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Abstract

My thesis deals with the recognition of visual concepts on images using statistical

machine learning. Recognition is treated here as classi�cation task with continu-

ous predictions. The continuous predictions can be used to generate a ranking of

images and thus will be often evaluated in a ranking setting. Ranking means that

for a given visual concept the set of all test images will be sorted according to the

prediction in a descending order and evaluated using a ranking measure.This dis-

sertation treats the general case of visual concepts in which concepts are de�ned

explicitly by a set of images. The aim is multi-label classi�cation in which for one

image all present concepts are to be predicted. The challenge compared tohighly

specialized tasks such as face recognition is the ability to deal with a generic set

of visual concepts which are de�ned by the training data.

Classi�cation is based on kernel methods such as extensions of supportvector ma-

chines. The features are predominantly bag of visual words (BoW) which yield

superior results for visual concept recognition on images with generic concepts as

demonstrated constantly over the last years by the results of international bench-

mark competitions such as Pascal VOC classi�cation and ImageCLEF Photo an-

notation. The problem of classi�cation and ranking of a generic set of visual con-

cepts can be divided into three subtasks:Formulation of the problem and design

or choice of a corresponding loss function, theLearning of feature combinations

given a loss functionand theDesign of Features. My publication record contains

co-authored work on all subtasks. This dissertation contains contributionsfor the

�rst two subtasks.

In the �rst part of the dissertation I consider (for the aspect ofFormulation of

the problem and design or choice of a corresponding loss function) models which



are capable of minimizing hierarchical loss functions which are induced by tax-

onomies over the set of all visual concepts. The idea is that a taxonomy de�nes

a prioritization of classi�cation and ranking errors. The goal is to avoid errors

which originate from confusing concepts which are distant under the given taxo-

nomy. One example is a system which annotates images such that it returns fora

request of dogs in case of absence of dogs or in case of error rather images of cats

than images of cars.

In contrast to preceding publications the focus lies not on speed during testing

time but on improved classi�cation and ranking performance under the hierarchi-

cal loss. The developed model aggregates the votes of all edges in the taxonomy,

not only those of the locally best or shortest path. Furthermore the hierarchical

models are generalized such that they can be predict multiple labels for multi-

label ranking problems in which each image can have more than one visual con-

cept. Previous approaches based on greedy walks along the edges ofthe hierarchy

are able to predict only the most likely concept. In the context of multi-label rank-

ing we de�ne also a ranking measure which incorporates taxonomical information.

The developed model is compared against one-versus-all and structured prediction

baselines.

In the second part of the dissertation I analyze (for the aspect ofLearning of fea-

ture combinations given a loss function) the non-sparse multiple kernel learning

(MKL) for multi-label ranking of images. It is compared against average kernel

support vector machines (SVMs) and sparse`1-norm MKL. For the empirical part

I evaluate the performance of these methods on the Pascal VOC2009 Classi�ca-

tion and ImageCLEF2010 Photo Annotation datasets. It is shown that when using

model selection in a practical setup, non-sparse MKL yields equal or better results

compared to the average kernel SVM which does not learn feature combinations,

in contrast to sparsè1-norm MKL which yields worse results. For the theoreti-

cal part we identify limiting and promoting factors for the performance gains of

non-sparse MKL when compared to the other methods.

The dissertation is closed by an outlook section.



Abstract

Meine Dissertation behandelt Probleme der Erkennung visueller Konzepteauf

Bildern mit Hilfe von Methoden des statistischen maschinellen Lernens. Ziel der

Erkennung im Rahmen meiner Dissertation ist es, einem Bild für jedes visuelle

Konzept einen reellen Wert zuzuweisen, dessen Grösse einer (nicht probabilistis-

chen) Kon�denz in das Vorhandensein des Konzeptes in diesem Bild entspricht.

Derartige reellwertige Vorhersagen können f̈ur Klassi�kation von Bildern und f̈ur

die Rangsortierung benutzt werden. Unter Rangsortierung wird in dieser Arbeit

die Anordnung der Bilder entsprechend der Kon�denzen für ein vorgegebenes

Konzept verstanden, welche zum Beispiel als Ausgabe einer Suchmaschine genutzt

werden k̈onnte.

Diese Dissertation behandelt den allgemeinen Fall, bei dem im Kontext der Klas-

si�kation ein visuelles Konzept implizit de�niert werden kann durch die Vorgabe

einer Menge von Bildern, die ein solches Konzept aufweisen. Ziel ist diesoge-

nannte multi-label Klassi�kation, bei der zu einem Bild alle dort vorhandenen vi-

suellen Konzepte aus der vorgebenenen Menge aller visuellen Konzeptevorherge-

sagt werden sollen. Die Herausforderung im Unterschied zu hochspezi�schen

Aufgaben wie der Gesichtserkennung liegt darin, dass die Menge der visuellen

Konzepte durch die Trainingsdaten frei vorgegeben werden kann und daher gener-

isch ist.

Zur Klassi�kation werden kern-basierte Methoden aufbauend auf support vek-

tor Maschinen verwendet. Als Merkmale werdenüberwiegend sogenannte His-

togrammeüber visuellen Ẅortern verwendet (bag of words). Die Kombination

von Histogrammëuber visuellen Ẅortern und nichtlinearen repräsentiert den Stand

der Technik im Bereich der Klassi�kation von generischen visuellen Konzepten,



was durch internationale Wettbewerbe wie Pascal VOC Classi�cation und Image-

CLEF Photo Annotation alljährlich demonstriert wird. Das Klassi�kationsprob-

lem in seiner Gesamtheit kann in drei Teilprobleme unterteilt werden: dieFor-

mulierung des Problems sowie die Auswahl der Verlustfunktion, dasLernen einer

Kombination von Merkmalenmit dem Ziel eine Verlustfunktion zu minimieren

und dieMerkmalsextraktion. Die Liste der von mir mitverfassten Publikationen

weist Arbeiten zu allen Teilproblemen auf. Diese Dissertation leistet Beiträge zu

den ersten zwei Teilproblemen.

Im ersten Teil der Dissertation werden im Rahmen des Entwurfs von Verlust-

funktionen Modelle betrachtet, die hierarchische Verlustfunktionen minimieren

können, welche durch Taxonomien aufüber der Menge der visuellen Konzepte

de�niert werden. Die Idee besteht in der Nutzung einer Taxonomie als Prior-

isierung von Klassi�kations- oder Rangsortierungsfehlern. Ziel ist esdabei, dass

das Modell Vorhersagefehler vermeidet, die durch Verwechselung von in der Tax-

onomie weit voneinander entfernten Konzepte verursacht werden. Sollen z.B.

Bilder von Hunden gefunden werden, kann dieses Ziel erreicht werden, indem

im Falle statistischer Unsicherheit eher Bilder von verwandten Tieren, wie z.B.

Katzen, anstelle von Autos oder Fernsehern als Ergebnisse präsentiert werden.

Im Unterschied zu vorangegangenen Publikationen liegt der Schwerpunkt nicht

auf Geschwindigkeit zum Zeitpunkt der Evaluation eines Bildes, sondernauf ver-

besserter Rangsortierungs- und Klassi�kationsgenauigkeit. Dazu werden die Vorher-

sagen aller Kanten im Taxonomie-graphen mit Hilfe von sogenannten p-means

kombiniert anstelle wie bei vorangegangenen Arbeiten nur die lokal optimalen

Kanten. Des weiteren werden die hierarchischen Modelle derart verallgemeinert,

dass sie f̈ur Multilabel Probleme, bei denen jedes Bild mehrere visuelle Konzepte

aufweisen kann, alle vorhandenen visuellen Konzepte vorhersagen können. Bish-

erige Ans̈atze, welche nur dem lokal optimalen (kürzesten) Pfad entlang der Kan-

ten der Taxonomie folgen, können pro Bild nur ein visuelles Konzept erkennen. In

diesem Zusammenhang wird auch ein taxonomie-basiertes Rangsortierungsmass

de�niert, welches Information aus der Taxonomie zur Berechnung der Genauigkeit



der Rangsortierung verwendet. Die entwickelten Verfahren werden gegen struk-

turierte Vorhersagemodelle und einer-gegen-alle Klassi�kationsmodelle verglichen.

Im zweiten Teil der Dissertation werden im Rahmen des Lernens der Kombi-

nation von Merkmalen das non-sparse multiple kernel learning (MKL) auf dem

Rangsortierungsproblem auf Bildern untersucht und gegen supportvektor maschi-

nen mit einem gemittelten Kern, welche keine Kombination von Merkmalen ler-

nen, und dem̀ 1-Norm multiple kernel learning, welches nur eine sehr kleines

Anzahl von Merkmalen ausẅahlt, verglichen. In empirischer Hinsicht wird dies

auf den Datens̈atzen der PASCAL VOC 2009 Classi�cation and ImageCLEF2010

Photo Annotation Wettbewerbe durchgeführt. Es wird gezeigt, dass das non-

sparse MKL unter Praxisbedingungen bei Durchführung von Modellselektion gle-

ich gute oder bessere Ergebnisse als support vektor maschinen mit einemgemittel-

ten Kern liefert, im Unterschied zù1-Norm MKL, welches oft schlechtere Ergeb-

nisse liefert als die support vektor Maschinen mit einem gemittelten Kern, welche

keine Kombination von Merkmalen lernen.

In theoretischer Hinsicht werden Faktoren identi�ziert, die dazu führen, dass sup-

port vektor Maschinen mit einem gemittelten Kern gute Ergebnisse liefern, und

untersucht, welche Faktoren potentielle Verbesserungen durch das Lernen der Kom-

bination von Merkmalen begrenzen und welche Faktoren dazu führen, dass das

non-sparse MKL im Schnitt etwas bessere Ergebnisse liefert.

Die Arbeit wird durch einen Ausblick abgeschlossen.
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Introduction

1.1 Problem Description of Semantic Concept Recognition in Im-

ages

At �rst I will de�ne the problem which I have been working on.

1.1.1 What de�nes a Semantic Concept

Formally a semantic concept can be represented by an indicator functionIC on the space of all

imagesX such thatIC (x) = 1 denotes the presence of conceptC in an imagex 2 X.

IC : X �! f 0; 1g (1.1)

For ambiguous semantic concepts this de�nition can be extended by assigningan imagex a

scorelC (x) in a bounded interval (e.g.[0; 1] ) which represents a numerical value for the

strength of the presence of a semantic concept in an image:

lC : X �! [0; 1] . (1.2)

This numerical value can be interpreted in a probabilistic manner as the agreement of a set of

human annotators with respect to the question whether an image belongs to a semantic concept

or not. In the context of classi�cation this is known as label noise. In a probabilistic model of

classi�cation withX being the space of all images andY = f 0; 1g being the label for a semantic

conceptC this setting can be modeled by a joint distributionPC : X�f 0; 1g ! [0; 1]. The label

noise is related to the prediction certaintyPC (Y = 1 j X = x) = P(IC (x) = 1) which can be

used to de�ne the scorelC (x) in Equation1.2. Such ambiguities arise naturally for concepts

1



1. INTRODUCTION

denoting the emotional impression of an image such as the conceptsscary, euphoricor calmin

the ImageCLEF2011 Photo Annotation dataset (1) or concepts related to aesthetic quality. The

label noise plays an important role in the question why image annotation is inherently dif�cult

and its impact on model selection be treated in more detail in section1.2.2.

1.1.2 Two Modes of Semantic Concept Recognition

Semantic Concept Classi�cation Given a semantic conceptC a binary prediction function

f C acting on the set of all imagesX can be employed for semantic concept classi�cation:

f C : X �! f 0; 1g (1.3)

One application derived from it is automatic tagging of image collections based on pre-de�ned

semantic concepts.

Semantic Concept Ranking Given a semantic conceptC a continuously-valued prediction

function f C acting on the set of all imagesX can be employed for semantic concept ranking.

The importance of semantic concept ranking lies in its application to the most relevant images

for a semantic concept from a large set of images. This is the classical search engine paradigm

and the aim of many search engines.

1.2 What makes semantic concept classi�cation and ranking of im-

ages a challenging task?

One may ask why common internet search engines employ image search basedon �lenames

as the default tool while search based on visual content appears to be inthe beta phase at best.

In this section we discuss issues and challenges of semantic concept classi�cation for general

semantic concepts.

We are interested in predicting a large set of generic semantic concepts in contrast to a small

set of highly specialized concepts as it is the aim of face recognition as an example. One image

may show multiple concepts. Figure1.1 shows an example image from the ImageCLEF2011

Photo annotation dataset and all of its annotated visual concept labels. Note that this kind

of annotation is far away from multi-class classi�cation scenarios in which each image has

at most one visual concept present in it, this images was labeled with 13 visual concepts.

The prediction output is desired to be a continuous score usable for ranking purposes. The

2



1.2 What makes semantic concept classi�cation and ranking of imagesa challenging
task?

continuous score allows to provide information about uncertainty of the classi�cation. Such

information is highly useful for the common search scenario in which a user isinterested to

�nd the K most likely images for a selected concept.

Figure 1.1: An example image from the ImageCLEF2011 Photo annotation dataset and its
set of visual concept labels:Outdoor, Plants, Day, Still Life, Neutral Illumination, Partly Blurred,
No Persons, Park Garden, Toy, Natural, Cute, Funny, Calm

1.2.1 Variability in the Structure of Semantic Concepts

The question ”What de�nes a semantic concept” raised in the title of Section1.1.1 can be

interpreted in an alternative way as the an attempt to give an overview of the constituting

elements of a semantic concept in a less mathematical sense, more driven by visual content.

What kind of semantic concepts do we expect to observe and what kind would we like to be

able to deal with?

One well known type are semantic concepts de�ned by the presence of a member of class

of objects, e.g.Porsche, Car or four-wheeled vehicle. This is classic object recognition as

proposed by the seminal Caltech101 dataset (2). In order to de�ne the term object recognition

we may say an object is a physical object of limited extent for which we can put a bounding

box in a photo around large parts of it.

Another type of semantic concepts are more abstract ones de�ned by the presence of several

visual cues in the image. The difference to object recognition is that the visual cues may vary

highly and may not be classi�ed into one object class in the above sense. Consider the concept

Concert. Photos showing a small group of people known to be famous music artists on stage

3
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PartyLife Aesthetic Indoor SunsetSunrise

PartyLife Aesthetic Travel Cute

Figure 1.2: Some Concepts from the ImageCLEF 2011 Photo Annotation Challenge and
example images.

are likely to belong to such a concept. At the same time a large group of hobby artists playing

in an orchestra also de�nes aConcert.

Composition of cuesbeyond mere presence may play an important role: A person holding

a guitar in a certain pose may contribute to the classi�cation as aConcert. However another

pose with a guitar on his back may depict rather a travelling person not involved in concert

activities. Two people with a guitar in a different pose can have the meaning that some guy is

smashing a paparazzo with a guitar unrelated to a concert scene. Similarly, music at a funeral

scene is less likely called aConcert. One can think of many setups of musical instruments and

people which are more or less likely to be aConcert.

One can extend this to abstract concepts which require the presence of several varying cues

and theabsenceof certain cues. Consider the semantic conceptPartyLife. Three people stick-

ing together do not make a party – if they show faces full of grief or angerhuman annotators

would hardly rate it to be aPartyLifescene. Similarly a lonely guy playing guitar at a camp�re

in the woods might not be aConcert.

This reveals that general semantic concepts are more dif�cult to recognize compared to

classic single object recognition. Another reason besides the wide rangeof possible cues is that

cues contribute in a non-deterministic way to the rating for belonging to a semanticconcept.

Consider the conceptStreetScene: the presence of roads and buildings are cues for such a

concept however the density and height of buildings, density of roads and the density of parked

cars are important for judging whether this is aStreetSceneor just a lonely road outside a town
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1.2 What makes semantic concept classi�cation and ranking of imagesa challenging
task?

with some buildings. If a probabilistic model contains only binary variables forthe presence

of roads or buildings, then these variables will likely contribute in a non-deterministic manner

to the concept of aStreetScene. This probabilistic contribution of cues and their composition

becomes obvious for concepts related to aesthetic quality or emotional impact such asFunny

or Scary.

Figure 1.3: Left: Macro of a �y; Middle: Not a macro of an elephant; Right: Macro of an
Elephant. Images by courtesy of wikimedia users nachu168, Fruggo and Alexander Klink.

Finally, some concepts require to have prior knowledge about propertiesof depicted cues

which cannot be extracted ad hoc from the single image. Figure1.3 gives an example. The

conceptMacroShotof an elephant looks different from theMacroShotof a �y. A macro image

of a �y usually shows large parts of a �y while a macro image of an elephant can never show

the whole elephant due to its elephantous size. The objects of interest �ll roughly the same

area in the left and middle images of Figure1.3, however the middle image is not a macro shot.

A macro of an elephant will rather show only a smaller piece of elephant skinlike the right

image in Figure1.3. At least, there exists a theoretical replacement for prior knowledge in the

framework of statistical learning: increasing numbers of training samples mayovercome the

lack of information in the single image.

The reader may note that this discussion starts to get messy because we leftthe domain of

mathematical description and de�nition which yielded clear results in Section1.1.1.

The conclusion from this confusion is that we observe a large variability in the semantic

structure of semantic concepts. This presents a challenge for algorithms designed to predict

semantic concepts and rank images according to them. The variability of a semantic concept

can be de�ned in mathematical terms as a statistical variance over the set of images belonging

to this concept computed by any kind of function which takes the pixels of a single image as

an input. Key factors for the variance in the semantic structure of a semantic concept are the

presence and absence of a wide range of visual cues, their compositionand their contribution

5
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to the classi�cation of an image in a non-deterministic manner. This is what makes search for

images based on �lenames a task which is easier to solve than image search by visual cues.

We can identify some special cases of the variability of cues which we will be explain

brie�y in the next subsections.

Figure 1.4: Bottles in varying positions and sizes. Images from the PASCAL VOC 2009
challenge dataset.

Varying positions and sizes of Regions in an image relevant for a semantic concept When

limited to objects one will note that an object can �ll a large fraction of the image ora very

small region. An smaller object may have a highly varying position within the image as shown

in Figure1.4 for the semantic conceptBottle. Similarly the appearance of an object may vary

with its viewpoint. The same holds for cues contributing to a semantic concept.

Occlusion of Regions in an image relevant for a semantic conceptRegions of an image

relevant for the recognition of a semantic concept can be occluded. Thisis easy to understand

for occluded objects shown in Figure1.5.

Figure 1.5: Occluded objects. From left to right: airplane,bus, car and car. Images from the
PASCAL VOC 2009 challenge dataset.

Clutter and Complex Scene Compositions Images can have large areas which are at least

in part irrelevant for the classi�cation of a semantic concept. The leftmost three images in

Figure1.4may serve as an example, the bottles are embedded in complex sceneries whichare

not necessarily related to bottles.
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1.2 What makes semantic concept classi�cation and ranking of imagesa challenging
task?

1.2.2 The Impact of Label Noise on Model Selection

The points discussed above may have two effects on increasing the dif�culty of the semantic

concept classi�cation problem. The �rst effect in a probabilistic classi�cation setting is, given

a �xed feature space, an increased complexity of the Bayes boundary1. The second effect is

increased label noise.

Label noise can be measured as the uncertainty of human annotators in assigning an image

to belong to a semantic concept. Mathematically it can be modelled as the probability of an

image to belong to a conceptP(I C (x) = 1) .

Note that the notion of label noise is not disjoint from the preceding discussions. From a

semantic viewpoint label noise can arise from occlusions of an object or transformations such

that some human annotators will tend to reject the presence of a semantic concept based on

their own de�nition, judgement or in case of concepts related to emotions or artistic quality,

their perception.

We expect less ambiguity and label noise for object-based concepts suchasbicyclethan

for concepts de�ned by a sentiment such asSador a very abstract notion liketechnical, travel

or work.

Label noise has an obvious deteriorating impact on classi�cation accuracy, and more impor-

tantly on model selection. Learning a support vector machine (3, 4, 5) by solving its optimiza-

tion problem corresponds to the selection of a function from a class of functions by selecting

support vectors, their weights and the bias when solving the SVM optimization problem. The

selection of a function from a class of hypotheses by minimizing a regularizedloss over a �nite

set of training samples can be treated in the framework of empirical risk minimization.

Theorem 6 in (6) provides lower bounds for the expected risk in empirical risk minimization

depending on a uniform bound for the label noise.

Theorem 1(Theorem 6 from (6)). Let � be a probability measure onX and S be some class

of classi�ers onX such that for some positive constantsK 1,K 2,� 0 andr

K 2� � r � H1(�; S; � ) � K 1� � r

for all 0 < � � � 0, whereH1(�; S; � ) denotes thè1(� )-metric entropy of S. Furthermore leth

be a bound on the label noise:

8x jP(Y = 1 jX = x) � 0:5j � h=2
1the Bayes boundary is the optimal decision boundary for classi�cation when the generating distribution of the

data is assumed to be known.

7
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Then, there exists a positive constantK depending onK 1,K 2,� 0 andr such that the following

bound holds

Rn (h; S; � ) = inf
ŝ2 S

sup
P 2 P(h;S;� )

E[P(Y 6= ŝ(X )) � P(Y 6= s� (X ))]

� K (1 � h)
1

1+ r max(h� 1� r
1+ r n� 1

1+ r ; n� 1
2 )

(1.4)

whenevern � 2.

The work in (7) contains examples how to establish the validity of the imposed condition

onH1(�; S; � ) for smoothly differentiable Bayes boundaries. This allows to apply it to support

vector machines with Gaussian kernels and otherwise smooth settings like bounded domains

and distributions with suf�ciently smoothly differentiable Bayes boundaries1. For the under-

standing of the theorem note thatP(h; S; � ) is the set of distributions on the input-label product

spaceX � Y such that the input space distribution is� . Furthermore the label noise is bounded

in each point ofX by 1=2 � h=2 due tojP(Y = 1 jX = x) � 0:5j � h=2. Finally, s� is the

Bayes classi�er.E[P(Y 6= ŝ(X )) � P(Y 6= s� (X ))] is the deviation between the expected

errors of the classi�ers and the a posteriori optimal Bayes classi�ers� . The supremum is taken

over a class of distributions followed by selection of the optimal empirical classi�er ŝ given

knowledge of the distribution. Since the distribution is unknown this implies that thelower

bound has an optimistic formulation compared to practice.

An increase in the overall label noise corresponds to a decrease of thevalue ofh which

yields an increased lower bound in Theorem1 for the expected deviation between the expected

error of an optimistically selected classi�er and the best possible classi�er within a function

class. The qualitative message is that label noise does have a deterioratingin�uence on model

selection.

1.3 State of the art in Semantic Concept Recognition in Images

Image Annotation as a tool for content-based image retrieval is a �eld of ongoing research

since decades. The reader is referred to the overview paper (8) for the numerous research

efforts undertaken in the last century alone.

Image annotation follows two big lines, generative approaches based on aprobabilistic

model and discriminative approaches aiming at minimizing a loss function.

1for a brief introduction to support vector machines see Section1.3.2
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Among the discriminative approaches kernel-based methods such as support vector ma-

chines (3, 4) or kernel discriminant analysis (9) based on BoW (bag of words) features (10)

have been proven particularly successful in the �eld of image annotation and ranking. Kernels

computed over BoW features are constantly dominating international competitionson image

annotation and ranking in terms of performance measures such as the PASCAL Visual Ob-

ject Categorization (11) and the ImageCLEF PhotoAnnotation challenges (1, 12) over the last

years. Thus they will be the fundament of the work described in this thesis.The following

sections1.3.1and1.3.2will give a short introduction into BoW features and support vector

machines (SVMs).

The state of the art for Semantic Concept Recognition in Images is based on computing

many features for each image. When considering a larger set of many different semantic con-

cepts it may be very dif�cult to construct the one ultimate feature for classifying them all

reliably. The basic idea is to counter the high variability and complexity of general semantic

concepts described in Section1.2.1 by computing many different features per image and if

necessary learning combinations of them adapted to the semantic concept to be classi�ed. This

is the main reason to compute many features per image.

It is worth to remark about a very recent development. While it was known before that

neural nets are very suitable for object classes with rigid structure suchas the CIFAR datasets

(13) which do not have a high scale variance and are centered, recent results using neural nets

with additional regularization ideas yielded excellent performance on problems with much

more diverse visual concepts such as the Imagenet Challenge (14, 15). From that we may

expect a revival of neural networks for general visual conceptrecognition in the next years.

1.3.1 Bag of Word Features

The Bag of Word (BoW) feature is a framework rather than a �xed feature computation algo-

rithm useful for computing a vector-valued representation for one image which can be used for

subsequent classi�cation and ranking. Intuitively speaking it looks at many parts of the image,

each of them represented by a local feature and aggregates the local features into one global

representation for the image which is the �nal bag of Word feature. The most notable property

of the BoW framework is the fact that the spatial relations between local features are ignored.

Figure1.6shows the stages of computing a BoW feature.

9
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Figure 1.6: Bag of Word Feature Computation pipeline.

First Stage: Local Features In the �rst stage (left part of �gure1.6) a set of local features

is computed from an image. Formally, a local feature is a vector computed overa region of the

image by some �xed algorithm. In Figure1.6the local feature is for the sake of demonstration

merely composed of the gradient norms along the horizontal and vertical axes which results

in two dimensions. For real applications the SIFT descriptor (16) is the most famous choice

for general multimedia images. Besides the choice of the local feature, regions for its compu-

tation have to be chosen. Typically, local features are computed on small overlapping regions

distributed across the whole image. Apart from grid sampling as the simplest method, biased

random sampling (17, 18, 19) may serve for the computation of the corresponding descriptor

regions. The number of local features may vary across images, for example by adaptation

to image size. The work in (20, 21) shows that a suf�ciently dense sampling is required for

good classi�cation performance which is the reason why for image classi�cation, in contrast

to object matching across images, classic keypoint based detectors yieldedsomewhat lesser

performance as demonstrated in the Pascal VOC 2007 Challenge (22). This is consistent to the

author's own experience.

For improvement of performance local features are often computed overa set of differ-

ent color channels and concatenated (23). This allows to incorporate color information and

correlations between various color channels. We assume in the following that the images are

available as digital RGB-images with color channels red, green and blue with values lying in

[0; 1]. Examples for such sets of color channels are the basic set of red, green, and blue (RGB),

10
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the set (OPP) composed of the three channels grey (1.5), opponent color 1 (1.6) and opponent

color 2 (1.7), the normalized RGB set (1.8) (nRGB) or the normalized opponent colors set

(nOPP) (1.9). The latter color channels are given in Equations (1.5),(1.6),(1.7),(1.8) and (1.9)

as functions of RGB-values(r; g; b) lying in [0; 1].

gr(r; g; b) = ( r + g + b)=3 (1.5)

o1(r; g; b) = ( r � g + 1) =2 (1.6)

o2(r; g; b) = ( r + g � 2b+ 2) =4 (1.7)

nrngnb(r; g; b) =

( �
r

r + g+ b; g
r + g+ b; b

r + g+ b

�
if r + g + b > 0

0 otherwise
(1.8)

nopp(r; g; b) =

( �
gr(r; g; b); o1(r;g;b)

gr (r;g;b) ; o2(r;g;b)
gr (r;g;b)

�
if r + g + b > 0

0 otherwise
(1.9)

The idea of computing features over sets of color channels and subsequently concatenating

them is applied also to other feature extraction algorithms as well.

Second Stage: Visual Words The second stage, the computation of the set of visual words,

which is not shown in �gure1.6, is done once during training time for each BoW feature to be

computed.

It is important to understand that BoW features cannot be computed in a classic paradigm

in which a feature is a function of an image alone, because the BoW histogramsare de�ned

relative to the set of visual words which must be obtained in some way, usually from training

images. The BoW features are a function of the imageand the visual words. After having

computed visual words from training images, BoW features can be computedfor training and

testing data using the same �xed set of visual words for both datasets. A change in the visual

words requires to recompute the BoW histograms for all images.

Formally, a visual word is merely a point in the space of the local features. Figure1.6de-

picts exemplarily the two-dimensional local feature space with red dots as the �ve visual words.

One possibility to compute the visual words is discretization of the empirical localfeature den-

sity using k-means. Practically proven alternatives are radius-based clustering (20), Bayesian

methods like pLSA (24) and more commonly Fisher vectors based on Gaussian mixture models

(25), sparse coding (26). It is an open question for what kind of data a density-based method

like k-means is preferable over a radius-based method like radius-basedclustering (20).
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1. INTRODUCTION

Third Stage: Mapping of Local Features onto Visual Words The third stage is the map-

ping of local features onto the visual words, usually by computing weights based on the dis-

tances between the local feature and all the prototypes. This step, depicted in the middle of

�gure 1.6yields for each local feature a vector of weights with its dimensionality being equal

to the number of prototypes in the visual codebook. Examples are soft codebooks (27) and fast

local linear coding (28).

There has been considerable research on improvements for the two stepsof visual word

generation and mapping, such as hierarchical clustering (29), class-wise clustering (30), ran-

dom forests (31), hybrid semi-supervised clustering (32) or optimization of information-theoretic

criteria (33). Note that many of these works have been very recently developed during the au-

thor's work for this thesis. Hierarchical clustering and random forestsaim at improved speed

of feature computation, class-wise and hybrid semi-supervised clusteringintend to interpolate

between improved speed and improved precision while local coordinate coding (33) focuses

on improvement of precision at the cost of higher dimensional features.

Some particular mapping functions are given in the following. Letl be a local feature,m

the mapping function, and �nallymd the projection of the mapping function on thed-th output

dimension corresponding to thed-th visual wordvd. Hard zero-one mapping is the simplest

procedure. Each local feature is mapped onto its nearest visual word resulting in a unit vector

as in equation (1.10).

md(l ) =

(
1 if d = argmin e kl � vek2

0 otherwise
(1.10)

The normk�k2 in equation (1.10) is usually the euclidean norm however it might be interesting

to try out other norms such as`p-norms withp < 1, or more generally distance functions like

the � 2-distance between two vectorsx andy: � 2(x; y) =
P

d(xd � yd)2=(xd + yd). Both

alternative distance functions would put more emphasis on dimensionsd with small values of

the vectorsx andy.

Soft mapping as in equation (1.11) was introduced in (27) and became popular in the con-

text of competitions in image annotation and ranking

md(l ) =
exp

�
� � kl � vdk2

�

P
e exp (� � kl � vek2)

(1.11)

Soft mapping acts a smoothed version of hard mapping because it distributesthe mapping for

a local feature to a set of its neighboring visual words.

12



1.3 State of the art in Semantic Concept Recognition in Images

It was found however in (34), and by the author's own experiments during the Image-

CLEF2011 PhotoAnnotation Challenge (1) that for good ranking performance it is necessary

to achieve a suf�ciently fast decay of assignments as a function of distances from a local fea-

ture to neighboring visual words. A revised version of soft-assignment(34) in equation (1.12)

assigns votes only to the k nearest neighborsNk (l ) for local featurel in the set of visual words.

md(l ) =

8
<

:

exp( � � d kl � vd k2)P
e exp(� � ekl � vek2 ) if d 2 Nk (l )

0 otherwise
(1.12)

The author used another form of localized mapping successfully for submissions of the Image-

CLEF2011 PhotoAnnotation Challenge (1), rank mapping as in equation (1.13). Let Rank(z)

be the rank of the valuez 2 fk l � vdk2; d = 1 ; : : : ; Bg within the set of distanceskl � vdk2

sorted in ascending order.

md(l ) =

(
2:4� Rank (kl � vd k2) if d 2 Nk (l )

0 otherwise
(1.13)

While the revised soft mapping from equation (1.12) showed slightly better performance on

the ImageCLEF2011 PhotoAnnotation corpus in a post-challenge evaluation, the advantage

of rank-mapping is its explicit modelling of decay of mappings as a function of the number

of nearest neighbors. The author used in his submissions (17, 18) for the ImageCLEF2011

PhotoAnnotation challenge rank mapping (equation (1.13)) with parameterk = 8 having in

mind that2:4� 8 � 1000. For revised soft mapping from equation (1.12) it is still necessary

to �t the constants� d appropriately for each visual word. The author's solution for the post-

challenge evaluation1 was to set

� d = �s d (1.14)

wheresd is the inverse of the median of squared distanceskl � vdk2 from all local featuresl such

that the visual wordvd is their nearest word within the set of all visual words. This reduces

the number of parameters for that mapping to be estimated to one global parameter � and

allows the width parameters� d in equation (1.12) to scale according to robust local distance

statistics. The need for such scaling comes from the fact that k-means clustering for visual

1The author tried the revised soft mapping (equation (1.12)) during the ImageCLEF2011 PhotoAnnotation

challenge before learning of the work in (34), noticed slightly better results via cross-validation compared to rank-

mapping (equation (1.13)) and still decided to submit solutions based on rank-mapping due to its simpler and thus

potentially more robust structure compared to the revised soft mapping.

13



1. INTRODUCTION

word generation results in clusters with neighboorhoods of varying diameters as it is a density-

sensitive clustering method. This implies that the neighborhoods for different visual wordsvd

have different distance statistics of the local features which lie in the respective neighborhoods.

Further notable coding methods which yield good results in published work (35) are sparse

coding as in equation (1.15) and local linear coding (28) as in equation (1.16)

m(l) = argmin
z

kl � V zk2 + ckzk1 (1.15)

whereV is the matrix of visual words of formatL � B , l is the local feature of formalL � 1,

and the mapping vector has formatB � 1.

m(l) = argmin
z

kl � V zk2 + c







BX

d=1

zd exp
�
� kl � vdk2�







2

2

(1.16)

The missing minus in equation (1.16) is intended. The idea behind local linear coding is that

locality is able to induce sparsity such that weightszd for distant visual wordsvd are set to

zero or very small values. Finally, the author likes to point out again that Fisher vectors (25)

also perform well on large-scale image classi�cation tasks like the ImageNetdataset (15). An

overview of the performance of different coding methods is given in (35).

Fourth Stage: Aggregation of Local Feature Mappings Finally, the mapping weight vec-

tors, one from each local feature, will be aggregated into one global feature, which is the �nal

BoW feature, as depicted on the right side of �gure1.6. The usual aggregation step consists of

summing the mapping weight vectors and normalizing the resulting vector to adjustfor varying

numbers of local features.

The combination of a mapping functionm : RL �! RB and sum aggregation yields a

representation of a BoW featurex as

x =
X

l

m(l) 2 RB (1.17)

Maximum pooling (34) where the sum in equation (1.17) is replaced by a maximum oper-

ator has also been applied as a biologically-inspired alternative.

Finally, one frequently used modi�cation of the Bag of word features are spatial tilings.

Originally they were introduced as spatial pyramids in (36). The idea of a spatial tiling is to

split each image into a set of regularly shaped spatial tiles, to compute one BoWfeature for each

tile separately and �nally to concatenate the BoW features over all tiles into oneBoW feature.

14



1.3 State of the art in Semantic Concept Recognition in Images

Examples are the spatial tiling3� 1 which decomposes each image into three horizontal stripes

of equal height and2 � 2 which cut an image into4 regular squares. Spatial tilings allow to

incorporate a low degree of spatial information into BoW features in a robust manner.

Further Remarks The strength of the bag of word feature lies in its robustness which comes

from the following factors:

� the absence of modelling of spatial relations between parts unlike earlier approaches

which are susceptible to noise in images with complex sceneries.

� the aggregation of local features into a global feature which implies denoising via av-

eraging of contributions of many local features. Equation (1.17) can be interpreted as

a sum of many noisy parts which are nonlinear mappings of local features onto the set

of visual words. For an alternative interpretation see (37). Apart from normalization of

the BoW feature to unit̀1- or `2-norm, other pooling methods than the sum can be em-

ployed like max pooling in which the sum is replaced by a maximum over all mappings

md(l i ), or generalized p-meansmp(x) = N � 1(
P N

i =1 xp
i )1=p which allows to interpo-

late between the minimum, the maximum, harmonic, geometric and arithmetic means as

special cases.

� the choice of robust local features such as SIFT (16) or SURF (38) which are known to

be invariant against many changes in lighting conditions. See (23) for an overview of

invariance against lighting variations from a color theoretic point of view.

Another advantage of bag of words features is their computational scalability. This is an

advantage over intuitively more appealing Bayesian approaches which often need to rely on

restricted probability models or inference approximations in practice. Computation of bag

of words features in real-time is demonstrated in (39) while (40) demonstrates their ef�cient

computation on GPUs.

The most critical choices in the BoW feature is the local feature, the BoW feature di-

mensionality and the way of mapping (m in Equation (1.17)) of local features onto the BoW

dimensions.

The work (41) shows by comparing against human performance that Bag of word features

yield a similar performance to humans on so-calledjumbled imageswhich were cut into square

parts and then piecewise randomly permutated and rejoined. The human advantage is our
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ability to extract spatial relations between parts which requires us, however, to spend years of

training and learning in childhood from millions of examples and some hundred thousand years

of brain evolution before our base learning system became operational. Compared to that BoW

models enjoy the advantage of algorithmic simplicity.

Notably, (42) and (43) but also (44) propose methods which avoid the discretization step

implied by the usage of visual words. These works go beyond the limits of classical BoW

models. (42) uses a boosting type formulation on sets of local features while (43) learns a

set kernel metric for pairs of local features under incorporation of local context. A potential

drawback is the loss of computational scalability which comes with the original Bag of words

model.

The BoW method is also applied with superior results in competitions in related domains

such as semantic indexing for videos inTRECVID(45) or the winning entry inILSVRC2011

large scale object detection challenge (46).

Despite their robustness for domains with highly variable images, Bag of wordfeatures are

also applied to narrow domains such as concept recognition for medical images (47, 48, 49).

1.3.2 Support Vector Machines in a Nutshell

We will give a short introduction to support vector machines (SVM). For more details the

reader is referred to (4). I refrain from reciting all the known facts about SVMs except for what

is necessary to understand their usage.

A support vector machine learns a linear predictor

f (x) = w � x + b (1.18)

for an input samplex by minimization of a loss functionl together with a quadratic regularizer

for the parametersw of the predictor.

Let f (x i ; yi ) j i = 1 ; : : : ; N g be the training data: a set of input featuresx i and their

binary labelsyi 2 f� 1; +1g. Then the support vector machine can be de�ned as the following

optimization problem for learning the parameters(w ; b) of the classi�er given in equation1.18:

min
w ;b

1
2

w � w + C
NX

i =1

l (w � x i + byi ) (1.19)

The loss functionl can be chosen to maximize the marginf (x i )yi of samples(x i ; yi ).

Examples are the hinge loss

l(z; y) = max(0 ; 1 � zy) (1.20)
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1.3 State of the art in Semantic Concept Recognition in Images

and the logistic loss

l(z; y) = ln(1 + exp( � zy)) . (1.21)

This approach has two principled advantages. Firstly, from a theoreticalpoint of view the

solution of support vector machine is known to be parametrized such that it isbased on the

span of the training samplesx i . Differentiation of0 = 1
2w � w + C

P N
i =1 l ((w � x i + b) yi )

based on Formula1.19for the variable componentw(d) in dimensiond proves this claim.

Secondly, from a practical point of view the support vector machine allows for certain

losses like the hinge loss and the quadratic loss to incorporate non-linear similarities between

data points in the form of Mercer kernels. The nonlinear version of Formula 1.19is given by

replacingx i with its mapped value� (x i ) for some mapping� : X �! H into a Hilbert space

H .

The non-linear similarities can be speci�ed implicitly via the choice of a Mercer kernel

k : X � X �! R. The dual formulation of the support vector machine can be written for

appropriate loss functions to depend merely on Mercer kernel similarities

k(x i ; x j ) = � (x i ) �H � (x i ) (1.22)

without explicit references to the mappings� into a feature space.

For the sake of self-containedness we give a formal de�nition of a mercer kernel. A mercer

kernel is a symmetric functionk : X � X �! R on a compact subsetX � Rd such that with

respect to the Lebesgue measure� onRd the operator

T[k](f )(y) =
Z

X
k(x; y)f (x)d� (x) (1.23)

does result always in a functionT[k](f ) lying in L 2(X) whenf 2 L 2(X) and all the eigenval-

ues of the operatorT[k] : L 2(X) ! L 2(X) are non-negative. The eigenvalues are de�ned by

theL 2-Hilbert spaceL 2(X) of real-valued functions onX induced from the Lebesgue measure

� :

f � g =
Z

X
f (x)g(x)d� (x) (1.24)

L 2(X) =
n

f : X ! R
�
�
�f is measurable for� andf � f = kf k2 < 1

o
(1.25)

This result can be generalized to compact Hausdorff spaces with a �nite and countably

additive measure� operating on the Borel-� -Algebra of it. For practical purposes in the context
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of SVMs, however, it is suf�cient that the matrixk(x i ; x j ) de�ned over a set of samplesf x i g

is always non-negative de�nite for all sets of samples in the sense of common linear algebra.

Back to the formulation of a support vector machine, its essential parameter isthe regular-

ization constantC in equation1.19. High values put more emphasis on minimizing the loss

while low values emphasize the quadratic regularization. Appropriate normalization of kernel

matrices balances the loss and the regularizer term to be on the same scale andthus allows in

practice to choose a regularization constant on a grid around the valueC = 1 .

1.3.3 Kernels Related to this Dissertation

The kernel mostly used in this dissertation is the� 2-Kernel which is an established kernel for

capturing histogram features (50, 51). Let x(d) be the d-th component of vectorx.

k(x1; x2) = exp

0

B
@�

1
�

X

djx ( d)
1 + x ( d)

2 > 0

(x(d)
1 � x(d)

2 )2

x(d)
1 + x(d)

2

1

C
A (1.26)

The bandwidth� of the � 2 kernel in (1.26) is thereby heuristically chosen as the mean� 2

distance (1.27) over all pairs of training examples(x1; x2), as done, for example, in (52).

� 2(x1; x2) =
X

djx ( d)
1 + x ( d)

2 > 0

(x(d)
1 � x(d)

2 )2

x(d)
1 + x(d)

2

(1.27)

It shares with the gaussian kernel (equation (1.28)) the structure of being an exponential of a

negative function of a distance. For the gaussian kernel it is the squared `2-distance while for

the� 2-kernel it is the� 2-distance given in equation (1.27). Compared to the gaussian kernel,

differences in histogram binsd with low countsx(d)
1 + x(d)

2 � 0 are upscaled in the� 2-kernel.

We remark that there exists also another non-exponential formulation of a� 2-kernel which is

not guaranteed to be positive de�nite (53).

k(x1; x2) = exp

 

�
1
�

X

d

(x(d)
1 � x(d)

2 )2

!

(1.28)

Another established kernel for histograms is the histogram intersection kernel (eq. (1.29)).

k(x1; x2) =
X

d

min(x(d)
1 ; x(d)

2 ) (1.29)
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All kernels in this study are normalized to have standard deviation 1 in Hilbert space. This

amounts to compute

K 7�!
K

1
n tr(K ) � 1

n2 1> K 1
(1.30)

which was proposed in (54, 55) and entitledmultiplicative normalizationin (56). This avoids

situations in which a kernel with low variance is dominated by a kernel with high variance

when both are combined.

For large scale applications many of those kernels can be approximated wellby explicit

feature maps (53, 57, 58) which are then used as higher-dimensional features for a linear kernel.

This allows to use primal support vector machines with approximations of non-linear kernels.

1.3.4 Kernel Alignment

The kernel alignment introduced by (59) measures the similarity of two matrices as a cosine

angle in a Hilbert space de�ned by the Frobenius product of matrices

A(k1; k2) :=
hk1; k2i F

kk1kF kk2kF
; (1.31)

We will use kernel alignment in two variants in Chapters2 and3 for the analysis of kernel

properties.

The �rst variant computes the cosine angle between two kernels computed from image

features. We call this kernel-kernel alignment (KKA).

The second variant, kernel target alignment (KTA) measures the similarity between one

kernel from features and an optimally discriminative kernel computed fromthe labels for a

given visual concept. The centered kernel which achieves a perfect separation of two classes

can be derived from the labels and is proportional toey ey > , where

ey = ( eyi ); eyi :=

(
1

n+
yi = +1

� 1
n �

yi = � 1
(1.32)

andn+ andn� are the sizes of the positive and negative classes, respectively.

It was argued in (60) that centering (61) is required in order to correctly re�ect the test

errors from SVMs via kernel alignment. Centering in the corresponding feature spaces is the

replacement ofk(x i ; x j ) = h� (x i ); � (x i )i by
*

� (x i ) � N � 1
NX

k=1

� (xk ); � (x i ) � N � 1
NX

k=1

� (xk )

+

(1.33)
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Note that support vector machines using a bias term are invariant againstcentering, which can

be shown using the condition
P

i � i yi = 0 from the optimization problem given by equation

(3.2). To see the in�uence of centering on kernel alignment consider that thenormalized kernel

alignment with an added biasz and non-negative kernelshz1; z2i � 0 will be dominated by the

biasz whenkzk ! 1 :

h� (x1) + z; � (x2) + zi
k� (x1) + zkk� (x2) + zk

�
kzk2

k� (x1) + zkk� (x2) + zk
kzk!1
�! 1 . (1.34)

Centering can be achieved by taking the productHKH , with

H := I �
1
n

11> ; (1.35)

I is the identity matrix of sizen and1 is the column vector with all ones.

1.4 Overview of this dissertation

This thesis is not method driven, it is problem driven. This means, I did notdevelop one single

method which I apply to various kinds of datasets and compare where it works better than

existing baselines. Neither did I perform a theoretical analysis for one class of algorithms.

Instead I have worked on one larger problem, namely that of image annotation and ranking,

which required me to tackle several aspects of that problem ranging fromfeature design to loss

function design and optimization. This problem can be divided for discriminative approaches

which aim at minimizing a loss or maximizing a score into three big topics.

� Formulation of the problem and design or choice of a corresponding loss function

� Learning of feature combinations given a loss function

� Design of Features

This is not a strict hierarchy, since the design of features and their properties may have

in�uence on the method to learn the feature combination. The simplest example for this argu-

ment is the case when one makes the assumption that only a small but a priori unknown subset

of the given features will be useful. In that case one would rely on sparse algorithms to learn

the feature combination.

Figure1.7depicts these three big topics. The decomposition into three topics is the reason

why subsequent chapters have their own related work and conclusion subsections. Essentially,
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1.4 Overview of this dissertation

the following chapters tackle different topics of the same grand problem. Furthermore, the �eld

of computer vision is suf�ciently developed and diversi�ed such that each part deserves its own

speci�c set of references.

For the aspect ofDesign of FeaturesI have analyzed the impact of biased random sampling

using novel sampling methods for BoW (Bag of words) features (17). This methodology was

part of the author's submission on out of sample testing data for the ImageCLEF2011 Photo

Annotation Challenge which yielded the winning entries in this competition for multi-modal

and pure visual categories (18).

For the same aspect I also worked on hybrid algorithms which combine the abilityfor fast

feature computation due to tree structures together with supervised learningof splits based on

support vector machines (32).
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Figure 1.7: Three big topics of the image annotation and ranking problem. Blue shows the
type of supervision. Green colors examples. Brown colors ideas.
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A brief overview over the state of the art of feature design for BoW features is given in

section1.3.1. The following two contributions will be shown in this thesis in more detail.

For the aspect ofFormulation of the problem and design or choice of a corresponding loss

functionI proposed a novel algorithm capable of optimizing taxonomy-induced loss functions

for multi-class data in a computationally ef�cient manner and taxonomy-based ranking scores

for multi-label data (62). This will be discussed in Chapter2.

For the aspect ofLearning of feature combinations given a loss functionI analyzed the

behavior of the existing non-sparse multiple kernel learning (MKL) algorithm (56) speci�c to

properties of features commonly used in image annotation due to their state of theart perfor-

mance (63). I will give novel explanations on its limits and bene�ts based on experimentson

real-world data. This will be discussed in Chapter3.

The two aspects on which I will focus subsequently, namely learning with taxonomy-

induced loss functions and ranking scores and an analysis of non-sparse multiple kernel learn-

ing in image ranking, can be treated separately or in a combined manner. Given the complexity

of these topics and the authors' impression that both of them contain many problems which are

not understood suf�ciently, I will treat them independently in two separatechapters.

An overview over publications coauthored by me is given in Section1.4.2.

The annotation system was tested in three international benchmark competitionswhich

were evaluated on image collections with undisclosed ground truth, namely Pascal VOC 2009

Classi�cation (64), ImageCLEF2009 Photo Annotation (65) and ImageCLEF2011 Photo An-

notation (1). It yielded in these competitions top-�ve placements and winning entries in two

categories of the most recent of these competitions, ImageCLEF2011 PhotoAnnotation (1).

1.4.1 Why do we not learn anything at once but divide the problem into parts?

One may ask here why I did decompose the problem into parts and did not follow the way to

learn everything simultaneously. It might be indeed a desirable long term goal to learn all pos-

sible parameters from data in a uni�ed framework. Still, elegant theory is notalways practical

when real data has to be processed. For example full-scale cross-validation over all hyperpa-

rameters is limited in practice to a low number of parameters because the number ofgrid points

may grow exponentially with the number of parameters. In practice sequentialcross-validation

or alternative heuristics like genetic algorithms may yield the best results as demonstrated in

(66). The alternative to cross-validation are likelihood based models. Discriminative models

in computer vision like SVMs may over�t in practice strongly on the training data when being
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1.4 Overview of this dissertation

at their optimum with respect to their performance on test data – see for example the necessity

to use cross-validation for generating SVM outputs which are used for learning of subsequent

models in (67, 68). This effect makes the usage of cross-validation preferable for discrimina-

tive methods over direct likelihood based models acting on the whole training data directly.

Problem decomposition allows to include prior knowledge easily yielding better recognition

performance or saving time even when the problems are solved only approximately. The tables

2.10and2.11 in Chapter2 provide an example, where structured prediction algorithms with

all their mathematical elegance do not provide signi�cant performance gainsover simpler and

much faster approximate models. Problem decomposition as the alternative canmake problems

to be solved more ef�ciently and in less time which is an argument against monolithicuni�ed

frameworks. For these reasons I will approach the problem of image annotation and ranking

by decompising it into three levels mentioned in Section1.4.

The three levels of the problem can be also classi�ed by their relation to supervision. Fea-

ture design is a part which can be performed ef�ciently in an unsupervised or merely weakly

supervised manner. It may include prior knowledge about the problem. The weak supervision

can be used to ensure that certain statistical properties of the dataset arere�ected in the fea-

tures. One example would be for the case of Bag of word features the question which images

are used for computing visual words. The visual words will be computed from a set of local

features which have been extracted from the images in question. In problems with many visual

concepts it maybe helpful to ensure that images from visual concepts with low abundance in

the training data do appear in the set used for computation of visual words.This matter has

been investigated in (30) where it was shown that learning a separate visual vocabulary for each

visual concept and fusing all these vocabularies into one big set of visual words may help to

improve ranking performance. Further examples of introducing supervision to feature design

are (31, 32). Using more supervision in feature design has the potential to improve recognition

performance at the price of slower algorithms.

The feature combination part relies on supervision for learning a usefulcombination of

unsupervised or weakly supervised features as it is based on minimization of a given loss

function. For that part an empirical analysis of multiple kernel learning will be discussed in

Chapter3.

The last part, the choice of a loss function, relies on incorporation of prior knowledge

in one or another way. The usage of supervision for the choice of a lossfunction requires

some kind of regularization because the criterion used for supervision itself is de�ned at this
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level. Introducing regularization can be interpreted as a way to incorporate prior knowledge.

Regularization implies that hypotheses which receive stronger regularization are only chosen

if the data supports them particularly well. This is a way to express the prior knowledge that

these hypotheses are expected to be chosen less likely. In summary, the incorporation of prior

knowledge is necessary for choosing a loss function.

As an extreme example why usage of supervision may not be always helpful at the level

where the loss is designed consider a loss function which is learnt from data in a way such that

it places no or low penalties for misclassifying images showing visual concepts which are hard

to recognize. It might be not always in the interest of users to ignore misclassi�cation of hard

cases. On the contrary, in some cases it might be useful to improve the recognition performance

of badly recognized visual concepts at the cost of reducing recognition performance of easier

recognized visual concepts.

In this dissertation I did not attempt to learn loss functions for this reason butinstead chose

the simpler way in Chapter2 to learn models based on hierarchical losses which were derived

from prior knowledge about the problem. The following section1.4.2lists work published by

the author.

1.4.2 The Author's Contributions

� Choice of Loss Function:Classi�cation with Hierarchical Structure

– A. Binder, K. R. Müller, M. Kawanabe,On Taxonomies for Multi-class Image

Categorization, International Journal of Computer Vision 99(3), 281-301, 2012,

accepted January 2011 (62)

� Feature Combination for a given loss:Learning Kernel Combinations

– A. Binder, S. Nakajima, M. Kloft, C. M̈uller, W. Samek, U. Brefeld, K.-R. M̈uller,

M. Kawanabe:Insights from Classifying Visual Concepts with Multiple Kernel

Learning PLoS ONE 7(8), 2012, doi:10.1371/journal.pone.0038897 (63)

– S. Nakajima, A. Binder, C. M̈uller, W. Wojcikiewicz, M. Kloft, U. Brefeld, K.-

R. Müller, M. Kawanabe:Multiple Kernel Learning for Object Classi�cation ,

IBIS2009 Workshop, Fukuoka, Japan (69)

– M. Kawanabe, S. Nakajima, A. Binder:A procedure of adaptive kernel combina-

tion with kernel-target alignment for object classi�cation , CIVR2009 (70)
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� Feature Combination for a given loss:Learning Relations between Semantic Concepts

– A. Binder, W. Samek, K.-R. M̈uller, M. Kawanabe:Enhanced Representation

and Multi-Task Learning for Image Annotation , Computer Vision and Image

Understanding, accepted, DOI: 10.1016/j.cviu.2012.09.006(17)

– W. Samek, A. Binder, M. Kawanabe:Multi-task Learning via Non-sparse Mul-

tiple Kernel Learning , CAIP 2011(1): 335-342 (67)

� Feature Combination for a given loss:Multi-Modal Classi�cation of Images

– M. Kawanabe, A. Binder, C. M̈uller, W. Wojcikiewicz: Multi-modal visual con-

cept classi�cation of images via Markov random walk over tags, IEEE WACV

2011: 396-401 (71)

� Feature Design:Vocabulary Optimization for Bag of Word Features

– A. Binder, W. Wojcikiewicz, C. M̈uller, M. Kawanabe:A Hybrid Supervised-

Unsupervised Vocabulary Generation Algorithm for Visual Concept Recogni-

tion, ACCV 2010 (3): 95-108 (32)

– W. Wojcikiewicz, A. Binder, M. Kawanabe:Shrinking large visual vocabularies

using multi-label agglomerative information bottleneck, ICIP 2010: 3849-3852

(72)

– W. Wojcikiewicz, A. Binder, M. Kawanabe:Enhancing Image Classi�cation

with Class-wise Clustered Vocabularies, ICPR 2010: 1060-1063 (30)

� Feature Design:Analysis of biased random sampling and Learning of Relations between

Semantic Concepts for the ImageCLEF 2011 Photo Annotation dataset.

– A. Binder, W. Samek, K.-R. M̈uller, M. Kawanabe:Enhanced Representation

and Multi-Task Learning for Image Annotation , Computer Vision and Image

Understanding, accepted, DOI: 10.1016/j.cviu.2012.09.006(17)

� Overview Chapters in Books
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– A. Binder, F.C. Meinecke, F. Biessmann, M. Kawanabe, K.-R. Müller:Maschinelles

Lernen und Mustererkennung in der Bildverarbeitung, Grundlagen der prak-

tischen Information und Dokumentation, editors: R. Kuhlen, T. Seeger, D. Strauch,

submitted

– A. Binder, W. Samek, K.-R. M̈uller, M. Kawanabe:Machine Learning for Visual

Concept Recognition and Ranking for Images, published in:Towards the Inter-

net of Services: The Theseus Project, editors: W. Wahlster, H.-J. Grallert, S. Wess,

H. Friedrich, T. Widenka, accepted

� Challenge Results

– A. Binder, W. Samek, M. Kloft, C. M̈uller, K.-R. Müller, M. Kawanabe:The

Joint Submission of the TU Berlin and Fraunhofer FIRST (TUBFI) to t he Im-

ageCLEF2011 Photo Annotation Task, CLEF(Notebook Papers/Labs/Workshop)

2011, https://doc.ml.tu-berlin.de/publications/data/ABinder/imageclef2011workingnote.pdf

(18)

– A. Binder, M. Kawanabe:Enhancing Recognition of Visual Concepts with Prim-

itive Color Histograms via Non-sparse Multiple Kernel Learning, CLEF Post-

proceedings 2009: 269-276, Springer LNCS 6242 (73)

� Open Source Software

– S. Sonnenburg, G. R̈atsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. De Bona,

A. Binder, C. Gehl, V. Franc:The SHOGUN Machine Learning Toolbox, Journal

of Machine Learning Research 11: 1799-1802 (2010) (74)
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2

Semantic Concept Recognition with a

Tree Structure over Concepts

2.1 Motivation for this aspect of Semantic Concept Recognition in

Images

Given image data with an additional structure between semantic concepts whichcan be repre-

sented by a tree, the problem considered here is to classify images into semantic concepts such

that a loss function which incorporates the tree structure is minimized.

In computer vision, one of the most dif�cult challenges is to bridge the semanticgap be-

tween appearances of image contents and high-level semantic concepts (8). While systems for

image annotation and content-based image retrieval are continuously progressing, they are still

far from resembling the recognition abilities of humans that have closed this gap. Humans are

known to exploit taxonomical hierarchies in order to recognize general semantic contents accu-

rately and ef�ciently. Therefore, it remains important for arti�cial systemsto incorporate extra

sources of information, such as user tags (75, 76, 77) or prior knowledge such as taxonomical

relations between visual concepts.

Most work on hierarchies focused on speed gains at testing time based onthe idea to

achieve a logarithmic number of SVM evaluations when traversing the hierarchy during clas-

si�cation. The second observation is that it is apparent in the preceding work that the losses

used to measure classi�cation performance are �at in that sense that the losses ignore the same

hierarchic structure employed for classi�cation. This usually resulted in speed gains at testing

time at the cost of higher �at zero-one loss. The third observation is that many publications
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focus on multi-class settings, in which each image shows at most one semantic concept. This

is a too restrictive assumption – for many real-world annotation problems on internet photo

collections one has to deal with complex images and larger sets of visual concepts. In such

settings overlap of semantic concepts becomes unavoidable.

2.1.1 Contributions

We are interested here in optimizing a loss function for multi-class classi�cation setting and a

ranking score for the multi-label ranking setting which is non-�at in the sense that it incorpo-

rates the hierarchical structure. Non-�at implies for multi-class classi�cation, that confusions

between two semantic concept classes are penalized depending on the given hierarchy. Classes

which are more distant in the hierarchy yield a higher penalization when the prediction function

confuses them. One example is given for the multi-label ranking setting in �gure 2.1 where

mistaking a cat image to show a car is intended to give a lower ranking score than confusing

a cat with a dog. In the multi-label ranking setting we have no notion of confusion, because

multiple semantic concepts can be present in one image. However when ranking images for

the cat category, a sequence which shows images with dogs in high ranks should receive higher

scores than a sequence in which the images showing dogs are replaced withimages showing

cars as the closest concept to cats in the hierarchy. This is based on the assumption that dogs

are closer in a hierarchy to cats than cars.

Figure 2.1: Two sequences for conceptcat in a multi-label setting with mistakes which affect
ranking performance, upper: a dog image, lower: a car image.Under a taxonomy-induced
measure the lower sequence should receive a lower ranking score because the difference be-
tween the closest visual concept andcat is larger compared to the upper sequence.Images
from Wikimedia Commons.
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We will see that for the multi-class setting for certain loss functions there existsa natural

solution in the framework of structured prediction. This permits the usage of methods from

structured prediction as baselines for comparison with our novel method.

The contributions of this chapter are1

� a novel method to optimize certain loss functions derived from a hierarchical structure

based on combination of scores of support vector machines which correspond to local

paths in the hierarchy. Unlike greedy walk-down schemes in this work the scores from all

paths to semantic concepts and all local SVMs are taken into account for improved clas-

si�cation performance. The main advantages of this novel method are improved speed

and scalability relative to structured prediction and improved classi�cation performance

with respect to hierarchic loss compared to the established one versus all classi�cation

baseline and greedy walk-down schemes.

� an extension of hierarchical classi�cation approaches to the multi-label setting which

allows to predict multiple semantic concepts in one image while relying on hierarchical

structures.

� an extension of average precision ranking scores to the multi-label setting which incor-

porates the hierarchical structure. This extension is general becauseany structured loss

function can be plugged in as a replacement for the average precision ranking measure,

not just loss functions derived hierarchical learning models.

� we compare the novel local SVM method against various baselines such asone versus all

classi�cation and structured prediction methods and discuss insights in the way it works.

The author regards the discussion in subsectionGeneralization Ability for Learning of Su-

perclasses in Taxonomiesof section2.4.8important for the understanding why classi�cation

with taxonomies is a challenging problem and why results obtained by using it maybe different

from an intuitive view of human abilities.

Why do we need another algorithm for hierarchic classi�cation?

Our work focuses on the question whether we may improve classi�cation losses or scores

rather than speed using hierarchies. As a preliminary step to optimizing losseswe like to

revisit the question what kind of loss or score functions we intend to optimize when using

1The content of this chapter is based on the author's own peer-reviewedwork in (62).
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hierarchical models for classi�cation and ranking. We felt that this question was not suf�ciently

considered in many of the preceding works. Furthermore we extend hierarchical approaches to

multilabel datasets which we think to be a more realistic assumption for image data sets with

many concepts de�ned over them.

In this work, we contribute a tractable alternative to the structure learning framework which

can solve our task in a sophisticated way, but is less time consuming. We propose its ef�-

cient decomposition into an ensemble of local support vector machines (SVMs) that can be

trained ef�ciently. Since the primal goal of this chapter is to discuss how much and why pre-

determined taxonomies improve classi�cation performance, we consider anytechniques for

speed-up which degrade performance to be out of the scope of this chapter.1

Our work is similar in spirit to (78) who deployed user-determined taxonomies and showed

that classi�ers for super-classes de�ned at parent and grand-parent nodes can enhance leaf-

edge classi�ers by controlling the bias-variance trade-off. However in(78) the discrimination

of images was performed against a small set of common backgrounds, andthus, all classi�ers

at all edges share the same negative samples, i.e. the background images.Performance was

measured for object versus background scenarios. In contrast to (78), we will study a more

dif�cult problem, namely, multi-class or multi-label classi�cation between objectcategories.

Since our problem does not contain uniform sets of background, it is aninteresting question

whether an averaging along the leaves of a taxonomy integrating everythingfrom super-class

classi�ers until the lower leaf-edges can still help to improve the object recognition result, in

particular as the negative samples can not be shared among all classi�ersas in (78).

We remark furthermore that we observe from our experiments that greedy strategies as

e.g. (79) are inferior by prediction accuracies to our novel taxonomy based methods that we

propose in this chapter.

In contrast to this work the approaches mentioned in Section2.1.2have one aspect common

in their methodology: they restrict performance measurement to �at loss measures which do

not distinguish between different types of misclassi�cation. In contrast tothat humans tend

to perceive some confusions like cat versus fridge to be more unnaturalthan others like cat

versus dog which can be re�ected by a taxonomy. The hierarchy in (79) learnedfrom features

re�ects feature similarities and is as a consequence in part not biologically plausible: the gorilla

1For instance, we use all images for SVM training at every edge, which is of course more costly than the greedy

strategy. It may be possible reducing the large number of negative examples which are inferred irrelevant to current

and future decisions with high probability without decreasing classi�cation accuracy.
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is closer to a raccoon than to a chimpanzee, the grasshopper is closest to penguin, and more

distant to other insect lifeforms. Such problems can arise generally when the hierarchy is

learned from image contents.

This prompts the question whether it is useful to employ a taxonomy which is basedmerely

on information already present in the images and which is thus implicitly already in use through

the extracted feature sets that feed the learning machine. Furthermore basic information derived

from the images only, may not always be coherent with the user's rich body of experience and

implicit or explicit knowledge.

An example is the discrimination of several Protostomia, sea cucumbers and �sh (see Fig-

ure 2.2). While sea cucumbers look de�nitely more similar to many Protostomia, they are

much closer to �sh sharing the property of belonging to Deuterostomia according to phylo-

genetic systematics. Equally, horseshoe crabs look more similar to crabs as both have a shell

and live on the coast, but the horseshoe-crab as a member of Cheliceratais closer to spiders

than to crabs. Therefore, this work is focused onpre-determinedtaxonomies constructed in-

dependently from basic image features as a way for providing such additional information

rsp. knowledge. This task �ts well into the popular structured learning framework (80, 81)

which has recently seen many applications among them in particular document classi�cation

with taxonomies (82). Note furthermore that a given taxonomy permits to deduce ataxonomy

loss function which – in contrast to the common 0/1 loss – allows to weight misclassi�cation

unevenly according to their mismatch when measured in the taxonomy. Thus, it is rather nat-

ural to evaluate classi�cation results according to the taxonomy losses instead of the �at 0/1

loss, in this sense imposing a more human-like error measure.

The remainder of this chapter is organized as follows. Section2.1.2gives an overview

of algorithms using hierarchical classi�cation in image annotation tasks besides the paper

which have been mentioned already. In Section2.2we will explain our novel local procedures

with scoring deduced from generalizedp-means, along with structure learning approaches.

We discuss in Section2.3 when and why our procedures can improve the one-vs-all base-

line. The empirical comparisons between our local approach and other taxonomical algorithms

and taxonomy-free baselines are presented in Section2.4. For the present work, we have

constructed multi-class classi�cation datasets with taxonomy trees between object categories

based on the benchmarks Caltech256 (83) and VOC2006 (84) as explained in Section2.4.1. In

this Section we discuss why our local approach can improve the one-vs-all baseline from the

viewpoint of averaging processes. Section2.6gives concluding remarks and a discussion.
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Figure 2.2: Mismatch between taxonomy and visual similarity: the �rst column are Proto-
stomia, the second (sea cucumbers) and third row are Deuterostomia. The difference is based
on embryonal development.Images from Wikimedia Commons.

2.1.2 Related Work

There have been a number of studies consideringlearning class-hierarchies, for instance on

the basis of delayed decisions (85), dependency graphs and co-occurrences (52, 86), greedy

margin-trees (87), by hierarchical clustering (79, 88), and by incorporating additional infor-

mation (89). Unfortunately, few could so far report signi�cant performance gains in the �nal

object classi�cation (even though they contributed to other aspects, for instance, computational

ef�ciency).

When a taxonomy is available, a standard way of using the hierarchy is sequential greedy

decision (79). Starting from the root node, the strategy selects only the most probable edge

rooted at each node and ignores other possibilities until reaching a leaf node. Therefore, for

classifying an unseen image only the classi�ers on one path of the hierarchy need to be evalu-

ated. Furthermore, since each node takes only relevant images for current and future decisions

during the training phase, such greedy methods are computationally very attractive. The work

in (79) focuses on learning hierarchies and demonstrates speed gains by the greedy classi�-

cation schemes compared to one versus all classi�ers (e.g. 5-fold speedgain at the cost of

10% performance drop). Another greedy walk approach over a learned hierarchy (85) shows

small improvements on the Caltech256 dataset. A similar result using a non-convex formu-
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lation for learning a relaxed hierarchy is presented in (90). It achieves computation speedups

and even small recognition performance improvements on Caltech256 with respect to zero-one

loss.1 The later work in (91) develops general structured prediction for multi-label datasets and

applies it also to hierarchical classi�cation. It �nds the one-versus-allclassi�cation baseline

which we also considered here hard to beat. These �ndings are consistent with our experiments

which structured prediction algorithms below.

2.2 Methods

2.2.1 Problem Formulation

We consider the following problem setting: given aren pairsf (x(i ) ; y(i ) )g, 1 � i � n, where

x(i ) 2 < d denotes the vectorial representation of thei -th image which can be represented in

higher dimensions by a possibly non-linear mapping� (x(i ) ). The latter gives also rise to a

kernel function on images, given byK X (x; x 0) = h� (x); � (x0)i . The set of labels is denoted

by Y = f c1; c2; : : : ; ckg. We focus initially on multi-class classi�cation tasks, where every

image is annotated by exactly one element ofY . Some image databases fall into the multi-

label setting, where an image can be annotated with several class labels which will be dealt

with later on.

In addition, we are given a taxonomyT in form of an arbitrary directed graph(V; E) where

V = ( v1; : : : ; vjV j) andY � V such that classes are identi�ed with leaf nodes (see Figure2.3

for an example). We assume the existence of one unique root node. The set of edges on the

path from the root node to a leaf nodey is de�ned as� (y). Alternatively, the set� (y) can be

represented by a vector� (y) where thej -th element is given by

� j (y) =
�

1 : vj 2 � (y)
0 : otherwise;

such that the categorysheepin Figure2.3 is represented by the vector

� (sheep) = (1 ; 0; 0; 0; 0; 0; 0; 0; 1; 0; 1; 1; 0; 1; 0; 0; 0; 0; 0)0:

1For convention purposes please note that a classi�er is rooted at eachedge. For trees this is equivalent to the

view that each node except for the root node has one classi�er. For directed acyclic graphs, however, the �rst view

is necessary because each node may have more than one directed edges pointing to it. We will speak about nodes

when we refer to sets of classes or images and edges when we refer to classi�ers itself. In this sense a classi�er at

a node refers to a classi�er at the directed edges leading to that node.
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The goal is to �nd a functionf that minimizes the generalization errorR(f ),

R(f ) =
Z

< d � Y
� (y; f (x))dP(x; y);

whereP(x; y) is the (unknown) distribution of images and annotations. The quality off is

measured by an appropriate, symmetric, non-negative loss function� : Y � Y ! < +
0 detailing

the distance between the true classy and the prediction. For instance,� may be the common

0/1 loss, given by

� 0=1(y; ŷ) =
�

0 : y = ŷ
1 : otherwise:

(2.1)

When learning with taxonomies, the distance ofy andŷ with respect to the taxonomy is fun-

damental. For instance, confusing anbuswith a cat is more severe than confusing the classes

cat anddog. We will therefore also utilize a taxonomy-based loss function re�ecting this intu-

ition by counting the number of non-shared edges on the path between the true classy and the

predictionŷ,

� T (y; ŷ) =
jV jX

j =1

j� j (y) � � j (ŷ)j: (2.2)

This distance can be induced as Hilbert space norm by the kernel between labels de�ned as

KY (y; ŷ) =
jV jX

j =1

� j (y)� j (ŷ): (2.3)

Note here that each node except for the root node can be identi�ed with the path element in

the hierarchy from its parent node to the current node. In that sense the usage of the notions

of node in the hierarchy and of path element in the hierarchy is equivalentfor hierarchies. For

direct acyclic graphs, however, one has to resort to the notion of edges because a node may

have multiple ancestors and edges leading to it.

For instance, the taxonomy-based loss between categorieshorseandcow in Figure2.3 is

� T (horse; cow) = 4 because� (horse) and� (cow) differ at the edges pointing to nodes horse,

pegasofera, cetartiodactyla and cow.

2.2.2 Structure Learning with Taxonomies

The taxonomy-based learning task can be framed as structured learning problem (80, 81) where

a function

f (x) = argmax
y

hw; 	( x; y)i (2.4)
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1:All

9:Life

11:Laurasitheria

15:Pegasofera

19:Horse16:Carnivora

18:Dog17:Cat

12:Cetartiodactyla

14:Sheep13:Cow

10:Person

2:Nonlife

6:4-Wheeled

8:Car7:Bus

3:2-Wheeled

5:Motorbike4:Bicycle

Figure 2.3: Taxonomy constructed from VOC2006 labels. The life subtree is based on biolog-
ical systematics.

de�ned jointly on inputs and outputs is to be learned. The mapping	( x; y) is often called the

joint feature representation and for learning taxonomies given by the tensor product (82) with

indicator functions

� i (y) = [[ vi 2 � (y)]] (2.5)

and the input feature mapping� (x)

	( x; y) = � (x) 
 � (y) =

0

B
B
B
@

� (x)[[v1 2 � (y)]]
� (x)[[v2 2 � (y)]]

...
� (x)[[vjV j 2 � (y)]]

1

C
C
C
A

: (2.6)

Thus, the joint feature representation subsumes the structural informationand explicitly en-

codes paths in the taxonomy. It leads to a joint kernel

K X;Y ((x1; y1); (x2; y2)) = K X (x1; x2)K Y (y1; y2); (2.7)

whereK X (x1; x2) = h� (x1); � (x2)i and the label kernelK Y (y1; y2) is de�ned according to

the taxonomyT as in Equation (2.3).

The empirical risk can be optimized utilizing conditional random �elds (CRFs) (92) or

structural support vector machines (SVMs). We will follow structural learning in the formula-

tion by (93, 94). There are two ways of incorporating a loss�( y; �y) such as� 0=1 and� T in the
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structural SVMs. The optimization problem with margin rescaling is given by

min
w;�

1
2

kwk2 + C
nX

i =1

� (i )

s.t.8i; 8�y 6= y(i ) :

hw; 	( x(i ) ; y(i ) ) � 	( x(i ) ; �y)i � �( y(i ) ; �y) � � (i ) (2.8)

8i : � (i ) � 0:

The above minimization problem has one constraint for each image. Every constraint is associ-

ated with a slack-variable� (i ) that acts as an upper bound on the error� caused by annotating

the i -th image with a wrong label. Once, optimal parametersw� have been found, these are

used as plug-in estimates to compute predictions for new and unseen examplesusing Equation

(2.4). The computation of the argmax can be performed by explicit enumeration ofall paths in

the taxonomy.

An alternative formulation (81) uses slack rescaling instead of margin rescaling in the con-

straints:

min
w;�

1
2

kwk2 + C
nX

i =1

� (i )

s.t.8i; 8�y 6= y(i ) :

hw; 	( x(i ) ; y(i ) ) � 	( x(i ) ; �y)i � 1 �
� (i )

�( y(i ) ; �y)
(2.9)

8i : � (i ) � 0:

In this multiplicative formulation based on a hinge loss (assume�( y; ŷ) � 0; �( y; y) = 0 8y)

max
�y

�(� y; y(i ) )(1 + hw; 	( x(i ) ; �y) � 	( x(i ) ; y(i ) )i ) (2.10)

each sample receives the same margin of one. As a drawback �nding the maximally violated

label can be more complicated compared to margin rescaling due to the label�y appearing in

both factors of a product. Margin rescaling is also based on the hinge lossbut uses an additive

formulation in�(� y; y(i ) )

max
�y

�(� y; y(i ) ) + hw; 	( x(i ) ; �y) � 	( x(i ) ; y(i ) )i (2.11)

where it might be easier to �nd the maximally violated constraint but on the other side here the

loss function� might dominate the loss term (2.11) if it is badly scaled.
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Although, equations (2.8) and (2.9) can be optimized with standard techniques, the number

of categories in state-of-the-art object recognition tasks can easily exceed several hundreds

which renders the structural approaches inherently slow.

2.2.3 Remark on Feasible Taxonomy Loss Functions

The factorization of the combined feature label kernel (cf. Eq.2.6) in the structured prediction

setup allows to insert more general label kernels beside the one which induces the canonical ta-

xonomy distance given in Eq.2.2. Any mapping� (y) may be chosen in Equations2.5and2.6.

One particular useful possibility in the connection with a given taxonomy is to use weighted

taxonomy loss functions which assign non-negative weights to edges in the hierarchy from one

node to its child node. This permits to emphasize the importance of certain confusions over

others in an easily interpretable manner. To do this, replace� (y) from Eq.2.5by element-wise

multiplication with the square-root of the desired edge weightsu :

� [u ]i (y) =
p

ui [[vi 2 � (y)]].

This extends the original setup to taxonomy losses with weighted edges. One meaningful

application is to weight each edge by the binary power2� d of its negative depthd in the

hierarchy. Since
P s

i =1 2� i = 1 � 2� s < 1 this ensures that a classi�cation error made at a

higher level closer to the root node always counts more than confusionsat lower levels of the

hierarchy independent of the length of the path from root to the leaf node.

2.2.4 Assembling Local Binary SVMs

We propose here an ef�cient alternative to the structural approachesby decomposing the struc-

tural approach from Equation (2.8) into several local tasks. The idea is to learn a binary SVM

(e.g. (3, 4)) using the original representation� (x) for each edgeej 2 E in the taxonomy in-

stead of solving thewholeproblem at once with a structured learning approach. This will help

to circumvent the high computational load typically encountered in structured learning. To

preserve the predictive power, the �nal ensemble of binary SVMs fromeach edge need to be

assembled in an intelligent manner, i.e. appropriately according to the taxonomy. We remark

that this novel approach is different from greedy hierarchical classi�ers where at each edge

only categories (leaf nodes) lying below the edge are taken into account. On the contrary, we

are consideringall images and categories at each node: for example, we learn binary SVMs
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such as 'Carnivora vs the others' and 'horse vs the others', while only 'Carnivora vs horse',

'cat vs dog' etc. would be used in the greedy hierarchical classi�cation. As outlined in Section

2.4.7, the greedy approaches perform sub-optimally, because they may rely on erroneous de-

cisions of upper internal edges without the possibility to recover by correct decisions in lower

internal edges.

Thus essentially, our approach consists of trainingjV j independent binary support vec-

tor machines (which can be done highly ef�ciently in parallel!) such that the scoref j (x) =

h~wj ; � (x)i + ~bj of the j -th SVM centered at edgeej serves as an estimate for the probability

thatej lies on the pathy of instancex, i.e.,P r (� j (y) = 1) . An imagex(i ) is therefore treated

as a positive example for edgeej if this very edge lies on the path from the root to labely(i )

and as a negative instance otherwise, which amounts to the sign of2� j (y(i ) ) � 1.

We resolve ourlocal-SVMoptimization problem that can be split intojV j independent

optimization problems, effectively implementing a one-vs-all classi�er for each edge.

min
~wj ;~bj ;~� j

1
2

jV jX

j =1

k ~wj k2 +
jV jX

j =1

~Cj

nX

i =1

~� (i )
j

s.t.8i; 8j : (2� j (y(i ) ) � 1)(h~wj ; � (x(i ) )i + ~bj ) � 1 � ~� (i )
j (2.12)

8i; 8j : ~� (i )
j � 0:

At test phases, the prediction for new and unseen examples can be computed similarly to Equa-

tion (2.4). Denote the local-SVM for thej -th edge byf j , then the score for classy is simply

the sum of all edges lying on the path from the root to the leafy,

f y(x) =

P
j :� j (y)=1 f j (x)
P

j � j (y)
: (2.13)

The normalization is required due to varying path lengths in our taxonomies which is a dif-

ference compared to the taxonomies considered in (82). The classy which has the maximum

scoref y over all classes is selected as the �nal prediction.

Note that since the entire problem decomposes intojV j binary classi�cation tasks, paral-

lelization becomes possible and thus, the training time of our approach is considerably shorter

compared to the structural SVMs. Another advantage is that our local procedures can be di-

rectly extended to multi-label problems without taking the maximum operation at the end, but

by setting thresholds only which determine whether object categories are included in images

or not.
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2.2 Methods

Although our initial motivation was to construct an ef�cient approximation of the struc-

tural SVMs, we would like to remark that there exists a fundamental difference between the

structural SVMs and our local-SVM procedure with respect to their optimization target. The

constraints of the structure learning in Equation (2.8) aim to order theset of all class labels

correctlyfor each imagein the sense that the SVM score for the correct class label is highest.

For our local-SVM approach the SVM constraints aim at ordering theset of all imagescor-

rectly for each edgewith respect to the binarized learning problem whether an image belongs

to a class lying on a path passing through this taxonomy node or not. We remarkfurther that

the constraints of the structural optimization problems do not imply necessarily that the set of

all images is ordered correctly for the binary classi�cation problem at each taxonomy edge.

In order to foster a better intuitive understanding, the difference between both approaches are

illustrated in Figure2.4.

2.2.5 Scoring with Generalizedp-means

When we combine the binary classi�cation scores at the edges along a path,it is not necessary

to take their arithmetic mean as in (2.13). Instead, our procedures permit more general scoring

methods such as the generalizedp-means of outputs

M p(z1; : : : ; zm ) =

 
1
m

mX

i =1

zp
i

! 1=p

: (2.14)

after scaling to[0; 1]. This includes the geometric mean as the limitp ! 0 and the harmonic

mean forp = � 1 as well as the minimum as the limitp ! �1 . Tuning of this extra degree of

freedomp may improve classi�cation performance. To see this note that the geometric mean

and generalized means with negative norms of scores in[0; 1] are upper bounded by a power of

the smallest element.

si 2 [0; 1] )
nY

i =1

s1=n
i � min

i
s1=n

i

p < 0 )

 
1
n

nX

i =1

sp
i

! 1=p

�
1

n1=p
min

i
si

For positive norms the generalized mean is upper bounded instead by a power of its largest

element. In that sense generalized means with non-positive norms are more sensitive to nega-

tive outliers and more robust against strong positive outlier votes from edges than generalized
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Figure 2.4: Differences between one vs all (top left), structure learning (top right) and local
approach (bottom). The one vs all procedure ignores internal nodes of taxonomies and takes
the maximum of the SVM outputs at leaf edges. The structured approach takes paths as a
whole into account, maximizes the margin between correct and wrong paths in training and
returns as a predictor the label of the path with the maximum score. The local procedures
optimize each binary problem of passing through a path independently and then combine the
outputs of the local SVMs into a score with generalizedp-means.

means with positive norms where the distortion by strong positive outliers can be arbitrarily

large. The selection of an optimal p-norm thus adjusts the sensitivities to verysmall votes

close to0 versus very large votes close to1. The usage of generalized means with arbitrary

norms requires the scores to be non-negative and SVM outputs to be scaled.1

In order to scale SVM outputs into[0; 1], we deploy a logistic function with �xed parame-

1While there exist convex mappings ofR1 to the interval[0; 1 ) we are not aware of the existence of a

monotonous and continuous mapping ofR1 onto a bounded nontrivial interval which is everywhere concave or

convex. This implies that a model using scaling of unbounded inner products cannot be optimized by applying

convex methods in the structured output framework.
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ters

s(y) =
1

1 + exp( � 10y)
:

Experimentally we have seen that learning the logistic regression parametersfrom data (95)

did not further improve performance of image categorization.

Scaling with logistic functions is closely linked to a probabilistic interpretation of a classi-

�cation procedure. Our current approach does not immediately permit a probabilistic interpre-

tation �tting to a taxonomy graph. This is because we so far have chosen to always consider

classi�cation between a part of the categories and all remaining others at each edge, instead of

conditioning on its parent nodes.

2.2.6 Baselines

In our experiments, we will use additionally two kinds of classi�cation methods.One is the

standard one-vs-all classi�cation: we train one binary SVM for each class which uses the

samples of this class as positive labeled data and all the other class data as negative examples.

The multi-class labeling is obtained by the class maximizing the scores of all binarySVMs.

This is a completely taxonomy-free approach. The second is structured multi-class SVMs

which uses the joint feature representation ignoring the taxonomy graph

	( x; y) = � (x) 
 � (y) =

0

B
B
B
@

� (x)[[y = c1]]
� (x)[[y = c2]]

...
� (x)[[y = ck ]]

1

C
C
C
A

;

where�(y) is the vector of the indicator functions[[y = ci ]]. This leads to the 0/1 loss from the

label kernel

2 � 2K Y (y1; y2) = � 0=1(y1; y2);

instead of the taxonomical one in the structured taxonomical SVMs. No taxonomy information

is used, if the 0/1 loss is deployed as the loss function� in Equation (2.8) and (2.9), while it is

incorporated indirectly into the learning process, when� is the taxonomy loss� T .

2.3 Insights from Synthetic Data

In this Section, we discuss when and why the taxonomical approaches mightoutperform the

one-vs-all baseline. Furthermore we can observe differences in AUCscores between leaf and
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internal edges which can be linked to �at losses in later experiments on realdata. We remark

that the one-vs-all baseline can be regarded as a classi�cation procedure only with leaf edges,

while the taxonomy-based learning combines classi�cation results of leaf andinternal edges,

namely by generalizedp-means in the local-SVM approach and by implicit arithmetic mean

integrated in the structural SVMs.

2.3.1 Experimental Results

To illustrate our claim, we consider a 16 class example with the taxonomy being a binary

balanced tree with 16 leaf nodes. Each class is generated from one Gaussian distribution in

15 dimensions. The variances are equal for all Gaussian and are varied to give seven datasets

with � = 1 , 0:5, 0:3725, 0:25, 0:1875, 0:125, 0:0625. The means are distributed such that

their Euclidean distance matrix equals the normalized taxonomy loss matrix which has values

i=4; i = 0 ; : : : ; 4. Our intention is to illustrate that taxonomy-based learning reduces taxonomy

loss, if the data is aligned to the taxonomy. For the sake of computation speed wecompare

the one-vs-all baseline versus a local algorithm with scoring based on thegeometric mean of

logistically scaled scores of 19200 data points each independently, wherewe use 200 samples

per class for training and the remaining 1000 per class for testing. We deployed Gaussian

kernels here, set the width to be the mean of squared distances and normalized all kernels to

have standard deviation one in Hilbert space.

Table2.1 shows the 0/1 and taxonomy losses of one-vs-all and our local SVM procedure

with the scaled geometric mean over different noise levels. The standard deviations are com-

puted between the 15 draws.

The local algorithm improved the one-vs-all baseline signi�cantly under thetaxonomy loss

in all cases. The relative improvements are more than2%with the maximum above5%for � =

1=8. We also conducted Wilcoxon's signed rank test, which showed that all performance gains

are signi�cant with p-values of orders10� 4 or 10� 5. Surprisingly, the local SVM procedure

the taxonomy compares favorably with the baseline under the �at 0/1 loss as well.

There is an intuitive explanation why hierarchical approaches do improvelosses consistent

with the hierarchy compared to one versus all classi�ers. One versus allclassi�ers attempt to

rank the images belonging to positive class highest. Classi�ers from superclasses in a hierarchy

attempt to rank the images belonging to the positive classand similar classesto be highest.

Averaging many versus all classi�ers from superclasses with one versus all classi�ers at the
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leafs achieves a tradeoff between both aims. At the same time such an averaging can potentially

harm the zero-one-loss which does not consider similarities encoded in a taxonomy.

Table2.2shows the AUC score (equation (2.15)) (96) at different levels in the hierarchy.

AUC(f; f (x i ; yi )g) =

P
i : yi =+1

P
k: yk = � 1 I f f (x i ) > f (xk )g

jf i : yi = +1 gj � jf k : yk = � 1gj
(2.15)

It allows to judge how dif�cult the learning problems are at the internal edges compared

Table 2.1: Synthetic data perfectly aligned to the taxonomy: Losses of the one-vs-all baseline
(left) versus the local procedure with taxonomy (right) for different label noise levels.� 0=1 is
the zero-one-loss.� T is the taxonomy loss. Lower losses are better.

one-vs-all local-SVM approach

� � 0=1 � T � 0=1 � T

1 89.10� 0.32 67.09� 0.34 88.59� 0.34 65.69� 0.35

1/2 78.24� 0.32 51.37� 0.31 77.84� 0.39 50.27� 0.35

3/8 69.30� 0.38 41.29� 0.28 68.94� 0.39 40.21� 0.29

1/4 51.61� 0.52 25.05� 0.26 51.26� 0.52 24.17� 0.22

3/16 37.32� 0.46 14.94� 0.23 36.91� 0.48 14.24� 0.23

1/8 19.49� 0.39 6.05� 0.11 19.12� 0.41 5.70� 0.12

1/16 2.41� 0.13 0.61� 0.03 2.38� 0.13 0.60� 0.03

Table 2.2: Synthetic data perfectly aligned to the taxonomy: AUC scores in the taxonomy for
� = 1=4 at different levels. Higher scores are better.

level in taxonomy 1 2 3 4 (leaf)

AUC 99.21 97.78 95.42 92.40

Table 2.3: Synthetic data perfectly aligned to the taxonomy: At which level does misclassi�-
cation occur for � = 1=4?

level in taxonomy 1 2 3 4 (leaf)

Differences of Error Rates -1.55 -0.68 0.48 1.74
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to leaf edges. Note that we observe on this synthetic dataset a higher AUC score on internal

edges compared to leaf edges and a decrease in the �at zero-one-error compared to the one

versus all baseline. This implies that the learning problems are easier on superclass level than

at the leaf edges. This might explain why we observe here an improvement inthe �at zero one

loss as well. It is not straightforward in a statistical sense that optimizing for one loss improves

another loss as well. As an explanation we propose that in this synthetic casethe features allow

a good generalization at superclass level because the given taxonomiesare perfectly aligned to

the similarities between classes at the feature level. The higher AUC score atinternal edges

compared to leaf edges supports this view. This good alignment might be also the case when

learning similarities from visual features and explain results for �at lossesin (78, 85) but it

cannot be expected to hold in general when a taxonomy is provided independent of visual

features. We will return to this observation in the forthcoming Section2.4 on experiments on

real data.

Table2.3 shows another aspect of hierarchical averaging: given a pair consisting of true

and predicted label we can ask where in the hierarchy the error did occur. This leads to two

histograms, for the taxonomy-based and for the one versus all classi�er. The Table shows the

difference between both histograms. Negative values imply a reduction of errors at this level

for the taxonomic method. We see that under our taxonomy based approachthe classi�cation

errors are moved to lower levels in the hierarchy compared to a �at one versus all classi�cation

implying that confusions occur more often between taxonomically closer classes.

2.3.2 Robustness byp-means

The parameterp of the generalized controls robustness against outlying classi�er outputs. Neg-

ative p's make the mean robust against upper extremes while in the opposite cases lower ex-

tremes are suppressed. To see this we conducted an experiment on controlled perturbation of

SVM outputs over the toy data. We �xed a priori a set of 10% of the samples tobe perturbed

and for each sample one edge in the taxonomy to be perturbed. We applied these �xed sets to

values of perturbation factorsf +8 ; +4 ; � 4; � 8g. The perturbation is computed for a sample

by adding to the SVM output of this sample the factor times the standard deviation of the out-

puts of the SVM corresponding to the taxonomy node. The negative factors allow to simulate

large negative outliers, the positive factors large positive outliers. Table2.4shows the results.

We can see that for large positive distortions both positive means performlower than geo-

metric mean and a negative mean.
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For large negative distortions the �rst ranks are held by the non-scaledarithmetic mean

and a scaled positive mean. These two methods suffer less from negativeoutliers than negative

means. Furthermore we observe in both settings that unscaled variants areless robust than

scaled ones.

Finally the last part of the Table2.4 shows a result where 80% of the perturbed samples

are modi�ed by a factor of+4 and 20% by� 4. Here the geometric mean turns out to be the

best choice which corresponds well to our empirical �ndings in Section2.4.5. We conclude

that the geometric mean is well suited to deal with SVM outputs which suffers from positive

and negative outliers in taxonomy edges coming from noisy classi�cation problems.

In summary, we would like to emphasize that classi�cation techniques with taxonomies

can improve the one-vs-all baselines, under the taxonomical loss and the �at zero one loss.

2.4 Experiments on Real World Multi-class Data

2.4.1 Datasets

For the present work, we constructed multi-class classi�cation datasets withtaxonomy trees

between object categories by modifying the benchmarks Caltech256 (83) and VOC2006 (84).

Caltech256 all classes.

The Caltech256 dataset (83) contains 256 classes of objects and one clutter class. For an initial

experiment allowing comparison to results from other publications we have taken 50 images

from each of the object classes and employed the taxonomy as provided in the report (83).

The only changes we made were to add pisa-tower to the taxonomy graph as itseemed to be

missing and moved iris to �owers from air animals. Unfortunately, using50 � 256 � 0:9 =

11520samples for training using ten-fold crossvalidation is beyond the scope of the structured

prediction baselines on our hardware. Therefore we considered subsets of classes which will

be described below. The result for all 256 object classes can be looked up in section2.4.7.

Caltech256 animals.

We consider all 52 real world animal classes from the Caltech256 dataset(83) which yields

5895data points (see Figure2.5). They form a multi-class problem with mutually exclusive

classes. We used a taxonomy based on a recherche of biological (phylogenetic) systematics

consisting out of92 nodes constructed a priori. We have chosen this subset for two reasons.
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Table 2.4: Synthetic data perfectly aligned to the taxonomy: Differences in taxonomy loss and
0/1 loss to unperturbed SVM outputs and absolute ranks between all four methods. Lower
losses are better.

unperturbed nonscaledM 1 scM 2 scM 0 scM � 2

rank� T 1 3 2 4

rank� 0=1 1 3 1 4

perturb=+8 nonscaledM 1 scM 2 scM 0 scM � 2

diff. � T 1.8 0.14 0.04 0.05

rank� T 4 3 1 2

diff. � 0=1 1.91 0.27 0.15 0.15

rank� 0=1 4 3 1 2

perturb=+4 nonscaledM 1 scM 2 scM 0 scM � 2

diff. � T 0.47 0.14 0.04 0.05

rank� T 4 3 1 2

diff. � 0=1 0.81 0.26 0.15 0.15

rank� 0=1 4 3 1 2

perturb=-4 nonscaledM 1 scM 2 scM 0 scM � 2

diff. � T 0.26 0.03 0.42 0.75

rank� T 2 1 3 4

diff. � 0=1 0.34 0.13 0.49 0.73

rank� 0=1 1 2 3 4

perturb=-8 nonscaledM 1 scM 2 scM 0 scM � 2

diff. � T 0.68 0.03 0.7 0.75

rank� T 2 1 3 4

diff. � 0=1 0.73 0.12 0.74 0.74

rank� 0=1 2 1 3 4

80% +4, 20% -4 nonscaledM 1 scM 2 scM 0 scM � 2

diff. � T 0.41 0.09 0.11 0.12

rank� T 4 3 1 2

diff. � 0=1 0.53 0.21 0.2 0.23

rank� 0=1 4 3 1 2

46



2.4 Experiments on Real World Multi-class Data

Firstly, it is a natural multi-class dataset in the multimedia image domain. Secondly, it allows

to de�ne a taxonomy in an indisputable way prior to looking at image content, namely via

biological systematics. For the remaining 204 classes from Caltech256 we would have to rely

on human experience of some sort which might lead to some kind of unintentional appearance-

based optimization of when choosing a taxonomy. The technical report on the Caltech256

dataset (83) contains a hierarchy. We have chosen not to use its construction principle because

it is somewhat arbitrary as stated by the authors of the technical report themselves and from

our own point of view is not biologically plausible. It groups all animals in four �at subgroups:

insects, land, air and water based lifeforms. As stated in the introduction the usage of phyloge-

netic systematics resulted in a taxonomy which is indeed not fully consistent to thesubjective

visual similarities of the authors which diverge for example for crabs and horseshoe crabs but

also as shown in Figure2.2 potentially for superclasses in the taxonomy. The hierarchy con-

tains in contrast to many preceding works paths with varying lengths. We omittedfantasy

animals like Minotaurs and Unicorns from the Caltech256 set, as there is no objective way to

incorporate them into biological systematics. The full taxonomy is given in Figure2.12.

Caltech256 animals thirteen classes subset

For further experiments, we select13 classes - all Protostomia (praying-mantis, grasshopper,

cockroach, house-�y, butter�y, trilobite, centipede, crab, spider, scorpion, horseshoe-crab, oc-

topus, snail) from theCaltech256 animalsdataset. This corresponds to one subtree in the

original taxonomy over all 52 classes. The total number of the images is reduced to1308. This

allows us faster experimentation with the structural approaches which was the main reason

for choosing this subset. We deploy as taxonomy the corresponding subtree with21 nodes of

that ofCaltech256 animalswhich is still challenging in its topology due to non-balanced tree

structure and varying path lengths.

VOC2006 multi-class data

We use the VOC2006 dataset (84) consisting of 10 object classes and5301images (see Figure

2.6). We have modi�ed the VOC2006 labels in order to obtain a multi-class problem with

mutually exclusive classes. To achieve such exclusive labeling, for each image all positive

labels except for a randomly chosen one are suppressed. We remark that this process induces

additional label noise.
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Figure 2.5: Caltech256 animals dataset example images.

Figure 2.6: VOC2006 dataset example images.

2.4.2 Image Features

For the following experiments, we used bag of words (BoW) representations based on the

SIFT descriptors (16) as image features. The BoW features were constructed in a standard

way: using the code from (23), the SIFT descriptors were computed on a dense grid of step

size six over the color channel triplesf red, green, blueg (RGB) andf grey, opponent color 1, 2g

(OPP, see equations (1.5),(1.6), (1.7) ). Then, for both triples, 8192 visual words (prototypes)

were generated by using extremely randomized clustering forest (ERCF)clustering (31) via 16

trees with 512 leaves each based on large sets of SIFT descriptors selected randomly from the

training images following (23). For each image, each SIFT feature was assigned to one leaf for

each of the 16 trees. We have chosen the supervised ERCF procedureover k-means as it does

greatly reduce the time necessary for clustering of visual words and bagof word computation

while having comparable performance. The sum of these mappings resultedin one histogram

for each image within each cell of the spatial tilings1 � 1, 2 � 2 and3 � 1. The idea of a
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spatial tiling is to split each image into a set of regularly shaped spatial tiles, to compute one

BoW feature for each tile separately and �nally to concatenate the BoW features over all tiles

into one BoW feature (36, 97). Finally, we obtained 6 BoW features (2 color channels sets� 3

sets of spatial tilings) with dimensionalities8192, 4 � 8192and3 � 8192depending on the

spatial tiling. For Caltech256 data we omitted the two kernels based on tilings2� 2 as they did

degrade the one-vs-all baseline performance already. We do not aim here at the best possible

baseline performance which might be achieved by adding carefully selected sets of additional

features. Instead we focus on the effect of a given hierarchy and non-�at loss functions. We

note however that high-dimensional bag of words models have been able toachieve superior

performance in recent object categorization challenges (23, 98, 99) which motivates our choice

of these features.

2.4.3 Image Kernels and Regularization of SVMs

We used the exponential� 2-Kernel (equation (1.26)) for comparing the image feature his-

tograms (50, 51). The bandwidth� of the� 2 kernel in (1.26) is thereby heuristically chosen as

the mean� 2 distance (equation (1.27)) over all pairs of training examples, as done, for exam-

ple, in (52). All kernels have been normalized to standard deviation in Hilbert space set equal

to one which in practice limits the range where to search for an optimal regularization constant.

We combined all kernels via addition.

In the local-SVM procedure, we used two regularization constants (one per class) for all

binary problems in order to compensate for the unbalanced ratios between positive and negative

classes. The regularization constant of the smaller class was obtained by multiplying that of

the larger class1 by the ratio between the two samples. For the structured SVMs we used as

regularization parameter~C = 16jV j for the taxonomical procedures and~C = 16k for the

multi-class ones, wherejV j andk are the number of nodes and classes, respectively.

This is motivated by comparing the main objective of one local SVM

min
~wj ;~bj ;~� j

1
2

k ~wj k2 + ~Cj

nX

i =1

~� (i )
j

to the one from a structured SVM

min
~w; ~�

jV jX

j =1

1
2

k ~wj k2 + ~C
nX

i =1

~� (i ) :

1The regularization constant of the larger class was �xed to 16 which corresponds to our experience that high-

dimensional Bag-of-words features perform better under hard margin training.
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We note that the ratio between the weight normkwk2 and the slacks� (i ) is roughly up-scaled

by a factor equal to the number of nodes. We have checked experimentallythat using much

lower regularization constants damages the performance of the structuralSVMs, while much

higher regularization constants did not improve the results anymore. Since the sizes of the

object categories are balanced, we do not have to assign one regularization constant for each

class separately.

2.4.4 Comparison Methodology

All considered methods can be divided into structured and structure-free as well as taxonomical

and taxonomy-free approaches (Table2.6). Due to limited space, we will use the abbreviations

listed in Table2.6to in our experimental results.

There are three ways to use the taxonomy. The taxonomy loss as performance measure

is used on all methods. The taxonomy loss as part of the training procedureis used in all

structured SVMs according to equation (2.8). The taxonomy structure is incorporated in all

taxonomical approaches but not in the structured multi class procedures.

We will use as baselines the structure-free one-vs-all classi�cation andtaxonomy-free multi

class SVMs with margin and slack rescaling trained using zero-one loss� 0=1 or taxonomy loss

� T . The taxonomy-based algorithms to be tested are, �rstly, the structured SVMs with nontriv-

ial taxonomies in margin (2.8) and slack rescaling formulation (2.9) and, secondly, structure-

free methods where we obtain scores for each concept class via the arithmetic mean over the

component SVM outputs and via generalized means of SVM outputs which arescaled using

logistic functions.

We used SVMmulticlass (100) and modi�ed versions thereof for the structured approaches.

Table 2.5: Classi�cation of methods.

structure-free structured

taxonomy-free one vs all struct multi-class SVMs

(Section2.2.6) (Section2.2.6)

taxonomical local taxonomy struct taxonomy SVMs

(Section2.2.4) (Section2.2.2)
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The non-structured methods have been implemented using shogun toolbox (74) with the SVM-

light solver. We note that SVMlight is also deployed in the optimization procedures of the

SVMmulticlass implementations.

The error measurement is done for the multi-class problems using the 0/1- andtaxonomy

loss from equation (2.2). For all multi-class problems we use 20 splits into training and test

data with 50 images per class in each split.

Furthermore we use for some experiments the Average Precision (AP) Score for a class

(see Equation (2.16)) and the mean Average Precision score (mAP) obtained by averaging the

average precisions over all classes.

For computation of the AP score we assume that the pairs of classifer outputsand ground

truth labels(z(c) ; y(c) ) for a class in questionc are sorted according to the descending order

of their output scoresz(c)
k over the data sample indexk. The average precision (AP) score for

n(c)
+ =

P n
i =1 I f y(c)

i = 1g positively labeled samples of classc is de�ned as

AP (c) ((z(c)
k ; y(c)

k )n
k=1 ) :=

1

n(c)
+

nX

i =1

I f y(c)
i = 1g

1
i

iX

k=1

I f y(c)
k = 1g (2.16)

2.4.5 Experimental Results: Performance Comparisons

At �rst, we would like to remark the dif�culty inherent in the datasets. Table2.7shows the 0/1

loss and the average precisions (AP score) of the one-vs-all baselines for the three multi-class

Table 2.6: Abbreviations for compared methods.

structured multi-class baseline

struct mc mr with margin rescaling

struct mc sr with slack rescaling

taxonomical structural learning

struct tax mr with margin rescaling (2.8)

struct tax sr with slack rescaling (2.9)

the local procedure with taxonomy

local tax AM with arithmetic mean (2.13)

local tax scaled GM with geometric mean after scaling

M p with p-mean after scaling
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datasets.

The AP score is a rank-based measure which was deployed as the performance criterion in

the recent Pascal VOC challenges. For VOC2006 the results for 20 splitsperform worse due

to sample size effects as they use only500training data in each split as compared to over5000

points for the 20-fold cross-validation.

Table 2.7: One-vs-all baseline performance on multi-classdatasets. Lower losses and higher
AP scores are better.

dataset 0/1 Loss AP score

Cal256 animals 62.56 34.34

Cal256 13 class subset 57.04 43.69

VOC2006, multi-class, 20 splits 50.54 54.75

VOC2006, multi-class, 20-fold crossval 33.56 70.50

The comparisons for Caltech256 animals and its 13 class subset are shownin Tables2.8

and2.9. For simplicity, we present only the best result among all options for each of structural

multi-class, local taxonomy-based and structural taxonomy-based procedures. The full Tables

listing all results can be found in the Appendix (Tables5.1, 5.2 and 5.3. As expected, the

taxonomy-based methods outperform the taxonomy-free baselines in terms of the taxonomy

loss by3-5% relatively. For both datasets, our local SVM procedure improves structure learn-

ing with taxonomy by2-3% relatively. The gains of the taxonomy-based approaches under

the taxonomy loss are achieved at the cost of slightly increasing the 0/1 loss.It is notable

from Table2.9 that merely including the taxonomy loss in a structured multi-class algorithm

(as an intermediate step of incorporating taxonomical information) does not yield suf�cient

performance gain under the taxonomy loss. Optimization for taxonomy loss comes at the cost

of performance deterioration under the 0/1 loss. This is not surprising, because the baselines,

one vs all and structured multi-class models directly optimize for the �at hinge loss which is

more closely related to the 0/1 loss than to the taxonomy loss. Since this problem occurs for

all hierarchical methods including the structured prediction based methods itdoes point out

the considerable difference between the canonical �at loss and what auser might desire. From

an optimization viewpoint minimizing a different loss leads to a different model. Therefore
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merely the scale of change might be surprising. The relation of 0/1 loss to AUCscores at

internal edges across datasets will be discussed in Section2.4.8.

Table 2.8: Errors on Caltech256 animals (52 classes), 20 splits. Lower losses are better.

Method Taxonomy Loss 0/1 Loss

one vs all 30.66� 0.46 62.56� 0.67

best local tax: scaled GM 29.62� 0.34 76.19� 0.57

best struct tax: mr 30.58� 0.31 81.19� 0.53

Table 2.9: Errors on Caltech256 animals 13 class subset data, 20 splits. Lower losses are
better.

Method Taxonomy Loss 0/1 Loss

one vs all 42.49� 1.46 57.04� 1.98

best struct mc: sr,� = � 0=1 42.48� 1.50 57.06� 2.00

best local tax: scaled GM 40.58� 1.15 58.33� 1.50

best struct tax: mr 41.48� 1.22 61.54� 1.55

Table 2.10: Errors on VOC2006 as multi-class problem, 20 splits. Lower losses are better.

Method Taxonomy Loss 0/1 Loss

one vs all 27.09� 1.88 50.54� 2.51

best struct mc: mr,� = � T 26.37� 1.77 51.04� 2.53

best local tax: scaled GM 25.86� 1.56 50.10� 2.29

best struct tax: mr 25.78� 1.67 50.17� 2.17

Table2.10shows the performance comparison for the VOC2006 multi-class problem. Sim-

ilar to the Caltech animals datasets, the taxonomy-based methods outperform theone-vs-all
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baseline in terms of the taxonomy loss by5% relatively. On the other hand, there are some

differences from the previous cases. At �rst, our local SVM procedure is rather on par with

the structural counterpart. Secondly, the intermediate step, the structure multi-class procedure

with the taxonomy loss� T improved the one-vs-all baseline signi�cantly under the taxonomy

loss. Finally, the taxonomy-based approaches improved slightly the taxonomy-free baselines

under the 0/1 loss as it was already the case for the synthetic data example.

As a sanity check for structured implementations we remark that the structure-free methods

perform approximately equally well to their structured counterparts for both taxonomy and 0/1

losses. Since for the �at 0/1 loss setting we used SVMstruct in its unmodi�ed formulation, this

is clearly a property of the data rather than a potentially faulty implementation of structured

approaches.

In summary, we observed that the taxonomical approaches outperform the taxonomy-free

baselines under the taxonomy loss, as was the case for the synthetic data. Unlike in the syn-

thetic data the zero-one error was slightly increased by optimization of taxonomybased losses

for both Caltech datasets. The choice of the loss function determines the algorithm to be used.

It is not expectable in a statistical sense that a taxonomical model improves a �at loss under

all circumstances, however there is a tendency for relatedness of zeroone loss and differences

of AUC scores across levels (see also discussion in Section2.4.8). The local taxonomy-based

methods are slightly worse than structured taxonomy ones on VOC2006 dataset, but consider-

ably better on both Caltech256 animals problems. We would like to emphasize that the way of

averaging is important to achieve better performance. Note that the scaled geometrical mean

compares favorably with the arithmetic mean. Indeed, when we examined the generalizedp-

means in a wide rage of the parameterp, parameters close to0 (i.e. the geometrical mean)

achieved the minimum values both under the 0/1 and taxonomy losses.

2.4.6 Remark on Training Time

In all three data sets the local SVMs are much faster to train when compared tostructured taxo-

nomy approaches (cf. Table2.11). The local SVMs can be parallelized by training each edge as

a separate optimization problem, an advantageous property when scaling thenumber of object

categories. Another bene�cial scaling characteristic when increasing the number of samples

is the possibility to reduce the training set for each edge individually since it issuf�cient to

control the performance of the binary classi�cation problem at each edge separately. Certain

steps in the structural approaches like �nding the most violated constraints can be parallelized
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to e.g. multicore machines which typically accounts for four or at most eight cores. The used

code may have potential for further problem-speci�c optimizations. The speed gains by using

local SVMs are large factors of over 10. Thus we do not expect the advantage of the local

SVMs to disappear against a multicore-parallelization of structural support vector machines.

Furthermore the parallelization of local SVMs into optimization problems restrictedto single

edges can be achieved generically over more than 8 cores. Another performance reducing fac-

tor was excessive main memory usage of structural algorithms of up to 16 Gigabyte per task

which in practice leads to additional slowdowns compared to many small tasks assolved by

the local SVMs.

Table 2.11: Training times, the multiplier for local models shows separability into indepen-
dent jobs.

Method Dataset Training time

one vs all Cal256 animals, 52 classes 3.69s� 52

local tax Cal256 animals, 52 classes 3.69s� 92

struct. tax Cal256 animals, 52 classes 35.13 h

one vs all Cal256 animals, 13 classes 0.5s� 13

local tax Cal256 animals, 13 classes 0.5s� 21

struct multi-class Cal256 animals, 13 classes 15.1 min

struct tax Cal256 animals, 13 classes 44.9 min

one vs all VOC2006 < 0.5s� 10

local tax VOC2006 < 0.5s� 19

struct multi-class VOC2006 9.4 min

struct tax VOC2006 28.7 min

2.4.7 Discussion

Confusion Between Object Categories Figures2.8and2.9provide example images where

the results from the local taxonomy approach differs compared to the one versus all baseline.

Each image comes with a graph on the taxonomy. The ground truth label is green. The choice

by one versus all is marked in magenta and the path to the choice by hierarchical classi�cation

is given in blue. All relevant paths have attached the SVM outputs to them (see also Figure2.4).

55



2. SEMANTIC CONCEPT RECOGNITION WITH A TREE STRUCTURE OVER
CONCEPTS

Figure2.8shows typical cases when the hierarchic approach fails. It is caused by false positive

outlier votes at internal edges which are too strong in order to be averaged out. Figure2.9shows

cases when the hierarchical approach improves over a �at one versus all baseline. Typically

the votes from internal edges can average out and thus overrule falsepositive and too negative

votes at the leaf edges. The upper part of Figure2.9shows a case when a taxonomically more

plausible result can be achieved by using a hierarchy even when the classi�er for the leaf edge

belonging the ground truth gives a too negative vote. In the lower part thehierarchic approach

classi�es the image correctly.

By comparing the confusion pattern of our taxonomy based procedure withthat of the

one-vs-all baseline, we observe clear qualitative differences. Figure 2.7 shows confusion dif-

ferences between the two approaches (y-axis) versus the taxonomy losses (x-axis) for (a) bus

and (b) cat of the VOC 2006 data. As expected, we can �nd the generaltendency that the

taxonomy based method confused more with the categories with lower taxonomy losses, while

it can reduce the error with those with higher taxonomy losses. We also checked signi�cances

of all confusion differences by a Wilcoxon signed-rank test from 20 random repetitions. Its

p-values are summarized in the panel (c) (row: true classes, column: predicted classes). For

instance, for (a) bus class, more images were correctly classi�ed as bus(p-value = 0.06%) and

confusion with person reduced signi�cantly (0.16%) at the cost of increasing the error by pre-

diction of cars (0.09%) which is in the taxonomy the closest category to bus. Similar relations

hold for (b) cat class: confusions with the closer categories dog and horse increased, which

brought improvements in confusions with farther away classes cow (0.4%), bicycle (3.1%) and

motorbike (5.1%).

It is worth to point out that the improvement of taxonomy losses by hierarchical classi�ca-

tion which was observed in Section2.3(see Table2.3) and Section2.4.5implies that erroneous

decisions are moved to lower levels in the hierarchy compared to baselines. This yields a more

plausible, i.e. more human-like, result based on the taxonomy.

Comparison with Greedy Walks We also analyzed the performance for local taxonomy ap-

proaches with hierarchical classi�cation using greedy path-walks (79). We regard this direction

rather as a side topic with respect to our comparison of structured versuslocal models. In this

approach for each node in the taxonomy the set of negative examples is restricted to those with

the class labels of the parent node. For example, for the class cat in the taxonomy from Figure

2.3, a binary SVM is trained only with samples of classes Carnivora, i.e. cats and dogs. Such
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Figure 2.7: Confusion differences between our local SVM with taxonomy and the one-vs-all
classi�cation (y-axis) versus the taxonomy losses (x-axis) for (a) bus and (b) cat from VOC
2006 categories (bic = bicycle, hor = horse, mot = motorbike,per = person, she = sheep). Pos-
itive values denote more confusions by the proposed method.Signi�cances of the differences
are checked by Wilcoxon signed-rank test whose p-values aresummarized in (c) (row: true
classes, column: predicted classes).

greedy walks lead to performance decrease. This is not surprising. Since the binary SVM at the

leaf edge 'cat' takes only images annotated with dog as negative samples, it may give highly

positive scores to images containing horses or motorbikes. It is possible that the classi�ers at

the upper edges, e.g. the nonlife-versus-life or the carnivora-versus-classi�er misjudge some

of these images and that the cat-versus-dog classi�er �nally annotates them as cat with very

high con�dence.

We have found that the greedy walks strategy itself is detrimental. We obtain for both

datasets a moderate rise in 0/1 loss and a sharp rise in taxonomy loss. In that sense the local

approach adopted here is superior to other possible simpler local solutions. Performances of

greedy walks can be found in Appendix (Tables5.1,5.2,5.3).

The greedy approach has two advantages in running times compared to the local approach

presented here. During training it deals at each edge only with classi�ersworking on subsets

of all categories which leads to a reduced amount of training data. During testing we have to

follow only one path for each sample. The local approach presented here can be, in principle,

modi�ed by subsampling from the set of negative classes during training sothat it uses the

same amount of training data as the greedy approach. It would still retain theadvantage of

being able to suppress votes for outlier images as described above, i. e. when a car image is

tested in a cat versus dog classi�er in a greedy walk scheme. While the greedy approach is

the fastest option during test time, the local approach introduced here canbe interpreted as a
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Figure 2.8: Example images where the hierarchical classi�er is inferior to the one versus all
baseline on Caltech 256 animals, 13 classes.Boxed green denotes the ground truth label, dashed
blue the path to the choice by hierarchical classi�er and dash-dotted magenta the decision by one
versus all.
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Figure 2.9: Example images where the hierarchical classi�er outperforms the one versus all
baseline on Caltech256 animals, 13 classes.Boxed green denotes the ground truth label, dashed
blue the path to the choice by hierarchical classi�er and dash-dotted magenta the decision by one
versus all.
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compromise between the structured SVMs and the greedy walks in terms of training and testing

time. It achieves a trade-off between speed and precision.

Outlook - Larger Numbers of Classes: Caltech256 Full Here we consider the results for

all 256 object classes from Caltech256. We omitted the clutter class and computed one k-

means prototyped Bag of Words kernel based on 1000 words over the RGB color channel. We

used 50 images per class and ten-fold crossvalidation which resulted in a training set size of

11520 samples. We were not able to compute the solutions from structured prediction methods

however we are still able to compare one versus all against our local SVMapproach. We

observe in Table2.12 qualitatively the same results as for the other, smaller, datasets. The

taxonomy based approach improves on the taxonomy loss at the cost of setbacks in the zero

one loss when compared to one versus all. The one versus all baseline performance ranges

between the baseline used in (85) and the best kernel from (101).

Table 2.12: Errors on Caltech256 all classes except for clutter, 10 splits. Lower losses are
better.

Method Taxonomy Loss 0/1 Loss

one vs all 34.31� 0.74 68.93� 1.23

local tax AM 33.04� 0.7 72.91� 1.16

local tax scaled GM 32.77� 0.6 72.55� 1.14

local tax greedy path-walk 37.81� 0.71 77.96� 1.3

2.4.8 Generalization Ability of Learning with Taxonomies

We have formulated in the introduction2.1of this chapter a more human-like classi�cation in

the sense that errors between taxonomically far categories are reducedas one of our goals. We

have observed experimental evidence that taxonomical losses are indeed reduced when using

hierarchical classi�cation instead of the one-versus-all baseline.

However, there is a gap between our goal and the experimental results: On the one hand,

humans are able to generalize higher level categories very well, seemingly better than more

speci�c low level categories. For example humans can label cars very well even if their opti-

cal appearance is quite diverse as with old-timers, converted cars in strange shapes or rare car
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models, whereas identifying a car brand or even a speci�c car model constitutes a much more

dif�cult task for humans. On the other hand, the improvement in taxonomical losses observed

here is somewhat limited. For Caltech datasets we observe an increase in �atloss. Please note

that for local taxonomic models the difference between the one-versus-all baseline and classi�-

cation with taxonomies consists of adding classi�cation problems located at intermediate edges

of the taxonomy, see also Figure2.4for this aspect. If we assume in analogy to our expectation

about human capabilities that the problems at intermediate edges are much easier to classify for

our system and thus result in much better recognition rates, then the local taxonomic models

should result in much better improvement over the one-versus-all baseline.

We would like to identify reasons for this gap in this section, and point to possible improve-

ments for the future. The obvious observation to start with is given in Table2.13. We can see

that for the Caltech datasets AUC scores at intermediate edges are worse than the AUC scores

at leaf edges. The classi�cation tasks at the intermediate edges for the Caltech datasets are

more dif�cult and therefore yield more errors compared to classi�cation atleaf edges, which is

in clear contrast to our intuition about human capabilities.1

Table 2.13: Mean AUCs on leaf edges versus internal edges for the local-SVM methods.
Higher values are better.

Dataset AUC Leaf edges AUC Internal edges

Caltech256 52 animals 88.49 84.82

Caltech256, 13 class subset 84.00 78.55

VOC2006 multi-class 86.38 91.40

Synthetic data,� = 1=4, 16 classes (Sec.2.3) 92.40 96.64

The task of learning with taxonomies can be divided into two aspects. The �rst aspect is

the optimization of a non �at loss via the taxonomy structure.

The second aspect is that taxonomy based learning is an averaging usingclassi�ers con-

structed by forming superclasses from sets of single classes. Adding classi�ers for these super-

classes with higher error rates, as we have done for the Caltech datasets, is likely to raise error

1We showed for the synthetic data statistics per level of the taxonomy in Table2.3. We use here the coarser

discrimination between internal edges and leaf edges because for the taxonomies on the real data the notion of level

does not imply a constant difference to the nearest leaf. Leafs have varying path lengths and thus, two edges at the

same level may have different distances to the nearest leaf. See Figure2.12for an example.
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rates. This has been observed for the �at 0/1 loss in Tables2.8 and2.9. To shed light on the

question why classi�cation problems at superclasses can be harder we will consider additional

metrics. The �rst metric are kernel target alignment scores (59). The kernel target alignment is

a similarity measure between the kernel from image features and an optimally discriminative

kernel computed from the labels of the classi�cation problems located at the edges of the taxo-

nomy. For a short overview of kernel target alignment we refer to section 1.3.4. Higher scores

imply that a kernel is potentially more useful for solving a classi�cation task.

Table 2.14: Mean Kernel Target alignment on leaf edges versusinternal edges for the local-
SVM methods. Higher values are better.

Dataset KTA Leaf edges KTA Internal edges

Caltech256 52 animals 0.0147 0.0241

Caltech256, 13 class subset 0.0431 0.0402

VOC2006 multi-class 0.0662 0.1882

Synthetic data,� = 1=4, 16 classes (Sec.2.3) 0.0675 0.2075

We see from Table2.14that the Caltech datasets have low gains in kernel target alignment

scores at classi�cation problems located at internal edges relative to kernel target alignment

scores at leaf edges. This shows that the kernels when applied to classi�cation at intermediate

edges do not provide much higher information content than the leaf classi�ers for Caltech

datasets. Furthermore the Table2.14shows that the differences in AUC values seen in Table

2.13can be explained by properties of the employed kernel. Therefore we willcompute another

kernel metric for a subsequent complexity analysis.

We claim that some of the classi�cation problems at intermediate edges may have an in-

creased complexity because they have to discriminate two sets of classes in which both sets

may have a highly varying visual appearance as a consequence of being a union many different

classes. In contrast to that the classi�cation problems at the leaf edges need to discriminate one

class against a set of all other classes, i.e. one of the sets consists of a single class which may

have lower varying visual appearance than a set of many classes. Notethat in our experiments

we use the same kernel for all classi�cation problems.

For bringing evidence about the complexity of classi�cation problems we will employ Ker-

nel principal component analysis-based (kPCA) label reconstructionagreement. This method
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has been discussed in (102) as a measure of complexity for a classi�cation problem with a

given kernel. The idea is to compute the principal components of a kernel inthe Hilbert space

and sort them according to the descending order of their eigenvalues. Note from Lemma 1 in

(102) that for a kernel matrix over a �xed �nite set of samples the m-th sorted kernel PCA

component is equal to the corresponding eigenvectorum of the kernel matrix.

For a chosen �xed dimensionalityd we can project the labelsY onto the �rst d sorted

kPCA components to obtain projected labelsŶ :

Ŷ =
dX

m=1

um u>
m Y (2.17)

The projected labels allow to compute an agreement to the true label as one minusthe zero one

loss:

agr01(Ŷ ; Y) =
1
N

NX

n=1

I f sign(Ŷ ) = Yg (2.18)

If we project on all kPCA components by settingd = N , then we recover the ground truth

labelsŶ = Y ) agr01(Ŷ ; Y) = 1 . The idea of relevant dimensionality analysis (102) and

kPCA label reconstruction agreement is that for a low-complexity classi�cation problem the

majority of information is contained in a small number of the �rst sorted kPCA components.

Thus, for a low-complexity classi�cation problem the projected labels will have a high agree-

ment to the true labels. We compute the agreement between true and projected labels for the

�rst d = 2 i ; i = f 2; : : : ; 8g kPCA components. We show for each number of components the

ratio between the agreements in intermediate and leaf edges in Figure2.10.

The kPCA ratios are all below1 implying that more kPCA components are needed at

intermediate edges to reach the same accuracy in explaining the labels compared to the number

of kPCA components at leaf edges. This is consistent to our claim made above that classes

representing intermediate edges have on average an increased complexitygiven the �xed kernel

employed here.

Furthermore the ratios between those accuracies are lowest for Caltech animals and higher

for VOC2006 and the synthetic dataset. Therefore, classi�cation problems at intermediate

edges have a higher relative complexity for the Caltech datasets. This suggests that adding

classi�ers which were trained on intermediate edges to the one-versus-allclassi�ers on leaf

edges is less likely to improve classi�cation results for the Caltech animal datasets than for

VOC2006 and the synthetic data.
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Figure 2.10: Ratios of agreements of kPCA projected labels and ground truth labels. Ra-
tios are computed between classi�ers at intermediate edgesand leaf edges. The ratios were
computed at dimensions4 to 256. Higher values are better.

This result is what we can expect: both animals taxonomies are built by evolutionary sim-

ilarities, not visual ones. Visually, a dolphin still looks much more like a �sh thana mammal.

The visual features are not able to capture genetic similarities - see Figure2.2 for a convinc-

ing example. To give another example, the horse is as part of odd-toed ungulates in a group

with cats and dogs while the the look of a horse itself as well as the background appearance of

horses, meadows, might be more similar to those of even-toed ungulates as cows and sheep.

The fact that the taxonomies of the Caltech animals are not well aligned to kernels similari-

ties can be validated numerically by computing the cosine angle between the distances induced

from the kernel matrices and the taxonomy distance for each of the dataset.The kernel distance

between two classes is computed as the mean over the kernel distances for all pairs of samples

from both classes using the additional fact that for� 2-kernels we have k(x,x)=1:

d(c1; c2) =
1

jc1j

X

x12 c1

1
jc2j

X

x22 c2

k(x1; x1) � 2k(x1; x2) + k(x2; x2) (2.19)

= 2 � 2
1

jc1j

X

x12 c1

1
jc2j

X

x22 c2

k(x1; x2) (2.20)

64



2.4 Experiments on Real World Multi-class Data

From both distance matrices the mean is subtracted so that they have zero meanover their en-

tries. We can see from table2.15that both Caltech datasets have a very low alignment between

kernel induced distances and taxonomy-induced distances. This may explain the observed in-

crease in �at zero-one-loss when applying taxonomy learning.

Table 2.15: Cosine Angles between taxonomy distances and kernel induced distances. Higher
values are better.

Dataset cosine of angles

Caltech256 52 animals 0.1130

Caltech256, 13 class subset 0.1087

VOC2006 multi-class 0.6314

Synthetic data,� = 1=4, 16 classes (Sec.2.3) 0.9752

The ordering of cosine angles across datasets corresponds well to theorder of AUC scores

at intermediate edges in Table2.13. In the Pascal VOC2006 dataset and the synthetic dataset

the distances from kernel similarities are more in line with the taxonomic ones. In thesynthetic

dataset this has been achieved by construction which is also re�ected in Table 2.13and in the

KTA ratios from table2.14.

We have identi�ed the reason for the gap between our expectation for a more human-like

classi�cation using taxonomies and the case observed experimentally. The positive message

from our experiments is the observation that even in the adversarial caseof the low alignment

between taxonomy and visual similarities as seen in Caltech animals data, the taxonomic losses

can be improved while in the other two more well-behaved cases both losses, taxonomic and

�at, can be improved.

A solution for improvement towards more human-like classi�cation is to considera richer

feature representation which allows for a better alignment of the kernel-induced distances to the

distances from the taxonomy because a richer feature representation can be used to select for

each classi�er its own more appropriate subset of features. In this studywe used the same ker-

nel for each classi�er. Using a better feature set may include features which are not restricted

purely visual ones in order to incorporate knowledge from biological systematics which can-

not be captured by visual similarities alone. When humans reason about similarities between

65



2. SEMANTIC CONCEPT RECOGNITION WITH A TREE STRUCTURE OVER
CONCEPTS

known animal species, they use additionally more information than merely visualcues, e.g.

they group animals by being insect, mammal or �sh.

2.5 Ranking for Multi-label Datasets with hierarchies

Clearly the local SVM approach can also be used in a multi-label setting. In a multi-label

setting each concept can be present or absent in each image independent of all other concepts.

In particular, each image may contain multiple concepts and, as a consequence, confusions

between concepts within an image are not well de�ned anymore. Therefore the target function

evaluated here differs from the multi-class case.

Instead of minimizing confusions between concepts, we aim to enforce for each concept

separately an ordering of images such that images of the concept in questionand taxonomi-

cally close concepts are ranked highest. For this reason we introduce a novel taxonomy-aware

ranking score, the ATax score.

2.5.1 The ATax score

Technically we will replace scores based on confusion matrices by threshold-independent rank-

ing scores. A standard �at score function used in the Pascal VOC challenge is the Average Pre-

cision (AP) (103) and its mean over all classes. We assume that the pairs of SVM outputs and

ground truth labels(z(c) ; y(c) ) for a class in questionc are sorted according to the descending

order of their output scoresz(c)
k over the data sample indexk. The average precision (AP) score

for n(c)
+ =

P n
i =1 I f y(c)

i = 1g positively labeled samples of classc is de�ned as

AP (c) ((z(c)
k ; y(c)

k )n
k=1 ) :=

1

n(c)
+

nX

i =1

I f y(c)
i = 1g

1
i

iX

k=1

I f y(c)
k = 1g (2.21)

The AP score is maximized when the images of the class in questionc are ranked �rst. It

is invariant against permutation of the ordering of images from all other classes as long as the

ranks of images from the class in questionc are untouched. However, given relations from

a taxonomy, we would prefer a ranking where images from taxonomically close classes are

ranked in front of images from taxonomically far classes, even when theydo not belong to

the class in questionc. To incorporate this awareness about the taxonomical structure we will

introduce a novel score and call it the Atax score.

For deriving the structure of the Atax score we need two preliminaries.
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The �rst preliminary is the fact that we need to consider for each image the set of all labels.

For the ATax score being a taxonomy-aware extension of the AP score weconsider instead of

one single binary labely(c)
k for the class in questionc the set of labels based onall classes in

the multi-label problemf y(r )
k 2 f 0; 1g; r 2 f 1; : : : ; Cgg. y(r )

k is the label for data samplek

and classr .

The second preliminary is an representation of the AP score as an average of top-rank-list

precisions derived from distance functions over a set of samples.

Let us de�ne for a[0; 1]-bounded distance functionl(y) the top-rank-list precision of the

top rankedi samplesP rec[l ](i ) to be

Prec[l ](i ) =
1
i

iX

k=1

1 � l(yk ) (2.22)

Then average precision can be seen as an average of top-rank-list precisions over a partic-

ular setS of samples:

AP (c) =
1

jSj

X

i 2 S

Prec[l (c)
01 ](i ) (2.23)

where the set of samplesS is given in according to Equation (2.21) asS = f i j I f y(c)
i = 1gg

and

l (c)
01 (yk ) = I f y(c)

k 6= 1g (2.24)

is the zero-one discretized distance of the class labely(c) 2 f� 1; +1g to the label value1.

This representation holds because of

1
jSj

X

i 2 S

Prec[l (c)
01 ](i ) =

1
jSj

X

i 2 S

1
i

iX

k=1

1 � l (c)
01 (yk )

=
1

jSj

X

i 2 S

1
i

iX

k=1

1 � I f y(c)
k 6= 1g

=
1

jSj

X

i 2 S

1
i

iX

k=1

I f y(c)
k = 1g

=
1

n+ (c)

X

i 2f mjI f y( c)
m =1 gg

1
i

iX

k=1

I f y(c)
k = 1g

=
1

n+ (c)

nX

i =1

I f y(c)
i = 1g

1
i

iX

k=1

I f y(c)
k = 1g

= AP (c) ((z(c)
k ; y(c)

k )n
k=1 ) see Equation (2.21). (2.25)
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We compute a ranking score for a �xed class in questionc of the multi-label problem.

Therefore note that we can replace in the original AP score hierarchy-unaware precision score

l (c)
01 by a termdependenton the a priori �xed classc. The Atax score will be de�ned by a

replacement term given in equation (2.26) based on the minimal taxonomy distance� T between

the �xed classc and all positive labels in the ground truthf y(r )
k ; r 2 f 1; : : : ; Cg j y(r )

k = 1g of

a �xed samplek:

l (c)
T (f y(r )

k ; r = 1 ; : : : ; Cg) = min
r 2f 1;:::;C gjy( r )

k =1
� (c; r)) (2.26)

Again, assume that the data samples(xk ; f y(r )
k ; r = 1 ; : : : ; Cg), and thus their labelsy(r )

k for

all classesr , are sorted according to the descending order of the SVM outputsz(c)
k for the �xed

classc. The set of samplesS is given again asS = f i j I f y(c)
i = 1gg.

Then we de�ne the ATax score for classc to be:

ATax (c) =
1

jSj

X

i 2 S

Prec[l (c)
T ](i ) (2.27)

=
1

n(c)
+

nX

i =1

I f y(c)
i = 1g

1
i

iX

k=1

1 � min
r 2f 1;:::;C gjy( r )

k =1
� T (c; r) (2.28)

The above derivation shows that the ATax score can be seen as a taxonomy-aware extension

of the established AP score. Since the taxonomy distance� T from equation (2.2) is scaled to lie

in [0; 1]and a correct prediction implies scores ofI f y(c)
k = 1g = 1 respectively1� l (c)

T (yk ) = 1 ,

the ATax score is never smaller than the AP score. The precision function used in the AP score

can be interpreted as a zero-one discretization of the taxonomy score1� l (c)
T (yk ). Both scores,

AP and ATax, have the advantage of being invariant against the classi�cation threshold and

evaluate the ranking of images. We did not use the ranking based scores for the multi-class

problem, however. Inspecting the constraints of the structured predictionformulation from

(2.8) shows that it aims at classifying each image correctly in the sense of obtaining a correct

ranking of classesfor each image. Its optimization does not aim at obtaining a correctranking

of imagesfor each class. Thus, using a ranking score would be a biased measureagainst the

structured approaches.
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2.5.2 Datasets

VOC2006 multi-label data

We use the VOC2006 dataset (84) consisting of 10 object classes and5301 images with its

original, unmodi�ed labels. The full taxonomy is given in Figure2.3.

VOC2009 multi-label classi�cation task data

This dataset consists of 20 classes with7054labeled images. It serves as a second multi-label

setting for the local algorithms. The full taxonomy is given in Figure2.13.

2.5.3 Experimental Results

Note that for multi-label data the structured algorithms cannot be applied in theircurrent form

as the multi-class constraints are not well-de�ned anymore. Therefore wewill compare one-

versus-all classi�cation against local hierarchical approaches. Asthis frees us of time and

memory consumption problems related to the structured algorithms we will use crossvalidation

with 20 folds. We will use the same features and kernels as described in sections2.4.2and2.4.3

and measure with AP and ATax scores.

Table 2.16: Ranking scores on VOC06 as multi-label problem,20-fold crossvalidation.
Higher scores are better.

Method ATax AP

one versus all 90.10� 3.46 80.13� 7.21

local tax. scaled geometric mean91.29� 3.34 79.96� 7.23

local tax. scaled, harmonic mean 90.85� 3.28 80.61� 7.06

Table 2.17: Ranking scores on VOC09 as multi-label problem,20-fold crossvalidation.
Higher scores are better.

Method ATax AP

one versus all 79.02� 8.72 55.92� 15.91

local tax. scaled geometric mean80.68� 8.20 54.62� 16.08

local tax. scaled, harmonic mean 80.03� 8.33 56.43� 15.77
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Tables2.16and2.17show that even for a multi-label setting, introducing a taxonomy can

improve taxonomy based as well as �at ranking scores, despite we have no notion of avoiding

confusions anymore.

This may become relevant when using classi�er scores for ranking imagesfor retrieval. A

higher ATax score implies that the desired class and similar classes are ranked higher than more

distant classes which in effect leads to a subjectively improved ranking result from a human

viewpoint. When looking for cats, humans tend to be more impressed by resultswhich return

erroneously other pets than cars. Highly ranked images from very distant categories tend to be

perceived as strong outliers.

Figure2.11shows examples where the hierarchical classi�er is able to improve rankings

simultaneously for classes which are far apart in the taxonomy given in Figure2.3. This shows

that taxonomy learning for multi-label problems does not lead necessarily to mutual exclusion

of taxonomy branches. In both images, the classes under consideration are separated already

at the top level. We observe that images can be re-ranked to top positions despite average

rankings at all edges. For the upper image this occurs for the cow class,for the lower image

this occurs for the motorbike class as can be seen from the rankings given along the paths.

This can be explained by the property of the nonpositive p-means to be upper-bounded by the

smallest score (see Section2.2.5). Many images which achieved higher scores and ranks at

some edges along the considered path were effectively ranked lower because they received

very low scores at one edge at least in the same path. Note that the observed improvement in

ranking is independent of the ranking loss.

Table2.18compares the performance of scaled versus unscaled combinations of scores for

both multi-label problems. We see clearly that scaling of scores onto a compact interval con-

tributes to the good performance of the local models. The good performance of scaled scores

is not surprising as one can expect the SVM outputs to have different distribution statistics

like variances across the edges. Please note that for one versus all classi�cation the scaling

has no in�uence on the ranking scores as it is monotonous and rank-preserving and the score

computation is done for each class separately.

2.6 Conclusions

When classifying complex data such as objects, humans are �rst of all muchbetter than learn-

ing machines and most importantly human and machine errors diverge considerably. Among
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Table 2.18: Scaling of outputs is important for multi-label problems, 20 fold crossvalidation.
Higher AP and ATax scores are better.

Method: local tax. arith. mean ATax AP

VOC06,unscaled 84.59� 6.73 60.31� 15.08

VOC06,scaled 89.58� 3.89 74.85� 8.51

VOC09,unscaled 73.35� 9.40 35.87� 14.73

VOC09,scaled 77.30� 9.45 46.58� 16.61

others, a reason for both �ndings is the impressing ability of humans to generate abstract rep-

resentations that implicitly organize hierarchical knowledge and thus to create appropriate task

relevant factorizations of the environment, put in one word humans generalize. One aspect of

such abstract representation can be captured by taxonomies.

In this chapter we have demonstrated that taxonomy-based learning using structured SVMs

and local-SVM-based approaches on real world data yields improved results when measured

with taxonomy-based losses. Local algorithms with generalized means voting perform on par

to structured models while being considerably faster in training. The geometricmean appears

to be a good a priori choice as a sensitivity tradeoff against small and large outliers. Successful

minimization of taxonomy losses implies the reduction of confusions between distant cate-

gories, i.e. a step towards more human-like decision making. Note, however,that an improved

result measured with taxonomy-based losses does not necessarily translate into a better result

in a �at loss such as 0/1-loss since more meaningful confusions, i.e. improved quality of deci-

sion making does not necessarily come with overall quantitative improvements as other more

meaningful confusions may come in addition – as a side effect. In the local SVM framework

this can be checked by the AUC scores on the internal edges compared to the leaf edges.

Experiments on synthetic data show, somewhat expectedly, that taxonomy based algorithms

work better than the taxonomy-free baseline, when the data is aligned to the taxonomy. They

suggest that performance gains are achieved for local proceduresby combining classi�ers with

different trade-offs of false positive versus false negative rates.Interestingly but in fact to be

expected, taxonomy based learners tend to make their errors rather closeto the leaf-edges of

the taxonomy tree thereby confusing 'close' categories, whereas learners based on �at losses

incur classi�cation errors uniformly across the tree. The latter behavior isone of the reasons
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Figure 2.11: Example images where the hierarchical classi�er improves rankings for taxo-
nomically distant classes compared the one versus all baseline on VOC2006 multi-label prob-
lem. (Upper) car from 216 to 133, cow from 197 to 31. (Lower) motorbike from 108 to 52, person
from 125 to 38.

to consider the decisions of taxonomy-based learning machines more human-compatible than

their �at loss training based counterparts.

The local as well as structured approaches can be combined with methods which learn

taxonomies. The difference to previous approaches would be to measuretaxonomy based

errors instead of �at losses and to rely in case of local algorithms on vote fusion instead of

reduced kernels and greedy path-walks. It is open in such a case howmuch can be retained

of the interpretation of a taxonomy as a weak prior knowledge to de�ne loss functions which

penalize dissimilarities as they are perceived by humans.

With respect to learning hierarchies an image might be scored using multiple paths lead-

ing from the root to the same visual concept in the local setup. This is relatedto approaches
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learning relaxed hierarchies (85, 90). The idea would be to �x an original hierarchical loss

function and its generating hierarchy and check whether learning a different hierarchy (or di-

rected acyclic graph structure) than the original one may improve the original hierarchical loss

because the learned hierarchy can encode information about the similarity between image fea-

tures and thus help to bridge the gap between the similarity between image features which is

used for learning classi�ers and the similarity encoded in the original hierarchy which is used

for evaluation of classi�ers. One simple example would be to suppress nodes with associated

edges when the classi�ers on these edges yield very high error rates.

Another option would be to design local algorithms for the optimization of losses using

weighted edges or more general losses. In the structured prediction setup losses using weighted

edges can be achieved straightforwardly by weighting� i (y) ! � i � i (y) in equation (2.5) as

shown in Section2.2.3. Such weights can be even learned via Multiple Kernel Learning on the

label kernel from equation2.3in which the original label kernelKY (y; ŷ) =
P jV j

j =1 � j (y)� j (ŷ)

from equation2.3 is replaced by a parametrized variant

KY (y; ŷ)[� ] =
jV jX

j =1

� j K Y;j (y; ŷ) (2.29)

K Y;j (y; ŷ) = � j (y)� j (ŷ) . (2.30)

The difference to the learning of a taxonomy is that the taxonomy and the loss used for eval-

uation is �xed here. The motivation to do so is the same as for learning a hierarchy, namely

to bridge the gap between the similarity between image features which is used forlearning

classi�ers and the similarity encoded in the original hierarchy and its loss function.

In the local setup such learning might be analogously achieved by learningweights in vote

fusion as a replacement for the p-means based vote from Section2.2.5such as to minimize a

regularized weighted loss between prediction and labels. Based on our experience with over-

�tting of support vector machines on training data at settings where performance on test data

is near-optimal (see also Chapter3) such scores would have to be learned on cross-validated

outputs in difference to (78). One meaningful application of weighted edges is to weight each

path by the binary power2� d of its negative depthd in the hierarchy as described in Section

2.2.3. This ensures a strict hierarchy – errors made at higher levels in the hierarchy always

count more than errors at lower levels.
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Multiple kernel learning (see Chapter3) or other techniques to fuse information from mul-

tiple features can be employed to learn a mixture of feature kernels depending on the position

in the edge.

A further direction is to compare the local-SVM procedures versus taxonomy-free multi-

task learning approaches on multi-label problems. In these problems we areinterested to rank

the set of images for each class which demands for threshold-invariant measures like the aver-

age precision scores for comparison or the Atax score. Our simulation study on VOC 2006 and

2009 shows encouraging results. In the meantime multi-label structured prediction has been

developed in (91). Yet the reported performance results for hierarchical classi�cationwere not

better than the one versus all baseline which leaves space for improvement.

An open question is the relation between research on attribute classi�cation and hierar-

chical classi�cation. Clearly the works on attribute-based classi�cation known to the author

(104, 105, 106) aim at minimizing �at losses and use additional labels, namely the attribute

labels, while the hierarchy approaches work without additional conceptlabels. Another dif-

ference to the visual concepts de�ned by edges in a hierarchy is that thepresence of attributes

may vary within a visual concept class (104) which results in a higher �exibility of attributes.

Mathematically attribute prediction itself is the same as visual concept prediction.Semanti-

cally, however, the attributes are designed to correspond to image contentwhich can be shared

among visual object classes (104). Attributes share with internal edges in a hierarchy the fact

that they de�ne a new visual concept and use the new visual concepts for aiding to infer the

original concepts labels. Learning the weights for attributes as in (105) improves �at losses

which makes it interesting.

One direction with respect to practical aspects of hierarchical classi�cation of any kind

would be to incorporate early stopping when the decision to descend further along a tree or

directed acyclic graph structure becomes statistically uncertain. This could reduce error rates

and improve similarity of decisions to human ones. Humans also tend to stop classifying

objects at a level of certainty. All humans are able to identify that a cat is a indeed cat easily,

however people unfamiliar with those furballs would reject to predict the precise cat breed

unless explicitly asked to do so. In that sense humans perform early stopping in the absence

of suf�cient knowledge. A statistical prediction system can do the same, and avoid to make

predictions if the classi�er prediction for a sample is unreliable. One easy way would be to

determine thresholds for each path in the hierarchy such that classifying images exceeding the
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lower or upper threshold yields a �xed accuracy. The threshold can beestimated by cross-

validation for example. This could also serve as a way to measure the quality ofa classi�er. A

too poor quality of a classi�er in the sense that almost no image can be reliably classi�ed by it

because the thresholds are too high could be used as an indicator to removethis path from the

hierarchy.

An overall challenge of the �eld would be to further the generic understanding of the dif-

ferent decision making between human and learning machine, ultimately combininglow level

machine precision, attribute based features and human abstraction optimally towards a truly

cognitive automated decision making machinery.
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3

Insights from Classifying Visual

Concepts with Multiple Kernel

Learning

3.1 Motivation for this aspect of Semantic Concept Recognition in

Images

Given a set of mercer kernels for image data the problem considered here is to learn a lin-

ear combination of these kernels for use with semantic concept ranking with support vector

machines.

It is a common strategy in visual object recognition tasks to combine differentimage rep-

resentations to capture relevant traits of an image. This results in a set of features for each

image as opposed to classifying an image using a single feature. Prominent representations

are for instance built from color, texture, and shape information and used to accurately locate

and classify the objects of interest. The importance of such image features changes across the

tasks. For example, color information may increase the detection rates of stopsigns in images

substantially but it is almost useless for �nding cars. This is because stop sign are usually red

in most countries but cars in principle can have any color. As additional but nonessential fea-

tures not only slow down the computation time but may even harm predictive performance, it

is necessary to combine only relevant features for state-of-the-art object recognition systems.

This work is inspired by two factors: �rstly, typically many kernels are computed for state

of the art submissions to renowned competitions such as ImageCLEF PhotoAnnotation (1) and
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Pascal VOC Classi�cation (11). Secondly, many of these submissions do not employ methods

to learn kernel combinations. For a person with a background in kernel-based machine learning

this leaves the pressing question why methods to learn kernel combinations are not employed

in practical settings. Anecdotally it is known that the common sparse`1-norm multiple kernel

learning does not perform well in many settings outside datasets with subjectively low within-

class variance like Caltech101 (2) and Oxford Flowers (107). On other datasets it is reported

anecdotally to select a very sparse set of kernels with a decrease in the performance which

indicates over�tting.

3.1.1 Contributions

The contributions of this chapter are1

� We apply a recently developed non-sparse multiple kernel learning (MKL)variant to

state-of-the-art concept recognition tasks within computer vision.

� We report empirical results for the PASCAL VOC 2009 Classi�cation and ImageCLEF2010

Photo Annotation challenge data sets.

� We provide insights on bene�ts and limits of non-sparse MKL and compare it against

its direct competitors within the family of algorithms which are based on support vector

machines, the sum kernel SVM and the sparse MKL. To this end we identify two limit-

ing factors and one promoting factor for the usage of MKL algorithms over the natural

baseline represented by SVMs applied to uniform kernel mixtures in image annotation

and ranking tasks. We provide experimental evidence for these factors.

� We introduce a novel measure for the analysis of the diversity of classi�ers for the ex-

planation of one of these factors.

This chapter is organized as follows. Section3.1.2gives an overview of multiple kernel

learning and related algorithms in image annotation tasks. In Section3.2, we brie�y review the

machine learning techniques used here; The following section3.3we present our experimental

results on the VOC2009 and ImageCLEF2010 datasets; in Section3.4 we discuss promoting

and limiting factors of MKL and the sum-kernel SVM in three learning scenarios. We perform

experiments in Section3.4 in order to provide evidence for these factors.

1The content of this chapter is based on the author's own peer-reviewedwork (63).
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3.1 Motivation for this aspect of Semantic Concept Recognition in Images

3.1.2 Related Work

In the last decades, support vector machines (SVM) (3, 108) have been successfully applied

widely to practical problems of image annotation (51). Support vector machines exploit sim-

ilarities of the data, arising from some (possibly nonlinear) measure. The matrix of pairwise

similarities, also known as kernel matrix, allows to abstract the data from the learning algorithm

(4).

In image annotation and ranking, translating information from various features into a set

of several kernels has now become a standard technique (23). Consequently, the choice of

�nding the right kernel changes to �nding an appropriate way of fusingthe kernel information;

however, �nding the right combination for a particular application is so far often a matter of a

judicious choice (or trial and error).

In the absence of principled approaches, practitioners frequently resort to heuristics such

as uniform mixtures of normalized kernels (36, 50, 98) that have proven to work well. Never-

theless, this may lead to sub-optimal kernel mixtures.

An alternative approach is multiple kernel learning (MKL), which has beenapplied to ob-

ject classi�cation tasks involving various image features (101, 109). Multiple kernel learning

(110, 111, 112, 113) generalizes the support-vector-machine framework and aims atsimulta-

neouslylearning the optimal kernel mixtureand the model parameters of the SVM. To obtain

a well-de�ned optimization problem, many MKL approaches promote sparse mixtures by in-

corporating a1-norm constraint on the mixing coef�cients. Compared to heuristic approaches,

MKL has the appealing property of automatically selecting kernels in a mathematical sound

way and converges quickly as it can be wrapped around a regular support vector machine

(112). However, some evidence shows that sparse kernel mixtures are often outperformed by

an unweighted-sum kernel (114). As a remedy, (115, 116) proposè 2-norm regularized MKL

variants, which promote non-sparse kernel mixtures and subsequently have been extended to

`p-norms (56, 117).

Multiple Kernel approaches have been applied to various computer vision problems outside

our scope of multi-label ranking such multi-class problems (118), which require in distinction

to the general multi-label case mutually exclusive labels1 and object detection (119, 120) in the

sense of �nding object regions in an image. The latter reaches its limits when image concepts

1We make a distinction between the general case of multi-label classi�cation and the more special case of

multi-class classi�cation with mutually exclusive classes.
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cannot anymore be represented by an object region such as theOutdoor,Overall Qualityor

Boringconcepts in the ImageCLEF2010 dataset that we will use.

The family of MKL algorithms is not restricted to SVM-based ones. Another competitor,

for example, is Multiple Kernel Learning based on Kernel Discriminant Analysis (KDA) (121,

122). The difference between MKL-SVM and MKL-KDA lies in the underlying single kernel

optimization criterion while the regularization over kernel weights is the same.

Fusing information from multiple features include algorithms relying on a signi�cantly

larger number of parameters, for example, (123), who use logistic regression as base crite-

rion; their approach results in a number of optimization parameters equal to thenumber of

samples times the number of input features. Since the approach in (123) a priori uses much

more optimization variables, it poses a more challenging and potentially more time consuming

optimization problem, which limits the number of applicable features.

Further alternatives use more general combinations of kernels such as products with kernel

widths as weighting parameters (101, 124). As (124) point out, the corresponding optimization

problems are no longer convex. Consequently, they may �nd suboptimal solutions and it is

more dif�cult to assess using how much gain can be achieved by learning thekernel weights.

3.2 Methods

This section brie�y introduces multiple kernel learning (MKL). For an extensive treatment see

the surveys in (125, 126).

Multiple Kernel Learning

Given a �nite numberm of different kernels each of which implies the existence of a feature

mapping j : X ! H j onto a Hilbert space

kj (x ; �x ) = h j (x );  j ( �x )i H j

the goal of multiple kernel learning is to learn SVM parameters(� ; b) and kernel weights

f � l ; l = 1 ; : : : ; mg for a linear combination of thesem kernelsK =
P

l � l kl simultaneously.

This can be cast as the following optimization problem which reduces to support vector
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machines (3, 5) in the special case of on kernelm = 1

min
� ;w ;b;�

1
2

mX

j =1

� j w 0
j w j + Ck� k1 (3.1)

s.t. 8i : yi

0

@
mX

j =1

� j w 0
j  j (x i ) + b

1

A � 1 � � i

� � 0 ; � � 0 ; k� kp � 1:

The explicit usage of kernel mixtures
P

l � l kl is permitted through its partially dualized form:

min
�

max
�

nX

i =1

� i �
1
2

nX

i;l =1

� i � l yi yl

mX

j =1

� j kj (x i ; x l ) (3.2)

s.t. 8n
i =1 : 0 � � i � C;

nX

i =1

yi � i = 0;

8m
j =1 : � j � 0; k� kp � 1:

For details on the solution of this optimization problem and its kernelization we refer to (56).

This optimization problem has two parameters: the regularization constantC and a parameter

p on the constraint for the kernel weights� . The regularization constant is known from support

vector machines; it balances the margin termCk� k1 from equation (3.1) over the regularization

term
P m

j =1 � j w 0
j w j . A high value of the regularization constantC puts more emphasis on

achieving high classi�cation marginsyi

� P m
j =1 � j w0

j  j (x i ) + b
�

on the training data while a

low value emphasizes the regularization term as a measure against over�ttingon training data.

While prior work on MKL imposes a1-norm constraint on the mixing coef�cients to en-

force sparse solutions lying on a standard simplex (54, 111, 112, 127), we employ a generalized

`p-norm constraintk� kp � 1 for p � 1 as used in (56, 117). The implications of this modi�-

cation in the context of image concept classi�cation will be discussed throughout this chapter.

3.3 Empirical Evaluation

In this section, we evaluatèp-norm MKL in real-world image categorization tasks, experi-

menting on the VOC2009 and ImageCLEF2010 data sets. We also provide insights onwhen

andwhy`p-norm MKL can help performance in image classi�cation applications. The evalua-

tion measure for both datasets is the average precision (AP) over all recall values based on the

precision-recall (PR) curves.
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3.3.1 Data Sets

We experiment on the following data sets:

1. PASCAL2 VOC Challenge 2009 (Multi-label data) The �rst dataset is the of�cial data

set of thePASCAL2 Visual Object Classes Challenge 2009(VOC2009) (64), which consists

of 13979 images. We use the of�cial split into 3473 training, 3581 validation,and 6925 test

examples provided by the challenge organizers. The organizers also provided annotation for 20

object categories; It is a multi-label dataset, i.e. an image may be labeled with multipleclasses.

The task is to solve 20 binary classi�cation problems, i.e. predicting whether at least one object

from a classk is visible in the test image. Although the test labels are undisclosed, the more

recent VOC datasets permit to evaluate AP scores on the test set via the challenge website (the

number of allowed submissions per week being limited).

2. ImageCLEF 2010 PhotoAnnotation (Multi-label data) The ImageCLEF2010 PhotoAn-

notation data set (128) consists of 8000 labeled training images taken from �ickr and a test set

with recently disclosed labels. The images are annotated by 93 concept classes having highly

variable concepts—they contain both well de�ned objects such aslake, river, plants, trees,

�owers, as well as many rather ambiguously de�ned concepts such aswinter, boring, architec-

ture, macro, arti�cial, motion blur,—however, those concepts might not always be connected

to objects present in an image or captured by a bounding box. This makes it highly challeng-

ing for any recognition system. As for VOC2009 we decompose the probleminto 93 binary

classi�cation problems. Again, many concept classes are challenging to rank or classify by an

object detection approach due to their inherent non-object nature. As for the previous dataset

each image can be labeled with multiple concepts.

3.3.2 Image Features and Base Kernels

In all of our experiments we deploy 32 kernels capturing various aspectsof the images. Our

choice of features is inspired by the VOC 2007 winner (66) and our own experiences from our

submissions to the VOC2009 and ImageCLEF2009 challenges. It is known from the top-ranked

submissions in recent Pascal VOC Classi�cation and ImageCLEF PhotoAnnotation Challenges

that Bag-of-Words features are necessary for state-of-the-art performance results when the fo-

cus lies on visual concept classi�cation and ranking. At the same time addingsimpler features

together with multiple kernel learning may improve the ranking performance forsome visual

concepts as well as the average performance measured over all visualconcepts (shown in (73)).
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For the ImageCLEF2010 dataset the test data annotations have been disclosed and we checked

that adding the simpler features listed below improves, indeed, the average-kernel performance

compared to relying on BoW-S features (see next section) alone. Our choice of features was

furthermore guided by the intention to have several different feature types that empirically have

been proven to be useful and to use gradient and color information. Furthermore the features

should have reasonable computation times without the need for excessive tuning of many pa-

rameters and they should be able to capture objects and visual concept cues of varying sizes

and positions. For this reason, we used bag of word features and global histograms based on

color and gradient information.

All these features were computed over sets of color channels as inspiredby (23). The

features obtained for each color channel of one set were concatenated to yield one feature for

each color channel set. The color channel sets used here are

� red, green, and blue (RGB)

� grey (equation (1.5))

� grey (equation (1.5)), opponent color 1 (equation (1.6)) and opponent color 2 (OPP)

(equation (1.7))

� normalized RGB (nRGB)(equation (1.8))

� normalized opponent colors (nOPP) (equation (1.9))

The features used in the following are derived from histograms that a priori contain no

spatial information. We therefore enrich the respective representations by using regularspatial

tilings 1 � 1, 3 � 1, 2 � 2, 4 � 4, 8 � 8, which correspond to single levels of the pyramidal

approach in (36, 97). Furthermore, we apply a exponential� 2 kernel (equation (1.26)) on top

of the enriched histogram features, which has proven effective for histogram features (50, 51).

The bandwidth� of the � 2 kernel in (1.26) is thereby heuristically chosen as the mean� 2

distance (equation (1.27)) over all pairs of training examples, as done, for example, in (52).

Histogram over a bag of visual words over SIFT features (BoW-S)

Histograms over a bag of visual words over SIFT features are known toyield excellent per-

formance for visual concept recognition both when used as single features alone as well as in

combination with other features. This can be observed by checking the top-ranked submissions
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in the recent ImageCLEF PhotoAnnotation and Pascal VOC Classi�cation challenges and not-

ing their general usage in publications on visual concept ranking. It has also recently been

successfully deployed to object detection (46) on a large data set of images within the Ima-

geNet Large Scale Visual Recognition Challenge. For an introduction on bag of word features

the reader is referred to Section1.3.1.

The BoW features (10) were constructed with parameters that were established in past

image annotation challenges so as to yield good results. At �rst, the SIFT features (16) were

calculated on a regular grid with six pixel pitch for each image. We computed theSIFT features

over the following color channel sets: RGB, nRGB, OPP, and nOPP; in addition, we also

use a simple gray channel. For visual words we used a code book of size4000obtained by

k-means clustering (with a random initialization of centers and using600000local features

taken randomly from the training set). Finally, all SIFT features were assigned to the visual

words (so-calledprototypes) by hard mapping as in equation (1.10) and then summarized into

histograms within entire images or sub-regions. The BoW feature was normalized to an`1-

norm of1. Note that �ve color channel sets times three spatial tilings1 � 1, 2 � 2 and3 � 1

yield 15 features in total.

Histogram over a bag of visual words over color intensity histograms(BoW-C)

This feature has been computed in a similar manner as the BoW-S feature. However, for the

local feature, we employed low-dimensional color histograms instead of SIFT features, which

combines the established BoW computation principle of aggregating local features into a global

feature with color intensity information – this was our motivation for employing them.The

color histograms were calculated on a regular grid with nine pixel pitch for each image over

a descriptor support of radius 12 and histogram dimension 15 per color channel (SIFT: 128).

We computed the color histograms over the following color combinations: RGB, OPP, gray

only and, �nally, the hue weighted by the grey value in the pixels. For the latterthe weighting

implies that the hue receives a higher weight in bright pixels as a countermeasure against the

known dif�culties to estimate the hue in dark regions of an image.

For visual words we used a code book of size900 obtained byk-means clustering. The

lower dimensionality in local features and visual words yielded a much fastercomputation

compared to the BoW-S feature. Otherwise we used the same settings as for BoW-S. Four

color channel sets times two spatial tilings1 � 1 and3 � 1 resulted in8 BoW-C features in

total.
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Histogram of oriented gradients (HoG)

The histogram of oriented gradients has proven to be useful (97) on the seminal Caltech101

Dataset (2). It serves as an alternative and much faster way to incorporate gradient information

compared to the BoW-S features. The HoG feature is based on discretizingthe orientation of

the gradient vector at each pixel into bins and then summarizing the discretized orientations

into histograms within image regions (97, 129). Canny detectors (130) are used to discard

contributions from pixels, around which the image is almost uniform. We computed HoG

features over the following color channel sets: RGB, OPP and gray only, every time using 24

histogram bins for gradient orientations for each color channel and spatial tilings 4 � 4 and

8 � 8.

In the experiments we deploy four kernels: a product kernel created from the two kernels

with different spatial tilings using the RGB color channel set, a product kernel created from

the two kernels having the color channel set OPP, and the two kernels using the gray channel

alone (differing in their spatial tiling). Note that building a product kernel out of � 2 kernels

boils down to concatenating feature blocks (but using a separate kernelwidth for each feature

block).

This choice allows to employ gradient information for a speci�c color channel set – in-

dependent of spatial resolution – via the �rst two kernels and for a speci�c spatial resolution

(independent of color channels) via the last two kernels. This is a principled way to yield di-

verse features: one subset varies over color channel sets and the other over spatial tilings. In

total we have four HoG features.

Histogram of pixel color intensities (HoC)

The histogram of color intensities is known to be able to improve ranking performance of

BoW-S features as shown in (73), which motivated us to use it here. The HoC features were

constructed by discretizing pixel-wise color values and computing their bin histograms within

image regions. We computed HoC features over the following color channelcombinations:

RGB, OPP and gray only, every time using 15 histogram bins for color intensities for each

color channel and spatial tilings3 � 1, 2 � 2 and4 � 4.

In the experiments we deploy �ve kernels: a product kernel created from the three kernels

with different spatial tilings with color channel set RGB, a product kernel created from the

three kernels with color combination OPP, and the three kernels using the gray channel alone
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(differing in their spatial tiling). Again, please note the relation between feature concatenation

and taking the product of� 2-kernels. The last three kernels are HoC features from the gray

channel and the two spatial tilings. This choice allows to employ color informationfor a

speci�c color channel set independent of spatial resolution via the �rst two kernels and for a

speci�c spatial resolution independent of color channels via the last two kernels. In total we

have �ve HoC features.

For the HoG and HoC feature we used higher spatial tilings because these two features

are much faster to compute compared to BoW features, thus allowing to increase their dimen-

sionality by the spatial tilings, and due to our empirical experience that choices of �ner spatial

tilings beyond2 � 2 tend to yield a higher improvement for such simpler features as compared

to BoW-based features.

Summary of used features

We can summarize the employed kernels by the following types of basic features:

� Histogram over a bag of visual words over SIFT features (BoW-S), 15 kernels

� Histogram over a bag of visual words over color intensity histograms (BoW-C), 8 kernels

� Histogram of oriented gradients (HoG), 4 kernels

� Histogram of pixel color intensities (HoC), 5 kernels.

We used a higher fraction of bag-of-word-based features as we knew from our challenge

submissions that they have a better performance than global histogram features. The intention

was, however, to use a variety of different feature types that have been proven to be effective on

the above datasets in the past—but at the same time obeying memory limitations of maximally

ca. 25GB per job as required by computer facilities used in our experiments (we used a cluster

of 23 nodes having in total 256 AMD64 CPUs and with memory limitations ranging in 32–96

GB RAM per node).

In practice, the normalization of kernels is as important for MKL as the normalization

of features is for training regularized linear or single-kernel models. Optimal feature / ker-

nel weights are requested to be small by the`p-norm constraint in the optimization problem

given by equation (3.1), implying a bias to towards excessively up-scaled kernels. In general,
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there are several ways of normalizing kernel functions. We apply the following normalization

method, proposed in (54, 55) and entitledmultiplicative normalizationin (56);

K 7�!
K

1
n tr(K ) � 1

n2 1> K 1
: (3.3)

The denominator is an estimator of the variance in the embedding Hilbert space computed over

the given datasetD by replacing the expectation operatorE[�] by the discrete average over the

data pointsx i 2 D.

Var( � )H = E
�
k� (X ) � E[� ]k2

H

�

= Eh� (X ) � E[� ]; � (X ) � E[� ]i H � D
1
n

tr(K ) �
1
n2 1> K 1 (3.4)

Thus dividing the kernel matrixk(x i ; x j ) = h� (x i ); � (x j )i H by this term is equivalent to di-

viding each embedded feature� (x) by its standard deviation over the data. This normalization

corresponds to rescaling the data samples to unit variance in the Hilbert space used for SVM

and MKL classi�cation.

3.3.3 Experimental Setup

We treat the multi-label data set as binary classi�cation problems, that is, foreach object cate-

gory we trained a one-vs.-rest classi�er. Multiple labels per image rendermulti-class methods

inapplicable as these require mutually exclusive labels for the images. The classi�ers used here

were trained using the open sourced Shogun toolboxwww.shogun-toolbox.org(74). In order to

shed light on the nature of the presented techniques from a statistical viewpoint, we �rst pooled

all labeled data and then created 20 random cross-validation splits for VOC2009 and 12 splits

for the larger dataset ImageCLEF2010.

For each of the 12 or 20 splits, the training images were used for learning theclassi�ers,

while the SVM/MKL regularization parameterC and the norm parameterp were chosen based

on the maximal AP score on the validation images. Thereby, the regularization constantC

is optimized by class-wise grid search overC 2 f 10i j i = � 1; � 0:5; 0; 0:5; 1g. Preliminary

runs indicated that this way the optimal solutions are attained inside the grid. Notethat for

p = 1 the `p-norm MKL boils down to a simple SVM using a uniform kernel combination

(subsequently called sum-kernel SVM). In our experiments, we used theaverage kernel SVM

instead of the sum-kernel one. This is no limitation in this as both lead to identical result for an

appropriate choice of the SVM regularization parameter.
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For a rigorous evaluation, we would have to construct a separate codebook for each cross

validation split. However, creating codebooks and assigning features to visual words is a time-

consuming process. Therefore, in our experiments we resort to the common practice of using

a single codebook created from all training images contained in the of�cial split. Although

this could result in a slight overestimation of the AP scores, this affects all methods equally

and does not favor any classi�cation method more than another—our focus lies on arelative

comparison of the different classi�cation methods; therefore there is no loss in exploiting this

computational shortcut.

3.3.4 Results

In this section we report on the empirical results achieved by`p-norm MKL in our visual object

recognition experiments.

VOC 2009 Table3.1 shows the AP scores attained on the of�cial test split of the VOC2009

data set (scores obtained by evaluation via the challenge website). The class-wise optimal regu-

larization constant has been selected by cross-validation-based model selection on the training

data set. We can observe that non-sparse MKL outperforms the baselines `1-MKL and the

sum-kernel SVM in this sound evaluation setup. We also report on the cross-validation per-

formance achieved on the training data set (Table3.2). Comparing the two results, one can

observe a small overestimation for the cross-validation approach (for thereasons argued in

Section3.3.3)—however, the amount by which this happens is equal for all methods; in partic-

ular, the ranking of the compared methods (SVM versus`p-norm MKL for various values ofp)

is preserved for the average over all classes and most of the classes (exceptions are the bottle

and bird class); this shows the reliability of the cross-validation-based evaluation method in

practice. Note that the observed variance in the AP measure across concepts can be explained

in part by the variations in the label distributions across concepts and cross-validation splits.

Unlike for the AUC measure (96) which is also commonly used for the evaluation of rankings

of classi�er predictions, the average score of the AP measure under randomly ranked images

depends on the ratio of positive and negative labeled samples.

A reason why the bottle class shows such a strong deviation towards sparse methods could

be the varying but often small fraction of image area covered by bottles leading to over�tting

when using spatial tilings.

We can also remark that`1:333-norm achieves the best result of all compared methods on the

VOC dataset, slightly followed bỳ1:125-norm MKL. To evaluate the statistical signi�cance of
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Table 3.1: AP scores on VOC2009 test data with �xed̀p-norm. Higher scores are better.

average aeroplane bicycle bird boat bottle bus

`1 54.58 81.13 54.52 56.14 62.44 28.10 68.92
`1:125 56.43 81.01 56.36 58.49 62.84 25.75 68.22
`1:333 56.70 80.77 56.79 58.88 63.11 25.26 67.80

`2 56.34 80.41 56.34 58.72 63.13 24.55 67.70
`1 55.85 79.80 55.68 58.32 62.76 24.23 67.79

car cat chair cow diningtable dog horse

`1 52.33 55.50 52.22 36.17 45.84 41.90 61.90
`1:125 55.71 57.79 53.66 40.77 48.40 46.36 63.10
`1:333 55.98 58.00 53.87 43.14 48.17 46.54 63.08

`2 55.54 57.98 53.47 40.95 48.07 46.59 63.02
`1 55.38 57.30 53.07 39.74 47.27 45.87 62.49

motorbike person pottedplant sheep sofa train tvmonitor

`1 57.58 81.73 31.57 36.68 45.72 80.52 61.41
`1:125 60.89 82.65 34.61 41.91 46.59 80.13 63.51
`1:333 61.28 82.72 34.60 44.14 46.42 79.93 63.60

`2 60.91 82.52 33.40 44.81 45.98 79.53 63.26
`1 60.55 82.20 32.76 44.15 45.69 79.03 63.00

AP scores were obtained on request from the challenge organizers due to undisclosed annotations.
Regularization constants were selected via AP scores computed via cross-validation on the training set.
Best methods are marked boldface.

our �ndings, we perform a Wilcoxon signed-rank test for the cross-validation-based results (see

Table3.2; signi�cant results are marked in boldface). We �nd that in 15 out of the 20 classes

the optimal result is achieved by truly non-sparse`p-norm MKL (which meansp 2]1; 1 [),

thus outperforming the baseline signi�cantly.

ImageCLEF Table3.3 shows the AP scores averaged over all classes achieved on the Im-

ageCLEF2010 data set. We observe that the best result is achieved by the non-sparsèp-norm

MKL algorithms with norm parametersp = 1 :125andp = 1 :333. The detailed results for all

93 classes are shown in the appendix in Tables5.4,5.5 and5.6. We can see from the detailed

results that in 37 out of the 93 classes the optimal result attained by non-sparse`p-norm MKL

was signi�cantly better than the sum kernel according to a Wilcoxon signed-rank test.

We also show the results for optimizing the norm parameterp class-wiseon the training set

and measuring the performance on the test set (see Table3.4for the VOC dataset and Table3.5
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Table 3.2: AP scores obtained on the VOC2009 data set with �xed `p-norm. Higher scores
are better.

Norm Average Aeroplane Bicycle Bird Boat Bottle

`1 54.94� 12.3 84.84� 5.86 55.35� 10.5 59.38� 10.1 66.83� 12.4 25.91� 10.2
`1:125 57.07� 12.7 84.82� 5.91 57.25� 10.6 62.4� 9.13 67.89� 12.8 27.88� 9.91
`1:333 57.2� 12.8 84.51� 6.27 57.41� 10.8 62.75� 9.07 67.99� 13 27.44� 9.77

`2 56.53� 12.8 84.12� 5.92 56.89� 10.9 62.53� 8.9 67.69� 13 26.68� 9.94
`1 56.08� 12.7 83.67� 5.99 56.09� 10.9 61.91� 8.81 67.52� 12.9 26.5� 9.5

Norm Bus Car Cat Chair Cow Diningtable

`1 71.15� 23.2 54.54� 7.33 59.5� 8.22 53.3� 11.7 23.13� 13.2 48.51� 19.9
`1:125 71.7� 22.8 56.59� 8.93 61.59� 8.26 54.3� 12.1 29.59� 16.2 49.32� 19.5
`1:333 71.33� 23.1 56.75� 9.28 61.74� 8.41 54.25� 12.3 29.89� 15.8 48.4� 19.3

`2 70.33� 22.3 55.92� 9.49 61.39� 8.37 53.85� 12.4 28.39� 16.2 47� 18.7
`1 70.13� 22.2 55.58� 9.47 61.25� 8.28 53.13� 12.4 27.56� 16.2 46.29� 18.8

Norm Dog Horse Motorbike Person Pottedplant Sheep

`1 41.72� 9.44 57.67� 12.2 55� 13.2 81.32� 9.49 35.14� 13.4 38.13� 19.2
`1:125 45.57� 10.6 59.4� 12.2 57.66� 13.1 82.18� 9.3 39.05� 14.9 43.65� 20.5
`1:333 45.85� 10.9 59.4� 11.9 57.57� 13 82.27� 9.29 39.7� 14.6 46.28� 23.9

`2 45.14� 10.8 58.61� 11.9 56.9� 13.2 82.19� 9.3 38.97� 14.8 45.88� 24
`1 44.63� 10.6 58.32� 11.7 56.45� 13.1 82� 9.37 38.46� 14.1 45.93� 24

Norm Sofa Train Tvmonitor

`1 48.15� 11.8 75.33� 14.1 63.97� 10.2
`1:125 48.72� 13 75.79� 14.4 65.99� 9.83
`1:333 48.76� 11.9 75.75� 14.3 66.07� 9.59

`2 47.29� 11.7 75.29� 14.5 65.55� 10.1
`1 46.08� 11.8 74.89� 14.5 65.19� 10.2

AP scores were computed by cross-validation on the trainingset. Bold faces show the best method and
all other ones that are not statistical-signi�cantly worseby a Wilcoxon's signed rank test with a p-value
of 0:05.

for the ImageCLEF dataset). We can see from Table3.5 that optimizing thè p-norm class-

wise is bene�cial: selecting the bestp 2]1; 1 [ class-wise, the result is increased to an AP of

37.02—this is almost 0.6 AP better than the result for the vanilla sum-kernel SVM. Including

the`1-norm MKL in the candidate set results in no gains. Similarly, including the sum-kernel

SVM to the set of models, the AP score does not increase compared to using`p-Norms in]1; 1 [

alone. A qualitatively similar result can be seen from Table3.4for the VOC 2009 dataset where

we observe a gain of 0.9 AP compared to the sum-kernel SVM.
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Table 3.3: Average AP scores obtained on the ImageCLEF2010 test data set with`p-norm
�xed for all classes. Higher scores are better.

`p-Norm 1 1.125 1.333 2 1

34.61 37.01 36.97 36.62 36.45

AP scores computed on the test set. Regularization constants were selected via AP scores computed
via 12-fold cross-validation on the training set.

Table 3.4: Average AP scores on the VOC2009 test data with̀p-norm class-wise optimized
on training data. Higher scores are better.

1 f 1; 1g f 1:125; 1:333; 2g f 1:125; 1:333; 2; 1g f 1; 1:125; 1:333; 2g all norms from the left

55.85 55.94 56.75 56.76 56.75 56.76

AP scores on test data were obtained on request from the challenge organizers due to undisclosed
annotations. The class-wise selection of`p-norm and regularization constant relied on AP scores
obtained via cross-validation on the training set.

Table 3.5: Average AP scores on the ImageCLEF2010 test data with `p-norm class-wise opti-
mized. Higher scores are better.

1 f 1:125; 1:333; 2g f 1:125; 1:333; 2; 1g f 1; 1:125; 1:333; 2g all norms from the left

36.45 37.02 37.00 36.94 36.95

AP scores computed on the test set. The class-wise selectionof `p-norm and regularization constant
relied on AP scores obtained via cross-validation on the training set.

We conclude that optimizing the norm parameterp class-wise improves performance com-

pared to the sum kernel SVM and, more importantly, model selection for the class-wise optimal

`p-norm on the training set is stable in the sense that the choices make sense bytheir AP scores

on the test set; additionally, one can rely on`p-norm MKL alone without the need to addition-

ally include the sum-kernel-SVM to the set of models. Tables3.2 and3.1 show that the gain

in performance for MKL varies considerably on the actual concept class. The same also holds

for the ImageCLEF2010 dataset.
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3.3.5 Analysis and Interpretation

Analysis of the Chosen Kernel Set with Kernel Alignment

We now analyze the kernel set in an explorative manner; to this end, our methodological tools

are the following

1. Pairwise kernel alignment scores (KKA)

2. Kernel-target alignment scores (KTA).

Both are based on measuring angles between kernel matrices embedded in avector space and

are explained brie�y in section1.3.4. The KKA score measures a similarity between two

kernels computed from image features. The KTA score measures a similarity between one of

our computed feature kernels and an optimally discriminative kernel derived from the visual

concept labels. Alternatively RDE (102) can be used which on these datasets did not yield

conclusive results. For an introduction to kernel alignment we refer to section 1.3.4and the

work in (59).

To start with, we computed the pairwise kernel alignment scores of the 32 base kernels:

they are shown in Fig.3.1. We recall that the kernels can be classi�ed into the following groups:

Kernels 1–15 and 16–23 employ BoW-S and BoW-C features, respectively; Kernels 24 to 27

are product kernels associated with the HoG and HoC features; Kernels28–30 deploy HoC,

and, �nally, Kernels 31–32 are based on HoG features over the gray channel. We see from the

block-diagonal structure that features that are of the same type (but are generated for different

parameter values, color channels, or spatial tilings) are strongly correlated. Furthermore the

BoW-S kernels (Kernels 1–15) are weakly correlated with the BoW-C kernels (Kernels 16–

23). Both, the BoW-S and HoG kernels (Kernels 24–25,31–32) use gradients and therefore are

moderately correlated; the same holds for the BoW-C and HoC kernel groups (Kernels 26–30).

This corresponds to our original intention to have a broad range of feature types which are,

however, useful for the task at hand. The principle usefulness of our feature set can be seen a

posteriori from the fact that̀1-MKL achieves the worst performance of all methods included

in the comparison while the sum-kernel SVM performs moderately well. Clearly,a higher

fraction of noise kernels would further harm the sum-kernel SVM and favor the sparse MKL

instead.

Based on the observation that the BoW-S kernel subset shows high KTAscores, we also

evaluated the performance restricted to the 15 BoW-S kernels only. Unsurprisingly, this setup
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Figure 3.1: Similarity of the kernels for the VOC2009 (TOP) and ImageCLEF2010 (BOTTOM )
data sets in terms of pairwise kernel alignments (LEFT) and kernel target alignments
(RIGHT ), respectively. In both data sets, �ve groups can be identi�ed: 'BoW-S' (Kernels 1–
15), 'BoW-C' (Kernels 16–23), 'products of HoG and HoC kernels' (Kernels 24–27), 'HoC single'
(Kernels 28–30), and 'HoG single' (Kernels 31–32). On the left side rows and columns correspond
to single kernels. On the right side columns correspond to kernels while rows correspond to visual
concepts.

favors the sum-kernel SVM, which achieves higher results on VOC2009for most classes; com-

pared to`p-norm MKL using all 32 classes, the sum-kernel SVM restricted to 15 classes

achieves slightly better AP scores for 11 classes, but also slightly worse for 9 classes. Fur-

thermore, the sum kernel SVM,`2-MKL, and `1:333-MKL were on par with differences fairly

below 0.01 AP. This is again not surprising as the kernels from the BoW-S kernel set are

strongly correlated with each other for the VOC data which can be seen in thetop left image in

Fig. 3.1. For the ImageCLEF data we observed a quite different picture: the sum-kernel SVM

restricted to the 15 BoW-S kernels performed signi�cantly worse, when, again, being compared

to non-sparsèp-norm MKL using all 32 kernels. To achieve top state-of-the-art performance,

one could optimize the scores for both datasets by considering the class-wise maxima over

learning methodsand kernel sets. However, since the intention here is not to win a challenge

but a relative comparison of models, giving insights in the nature of the methods—we therefore

discard the time-consuming optimization over the kernel subsets.

From the above analysis, the question arises why restricting the kernel set to the 15 BoW-S

kernels affects the performance of the compared methods differently, for the VOC2009 and
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ImageCLEF2010 data sets. This can be explained by comparing the KKA/KTAscores of the

kernels attained on VOC and on ImageCLEF (see Fig.3.1(RIGHT)): for the ImageCLEF data

set the KTA scores are substantially more spread along all kernels; thereis neither a dominance

of the BoW-S subset in the KTA scores nor a particularly strong correlation within the BoW-S

subset in the KKA scores. We attribute this to the less object-based and more ambiguous nature

of many of the concepts contained in the ImageCLEF data set. Furthermore, the KKA scores

for the ImageCLEF data (see Fig.3.1(LEFT)) show that this dataset exhibits a higher variance

among kernels—this is because the correlations between all kinds of kernels are weaker for the

ImageCLEF data.

Therefore, because of this non-uniformity in the spread of the informationcontent among

the kernels, we can conclude that indeed our experimental setting falls into the situation where

non-sparse MKL can outperform the baseline procedures. For example, the BoW features are

more informative than HoG and HoC, and thus the uniform-sum-kernel-SVM issuboptimal.

On the other hand, because of the fact that typical image features are only moderately informa-

tive, HoG and HoC still convey a certain amount of complementary information—this is what

allows the performance gains reported in Tables3.2and3.3.

Note that we class-wise normalized the KTA scores to sum to one. This is because we

are rather interested in a comparison of the relative contributions of the particular kernels than

in their absolute information content, which anyway can be more precisely derived from the

AP scores already reported in Tables3.2and3.3. Furthermore, note that we considercentered

KKA and KTA scores, since it was argued in (60) that only those correctly re�ect the test errors

attained by established learners such as SVMs.

The Role of the Choice of̀ p-norm

Next, we turn to the interpretation of the norm parameterp in our algorithm. We observe a

big gap in performance between`1:125-norm MKL and the sparsè1-norm MKL. The reason is

that forp > 1 MKL is reluctant to set kernel weights to zero, as can be seen from Figure3.2. In

contrast,̀ 1-norm MKL eliminates 62.5% of the kernels from the working set. The difference

between thèp-norms forp > 1 lies solely in the ratio by which the less informative kernels

are down-weighted—they are never assigned with true zeros.

However, as proved in (56), in the computational optimum, the kernel weights are accessed

by the MKL algorithm via the information content of the particular kernels given by a`p-norm-

dependent formula (see Eq. (3.7); this will be discussed in detail in Section3.4.1). We mention
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Figure 3.2: Histograms of kernel weights as output bỳ p-norm MKL for the various classes
on the VOC2009 data set (32 kernels� 20 classes, resulting in 640 values).̀1-norm (TOP

LEFT)), `1:125-norm (TOP RIGHT), `1:333-norm (BOTTOM LEFT), and`2-norm (BOTTOM RIGHT).

at this point that the kernel weights all converge to the same, uniform valuefor p ! 1 . We

can con�rm these theoretical �ndings empirically: the histograms of the kernel weights shown

in Fig. 3.2clearly indicate an increasing uniformity in the distribution of kernel weights when

letting p ! 1 . Higher values ofp thus cause the weight distribution to shift away from zero

and become slanted to the right while smaller ones tend to increase its skewnessto the left.

Selection of thè p-norm permits to tune the strength of the regularization of the learning

of kernel weights. In this sense the sum-kernel SVM clearly is an extreme,namely �xing the

kernel weights, obtained when lettingp ! 1 . The sparse MKL marks another extreme case:

`p-norms withp below1 loose the convexity property so thatp = 1 is the maximally sparse

choice preserving convexity at the same time. Sparsity can be interpreted here that only a

few kernels are selected which are considered most informative according to the optimization

objective. Thus, thèp-norm acts as a prior parameter for how much we trust in the informa-

tiveness of a kernel. In conclusion, this interpretation justi�es the usage of `p-norm outside

the existing choices̀1 and`2. The fact that the sum-kernel SVM is a reasonable choice in the

context of image annotation will be discussed further in Section3.4.1.

Our empirical �ndings on ImageCLEF and VOC seem to contradict previousones about

the usefulness of MKL reported in the literature, where`1 is frequently to be outperformed by

a simple sum-kernel SVM (for example, see (101, 131))—however, in these studies the sum-

kernel SVM is compared tò1-norm or`2-norm MKL only. In fact, our resultscon�rm these

�ndings: `1-norm MKL is outperformed by the sum-kernel SVM in all of our experiments.
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Nevertheless, in this chapter, we show that by using the more general`p-norm regularization,

the prediction accuracy of MKL can be considerably leveraged, even clearly outperforming the

sum-kernel SVM, which has been shown to be a tough competitor in the past (101). But of

course also the simpler sum-kernel SVM also has its advantage, although onthe computational

side only: in our experiments it was about a factor of ten faster than its MKL competitors.

Further information about running times of MKL algorithms compared to sum kernel SVMs

can be taken from (56).

Remarks for Particular Concepts Finally, we show images from classes where MKL helps

performance and discuss relationships to kernel weights. We have seenabove that the sparsity-

inducing `1-norm MKL clearly outperforms all other methods on thebottle class (see Ta-

ble3.1). Fig.3.3shows two typical highly ranked images and the corresponding kernel weights

as output bỳ 1-norm (LEFT) and`1:333-norm MKL (RIGHT), respectively, on the bottle class.

We observe that̀1-norm MKL tends to rank highly party and people group scenes. We con-

jecture that this has two reasons: �rst, many people group and party scenes come along with

co-occurring bottles. Second, people group scenes have similar gradient distributions to im-

ages of large upright standing bottles sharing many dominant vertical lines and a thinner head

section—see the left- and right-hand images in Fig.3.3. Sparsè1-norm MKL strongly focuses

on the dominant HoG product kernel, which is able to capture the aforementioned special gra-

dient distributions, giving small weights to two HoC product kernels and almost completely

discarding all other kernels.

Figure 3.3: Images of typical highly ranked bottle images and kernel weights from `1-MKL
(left) and `1:333-MKL (right).
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Next, we turn to thecowclass, for which we have seen above that`1:333-norm MKL outper-

forms all other methods clearly. Fig.3.4 shows a typical high-ranked image of that class and

also the corresponding kernel weights as output by`1-norm (LEFT) and`1:333-norm (RIGHT)

MKL, respectively. We observe that`1-MKL focuses on the two HoC product kernels; this is

justi�ed by typical cow images having green grass in the background. Thisallows the HoC

kernels to easily to distinguish the cow images from the indoor and vehicle classes such ascar

or sofa. However, horse and sheep images have such a green background,too. They differ in

sheep usually being black-white, and horses having a brown-black color bias (in VOC data);

cows have rather variable colors. Here, we observe that the rather complex yet somewhat color-

based BoW-C and BoW-S features help performance—it is also those kernels that are selected

by the non-sparsè1:333-MKL, which is the best performing model on those classes. In con-

trast, the sum-kernel SVM suffers from including the �ve gray-channel-based features, which

are hardly useful for the horse and sheep classes and mostly introduce additional noise. MKL

(all variants) succeed in identifying those kernels and assign those kernels with low weights.

Figure 3.4: Images of a typical highly ranked cow image and kernel weights from `1-MKL
(left) and `1:333-MKL (right).

3.4 Promoting and Limiting Factors for Multiple Kernel Learning

In the previous section we presented empirical evidence that`p-norm MKL considerably can

help performance in visual image categorization tasks. We also observed that the gain is class-

speci�c and limited for some classes when compared to the sum-kernel SVM, see again Tables

3.2 and3.1. The same also holds for the ImageCLEF2010 dataset. In this section, we aim
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to shed light on the reasons of this behavior, in particular discussing strengths of the average

kernel in Section3.4.1, trade-off effects in Section3.4.2and strengths of MKL in Section3.4.3.

Since these scenarios are based on statistical properties of kernels which can be observed in

concept recognition tasks within computer vision we expect the results to be transferable to

other algorithms which learn linear models over kernels such as (122, 123).

3.4.1 One Argument For the Sum Kernel: Randomness in FeatureExtraction

We would like to draw attention to one aspect present in BoW features, namelythe amount of

randomness induced by the visual word generation stage acting as noise with respect to kernel

selection procedures.

Experimental setup We consider the following experiment, similar to the one undertaken in

(131): we compute a BoW kernel ten times each time using the same local features, identical

spatial pyramid tilings, and identical kernel functions; the only differencebetween subsequent

repetitions of the experiment lies in the randomness involved in the generation of the code-

book of visual words. Note that we use SIFT features over the gray channel that are densely

sampled over a grid of step size six, 512 visual words (for computational feasibility of the clus-

tering), and a� 2 kernel. This procedure results in ten kernels that only differ in the randomness

stemming from the codebook generation. We then compare the performance of the sum-kernel

SVM built from the ten kernels to the one of the best single-kernel SVM determined by cross-

validation-based model selection.

In contrast to (131) we try two codebook generation procedures, which differ by their in-

trinsic amount of randomness: �rst, we deployk-means clustering, with random initialization

of the centers and a bootstrap-like selection of the best initialization (similar to theoption

'cluster' in MATLAB's k-means routine). Second, we deployextremely randomized cluster-

ing forests(ERCF) (31, 132), that are, ensembles of randomized trees—the latter procedure

involves a considerably higher amount of randomization compared tok-means.

Results The results are shown in Table3.6. For both clustering procedures, we observe that the

sum-kernel SVM outperforms the best single-kernel SVM. In particular, this con�rms earlier

�ndings of (131) carried out fork-means-based clustering. We also observe that the difference

between the sum-kernel SVM and the best single-kernel SVM is much more pronounced for

ERCF-based kernels—we conclude that this stems from a higher amount ofrandomness is in-

volved in the ERCF clustering method when compared to conventionalk-means. The standard

98



3.4 Promoting and Limiting Factors for Multiple Kernel Learning

deviations of the kernels in Table3.6con�rm this conclusion. For each class we computed the

conditional standard deviation

std(K j yi = yj ) + std( K j yi 6= yj ) (3.5)

averaged over all classes. The usage of a conditional variance estimator is justi�ed because the

ideal similarity in kernel target alignment (cf. equation (1.32)) does have a variance over the

kernel as a whole however the conditional deviations in equation (3.5) would be zero for the

ideal kernel. Similarly, the fundamental MKL optimization formula (3.7) relies on a statistic

based on the two conditional kernels used in formula (3.5). Finally, ERCF clustering uses

label information. Therefore averaging the class-wise conditional standard deviations over all

classes is not expected to be identical to the standard deviation of the whole kernel.

Table 3.6: AP Scores and standard deviations showing amountof randomness in feature
extraction. Higher AP scores are better.

Method Best Single Kernel Sum Kernel

VOC-KM AP: 44.42� 12.82 45.84� 12.94
VOC-KM Std: 30.81 30.74
VOC-ERCF AP: 42.60� 12.50 47.49� 12.89
VOC-ERCF Std:38.12 37.89
CLEF-KM AP: 31.09� 5.56 31.73� 5.57
CLEF-KM Std: 30.51 30.50
CLEF-ERCF AP: 29.91� 5.39 32.77� 5.93
CLEF-ERCF Std:38.58 38.10

AP Scores and standard deviations showing amount of randomness in feature extraction: Results from
repeated computations of BoW Kernels with randomly initialized codebooks. VOC-KM denotes
VOC2009 dataset and k-means for visual word generation, VOC-ERCF denotes VOC2009 dataset and
ERCF for visual word generation. Similarly CLEF denotes ImageCLEF2010 dataset.

We observe in Table3.6 that the standard deviations are lower for the sum kernels. Com-

paring ERCF and k-means shows that the former not only exhibits larger absolute standard

deviations but also greater differences between single-best and sum-kernel as well as larger

differences in AP scores.

We can thus postulate that the reason for the superior performance of the sum-kernel SVM

stems from averaging out the randomness contained in the BoW kernels (stemming from the

visual-word generation). This can be explained by the fact that averaging is a way of reducing
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the variance in the predictors/models (133). We can also remark that such variance reduction

effects can also be observed when averaging BoW kernels with varyingcolor combinations or

other parameters; this stems from the randomness induced by the visual word generation.

Note that in the above experimental setup each kernel uses thesameinformation provided

via the local features. Consequently, the best we can do isaveraging—learning kernel weights

in such a scenario is likely to suffer from over�tting to the noise contained in the kernels and

can only decrease performance.

To further analyze this, we recall that, in the computational optimum, the information con-

tent of a kernel is measured by`p-norm MKL via the following quantity, as proved in (56):

� / k wk
2

p+1
2 =

 
X

i;j

� i yi K ij � j yj

! 2
p+1

: (3.6)

In this chapter we deliver a novel interpretation of the above quantity; to thisend, we decom-

pose the right-hand term into two terms as follows:

X

i;j

� i yi K ij � j yj =
X

i;j jyi = yj

� i K ij � j �
X

i;j jyi 6= yj

� i K ij � j :

The above term can be interpreted as a difference of the support-vector-weighted sub-kernel

restricted to consistent labelsand the support-vector-weighted sub-kernel over the opposing

labels. Equation (3.6) thus can be rewritten as

� /

 
X

i;j jyi = yj

� i K ij � j �
X

i;j jyi 6= yj

� i K ij � j

! 2
p+1

: (3.7)

Thus, we observe that random in�uences in the features combined with over�tting support

vectors can suggest a falsely high information content in this measure forsomekernels. SVMs

do over�t on BoW features. Using the scores attained on the training data subset we can

observe that many classes are deceptive-perfectly predicted with AP scores fairly above 0.9.

At this point, non-sparsèp> 1-norm MKL offers a parameterp for regularizing the kernel

weights—thus hardening the algorithm to become robust against random noise, yet permitting

to use some degree of information given by Equation (3.7).

(131) reported in accordance to our idea about over�tting of SVMs that`2-MKL and `1-

MKL show no gain in such a scenario while`1-MKL even reduces performance for some

datasets. This result is not surprising as the overly sparse`1-MKL has a stronger tendency to
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over�t to the randomness contained in the kernels / feature generation. The observed amount of

randomness in the state-of-the-art BoW features could be an explanationwhy the sum-kernel

SVM has shown to be a quite hard-to-beat competitor for semantic concept classi�cation and

ranking problems.

3.4.2 MKL and Prior Knowledge

For solving a learning problem, there is nothing more valuable thanprior knowledge. Our em-

pirical �ndings on the VOC2009 and ImageCLEF09 data sets suggested that our experimental

setup was actually biased towards the sum-kernel SVM via usage of prior knowledge when

choosing the set of kernels / image features. We deployed kernels based on four features types:

BoW-S, BoW-C, HoC and HoG. However, thenumberof kernels taken from each feature type

is not equal. Based on our experience with the VOC and ImageCLEF challenges we used a

higher fraction of BoW kernels and less kernels of other types such as histograms of colors or

gradients because we already knew that BoW kernels have superior performance.

To investigate to what extend our choice of kernels introduces a bias towards the sum-kernel

SVM, we also performed another experiment, where we deployed a higherfraction of weaker

kernels for VOC2009. The difference to our previous experiments lies inthat we summarized

the 15 BOW-S kernels in 5 product kernels reducing the number of kernels from 32 to 22. The

results are given in Table3.7; when compared to the results of the original 32-kernel experiment

(shown in Table3.2), we observe that the AP scores are in average about 4 points smaller. This

can be attributed to the fraction of weak kernels being higher as in the original experiment;

consequently, the gain from using (`1:333-norm) MKL compared to the sum-kernel SVM is

now more pronounced: over 2 AP points—again, this can be explained by the higher fraction

of weak (i.e., noisy) kernels in the working set.

In summary, this experiment should remind us that semantic classi�cation setupsuse a

substantial amount of prior knowledge. Prior knowledge implies apre-selectionof highly

effective kernels—a carefully chosen set of strong kernels constitutes a bias towards the sum

kernel. Clearly, pre-selection of strong kernels reduces the need forlearning kernel weights;

however, in settings where prior knowledge is sparse, statistical (or even adaptive, adversarial)

noise is inherently contained in the feature extraction—thus, bene�cial effects of MKL are

expected to be more pronounced in such a scenario.
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Table 3.7: MKL versus Prior Knowledge: AP Scores for a set of kernels with a smaller
fraction of well scoring kernels. Higher scores are better.

Class /̀ p-norm 1:333 1

Aeroplane 77.82� 7.701 76.28� 8.168
Bicycle 50.75� 11.06 46.39� 12.37

Bird 57.7� 8.451 55.09� 8.224
Boat 62.8� 13.29 60.9� 14.01

Bottle 26.14� 9.274 25.05� 9.213
Bus 68.15� 22.55 67.24� 22.8
Car 51.72� 8.822 49.51� 9.447
Cat 56.69� 9.103 55.55� 9.317

Chair 51.67� 12.24 49.85� 12
Cow 25.33� 13.8 22.22� 12.41

Diningtable 45.91� 19.63 42.96� 20.17
Dog 41.22� 10.14 39.04� 9.565

Horse 52.45� 13.41 50.01� 13.88
Motorbike 54.37� 12.91 52.63� 12.66

Person 80.12� 10.13 79.17� 10.51
Pottedplant 35.69� 13.37 34.6� 14.09

Sheep 37.05� 18.04 34.65� 18.68
Sofa 41.15� 11.21 37.88� 11.11
Train 70.03� 15.67 67.87� 16.37

Tvmonitor 59.88� 10.66 57.77� 10.91

Average 52.33� 12.57 50.23� 12.79

In this set only �ve instead of 15 Bow-S kernels are used leading to a lower fraction of BoW-based
kernels compared to kernels over global histogram features.

3.4.3 One Argument for Learning the Multiple Kernel Weights: Varying Infor-
mative Subsets of Data

In the previous sections, we have presented evidence for why the sum-kernel SVM is consid-

ered to be an ef�cient learner in visual image categorization. Nevertheless, in our experiments

we have observed gains in accuracy by using non-sparse MKL for many concepts. In this

section, we investigate causes for this performance gain.

We formulate a hypothesis for the performance gains achieved by MKL: each kernel is

informative for a subset of the data in the sense that the kernel, when used in a SVM, classi�es

that subset well. These subsets can be partially disjoint between kernels and have varying
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sizes. The MKL information criterion given in Eq. (3.7) is able to exploit such differences in

informative subsets and is able to weight kernels properly despite being aglobal information

measure that is computed over the support vectors (which in turn are chosen over thewhole

dataset).

In this section, we will present experimental evidence for this hypothesis intwo steps. In

the �rst step we show that our kernels computed from the real ImageCLEF2010 dataset indeed

have fairly disjoint informative subsets. This suggests that our observed performance gains

achieved by MKL could be explained by MKL being able to exploit such a scenario. In the

second step we will create a toy dataset such that the informative subsets of kernels are disjoint

by design. We will show that, in this controlled toy scenario, MKL outperformsaverage-kernel

SVMs in a statistically signi�cant manner. These two steps together will serve as evidence for

our hypothesis given above.

The main question for the �rst step is how to determine which set of samples is informative

for a given kernel matrix and how to measure the diversity of two sets de�ned by two kernels.

Despite using ranking measures for most of the paper, we will stick here to asimple de�nition.

Consider one binary classi�cation problem. The set of all true positively and true negatively

classi�ed test examples using a SVM will be the informative subset for a kernel. If we restrict

the kernel to the union of these two subsets of the test data set, then the resulting classi�er

would discriminate the two classes perfectly. Since we do not have test data labels for the

Pascal VOC dataset, we will restrict ourselves to the ImageCLEF data.

The diversity measure will be de�ned in two steps: at �rst for two sets, then for a pair of

kernels. The diversity measured(S1; S2) for two setsS1; S2 should have two properties: it

should be1 if these sets are maximally disjoint and be equal to zero if one set is contained

in the other. The second property follows the idea that if the informative setof one kernel is

contained in the informative set of another, then the �rst kernel is inferior to the second and we

would like to re�ect this in our diversity measure by setting it to zero as we would expect little

gain from adding the �rst kernel to the second one in SVMs or MKL algorithms – we would

say the inferior kernel does not add any diversity.

Using these two conditions we note that two setsS1; S2 are maximally disjoint ifjS1 [

S2j = min( jS1j + jS2j; N test ),whereN test is the total number of test samples. Analogously, if

one set is contained in the other, thenjS1 [ S2j = min( jS1j; jS2j). Linear interpolation between
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these two extremes yield the diversity measure for a pair of setsS1; S2:

�d(S1; S2) =
jS1 [ S2j � min( jS1j; jS2j)

min( jS1j + jS2j; N test ) � min( jS1j; jS2j)
(3.8)

Note that we do not use the symmetric difference here because this would benon-empty if one

set was contained in the other.

The diversity measured(k1; k2) for two kernelsk1; k2, still given a �xed binary classi�ca-

tion problem, will be de�ned as the sum of the diversities between the two true positive sets

from both kernels and the two true negative sets from both kernels. LetTP(k) be the set of

true positive samples of kernelk, andTN (k) the corresponding set of true negative samples.

Then we de�ne

d(k1; k2) =
�d(TP(k1); TP(k2)) + �d(TN (k1); TN (k2))

2
(3.9)

Treating true positives and true negatives separately makes sense because for most of the classes

the positive labeled samples constitute only a small fraction of all samples which has its impact

on the maximal number of true positives.

The diversity measure is actually a function of a classi�er even though the difference in our

case is made by varying the underlying kernels. In contrast to kernel target alignment (59) (see

Section1.3.4), or relevant dimensionality estimation (RDE) (102) it incorporates information

about the classi�ers itself by using true positives and true negatives. The former two methods

rely on kernels and ground truth labels alone. Support vector machines do not use the whole

kernel matrix in practice. The support vectors select and re-weight a subset of the kernel matrix

corresponding to training data samples close to the decision hyperplane in kernel space. Thus,

the above alternative measures, which consider the whole kernel matrix, may not be always

optimal for explaining results of support vector machines. The motivation for introducing this

novel measure is that incorporating extra information from support vector machines may help

to validate a hypothesis related to classi�cation results of support vector machines.

Since the ImageCLEF2010 dataset has93 classes, we consider the average diversity of a

pair of kernels over all classes and the maximal diversity of a pair of kernels over all classes.

Figure 3.5 shows both diversities. We can see an interesting phenomenon: the diversities

are low between the �rst 15 BoW-S kernels. This may serve as an explanation for anecdotal

experiences that using MKL on BoW-S features alone yields no gains. The diversity is low but

the randomness in feature extraction as discussed in a subsection above results in over�tting.

However for the whole kernel set of all32 kernels the diversities are large. The mean average
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diversity (when the mean is computed over all pairs of kernels and the average of all93binary

classi�cation problems) is37:77, the mean maximal diversity over all kernel pairs is71:68

when the maximum is computed over all93 binary classi�cation problems. This concludes

the �rst step: our kernel set does have partially disjoint sets of true positive and true negative

samples between pairs of kernels. The informative subsets of kernels are fairly disjoint.

Figure 3.5: Diversity measure from Equation(3.9) between correctly classi�ed samples for
all pairs of 32 kernels. Left: Average over all concept classes. Right: Maximum over all
concept classes.Rows and columns correspond to entries for a particular kernel index. Red colors
correspond to highest diversity, blue to lowest.

In the second step we will construct two toy data sets in which by design we have kernels

with disjoint informative subsets of varying sizes. The goal is to show that MKL outper-

forms the average kernel SVM under such conditions. This implies that the MKL information

criterion given in Eq. (3.7) is able to capture such differences in informative subsets despite

being aglobal information measure. In other words, the kernel weights are global weights

that uniformly hold in all regions of the input space. While on the �rst look it appears to be

a disadvantage, explicitly �nding informative subsets of the input space onreal data may not

only imply a too high computational burden (note that the number of partitions of an n-element

training set is exponential inn) but also is very likely to lead to over�tting.

We performed the following toy experiment. The coarse idea is that we createn features

of dimension6k, wheren is the number of data samples. We will computek kernels such that

the i-th kernel is computed only from the i-th consecutive block of6 feature dimensions from

all available6k dimensions. We want the i-th kernel to have an informative subset of samples
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and an uninformative complement. After drawing labels for alln samples, we partition all data

samples intok blocks of varying size. The precise sizes of the blocksnl will be given below.

The i-th block of data samples will be the informative subset for the i-th kernel. This will

be achieved in the following way: for the i-th block of samples the i-th block of dimensions will

be drawn from two Gaussians having different means such that the chosen Gaussian depends

on the label of the data sample. This implies that each of the two Gaussians is responsible for

creating the samples of one label. For all other samples (except for the i-th block of samples)

the i-th block of dimensions will be drawn from an unconditional mixture of two Gaussians,

i.e. which Gaussian is used will be independent of the sample labels. Therefore the i-th kernel

which is computed from the i-th block of dimensions contains discriminative information only

for the samples coming from the i-th block of samples. For all other samples, thei-th kernel

uses features from a mixture of Gaussians independent of the sample labels which allows no

discrimination of labels. By this construction the i-th kernel will have the i-th setof samples as

discriminative subset. Furthermore, all kernels will have mutually disjoint informative subsets,

because the i-th kernel is discriminative only on the i-th subset.

We generated a fraction ofp+ = 0 :25of positively labeled andp� = 0 :75of negatively la-

beled training examples (motivated by the unbalancedness of training sets usually encountered

in computer vision). The precise data creation protocol is given in the experimental section

parts for experiments one and two.

We consider two experimental setups for sampling the data, which differ in thenumber

of employed kernelsk and the sizes of the informative sets. In both cases, the informative

features are drawn from two suf�ciently distant normal distributions (onefor each class) while

the uninformative features are just Gaussian noise (mixture of Gaussians). The experimental

setup of the �rst experiment can be summarized as follows:

Experimental Settings for Experiment 1 (k=3 kernels):

Let nl be the size of the l-th informative subset andn =
P k

l=1 nl the total sample size.

f f i 2 R6k j i = f 1 : ngg are the features to be drawn wheref (r )
i is the r-th dimension of the

i-th feature.

nl=1 ;2;3 : = (300; 300; 500)

p+ : = P(y = +1) = 0 :25

S1 = f 1 : n1g; Sl> 1 = f nl � 1 + 1 : nl g
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f (r )
i 2

(
informative subset ifi 2 Sl andr 2 f 1 + 6( l � 1) : lg

uninformative subset else
(3.10)

The features for the informative subset are drawn according to

f (r )
i �

(
N (0:0; � l ) if yi = � 1

N (0:4; � l ) if yi = +1
(3.11)

� l =

(
0:3 if l = 1 ; 2

0:4 if l = 3
(3.12)

The features for the uninformative subset are drawn according to

f (r )
i � (1 � p+ )N (0:0; 0:5) + p+ N (0:4; 0:5): (3.13)

Finally the l-th kernel is de�ned as

kl (f 1; f 2) = exp( � � k� f 1+6( l � 1):lg(f 1 � f 2)k2
2); l = 1 ; : : : ; k (3.14)

where� f 1+6( l � 1):lg(�) is the projection on the feature dimensions ranging in the setf 1 + 6( l �

1) : lg.

For Experiment 1 the three kernels had disjoint informative subsets of sizes nk=1 ;2;3 =

(300; 300; 500). We used1100data points for training and the same amount for testing. We

repeated this experiment500times with different random draws of the data.

Note that the features used for the uninformative subsets are drawn as amixture of the

Gaussians with a higher variance, though. The increased variance encodes the assumption that

the feature extraction produces unreliable results on the uninformative data subset. None of

these kernels are pure noise or irrelevant. Each kernel is the only informative one for its own

informative subset of data points.

We now turn to the experimental setup of the second experiment which is an extension to

�ve kernels:

Experimental Settings for Experiment 2 (k=5 kernels):

Let nl be the size of the l-th informative subset andn =
P k

l=1 nl the total sample size.

f f i 2 R6k j i = f 1 : ngg are the features to be drawn wheref (r )
i is the r-th dimension of the

i-th feature.

nl=1 ;2;3;4;5 = (300; 300; 500; 200; 500);

p+ := P(y = +1) = 0 :25
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S1 = f 1 : n1g; Sl> 1 = f nl � 1 + 1 : nl g

f (r )
i 2

(
informative subset ifi 2 Sl andr 2 f 1 + 6( l � 1) : lg

uninformative subset else
(3.15)

The features for the informative subset are drawn according to

f (r )
i �

(
N (0:0; � l ) if yi = � 1

N (ml ; � l ) if yi = +1
(3.16)

ml =

(
0:4 if l = 1 ; 2; 3

0:2 if l = 4 ; 5
(3.17)

� l =

(
0:3 if l = 1 ; 2

0:4 if l = 3 ; 4; 5
(3.18)

The features for the uninformative subset are drawn according to

f (r ) � (1 � p+ )N (0:0; 0:5) + p+ N (ml ; 0:5) (3.19)

Finally the l-th kernel is de�ned as

kl (f 1; f 2) = exp( � � k� f 1+6( l � 1):lg(f 1 � f 2)k2
2); l = 1 ; : : : ; k (3.20)

where� f 1+6( l � 1):lg(�) is the projection on the feature dimensions ranging in the setf 1 + 6( l �

1) : lg.

As for the real experiments, we normalized the kernels to having standard deviation 1

in Hilbert space and optimized the regularization constant by grid search inC 2 f 10i j i =

� 2; � 1:5; : : : ; 2g.

Table3.8shows the results. The null hypothesis of equal means is rejected by a t-test with

a p-value of0:000266and0:0000047, respectively, for Experiment 1 and 2, which is highly

signi�cant.

Experiment 2 shows that the design of the Experiment 1 is no singular lucky �nd: we can

extend the setting of experiment 1 and observe similar results again when using more kernels;

the performance gaps then even increased. Experiment 2 uses �ve kernels instead of just three.

Again, the informative subsets are disjoint, but this time of sizes300, 300, 500, 200, and

500; the the Gaussians are centered at0:4, 0:4, 0:4, 0:2, and0:2, respectively, for the positive

class; and the variance is taken as� k = (0 :3; 0:3; 0:4; 0:4; 0:4). Compared to Experiment 1,
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Table 3.8: AP Scores in Toy experiment using Kernels with disjoint informative subsets of
Data. Higher scores are better. Lower p-values imply higherstatistical signi�cance of differ-
ences in scores.

Setup `1 -SVM `1:0625-MKL t-test p-value

1 68.72� 3.27 69.49� 3.17 0.000266
2 55.07� 2.86 56.39� 2.84 4:7 � 10� 6

this results in even bigger performance gaps between the sum-kernel SVMand the non-sparse

`1:0625-MKL. One can imagine to create learning scenarios with more and more kernelsin the

above way, thus increasing the performance gaps—since we aim at a relative comparison, this,

however, would not further contribute to validating or rejecting our hypothesis.

Furthermore, we also investigated the single-kernel performance of each kernel: we ob-

served the best single-kernel SVM (which attained AP scores of43:60, 43:40, and58:90 for

Experiment 1) being inferior to both MKL (regardless of the employed normparameterp) and

the sum-kernel SVM over the whole set of kernels. The differences were signi�cant with fairly

small p-values (for example, for`1:25-MKL the p-value was still about0:02).

We emphasize that we did not design the example in order to achieve a maximal perfor-

mance gap between the non sparse MKL and its competitors. For such an example, see the

toy experiment of (56). Our focus here was to con�rm our hypothesis that kernels in semantic

concept classi�cation are based on varying informative subsets of the data—although MKL

computes global weights, it emphasizes on kernels that are relevant on thelargest informa-

tive set and thus approximates the infeasible combinatorial problem of computing an optimal

partition/grid of the space into regions which underlie identical optimal weights.Though, in

practice, we expect the situation to be more complicated as informative subsetsmay overlap

between kernels instead of being disjoint as modeled here.

Nevertheless, our hypothesis also opens the way to new directions for learning of kernel

weights, namely restricted to subsets of data chosen according to a meaningful principle. Find-

ing such principles is one the future goals of MKL—we sketched one possibility: locality in

feature space. A �rst starting point may be the work of (134, 135) on localized MKL.

We conclude the second step. MKL did outperform the average kernel SVM in this con-

trolled toy data scenario with disjoint informative subsets for each kernel. It may serve as

empirical evidence for our hypothesis why we observe gains using MKL on real data: MKL
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with its global information criterion can exploit scenarios in which each kernel is informative

for a subset of the data and these subsets are partially disjoint between kernels.

3.5 Conclusions

When measuring data with different measuring devices, it is always a challenge to combine the

respective devices' uncertainties in order to fuse all available sensor information optimally. For

images using many different features is a common strategy in visual object recognition. This

raises the question ofhowto combine these features.

In this chapter, we revisited this important topic and discussed machine learning approaches

to adaptively combine different image features in a systematic and theoreticallywell founded

manner. While MKL approaches in principle solve this problem it has been observed that the

standard̀ 1-norm based MKL often cannot outperform SVMs that use an averageof a large

number of kernels. One hypothesis why this seemingly un-intuitive result mayoccur is that

the sparsity prior may not be appropriate in many real world problems—especially, when prior

knowledge is already at hand. We tested whether this hypothesis holds truefor computer vision

and applied the recently developed non-sparse`p MKL algorithms to object classi�cation tasks.

The `p-norm constitutes a less severe method of sparsi�cation. By choosingp as a hyperpa-

rameter, which controls the degree of non-sparsity and regularization, from a set of candidate

values with the help of a validation data, we showed that`p-MKL signi�cantly improves SVMs

with averaged kernels and the standard sparse`1 MKL.

From a theoretical viewpoint the works in (136, 137) show that under certain conditions,

like differing decay rates of eigenspectra of kernel operators between kernels, non-sparse MKL

yields faster convergence rates for increasing sample sizes compared tosparsè 1-norm MKL.

However, the analysis undertaken in this chapter identi�ed over�tting of support vector ma-

chines as one source of issues with information fusion in practice. The work in (67) and

stacking in (68) used cross-validation to generate SVM outputs which were subsequentlyused

for computing kernels employed in information fusion. From a practical viewpoint designing

multiple kernel learning criteria based on outputs computed by cross-validation is one potential

direction for reducing the over�tting issues with the current MKL approaches. When compared

to more heuristic schemes of iteratively removing the weakest kernel from or adding the next

best kernel into a uniform mixture and evaluating the kernel mixture using crossvalidation the
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approach to use MKL on crossvalidated outputs might offer an advantagewhen a non-uniform

mixture of a subset of all kernels yields the optimal performance.

This approach based on outputs computed by cross-validation can be applied to settings

where higher over�tting is expected due to a more �exible or higher-dimensional parametriza-

tion such as localized MKL (123, 126).

Future work may study the application of MKL in structured prediction setups as suggested

for label kernels used in classi�cation with taxonomies in Section2.6 of Chapter2. Another

interesting direction is MKL-KDA (121, 122). The difference to the method studied in the

present paper lies in the base optimization criterion: KDA (138) leads to non-sparse solutions

in the support vectors� of the SVM while ours leads to sparse ones (i.e., a low number of

support vectors). While on the computational side the latter is expected to be advantageous,

the �rst one might lead to more accurate solutions. We expect that the identical regularization

over kernel weights (i.e., the choice of the norm parameterp) yields similar effects for MKL-

KDA like for MKL-SVM. Another reason to believe in observing similar effects in KDA is

that the �rst two observed effects in this study discussed in Section3.4originate from feature

and kernel design such that any kernel-based algorithm will have to deal with them.

Information fusion based on multiple kernel learning does matter in practice. non-sparse

MKL was employed for the best purely visual submission by mAP measure in theImage-

CLEF2011 Photo Annotation challenge (1, 18).
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Outlook

This thesis is naturally not a complete treatment of the �eld of image annotation and ranking.

I left some closely-related questions aside. One can try a similar analysis of what I did with

MKL-SVM in chapter3 using MKL-KDA. I did not expect a qualitatively new insights from

it, however MKL-KDA seems to be much slower than MKL-KDA, resulting in muchtime for

experiments without any new message. Similarly, I did not combine the hierarchical classi�-

cation analyzed in chapter2 with MKL for the classi�ers at the edges. I have no doubts that

one can see improvement from this combination compared to �at classi�cation with or with-

out MKL for some datasets. Again, I did not expect any qualitatively new insights from that

straightforward combination.

There are many interesting questions which go beyond the setting of pure image annotation

and ranking. One example is incorporation of more prior knowledge in problems like human

action recognition. Segmentation did not prove very useful for image annotation with highly

varying concepts in the sense that it is not used in the top submissions to recent benchmark

competitions on concept classi�cation. It may however be useful in human action recognition

where the images are expected to come from a narrower domain. They are more restricted by

showing humans being centered and of a certain minimum scale in the image. Another suc-

cessful example from a narrower domain is (139) where segmentation is used to segment Cats

and Dogs for discriminating between breeds. The images show animals centered and covering

a larger part of the image which constitutes a difference to generic concept recognition where

the scale and position of parts contributing to a concept can be small. I think incorporating

prior knowledge about a problem without ending up in messy engineering isa true art.
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Another direction would be to consider more complex settings compared to per category

ranking up the far goal of understanding an image by guessing the interaction of components

in it. What happens if one wants not only to annotate concepts but understand what parts of

an image contribute to them? If one is interested in extracting interactions betweenconcepts

or regions which contribute to the classi�cation of belonging to a concept? More complex

problems could break the dominance of Bag of Word features or even kernel-based methods,

in particular when the complexity of a problem makes it hard to design one uni�ed loss function

or a score to be optimized. This hypothesis can be supported by the fact that discriminatively

trained part models are dominating in image detection (140). Part models have been revived in

that setting. One extension of Bag of word features for representation of relations between parts

(beyond weighted but orderless sets of features as done in (37)) would be a view of images as

sets of local graphs with weighted edges and local features at the nodes. The idea is to represent

an image by some way of aggregating many small graphs to circumvent problemsfrom noise-

corrupted edge weights in single graphs. In contrast to earlier approaches an image would not

correspond to one single large graph but to a set of smaller ones and a local feature can be part

of multiple disjoint graphs. The graphs allow to aggregate smaller regions into larger ones and

encode relations between parts, yet avoiding the rigidity of early part models which tried to

represent one object by one graph rigidly. The challenge would be to generate the graphs and

to aggregate the graphs into one representation as it is done with mappings oflocal features

into a BoW feature. However the �rst step would be to de�ne a meaningful way to understand

an image via an interpretation of relations in it.

A general question related to more complex image understanding settings is at what point

generative methods may have advantages over discriminative ones. Clearly discriminative

methods are strong when an objective function can be formulated and optimized. As with

BoW features, discriminative methods may be limiting on very complex image understanding

problems where the design of one loss function to be used for optimization becomes dif�cult.

When a large number of different concepts and relations is to be predicted, generative methods

could become more attractive again.
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Appendix

5.1 Tables for Chapter 2: Semantic Concept Recognition with a

Tree Structure over Concepts

The full comparison for Caltech256 animals 13 class subset and VOC2006is shown in Tables

5.2and5.3.

Table 5.1: Errors on Caltech256 52 animals classes, 20 splits. Lower losses are better.

Method Taxonomy Loss 0/1 Loss

one vs all 30.66� 0.46 62.56� 0.67

struct mc mr� = � T 32.29� 0.35 66.91� 0.64

struct mc sr� = � T 33.48� 0.39 68.86� 0.60

struct mc sr� = � 0=1 34.09� 0.38 68.05� 0.64

local tax AM 30.01� 0.31 79.82� 0.55

local tax scaled GM 29.62� 0.34 76.19� 0.57

local tax greedy path-walk 40.31� 0.34 77.65� 0.46

struct tax mr� = � T 30.58� 0.31 81.19� 0.53

struct tax sr� = � T – a � – – � –

struct tax sr � = � 0=1 39.16� 0.45 76.85� 0.59

aDid not terminate after over seven days. Jobs consume over 20GB.
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Table 5.2: Errors on Caltech256 animals 13 class subset data, 20 splits. Lower losses are
better.

Method Taxonomy Loss 0/1 Loss

one vs all 42.49� 1.46 57.04� 1.98

struct mc mr� = � T 42.76� 0.96 64.35� 1.40

struct mc sr� = � T 42.49� 1.49 57.06� 2.01

struct mc sr � = � 0=1 42.40� 1.29 57.05� 1.77

local tax AM 41.78� 1.16 62.57� 1.42

local tax scaled GM 40.58� 1.15 58.33� 1.50

local tax greedy path-walk 47.65� 1.13 63.33� 1.57

struct tax mr� = � T 41.48� 1.22 61.54� 1.55

struct tax sr � = � T 41.55� 1.65 58.21� 2.20

struct tax sr � = � 0=1 44.32� 1.07 59.22� 1.51

Table 5.3: Errors on VOC2006 as multi-class problem, 20 splits. Lower losses are better.

Method Taxonomy Loss 0/1 Loss

one vs all 27.09� 1.88 50.54� 2.51

struct mc mr� = � T 26.37� 1.77 51.04� 2.53

struct mc sr � = � T 27.20� 1.89 50.73� 2.54

struct mc sr � = � 0=1 27.18� 1.87 50.70� 2.41

local tax AM 26.02� 1.66 50.48� 2.34

local tax scaled GM 25.86� 1.56 50.10� 2.29

local tax greedy path-walk 27.15� 1.65 51.85� 2.28

struct tax mr� = � T 25.78� 1.67 50.17� 2.17

struct tax sr� = � T 27.24� 1.61 52.55� 2.23

struct tax sr � = � 0=1 27.63� 1.71 51.73� 2.50

116



5.2 Tables for Chapter3: Insights from Classifying Visual Concepts with Multiple
Kernel Learning

5.2 Tables for Chapter 3: Insights from Classifying Visual Con-

cepts with Multiple Kernel Learning

This supplement delivers the average precision(AP) scores for the ImageCLEF2010 test dataset

listed for all 93 visual concepts and all`p-norms used including the average kernel as the spe-

cial casè 1 .

Table 5.4: AP scores on ImageCLEF2010 test data with �xed̀ p-norm. Higher scores are
better. Part 1.

Partylife FamilyFriends Beach BuildSights Snow Citylife

`1 28.41 50.82 39.36 54.94 12.75 50.14
`1:125 30.52 52.55 42.75 57.23 19.97 52.79
`1:333 30.84 52.26 42.71 56.87 20.38 52.8

`2 30.46 51.54 41.77 55.72 19.94 52.34
`1 30.55 50.76 40.78 55.26 20.49 51.69

Landscape Sports Desert Spring Summer Autumn

`1 81.42 7.464 10.85 5.962 28.39 26.12
`1:125 81.97 10.37 15.3 13.52 29.12 32.79
`1:333 81.8 10.33 15.12 15.59 29.42 33.49

`2 81.48 10.19 16.55 16 29.34 33.26
`1 81.16 10.07 15.82 16.54 29.3 33.58

Winter NoSeason Indoor Outdoor NoPlace Plants

`1 15.66 96.51 61.8 90.79 60.1 78.04
`1:125 19.49 96.61 62.53 91.39 60.65 79.28
`1:333 20.11 96.61 62.44 91.49 60.92 79.44

`2 20.09 96.53 62.12 91.43 60.33 79.23
`1 19.81 96.47 61.69 91.26 60.06 78.85

Flowers Trees Sky Clouds Water Lake

`1 43.25 63.03 91.39 87.65 62.69 26.24
`1:125 46.42 65.35 91.8 88 65.43 26.95
`1:333 47.47 65.39 91.73 87.93 66.03 27.13

`2 47.89 64.87 91.64 87.77 66.01 26.92
`1 47.91 64.13 91.39 87.54 65.79 25.79
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Table 5.5: AP scores on ImageCLEF2010 test data with �xed̀ p-norm. Higher scores are
better. Part 2.

River Sea Mountains Day Night NoTime

`1 15.68 47.55 53.21 88.03 55.89 80.1
`1:125 19.75 48.74 52.86 88.68 57.85 80.83
`1:333 18.92 48.79 51.95 88.69 58.19 80.83

`2 18.57 48.19 51.03 88.54 58.13 80.62
`1 17.8 47.77 50.36 88.4 57.85 80.38

Sunny Sunset StillLife Macro Portrait Overexpos

`1 46.51 81.16 37.64 48.5 65.58 17.43
`1:125 49.82 81.58 40.72 50.2 67.58 19.9
`1:333 50.13 81.37 40.65 49.66 67.62 18.9

`2 49.97 81.09 39.76 49.07 67.24 18.51
`1 50.08 80.77 39.54 50.02 66.72 17.61

Underexpos NeutralIllum MotionBlur Outoffocus PartBlur NoBlur

`1 27.74 98.38 13.35 10.28 72.37 90.92
`1:125 28 98.4 19.82 15.08 74.26 91.39
`1:333 27.43 98.31 19.72 14.88 74.2 91.14

`2 26.99 98.26 19.22 14.21 73.8 91.21
`1 29.22 98.49 18.47 13.47 73.31 91.06

SinglePers SmallGroup BigGroup NoPersons Animals Food

`1 54.52 30.74 34.31 91.5 44.24 49.57
`1:125 55.85 32.88 41.11 91.99 49.78 52.73
`1:333 55.78 32.78 41.81 92.03 50.08 53.31

`2 55.34 32.28 41.29 92 49.78 53.26
`1 54.81 31.83 40.5 91.81 49.17 52.81

Vehicle Aesthetic OverallQuality Fancy Architecture Street

`1 45.17 28.63 22.6 17.14 27.04 29.46
`1:125 47.62 28.25 22.41 17.95 28.8 33.7
`1:333 47.35 27.14 21.57 17.15 29.25 33.91

`2 47 26.01 20.77 16.92 28.91 33.42
`1 46.25 28.34 22.46 18.82 27.84 32.79

Church Bridge ParkGarden Rain Toy MusicInstr

`1 5.29 5.087 42.02 0.6378 15.27 5.066
`1:125 8.15 7.437 44.44 0.8926 22.05 5.231
`1:333 7.441 7.546 44.75 0.9725 22.35 5.445

`2 6.577 7.243 44.53 0.9875 21.97 5.609
`1 6.241 7.117 43.91 1.017 20.58 5.33
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5.2 Tables for Chapter3: Insights from Classifying Visual Concepts with Multiple
Kernel Learning

Table 5.6: AP scores on ImageCLEF2010 test data with �xed̀ p-norm. Higher scores are
better. Part 3.

Shadow Bodypart Travel Work Birthday VisualArt

`1 11.23 22.46 11.68 4.264 1.143 32.98
`1:125 10.93 23.84 12.89 4.596 0.9434 32.99
`1:333 10.15 24.15 12.49 4.468 0.9152 32.62

`2 9.702 23.63 12.33 4.314 0.8556 31.97
`1 10.89 23.07 12.69 4.257 0.8731 33.05

Graf�ti Painting Arti�cial Natural Technical Abstract

`1 3.411 12.66 12.64 71.16 5.979 2.553
`1:125 4.467 18.57 13.96 71.66 6.107 2.33
`1:333 4.273 18.83 13.67 71.64 5.853 2.137

`2 4.094 18.9 13.18 70.62 5.82 2.099
`1 3.882 19.58 13.97 71.32 6.01 2.025

Boring Cute Dog Cat Bird Horse

`1 7.281 59.58 22.04 2.132 13.02 1.48
`1:125 7.68 59.13 31.54 8.586 23.87 4.414
`1:333 7.388 59.46 31.99 8.97 23.98 3.931

`2 7.23 58.08 31.85 8.208 23.33 3.408
`1 7.167 58.88 31.11 7.626 22.7 3.279

Fish Insect Car Bicycle Ship Train

`1 0.915 11.51 31.27 18.9 8.157 12.97
`1:125 1.844 16.2 34 26.17 9.749 15.42
`1:333 1.684 15.6 33.89 26.13 9.164 14.4

`2 1.594 14.94 33.51 25.53 8.688 13.45
`1 1.605 15.06 32.54 24.5 8.581 12.48

Airplane Skateboard Female Male Baby Child

`1 5.913 0.2205 44.4 20.65 8.028 6.304
`1:125 11.08 0.4211 45.78 21.02 17.85 10.36
`1:333 11.14 0.41 45.51 21.01 18.14 11.01

`2 10.22 0.3963 44.78 21.03 17.12 10.8
`1 10.18 0.4172 43.58 20.86 15.22 10.67

Teenager Adult Oldperson

`1 21.32 53.03 5.068
`1:125 23.69 54.33 5.624
`1:333 23.35 53.96 5.66

`2 23.03 53.4 5.58
`1 23.78 53 5.46
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SCHÖLKOPF. Large Scale Multiple Kernel Learning. Journal of Machine Learning Research,
7:1531–1565, 2006.79, 81

[113] A. RAKOTOMAMONJY, F. BACH, S. CANU , AND Y. GRANDVALET . SimpleMKL . Journal of
Machine Learning Research, 9:2491–2521, 2008.79

[114] C. CORTES, A. GRETTON, G. LANCKRIET, M. MOHRI, AND A. ROSTAMIZADEH.
Proceedings of the NIPS Workshop on Kernel Learning: Automatic Selection of Optimal
Kernels, 2008.79

[115] MARIUS KLOFT, ULF BREFELD, PAVEL LASKOV, AND SÖREN SONNENBURG. Non-Sparse
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