a signif-
icantly more tractable problem. If the low-energy regions of the surface have been fully
sampled, the SVM-based surface will contain all of the relevant bottleneck regions.

6.3 Experiments and Results

The new method for TS localization is evaluated on three potential energy surfaces. For
theses experiments a SVM implementation based on the scikits.learn python package [1]
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Table 6.1: κ Values for Dividing Surfaces

Frozen Al(100) Surface

100 K 300 K
SVM Dividing Surface 0.97 0.98
Spherical Dividing Surface 0.95 0.95

Relaxed Al(100) Surface

100 K 300 K
SVM Dividing Surface 0.55 0.40
Spherical Dividing Surface 0.04 0.09

and libsvm [18] is used with an RBF kernel. The parameters C and γ are determined with a
grid search in 5-fold cross-validation [82].

At first, the method is applied to a simple 2-dimensional model potential originally used
by Voter in 1997 [140]. The potential contains two saddle points and is periodic in the x-
direction and harmonic in the y-direction. If the center basin is chosen as the reactant, then
the best dividing surface consists of two 1-dimensional planes that contain the saddle points
(Fig. 6.2). The initial high-temperature MD sampling and the resulting SVM surface is shown
in Fig. 6.2A-B. Sampling the surface with a force given by Eq. (6.3) and re-learning a new
SVM surface in an iterative fashion results in the converged surface shown in Fig. 6.2C-D.
We observe that the initial SVM already well identifies the two main saddle points of the
Voter potential. Further sampling, using the local gradient approach, leads to aggregation
of samples along the dividing surface within the bottleneck regions. The additional training
examples allow the refined SVM to capture the linear character of the best dividing sur-
face.

In the case of a single Al adatom3 on a frozen Al(100) surface, as sketched in Fig. 6.3A,
the TST dividing surface is a 2-dimensional diamond shaped hypersurface with four sad-
dle points. In contrast to the Voter97 potential the initial sampling in this case does not
provide for a SVM-based identification of all four bottleneck regions. By iterating through
many learning cycles and running high temperature dynamics, the training set of samples
completely encloses the reactants basin of attraction on the PES leading to a perfect align-
ment of the support vectors along the ridges between basins. Alternatively, many cycles of
parallel tempering may be applied to refine the SVM hypersurface in the low-free energy
regions. This parallel approach does not yield the perfect transition surface but ensures that
the surface is highly optimized in the critically important bottleneck regions without the
computational cost of collecting enough samples to enclose the whole basin of attraction
(Fig. 6.3E-F).

To measure the convergence and accuracy of the refined SVM surfaces the transmission co-
efficient, κ (see Eq. 6.2) is calculated as described by Lu et al. [75]. For an optimal approx-
imation of the rate of reaction the κ value is maximized and we consider a SVM-generated
surface as converged when a maximized κ may be extracted.

Since there is no common practice to calculate TS surfaces, we compare our method to a
distance-based spherical dividing surface that is defined by the adatom’s displacement (Ta-
ble 6.1). The displacement radius of the sphere was chosen to contain the lowest-energy sad-
dle point. In the case of a frozen Al(100) surface, the escape pathways from the minimum
are defined by a single adatom displacement distance. Both the spherical dividing surface
as well as the learned SVM dividing surface capture the four escape routes well enough to
fully describe the reactive trajectories.

In a second simulation the N atoms of the Al(100) surface are allowed to relax. The dimen-
sionality of the system grows by a factor of 3N ; however, the number of reaction bottlenecks
grows much more slowly. In contrast to the frozen surface conditions the spherical approach

3Adatoms are atoms adsorbed on a crystal surface.
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Figure 6.3: For an Al adatom on a frozen Al(100) surface (A), an initial high-temperature
MD surface (B) may be refined through high temperature sampling (C) to produce a set
of support vectors (D) that align surrounding the basin of attraction for the reactant state.
Parallel tempering sampling for the initial surface will produce a dividing surface (E) that
is refined at the saddle points such that a forward flux-weighted set of crossing points (F)
aligns along the true dividing ridges, shown in blue.

completely fails in this scenario. The different transition mechanisms sketched in Figure 6.4
may cause this effect. Either the attached atom hops over the bridge site or it replaces a sur-
face atom in a two-atom concerted mechanism. Though the first mechanism appears to be
more simple the second one is more likely to take place.

Problematic for any distance-based surface like the spherical one is the disparity in the dis-
tances by which atoms are displaced during reaction. The SVM dividing surface in contrast
is not restricted in terms of distances and captures bottlenecks at all atom displacements.
The success of the SVM dividing surface from Table 6.1 is a result of the information density
of the surface. The SVM hypersurface captures escape channels at different distances from
the minimum as well as the positions of adjacent atoms that are displaced during successful
reactive events.
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Figure 6.4: This figure illustrates the two different diffusion mechanisms for an Al adatom
on an Al(100) surface, the hop and two-atom concerted displacement (after Jóhannesson and
Jónsson [60]). The concerted displacement “exchange” process has lower activation energy.
Note that the final state is quite different in the two processes and the hop mechanism dis-
places fewer surface atoms but requires the adatom to travel farther. The SVM method in
contrast to the spherical dividing surface enables to model both of these diverse mechanisms
together.

6.4 Discussion and Conclusions

In this chapter, SVMs and the local gradient approach were applied to derive a novel method
for optimizing transition state dividing surfaces. We define the TS surface as a decision
boundary which separates the class of system configurations resulting in reactants from con-
figurations resulting in products. By combining MD simulation techniques with the local
gradient approach valuable system configurations around the bottle neck regions are gen-
erated to refine the SVM model. This way the number of time-consuming MD evaluations
is reduced and we can characterize the TS surface much faster than standard MD simula-
tions.

Our methodology is capable of maximizing the transmission coefficient for systems contain-
ing many degrees of freedom without parametrization. In contrast to other approaches our
SVM-based method does not require any prior knowledge about the system and is not re-
stricted to hyperplanar dividing surfaces. Moreover, the learned dividing surfaces contain
all relevant low-energy reaction bottlenecks when the algorithm is fully converged.

This study exemplifies how the techniques developed within this thesis in the context of
drug discovery may have an impact on other fields of computational chemistry such as
transition state theory. To discover more parallels and to transfer the machine learning ex-
perience accumulated in drug discovery to other fields in computational chemistry is an
important issue of further research.

For transition state theory, our results reveal that machine learning techniques may signifi-
cantly improve computation of reaction rates in high-dimensional systems.
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Conclusions

In the present work we have analyzed the requirements of computational methods arising
in the drug discovery process and derived novel methods to generate, evaluate and interpret
machine learning models.

Summary of Results

The first part of this work focused on enhancing prediction models. We proposed the screen-
ing algorithm, StructRank, which directly optimizes rankings and is focused on highly bind-
ing compounds in order to meet the requirements of virtual screening. The retrospective
evaluation on virtual screening and toy data sets revealed a clear advantage of StructRank
over related approaches in the relevant scenario where only a small or medium number of
molecules with high binding coefficients is available. These results encourage further eval-
uations of StructRank in prospective screening studies.

The study on hERG inhibition illustrated the limits of ensemble learning and the potential
of local bias correction in screening and lead optimization applications. The outstanding
performance and simplicity of the introduced local bias correction approach makes it a viable
alternative to model-retraining in the presence of new measurements. Since local bias cor-
rection is a supplementary adjustment it may be applied to improve any kind of predictions
beyond computational chemistry.

In the same study we established a clustered cross-validation framework. In contrast to stan-
dard cross-validation it reduces similarities between training and test splits in order to assess
the ability of the model to generalize to new molecules. This model selection method pro-
vides a more realistic estimate of the prediction error expected in chemical research and other
dependent data applications.

The studies in the first part of this work overall documented the need for an understand-
ing of the chemical task behind the data. Only if both, chemical as well as computational
concerns, are combined, excellent prediction models can be obtained.

In the second part of this thesis the focus was turned to the interpretability and transparency
of machine learning predictions. We proposed a visual approach on interpretability where the
most relevant training compounds of single predictions are visualized along with the pre-
dicted value itself. To this end a compact method to calculate the impact of training com-
pounds on single predictions was derived for kernel-based machine-learning algorithms.
The conducted questionnaire study revealed a beneficial effect of the visualization approach
on the participants ability to judge the quality of predictions and illustrated a visual assess-
ment of the domain of applicability. In contrast to numerical measures of reliability that
have been published previously, the new approach allows for an intuitive interpretation of
predictions by chemical researchers. Thus, this approach represents a new tool to examine
predictions where numerical measures indicate a reduced reliability and to understand the
strengths and weaknesses of current models.
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A local gradient approach was established as a tool for interpretation of nonlinear models
in terms of local feature importance. The gradients measure the local influence of chemical
features on a predicted property. In contrast to existing measures of feature importance this
approach is inherently local, suitable for continuous features and considers feature interac-
tions. Due to its locality the approach can identify local as well as global trends in the train-
ing data and reveal unique characteristics of compound classes as illustrated for the Ames
mutagenicity of steroids. The information provided by local gradients enhances the under-
standing of the underlying chemical space and may direct compound optimization.

In the last chapter we introduced local gradients and kernel-based machine learning meth-
ods to a new field of application. SVMs in combination with local gradients were employed
to improve the sampling of the potential energy surface in transition state theory. The results
of this proof-of-concept study already indicate the potential of machine learning methods in
transition state theory, and material science in general.

The present work contributes to closing the gap between machine learning technologies and
applied chemical research.

Future Directions

The present work clearly demonstrates the benefits of specializing machine learning algo-
rithms to the specific requirements of chemical research. Further improvements along these
lines seem possible: The abundant amount of unlabeled data in virtual screening could be in-
corporated by an extension of StructRank to semi-supervised learning. Alternatively, labeled
data from related targets or similar assays and additional chemical prior knowledge could
be included. First attempts to include protein relationships into kernel-based models have
been made in the area Chemogenomics for kinases and GPCRs [85, 54]. However, the most
urgent and most challenging extension aims at improving the representation of molecules.
The method for interpretation introduced in the second part may guide this endeavor and
help to characterize the shortcomings of current representations and methods.

Further applications and development of the two explaining methods or alternative ap-
proaches to interpret single predictions are necessary. The interpretability of the models
represents the key to increasing their acceptance and utility. The proposed methods may
help both computer scientists as well as chemists to understand chemical specifics limiting
the predictive accuracy and to reveal hints for compound- as well as method-optimization.
Furthermore, a standard measure to assess the quality of the different approach to interpre-
tation and prediction quality is needed. There is no gold standard to compare the existing
approaches to the domain of applicability.

Besides our study on the application of SVMs in theoretical chemistry, Rupp et al. [103] re-
cently published an innovative approach to predict molecular atomization energies using
kernel ridge regression models and Miller et al. [80] applied Gaussian processes to com-
bine calculations of high and low fidelity in order to fit potential energy surfaces. We are
confident that machine learning will play a decisive role in theoretical chemistry in the fu-
ture.
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Appendix A

Overview of Machine Learning
Methods & Concepts

We will first take a frequentist approach and derive ridge regression and support vector
methods based on the concept of empirical risk minimization. Then, Bayesian Gaussian
processes are introduced and similarities to previous methods are discussed.

A.1 Empirical Risk Minimization

Recall that in supervised learning we are looking for a function f which can predict the label
value y for any new sample x based on a given dataset D = {(x1, y1), (x2, y2), . . . (xn, yn)}.
When measuring the quality of a candidate function f , contradictory aspects have to be
considered: On the one hand, the complexity of the function f must be sufficient to ex-
press the relation between the given labels (y1, y2, . . . , yn) and the corresponding sample
vectors (x1, x2, . . . , xn) accurately. On the other hand, f should not be too complex (e.g. too
closely adapted to the training data) to allow for reliable predictions of new samples. This
trade-off is captured mathematically in the minimization of the regularized empirical loss func-
tion [119]:

minRregemp(f) =
1

n

n∑
i=1

`(f(xi), yi)︸ ︷︷ ︸
quality of fit

+ λ · r(f)︸ ︷︷ ︸
regularizer

. (A.1)

where ` refers to a loss function, r to a regularization function and λ to a positive balance
parameter. The first term in Equation A.1 measures the quality of the fit of the model on
the training data, and the second term penalizes the complexity of the function f to prevent
over-fitting. The parameter λ is used to adjust the influence of the regularization function r.
The regularization function r not only prevents over-fitting. Moreover, it is often used to
ensure that the problem in Equation A.1 is not ill-posed which is required by various opti-
mization methods.
The loss function ` determines the loss resulting from the inaccuracy of the predictions given
by f . Most predictive machine learning methods minimize the empirical risk function with
respect to different model types f , regularization terms r and loss functions ` (cf. Table
A.1).

69



M
et

ho
d

Pr
ed

ic
ti

on
M

od
el

O
pt

im
iz

at
io

n
Pr

ob
le

m

Li
ne

ar
R

eg
re

ss
io

n
f

(x
)

=
x′

w
+

b
m

in w
=

1 n

n ∑ i=
1

` s
e(
f

(x
i)
,y
i)

(A
.2

)

R
id

ge
R

eg
re

ss
io

n
f

(x
)

=
x′

w
(+

b)
m

in w
=

1 n

n ∑ i=
1

` s
e(
f

(x
i)
,y
i)

+
λ
·‖

w
‖2

(A
.3

)

K
er

ne
lR

id
ge

R
eg

re
ss

io
n

f
(x

)
=

n ∑ i=
1

α
ik

(x
i,

x)
+

b
m

in α
=

1 n

n ∑ i=
1

` s
e(
f

(x
i)
,y
i)

+
λ
·∑ i,

j

α
ik

(x
i,

x j
)α

j
(A

.4
)

Su
pp

or
tV

ec
to

r
R

eg
re

ss
io

n
f

(x
)

=

n ∑ i=
1

α
ik

(x
i,

x)
+

b
m

in α
=

1 n

n ∑ i=
1

` ε
(f

(x
i)
,y
i)

+
λ
·∑ i,

j

α
ik

(x
i,

x j
)α

j
(A

.5
)

Su
pp

or
tV

ec
to

r
C

la
ss

ifi
ca

ti
on

c(
x)

=
sg

n(
f

(x
))

w
it

h
f

(x
)

=
∑ n i=

1
α
ik

(x
i,

x)
+

b
m

in α
=

1 n

n ∑ i=
1

` +
(f

(x
i)
,y
i)

+
λ
·∑ i,

j

α
ik

(x
i,

x j
)α

j
(A

.6
)

Ta
bl

e
A

.1
:T

he
m

ac
hi

ne
le

ar
ni

ng
m

et
ho

ds
lis

te
d

ab
ov

e
ar

e
de

fin
ed

by
th

e
pa

ra
m

et
ri

c
m

od
el

fu
nc

ti
on

(s
ec

on
d

co
lu

m
n)

an
d

th
e

op
ti

m
iz

at
io

n
pr

ob
le

m
(t

hi
rd

co
lu

m
n)

so
lv

ed
to

de
te

rm
in

e
th

e
pa

ra
m

et
er

s.
A

ll
op

ti
m

iz
at

io
n

pr
ob

le
m

s
co

rr
es

po
nd

to
th

e
m

in
im

iz
at

io
n

of
an

em
pi

ri
ca

lr
is

k
fu

nc
ti

on
(s

ee
Eq

.A
.1

).



R
eg

ul
ar

iz
at

io
n

Fu
nc

ti
on

s

sq
ua

re
d

er
ro

r
lo

ss
` s

e(
f

(x
i)
,y
i)

=
(y
i
−
f

(x
i)

)2
(A

.7
)

ε-
in

te
ns

iv
e

lo
ss

` ε
(f

(x
i)
,y
i)

=
|f

(x
i)
−
y i
| ε

=

{
0

if
|f

(x
i)
−
y i
|6

ε
|f

(x
i)
−
y i
|−

ε
el

se
(A

.8
)

hi
ng

e
lo

ss
` +

(f
(x
i)
,y
i)

=
|1
−
y i
f

(x
i)
| +

=

{
0

if
1
−
y i
f

(x
i)
6

0
1
−
y i
f

(x
i)

el
se

(A
.9

)

K
er

ne
lF

un
ct

io
ns

lin
ea

r
fu

nc
ti

on
k

(x
,x
′ )

=
d ∑ i=
1

x
ix
′ i

(A
.1

0)

ra
di

al
ba

si
s

fu
nc

ti
on

(R
BF

)
k
(x
,x
′ )

=
ex

p
( −‖

x
−

x′
‖2

2
σ
2

)
(A

.1
1)

ra
ti

on
al

qu
ad

ra
ti

c
fu

nc
ti

on
k
(x
,x
′ )

=

( 1
+

d ∑ i=
1

w
i(
x
i
−
x
′ i)
2

) −v
(A

.1
2)

Ta
bl

e
A

.2
:

C
om

m
on

lo
ss

an
d

ke
rn

el
fu

nc
ti

on
s

us
ed

in
m

ac
hi

ne
le

ar
ni

ng
,c

f.
Ta

bl
e

A
.1

.



Appendix A. Overview of Machine Learning Methods & Concepts

A.2 Standard Machine Learning Approaches

Ridge Regression

Ridge regression [46] extents the standard linear regression by a regularization function (cf.
Table A.1). In both methods the data is estimated using a hyperplane f(x) = x′w + b with
the incline vector or regression weights w and the offset b. In ridge regression an additional
regularization function r(f) = ‖w‖2 imposes a penalty on the sum of squares of regression
weights. This regularization is especially important when dealing with correlated inputs: In
a typical linear model, a widely large positive weight can be canceled by a similarly negative
weight in its correlated counterpart. Effectively, the regularizer shrinks the weights towards
zero and towards each other in the optimization process in order to find a unique and robust
solution. The problem can be solved analytically; the weight vector w = (XX′ + λI)−1Xy
minimizes Equation A.3.

Kernel Ridge Regression and the Kernel Trick

Kernel ridge regression (KRR) is a nonlinear extension of ridge regression (see [22]). The
samples are mapped from the input space into a high dimensional space called feature space
before a linear ridge regression is applied. However, this mapping function is never speci-
fied explicitly. Thanks to the “kernel trick”, all calculations can be done in the input space
and only the inner product between two samples in the feature space needs to be defined ex-
plicitly (see Müller et al. [82]). This inner product is called kernel function and the associated
feature space is referred to as Reproducing Kernel Hilbert Space [107]. A kernel function
k(x, x′) can be thought of as a similarity function which drops down to zero for unrelated
samples x, x′. Many machine learning methods are based on kernel functions since they al-
low to consider geometric quantities in a complex infinite dimensional feature space. Table
A.2 comprises kernel functions employed in this work.

KRR is described in terms of empirical risk minimization in Equation A.4. This problem can
be solved analytically and the resulting predictor is given as

f(x) =
n∑
i=1

αik(xi, x) + b with α = (K + λI)−1y (A.13)

Note that the model prediction is represented as as a weighted sum of kernel evaluations
(cf representer theorem 4.3). The number of optimized parameters (αi) now corresponds
to the number of samples and not to the number of input dimensions like in linear ridge
regression. Thus kernel methods of this form can process high-dimensional input data very
efficiently.

Support Vector Regression

Support vector regression (SVR) [139, 22, 107] is a kernel-based regression method which
can as well be depicted as a linear regression in feature space. Contrary to kernel ridge
regression SVR is based on an ε-intensive loss function (Eq A.8) where absolute deviations
up to ε are tolerated, and larger differences are penalized linearly.

The optimization problem of SVR in terms of empirical risk minimization is given in Equa-
tion A.5. It is convex problem and has a unique solution which can not be written in a closed
form but determined efficiently using numerical methods for quadratic programming (see
Schölkopf and Smola [107, Chap10], Platt [94]).
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A.2. Standard Machine Learning Approaches

One key feature of support vector regression is sparsity. Most of the optimized coefficients
(αi) are zero; only those data points which deviate more (or equal) than ε from the hyper-
plane have a non-zero coefficient αi and contribute to the solution. These data points are
called support vectors.

Support Vector Classification

The idea of support vectors was originally formulated by Vapnik and coworkers [138] in the
context of support vector classification (often called support vector machine, SVM) and can
be summarized as follows: Given a set of data points in feature space φ(xi), belonging to
either class +1 or -1 Vapnik aimed to separate these classes with a hyperplane and addition-
ally maximized the margin around the hyperplane such that yi(wTφ(xi) + b) ≥ 1 for all xi.
The primal optimization problem is given by

min
w,b,ξ

1

2
wTw + C

n∑
i=1

ξi (A.14)

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n.

ξi are called slack variables and are nonzero for the support vectors which violate

yi(w
Tφ(xi) + b) ≥ 1, (A.15)

i.e., for those points that are either misclassified or within the margin ±1 around the hy-
perplane wTx − b = 0. In Chapter 2 we build on the idea of slack variables and margin
maximization to derive a new ranking algorithm. In Equation A.6 the optimization problem
of Equation A.14 is reformulated in terms of empirical risk minimization using the hinge
loss (Eq. A.9).

Random Forests

A random forest is essentially a collection of tree predictors where each tree depends on
the value of a randomly sampled parameter vector [11]. Random forests can be applied
to regression as well as classification tasks. In the case of regression each tree predictor
recursively splits the training data into subsets and fits a constant model, e.g., the mean or
predominant label value of samples, on each subset. In each step, one subset of compounds
X is divided into two subsets XL, XR guided by a least squares error criterion. The loss of a
set X with nX compounds is defined as

`tree(X) =
1

nX

∑
xi∈X

(yi − ȳX)2 (A.16)

where ȳX refers to the mean inhibition value of the compounds in X [133]. The best split of
a subset X is the split that maximizes

`tree(X)− `tree(XL)− `tree(XR) with XL ∪XR = X. (A.17)

In the case of classification the loss function A.16 is modified such that it counts misclassi-
fication within a subset. Since a different optimization problem is solved in each step, this
approach can not be considered as a global risk minimization problem (Equation A.1) and
results in a discontinuous prediction function.

73



Appendix A. Overview of Machine Learning Methods & Concepts

Gaussian Process

In contrast to all previous methods Gaussian processes (GPs) are a kernel-based techniques
from the field of Bayesian statistics (see [97] for a detailed introduction to GPs). The idea

Figure A.1: Idea of Gaussian processes: Specify a distribution of possible functions using
a prior (left); eliminate those that do not agree with the data by calculating the posterior
(center); average over the remaining functions to generate the predictive distribution of new
data points (right).

of GP modeling is to assume a prior probability distribution for the model underlying the
data and to update this probability distribution in the light of the observed data to finally
obtain a posterior distribution [97]; cf. Figure A.1. A GP prediction is not a single number
but a distribution of labels y where the mean can be interpreted as the predicted value and
the variance as a confidence estimate or uncertainty:

p(y|x,X,y) = N
(
kT∗ (K + λI)−1y, k(x, x)− kT∗ (K + λI)−1k∗

)
(A.18)

Note that the predicted mean of a classical GP model with a Gaussian prior equals the pre-
diction of a kernel ridge regression model (see Equation A.13).

Though Gaussian processes are inherently well suited for regression, enhancements for clas-
sification exist. In binary Gaussian process classification (GPC) a latent Gaussian process is
“squashed” through a transfer function to give an output in the range [0,1] which resembles
the probability of x0 being in the positive class. In this case the posterior can not be calcu-
lated analytically anymore, and needs to be approximated, e.g., by expectation propagation1.
In this thesis the Gaussian cumulative distribution function is employed as

p(x) =
1

2
erfc

(
−µ(x)√

2 ·
√

1 + var(x)

)
. (A.19)

Here erfc denotes the complementary error function, and var(x) the predictive variance (see
Eq. 6 in Schwaighofer et al. 2008[115]).

k-Nearest Neighbors

The k-nearest neighbor (KNN) methods are common baseline predictors and require no
model to be fit. For each new sample x the k nearest training samples are selected and
the predominant label among those neighbors determines the classification; for regression
tasks the mean label value is taken into account. Despite it’s simplicity the KNN approach is
capable of complex prediction tasks, like short term climate change simulations, but fails to
detect global trends. As in all memory-based methods all training samples need to be stored
an reconsidered for prediction.

1See Kuss and Ramussen [69] for details.
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A.3. Model Evaluation

A.3 Model Evaluation

In Chemoinformatics it is highly important to assess the prediction capability of a learning
method on new independent test samples. Otherwise it is impossible to include in silico
predictions adequately in the crucial process of compound prioritization within screening
or lead optimization.

The main performance criteria considered in this thesis are defined in Section 3.4. Since us-
ing only one single separate test set can be heavily biased, we employ n-fold cross-validation
with multiple repetitions with a reasonable n: The dataset is partitioned into n subsets of
equal size. For each subset, the machine learning model is trained on the remaining n − 1
subsets and then evaluated on the left out subset. This way each sample is used for valida-
tion exactly once. The n performance results from the folds are combined to produce a single
estimation of the generalization error.

The selection of folds is not trivial. If we choose n too small the results maybe biased and the
small-sized training set may limit the model performance. Switching to the other extreme
and using as many folds as samples (also called leave-one-out validation) may as well be
misleading[47] and underestimate the true error in a physiochemical application scenario:
The available experimental dataset only cover a very small subspace of the vast chemical
space. Moreover, the included samples are highly dependent, representing series of experi-
ments and compounds with similar structure or properties. In leave-one-out validation it is
very likely that for any compound in the validation set there is a similar compound in the
training set. During model application however, the compound to be predicted often origi-
nates from a new series and is structurally different from the training data and thus produces
a higher prediction error. This mis-estimation dilemma can only be partially resolved by us-
ing for example, only moderately large n’s or by using the clustered cross-validation.

In clustered cross-validation the whole dataset is arranged into equally sized clusters of
structurally similar compounds. These clusters are then randomly distributed into n folds
and processed as in standard cross-validation. This way too optimistic performance es-
timates resulting from strong similarities within the dataset may be avoided. Clustered
and standard cross-validation are further discussed and comparatively analyzed in Chap-
ter 3.
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Appendix B

Abbreviations

ADMET absorption, distribution, metabolism, excretion, and toxicity

BZR benzodiazepine receptor

COX-2 dyclooxygenase 2

DHFR dihydrofolate reductase

GP Gaussian process

GPC Gaussian process classification

HTS high-throughput screening

ML machine learning

NDCG normalized discounted cumulative gain

QSAR quantitive structure-activity relationship

RankSVM ranking support vector machine

StructRank structural ranking

SVM support vector machine

SVR support vector regression

VS virtual screening
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[141] E. Štrumbelj and I. Kononenko. Towards a model independent method for explaining
classification for individual instances. In I.-Y. Song, J. Eder, and T. M. Nguyen, editors,
Data Warehousing and Knowledge Discovery, volume 5182 of Lecture Notes in Computer
Science, pages 273–282. Springer, 2008.

[142] N. Wale. Machine learning in drug discovery and development. Drug Development
Research, 72(1):112–119, Feb. 2011. ISSN 1098-2299.

[143] W. P. Walters and B. B. Goldman. Feature selection in quantitative structure-activity
relationships. Current Opinion in Drug Discovery & Development, 8(3):329–333, May
2005. ISSN 1367-6733. PMID: 15892248.

[144] W. P. Walters, M. T. Stahl, and M. A. Murcko. Virtual screening - an overview. Drug
Discovery Today, 3(4):160–178, 1998. ISSN 1359-6446.

[145] M. J. Waring and C. Johnstone. A quantitative assessment of hERG liability as a func-
tion of lipophilicity. Bioorganic & Medicinal Chemistry Letters, 17:1759 – 1764, 2007.

[146] Y. M. Wen, B. L. Lu, and H. Zhao. Equal clustering makes min-max modular sup-
port vector machine more efficient. In Proceedings of the 12th International Conference on
Neural Information Processing (ICONIP 2005), pages 77–82, Taipei, 2005.

87

http://www.talete.mi.it/help/dragon_help/


Bibliography

[147] E. Wigner. The transition state method. Transactions of the Faraday Society, 34:29–41,
1938.

[148] P. Willett. A bibliometric analysis of the literature of chemoinformatics. Aslib Proceed-
ings, 60(1):4–17, Jan. 2008. ISSN 0001-253X.

[149] W. L. Xie, J. G. Chipman, D. L. Robertson, R. L. Erikson, and D. L. Simmons. Expression
of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mrna
splicing. Proceedings of the National Academy of Sciences of the United States of America, 88
(7):2692–2696, Apr 1991.

[150] X. J. Yao, A. Panaye, J. P. Doucet, R. S. Zhang, H. F. Chen, M. C. Liu, Z. D. Hu, and B. T.
Fan. Comparative study of qsar/qspr correlations using support vector machines, ra-
dial basis function neural networks, and multiple linear regression. Journal of Chemical
Information and Computer Sciences, 44:1257–1266, 2004.

[151] C.-N. J. Yu, T. Joachims, R. Elber, and J. Pillardy. Support vector training of protein
alignment models. Journal of Computational Biology, 15(7):867–880, 2008.

[152] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing
average precision. In In SIGIR: Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval. ACM, 2007.

88


	Preface
	Introduction
	Machine Learning
	Chemoinformatics and the Drug Discovery Process
	Machine Learning in Drug Discovery
	Thesis Scope and Contributions


	Ranking Approach to Virtual Screening
	Introduction
	Methods
	Evaluate Rankings Using NDCG
	Structured Support Vector Machines for QSAR
	Baseline Models
	Further Approaches and Alternatives

	Data
	Descriptor Generation and Data Preparation
	Test Framework
	Alternative Performance Measures
	Toy Example

	Results
	Virtual Screening Datasets
	Toy Example
	Run Time Comparison

	Discussion

	Optimal Combination of Models
	Introduction
	Data
	Molecular Descriptors & Pre-Processing
	Comparison of in-house and literature data
	Analysis of Outliers

	Methods
	Single Modeling Approaches
	Ensemble Modeling Approaches

	Evaluation Strategy
	Evaluation of Single Models
	Evaluation of Ensemble Models

	Results and Discussion
	Single Models
	Ensemble Models

	Conclusions

	Structure-based Explanation of Nonlinear Classifiers
	Interpretability of Predictions in Chemoinformatics 
	The Idea of Structure-Based Explanations
	Measuring Influence in Predictions of Kernel-Based Models
	Evaluation of Compound Relevance Weights
	Related Work
	Discussion
	Conclusions

	Interpretation in Terms of Local Feature Importance
	Methods
	Evaluation of Explanation Vectors
	Related Work
	Discussion
	Conclusions

	Learning Transition States
	Introduction
	Transition State Surface Estimation via Binary Classification
	Experiments and Results
	Discussion and Conclusions

	Overview of Machine Learning Methods & Concepts
	Empirical Risk Minimization
	Standard Machine Learning Approaches
	Model Evaluation

	Abbreviations

