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Abstract

My thesis deals with the recognition of visual concepts on images using statistica
machine learning. Recognition is treated here as classi cation task with centinu
ous predictions. The continuous predictions can be used to generatkirzgraf
images and thus will be often evaluated in a ranking setting. Ranking means that
for a given visual concept the set of all test images will be sorted diowpto the
prediction in a descending order and evaluated using a ranking me@biselis-
sertation treats the general case of visual concepts in which concepds aed
explicitly by a set of images. The aim is multi-label classi cation in which for one
image all present concepts are to be predicted. The challenge compéighlyo
specialized tasks such as face recognition is the ability to deal with a gereric s
of visual concepts which are de ned by the training data.

Classi cation is based on kernel methods such as extensions of sweptot ma-
chines. The features are predominantly bag of visual words (BowW)haiald
superior results for visual concept recognition on images with genemigegas as
demonstrated constantly over the last years by the results of internatiordi-be
mark competitions such as Pascal VOC classi cation and ImageCLEF Pheto an
notation. The problem of classi cation and ranking of a generic set afalison-
cepts can be divided into three subtasksrmulation of the problem and design
or choice of a corresponding loss functighe Learning of feature combinations
given a loss functioand theDesign of FeaturesMy publication record contains
co-authored work on all subtasks. This dissertation contains contribdtotise
rst two subtasks.

In the rst part of the dissertation | consider (for the aspectofmulation of
the problem and design or choice of a corresponding loss functimtels which



are capable of minimizing hierarchical loss functions which are inducedxsy ta
onomies over the set of all visual concepts. The idea is that a taxononmgsle

a prioritization of classi cation and ranking errors. The goal is to avoitrsr
which originate from confusing concepts which are distant under thengaxo-
nomy. One example is a system which annotates images such that it retuans for
request of dogs in case of absence of dogs or in case of error iadiges of cats
than images of cars.

In contrast to preceding publications the focus lies not on speed dustigge
time but on improved classi cation and ranking performance under therblgra
cal loss. The developed model aggregates the votes of all edges in cimetay

not only those of the locally best or shortest path. Furthermore the tiécat
models are generalized such that they can be predict multiple labels for multi-
label ranking problems in which each image can have more than one visual co
cept. Previous approaches based on greedy walks along the edesirarchy
are able to predict only the most likely concept. In the context of multi-lalmdd-ra
ing we de ne also a ranking measure which incorporates taxonomicahiafon.
The developed model is compared against one-versus-all and stdiprediction
baselines.

In the second part of the dissertation | analyze (for the aspdataring of fea-
ture combinations given a loss functjoiie non-sparse multiple kernel learning
(MKL) for multi-label ranking of images. It is compared against averagml
support vector machines (SVMs) and sparseorm MKL. For the empirical part

| evaluate the performance of these methods on the Pascal VOC2009datass
tion and ImageCLEF2010 Photo Annotation datasets. It is shown that veireg u
model selection in a practical setup, hon-sparse MKL yields equal or besiglts
compared to the average kernel SVM which does not learn feature catiolnis,

in contrast to sparse -norm MKL which yields worse results. For the theoreti-
cal part we identify limiting and promoting factors for the performance gafns o
non-sparse MKL when compared to the other methods.

The dissertation is closed by an outlook section.



Abstract

Meine Dissertation behandelt Probleme der Erkennung visueller Konaggte
Bildern mit Hilfe von Methoden des statistischen maschinellen Lernens. Ziel der
Erkennung im Rahmen meiner Dissertation ist es, einem Bildedes visuelle
Konzept einen reellen Wert zuzuweisen, desseais&r einer (nicht probabilistis-
chen) Kon denz in das Vorhandensein des Konzeptes in diesem Bilgrstis
Derartige reellwertige Vorhersagenrnen fir Klassi kation von Bildern und tir

die Rangsortierung benutzt werden. Unter Rangsortierung wird inrdiebeit

die Anordnung der Bilder entsprechend der Kon denzén din vorgegebenes
Konzept verstanden, welche zum Beispiel als Ausgabe einer Suchimagenutzt

werden lonnte.

Diese Dissertation behandelt den allgemeinen Fall, bei dem im Kontext der Kla
si kation ein visuelles Konzept implizit de niert werden kann durch die §abe
einer Menge von Bildern, die ein solches Konzept aufweisen. Ziel issalje-
nannte multi-label Klassi kation, bei der zu einem Bild alle dort vorhandevie
suellen Konzepte aus der vorgebenenen Menge aller visuellen Konoepezge-
sagt werden sollen. Die Herausforderung im Unterschied zu hozisgeen
Aufgaben wie der Gesichtserkennung liegt darin, dass die Mengeislezlien
Konzepte durch die Trainingsdaten frei vorgegeben werden kashdatmer gener-

isch ist.

Zur Klassi kation werden kern-basierte Methoden aufbauend aupetprek-

tor Maschinen verwendet. Als Merkmale werd@merwiegend sogenannte His-
togrammelber visuellen Vdrtern verwendet (bag of words). Die Kombination
von Histogramméiber visuellen Vrtern und nichtlinearen re@sentiert den Stand

der Technik im Bereich der Klassi kation von generischen visuellen kpten,



was durch internationale Wettbewerbe wie Pascal VOC Classi cation ungdma
CLEF Photo Annotation aljhrlich demonstriert wird. Das Klassi kationsprob-
lem in seiner Gesamtheit kann in drei Teilprobleme unterteilt werdenfalie
mulierung des Problems sowie die Auswahl der VerlustfunktiasLernen einer
Kombination von Merkmalemit dem Ziel eine Verlustfunktion zu minimieren
und dieMerkmalsextraktion Die Liste der von mir mitverfassten Publikationen
weist Arbeiten zu allen Teilproblemen auf. Diese Dissertation leistet&gtzu

den ersten zwei Teilproblemen.

Im ersten Teil der Dissertation werden im Rahmen des Entwurfs von Yerlus
funktionen Modelle betrachtet, die hierarchische Verlustfunktionen minimiere
kdénnen, welche durch Taxonomien dilfer der Menge der visuellen Konzepte
de niert werden. Die Idee besteht in der Nutzung einer Taxonomie ats-Pr
isierung von Klassi kations- oder Rangsortierungsfehlern. Ziel isti@sei, dass
das Modell Vorhersagefehler vermeidet, die durch Verwechselungwder Tax-
onomie weit voneinander entfernten Konzepte verursacht werdefienSoB.
Bilder von Hunden gefunden werden, kann dieses Ziel erreichtemerthdem

im Falle statistischer Unsicherheit eher Bilder von verwandten Tieren, \Bie z

Katzen, anstelle von Autos oder Fernsehern als Ergebniaseniert werden.

Im Unterschied zu vorangegangenen Publikationen liegt der Schnldrpicht

auf Geschwindigkeit zum Zeitpunkt der Evaluation eines Bildes, soralgrmer-
besserter Rangsortierungs- und Klassi kationsgenauigkeit. Dazilemeatie Vorher-
sagen aller Kanten im Taxonomie-graphen mit Hilfe von sogenannten psmean
kombiniert anstelle wie bei vorangegangenen Arbeiten nur die lokal optimale
Kanten. Des weiteren werden die hierarchischen Modelle derart venatigert,
dass sieiir Multilabel Probleme, bei denen jedes Bild mehrere visuelle Konzepte
aufweisen kann, alle vorhandenen visuellen Konzepte vorhersé@geeR. Bish-
erige Ansatze, welche nur dem lokal optimalerii(gesten) Pfad entlang der Kan-
ten der Taxonomie folgengkinen pro Bild nur ein visuelles Konzept erkennen. In
diesem Zusammenhang wird auch ein taxonomie-basiertes Rangsortieassgs

de niert, welches Information aus der Taxonomie zur Berechnung éea@Gigkeit



der Rangsortierung verwendet. Die entwickelten Verfahren werdgengstruk-
turierte Vorhersagemodelle und einer-gegen-alle Klassi kationsmodetigicieen.

Im zweiten Teil der Dissertation werden im Rahmen des Lernens der Kombi-
nation von Merkmalen das non-sparse multiple kernel learning (MKL) auif d
Rangsortierungsproblem auf Bildern untersucht und gegen swagddr maschi-
nen mit einem gemittelten Kern, welche keine Kombination von Merkmalen ler-
nen, und dem ;-Norm multiple kernel learning, welches nur eine sehr kleines
Anzahl von Merkmalen ausihlt, verglichen. In empirischer Hinsicht wird dies
auf den Daterigzen der PASCAL VOC 2009 Classi cation and ImageCLEF2010
Photo Annotation Wettbewerbe durchigeft. Es wird gezeigt, dass das non-
sparse MKL unter Praxisbedingungen bei Duitthrfing von Modellselektion gle-
ich gute oder bessere Ergebnisse als support vektor maschinen mitgenattel-

ten Kern liefert, im Unterschied zZy-Norm MKL, welches oft schlechtere Ergeb-
nisse liefert als die support vektor Maschinen mit einem gemittelten Kernhevelc
keine Kombination von Merkmalen lernen.

In theoretischer Hinsicht werden Faktoren identi ziert, die dazorén, dass sup-
port vektor Maschinen mit einem gemittelten Kern gute Ergebnisse liefedh, un
untersucht, welche Faktoren potentielle Verbesserungen durch deesilaer Kom-
bination von Merkmalen begrenzen und welche Faktoren dalatef, dass das
non-sparse MKL im Schnitt etwas bessere Ergebnisse liefert.

Die Arbeit wird durch einen Ausblick abgeschlossen.
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Introduction

1.1 Problem Description of Semantic Concept Recognition in Im-
ages

At rst | will de ne the problem which | have been working on.

1.1.1 What de nes a Semantic Concept

Formally a semantic concept can be represented by an indicator fuhgtmmthe space of all
imagesX such thal ¢ (x) = 1 denotes the presence of conc€pin an imagex 2 X.

lc:X1f 01g (1.1)

For ambiguous semantic concepts this de nition can be extended by assamingagex a
scorelc(x) in a bounded interval (e.g.[0; 1] ) which represents a numerical value for the
strength of the presence of a semantic concept in an image:

lc: X1 [0:1]. (1.2)

This numerical value can be interpreted in a probabilistic manner as thensgeef a set of
human annotators with respect to the question whether an image belongsiardgiseoncept
or not. In the context of classi cation this is known as label noise. In dabdistic model of
classi cation withX being the space of all images aviec f 0; 1g being the label for a semantic
concep(C this setting can be modeled by a joint distributfg : X f 0;1g! [0; 1]. The label
noise is related to the prediction certaifty (Y =1 j X = x) = P(Ic(x) = 1) which can be
used to de ne the scorle: (x) in Equationl.2 Such ambiguities arise naturally for concepts



1. INTRODUCTION

denoting the emotional impression of an image such as the corsmgiseuphoricor calmin

the ImageCLEF2011 Photo Annotation datad®bf concepts related to aesthetic quality. The
label noise plays an important role in the question why image annotation is ilyedd cult

and its impact on model selection be treated in more detail in setiiba

1.1.2 Two Modes of Semantic Concept Recognition

Semantic Concept Classi cation Given a semantic conceft a binary prediction function
f ¢ acting on the set of all imagéscan be employed for semantic concept classi cation:

fc:X!f 019 (1.3)

One application derived from it is automatic tagging of image collections baspceede ned
semantic concepts.

Semantic Concept Ranking Given a semantic conceft a continuously-valued prediction
functionf ¢ acting on the set of all images¢ can be employed for semantic concept ranking.
The importance of semantic concept ranking lies in its application to the mosam¢ievages
for a semantic concept from a large set of images. This is the classicahszF®ine paradigm
and the aim of many search engines.

1.2 What makes semantic concept classi cation and ranking of im-
ages a challenging task?

One may ask why common internet search engines employ image searchohatsthmes
as the default tool while search based on visual content appears téHeckiata phase at best.
In this section we discuss issues and challenges of semantic conceptatassfor general
semantic concepts.

We are interested in predicting a large set of generic semantic concepidriastdo a small
set of highly specialized concepts as it is the aim of face recognition asaampée. One image
may show multiple concepts. Figuiel shows an example image from the ImageCLEF2011
Photo annotation dataset and all of its annotated visual concept labets. théo this kind
of annotation is far away from multi-class classi cation scenarios in whiathémage has
at most one visual concept present in it, this images was labeled with 13 eisueepts.
The prediction output is desired to be a continuous score usable fangaplrposes. The
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continuous score allows to provide information about uncertainty of theicdaton. Such
information is highly useful for the common search scenario in which a useteisested to

nd the K most likely images for a selected concept.

Figure 1.1: An example image from the ImageCLEF2011 Photo amtation dataset and its
set of visual concept labelsOutdoor, Plants, Day, Still Life, Neutral lllumination, Ry Blurred,
No Persons, Park Garden, Toy, Natural, Cute, Funny, Calm

1.2.1 Variability in the Structure of Semantic Concepts

The question "What de nes a semantic concept” raised in the title of Sedtibrl can be
interpreted in an alternative way as the an attempt to give an overview ofotistitoiting
elements of a semantic concept in a less mathematical sense, more drivendlycuoigent.
What kind of semantic concepts do we expect to observe and what kinld we like to be
able to deal with?

One well known type are semantic concepts de ned by the presence ahdenef class
of objects, e.g.Porsche Car or four-wheeled vehicle This is classic object recognition as
proposed by the seminal Caltech101 data®etlf order to de ne the term object recognition
we may say an object is a physical object of limited extent for which we céa pounding
box in a photo around large parts of it.

Another type of semantic concepts are more abstract ones de ned bseenge of several
visual cues in the image. The difference to object recognition is that thalwiaes may vary
highly and may not be classi ed into one object class in the above senssideo the concept
Concert Photos showing a small group of people known to be famous music artistags s
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PartyLife Aesthetic Indoor SunsetSunrise

Cute

Figure 1.2: Some Concepts from the ImageCLEF 2011 Photo Anttation Challenge and
example images.

are likely to belong to such a concept. At the same time a large group of hotidig ataying
in an orchestra also de nesGoncert

Composition of cueBeyond mere presence may play an important role: A person holding
a guitar in a certain pose may contribute to the classi cation @olacert However another
pose with a guitar on his back may depict rather a travelling person not ediahvconcert
activities. Two people with a guitar in a different pose can have the mearabhgdme guy is
smashing a paparazzo with a guitar unrelated to a concert scene. Similaslg,aha funeral
scene is less likely called@oncert One can think of many setups of musical instruments and
people which are more or less likely to b€ancert

One can extend this to abstract concepts which require the presemsels/arying cues
and theabsencef certain cues. Consider the semantic con&gptyLife Three people stick-
ing together do not make a party — if they show faces full of grief or ahgeran annotators
would hardly rate it to be RartyLifescene. Similarly a lonely guy playing guitar at a camp re
in the woods might not be @oncert

This reveals that general semantic concepts are more dif cult to recogimpared to
classic single object recognition. Another reason besides the wide odpgssible cues is that
cues contribute in a non-deterministic way to the rating for belonging to a sencamiept.
Consider the concetreetScenethe presence of roads and buildings are cues for such a
concept however the density and height of buildings, density of roaadithe density of parked
cars are important for judging whether this iS@eetScener just a lonely road outside a town
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with some buildings. If a probabilistic model contains only binary variableshferpresence
of roads or buildings, then these variables will likely contribute in a nonrdeigstic manner

to the concept of &treetSceneThis probabilistic contribution of cues and their composition
becomes obvious for concepts related to aesthetic quality or emotional inygacas-unny

or Scary

Figure 1.3: Left: Macro of a y; Middle: Not a macro of an elephant; Right: Macro of an
Elephant. Images by courtesy of wikimedia users nachul68, Fruggo dexbAder Klink.

Finally, some concepts require to have prior knowledge about propeftaepicted cues
which cannot be extracted ad hoc from the single image. FifjlBgives an example. The
conceptMacroShowof an elephant looks different from tiidacroShotof a y. A macro image
of a y usually shows large parts of a y while a macro image of an elephantever show
the whole elephant due to its elephantous size. The objects of interestighty the same
area in the left and middle images of Figur8, however the middle image is not a macro shot.
A macro of an elephant will rather show only a smaller piece of elephantligkirihe right
image in Figurel.3. At least, there exists a theoretical replacement for prior knowledge in the
framework of statistical learning: increasing humbers of training samplesovergome the
lack of information in the single image.

The reader may note that this discussion starts to get messy becausethe disfinain of
mathematical description and de nition which yielded clear results in Sedtibri.

The conclusion from this confusion is that we observe a large variabilitydrseimantic
structure of semantic concepts. This presents a challenge for algorittaigsiele to predict
semantic concepts and rank images according to them. The variability of atieowtept
can be de ned in mathematical terms as a statistical variance over the set @sito@lgnging
to this concept computed by any kind of function which takes the pixels ofgdesimage as
an input. Key factors for the variance in the semantic structure of a semantiegt are the
presence and absence of a wide range of visual cues, their compasiticdheir contribution
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to the classi cation of an image in a non-deterministic manner. This is what makestsfor
images based on lenames a task which is easier to solve than image seatishdlcues.

We can identify some special cases of the variability of cues which we willxp&aia
brie y in the next subsections.

Figure 1.4: Bottles in varying positions and sizes. Imagesdm the PASCAL VOC 2009
challenge dataset.

Varying positions and sizes of Regions in an image relevant for a semtémiconcept When
limited to objects one will note that an object can Il a large fraction of the imaga wvery
small region. An smaller object may have a highly varying position within the imaghawn

in Figurel.4for the semantic conce@ottle Similarly the appearance of an object may vary
with its viewpoint. The same holds for cues contributing to a semantic concept.

Occlusion of Regions in an image relevant for a semantic conceptRegions of an image
relevant for the recognition of a semantic concept can be occludedisléesy to understand
for occluded objects shown in Figuieb.

Figure 1.5: Occluded objects. From left to right: airplane,bus, car and car. Images from the
PASCAL VOC 2009 challenge dataset.

Clutter and Complex Scene Compositions Images can have large areas which are at least
in part irrelevant for the classi cation of a semantic concept. The leftmasetimages in
Figurel.4 may serve as an example, the bottles are embedded in complex scenerieanhich
not necessarily related to bottles.
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1.2.2 The Impact of Label Noise on Model Selection

The points discussed above may have two effects on increasing thelgifafuhe semantic
concept classi cation problem. The rst effect in a probabilistic clasation setting is, given
a xed feature space, an increased complexity of the Bayes bouhd@ihe second effect is
increased label noise.

Label noise can be measured as the uncertainty of human annotatoiigivirgsan image
to belong to a semantic concept. Mathematically it can be modelled as the probahdity o
image to belong to a concept(l ¢ (x) = 1) .

Note that the notion of label noise is not disjoint from the preceding digmssFrom a
semantic viewpoint label noise can arise from occlusions of an objecmsftrmations such
that some human annotators will tend to reject the presence of a semantaptbased on
their own de nition, judgement or in case of concepts related to emotionstistiaiquality,
their perception.

We expect less ambiguity and label noise for object-based conceptasbatyclethan
for concepts de ned by a sentiment suchSegdor a very abstract notion likiechnical travel
orwork.

Label noise has an obvious deteriorating impact on classi cation acgumad more impor-
tantly on model selection. Learning a support vector macling, 6) by solving its optimiza-
tion problem corresponds to the selection of a function from a class ofifuns by selecting
support vectors, their weights and the bias when solving the SVM optimizatadregm. The
selection of a function from a class of hypotheses by minimizing a reguldnzedaver a nite
set of training samples can be treated in the framework of empirical risk mininmizatio

Theorem 6 in§) provides lower bounds for the expected risk in empirical risk minimization
depending on a uniform bound for the label noise.

Theorem 1(Theorem 6 from@)). Let be a probability measure oX and S be some class
of classi ers onX such that for some positive consta#ts,K », o andr

Kz " Hi(;S; ) Ki f

forall 0< 0, WhereH1(';S; ) denotes thé;( )-metric entropy of S. Furthermore |at
be a bound on the label noise:

8xjP(Y =1jX = x) 05 h=2

the Bayes boundary is the optimal decision boundary for classi caticervthe generating distribution of the
data is assumed to be known.
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Then, there exists a positive const&htdepending orK 1,K 2, g andr such that the following
bound holds

Ra(h:S: )= inf  sup E[P(Y 65(X)) P(Y 6 s (X))
$2Sp2p(h;s; ) (1.4)
K(l h)Frmax(h #rn &r;n 2)

wheneven 2.

The work in (7) contains examples how to establish the validity of the imposed condition
onHi(;S; ) for smoothly differentiable Bayes boundaries. This allows to apply it tosupp
vector machines with Gaussian kernels and otherwise smooth settings likédobdomains
and distributions with suf ciently smoothly differentiable Bayes boundatrig=or the under-
standing of the theorem note thi¢h; S; ) is the set of distributions on the input-label product
spaceX Y such that the input space distribution isFurthermore the label noise is bounded
in each point ofX by 1=2 h=2due tojP(Y = 1jX = x) 05 h=2. Finally,s isthe
Bayes classier.E[P(Y 6 &(X)) P(Y 6 s (X))] is the deviation between the expected
errors of the classi es and the a posteriori optimal Bayes classier The supremum is taken
over a class of distributions followed by selection of the optimal empirical iobis$ given
knowledge of the distribution. Since the distribution is unknown this implies thalother
bound has an optimistic formulation compared to practice.

An increase in the overall label noise corresponds to a decrease wdltieeofh which
yields an increased lower bound in Theorgfior the expected deviation between the expected
error of an optimistically selected classi er and the best possible classiitiirwa function
class. The qualitative message is that label noise does have a deteriratimge on model
selection.

1.3 State of the art in Semantic Concept Recognition in Images

Image Annotation as a tool for content-based image retrieval is a eld obioggresearch
since decades. The reader is referred to the overview p&pdor(the numerous research
efforts undertaken in the last century alone.

Image annotation follows two big lines, generative approaches basedparbabilistic
model and discriminative approaches aiming at minimizing a loss function.

Yfor a brief introduction to support vector machines see Sedti8r?
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Among the discriminative approaches kernel-based methods such awtsuggior ma-
chines B, 4) or kernel discriminant analysi®) based on BoW (bag of words) featurd<))
have been proven particularly successful in the eld of image annotatidmanking. Kernels
computed over BoW features are constantly dominating international compettioinsage
annotation and ranking in terms of performance measures such as théAPA&sLial Ob-
ject Categorizationl(l) and the ImageCLEF PhotoAnnotation challengesl@) over the last
years. Thus they will be the fundament of the work described in this th&sis.following
sectionsl.3.1and 1.3.2will give a short introduction into BoW features and support vector
machines (SVMs).

The state of the art for Semantic Concept Recognition in Images is baseashmuting
many features for each image. When considering a larger set of maeyediffsemantic con-
cepts it may be very dif cult to construct the one ultimate feature for clasgifghem all
reliably. The basic idea is to counter the high variability and complexity of g&isemantic
concepts described in Sectidn2.1 by computing many different features per image and if
necessary learning combinations of them adapted to the semantic conceptass) ed. This
is the main reason to compute many features per image.

It is worth to remark about a very recent development. While it was knosfarbe that
neural nets are very suitable for object classes with rigid structureasutfe CIFAR datasets
(13) which do not have a high scale variance and are centered, recelt$ iesng neural nets
with additional regularization ideas yielded excellent performance onlgmabwith much
more diverse visual concepts such as the Imagenet Challédgés). From that we may

expect a revival of neural networks for general visual conpegagnition in the next years.

1.3.1 Bag of Word Features

The Bag of Word (BoW) feature is a framework rather than a xed featuomputation algo-
rithm useful for computing a vector-valued representation for one imégewvean be used for
subsequent classi cation and ranking. Intuitively speaking it looks atynpearts of the image,
each of them represented by a local feature and aggregates theelattakt into one global
representation for the image which is the nal bag of Word feature. The naiable property
of the BoW framework is the fact that the spatial relations between locairssaare ignored.

Figurel.6 shows the stages of computing a BoW feature.
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Figure 1.6: Bag of Word Feature Computation pipeline.

First Stage: Local Features In the rst stage (left part of gurel.6) a set of local features
is computed from an image. Formally, a local feature is a vector compute@oggion of the
image by some xed algorithm. In Figurke6the local feature is for the sake of demonstration
merely composed of the gradient norms along the horizontal and vertiealvelxich results

in two dimensions. For real applications the SIFT descripié) (s the most famous choice
for general multimedia images. Besides the choice of the local featurensdigioits compu-
tation have to be chosen. Typically, local features are computed on smeathpping regions
distributed across the whole image. Apart from grid sampling as the simplesbandiiased
random samplingl(7, 18, 19) may serve for the computation of the corresponding descriptor
regions. The number of local features may vary across images, fanpedy adaptation
to image size. The work in2Q, 21) shows that a suf ciently dense sampling is required for
good classi cation performance which is the reason why for image clagsbn, in contrast
to object matching across images, classic keypoint based detectors yselaesvhat lesser
performance as demonstrated in the Pascal VOC 2007 Chall2RAgd his is consistent to the
author's own experience.

For improvement of performance local features are often computedaoset of differ-
ent color channels and concatenat&d)( This allows to incorporate color information and
correlations between various color channels. We assume in the followihthéhamages are
available as digital RGB-images with color channels red, green and blue a&litbs/lying in

[0; 1]. Examples for such sets of color channels are the basic set of ret, gred blue (RGB),

10
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the set (OPP) composed of the three channels gr&y, pponent color 11.6) and opponent
color 2 (1.7), the normalized RGB setl(8) (nRGB) or the normalized opponent colors set
(nOPP) (.9). The latter color channels are given in Equatich$)(1.6),(1.7),(1.8) and (.9

as functions of RGB-valudgs; g; b) lying in [0; 1].

gr(r;g;b)=(r+ g+ b=3 (1.5)
ol(r;g;b)=(r g+1)=2 (1.6)
02(r;g; b) = ((r +g 2b+2)=4 (£.7)
r_._g9g ._b ifr+g+b>0
nrngnb(r;g;b) — r+g+b’'r+g+b’r+g+b irr g (18)
0 otherwise
((r; g;b); 9D, O2GD) iy gy > 0
nope gy = 9D arage o) T O (1.9)
0 otherwise

The idea of computing features over sets of color channels and sw@lgooncatenating
them is applied also to other feature extraction algorithms as well.

Second Stage: Visual Words The second stage, the computation of the set of visual words,
which is not shown in gurel.6, is done once during training time for each BoW feature to be
computed.

It is important to understand that BoW features cannot be computed insacatesadigm
in which a feature is a function of an image alone, because the BoW histogrande ned
relative to the set of visual words which must be obtained in some wayllyifwan training
images. The BoW features are a function of the imagd the visual words. After having
computed visual words from training images, BoW features can be comfauterdining and
testing data using the same xed set of visual words for both datasetsargehn the visual
words requires to recompute the BoW histograms for all images.

Formally, a visual word is merely a point in the space of the local featuigard=1.6 de-
picts exemplarily the two-dimensional local feature space with red dots ase¢hesual words.
One possibility to compute the visual words is discretization of the empiricalleatlre den-
sity using k-means. Practically proven alternatives are radius-basstérig @0), Bayesian
methods like pLSAZ4) and more commonly Fisher vectors based on Gaussian mixture models
(25), sparse coding?2@). It is an open question for what kind of data a density-based method
like k-means is preferable over a radius-based method like radius-blasgering 20).

11
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Third Stage: Mapping of Local Features onto Visual Words The third stage is the map-
ping of local features onto the visual words, usually by computing weighgsdbon the dis-
tances between the local feature and all the prototypes. This step, depittee middle of
gure 1.6yields for each local feature a vector of weights with its dimensionality beingleq
to the number of prototypes in the visual codebook. Examples are s@&boolls £7) and fast
local linear coding Z8).

There has been considerable research on improvements for the twaktepsal word
generation and mapping, such as hierarchical clustefi)y €lass-wise clustering3(), ran-
dom forests§1), hybrid semi-supervised clusteringd) or optimization of information-theoretic
criteria (33). Note that many of these works have been very recently developedydbe au-
thor's work for this thesis. Hierarchical clustering and random forastsat improved speed
of feature computation, class-wise and hybrid semi-supervised clustetamgl to interpolate
between improved speed and improved precision while local coordinategc(iB) focuses
on improvement of precision at the cost of higher dimensional features.

Some particular mapping functions are given in the following. ILUe¢ a local featurem
the mapping function, and nallyng the projection of the mapping function on tt¢h output
dimension corresponding to thieth visual wordvy. Hard zero-one mapping is the simplest
procedure. Each local feature is mapped onto its nearest visual esutling in a unit vector
as in equation(.10.

1 ifd=argmin kl vek?

. (2.10)
0 otherwise

mq(l) =

The normk k2 in equation {.10) is usually the euclidean norm however it might be interesting
to try out other norms such ag-norms withp < 1, or more generally distance functions like
the 2-distance between two vectoxsandy: 2(x;y) =  4(Xa  Ya)?=(Xa + Ya). Both
alternative distance functions would put more emphasis on dimengiaits small values of
the vectors< andy.

Soft mapping as in equatiod.(L1) was introduced ind7) and became popular in the con-
text of competitions in image annotation and ranking
exp kI vgk?
cexp( kI vek?)

mg(l) = P (1.11)

Soft mapping acts a smoothed version of hard mapping because it distiiveitespping for
a local feature to a set of its neighboring visual words.

12
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It was found however in34), and by the author's own experiments during the Image-
CLEF2011 PhotoAnnotation Challeng®) that for good ranking performance it is necessary
to achieve a suf ciently fast decay of assignments as a function of distainom a local fea-
ture to neighboring visual words. A revised version of soft-assignifightin equation {.12
assigns votes only to the k nearest neighiddrél) for local featurd in the set of visual words.

< pexp( akl vgk?)
md(|) = e exp( ekl vek?)
-0

if d2 Nk(1)

otherwise

(1.12)

The author used another form of localized mapping successfully fonissions of the Image-
CLEF2011 PhotoAnnotation ChallengB (rank mapping as in equatiofh.(3. Let Rank(z)
be the rank of the value 2 fk |  vqk?;d = 1;:::;Bg within the set of distancdd  vgk?
sorted in ascending order.

( 2:4 Rank (kI vak?) ir 4 o N (1)

_ (1.13)
0 otherwise

mq(l) =
While the revised soft mapping from equatidn {2 showed slightly better performance on
the ImageCLEF2011 PhotoAnnotation corpus in a post-challenge evaluttmmadvantage
of rank-mapping is its explicit modelling of decay of mappings as a functionehtimber
of nearest neighbors. The author used in his submissibnslg) for the ImageCLEF2011
PhotoAnnotation challenge rank mapping (equatibiid) with parametek = 8 having in
mind that2:4 8  100Q For revised soft mapping from equatioh 12 it is still necessary
to tthe constants 4 appropriately for each visual word. The author's solution for the post-
challenge evaluatiohwas to set

d= Sd (1.14)

wheresy is the inverse of the median of squared distahktesgk? from all local features such
that the visual word/y is their nearest word within the set of all visual words. This reduces
the number of parameters for that mapping to be estimated to one global paranzatd
allows the width parameters; in equation {.12 to scale according to robust local distance
statistics. The need for such scaling comes from the fact that k-meansririgsfor visual

The author tried the revised soft mapping (equatibri?) during the ImageCLEF2011 PhotoAnnotation
challenge before learning of the work i84), noticed slightly better results via cross-validation compared to rank-
mapping (equationl(13) and still decided to submit solutions based on rank-mapping due to itsesianm thus
potentially more robust structure compared to the revised soft mapping.
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word generation results in clusters with neighboorhoods of varying diasneget is a density-
sensitive clustering method. This implies that the neighborhoods for diffgrsual wordsvg
have different distance statistics of the local features which lie in thectgpaeighborhoods.

Further notable coding methods which yield good results in published \8&jlafe sparse
coding as in equatiori(15 and local linear codingZ@) as in equationX.16

m(l) = argmin kI V zk? + ckzk; (1.15)
z

whereV is the matrix of visual words of format B, | is the local feature of formdl 1,
and the mapping vector has forniat 1.

m(l) = argmin kI Vzk*+ ¢ X zgexp Kkl vgk? (1.16)
z d=1 2
The missing minus in equatiod. (L6 is intended. The idea behind local linear coding is that
locality is able to induce sparsity such that weighisfor distant visual wordyy are set to
zero or very small values. Finally, the author likes to point out again thaeFigectors Z5)
also perform well on large-scale image classi cation tasks like the Image#taset15). An
overview of the performance of different coding methods is giver). (

Fourth Stage: Aggregation of Local Feature Mappings Finally, the mapping weight vec-
tors, one from each local feature, will be aggregated into one glohalrie which is the nal
BoW feature, as depicted on the right side of guré. The usual aggregation step consists of
summing the mapping weight vectors and normalizing the resulting vector to &mtjuatrying
numbers of local features.

The combination of a mapping function : R- ! RB and sum aggregation yields a
representation of a BoW featuxeas

X
x= m(l)2R® (1.17)
[

Maximum pooling 84) where the sum in equatiod.(L?7) is replaced by a maximum oper-
ator has also been applied as a biologically-inspired alternative.

Finally, one frequently used modi cation of the Bag of word features peial tilings.
Originally they were introduced as spatial pyramids36)( The idea of a spatial tiling is to
split each image into a set of regularly shaped spatial tiles, to compute ondedike for each
tile separately and nally to concatenate the BoW features over all tiles int@olé feature.
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Examples are the spatial tilirg) 1 which decomposes each image into three horizontal stripes
of equal height an@ 2 which cut an image intd regular squares. Spatial tilings allow to
incorporate a low degree of spatial information into BoW features in a tobasner.

Further Remarks The strength of the bag of word feature lies in its robustness which comes
from the following factors:

the absence of modelling of spatial relations between parts unlike earlievames
which are susceptible to noise in images with complex sceneries.

the aggregation of local features into a global feature which implies degoisnav-
eraging of contributions of many local features. Equatibdi?) can be interpreted as

a sum of many noisy parts which are nonlinear mappings of local featatestoe set

of visual words. For an alternative interpretation s&8.(Apart from normalization of

the BoW feature to unity- or “»-norm, other pooling methods than the sum can be em-
ployed like max pooling in which the sum is replaced by a maximum over all mappings
mq(li), or generalized p-meamsp(x) = N 1(P iN=1 xip)lzIO which allows to interpo-

late between the minimum, the maximum, harmonic, geometric and arithmetic means as
special cases.

the choice of robust local features such as SIEd) br SURF @8) which are known to
be invariant against many changes in lighting conditions. 38gf6r an overview of
invariance against lighting variations from a color theoretic point of view.

Another advantage of bag of words features is their computational ditglabhis is an
advantage over intuitively more appealing Bayesian approaches wthirh ded to rely on
restricted probability models or inference approximations in practice. Computaf bag
of words features in real-time is demonstrated3f) (while (40) demonstrates their ef cient
computation on GPUs.

The most critical choices in the BoW feature is the local feature, the Bo\trieali-
mensionality and the way of mappinm(in Equation (.17)) of local features onto the Bow
dimensions.

The work @1) shows by comparing against human performance that Bag of worddsatu
yield a similar performance to humans on so-cajledbled imagesvhich were cut into square
parts and then piecewise randomly permutated and rejoined. The humantaavés our
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ability to extract spatial relations between parts which requires us, hovtevapend years of
training and learning in childhood from millions of examples and some hundoed#md years
of brain evolution before our base learning system became operaticrapaed to that Bow
models enjoy the advantage of algorithmic simplicity.

Notably, @2) and @3) but also @4) propose methods which avoid the discretization step
implied by the usage of visual words. These works go beyond the limits aficédBoW
models. {2) uses a boosting type formulation on sets of local features whigléarns a
set kernel metric for pairs of local features under incorporation adlloontext. A potential
drawback is the loss of computational scalability which comes with the origirgploBaords
model.

The BoW method is also applied with superior results in competitions in related domain
such as semantic indexing for videosTTRECVID(45) or the winning entry inLSVRC2011
large scale object detection challengé)(

Despite their robustness for domains with highly variable images, Bag offeatdres are
also applied to narrow domains such as concept recognition for medicadnfa 48, 49).

1.3.2 Support Vector Machines in a Nutshell

We will give a short introduction to support vector machines (SVM). Foremetails the
reader is referred ta}. | refrain from reciting all the known facts about SVMs except foraivh
is necessary to understand their usage.

A support vector machine learns a linear predictor

f(x)=w x+Db (1.18)

for an input sample by minimization of a loss functiohtogether with a quadratic regularizer
for the parameters of the predictor.

binary labelsy; 2 f 1;+1g. Then the support vector machine can be de ned as the following
optimization problem for learning the parametéss b) of the classi er given in equatioh.18

1 X!
min -w w+ C I (w X+ by) (2.19)
w:b 2 i=1

The loss function can be chosen to maximize the margifx;)y; of samples(x;;V;).
Examples are the hinge loss
I(z;y)=max(0;1 zy) (1.20)
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1.3 State of the art in Semantic Concept Recognition in Images

and the logistic loss
I(z;y) =In(L+exp( zy)). (1.21)

This approach has two principled advantages. Firstly, from a theorptaat of view the
solution of support vector machine is known to be parametrized such thdbased on the
span of the training samples. Differentiation of0 = %w w+ C P iN=1 I(w Xi+ by
based on Formula.19for the variable componemt(9) in dimensiond proves this claim.

Secondly, from a practical point of view the support vector machine allfow certain
losses like the hinge loss and the quadratic loss to incorporate non-linearisiesilaetween
data points in the form of Mercer kernels. The nonlinear version of Flarthd9is given by
replacingx; with its mapped value (x;) for some mapping : X !  H into a Hilbert space
H.

The non-linear similarities can be speci ed implicitly via the choice of a Mercenéde
k: X X! R. The dual formulation of the support vector machine can be written for
appropriate loss functions to depend merely on Mercer kernel similarities

k(xi;xj) = (Xi) u (Xi) (1.22)

without explicit references to the mappingsnto a feature space.
For the sake of self-containedness we give a formal de nition of a méearael. A mercer

kernel is a symmetric functiok: X X ! R onacompact subsat RY such that with
respect to the Lebesgue measuren RY the operator
Z
TIKI(F)(y) = . k(;y)f (x)d (x) (1.23)

does result always in a functidnk](f ) lying in L 2(X) whenf 2 L(X) and all the eigenval-
ues of the operatof[K] : L2(X) ! L2(X) are non-negative. The eigenvalues are de ned by
theL »-Hilbert spacd. »(X) of real-valued functions oKX induced from the Lebesgue measure

z

f g= f(x)ogx)d (x) (1.24)
nX 0
Lo(X)= f :X! Rf ismeasurablefor andf f = kfk?®< 1 (1.25)

This result can be generalized to compact Hausdorff spaces with a ndecauntably
additive measure operating on the Borel-Algebra of it. For practical purposes in the context
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1. INTRODUCTION

of SVMs, however, it is suf cient that the matrik(x;; ;) de ned over a set of sampléx;g

is always non-negative de nite for all sets of samples in the sense of corfimear algebra.
Back to the formulation of a support vector machine, its essential paraméterrisgular-

ization constanC in equationl.19 High values put more emphasis on minimizing the loss

while low values emphasize the quadratic regularization. Appropriate noatiahzof kernel

matrices balances the loss and the regularizer term to be on the same sdhlesaaitbws in

practice to choose a regularization constant on a grid around the®@atue.

1.3.3 Kernels Related to this Dissertation

The kernel mostly used in this dissertation is tifeKernel which is an established kernel for
capturing histogram features@, 51). Letx(9) be the d-th component of vecter

0 1
1 X (x(@ (@2
K(X1;x2) = exp @ - 1@—2((,)X (1.26)
X1"+ X3

dix{P+ x>0

The bandwidth of the 2 kernel in (L.26) is thereby heuristically chosen as the mean
distance {.27) over all pairs of training examplés1; x»), as done, for example, in®).

X (@ (D)2
2(x1;%2) = % (1.27)
X1+ X3

aix(+ x> 0

It shares with the gaussian kernel (equatidr2®) the structure of being an exponential of a
negative function of a distance. For the gaussian kernel it is the stjuyadistance while for

the 2-kernelitis the 2-distance given in equatiorl 7). Compared to the gaussian kernel,
differences in histogram birgswith low countsx(ld) + x(zd) 0 are upscaled in the?-kernel.
We remark that there exists also another non-exponential formulation ®karnel which is

not guaranteed to be positive de nitg3d).
|

1X '
k(xi;xg)=exp = (x\ x{)? (1.28)
d

Another established kernel for histograms is the histogram intersectioelKeq. (.29).

X
k(X1;X2) = min(x(ld);x(zd)) (1.29)
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1.3 State of the art in Semantic Concept Recognition in Images

All kernels in this study are normalized to have standard deviation 1 in Hilpades This
amounts to compute

K
7o — (1.30)
(k) 1K1

which was proposed irb@, 55) and entitledmultiplicative normalizationin (56). This avoids
situations in which a kernel with low variance is dominated by a kernel with hiagrance
when both are combined.

For large scale applications many of those kernels can be approximatedywatplicit
feature maps33, 57, 58) which are then used as higher-dimensional features for a linearkerne
This allows to use primal support vector machines with approximations ofinear kernels.

1.3.4 Kernel Alignment

The kernel alignment introduced bg9) measures the similarity of two matrices as a cosine

angle in a Hilbert space de ned by the Frobenius product of matrices
by koip

kk1kr kkokg

We will use kernel alignment in two variants in Chapt@rand 3 for the analysis of kernel

A(ky: k2) = (1.31)

properties.

The rst variant computes the cosine angle between two kernels compugedifage
features. We call this kernel-kernel alignment (KKA).

The second variant, kernel target alignment (KTA) measures the similaityelen one
kernel from features and an optimally discriminative kernel computed trmriabels for a
given visual concept. The centered kernel which achieves a padparation of two classes
can be derived from the labels and is proportiongtgs , where

p=(9) %= 1 (1.32)

andn, andn are the sizes of the positive and negative classes, respectively.

It was argued ing0) that centering 1) is required in order to correctly re ect the test
errors from SVMs via kernel alignment. Centering in the correspondiatyfe spaces is the
replacement ok(xi;Xj) = h (xi); (Xj)i by

* +

X X
(xi) N1 (xk); (x) N * (Xk) (1.33)
k=1 k=1
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Note that support vector machines using a bias term are invariant againsting, which can
be shown using the COI’]ditiOF;] i iYi =0 from the optimization problem given by equation
(3.2). To see the in uence of centering on kernel alignment consider thatdhealized kernel
alignment with an added biasand non-negative kernetg;; z,i 0 will be dominated by the

biasz whenkzk ! 1

h (X1)+ z; (X2)+ zi kzk? kzki1

k (x1)+ zkk (x2)+ zk  k (x1)+ zkk (x2)+ zk 1. (1.34)
Centering can be achieved by taking the proddistH , with
1.5
H:=1 ﬁll ; (1.35)

| is the identity matrix of size andl is the column vector with all ones.

1.4 Overview of this dissertation

This thesis is not method driven, it is problem driven. This means, | didexglop one single
method which | apply to various kinds of datasets and compare where isvibatker than
existing baselines. Neither did | perform a theoretical analysis for orss dhalgorithms.
Instead | have worked on one larger problem, namely that of image anmogattbranking,
which required me to tackle several aspects of that problem ranging&atre design to loss
function design and optimization. This problem can be divided for discrimaaipproaches

which aim at minimizing a loss or maximizing a score into three big topics.

Formulation of the problem and design or choice of a correspondinguostidn
Learning of feature combinations given a loss function

Design of Features

This is not a strict hierarchy, since the design of features and theiegiep may have
in uence on the method to learn the feature combination. The simplest examles@rgu-
ment is the case when one makes the assumption that only a small but a grrewmsubset
of the given features will be useful. In that case one would rely orsgpalgorithms to learn
the feature combination.
Figurel.7 depicts these three big topics. The decomposition into three topics is the reason
why subsequent chapters have their own related work and conclugisactions. Essentially,
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1.4 Overview of this dissertation

the following chapters tackle different topics of the same grand problerthéfmore, the eld
of computer vision is suf ciently developed and diversi ed such thatreaart deserves its own
speci c set of references.

For the aspect dbesign of Featurekhave analyzed the impact of biased random sampling
using novel sampling methods for BowW (Bag of words) featui&%. (This methodology was
part of the author's submission on out of sample testing data for the Imagfe®ill1l Photo
Annotation Challenge which yielded the winning entries in this competition for multialnod
and pure visual categoriess).

For the same aspect | also worked on hybrid algorithms which combine the &tilfgst
feature computation due to tree structures together with supervised leafrdplits based on

support vector machine8%).
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Figure 1.7: Three big topics of the image annotation and rankg problem. Blue shows the
type of supervision. Green colors examples. Brown colczasd
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1. INTRODUCTION

A brief overview over the state of the art of feature design for BoW featis given in
sectionl.3.1 The following two contributions will be shown in this thesis in more detalil.

For the aspect dformulation of the problem and design or choice of a corresponding loss
functionl proposed a novel algorithm capable of optimizing taxonomy-induced loggibns
for multi-class data in a computationally ef cient manner and taxonomy-bas#dg scores
for multi-label data §2). This will be discussed in Chapt@r

For the aspect ofearning of feature combinations given a loss functi@nalyzed the
behavior of the existing non-sparse multiple kernel learning (MKL) algorif66) speci ¢ to
properties of features commonly used in image annotation due to their stateaot fherfor-
mance 63). | will give novel explanations on its limits and bene ts based on experiments
real-world data. This will be discussed in Chaer

The two aspects on which | will focus subsequently, namely learning withntarg-
induced loss functions and ranking scores and an analysis of nosegpaltiple kernel learn-
ing in image ranking, can be treated separately or in a combined mannemn. tGéveomplexity
of these topics and the authors' impression that both of them contain maslgm®which are
not understood suf ciently, | will treat them independently in two sepacaggpters.

An overview over publications coauthored by me is given in Sectidi2

The annotation system was tested in three international benchmark competihiais
were evaluated on image collections with undisclosed ground truth, namelgl R&3C 2009
Classi cation (64), ImageCLEF2009 Photo Annotatiofg) and ImageCLEF2011 Photo An-
notation (L). It yielded in these competitions top- ve placements and winning entries in two
categories of the most recent of these competitions, ImageCLEF2011 ARtnudtation ().

1.4.1 Why do we not learn anything at once but divide the prok#m into parts?

One may ask here why | did decompose the problem into parts and did not thikoway to
learn everything simultaneously. It might be indeed a desirable long terhtaglearn all pos-
sible parameters from data in a uni ed framework. Still, elegant theory isetys practical
when real data has to be processed. For example full-scale crosatieaiidver all hyperpa-
rameters is limited in practice to a low number of parameters because the nurghdrpafints
may grow exponentially with the number of parameters. In practice sequertsas-validation
or alternative heuristics like genetic algorithms may yield the best results asdeated in
(66). The alternative to cross-validation are likelihood based models. Disctinerraodels
in computer vision like SVMs may over t in practice strongly on the training dat@mwbeing
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1.4 Overview of this dissertation

at their optimum with respect to their performance on test data — see for bExtimemecessity
to use cross-validation for generating SVM outputs which are used forihgpof subsequent
models in 67, 68). This effect makes the usage of cross-validation preferable forimhisa-
tive methods over direct likelihood based models acting on the whole traintagditactly.
Problem decomposition allows to include prior knowledge easily yielding begtergnition
performance or saving time even when the problems are solved only apptely. The tables
2.10and2.11in Chapter2 provide an example, where structured prediction algorithms with
all their mathematical elegance do not provide signi cant performance gagrssimpler and
much faster approximate models. Problem decomposition as the alternativakamproblems
to be solved more ef ciently and in less time which is an argument against monalitihed
frameworks. For these reasons | will approach the problem of imagatation and ranking
by decompising it into three levels mentioned in Sectich

The three levels of the problem can be also classi ed by their relation toasm. Fea-
ture design is a part which can be performed ef ciently in an unsupahasenerely weakly
supervised manner. It may include prior knowledge about the problemwElak supervision
can be used to ensure that certain statistical properties of the dataseteated in the fea-
tures. One example would be for the case of Bag of word features tlsti@uahich images
are used for computing visual words. The visual words will be computad & set of local
features which have been extracted from the images in question. In p®biith many visual
concepts it maybe helpful to ensure that images from visual concepts witaldondance in
the training data do appear in the set used for computation of visual wétds.matter has
been investigated irBQ) where it was shown that learning a separate visual vocabularydbr ea
visual concept and fusing all these vocabularies into one big set cdlwigards may help to
improve ranking performance. Further examples of introducing supemnvie feature design
are 31, 32). Using more supervision in feature design has the potential to improvgnitiom
performance at the price of slower algorithms.

The feature combination part relies on supervision for learning a usefabination of
unsupervised or weakly supervised features as it is based on minimizétemgieen loss
function. For that part an empirical analysis of multiple kernel learning véldiscussed in
Chapter3.

The last part, the choice of a loss function, relies on incorporation of griowledge
in one or another way. The usage of supervision for the choice of afuossion requires
some kind of regularization because the criterion used for supervisidhistse ned at this
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level. Introducing regularization can be interpreted as a way to incagprer knowledge.
Regularization implies that hypotheses which receive stronger regtianzae only chosen
if the data supports them particularly well. This is a way to express the prawlkdge that
these hypotheses are expected to be chosen less likely. In summarygattpoiaton of prior
knowledge is necessary for choosing a loss function.

As an extreme example why usage of supervision may not be always lhafphe level
where the loss is designed consider a loss function which is learnt fraanirda way such that
it places no or low penalties for misclassifying images showing visual césmieépch are hard
to recognize. It might be not always in the interest of users to ignore re&@alation of hard
cases. On the contrary, in some cases it might be useful to improve thymitmo performance
of badly recognized visual concepts at the cost of reducing recogmigcformance of easier
recognized visual concepts.

In this dissertation | did not attempt to learn loss functions for this reasoingtead chose
the simpler way in Chaptét to learn models based on hierarchical losses which were derived
from prior knowledge about the problem. The following sectlof.2lists work published by
the author.

1.4.2 The Author's Contributions

Choice of Loss FunctionClassi cation with Hierarchical Structure

— A. Binder, K. R. Miller, M. KawanabeOn Taxonomies for Multi-class Image
Categorization, International Journal of Computer Vision 99(3), 281-301, 2012,
accepted January 20167%)

Feature Combination for a given loskearning Kernel Combinations

— A. Binder, S. Nakajima, M. Kloft, C. Mller, W. Samek, U. Brefeld, K.-R. Mler,
M. Kawanabeinsights from Classifying Visual Concepts with Multiple Kernel
Learning PLoS ONE 7(8), 2012, doi:10.1371/journal.pone.0038&3J (

— S. Nakajima, A. Binder, C. Mller, W. Wojcikiewicz, M. Kloft, U. Brefeld, K.-
R. Muller, M. Kawanabe:Multiple Kernel Learning for Object Classi cation ,
IBIS2009 Workshop, Fukuoka, Jap&aib)

— M. Kawanabe, S. Nakajima, A. Bindérprocedure of adaptive kernel combina-
tion with kernel-target alignment for object classi cation, CIVR2009 (70)

24
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Feature Combination for a given loskearning Relations between Semantic Concepts

— A. Binder, W. Samek, K.-R. Nller, M. Kawanabe:Enhanced Representation
and Multi-Task Learning for Image Annotation , Computer Vision and Image
Understanding, accepted, DOI: 10.1016/j.cviu.2012.09.Q0%

— W. Samek, A. Binder, M. Kawanab@ulti-task Learning via Non-sparse Mul-
tiple Kernel Learning, CAIP 2011(1): 335-34247)

Feature Combination for a given losMulti-Modal Classi cation of Images

— M. Kawanabe, A. Binder, C. Mler, W. Wojcikiewicz: Multi-modal visual con-
cept classi cation of images via Markov random walk over tags IEEE WACV
2011: 396-40171)

Feature DesignMocabulary Optimization for Bag of Word Features

— A. Binder, W. Wojcikiewicz, C. Miller, M. Kawanabe:A Hybrid Supervised-
Unsupervised Vocabulary Generation Algorithm for Visual Concept Recogni-
tion, ACCV 2010 (3): 95-10832)

— W. Woijcikiewicz, A. Binder, M. KawanabeShrinking large visual vocabularies

using multi-label agglomerative information bottleneck ICIP 2010: 3849-3852
(72

— W. Wojcikiewicz, A. Binder, M. KawanabeEnhancing Image Classi cation
with Class-wise Clustered VocabulariesICPR 2010: 1060-1063()

Feature DesignAnalysis of biased random sampling and Learning of Relations between
Semantic Concepts for the ImageCLEF 2011 Photo Annotation dataset.

— A. Binder, W. Samek, K.-R. Nller, M. Kawanabe:Enhanced Representation
and Multi-Task Learning for Image Annotation , Computer Vision and Image
Understanding, accepted, DOI: 10.1016/j.cviu.2012.09.00%

Overview Chapters in Books
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— A.Binder, F.C. Meinecke, F. Biessmann, M. Kawanabe, K.-RlI&:Maschinelles
Lernen und Mustererkennung in der Bildverarbeitung, Grundlagen der prak-
tischen Information und Dokumentaticeditors: R. Kuhlen, T. Seeger, D. Strauch,
submitted

— A. Binder, W. Samek, K.-R. ldller, M. KawanabeMachine Learning for Visual
Concept Recognition and Ranking for Imagespublished in:Towards the Inter-
net of Services: The Theseus Projedtitors: W. Wahlster, H.-J. Grallert, S. Wess,
H. Friedrich, T. Widenka, accepted

Challenge Results

— A. Binder, W. Samek, M. Kloft, C. Mller, K.-R. Miller, M. Kawanabe:The
Joint Submission of the TU Berlin and Fraunhofer FIRST (TUBFI) to the Im-
ageCLEF2011 Photo Annotation TaskCLEF(Notebook Papers/Labs/Workshop)
2011, https://doc.ml.tu-berlin.de/publications/data/ABinder/imageclef201 1wpréte. pdf
(18)

— A. Binder, M. KawanabeEnhancing Recognition of Visual Concepts with Prim-
itive Color Histograms via Non-sparse Multiple Kernel Learning, CLEF Post-
proceedings 2009: 269-276, Springer LNCS 6243 (

Open Source Software

— S. Sonnenburg, G.&sch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. De Bona,
A. Binder, C. Gehl, V. FrancThe SHOGUN Machine Learning Toolbox, Journal
of Machine Learning Research 11: 1799-1802 (20X@) (
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2

Semantic Concept Recognition with a
Tree Structure over Concepts

2.1 Motivation for this aspect of Semantic Concept Recognition in
Images

Given image data with an additional structure between semantic conceptscahitte repre-
sented by a tree, the problem considered here is to classify images intatiestnanepts such
that a loss function which incorporates the tree structure is minimized.

In computer vision, one of the most dif cult challenges is to bridge the semgatiche-
tween appearances of image contents and high-level semantic cor®epthile systems for
image annotation and content-based image retrieval are continuouslggsigy, they are still
far from resembling the recognition abilities of humans that have closed thid-ganans are
known to exploit taxonomical hierarchies in order to recognize genenahstic contents accu-
rately and ef ciently. Therefore, it remains important for arti cial systetasncorporate extra
sources of information, such as user tagfs {6, 77) or prior knowledge such as taxonomical
relations between visual concepts.

Most work on hierarchies focused on speed gains at testing time bastt odea to
achieve a logarithmic number of SVM evaluations when traversing the higrakaing clas-
si cation. The second observation is that it is apparent in the precedorg that the losses
used to measure classi cation performance are at in that sense thatstbeslignore the same
hierarchic structure employed for classi cation. This usually resulted @edmains at testing
time at the cost of higher at zero-one loss. The third observation is tharpablications
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focus on multi-class settings, in which each image shows at most one semantptorl his
is a too restrictive assumption — for many real-world annotation problems améttghoto
collections one has to deal with complex images and larger sets of visuaptsndn such
settings overlap of semantic concepts becomes unavoidable.

2.1.1 Contributions

We are interested here in optimizing a loss function for multi-class classi catitimg and a
ranking score for the multi-label ranking setting which is non- at in the sahat it incorpo-
rates the hierarchical structure. Non- at implies for multi-class classi aatibat confusions
between two semantic concept classes are penalized depending orethbigharchy. Classes
which are more distant in the hierarchy yield a higher penalization whenéakcpion function
confuses them. One example is given for the multi-label ranking setting ire gurwhere
mistaking a cat image to show a car is intended to give a lower ranking scoredhéusing
a cat with a dog. In the multi-label ranking setting we have no notion of camfubecause
multiple semantic concepts can be present in one image. However whengamigiges for
the cat category, a sequence which shows images with dogs in high hemlid seceive higher
scores than a sequence in which the images showing dogs are replacéuagés showing
cars as the closest concept to cats in the hierarchy. This is based astimeption that dogs
are closer in a hierarchy to cats than cars.

Figure 2.1: Two sequences for conceptatin a multi-label setting with mistakes which affect

ranking performance, upper: a dog image, lower: a car image.Under a taxonomy-induced

measure the lower sequence should receive a lower ranking@e because the difference be-
tween the closest visual concept andat is larger compared to the upper sequencelmages

from Wikimedia Commons.
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We will see that for the multi-class setting for certain loss functions there exisédural
solution in the framework of structured prediction. This permits the usage tifatie from
structured prediction as baselines for comparison with our novel method.

The contributions of this chapter ate

a novel method to optimize certain loss functions derived from a hieratdticature
based on combination of scores of support vector machines whichsponé to local
paths in the hierarchy. Unlike greedy walk-down schemes in this work tresérom all
paths to semantic concepts and all local SVMs are taken into account fanietpclas-
si cation performance. The main advantages of this novel method are irprgyeed
and scalability relative to structured prediction and improved classi catiofopeance
with respect to hierarchic loss compared to the established one versiesailaation

baseline and greedy walk-down schemes.

an extension of hierarchical classi cation approaches to the multi-latiéhgevhich
allows to predict multiple semantic concepts in one image while relying on hieratchic

structures.

an extension of average precision ranking scores to the multi-label settic wmcor-
porates the hierarchical structure. This extension is general beaaystructured loss
function can be plugged in as a replacement for the average preciskinganeasure,
not just loss functions derived hierarchical learning models.

we compare the novel local SVM method against various baselines sool &ersus all
classi cation and structured prediction methods and discuss insights in thit warks.

The author regards the discussion in subsedBeneralization Ability for Learning of Su-
perclasses in Taxonomied section2.4.8important for the understanding why classi cation
with taxonomies is a challenging problem and why results obtained by using ibendi§ferent
from an intuitive view of human abilities.

Why do we need another algorithm for hierarchic classi cation?

Our work focuses on the question whether we may improve classi catiordamsscores
rather than speed using hierarchies. As a preliminary step to optimizing lagséke to
revisit the question what kind of loss or score functions we intend to optimiznwising

1The content of this chapter is based on the author's own peer-revisadn (62).
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hierarchical models for classi cation and ranking. We felt that this quastias not suf ciently
considered in many of the preceding works. Furthermore we extenddtiaral approaches to
multilabel datasets which we think to be a more realistic assumption for image datatkets w
many concepts de ned over them.

In this work, we contribute a tractable alternative to the structure learrdnggivork which
can solve our task in a sophisticated way, but is less time consuming. Wesprapcef -
cient decomposition into an ensemble of local support vector machines g5¥slt can be
trained ef ciently. Since the primal goal of this chapter is to discuss how mudnway pre-
determined taxonomies improve classi cation performance, we consideteahyiques for
speed-up which degrade performance to be out of the scope of tipitecha

Our work is similar in spirit to {8) who deployed user-determined taxonomies and showed
that classi ers for super-classes de ned at parent and grangipaodes can enhance leaf-
edge classi ers by controlling the bias-variance trade-off. Howevér & the discrimination
of images was performed against a small set of common backgroundshumall classi ers
at all edges share the same negative samples, i.e. the background ifRagesmance was
measured for object versus background scenarios. In contrasBtonfe will study a more
dif cult problem, namely, multi-class or multi-label classi cation between objeategories.
Since our problem does not contain uniform sets of background, it istaresting question
whether an averaging along the leaves of a taxonomy integrating everftbingsuper-class
classi ers until the lower leaf-edges can still help to improve the objectgeition result, in
particular as the negative samples can not be shared among all classi ier§’ 8).

We remark furthermore that we observe from our experiments that yWiseategies as
e.g. (79 are inferior by prediction accuracies to our novel taxonomy based miethat we
propose in this chapter.

In contrast to this work the approaches mentioned in Segtib2have one aspect common
in their methodology: they restrict performance measurement to at lossuresawhich do
not distinguish between different types of misclassi cation. In contrash& humans tend
to perceive some confusions like cat versus fridge to be more unn#ébaralothers like cat
versus dog which can be re ected by a taxonomy. The hierarchydnléarnedfrom features
re ects feature similarities and is as a consequence in part not biologidaligiple: the gorilla

For instance, we use all images for SVM training at every edge, whidtcisusse more costly than the greedy
strategy. It may be possible reducing the large number of negativeptesa which are inferred irrelevant to current
and future decisions with high probability without decreasing classi cat@mueacy.
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2.1 Motivation for this aspect of Semantic Concept Recognition in Irages

is closer to a raccoon than to a chimpanzee, the grasshopper is closesgtorp and more
distant to other insect lifeforms. Such problems can arise generally wieehig¢harchy is
learned from image contents.

This prompts the question whether it is useful to employ a taxonomy which is baexedly
on information already present in the images and which is thus implicitly alreadgithuough
the extracted feature sets that feed the learning machine. Furthermigrimftasnation derived
from the images only, may not always be coherent with the user's rich bbexperience and
implicit or explicit knowledge.

An example is the discrimination of several Protostomia, sea cucumbers laifses Fig-
ure 2.2). While sea cucumbers look de nitely more similar to many Protostomia, they are
much closer to sh sharing the property of belonging to Deuterostomia ditipto phylo-
genetic systematics. Equally, horseshoe crabs look more similar to crabthasalve a shell
and live on the coast, but the horseshoe-crab as a member of Chelisecttser to spiders
than to crabs. Therefore, this work is focusedppe-determinedaxonomies constructed in-
dependently from basic image features as a way for providing such addiilcformation
rsp. knowledge. This task ts well into the popular structured learninghéaork @0, 81)
which has recently seen many applications among them in particular doculassitaation
with taxonomies §2). Note furthermore that a given taxonomy permits to dedu@xanomy
loss function which — in contrast to the common 0/1 loss — allows to weight misctadigin
unevenly according to their mismatch when measured in the taxonomy. Thustiés nat-
ural to evaluate classi cation results according to the taxonomy losses dnstehe at 0/1
loss, in this sense imposing a more human-like error measure.

The remainder of this chapter is organized as follows. Se@i@t? gives an overview
of algorithms using hierarchical classi cation in image annotation tasks besite paper
which have been mentioned already. In Secfidtwe will explain our novel local procedures
with scoring deduced from generaliz@emeans, along with structure learning approaches.
We discuss in Sectio@.3 when and why our procedures can improve the one-vs-all base-
line. The empirical comparisons between our local approach and otlograncal algorithms
and taxonomy-free baselines are presented in Se@tibn For the present work, we have
constructed multi-class classi cation datasets with taxonomy trees betweest oajegories
based on the benchmarks Caltech258 a@nd VOC2006 §4) as explained in Sectioh4.1 In
this Section we discuss why our local approach can improve the onk-hasaline from the
viewpoint of averaging processes. Sectb@igives concluding remarks and a discussion.
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Figure 2.2: Mismatch between taxonomy and visual similarity the rst column are Proto-
stomia, the second (sea cucumbers) and third row are Deutestomia. The difference is based
on embryonal developmentimages from Wikimedia Commons.

2.1.2 Related Work

There have been a number of studies considdeagning class-hierarchies, for instance on
the basis of delayed decision®s, dependency graphs and co-occurrené&es §6), greedy
margin-trees &7), by hierarchical clustering7@, 88), and by incorporating additional infor-
mation @9). Unfortunately, few could so far report signi cant performancéngan the nal
object classi cation (even though they contributed to other aspects,dtarine, computational
ef ciency).

When a taxonomy is available, a standard way of using the hierarchy isrs@gjgreedy
decision {9). Starting from the root node, the strategy selects only the most probaipe ed
rooted at each node and ignores other possibilities until reaching a ldaf Aderefore, for
classifying an unseen image only the classi ers on one path of the higraesd to be evalu-
ated. Furthermore, since each node takes only relevant images fenicaind future decisions
during the training phase, such greedy methods are computationally vertiaér The work
in (79) focuses on learning hierarchies and demonstrates speed gains bydhy glassi -
cation schemes compared to one versus all classi ers (e.g. 5-fold gadedt the cost of
10% performance drop). Another greedy walk approach over addarierarchy §5) shows
small improvements on the Caltech256 dataset. A similar result using a hoexcfomnu-
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lation for learning a relaxed hierarchy is presenteddin).( It achieves computation speedups
and even small recognition performance improvements on Caltech256 wi#tiés zero-one
loss.! The later work in §1) develops general structured prediction for multi-label datasets and
applies it also to hierarchical classi cation. It nds the one-versuschlksi cation baseline
which we also considered here hard to beat. These ndings are carisigte our experiments
which structured prediction algorithms below.

2.2 Methods

2.2.1 Problem Formulation

We consider the following problem setting: given areairsf (x();y())g,1 i n, where

x{) 2 <9 denotes the vectorial representation of ikt image which can be represented in
higher dimensions by a possibly non-linear mappirig()). The latter gives also rise to a
kernel function on images, given bx (x;x9 = h (x); (x9i. The set of labels is denoted

image is annotated by exactly one elemen¥of Some image databases fall into the multi-
label setting, where an image can be annotated with several class labefswithioe dealt
with later on.

In addition, we are given a taxonomyin form of an arbitrary directed gragv; E) where

for an example). We assume the existence of one unique root node eTbkesiges on the
path from the root node to a leaf nodas de ned as (y). Alternatively, the set (y) can be
represented by a vectofy) where thqg -th element is given by

1:vi2 (y)

)= 0 : otherwise

such that the categosheepn Figure2.3is represented by the vector

(sheep=(1;0;0;0;0;0;0;0;1,0;1;1; 0; 1; 0; 0; 0; O; O)Q.

For convention purposes please note that a classi er is rooted aeeaehFor trees this is equivalent to the
view that each node except for the root node has one classi er.iFented acyclic graphs, however, the rst view
is necessary because each node may have more than one dire@sgeitging to it. We will speak about nodes
when we refer to sets of classes or images and edges when we rdfesdicecs itself. In this sense a classi er at
a node refers to a classi er at the directed edges leading to that node.
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The goal is to nd a functiorf that mZinimizes the generalization ere(f ),

RIO= | (i1 (0)dP(xy);

<

whereP (x;y) is the (unknown) distribution of images and annotations. The qualify isf
measured by an appropriate, symmetric, non-negative loss functi¥n Y !< [ detailing
the distance between the true clgsand the prediction. For instancemay be the common
0/1 loss, given by

- 0 1 y=%
o=1(¥3Y) = 1 : otherwise (2.1)

When learning with taxonomies, the distanceyaindy with respect to the taxonomy is fun-
damental. For instance, confusing lauswith a catis more severe than confusing the classes
catanddog We will therefore also utilize a taxonomy-based loss function re ecting this in
ition by counting the number of non-shared edges on the path betweendlaassy and the

predictiony,
Wi
Tv:= i i (2.2)
j=1
This distance can be induced as Hilbert space norm by the kernel elaiesds de ned as
Wi
Ky (y;¥) = i(y) j(9): (2.3)

j=1
Note here that each node except for the root node can be identi ed vétpdth element in
the hierarchy from its parent node to the current node. In that seasgstge of the notions
of node in the hierarchy and of path element in the hierarchy is equivialehterarchies. For
direct acyclic graphs, however, one has to resort to the notion ofsdugause a node may
have multiple ancestors and edges leading to it.
For instance, the taxonomy-based loss between catedmissandcowin Figure2.3is

t(horsecow) = 4 because (horsg and (cow) differ at the edges pointing to nodes horse,
pegasofera, cetartiodactyla and cow.

2.2.2 Structure Learning with Taxonomies

The taxonomy-based learning task can be framed as structured learolihgrp 80, 81) where
a function

f (x) = argmaxhw; ( x;y)i (2.4)
y
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L:All
2:Nonlife 9:Life
3:2-Wheeled 6:4-Wheeled 10:Person 11:Laurasitheria
4:Bicycle 5:Motorbike 7:Bus 8:Car 12:Cetartiodactyla 15:Pegasofera

13:Cow 14:Sheep 16:Carnivora 19:Horse

AN

17:Cat 18:Dog

Figure 2.3: Taxonomy constructed from VOC2006 labels. Thefe subtree is based on biolog-
ical systematics.

de ned jointly on inputs and outputs is to be learned. The mapging y) is often called the
joint feature representation and for learning taxonomies given by thertpnsduct 82) with

indicator functions
iY)=M0vi2 Wl (2.5)

and the input feature mappingx)
e
(xy)= (y):% itz G 26)
Oviv; 2 )]

Thus, the joint feature representation subsumes the structural infornaamtibexplicitly en-
codes paths in the taxonomy. It leads to a joint kernel

Ky ((X1;¥1); (X2;¥2)) = Kx (X1;X2)K'y (Y1 Y2); (2.7

whereK x (X1;X2) = h (X1); (X2)i and the label kernd y (y1;y2) is de ned according to
the taxonomyT as in EquationZ.3).

The empirical risk can be optimized utilizing conditional random elds (CREs) ©r
structural support vector machines (SVMs). We will follow structurati@ay in the formula-
tion by (93, 94). There are two ways of incorporating a lo6sy; y) such asy-; and 1 in the
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structural SVMs. The optimization problem with margin rescaling is given by

xn )
min }kwkz +C ()
W, 2 i=1

s.t.8i; 8y 6 y() :
hw; ( x@;yDy  (xOry)i (yBry) O (2.8)
gi: O o

The above minimization problem has one constraint for each image. Evesiraimt is associ-
ated with a slack-variablel) that acts as an upper bound on the errazaused by annotating
thei-th image with a wrong label. Once, optimal parametershave been found, these are
used as plug-in estimates to compute predictions for new and unseen exasipieEquation
(2.4). The computation of the argmax can be performed by explicit enumeratahpaths in
the taxonomy.
An alternative formulation§1) uses slack rescaling instead of margin rescaling in the con-
straints:
min %kwkz +C )@ 0
i=1
s.t.8i; 8y 6 y() :
(1)

w; (x@;yDy  (xO;y)i (y0y)

(2.9)
gi: O o

In this multiplicative formulation based on a hinge loss (assymg$) 0; ( y;y) =0 8y)

max (y;y) @+ hws (xBiy) o (xBry0)i) (2.10)

each sample receives the same margin of one. As a drawback nding thmallgxviolated
label can be more complicated compared to margin rescaling due to theylappkaring in
both factors of a product. Margin rescaling is also based on the hingbubsses an additive
formulation in ( y;y®)

max (y;yD)+ hw; (xBry) - (xOiy)i (2.11)

where it might be easier to nd the maximally violated constraint but on the otterr®re the
loss function might dominate the loss ternd.(L]) if it is badly scaled.
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Although, equations?.8) and .9) can be optimized with standard techniques, the number
of categories in state-of-the-art object recognition tasks can easigedxseveral hundreds
which renders the structural approaches inherently slow.

2.2.3 Remark on Feasible Taxonomy Loss Functions

The factorization of the combined feature label kernel (cf.ZE6). in the structured prediction
setup allows to insert more general label kernels beside the one whiatemthe canonical ta-
xonomy distance given in EQ.2 Any mapping (y) may be chosen in Equatiofs5and2.6.
One particular useful possibility in the connection with a given taxonomy is eéonesghted
taxonomy loss functions which assign non-negative weights to edges iretlaedmy from one
node to its child node. This permits to emphasize the importance of certain wnsuser
others in an easily interpretable manner. To do this, replégefrom Eq.2.5by element-wise
multiplication with the square-root of the desired edge weights

wiy) = Puivi 2w

This extends the original setup to taxonomy losses with weighted edges. Gméngfel
application is to weight each edge by the binary po®e? of its negative depthd in the
hierarchy. Since {_; 2 ' =1 2 S < 1this ensures that a classi cation error made at a
higher level closer to the root node always counts more than confusidower levels of the

hierarchy independent of the length of the path from root to the leaf.node

2.2.4 Assembling Local Binary SVMs

We propose here an ef cient alternative to the structural approdghdecomposing the struc-
tural approach from Equatior2 @) into several local tasks. The idea is to learn a binary SVM
(e.g. B, 4)) using the original representatiorfx) for each edges 2 E in the taxonomy in-
stead of solving thevholeproblem at once with a structured learning approach. This will help
to circumvent the high computational load typically encountered in structuseditgy. To
preserve the predictive power, the nal ensemble of binary SVMs feach edge need to be
assembled in an intelligent manner, i.e. appropriately according to the taxogensemark

that this novel approach is different from greedy hierarchical ceasswhere at each edge
only categories (leaf nodes) lying below the edge are taken into accoartheontrary, we

are considerin@ll images and categories at each node: for example, we learn binary SVMs
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such as 'Carnivora vs the others' and 'horse vs the others’, whilg ‘@arnivora vs horse’,
‘cat vs dog' etc. would be used in the greedy hierarchical classi cattsoutlined in Section
2.4.7, the greedy approaches perform sub-optimally, because they maynrelyyaneous de-
cisions of upper internal edges without the possibility to recover by codecisions in lower
internal edges.

Thus essentially, our approach consists of trairjiig independent binary support vec-
tor machines (which can be done highly ef ciently in parallel!) such that twresf; (x) =
hw;; (x)i + By of thej-th SVM centered at edgg serves as an estimate for the probability
thate; lies on the patly of instancex, i.e.,Pr( j(y) = 1) . Animagex() is therefore treated
as a positive example for edgg if this very edge lies on the path from the root to laip@
and as a negative instance otherwise, which amounts to the siyp@f”) 1.

We resolve oullocal-SVM optimization problem that can be split inj¥'j independent
optimization problems, effectively implementing a one-vs-all classi er folhezdge.

X/ X
min 17 kwk2+ G )
wi B j=1 j=1 =1
st8i; 8 1 2 ;(v") D(hwy; xDi+p) 1 T (2.12)
8i; 8 : ‘j(i) 0:

At test phases, the prediction for new and unseen examples can betedmjpuilarly to Equa-
tion (2.4). Denote the local-SVM for thg-th edge byfj, then the score for clagsis simply

the sum of all edges lying on the path from the root to the yeaf
P
i = [0,

fy(x) = o) (2.13)

The normalization is required due to varying path lengths in our taxonomiedwhi dif-
ference compared to the taxonomies considere@2n (The clasy which has the maximum
scorefy over all classes is selected as the nal prediction.

Note that since the entire problem decomposesjiicbinary classi cation tasks, paral-
lelization becomes possible and thus, the training time of our approach is emtsidshorter
compared to the structural SVMs. Another advantage is that our loceéguoes can be di-
rectly extended to multi-label problems without taking the maximum operation ahthebat
by setting thresholds only which determine whether object categories dneédcin images
or not.
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Although our initial motivation was to construct an ef cient approximation af 8truc-
tural SVMs, we would like to remark that there exists a fundamental difterdretween the
structural SVMs and our local-SVM procedure with respect to their optitizdarget. The
constraints of the structure learning in Equati@cB) aim to order theset of all class labels
correctlyfor each imagen the sense that the SVM score for the correct class label is highest.
For our local-SVM approach the SVM constraints aim at orderingstiteof all imagesor-
rectly for each edgevith respect to the binarized learning problem whether an image belongs
to a class lying on a path passing through this taxonomy node or not. We réumiduds that
the constraints of the structural optimization problems do not imply necessaxiltheh set of
all images is ordered correctly for the binary classi cation problem ahdagonomy edge.
In order to foster a better intuitive understanding, the difference betWweth approaches are
illustrated in Figure?.4.

2.2.5 Scoring with Generalizedp-means

When we combine the binary classi cation scores at the edges along dtpsigt necessary
to take their arithmetic mean as i&.13. Instead, our procedures permit more general scoring
methods such as the generalizetheans of outputs

zP ; (2.14)

after scaling td0; 1]. This includes the geometric mean as the limlt 0 and the harmonic
mean forpp= 1as well as the minimum as the linpt! 1 . Tuning of this extra degree of
freedomp may improve classi cation performance. To see this note that the geometric mean
and generalized means with negative norms of scorfs ij are upper bounded by a power of
the smallest element.

s 2 [0:1]) s mins "
) i

1
2 p ins
p<0) NS =5 Min's

For positive norms the generalized mean is upper bounded instead byea pbits largest
element. In that sense generalized means with non-positive norms areensiti/e to nega-
tive outliers and more robust against strong positive outlier votes frayjasethan generalized

39



2. SEMANTIC CONCEPT RECOGNITION WITH A TREE STRUCTURE OVER
CONCEPTS

Figure 2.4: Differences between one vs all (top left), struare learning (top right) and local
approach (bottom). The one vs all procedure ignores internenodes of taxonomies and takes
the maximum of the SVM outputs at leaf edges. The structured pproach takes paths as a
whole into account, maximizes the margin between correct ahwrong paths in training and
returns as a predictor the label of the path with the maximum sore. The local procedures
optimize each binary problem of passing through a path indepndently and then combine the
outputs of the local SVMs into a score with generalizegh-means.

means with positive norms where the distortion by strong positive outliers eamtitrarily
large. The selection of an optimal p-norm thus adjusts the sensitivities tosweail votes
close to0 versus very large votes close 10 The usage of generalized means with arbitrary

norms requires the scores to be non-negative and SVM outputs to be.5cale

In order to scale SVM outputs in{@; 1], we deploy a logistic function with xed parame-

while there exist convex mappings 8 to the interval[0;1 ) we are not aware of the existence of a
monotonous and continuous mappingRJf onto a bounded nontrivial interval which is everywhere concave or
convex. This implies that a model using scaling of unbounded innemptsdannot be optimized by applying

convex methods in the structured output framework.
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ters
1

1+exp( 10y)
Experimentally we have seen that learning the logistic regression pararfretargdata 05)

s(y) =

did not further improve performance of image categorization.

Scaling with logistic functions is closely linked to a probabilistic interpretation déast-
cation procedure. Our current approach does not immediately permmilzapilistic interpre-
tation tting to a taxonomy graph. This is because we so far have chosewayslconsider
classi cation between a part of the categories and all remaining otheexhteglge, instead of
conditioning on its parent nodes.

2.2.6 Baselines

In our experiments, we will use additionally two kinds of classi cation methddse is the
standard one-vs-all classi cation: we train one binary SVM for eaclssclahich uses the
samples of this class as positive labeled data and all the other class dagmtgerexamples.
The multi-class labeling is obtained by the class maximizing the scores of all Hévis.
This is a completely taxonomy-free approach. The second is structuredataski-SVMs
which uses the joint feature representation ignoring the taxonomy graph

1
0Oy = ]l
(xy)= (0 (1= % ety = CZ”E;
COlly = o]

where (y) is the vector of the indicator functioffiy = ¢;]]. This leads to the 0/1 loss from the
label kernel

2 2Kv(yny2) = o=1(yny2);

instead of the taxonomical one in the structured taxonomical SVMs. No taxpmformation
is used, if the 0/1 loss is deployed as the loss functidn Equation 2.8) and @.9), while it is
incorporated indirectly into the learning process, wheis the taxonomy lossy .

2.3 Insights from Synthetic Data

In this Section, we discuss when and why the taxonomical approaches anigerform the
one-vs-all baseline. Furthermore we can observe differences ingddfes between leaf and
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internal edges which can be linked to at losses in later experiments omatal We remark
that the one-vs-all baseline can be regarded as a classi cation precedly with leaf edges,
while the taxonomy-based learning combines classi cation results of leafrdéewchal edges,
namely by generalizeg-means in the local-SVM approach and by implicit arithmetic mean
integrated in the structural SVMs.

2.3.1 Experimental Results

To illustrate our claim, we consider a 16 class example with the taxonomy beingagy bin
balanced tree with 16 leaf nodes. Each class is generated from onsi@adistribution in
15 dimensions. The variances are equal for all Gaussian and ard t@gé&/e seven datasets
with =1, 0:5, 0:3725 0:25, 0:1875 0:125 0:0625 The means are distributed such that
their Euclidean distance matrix equals the normalized taxonomy loss matrix whiclahees

loss, if the data is aligned to the taxonomy. For the sake of computation speechware
the one-vs-all baseline versus a local algorithm with scoring based agetiraetric mean of
logistically scaled scores of 19200 data points each independently, wkarse 200 samples
per class for training and the remaining 1000 per class for testing. Weydebl@aussian
kernels here, set the width to be the mean of squared distances and nednadllizernels to
have standard deviation one in Hilbert space.

Table2.1 shows the 0/1 and taxonomy losses of one-vs-all and our local SVMeguoe
with the scaled geometric mean over different noise levels. The standaedioles are com-
puted between the 15 draws.

The local algorithm improved the one-vs-all baseline signi cantly undetakenomy loss
in all cases. The relative improvements are more #&?%nvith the maximum above%for =
1=8. We also conducted Wilcoxon's signed rank test, which showed thatdipgance gains
are signi cant with p-values of orders0 4 or 10 °. Surprisingly, the local SVM procedure
the taxonomy compares favorably with the baseline under the at 0/1 losglas w

There is an intuitive explanation why hierarchical approaches do imposges consistent
with the hierarchy compared to one versus all classi ers. One versgtaali ers attempt to
rank the images belonging to positive class highest. Classi ers fromaiagses in a hierarchy
attempt to rank the images belonging to the positive céasb similar classeso be highest.

Averaging many versus all classi ers from superclasses with onauseahi classi ers at the
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leafs achieves a tradeoff between both aims. At the same time such anageagpotentially
harm the zero-one-loss which does not consider similarities encodedxareotay.

Table2.2 shows the AUC score (equatio®.{5) (96) at different levels in the hierarchy.

P P
iiyi=+1 K: yx= 1|ff(xi)>f (Xk)g

ffiryi=+1gj jffk:y= 1gj
It allows to judge how dif cult the learning problems are at the internal edgempared

AUC(f; f(xi;yi)g) = (2.15)

Table 2.1: Synthetic data perfectly aligned to the taxonomyLosses of the one-vs-all baseline
(left) versus the local procedure with taxonomy (right) for different label noise levels. o= is
the zero-one-loss. 1 is the taxonomy loss. Lower losses are better.

one-vs-all local-SVM approach
0-1 T 0=1 T

1 89.10 0.32 67.09 0.34 88.59 0.34 65.69 0.35

1/2 78.24 0.32 51.370.31 77.84 0.39 50.27 0.35
3/8 69.30 0.38 41.29 0.28 68.94 0.39 40.21 0.29
1/4 51.61 0.52 25.050.26 51.26 0.52 24.17 0.22
3/16 37.320.46 14.940.23 36.91 0.48 14.24 0.23
1/8 19.49 0.39 6.050.11 19.12 041 5.70 0.12
1/16 2.41 0.13 0.610.03 2.38 0.13 0.60 0.03

Table 2.2: Synthetic data perfectly aligned to the taxonomyAUC scores in the taxonomy for

= 1=4 at different levels. Higher scores are better.

AUC

level in taxonomy 1
99.21 97.78 95.42

2 3

4 (leaf)
92.40

Table 2.3: Synthetic data perfectly aligned to the taxonomyAt which level does misclassi -
=1=4?

cation occur for

level in taxonomy
Differences of Error Rates

1
-1.55

2

-0.68 0.48

4 (leaf)
1.74
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to leaf edges. Note that we observe on this synthetic dataset a higher &g€an internal
edges compared to leaf edges and a decrease in the at zero-one@mpared to the one
versus all baseline. This implies that the learning problems are easier erclags level than
at the leaf edges. This might explain why we observe here an improvemtiet isit zero one
loss as well. Itis not straightforward in a statistical sense that optimizing#etass improves
another loss as well. As an explanation we propose that in this synthetithedeatures allow
a good generalization at superclass level because the given taxoraoeefectly aligned to
the similarities between classes at the feature level. The higher AUC scimteraial edges
compared to leaf edges supports this view. This good alignment might be alsadh when
learning similarities from visual features and explain results for at lo$sds8, 85) but it
cannot be expected to hold in general when a taxonomy is provided indemeof visual
features. We will return to this observation in the forthcoming Se@idron experiments on
real data.

Table 2.3 shows another aspect of hierarchical averaging: given a pairstimgsof true
and predicted label we can ask where in the hierarchy the error did.othis leads to two
histograms, for the taxonomy-based and for the one versus all clas§herTable shows the
difference between both histograms. Negative values imply a reductiamar @t this level
for the taxonomic method. We see that under our taxonomy based appheacassi cation
errors are moved to lower levels in the hierarchy compared to a at orseised| classi cation

implying that confusions occur more often between taxonomically closeredass

2.3.2 Robustness bp-means

The parametep of the generalized controls robustness against outlying classi er outets
ative p's make the mean robust against upper extremes while in the opposite case&k
tremes are suppressed. To see this we conducted an experiment afi@dp@rturbation of
SVM outputs over the toy data. We xed a priori a set of 10% of the samplég foerturbed
and for each sample one edge in the taxonomy to be perturbed. We apptiedxhe sets to
values of perturbation factofst8;+4; 4; 8g. The perturbation is computed for a sample
by adding to the SVM output of this sample the factor times the standard deviétioa out-
puts of the SVM corresponding to the taxonomy node. The negative $aallow to simulate
large negative outliers, the positive factors large positive outliers. Tabkhows the results.

We can see that for large positive distortions both positive means peldaren than geo-
metric mean and a negative mean.
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For large negative distortions the rst ranks are held by the non-saitiimetic mean
and a scaled positive mean. These two methods suffer less from nematiees than negative
means. Furthermore we observe in both settings that unscaled variamssarebust than
scaled ones.

Finally the last part of the Tabl2.4 shows a result where 80% of the perturbed samples
are modi ed by a factor ofr4 and 20% by 4. Here the geometric mean turns out to be the
best choice which corresponds well to our empirical ndings in SecBight We conclude
that the geometric mean is well suited to deal with SVM outputs which suffens frasitive
and negative outliers in taxonomy edges coming from noisy classi catiolpiemus.

In summary, we would like to emphasize that classi cation techniques with tamimso
can improve the one-vs-all baselines, under the taxonomical loss andtthero one loss.

2.4 Experiments on Real World Multi-class Data

2.4.1 Datasets

For the present work, we constructed multi-class classi cation datasetdaxitimomy trees
between object categories by modifying the benchmarks Caltecl83bérfd VOC2006 §4).

Caltech256 all classes

The Caltech256 datase€i3) contains 256 classes of objects and one clutter class. For an initial
experiment allowing comparison to results from other publications we haea B images
from each of the object classes and employed the taxonomy as providee tiapirt 83).

The only changes we made were to add pisa-tower to the taxonomy grapbeasiéd to be
missing and moved iris to owers from air animals. Unfortunately, ushilg 256 0.9 =
11520samples for training using ten-fold crossvalidation is beyond the scope strilctured
prediction baselines on our hardware. Therefore we consideregtsulil classes which will

be described below. The result for all 256 object classes can bedagkim sectior?.4.7.

Caltech256 animals

We consider all 52 real world animal classes from the Caltech256 dg&&ewhich yields
5895data points (see Figura5). They form a multi-class problem with mutually exclusive
classes. We used a taxonomy based on a recherche of biologicaldphgta) systematics
consisting out 002 nodes constructed a priori. We have chosen this subset for two season
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Table 2.4: Synthetic data perfectly aligned to the taxonomyDifferences in taxonomy loss and
0/1 loss to unperturbed SVM outputs and absolute ranks betwen all four methods. Lower
losses are better.

unperturbed nonscaldd; scM, scMg scM »

rank T 1 3 2 4
rank o1 1 3 1 4
perturb=+8 nonscaledl; scM, scMgy scM

diff. T 1.8 0.14 0.04 0.05

rank T 4 3 1 2
diff. 9o 1.91 0.27 0.15 0.15
rank o=; 4 3 1 2
perturb=+4 nonscaledl; scM, scMgy scM »

diff. T 0.47 0.14 0.04 0.05

rank T 4 3 1 2
diff. =1 0.81 0.26 0.15 0.15
rank o1 4 3 1 2
perturb=-4 nonscalebll; scM; scMg scM »

diff. T 0.26 0.03 0.42 0.75

rank T 2 1 3 4
diff. 9= 0.34 0.13 0.49 0.73
rank o-=; 1 2 3 4
perturb=-8 nonscaledl; scM, scMg scM

diff. T 0.68 0.03 0.7 0.75

rank T 2 1 3 4
diff. o= 0.73 0.12 0.74 0.74
rank o= 2 1 3 4

80% +4,20% -4 nonscaldd; scM, scMg scM »

diff. T 0.41 0.09 0.11 0.12

rank T 4 3 1 2
diff. o= 0.53 021 02 0.23
rank o=; 4 3 1 2
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Firstly, it is a natural multi-class dataset in the multimedia image domain. Secondlgwta
to de ne a taxonomy in an indisputable way prior to looking at image content, iyavee
biological systematics. For the remaining 204 classes from Caltech256 we aue to rely
on human experience of some sort which might lead to some kind of uninterdjgmearance-
based optimization of when choosing a taxonomy. The technical reporteoGdliech256
dataset3) contains a hierarchy. We have chosen not to use its construction peibeipause
it is somewhat arbitrary as stated by the authors of the technical reporséhees and from
our own point of view is not biologically plausible. It groups all animals inrf@i subgroups:
insects, land, air and water based lifeforms. As stated in the introductiosdge of phyloge-
netic systematics resulted in a taxonomy which is indeed not fully consistent soiltijective
visual similarities of the authors which diverge for example for crabs amsshoe crabs but
also as shown in Figur2.2 potentially for superclasses in the taxonomy. The hierarchy con-
tains in contrast to many preceding works paths with varying lengths. We onfgiteasy
animals like Minotaurs and Unicorns from the Caltech256 set, as there isj@ttiob way to

incorporate them into biological systematics. The full taxonomy is given inrEigul2

Caltech256 animals thirteen classes subset

For further experiments, we selek3 classes - all Protostomia (praying-mantis, grasshopper,
cockroach, house- y, butter y, trilobite, centipede, crab, spidegrpion, horseshoe-crab, oc-
topus, snail) from theCaltech256 animalslataset. This corresponds to one subtree in the
original taxonomy over all 52 classes. The total number of the images iseddol308 This
allows us faster experimentation with the structural approaches which wasadm reason
for choosing this subset. We deploy as taxonomy the correspondingsuwhith21 nodes of
that of Caltech256 animalsvhich is still challenging in its topology due to non-balanced tree

structure and varying path lengths.

VOC2006 multi-class data

We use the VOC2006 datasé&tj consisting of 10 object classes absig0limages (see Figure
2.6). We have modi ed the VOC2006 labels in order to obtain a multi-class probl&m w
mutually exclusive classes. To achieve such exclusive labeling, fdr iezage all positive
labels except for a randomly chosen one are suppressed. We remttthishprocess induces

additional label noise.
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Figure 2.5: Caltech256 animals dataset example images.

Figure 2.6: VOC2006 dataset example images.

2.4.2 Image Features

For the following experiments, we used bag of words (BoW) representatiased on the
SIFT descriptors 16) as image features. The BoW features were constructed in a standard
way: using the code from2@), the SIFT descriptors were computed on a dense grid of step
size six over the color channel triplesed, green, blug(RGB) andf grey, opponent color 1,2
(OPP, see equations.f),(1.6), (1.7) ). Then, for both triples, 8192 visual words (prototypes)
were generated by using extremely randomized clustering forest (E€d@f¢ring 81) via 16

trees with 512 leaves each based on large sets of SIFT descriptotedebeudomly from the
training images following43). For each image, each SIFT feature was assigned to one leaf for
each of the 16 trees. We have chosen the supervised ERCF proogduiemeans as it does
greatly reduce the time necessary for clustering of visual words andfbagrd computation
while having comparable performance. The sum of these mappings reisuited histogram

for each image within each cell of the spatial tilinhs 1,2 2and3 1. The idea of a
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spatial tiling is to split each image into a set of regularly shaped spatial tilesmpute one
BoW feature for each tile separately and nally to concatenate the BoWrkssatyer all tiles
into one BoW feature3d6, 97). Finally, we obtained 6 BoW feature2 ¢olor channels sets3
sets of spatial tilings) with dimensionaliti®l92 4 8192and3 8192depending on the
spatial tiling. For Caltech256 data we omitted the two kernels based on @lin@sas they did
degrade the one-vs-all baseline performance already. We do noteagrahthe best possible
baseline performance which might be achieved by adding carefully setlsete of additional
features. Instead we focus on the effect of a given hierarchy andat loss functions. We
note however that high-dimensional bag of words models have been adtbitye superior
performance in recent object categorization challenggLg, 99) which motivates our choice
of these features.

2.4.3 Image Kernels and Regularization of SVMs

We used the exponential’>-Kernel (equation 1.26)) for comparing the image feature his-
tograms 60, 51). The bandwidth of the 2 kernelin (.26 is thereby heuristically chosen as
the mean 2 distance (equatioriL(27) over all pairs of training examples, as done, for exam-
ple, in 52). All kernels have been normalized to standard deviation in Hilbert specgsial

to one which in practice limits the range where to search for an optimal recatianzonstant.
We combined all kernels via addition.

In the local-SVM procedure, we used two regularization constants (enelgss) for all
binary problems in order to compensate for the unbalanced ratios betesitingand negative
classes. The regularization constant of the smaller class was obtained bylyimgjtthat of
the larger classby the ratio between the two samples. For the structured SVMs we used as
regularization parameteT = 16jV| for the taxonomical procedures af = 16k for the
multi-class ones, whelj® j andk are the number of nodes and classes, respectively.

This is motivated by comparing the main objective of one local SVM

_ 1 X
min_ Skw k+cg

wi BT i=1
to the one from a structured SVM
_ i 1 X0 )
min Skw, k+c
W=t i=1

The regularization constant of the larger class was xed to 16 whictesponds to our experience that high-
dimensional Bag-of-words features perform better under hardimtaaining.
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We note that the ratio between the weight ndawk? and the slacks(! is roughly up-scaled
by a factor equal to the number of nodes. We have checked experimahgtllysing much
lower regularization constants damages the performance of the strustlivid, while much

higher regularization constants did not improve the results anymore. Siecszigs of the
object categories are balanced, we do not have to assign one regidarizonstant for each
class separately.

2.4.4 Comparison Methodology

All considered methods can be divided into structured and structueex$revell as taxonomical
and taxonomy-free approaches (Tabl). Due to limited space, we will use the abbreviations
listed in Table2.6to in our experimental results.

There are three ways to use the taxonomy. The taxonomy loss as perfermaasure
is used on all methods. The taxonomy loss as part of the training procedused in all
structured SVMs according to equatich ). The taxonomy structure is incorporated in all
taxonomical approaches but not in the structured multi class procedures

We will use as baselines the structure-free one-vs-all classi catioteamthomy-free multi
class SVMs with margin and slack rescaling trained using zero-onedgser taxonomy loss

1. The taxonomy-based algorithms to be tested are, rstly, the structuredsSAitid nontriv-
ial taxonomies in margin.8) and slack rescaling formulatio2.9) and, secondly, structure-
free methods where we obtain scores for each concept class via thediitimean over the
component SVM outputs and via generalized means of SVM outputs whicstaled using
logistic functions.

We used SVMmulticlassl00) and modi ed versions thereof for the structured approaches.

Table 2.5: Classi cation of methods.

structure-free structured

taxonomy-free onevs all struct multi-class SVMs
(Section2.2.9 (Section2.2.9

taxonomical local taxonomy  struct taxonomy SVMs
(Section2.2.9 (Section2.2.2
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The non-structured methods have been implemented using shogun toohwith the SVM-
light solver. We note that SVMlight is also deployed in the optimization proasiof the
SVMmulticlass implementations.

The error measurement is done for the multi-class problems using the 0/faxambmy
loss from equationd.2). For all multi-class problems we use 20 splits into training and test
data with 50 images per class in each split.

Furthermore we use for some experiments the Average Precision (AR fra class
(see EquationZ.16) and the mean Average Precision score (mAP) obtained by averaging the
average precisions over all classes.

For computation of the AP score we assume that the pairs of classifer oatpliggound
truth labels(z(9); y(9) for a class in question are sorted according to the descending order

of their output scorezl((c) over the data sample indéx The average precision (AP) score for

n@ =P op@og itively labeled les of classs de ned
= o Ifyy” = 1gpositively labeled samples of clas$s de ned as

1 X 1X
APy M) = My =107 1y =1 (216)
+ =1 k=1

2.4.5 Experimental Results: Performance Comparisons

At rst, we would like to remark the dif culty inherent in the datasets. TaBl&shows the 0/1
loss and the average precisions (AP score) of the one-vs-all bastlimnihe three multi-class

Table 2.6: Abbreviations for compared methods.

structured multi-class baseline
struct mc mr with margin rescaling
struct mc sr with slack rescaling

taxonomical structural learning
struct tax mr with margin rescaling4.8)
struct tax sr with slack rescalingZ.9)

the local procedure with taxonomy

local tax AM with arithmetic meanZ.13
local tax scaled GM with geometric mean after scaling
My with p-mean after scaling
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datasets.

The AP score is a rank-based measure which was deployed as therzarée criterion in
the recent Pascal VOC challenges. For VOC2006 the results for 20 pgtfte'm worse due
to sample size effects as they use dsPtraining data in each split as compared to @00
points for the 20-fold cross-validation.

Table 2.7: One-vs-all baseline performance on multi-clasdatasets. Lower losses and higher
AP scores are better.

dataset 0/1 Loss AP score
Cal256 animals 62.56 34.34
Cal256 13 class subset 57.04 43.69
VOC2006, multi-class, 20 splits 50.54 54.75

VOC2006, multi-class, 20-fold crossval 33.56 70.50

The comparisons for Caltech256 animals and its 13 class subset are ishdabies2.8
and2.9. For simplicity, we present only the best result among all options for ebstnuztural
multi-class, local taxonomy-based and structural taxonomy-basedduese The full Tables
listing all results can be found in the Appendix (Tabkeg, 5.2 and5.3 As expected, the
taxonomy-based methods outperform the taxonomy-free baselines in tethestaxonomy
loss by3-5% relatively. For both datasets, our local SVM procedure improves steitgarn-
ing with taxonomy by2-3% relatively. The gains of the taxonomy-based approaches under
the taxonomy loss are achieved at the cost of slightly increasing the 0/1 llossnotable
from Table2.9 that merely including the taxonomy loss in a structured multi-class algorithm
(as an intermediate step of incorporating taxonomical information) doesieldt guf cient
performance gain under the taxonomy loss. Optimization for taxonomy lossscatrtiee cost
of performance deterioration under the 0/1 loss. This is not surprisetuse the baselines,
one vs all and structured multi-class models directly optimize for the at hingewdsch is
more closely related to the 0/1 loss than to the taxonomy loss. Since this probdens éar
all hierarchical methods including the structured prediction based methddgst point out
the considerable difference between the canonical atloss and wisdramight desire. From

an optimization viewpoint minimizing a different loss leads to a different modekrdfore
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merely the scale of change might be surprising. The relation of 0/1 loss to gddfes at
internal edges across datasets will be discussed in Sexddh

Table 2.8: Errors on Caltech256 animals (52 classes), 20 &pl Lower losses are better.

Method Taxonomy Loss 0/1 Loss

one vs all 30.66 0.46 6256 0.67

best local tax: scaled GM 29.62 0.34 76.19 0.57
best struct tax: mr 30.58 0.31 81.19 0.53

Table 2.9: Errors on Caltech256 animals 13 class subset dat20 splits. Lower losses are
better.

Method Taxonomy Loss 0/1 Loss

one vs all 4249 146 57.04 1.98
best struct mc: sr,= g4 42.48 1.50 57.06 2.00

best local tax: scaled GM 40.58 1.15 58.33 1.50
best struct tax: mr 41.48 1.22 61.54 1.55

Table 2.10: Errors on VOC2006 as multi-class problem, 20 sfik. Lower losses are better.

Method Taxonomy Loss 0/1 Loss

one vs all 27.09 1.88 50.54 251
best struct mc: mr,= T 26.37 1.77 51.04 2.53

best local tax: scaled GM 25.861.56 50.10 2.29
best struct tax: mr 25.78 1.67 50.17 2.17

Table2.10shows the performance comparison for the VOC2006 multi-class problem. Sim-

ilar to the Caltech animals datasets, the taxonomy-based methods outperfasnettis-all
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baseline in terms of the taxonomy loss B% relatively. On the other hand, there are some
differences from the previous cases. At rst, our local SVM pragedis rather on par with
the structural counterpart. Secondly, the intermediate step, the structlirelass procedure
with the taxonomy losst improved the one-vs-all baseline signi cantly under the taxonomy
loss. Finally, the taxonomy-based approaches improved slightly the taxefieepaselines
under the 0/1 loss as it was already the case for the synthetic data example.

As a sanity check for structured implementations we remark that the strdotermethods
perform approximately equally well to their structured counterparts ftr taxonomy and 0/1
losses. Since for the at 0/1 loss setting we used SVMstruct in its unmodbech@ilation, this
is clearly a property of the data rather than a potentially faulty implementationuaftsted
approaches.

In summary, we observed that the taxonomical approaches outperfertaxdnomy-free
baselines under the taxonomy loss, as was the case for the synthetic dika. ituthe syn-
thetic data the zero-one error was slightly increased by optimization of taxobasad losses
for both Caltech datasets. The choice of the loss function determines thighatgto be used.
It is not expectable in a statistical sense that a taxonomical model improwasli@ss under
all circumstances, however there is a tendency for relatedness abizetoss and differences
of AUC scores across levels (see also discussion in Se2itb§. The local taxonomy-based
methods are slightly worse than structured taxonomy ones on VOC200@tl&tastsconsider-
ably better on both Caltech256 animals problems. We would like to emphasizedveayof
averaging is important to achieve better performance. Note that the seatkbgical mean
compares favorably with the arithmetic mean. Indeed, when we examinedribeagieedp-
means in a wide rage of the paramgbemparameters close 1 (i.e. the geometrical mean)
achieved the minimum values both under the 0/1 and taxonomy losses.

2.4.6 Remark on Training Time

In all three data sets the local SVMs are much faster to train when compaseddtured taxo-
nomy approaches (cf. Tab®11). The local SVMs can be parallelized by training each edge as
a separate optimization problem, an advantageous property when scalimgiber of object
categories. Another bene cial scaling characteristic when increasmguimber of samples

is the possibility to reduce the training set for each edge individually sincesiifisient to
control the performance of the binary classi cation problem at eacle esggarately. Certain
steps in the structural approaches like nding the most violated constrantbe parallelized
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to e.g. multicore machines which typically accounts for four or at most eiglescd he used
code may have potential for further problem-speci ¢ optimizations. Thedgains by using
local SVMs are large factors of over 10. Thus we do not expect thardadge of the local
SVMs to disappear against a multicore-parallelization of structural suppotor machines.
Furthermore the parallelization of local SVMs into optimization problems restrictsthgle
edges can be achieved generically over more than 8 cores. Anotf@mnpence reducing fac-
tor was excessive main memory usage of structural algorithms of up to 1&y&gper task
which in practice leads to additional slowdowns compared to many small tasiadvasl by
the local SVMs.

Table 2.11: Training times, the multiplier for local models shows separability into indepen-
dent jobs.

Method Dataset Training time
one vs all Cal256 animals, 52 classes  3.69%s2
local tax Cal256 animals, 52 classes  3.6992
struct. tax Cal256 animals, 52 classes 35.13 h
one vs all Cal256 animals, 13 classes 0.5%3
local tax Cal256 animals, 13 classes 0.581
struct multi-class Cal256 animals, 13 classes 15.1 min
struct tax Cal256 animals, 13 classes 44.9 min
one vs all VOC2006 <0.5s 10
local tax VOC2006 <0.5s 19
struct multi-class VOC2006 9.4 min
struct tax VOC2006 28.7 min

2.4.7 Discussion

Confusion Between Object Categories Figures2.8and2.9 provide example images where
the results from the local taxonomy approach differs compared to theeysasvall baseline.
Each image comes with a graph on the taxonomy. The ground truth label is Jifee choice
by one versus all is marked in magenta and the path to the choice by hieghathagsi cation

is given in blue. All relevant paths have attached the SVM outputs to thena(se Figure.4).
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Figure2.8shows typical cases when the hierarchic approach fails. It is caydatsb positive
outlier votes at internal edges which are too strong in order to be avkoageFigure2.9shows
cases when the hierarchical approach improves over a at onesvafshaseline. Typically
the votes from internal edges can average out and thus overrul@édiive and too negative
votes at the leaf edges. The upper part of FidiBsshows a case when a taxonomically more
plausible result can be achieved by using a hierarchy even when tisearidéar the leaf edge
belonging the ground truth gives a too negative vote. In the lower pahignarchic approach
classi es the image correctly.

By comparing the confusion pattern of our taxonomy based procedurethétiof the
one-vs-all baseline, we observe clear qualitative differences. é&®jdrshows confusion dif-
ferences between the two approaches (y-axis) versus the taxonasey [esaxis) for (a) bus
and (b) cat of the VOC 2006 data. As expected, we can nd the getemdency that the
taxonomy based method confused more with the categories with lower taxonsay,|ladile
it can reduce the error with those with higher taxonomy losses. We alskeatheigni cances
of all confusion differences by a Wilcoxon signed-rank test from &@dom repetitions. Its
p-values are summarized in the panel (c) (row: true classes, columdicyec classes). For
instance, for (a) bus class, more images were correctly classi ed gphuatue = 0.06%) and
confusion with person reduced signi cantly (0.16%) at the cost of iasirey the error by pre-
diction of cars (0.09%) which is in the taxonomy the closest category to lnnilaBrelations
hold for (b) cat class: confusions with the closer categories dog arse lwcreased, which
brought improvements in confusions with farther away classes cow (pPbiégtle (3.1%) and
motorbike (5.1%).

It is worth to point out that the improvement of taxonomy losses by hieraatbliassi ca-
tion which was observed in Secti@m3 (see Tabl&.3) and Sectior2.4.5implies that erroneous
decisions are moved to lower levels in the hierarchy compared to baseltniegidlds a more

plausible, i.e. more human-like, result based on the taxonomy.

Comparison with Greedy Walks We also analyzed the performance for local taxonomy ap-
proaches with hierarchical classi cation using greedy path-waiks (We regard this direction
rather as a side topic with respect to our comparison of structured yecsisnodels. In this
approach for each node in the taxonomy the set of negative examplegiistegl to those with
the class labels of the parent node. For example, for the class cat in tmeitay from Figure
2.3, a binary SVM is trained only with samples of classes Carnivora, i.e. cdtd@gs. Such
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Figure 2.7: Confusion differences between our local SVM wit taxonomy and the one-vs-all
classi cation (y-axis) versus the taxonomy losses (x-axigor (a) bus and (b) cat from VOC
2006 categories (bic = bicycle, hor = horse, mot = motorbikgyer = person, she = sheep). Pos-
itive values denote more confusions by the proposed metho&igni cances of the differences
are checked by Wilcoxon signed-rank test whose p-values asmmarized in (c) (row: true
classes, column: predicted classes).

greedy walks lead to performance decrease. This is not surprisirae @imbinary SVM at the
leaf edge 'cat' takes only images annotated with dog as negative sampley, givaahighly
positive scores to images containing horses or motorbikes. It is possibkh¢haassi ers at
the upper edges, e.g. the nonlife-versus-life or the carnivorais-igssi er misjudge some
of these images and that the cat-versus-dog classi er nally annotates #secat with very
high con dence.

We have found that the greedy walks strategy itself is detrimental. We obtaloth
datasets a moderate rise in 0/1 loss and a sharp rise in taxonomy loss. lengatise local
approach adopted here is superior to other possible simpler local soluRenformances of
greedy walks can be found in Appendix (Tabte§5.25.3).

The greedy approach has two advantages in running times compared toahagdproach
presented here. During training it deals at each edge only with classverising on subsets
of all categories which leads to a reduced amount of training data. Dustiggeve have to
follow only one path for each sample. The local approach presentectharbe, in principle,
modi ed by subsampling from the set of negative classes during trainirnfpatoit uses the
same amount of training data as the greedy approach. It would still retaedttatage of
being able to suppress votes for outlier images as described above hee.arcar image is
tested in a cat versus dog classi er in a greedy walk scheme. While thdygegproach is
the fastest option during test time, the local approach introduced heteeciaterpreted as a
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Figure 2.8: Example images where the hierarchical classi eis inferior to the one versus all
baseline on Caltech 256 animals, 13 classé®oxed green denotes the ground truth label, dashed
blue the path to the choice by hierarchical classi er anchddstted magenta the decision by one

versus all.

079
lophotrochozoa ecdysozoa

octopus snail .
hexapo chia(l)lcsesrata
arachnida

-0.32,"
housey buttery g
-035 ~

/
scorpion

grasshopper horseshoecrab

cockroach mantis

(upper)hierarchic: praying-mantis;one versus all: spider; ground truth: spider; Strong
false positive vote for Hexapoda in hierarchical approach, the appea of the spider does

not show 8 legs clearly and is somewhat similar to mantids in pose and color.
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(lower) hierarchic: crab;one versus all:octopus;ground truth: snail; Strong false positive
vote for Ecdysozoa causes hierarchy classi er to fail while one vsretiipts a taxonomically
closer animal to the ground truth.
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Figure 2.9: Example images where the hierarchical classi eoutperforms the one versus all
baseline on Caltech256 animals, 13 classd3oxed green denotes the ground truth label, dashed
blue the path to the choice by hierarchical classi er anchddstted magenta the decision by one
versus all.
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licerata as the spider, the score at the one vs all edge for octopus isgeo Téne score in the
one versus all edge for horseshoe crab is too large, too, whichrisea€orrect classi cation
as a spider.
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compromise between the structured SVMs and the greedy walks in terms ofgraimd testing
time. It achieves a trade-off between speed and precision.

Outlook - Larger Numbers of Classes: Caltech256 Full Here we consider the results for

all 256 object classes from Caltech256. We omitted the clutter class and tzinmne k-
means prototyped Bag of Words kernel based on 1000 words oveGBecBlor channel. We
used 50 images per class and ten-fold crossvalidation which resulted imiagrset size of
11520 samples. We were not able to compute the solutions from structedidtpon methods
however we are still able to compare one versus all against our local &4oach. We
observe in Table@.12 qualitatively the same results as for the other, smaller, datasets. The
taxonomy based approach improves on the taxonomy loss at the cost axdksetb the zero

one loss when compared to one versus all. The one versus all basefioenaamce ranges
between the baseline used &5) and the best kernel fromi(1).

Table 2.12: Errors on Caltech256 all classes except for cltgr, 10 splits. Lower losses are
better.

Method Taxonomy Loss 0/1 Loss
onevs all 34.31 0.74 68.93 1.23
local tax AM 33.04 0.7 7291 1.16

local tax scaled GM 32.77 0.6 7255 1.14
local tax greedy path-walk  37.810.71 77.96 1.3

2.4.8 Generalization Ability of Learning with Taxonomies

We have formulated in the introductiéhl of this chapter a more human-like classi cation in
the sense that errors between taxonomically far categories are reatioad of our goals. We
have observed experimental evidence that taxonomical losses ard idieeed when using
hierarchical classi cation instead of the one-versus-all baseline.

However, there is a gap between our goal and the experimental resuoltsie@ne hand,
humans are able to generalize higher level categories very well, seemitggy than more
speci ¢ low level categories. For example humans can label cars vdtyewan if their opti-
cal appearance is quite diverse as with old-timers, converted carsnigestshapes or rare car

60



2.4 Experiments on Real World Multi-class Data

models, whereas identifying a car brand or even a speci ¢ car modstiaaes a much more
dif cult task for humans. On the other hand, the improvement in taxonomisakl® observed
here is somewhat limited. For Caltech datasets we observe an increaséoss aPlease note
that for local taxonomic models the difference between the one-velidussaline and classi -
cation with taxonomies consists of adding classi cation problems located atiatkate edges
of the taxonomy, see also Figuzed for this aspect. If we assume in analogy to our expectation
about human capabilities that the problems at intermediate edges are muckoaaagsify for
our system and thus result in much better recognition rates, then the looabtaic models
should result in much better improvement over the one-versus-all baseline

We would like to identify reasons for this gap in this section, and point to plessiiprove-
ments for the future. The obvious observation to start with is given in Tak@ We can see
that for the Caltech datasets AUC scores at intermediate edges are veorsbdAUC scores
at leaf edges. The classi cation tasks at the intermediate edges for thelCdhé&sets are
more dif cult and therefore yield more errors compared to classi catioleat edges, which is
in clear contrast to our intuition about human capabilities.

Table 2.13: Mean AUCs on leaf edges versus internal edges fone local-SVM methods.
Higher values are better.

Dataset AUC Leaf edges AUC Internal edges
Caltech256 52 animals 88.49 84.82
Caltech256, 13 class subset 84.00 78.55
VOC2006 multi-class 86.38 91.40
Synthetic data, = 1=4, 16 classes (Se2.3) 92.40 96.64

The task of learning with taxonomies can be divided into two aspects. Thaspect is
the optimization of a non at loss via the taxonomy structure.

The second aspect is that taxonomy based learning is an averagingclassigers con-
structed by forming superclasses from sets of single classes. Addssj eta for these super-

classes with higher error rates, as we have done for the Caltech daitabiketdy to raise error

we showed for the synthetic data statistics per level of the taxonomy in Pablé&Ve use here the coarser
discrimination between internal edges and leaf edges because fordnemaies on the real data the notion of level
does not imply a constant difference to the nearest leaf. Leafs laaymyg path lengths and thus, two edges at the
same level may have different distances to the nearest leaf. See Eig@afor an example.
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rates. This has been observed for the at 0/1 loss in Tableéand?2.9. To shed light on the
guestion why classi cation problems at superclasses can be hardeillensider additional
metrics. The rst metric are kernel target alignment scoBs3.(The kernel target alignment is
a similarity measure between the kernel from image features and an optimatiynitistive
kernel computed from the labels of the classi cation problems located atiteseof the taxo-
nomy. For a short overview of kernel target alignment we refer to setti®4 Higher scores
imply that a kernel is potentially more useful for solving a classi cation task.

Table 2.14: Mean Kernel Target alignment on leaf edges versugternal edges for the local-
SVM methods. Higher values are better.

Dataset KTA Leaf edges KTA Internal edges
Caltech256 52 animals 0.0147 0.0241
Caltech256, 13 class subset 0.0431 0.0402
VOC2006 multi-class 0.0662 0.1882
Synthetic data, = 1=4, 16 classes (Se2.3) 0.0675 0.2075

We see from Tabl@.14that the Caltech datasets have low gains in kernel target alignment
scores at classi cation problems located at internal edges relative telkerget alignment
scores at leaf edges. This shows that the kernels when applied to cigsi at intermediate
edges do not provide much higher information content than the leaf clas<oe Caltech
datasets. Furthermore the TaBld4 shows that the differences in AUC values seen in Table
2.13can be explained by properties of the employed kernel. Therefore weamlpute another
kernel metric for a subsequent complexity analysis.

We claim that some of the classi cation problems at intermediate edges may hane a
creased complexity because they have to discriminate two sets of classeilinbath sets
may have a highly varying visual appearance as a consequence @haiion many different
classes. In contrast to that the classi cation problems at the leaf edgdsmdiscriminate one
class against a set of all other classes, i.e. one of the sets consisiagieactss which may
have lower varying visual appearance than a set of many classesthidbie our experiments
we use the same kernel for all classi cation problems.

For bringing evidence about the complexity of classi cation problems we wilpley Ker-
nel principal component analysis-based (kPCA) label reconstruatjorement. This method
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has been discussed itQ2) as a measure of complexity for a classi cation problem with a
given kernel. The idea is to compute the principal components of a kertted iHilbert space
and sort them according to the descending order of their eigenvaluds.fidm Lemma 1 in
(102 that for a kernel matrix over a xed nite set of samples the m-th sortech&ePCA
component is equal to the corresponding eigenvagtoof the kernel matrix.

For a chosen xed dimensionalitg we can project the label¢ onto the rstd sorted
kPCA components to obtain projected labgls

xd
Y= Umu>Y (2.17)
m=1
The projected labels allow to compute an agreement to the true label as onemeizeso one
loss:

X
Ifsign(¥)= Yg (2.18)

n=1

1
agrou(¥;Y) = N
If we project on all KPCA components by settidg= N, then we recover the ground truth
labels¥ = Y ) agroi(¥;Y) = 1. The idea of relevant dimensionality analysi®® and
kPCA label reconstruction agreement is that for a low-complexity classongoroblem the
majority of information is contained in a small number of the rst sorted kPCA coments.
Thus, for a low-complexity classi cation problem the projected labels willhavhigh agree-
ment to the true labels. We compute the agreement between true and projbeteddathe

ratio between the agreements in intermediate and leaf edges in Riglre

The kPCA ratios are all below implying that more kPCA components are needed at
intermediate edges to reach the same accuracy in explaining the labels cdtogheenumber
of kPCA components at leaf edges. This is consistent to our claim made #atvclasses
representing intermediate edges have on average an increased congplexityhe xed kernel
employed here.

Furthermore the ratios between those accuracies are lowest for Caliewisaand higher
for VOC2006 and the synthetic dataset. Therefore, classi cation pmublat intermediate
edges have a higher relative complexity for the Caltech datasets. Thisstsdbat adding
classi ers which were trained on intermediate edges to the one-versuksdli ers on leaf
edges is less likely to improve classi cation results for the Caltech animal datdsen for
VOC2006 and the synthetic data.
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Figure 2.10: Ratios of agreements of kPCA projected labelsral ground truth labels. Ra-
tios are computed between classi ers at intermediate edgeand leaf edges. The ratios were
computed at dimensionst to 256. Higher values are better.

This result is what we can expect: both animals taxonomies are built by evaugigim-
ilarities, not visual ones. Visually, a dolphin still looks much more like a sh thanammal.
The visual features are not able to capture genetic similarities - see Eidui@ a convinc-
ing example. To give another example, the horse is as part of odd-t@edates in a group
with cats and dogs while the the look of a horse itself as well as the bacldyegpearance of
horses, meadows, might be more similar to those of even-toed ungulatessaarmbsheep.

The fact that the taxonomies of the Caltech animals are not well aligned telgesimilari-
ties can be validated numerically by computing the cosine angle between thedsstatuced
from the kernel matrices and the taxonomy distance for each of the dathsdternel distance
between two classes is computed as the mean over the kernel distandbsdins af samples
from both classes using the additional fact that fétkernels we have k(x,x)=1:

1 X 1 X
d(cy; ) = — —

— — k(x1;X 2k(x1;%2) + k(X2; X 2.19
o, . i) (X1;X1) (X1;X2) + K(X2;X2) (2.19)

X22Co

1 X 1 X
=2 2— T k(Xl;Xz) (220)
1€ 4126, 1% 5520,
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From both distance matrices the mean is subtracted so that they have zeroveeteir en-
tries. We can see from tabBe15that both Caltech datasets have a very low alignment between
kernel induced distances and taxonomy-induced distances. This miaynetkig observed in-

crease in at zero-one-loss when applying taxonomy learning.

Table 2.15: Cosine Angles between taxonomy distances andrkel induced distances. Higher
values are better.

Dataset cosine of angles
Caltech256 52 animals 0.1130
Caltech256, 13 class subset 0.1087
VOC2006 multi-class 0.6314
Synthetic data, = 1=4, 16 classes (Se.3) 0.9752

The ordering of cosine angles across datasets corresponds welloaéref AUC scores
at intermediate edges in Tal#el3 In the Pascal VOC2006 dataset and the synthetic dataset
the distances from kernel similarities are more in line with the taxonomic ones. $ytitfeetic
dataset this has been achieved by construction which is also re ectedhi@Za3and in the
KTA ratios from table2.14

We have identi ed the reason for the gap between our expectation for @ mmwnan-like
classi cation using taxonomies and the case observed experimentally. OElitev@ message
from our experiments is the observation that even in the adversariabttselow alignment
between taxonomy and visual similarities as seen in Caltech animals data, thenextosses
can be improved while in the other two more well-behaved cases both lossasotiaic and
at, can be improved.

A solution for improvement towards more human-like classi cation is to considerher
feature representation which allows for a better alignment of the kernet@tbdistances to the
distances from the taxonomy because a richer feature representatibe caed to select for
each classi er its own more appropriate subset of features. In this stadysed the same ker-
nel for each classi er. Using a better feature set may include featunéghvare not restricted
purely visual ones in order to incorporate knowledge from biologicaiesyatics which can-

not be captured by visual similarities alone. When humans reason aboutiesilaetween

65



2. SEMANTIC CONCEPT RECOGNITION WITH A TREE STRUCTURE OVER
CONCEPTS

known animal species, they use additionally more information than merely isesl e.qg.
they group animals by being insect, mammal or sh.

2.5 Ranking for Multi-label Datasets with hierarchies

Clearly the local SVM approach can also be used in a multi-label setting. Inltilanel
setting each concept can be present or absent in each image indepafredkother concepts.
In particular, each image may contain multiple concepts and, as a conseguentusions
between concepts within an image are not well de ned anymore. Therdfertarget function
evaluated here differs from the multi-class case.

Instead of minimizing confusions between concepts, we aim to enforceafbr @ncept
separately an ordering of images such that images of the concept in quastidaxonomi-
cally close concepts are ranked highest. For this reason we introdusektaxonomy-aware
ranking score, the ATax score.

2.5.1 The ATax score

Technically we will replace scores based on confusion matrices by tiicestdependent rank-

ing scores. A standard at score function used in the Pascal VOC clgallis the Average Pre-
cision (AP) (L03) and its mean over all classes. We assume that the pairs of SVM outputs and
ground truth label$z(9; y(9) for a class in question are sorted according to the descending
order of their output scor@c) over the data sample indé&x The average precision (AP) score

p
forn'® = " 1 1fy{? = 1gpositively labeled samples of classs de ned as

1 X 1 X
AP (C)((ZIEC);yI((C))Ezl) = W Ifyi(C) = 197 ”yl((C) =19 (2.21)
+ =1 k=1

The AP score is maximized when the images of the class in questiomranked rst. It
is invariant against permutation of the ordering of images from all othesetaas long as the
ranks of images from the class in questioare untouched. However, given relations from
a taxonomy, we would prefer a ranking where images from taxonomically d@sses are
ranked in front of images from taxonomically far classes, even whendbayot belong to
the class in questioa To incorporate this awareness about the taxonomical structure we will
introduce a novel score and call it the Atax score.

For deriving the structure of the Atax score we need two preliminaries.
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The rst preliminary is the fact that we need to consider for each imageethef sl labels.
For the ATax score being a taxonomy-aware extension of the AP scocensider instead of

one single binary labef®

for the class in questioathe set of labels based @l classes in
and class.

The second preliminary is an representation of the AP score as an ewdragp-rank-list
precisions derived from distance functions over a set of samples.

Let us de ne for a[0; 1]-bounded distance functidfy) the top-rank-list precision of the
top ranked samplesP rec|l](i) to be

Precll](i) = } 1 1(yk) (2.22)
' =1
Then average precision can be seen as an average of top-raniedisigns over a partic-
ular setS of samples:
X
AP© = é P recll{91(i) (2.23)
151 ios

where the set of sampl&sis given in according to Equatior2 21) asS = fi | Ifyi(c) =1qg9
and

19(y) = 1fy{? 819 (2.24)

is the zero-one discretized distance of the class kgl5eR f  1; +1gto the label valud.
This representation holds because of

1 X 1 X X
5 Prec]l$?](i) = S 162 (¥i)
i2s i2s k=1
1 X 1X
== 1 1fy9 619
19] i2S : k=1
X 1X
- % 17 @ =14
9l igs ! ke
X X
- 1 7 0ty =19
n. (¢) I
i2f mjlfy(=1gg K71
1 X 1X
_ Ifyi(C):lgf |fy|((C):1g
N+ (C) i=1 : k=1
= AP O((z{?;y{")1_, ) see Equation21). (2.25)
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We compute a ranking score for a xed class in questioof the multi-label problem.
Therefore note that we can replace in the original AP score hieranchware precision score
Iécl) by a termdependenbn the a priori xed clasx. The Atax score will be de ned by a

replacement term given in equatidhZ6) based on the minimal taxonomy distangebetween

19¢Fyr=1;:::;Cq) = min (c;1)) (2.26)
r2f 1;:::;ngyf(r):l

all classes, are sorted according to the descending order of the SVM omﬁﬂt&ar the xed

classc. The set of sampleS is given again a$ = fi | Ifyi(c) =190

Then we de ne the ATax score for clas$o be:

ATax©® = = Prec[l{9](i) (2.27)
15158
1 X 1X .
= 1fy9 =19 1 min 1(c;r) (2.28)
(© : v (D)2
ny" i=1 k=1 r2f 1;:5C gy, '=1

The above derivation shows that the ATax score can be seen as arf@xaware extension
of the established AP score. Since the taxonomy distanéem equation 2.2) is scaled to lie
in [0; 1]and a correct prediction implies scoreSbjl(f) =19 =1 respectivelyl I(Tc) (yk) =1,
the ATax score is never smaller than the AP score. The precision funsézhin the AP score
can be interpreted as a zero-one discretization of the taxonomyScdlﬁ@(yk). Both scores,
AP and ATax, have the advantage of being invariant against the clasisicthreshold and
evaluate the ranking of images. We did not use the ranking based soottge fmulti-class
problem, however. Inspecting the constraints of the structured predictiorulation from
(2.8) shows that it aims at classifying each image correctly in the sense of olgta@imiarrect
ranking of classefor each image. Its optimization does not aim at obtaining a coraméing
of imagedfor each class. Thus, using a ranking score would be a biased measinst the

structured approaches.
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2.5.2 Datasets

VOC2006 multi-label data

We use the VOC2006 datasét4] consisting of 10 object classes a&801images with its
original, unmodi ed labels. The full taxonomy is given in FigL2es.

VOC2009 multi-label classi cation task data

This dataset consists of 20 classes Wilth4labeled images. It serves as a second multi-label

setting for the local algorithms. The full taxonomy is given in Figargl

2.5.3 Experimental Results

Note that for multi-label data the structured algorithms cannot be applied irctimeégnt form
as the multi-class constraints are not well-de ned anymore. Therefongilveompare one-
versus-all classi cation against local hierarchical approaches.thissfrees us of time and
memory consumption problems related to the structured algorithms we will usalidation
with 20 folds. We will use the same features and kernels as describedioms2c4.2and2.4.3
and measure with AP and ATax scores.

Table 2.16: Ranking scores on VOCO06 as multi-label problem20-fold crossvalidation.
Higher scores are better.

Method ATax AP
one versus all 90.10 3.46 80.13 7.21
local tax. scaled geometric mear91.29 3.34 79.96 7.23
local tax. scaled, harmonic mean 90.88.28 80.61 7.06

Table 2.17: Ranking scores on VOCO09 as multi-label problem20-fold crossvalidation.
Higher scores are better.

Method ATax AP
one versus all 79.02 8.72 55.92 15.91
local tax. scaled geometric mear80.68 8.20 54.62 16.08
local tax. scaled, harmonic mean 80.08.33 56.43 15.77
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Tables2.16and2.17show that even for a multi-label setting, introducing a taxonomy can
improve taxonomy based as well as at ranking scores, despite we lwawetion of avoiding
confusions anymore.

This may become relevant when using classi er scores for ranking infagestrieval. A
higher ATax score implies that the desired class and similar classes aegl t@igker than more
distant classes which in effect leads to a subjectively improved rankswtrigom a human
viewpoint. When looking for cats, humans tend to be more impressed by resudis return
erroneously other pets than cars. Highly ranked images from very tiistiagories tend to be
perceived as strong outliers.

Figure2.11shows examples where the hierarchical classi er is able to improve rasmking
simultaneously for classes which are far apart in the taxonomy given imeé=2g8i This shows
that taxonomy learning for multi-label problems does not lead necessarilytt@ahaxclusion
of taxonomy branches. In both images, the classes under considenstiseparated already
at the top level. We observe that images can be re-ranked to top positigpisedaverage
rankings at all edges. For the upper image this occurs for the cow @agbe lower image
this occurs for the motorbike class as can be seen from the rankings @jiweg the paths.
This can be explained by the property of the nonpositive p-means to lee-bppnded by the
smallest score (see Secti@r2.5. Many images which achieved higher scores and ranks at
some edges along the considered path were effectively ranked lowaudmethey received
very low scores at one edge at least in the same path. Note that theasbsaprovement in
ranking is independent of the ranking loss.

Table2.18compares the performance of scaled versus unscaled combinatioosesf &
both multi-label problems. We see clearly that scaling of scores onto a compawal con-
tributes to the good performance of the local models. The good perfoerdrscaled scores
is not surprising as one can expect the SVM outputs to have differemibditon statistics
like variances across the edges. Please note that for one versussilicaléon the scaling
has no in uence on the ranking scores as it is monotonous and raskfpieg and the score
computation is done for each class separately.

2.6 Conclusions

When classifying complex data such as objects, humans are rst of all mettér than learn-
ing machines and most importantly human and machine errors diverge aatjdeAmong
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Table 2.18: Scaling of outputs is important for multi-label problems, 20 fold crossvalidation.
Higher AP and ATax scores are better.

Method: local tax. arith. mean ATax AP
VOCO06,unscaled 84.59 6.73 60.31 15.08
VOCO06,scaled 89.58 3.89 74.85 8.51
VOCO09,unscaled 73.35 9.40 35.87 14.73
VOCO09,scaled 77.30 9.45 46.58 16.61

others, a reason for both ndings is the impressing ability of humans to genalatract rep-
resentations that implicitly organize hierarchical knowledge and thus ttecaparopriate task
relevant factorizations of the environment, put in one word humans glzeerOne aspect of
such abstract representation can be captured by taxonomies.

In this chapter we have demonstrated that taxonomy-based learning wiactgred SVMs
and local-SVM-based approaches on real world data yields improgedtsevhen measured
with taxonomy-based losses. Local algorithms with generalized means vetifaggmp on par
to structured models while being considerably faster in training. The geomedda appears
to be a good a priori choice as a sensitivity tradeoff against small aneldartjers. Successful
minimization of taxonomy losses implies the reduction of confusions between tdestee:
gories, i.e. a step towards more human-like decision making. Note, howleean improved
result measured with taxonomy-based losses does not necessarilgtéame a better result
in a atloss such as 0/1-loss since more meaningful confusions, i.e. iragrguality of deci-
sion making does not necessarily come with overall quantitative improvemeotier more
meaningful confusions may come in addition — as a side effect. In the loddl fEsmework
this can be checked by the AUC scores on the internal edges compareddaftedges.

Experiments on synthetic data show, somewhat expectedly, that taxoneet/ddgorithms
work better than the taxonomy-free baseline, when the data is aligned to tm®tayxoThey
suggest that performance gains are achieved for local procdulyipesnbining classi ers with
different trade-offs of false positive versus false negative rdtgsrestingly but in fact to be
expected, taxonomy based learners tend to make their errors rathetactbgeleaf-edges of
the taxonomy tree thereby confusing 'close' categories, whereaselsapased on at losses

incur classi cation errors uniformly across the tree. The latter behavionéof the reasons
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Figure 2.11: Example images where the hierarchical classer improves rankings for taxo-
nomically distant classes compared the one versus all base on VOC2006 multi-label prob-
lem. (Upper) car from 216 to 133, cow from 197 to 31. (Lower) moikelfrom 108 to 52, person
from 125 to 38.

to consider the decisions of taxonomy-based learning machines more fwomgtible than
their at loss training based counterparts.

The local as well as structured approaches can be combined with methaxds ladrn
taxonomies. The difference to previous approaches would be to measmmomy based
errors instead of at losses and to rely in case of local algorithms on vieri instead of
reduced kernels and greedy path-walks. It is open in such a casenhotv can be retained
of the interpretation of a taxonomy as a weak prior knowledge to de ne lasstibns which
penalize dissimilarities as they are perceived by humans.

With respect to learning hierarchies an image might be scored using multipke Ipath
ing from the root to the same visual concept in the local setup. This is refaimgproaches
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learning relaxed hierarchie8%, 90). The idea would be to x an original hierarchical loss
function and its generating hierarchy and check whether learning aatiffierarchy (or di-
rected acyclic graph structure) than the original one may improve the drigerarchical loss
because the learned hierarchy can encode information about the simikvitydn image fea-
tures and thus help to bridge the gap between the similarity between image $eahich is
used for learning classi ers and the similarity encoded in the original hibyewhich is used
for evaluation of classi ers. One simple example would be to suppresssneitie associated
edges when the classi ers on these edges yield very high error rates.

Another option would be to design local algorithms for the optimization of lossegyu
weighted edges or more general losses. In the structured predictipriegtas using weighted
edges can be achieved straightforwardly by weightiny) ! i i(y) in equation 2.5) as
shown in Sectior2.2.3 Such weights can be even learned via Multiple Kernel Learning on the
label kernel from equatioB.3in which the original label kernéd y (y;¥) = P j\ijl i(y) ()
from equatior?.3is replaced by a parametrized variant

Wi
Ky (y;9L 1= iKyi(y:¥y) (2.29)
j=1

Kyviy:;9= i) i) - (2.30)

The difference to the learning of a taxonomy is that the taxonomy and the desisfor eval-
uation is xed here. The motivation to do so is the same as for learning a tiigtanamely
to bridge the gap between the similarity between image features which is uskgifioing
classi ers and the similarity encoded in the original hierarchy and its losstifam

In the local setup such learning might be analogously achieved by leameiigts in vote
fusion as a replacement for the p-means based vote from S&#dsuch as to minimize a
regularized weighted loss between prediction and labels. Based onmenience with over-
tting of support vector machines on training data at settings where pegoce on test data
is near-optimal (see also Chap®rsuch scores would have to be learned on cross-validated
outputs in difference to78). One meaningful application of weighted edges is to weight each
path by the binary powe2 9 of its negative deptld in the hierarchy as described in Section
2.2.3 This ensures a strict hierarchy — errors made at higher levels in therdtigralways

count more than errors at lower levels.
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Multiple kernel learning (see Chapt&yor other techniques to fuse information from mul-
tiple features can be employed to learn a mixture of feature kernels degesrdihe position
in the edge.

A further direction is to compare the local-SVM procedures versus targsfeee multi-
task learning approaches on multi-label problems. In these problems weerested to rank
the set of images for each class which demands for threshold-invariasunes like the aver-
age precision scores for comparison or the Atax score. Our simulationaOC 2006 and
2009 shows encouraging results. In the meantime multi-label structuredtmedas been
developed in91). Yet the reported performance results for hierarchical classi catiere not
better than the one versus all baseline which leaves space for improvement.

An open question is the relation between research on attribute classi catibihiarar-
chical classi cation. Clearly the works on attribute-based classi catioavkm to the author
(104, 105 106) aim at minimizing at losses and use additional labels, namely the attribute
labels, while the hierarchy approaches work without additional coraepts. Another dif-
ference to the visual concepts de ned by edges in a hierarchy is thatélsence of attributes
may vary within a visual concept class0d) which results in a higher exibility of attributes.
Mathematically attribute prediction itself is the same as visual concept predicGiemanti-
cally, however, the attributes are designed to correspond to image cafiiehtcan be shared
among visual object classeb0d). Attributes share with internal edges in a hierarchy the fact
that they de ne a new visual concept and use the new visual conaapésding to infer the
original concepts labels. Learning the weights for attributes ad06) (improves at losses
which makes it interesting.

One direction with respect to practical aspects of hierarchical claggrcaf any kind
would be to incorporate early stopping when the decision to descend rfaithreg a tree or
directed acyclic graph structure becomes statistically uncertain. This ceddde error rates
and improve similarity of decisions to human ones. Humans also tend to stop \alassif
objects at a level of certainty. All humans are able to identify that a cat iseethdat easily,
however people unfamiliar with those furballs would reject to predict theigpeecat breed
unless explicitly asked to do so. In that sense humans perform earlyirgjadpghe absence
of suf cient knowledge. A statistical prediction system can do the same aanid to make
predictions if the classi er prediction for a sample is unreliable. One eagyweald be to

determine thresholds for each path in the hierarchy such that classifyiggexceeding the
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lower or upper threshold yields a xed accuracy. The threshold caastienated by cross-
validation for example. This could also serve as a way to measure the quaitiagsi er. A
too poor quality of a classi er in the sense that almost no image can be relikslyi ed by it
because the thresholds are too high could be used as an indicator to thisqagh from the
hierarchy.

An overall challenge of the eld would be to further the generic undeditamof the dif-
ferent decision making between human and learning machine, ultimately comtainimheyvel
machine precision, attribute based features and human abstraction optimalhgdgoavtruly
cognitive automated decision making machinery.
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Figure 2.12: Taxonomy on 52 Animals Classes from Caltech25¢he 13 class subset taxonomy
is contained in the lower left quadrant from octopus to butte y.
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2. SEMANTIC CONCEPT RECOGNITION WITH A TREE STRUCTURE OVER
CONCEPTS
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Figure 2.13: Taxonomy on 20 Classes from Pascal VOC2009.
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3

Insights from Classifying Visual
Concepts with Multiple Kernel
Learning

3.1 Motivation for this aspect of Semantic Concept Recognition in
Images

Given a set of mercer kernels for image data the problem consideredshtr learn a lin-
ear combination of these kernels for use with semantic concept ranking wypiog vector
machines.

It is a common strategy in visual object recognition tasks to combine differeage rep-
resentations to capture relevant traits of an image. This results in a seitofee for each
image as opposed to classifying an image using a single feature. Promipegeamtations
are for instance built from color, texture, and shape information and tasaccurately locate
and classify the objects of interest. The importance of such image feahaeges across the
tasks. For example, color information may increase the detection rates @&ighsan images
substantially but it is almost useless for nding cars. This is because gjo@ee usually red
in most countries but cars in principle can have any color. As additiortaldnessential fea-
tures not only slow down the computation time but may even harm predictiferpemnce, it
is necessary to combine only relevant features for state-of-thejatabcognition systems.

This work is inspired by two factors: rstly, typically many kernels are coneolfor state
of the art submissions to renowned competitions such as ImageCLEF Pimatiafion () and
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Pascal VOC Classi cation1(l). Secondly, many of these submissions do not employ methods
to learn kernel combinations. For a person with a background in keasglebmachine learning
this leaves the pressing question why methods to learn kernel combinationstamployed

in practical settings. Anecdotally it is known that the common sparserm multiple kernel
learning does not perform well in many settings outside datasets with subjgdtiw within-
class variance like Caltech102) (@and Oxford Flowers07). On other datasets it is reported
anecdotally to select a very sparse set of kernels with a decrease ierfbemance which
indicates over tting.

3.1.1 Contributions

The contributions of this chapter are

We apply a recently developed non-sparse multiple kernel learning (M#dtiant to
state-of-the-art concept recognition tasks within computer vision.

We report empirical results for the PASCAL VOC 2009 Classi cation andde@LEF2010
Photo Annotation challenge data sets.

We provide insights on bene ts and limits of non-sparse MKL and compargainat
its direct competitors within the family of algorithms which are based on suppotow
machines, the sum kernel SVM and the sparse MKL. To this end we identifyirmi-
ing factors and one promoting factor for the usage of MKL algorithms owenttural
baseline represented by SVMs applied to uniform kernel mixtures in imagsation
and ranking tasks. We provide experimental evidence for these factors

We introduce a novel measure for the analysis of the diversity of classiar the ex-
planation of one of these factors.

This chapter is organized as follows. Sectlbi.2gives an overview of multiple kernel
learning and related algorithms in image annotation tasks. In Seftpwe brie y review the
machine learning techniques used here; The following se8ti®we present our experimental
results on the VOC2009 and ImageCLEF2010 datasets; in Se&#dame discuss promoting
and limiting factors of MKL and the sum-kernel SVM in three learning scesakide perform
experiments in SectioB.4in order to provide evidence for these factors.

1The content of this chapter is based on the author's own peer-revieod(63).
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3.1.2 Related Work

In the last decades, support vector machines (SVIL08 have been successfully applied
widely to practical problems of image annotatidi), Support vector machines exploit sim-
ilarities of the data, arising from some (possibly nonlinear) measure. Thérmapairwise
similarities, also known as kernel matrix, allows to abstract the data from therigaalgorithm
(4).

In image annotation and ranking, translating information from various fesinto a set
of several kernels has now become a standard technitile Consequently, the choice of
nding the right kernel changes to nding an appropriate way of fuding kernel information;
however, nding the right combination for a particular application is so fegroa matter of a

judicious choice (or trial and error).

In the absence of principled approaches, practitioners frequentyt tesheuristics such
as uniform mixtures of normalized kernel35( 50, 98) that have proven to work well. Never-
theless, this may lead to sub-optimal kernel mixtures.

An alternative approach is multiple kernel learning (MKL), which has kegplied to ob-
ject classi cation tasks involving various image featur&8X 109. Multiple kernel learning
(110, 111, 112, 113) generalizes the support-vector-machine framework and airsisnaita-
neouslylearning the optimal kernel mixtu@nd the model parameters of the SVM. To obtain
a well-de ned optimization problem, many MKL approaches promote sparse rasty in-
corporating d-norm constraint on the mixing coef cients. Compared to heuristic apesc
MKL has the appealing property of automatically selecting kernels in a mathersdicad
way and converges quickly as it can be wrapped around a regulppgwector machine
(112. However, some evidence shows that sparse kernel mixtures aneoofigerformed by
an unweighted-sum kernel14). As a remedy, {15 116) propose »-norm regularized MKL
variants, which promote non-sparse kernel mixtures and subsequeaméybleen extended to
“p-norms 66, 117).

Multiple Kernel approaches have been applied to various computer visibiems outside
our scope of multi-label ranking such multi-class problefris3], which require in distinction
to the general multi-label case mutually exclusive labatsl object detectiorl (9, 120) in the

sense of nding object regions in an image. The latter reaches its limits whereiotagepts

We make a distinction between the general case of multi-label classi catidrttee more special case of
multi-class classi cation with mutually exclusive classes.
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cannot anymore be represented by an object region such &@utideorOverall Quality or
Boring concepts in the ImageCLEF2010 dataset that we will use.

The family of MKL algorithms is not restricted to SVM-based ones. Anothenpetitor,
for example, is Multiple Kernel Learning based on Kernel Discriminantlysia (KDA) (121,
122). The difference between MKL-SVM and MKL-KDA lies in the underlyinggle kernel
optimization criterion while the regularization over kernel weights is the same.

Fusing information from multiple features include algorithms relying on a signitlya
larger number of parameters, for example23), who use logistic regression as base crite-
rion; their approach results in a number of optimization parameters equal twthkeer of
samples times the number of input features. Since the approad23ng priori uses much
more optimization variables, it poses a more challenging and potentially more tirsernomg
optimization problem, which limits the number of applicable features.

Further alternatives use more general combinations of kernels suchdagts with kernel
widths as weighting parameters)(l, 124). As (124) point out, the corresponding optimization
problems are no longer convex. Consequently, they may nd suboptinh#ices and it is

more dif cult to assess using how much gain can be achieved by learnirigethel weights.

3.2 Methods

This section brie y introduces multiple kernel learning (MKL). For an exiga treatment see
the surveys in125 126).

Multiple Kernel Learning

Given a nite numbem of different kernels each of which implies the existence of a feature

mapping j : X! H; onto a Hilbert space
ki (x;x) = h j(x); j(X)in;

the goal of multiple kernel learning is to learn SVM parametersh) and kernel weights
P
f ;1 =1;:::;mgfor alinear combination of thesa kernelsKk = | k| simultaneously.

This can be cast as the following optimization problem which reduces to supgtior
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machines §, 5) in the special case of on kernal= 1

1 X0

jwPwj + Ck kg (3.1)

0 1
st. 8i:yi@  wl j(xp)+ A 1

0; 0, kkp L

P
The explicit usage of kernel mixtures, |k is permitted through its partially dualized form:

_ o 10 X
min max i3 i 1YiY i K (Xi;x1) (3.2)
i=1 il=1 j=1
X0
S.t in=1 0 i C,; Vi i =0;
i=1
jmzl 5 0 kkp L

For details on the solution of this optimization problem and its kernelization we tie{g6).
This optimization problem has two parameters: the regularization cortant a parameter
p on the constraint for the kernel weights The regularization constant is known from support
vector machines; it balances the margin t€k ki from equation 8.1) over the regularization
term i jmzl joOWj . A high value of the regularization consta@itputs more emphasis on
achieving high classi cation marging j”‘:l J-wj0 j(Xi)+ b on the training data while a
low value emphasizes the regularization term as a measure against ovesritingining data.
While prior work on MKL imposes d-norm constraint on the mixing coef cients to en-
force sparse solutions lying on a standard simpteix {11, 112, 127), we employ a generalized
“p-norm constraink k, 1forp 1asused ing6, 117). The implications of this modi -

cation in the context of image concept classi cation will be discussed thouwithis chapter.

3.3 Empirical Evaluation

In this section, we evaluatg-norm MKL in real-world image categorization tasks, experi-
menting on the VOC2009 and ImageCLEF2010 data sets. We also providetingigvhen
andwhy " p,-norm MKL can help performance in image classi cation applications. Tladuay
tion measure for both datasets is the average precision (AP) over dliva@cas based on the
precision-recall (PR) curves.
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3.3.1 Data Sets

We experiment on the following data sets:

1. PASCAL2 VOC Challenge 2009 (Multi-label data) The rst dataset is the of cial data

set of thePASCAL2 Visual Object Classes Challenge 2009C2009) 64), which consists

of 13979 images. We use the of cial split into 3473 training, 3581 validataor 6925 test
examples provided by the challenge organizers. The organizers alddgnt annotation for 20
object categories; It is a multi-label dataset, i.e. an image may be labeled with mcikigpdes.

The task is to solve 20 binary classi cation problems, i.e. predicting whetheast one object
from a clask is visible in the test image. Although the test labels are undisclosed, the more
recent VOC datasets permit to evaluate AP scores on the test set via lbaghavebsite (the
number of allowed submissions per week being limited).

2. ImageCLEF 2010 PhotoAnnotation (Multi-label data) The ImageCLEF2010 PhotoAn-
notation data setl@8) consists of 8000 labeled training images taken from ickr and a test set
with recently disclosed labels. The images are annotated by 93 conceggsclas/ing highly
variable concepts—they contain both well de ned objects suclales, river, plants, trees,
owers, as well as many rather ambiguously de ned concepts suglirder, boring, architec-
ture, macro, arti cial, motion bluk—however, those concepts might not always be connected
to objects present in an image or captured by a bounding box. This makghlit bhalleng-

ing for any recognition system. As for VOC2009 we decompose the proinen®3 binary
classi cation problems. Again, many concept classes are challengingkaoreclassify by an
object detection approach due to their inherent non-object natureorAlsd previous dataset

each image can be labeled with multiple concepts.

3.3.2 Image Features and Base Kernels

In all of our experiments we deploy 32 kernels capturing various aspétie images. Our
choice of features is inspired by the VOC 2007 winr@s) @nd our own experiences from our
submissions to the VOC2009 and ImageCLEF2009 challenges. Itis kmomrilie top-ranked
submissions in recent Pascal VOC Classi cation and ImageCLEF PhotuAtion Challenges
that Bag-of-Words features are necessary for state-of-theeddrmance results when the fo-
cus lies on visual concept classi cation and ranking. At the same time addimgler features
together with multiple kernel learning may improve the ranking performancsdiore visual
concepts as well as the average performance measured over allodeuapts (shown in7@)).
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For the ImageCLEF2010 dataset the test data annotations have beesedisuid we checked
that adding the simpler features listed below improves, indeed, the aveeags-performance
compared to relying on BoW-S features (see next section) alone. @igecof features was
furthermore guided by the intention to have several different featuestfat empirically have
been proven to be useful and to use gradient and color informatiotheforore the features
should have reasonable computation times without the need for excessivg ¢ many pa-
rameters and they should be able to capture objects and visual conespafouarying sizes
and positions. For this reason, we used bag of word features and blstmmrams based on
color and gradient information.

All these features were computed over sets of color channels as infyirét8). The
features obtained for each color channel of one set were contedetoayield one feature for
each color channel set. The color channel sets used here are

red, green, and blue (RGB)

grey (equationi.5))

grey (equation 1.5)), opponent color 1 (equatiori.@)) and opponent color 2 (OPP)
(equation L.7))

normalized RGB (nRGB)(equatioi.g))
normalized opponent colors (nOPP) (equatibi®))

The features used in the following are derived from histograms that & pdatain no
spatial information We therefore enrich the respective representations by using repaital
tilingsl 1,3 1,2 2,4 4,8 8, which correspond to single levels of the pyramidal
approach in§6, 97). Furthermore, we apply a exponential kernel (equation.26)) on top
of the enriched histogram features, which has proven effectiveigtwgram features5Q, 51).
The bandwidth of the 2 kernel in (L.26) is thereby heuristically chosen as the mean
distance (equatiorl(27)) over all pairs of training examples, as done, for example5 ). (

Histogram over a bag of visual words over SIFT features (BoW-S)

Histograms over a bag of visual words over SIFT features are knowiel excellent per-
formance for visual concept recognition both when used as singlerésadlone as well as in
combination with other features. This can be observed by checking thranépd submissions
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in the recent ImageCLEF PhotoAnnotation and Pascal VOC Classi catialheciyes and not-
ing their general usage in publications on visual concept ranking. sltale recently been
successfully deployed to object detectigit)(on a large data set of images within the Ima-
geNet Large Scale Visual Recognition Challenge. For an introductiomgmobword features
the reader is referred to Sectiar8.1

The BoW features1(0) were constructed with parameters that were established in past
image annotation challenges so as to yield good results. At rst, the SIRliré=a(6) were
calculated on a regular grid with six pixel pitch for each image. We computeslFefeatures
over the following color channel sets: RGB, nRGB, OPP, and nOPP; ditiad, we also
use a simple gray channel. For visual words we used a code book cfG@fmbtained by
k-means clustering (with a random initialization of centers and uéD@P00local features
taken randomly from the training set). Finally, all SIFT features were asdigo the visual
words (so-callegrototype$ by hard mapping as in equatioh.{0 and then summarized into
histograms within entire images or sub-regions. The BoW feature was noechatizan ;-
norm of 1. Note that ve color channel sets times three spatial tilidigs 1,2 2and3 1
yield 15features in total.

Histogram over a bag of visual words over color intensity histogramgBoW-C)

This feature has been computed in a similar manner as the BoW-S featur@vétofor the
local feature, we employed low-dimensional color histograms instead af felures, which
combines the established BoW computation principle of aggregating localdeatto a global
feature with color intensity information — this was our motivation for employing théaime
color histograms were calculated on a regular grid with nine pixel pitch foln @aage over
a descriptor support of radius 12 and histogram dimension 15 per dudonel (SIFT: 128).
We computed the color histograms over the following color combinations: RGH®, Qray
only and, nally, the hue weighted by the grey value in the pixels. For the |#ieeweighting
implies that the hue receives a higher weight in bright pixels as a countsuneeagainst the
known dif culties to estimate the hue in dark regions of an image.

For visual words we used a code book of s¢f¥ obtained byk-means clustering. The
lower dimensionality in local features and visual words yielded a much fastaputation
compared to the BoW-S feature. Otherwise we used the same settings as/We®.BFour
color channel sets times two spatial tilinggs 1 and3 1 resulted in8 BoW-C features in
total.
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Histogram of oriented gradients (HoG)

The histogram of oriented gradients has proven to be usefign the seminal Caltech101
Dataset?). It serves as an alternative and much faster way to incorporate gtadfiermation
compared to the BoW-S features. The HoG feature is based on discretligingientation of
the gradient vector at each pixel into bins and then summarizing the disdretiBatations
into histograms within image region87, 129. Canny detectors1@0 are used to discard
contributions from pixels, around which the image is almost uniform. We cordpdtes
features over the following color channel sets: RGB, OPP and gray erdyy time using 24
histogram bins for gradient orientations for each color channel aatiaspilings4 4 and
8 8.

In the experiments we deploy four kernels: a product kernel created the two kernels
with different spatial tilings using the RGB color channel set, a productdtereated from
the two kernels having the color channel set OPP, and the two kernetsthsiigray channel
alone (differing in their spatial tiling). Note that building a product kernef of 2 kernels
boils down to concatenating feature blocks (but using a separate kediblfor each feature
block).

This choice allows to employ gradient information for a speci c color chasee — in-
dependent of spatial resolution — via the rst two kernels and for aigpspatial resolution
(independent of color channels) via the last two kernels. This is a phaacipay to yield di-
verse features: one subset varies over color channel sets anthéneeer spatial tilings. In
total we have four HoG features.

Histogram of pixel color intensities (HoC)

The histogram of color intensities is known to be able to improve ranking peaioce of
BoW-S features as shown iiJ), which motivated us to use it here. The HoC features were
constructed by discretizing pixel-wise color values and computing their biognems within
image regions. We computed HoC features over the following color chaonabinations:
RGB, OPP and gray only, every time using 15 histogram bins for color itieen$or each
color channel and spatial tilings 1,2 2and4 4.

In the experiments we deploy ve kernels: a product kernel creatsd the three kernels
with different spatial tilings with color channel set RGB, a product keoneated from the
three kernels with color combination OPP, and the three kernels using thelgaanel alone
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(differing in their spatial tiling). Again, please note the relation between featoncatenation
and taking the product of2-kernels. The last three kernels are HoC features from the gray
channel and the two spatial tilings. This choice allows to employ color informdtiom
speci ¢ color channel set independent of spatial resolution via thetws kernels and for a
speci ¢ spatial resolution independent of color channels via the last emoeks. In total we
have ve HoC features.

For the HoG and HoC feature we used higher spatial tilings because thedeaiures
are much faster to compute compared to BoW features, thus allowing to ia¢hesisdimen-
sionality by the spatial tilings, and due to our empirical experience that chofcaer spatial
tilings beyond2 2 tend to yield a higher improvement for such simpler features as compared
to BoW-based features.

Summary of used features

We can summarize the employed kernels by the following types of basic feature
Histogram over a bag of visual words over SIFT features (BoW-sketnels
Histogram over a bag of visual words over color intensity histograms (B)\V8 kernels
Histogram of oriented gradients (HoG), 4 kernels
Histogram of pixel color intensities (HoC), 5 kernels.

We used a higher fraction of bag-of-word-based features as we foen our challenge
submissions that they have a better performance than global histograumrefea he intention
was, however, to use a variety of different feature types that hamrfi@ven to be effective on
the above datasets in the past—but at the same time obeying memory limitations of maximally
ca. 25GB per job as required by computer facilities used in our experimgatsged a cluster
of 23 nodes having in total 256 AMD64 CPUs and with memory limitations rangin@-+#98
GB RAM per node).

In practice, the normalization of kernels is as important for MKL as the noratéiz
of features is for training regularized linear or single-kernel modelstinih feature / ker-
nel weights are requested to be small by tpeorm constraint in the optimization problem
given by equation3.1), implying a bias to towards excessively up-scaled kernels. In general,
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there are several ways of normalizing kernel functions. We apply fl@niog normalization
method, proposed irb{, 55) and entitlednultiplicative normalizationn (56);

K .
(k) LH1>K1

7! (3.3)

The denominator is an estimator of the variance in the embedding Hilbert spapeited over
the given datasdd by replacing the expectation operak]r] by the discrete average over the
data points; 2 D.

Var( )y = E k (X) E[ ]kj

Eh(X) E[] (X) E[Jin o %tr(K) F121>K1 (3.4)

Thus dividing the kernel matrik(xi; Xj) = h (Xj); (Xj)in by this term is equivalent to di-
viding each embedded featuréx) by its standard deviation over the data. This normalization
corresponds to rescaling the data samples to unit variance in the Hilbee spad for SVM
and MKL classi cation.

3.3.3 Experimental Setup

We treat the multi-label data set as binary classi cation problems, that isafr object cate-
gory we trained a one-vs.-rest classi er. Multiple labels per image remaiti-class methods
inapplicable as these require mutually exclusive labels for the images. Hseeta used here
were trained using the open sourced Shogun toolineow.shogun-toolbox.ory4). In order to
shed light on the nature of the presented techniques from a statisticabigywge rst pooled
all labeled data and then created 20 random cross-validation splits foRM@Cand 12 splits
for the larger dataset ImageCLEF2010.

For each of the 12 or 20 splits, the training images were used for learnirgiatbs ers,
while the SVM/MKL regularization paramet€ and the norm parametpmwere chosen based
on the maximal AP score on the validation images. Thereby, the regularizatimtantC
is optimized by class-wise grid search o@r2 f 10ji = 1; 0:5;0;0:5;1g. Preliminary
runs indicated that this way the optimal solutions are attained inside the grid. tiNdtéor
p =1 the p-norm MKL boils down to a simple SVM using a uniform kernel combination
(subsequently called sum-kernel SVM). In our experiments, we useavdrage kernel SVM
instead of the sum-kernel one. This is no limitation in this as both lead to identstat fer an
appropriate choice of the SVM regularization parameter.
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For a rigorous evaluation, we would have to construct a separate mokiédr each cross
validation split. However, creating codebooks and assigning featurésual words is a time-
consuming process. Therefore, in our experiments we resort to the copmactice of using
a single codebook created from all training images contained in the of piil sAlthough
this could result in a slight overestimation of the AP scores, this affects alladetbqually
and does not favor any classi cation method more than another—ous fiiesion arelative
comparison of the different classi cation methods; therefore there is swifoexploiting this
computational shortcut.

3.3.4 Results

In this section we report on the empirical results achievet,byorm MKL in our visual object
recognition experiments.

VOC 2009 Table3.1shows the AP scores attained on the of cial test split of the VOC2009
data set (scores obtained by evaluation via the challenge website). Shandtse optimal regu-
larization constant has been selected by cross-validation-based retatics on the training
data set. We can observe that non-sparse MKL outperforms the basgiMKL and the
sum-kernel SVM in this sound evaluation setup. We also report on the-gatislation per-
formance achieved on the training data set (Té&bR. Comparing the two results, one can
observe a small overestimation for the cross-validation approach (fae#dssns argued in
Section3.3.3—however, the amount by which this happens is equal for all methodsyiitp
ular, the ranking of the compared methods (SVM vergusorm MKL for various values op)

is preserved for the average over all classes and most of the clagsept{ons are the bottle
and bird class); this shows the reliability of the cross-validation-basddati@an method in
practice. Note that the observed variance in the AP measure acrogptonan be explained
in part by the variations in the label distributions across concepts ang-catidation splits.
Unlike for the AUC measured@) which is also commonly used for the evaluation of rankings
of classi er predictions, the average score of the AP measure unddomaly ranked images
depends on the ratio of positive and negative labeled samples.

A reason why the bottle class shows such a strong deviation towards spaitisods could
be the varying but often small fraction of image area covered by bottlemtgsulover tting
when using spatial tilings.

We can also remark that.333-norm achieves the best result of all compared methods on the
VOC dataset, slightly followed byy.125-norm MKL. To evaluate the statistical signi cance of
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Table 3.1: AP scores on YOC2009 test data with xed,-norm. Higher scores are better.

average aeroplane bicycle bird boat bottle bus
1 54.58 81.13 54.52 56.14 62.44 28.10 68.92
"1:125 56.43 81.01 56.36 58.49 62.84 25.75 68.22
"1:333 56.70 80.77 56.79 58.88  63.11 25.26 67.80
2 56.34 80.41 56.34 58.72 63.13 24.55 67.70
"1 55.85 79.80 55.68 58.32 62.76 24.23 67.79
car cat chair cow diningtable  dog horse
1 52.33 55.50 52.22 36.17 45.84 41.90 61.90
"1:125 55.71 57.79 53.66 40.77 48.40 46.36 63.10
"1:333 55.98 58.00 53.87 43.14 48.17 46.54 63.08
2 55.54 57.98 53.47 40.95 48.07 46.59  63.02
1 55.38 57.30 53.07 39.74 47.27 45.87 62.49
motorbike person pottedplant sheep sofa train  tvmonitor
"1 57.58 81.73 31.57 36.68 4572 80.52 61.41
1:125 60.89 82.65 34.61 41.91 46.59 80.13 63.51
"1:333 61.28 82.72 34.60 44.14 46.42 79.93 63.60
T2 60.91 82.52 3340 4481 45.98 79.53 63.26
"1 60.55 82.20 32.76 44.15 45.69 79.03 63.00

AP scores were obtained on request from the challenge @gyaniue to undisclosed annotations.
Regularization constants were selected via AP scores cathpia cross-validation on the training set.
Best methods are marked boldface.

our ndings, we perform a Wilcoxon signed-rank test for the croakdation-based results (see
Table 3.2 signi cant results are marked in boldface). We nd that in 15 out of tBectasses
the optimal result is achieved by truly non-spargenorm MKL (which meang 2]1;1 [),

thus outperforming the baseline signi cantly.

ImageCLEF Table3.3 shows the AP scores averaged over all classes achieved on the Im-
ageCLEF2010 data set. We observe that the best result is achieveel iyriisparse,-norm
MKL algorithms with norm parametegs= 1:125andp = 1:333 The detailed results for all
93 classes are shown in the appendix in Tabld®.5and5.6. We can see from the detailed
results that in 37 out of the 93 classes the optimal result attained by nosespaorm MKL
was signi cantly better than the sum kernel according to a Wilcoxon sigaall-test.

We also show the results for optimizing the norm paramgtgass-wiseon the training set

and measuring the performance on the test set (see Jalfler the VOC dataset and TabBeb
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Table 3.2: AP scores obtained on the VOC2009 data set with @ ,-norm. Higher scores

are better.
Norm Average Aeroplane Bicycle Bird Boat Bottle
1 54.94 12.3 8484 586 5535 10.5 59.38 10.1 66.83 124 2591 10.2
“1125 57.07 12.7 84.82 591 57.25 106 624 9.13 67.89 12.8 27.88 9.91
“1.333 57.2 128 8451 6.27 57.41 10.8 62.75 9.07 67.99 13 27.44 9.77
T2 56.53 12.8 84.12 592 56.89 109 6253 89 67.69 13 26.68 9.94
1 56.08 12.7 83.67 599 56.09 109 6191 881 67.52 129 265 95
Norm Bus Car Cat Chair Cow Diningtable
"1 71.15 232 5454 733 595 8.22 53.3 11.7 23.13 13.2 4851 199
‘1125 717 228 56.59 893 6159 826 543 12.1 2959 16.2 49.32 195
“1:333 71.33 23.1 56.75 9.28 61.74 841 5425 123 29.89 158 48.4 19.3
2 70.33 22.3 5592 949 61.39 8.37 5385 124 28.39 16.2 47 18.7
1 70.13 22.2 5558 9.47 61.25 8.28 53.13 12.4 2756 16.2 46.29 18.8
Norm Dog Horse Motorbike Person Pottedplant Sheep
1 41.72 9.44 57.67 122 55 132 81.32 949 3514 134 38.13 19.2
‘1125 4557 10.6 594 122 57.66 13.1 8218 9.3 39.05 14.9 4365 20.5
“1.333 4585 109 594 119 5757 13 8227 929 39.7 146 46.28 23.9
2 45.14 10.8 5861 119 569 132 8219 9.3 3897 148 4588 24
"1 4463 10.6 5832 11.7 56.45 13.1 82 937 3846 141 4593 24

Norm Sofa Train Tvmonitor

"1 48.15 11.8 75.33 14.1 63.97 10.2

1:125 48.72 13 75.79 144 6599 9.83

‘1333 4876 119 7575 14.3 66.07 9.59

2 4729 11.7 75.29 145 6555 10.1

1 46.08 11.8 74.89 145 65.19 10.2

AP scores were computed by cross-validation on the traiségBold faces show the best method and
all other ones that are not statistical-signi cantly wolsea Wilcoxon's signed rank test with a p-value
of 0:05.

for the ImageCLEF dataset). We can see from Tabtethat optimizing the p-norm class-
wise is bene cial: selecting the bept2]1;1 [ class-wise, the result is increased to an AP of
37.02—this is almost 0.6 AP better than the result for the vanilla sum-kernel. $\éltiding
the 1-norm MKL in the candidate set results in no gains. Similarly, including the semet
SVM to the set of models, the AP score does not increase compared to gidiiogms in]1; 1 [
alone. A qualitatively similar result can be seen from Tabfor the VOC 2009 dataset where

we observe a gain of 0.9 AP compared to the sum-kernel SVM.
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Table 3.3: Average AP scores obtained on the ImageCLEF201@st data set with™,-norm
xed for all classes. Higher scores are better.

“p-Norm 1 1.125 1.333 2 1
34.61 37.01 36.97 36.62 36.45

AP scores computed on the test set. Regularization cosstaane selected via AP scores computed
via 12-fold cross-validation on the training set.

Table 3.4: Average AP scores on the VOC2009 test data with,-norm class-wise optimized
on training data. Higher scores are better.

1 f 1;1g f 1:1251:3332g f1:1251:3332;1g f 1;1:1251:3332g all norms from the left

55.85 55.94 56.75 56.76 56.75 56.76

AP scores on test data were obtained on request from thesngalbrganizers due to undisclosed
annotations. The class-wise selection ghorm and regularization constant relied on AP scores
obtained via cross-validation on the training set.

Table 3.5: Average AP scores on the ImageCLEF2010 test dat&itw *,-norm class-wise opti-
mized. Higher scores are better.

1 f 1:1251:3332g f1:1251:3332;1g f 1;1:1251:3332g all norms from the left
36.45 37.02 37.00 36.94 36.95

AP scores computed on the test set. The class-wise sel@ftigenorm and regularization constant
relied on AP scores obtained via cross-validation on thaitrg set.

We conclude that optimizing the norm parameietass-wise improves performance com-
pared to the sum kernel SVM and, more importantly, model selection for teg-ulese optimal
“p-norm on the training set is stable in the sense that the choices make se¢he& By scores
on the test set; additionally, one can rely gmorm MKL alone without the need to addition-
ally include the sum-kernel-SVM to the set of models. TalB&sand3.1 show that the gain
in performance for MKL varies considerably on the actual concepsclBisge same also holds

for the ImageCLEF2010 dataset.
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3.3.5 Analysis and Interpretation

Analysis of the Chosen Kernel Set with Kernel Alignment

We now analyze the kernel set in an explorative manner; to this end, dbodwogical tools
are the following

1. Pairwise kernel alignment scores (KKA)
2. Kernel-target alignment scores (KTA).

Both are based on measuring angles between kernel matrices embeddedtorapace and
are explained briey in sectiorl.3.4 The KKA score measures a similarity between two
kernels computed from image features. The KTA score measures a simikinitgdn one of
our computed feature kernels and an optimally discriminative kernel defieen the visual
concept labels. Alternatively RDELQ2) can be used which on these datasets did not yield
conclusive results. For an introduction to kernel alignment we referdtosel.3.4and the
work in (59).

To start with, we computed the pairwise kernel alignment scores of the 2 kmanels:
they are shown in Fig3.1 We recall that the kernels can be classi ed into the following groups:
Kernels 1-15 and 16-23 employ BoW-S and BoW-C features, resphctiernels 24 to 27
are product kernels associated with the HoG and HoC features; K&®eBO deploy HoC,
and, nally, Kernels 31-32 are based on HoG features over the drayrel. We see from the
block-diagonal structure that features that are of the same type ébgeaerated for different
parameter values, color channels, or spatial tilings) are strongly cedel&urthermore the
BoW-S kernels (Kernels 1-15) are weakly correlated with the BoW-@etsr(Kernels 16—
23). Both, the BoW-S and HoG kernels (Kernels 24-25,31-32) uskegra and therefore are
moderately correlated; the same holds for the Bow-C and HoC kerngbg(&ernels 26-30).
This corresponds to our original intention to have a broad range ofréeatpes which are,
however, useful for the task at hand. The principle usefulnessrdieature set can be seen a
posteriori from the fact that;-MKL achieves the worst performance of all methods included
in the comparison while the sum-kernel SVM performs moderately well. Clearhigher
fraction of noise kernels would further harm the sum-kernel SVM andrfthe sparse MKL
instead.

Based on the observation that the BoW-S kernel subset shows highsidis, we also
evaluated the performance restricted to the 15 BoW-S kernels only. phsngly, this setup
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Figure 3.1: Similarity of the kernels for the VOC2009 (ToP) and ImageCLEF2010 (BoTTOM)
data sets in terms of pairwise kernel alignments (EEFT) and kernel target alignments
(RIGHT), respectively. In both data sets, ve groups can be identi ed: 'BoW-S' (Kets 1-
15), 'BoW-C' (Kernels 16-23), 'products of HoG and HoC kelsiéKernels 24-27), 'HoC single'
(Kernels 28-30), and 'HoG single’ (Kernels 31-32). On tHedsale rows and columns correspond
to single kernels. On the right side columns correspond moets while rows correspond to visual
concepts.

favors the sum-kernel SVM, which achieves higher results on VOCR#}Gfost classes; com-
pared to’p-norm MKL using all 32 classes, the sum-kernel SVM restricted to 15 etass
achieves slightly better AP scores for 11 classes, but also slightly worse dlasses. Fur-
thermore, the sum kernel SVM,-MKL, and " 1:333-MKL were on par with differences fairly
below 0.01 AP. This is again not surprising as the kernels from the BoWrSek set are
strongly correlated with each other for the VOC data which can be seentogheft image in
Fig. 3.1 For the ImageCLEF data we observed a quite different picture: the sunelkSVM
restricted to the 15 BoW-S kernels performed signi cantly worse, whgairg being compared
to non-sparsep-norm MKL using all 32 kernels. To achieve top state-of-the-art parémce,
one could optimize the scores for both datasets by considering the classaaisma over
learning methodand kernel sets. However, since the intention here is not to win a challenge
but a relative comparison of models, giving insights in the nature of the methae therefore
discard the time-consuming optimization over the kernel subsets.

From the above analysis, the question arises why restricting the ketielkke 15 BoW-S
kernels affects the performance of the compared methods differentlthgdovOC2009 and
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ImageCLEF2010 data sets. This can be explained by comparing the KKA#®res of the
kernels attained on VOC and on ImageCLEF (see Figgy(RIGHT)): for the ImageCLEF data
set the KTA scores are substantially more spread along all kernelsjshesither a dominance
of the BoW-S subset in the KTA scores nor a particularly strong correlatithin the Bow-S
subset in the KKA scores. We attribute this to the less object-based and mioiguaus nature
of many of the concepts contained in the ImageCLEF data set. Furthermat€Kh scores
for the ImageCLEF data (see Fig1 (LEFT)) show that this dataset exhibits a higher variance
among kernels—this is because the correlations between all kinds ofsaraeaveaker for the
ImageCLEF data.

Therefore, because of this non-uniformity in the spread of the informatiatent among
the kernels, we can conclude that indeed our experimental setting falls énsitulation where
non-sparse MKL can outperform the baseline procedures. For deathp BoW features are
more informative than HoG and HoC, and thus the uniform-sum-kernel-S\ddhsptimal.
On the other hand, because of the fact that typical image featureslamaaherately informa-
tive, HoG and HoC still convey a certain amount of complementary informattbis-s what
allows the performance gains reported in Taldgsand3.3.

Note that we class-wise normalized the KTA scores to sum to one. This isisegee
are rather interested in a comparison of the relative contributions of thieypar kernels than
in their absolute information content, which anyway can be more preciseleddrom the
AP scores already reported in TabB& and3.3. Furthermore, note that we considmmtered
KKA and KTA scores, since it was argued 0 that only those correctly re ect the test errors
attained by established learners such as SVMs.

The Role of the Choice of p-norm

Next, we turn to the interpretation of the norm parametén our algorithm. We observe a
big gap in performance between;2s-norm MKL and the sparsg -norm MKL. The reason is
that forp > 1 MKL is reluctant to set kernel weights to zero, as can be seen fromd=garin
contrast, ;-norm MKL eliminates 62.5% of the kernels from the working set. The diffeee
between the ,-norms forp > 1 lies solely in the ratio by which the less informative kernels
are down-weighted—they are never assigned with true zeros.

However, as proved irbg), in the computational optimum, the kernel weights are accessed
by the MKL algorithm via the information content of the particular kernelsigivga p-norm-
dependent formula (see E®.7); this will be discussed in detail in Secti@.1). We mention
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Figure 3.2: Histograms of kernel weights as output by ,-norm MKL for the various classes
on the VOC2009 data set (32 kernels 20 classes, resulting in 640 values).;-norm (rop
LEFT)), "1.125-N0rm (TOP RIGHT), "1.333-NOrm BOTTOM LEFT), and’ 2-norm BOTTOM RIGHT).

at this point that the kernel weights all converge to the same, uniform fafye! 1 . We
can con rm these theoretical ndings empirically: the histograms of the &enreights shown
in Fig. 3.2clearly indicate an increasing uniformity in the distribution of kernel weightsrwhe
lettingp! 1 . Higher values op thus cause the weight distribution to shift away from zero
and become slanted to the right while smaller ones tend to increase its skeavtiesteft.
Selection of the ,-norm permits to tune the strength of the regularization of the learning
of kernel weights. In this sense the sum-kernel SVM clearly is an extreamely xing the
kernel weights, obtained when lettipg 1 . The sparse MKL marks another extreme case:
“p-norms withp below 1 loose the convexity property so that= 1 is the maximally sparse
choice preserving convexity at the same time. Sparsity can be interpratdhla¢ only a
few kernels are selected which are considered most informative aegdadthe optimization
objective. Thus, thep-norm acts as a prior parameter for how much we trust in the informa-
tiveness of a kernel. In conclusion, this interpretation justi es the uségg-norm outside
the existing choice$; and™,. The fact that the sum-kernel SVM is a reasonable choice in the
context of image annotation will be discussed further in Se@idnl
Our empirical ndings on ImageCLEF and VOC seem to contradict prevames about
the usefulness of MKL reported in the literature, wherés frequently to be outperformed by
a simple sum-kernel SVM (for example, sd®{, 131))—however, in these studies the sum-
kernel SVM is compared to;-norm or” 2-norm MKL only. In fact, our resultgon rm these

ndings: “;-norm MKL is outperformed by the sum-kernel SVM in all of our experiments
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Nevertheless, in this chapter, we show that by using the more gegemalm regularization,
the prediction accuracy of MKL can be considerably leveraged, deanlg outperforming the
sum-kernel SVM, which has been shown to be a tough competitor in the Ji&lt But of

course also the simpler sum-kernel SVM also has its advantage, althotgh computational
side only: in our experiments it was about a factor of ten faster than its Mithpetitors.
Further information about running times of MKL algorithms compared to sumefe8VMs

can be taken froms().

Remarks for Particular Concepts Finally, we show images from classes where MKL helps
performance and discuss relationships to kernel weights. We havalseemthat the sparsity-
inducing “1-norm MKL clearly outperforms all other methods on thettle class (see Ta-
ble3.1). Fig.3.3shows two typical highly ranked images and the corresponding kernghtge
as output by 1-norm (LEFT) and" 1:333-norm MKL (RIGHT), respectively, on the bottle class.
We observe that;-norm MKL tends to rank highly party and people group scenes. We con-
jecture that this has two reasons: rst, many people group and partgsaame along with
co-occurring bottles. Second, people group scenes have similar mra@&ibutions to im-
ages of large upright standing bottles sharing many dominant vertical ntka eninner head
section—see the left- and right-hand images in Big. Sparse 1-norm MKL strongly focuses
on the dominant HoG product kernel, which is able to capture the aforemedt&pecial gra-
dient distributions, giving small weights to two HoC product kernels and alcmspletely

discarding all other kernels.

Figure 3.3: Images of typical highly ranked bottle images ad kernel weights from ~;-MKL
(left) and " 1.333-MKL (right).
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Next, we turn to theowclass, for which we have seen above thafzz-norm MKL outper-
forms all other methods clearly. Fi@.4 shows a typical high-ranked image of that class and
also the corresponding kernel weights as outputibgorm (LEFT) and ;.333-norm (RGHT)
MKL, respectively. We observe that-MKL focuses on the two HoC product kernels; this is
justi ed by typical cow images having green grass in the background. dllowvs the HoC
kernels to easily to distinguish the cow images from the indoor and vehicleslagsh asar
or sofa However, horse and sheep images have such a green backgimundhey differ in
sheep usually being black-white, and horses having a brown-black lwial® (in VOC data);
cows have rather variable colors. Here, we observe that the ratimpleoyet somewhat color-
based BoW-C and BoW-S features help performance—it is also thosel&éehat are selected
by the non-sparse;.333-MKL, which is the best performing model on those classes. In con-
trast, the sum-kernel SVM suffers from including the ve gray-chdsbesed features, which
are hardly useful for the horse and sheep classes and mostly intradtliiersal noise. MKL
(all variants) succeed in identifying those kernels and assign thosel&evith low weights.

Figure 3.4: Images of a typical highly ranked cow image and kenel weights from ~;-MKL
(left) and " 1.333-MKL (right).

3.4 Promoting and Limiting Factors for Multiple Kernel Learning

In the previous section we presented empirical evidence gaabrm MKL considerably can
help performance in visual image categorization tasks. We also obseatdbdlyain is class-
speci ¢ and limited for some classes when compared to the sum-kernel 3é\bgain Tables
3.2and 3.1 The same also holds for the ImageCLEF2010 dataset. In this section, we aim
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to shed light on the reasons of this behavior, in particular discussingyttireaf the average
kernel in SectiorB.4.], trade-off effects in Sectiod.4.2and strengths of MKL in Sectio®.4.3
Since these scenarios are based on statistical properties of kerneflscahibe observed in
concept recognition tasks within computer vision we expect the results tahsfdrable to
other algorithms which learn linear models over kernels suchz’ (23).

3.4.1 One Argument For the Sum Kernel: Randomness in Featur&xtraction

We would like to draw attention to one aspect present in BoW features, naineelymount of
randomness induced by the visual word generation stage acting as rithisespect to kernel
selection procedures.

Experimental setup We consider the following experiment, similar to the one undertaken in
(131): we compute a BoW kernel ten times each time using the same local featurgg;atie
spatial pyramid tilings, and identical kernel functions; the only differdret@veen subsequent
repetitions of the experiment lies in the randomness involved in the generdtiba oode-
book of visual words. Note that we use SIFT features over the gragret that are densely
sampled over a grid of step size six, 512 visual words (for computatieaallfility of the clus-
tering), and a 2 kernel. This procedure results in ten kernels that only differ in the naness
stemming from the codebook generation. We then compare the performaheesam-kernel
SVM built from the ten kernels to the one of the best single-kernel SVMragted by cross-
validation-based model selection.

In contrast to {31) we try two codebook generation procedures, which differ by their in-
trinsic amount of randomness: rst, we deplkymeans clustering, with random initialization
of the centers and a bootstrap-like selection of the best initialization (similar topten
‘cluster' in MATLAB's k-means routine). Second, we deplextremely randomized cluster-
ing forests(ERCF) @1, 132, that are, ensembles of randomized trees—the latter procedure
involves a considerably higher amount of randomization comparkehteans.

Results The results are shown in Tal8&5. For both clustering procedures, we observe that the
sum-kernel SVM outperforms the best single-kernel SVM. In partictités con rms earlier
ndings of (131) carried out folk-means-based clustering. We also observe that the difference
between the sum-kernel SVM and the best single-kernel SVM is much moneynced for
ERCF-based kernels—we conclude that this stems from a higher amoamdaimness is in-
volved in the ERCF clustering method when compared to conventienaans. The standard
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deviations of the kernels in Tab&6 con rm this conclusion. For each class we computed the
conditional standard deviation

std(K jyi = yj) +std(K jyi 6 ) (3.5)

averaged over all classes. The usage of a conditional variance estisijasii ed because the
ideal similarity in kernel target alignment (cf. equatidn32) does have a variance over the
kernel as a whole however the conditional deviations in equa8ds) Would be zero for the
ideal kernel. Similarly, the fundamental MKL optimization formula4) relies on a statistic
based on the two conditional kernels used in form@&)( Finally, ERCF clustering uses
label information. Therefore averaging the class-wise conditional atdrdkviations over all
classes is not expected to be identical to the standard deviation of the venoéd.k

Table 3.6: AP Scores and standard deviations showing amourdf randomness in feature
extraction. Higher AP scores are better.

Method Best Single Kernel ~ Sum Kernel
VOC-KM AP:44.42 1282 45.84 12.94
VOC-KM Std: 30.81 30.74
VOC-ERCF  AP:42.60 1250 47.49 12.89
VOC-ERCF Std:38.12 37.89
CLEF-KM AP:31.09 556 31.73 5.57
CLEF-KM Std: 30.51 30.50
CLEF-ERCF AP:29.91 539 3277 5.93
CLEF-ERCF Std38.58 38.10

AP Scores and standard deviations showing amount of ranelesrin feature extraction: Results from
repeated computations of BowW Kernels with randomly initiedl codebooks. VOC-KM denotes
VOC2009 dataset and k-means for visual word generation, ¥¥BCF denotes VOC2009 dataset and
ERCEF for visual word generation. Similarly CLEF denotes ¢@@LEF2010 dataset.

We observe in Tabl8.6 that the standard deviations are lower for the sum kernels. Com-
paring ERCF and k-means shows that the former not only exhibits largetub standard
deviations but also greater differences between single-best and exunal-las well as larger
differences in AP scores.

We can thus postulate that the reason for the superior performance ahthessnel SVM
stems from averaging out the randomness contained in the BoW kernefsr(sig from the
visual-word generation). This can be explained by the fact that averéga way of reducing
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the variance in the predictors/models3f). We can also remark that such variance reduction
effects can also be observed when averaging BoW kernels with vacgingcombinations or
other parameters; this stems from the randomness induced by the visdajevaration.
Note that in the above experimental setup each kernel usesithenformation provided
via the local features. Consequently, the best we can a@edsaging—learning kernel weights
in such a scenario is likely to suffer from over tting to the noise contained énkéérnels and
can only decrease performance.
To further analyze this, we recall that, in the computational optimum, the informedio-
tent of a kernel is measured by-norm MKL via the following quantity, as proved i 6):
b2
2 X p+1
l k wky™ = ViKY ; (3.6)
1)
In this chapter we deliver a novel interpretation of the above quantity; tetids we decom-
pose the right-hand term into two terms as follows:

X X X
VAN iKij iKij e
i i iyi=y ijJyi6y;
The above term can be interpreted as a difference of the supporrvesighted sub-kernel
restricted to consistent labedsd the support-vector-weighted sub-kernel over the opposing

labels. Equation3.6) thus can be rewritten as

X X T opeL
/ iKij iKij : (8.7)
B jyi=y; i jyigy;

Thus, we observe that random in uences in the features combined withttivg support
vectors can suggest a falsely high information content in this measuserfuakernels. SVMs
do overt on BoW features. Using the scores attained on the training dddses we can
observe that many classes are deceptive-perfectly predicted with gkBssfairly above 0.9.
At this point, non-sparseps 1-norm MKL offers a parametep for regularizing the kernel
weights—thus hardening the algorithm to become robust against randee) yet permitting
to use some degree of information given by Equatiid)(

(137) reported in accordance to our idea about over tting of SVMs thatiKL and " 1-
MKL show no gain in such a scenario whilg-MKL even reduces performance for some
datasets. This result is not surprising as the overly sparsdKL has a stronger tendency to
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over t to the randomness contained in the kernels / feature generatimoldserved amount of
randomness in the state-of-the-art Bow features could be an explamdtjotne sum-kernel
SVM has shown to be a quite hard-to-beat competitor for semantic corlespt cation and

ranking problems.

3.4.2 MKL and Prior Knowledge

For solving a learning problem, there is nothing more valuable pinam knowledge Our em-
pirical ndings on the VOC2009 and ImageCLEF09 data sets suggesteduhaxperimental
setup was actually biased towards the sum-kernel SVM via usage of paweviédge when
choosing the set of kernels / image features. We deployed kernels aseur features types:
BoW-S, BoW-C, HoC and HoG. However, themberof kernels taken from each feature type
is not equal. Based on our experience with the VOC and ImageCLEF chedleme used a
higher fraction of BoW kernels and less kernels of other types suclstgtams of colors or
gradients because we already knew that BoW kernels have supeffiampance.

To investigate to what extend our choice of kernels introduces a biasdstre sum-kernel
SVM, we also performed another experiment, where we deployed a Higlodion of weaker
kernels for VOC2009. The difference to our previous experiments lidsainwe summarized
the 15 BOW-S kernels in 5 product kernels reducing the number of lesfinoen 32 to 22. The
results are given in Tabl& 7; when compared to the results of the original 32-kernel experiment
(shown in Table8.2), we observe that the AP scores are in average about 4 points smalker. T
can be attributed to the fraction of weak kernels being higher as in the draipariment;
consequently, the gain from usingg33-norm) MKL compared to the sum-kernel SVM is
now more pronounced: over 2 AP points—again, this can be explainectyigher fraction
of weak (i.e., noisy) kernels in the working set.

In summary, this experiment should remind us that semantic classi cation sesepa
substantial amount of prior knowledge. Prior knowledge impliggeaselectionof highly
effective kernels—a carefully chosen set of strong kernels constituteas towards the sum
kernel. Clearly, pre-selection of strong kernels reduces the nedddiaring kernel weights;
however, in settings where prior knowledge is sparse, statistical (araslagptive, adversarial)
noise is inherently contained in the feature extraction—thus, bene ciatisffof MKL are

expected to be more pronounced in such a scenario.
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Table 3.7: MKL versus Prior Knowledge: AP Scores for a set of kenels with a smaller
fraction of well scoring kernels. Higher scores are better.

Class [ p-norm 1:333 1
Aeroplane 77.82 7.701 76.28 8.168
Bicycle 50.75 11.06 46.39 12.37

Bird 57.7 8.451 55.09 8.224
Boat 62.8 13.29 60.9 14.01
Bottle 26.14 9.274 25.05 9.213
Bus 68.15 2255 67.24 22.8
Car 51.72 8.822 49.51 9.447
Cat 56.69 9.103 55.55 9.317
Chair 51.67 12.24 4985 12
Cow 25.33 13.8 2222 1241
Diningtable  45.91 19.63 42.96 20.17
Dog 41.22 10.14 39.04 9.565
Horse 52.45 13.41 50.01 13.88

Motorbike 54,37 1291 52.63 12.66
Person 80.12 10.13 79.17 10.51
Pottedplant  35.69 13.37 34.6 14.09
Sheep 37.05 18.04 34.65 18.68
Sofa 41.15 11.21 37.88 11.11
Train 70.03 15.67 67.87 16.37
Tvmonitor 59.88 10.66 57.77 10.91
Average 52.33 1257 50.23 12.79

In this set only ve instead of 15 Bow-S kernels are used legdo a lower fraction of Bow-based
kernels compared to kernels over global histogram features

3.4.3 One Argument for Learning the Multiple Kernel Weights: Varying Infor-
mative Subsets of Data

In the previous sections, we have presented evidence for why the sumakiSVM is consid-
ered to be an ef cient learner in visual image categorization. Neverthdlesur experiments
we have observed gains in accuracy by using non-sparse MKL foy m@amcepts. In this
section, we investigate causes for this performance gain.

We formulate a hypothesis for the performance gains achieved by Mkih karnel is
informative for a subset of the data in the sense that the kernel, whdnnua&VM, classi es

that subset well. These subsets can be partially disjoint between kentklsase varying
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sizes. The MKL information criterion given in EQR.(7) is able to exploit such differences in
informative subsets and is able to weight kernels properly despite bajtabal information
measure that is computed over the support vectors (which in turn arercloger thewhole
datase}.

In this section, we will present experimental evidence for this hypotheswadrsteps. In
the rst step we show that our kernels computed from the real Image@QEFdataset indeed
have fairly disjoint informative subsets. This suggests that our obdgr@gormance gains
achieved by MKL could be explained by MKL being able to exploit such aagen In the
second step we will create a toy dataset such that the informative subketaels are disjoint
by design. We will show that, in this controlled toy scenario, MKL outperfoaverage-kernel
SVMs in a statistically signi cant manner. These two steps together will senevigence for
our hypothesis given above.

The main question for the rst step is how to determine which set of sampleisnative
for a given kernel matrix and how to measure the diversity of two setsatklry two kernels.
Despite using ranking measures for most of the paper, we will stick hersitopde de nition.
Consider one binary classi cation problem. The set of all true positivaly taue negatively
classi ed test examples using a SVM will be the informative subset for adtetf we restrict
the kernel to the union of these two subsets of the test data set, then thimgedassi er
would discriminate the two classes perfectly. Since we do not have test thela far the
Pascal VOC dataset, we will restrict ourselves to the ImageCLEF data.

The diversity measure will be de ned in two steps: at rst for two setsntfar a pair of
kernels. The diversity measudéS;; S,) for two setsS;; S, should have two properties: it
should bel if these sets are maximally disjoint and be equal to zero if one set is contained
in the other. The second property follows the idea that if the informativefsate kernel is
contained in the informative set of another, then the rst kernel is infeéddhe second and we
would like to re ect this in our diversity measure by setting it to zero as weldiempect little
gain from adding the rst kernel to the second one in SVMs or MKL algonigh- we would
say the inferior kernel does not add any diversity.

Using these two conditions we note that two s&{sS, are maximally disjoint ifiS; [
Soj = min( jSy) + [S2j; Nest) ,whereN g is the total number of test samples. Analogously, if

one setis contained in the other, th&a[ Syj = min( jS1j;jSyj). Linear interpolation between
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these two extremes yield the diversity measure for a pair of%ets;:
jS1[ S min(jSqj;jSyj)
min(jSj + jSzj; Ntest)  mMin(jSaj;jSzj)

d(S1;S2) = (3.8)

Note that we do not use the symmetric difference here because this woodthismpty if one
set was contained in the other.

The diversity measure(ky; k») for two kernelsky; ko, still given a xed binary classi ca-
tion problem, will be de ned as the sum of the diversities between the two toséiye sets
from both kernels and the two true negative sets from both kernelsT P€k) be the set of
true positive samples of kernk] andT N (k) the corresponding set of true negative samples.
Then we de ne

d(TP(ka); TP(kz)) + d(TN (k1); TN (k2))

d(ka;ke) = 5

(3.9)

Treating true positives and true negatives separately makes sengsedfmanost of the classes
the positive labeled samples constitute only a small fraction of all samples wémdtshimpact
on the maximal number of true positives.

The diversity measure is actually a function of a classi er even thoughiffezehce in our
case is made by varying the underlying kernels. In contrast to kergettalignment$9) (see
Sectionl.3.4), or relevant dimensionality estimation (RDE)Q) it incorporates information
about the classi ers itself by using true positives and true negatives farmer two methods
rely on kernels and ground truth labels alone. Support vector machinestdise the whole
kernel matrix in practice. The support vectors select and re-weiglises of the kernel matrix
corresponding to training data samples close to the decision hyperplana&h &gace. Thus,
the above alternative measures, which consider the whole kernel matspnonde always
optimal for explaining results of support vector machines. The motivatiomfwducing this
novel measure is that incorporating extra information from support vetachines may help
to validate a hypothesis related to classi cation results of support vectdninesx

Since the ImageCLEF2010 dataset B8<lasses, we consider the average diversity of a
pair of kernels over all classes and the maximal diversity of a pair ofdkeiover all classes.
Figure 3.5 shows both diversities. We can see an interesting phenomenon: thsittger
are low between the rst 15 BoW-S kernels. This may serve as an exjparfar anecdotal
experiences that using MKL on BoW-S features alone yields no gairesdiVersity is low but
the randomness in feature extraction as discussed in a subsection ebol® in over tting.
However for the whole kernel set of @R kernels the diversities are large. The mean average
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diversity (when the mean is computed over all pairs of kernels and thageref all93 binary
classi cation problems) i887:77, the mean maximal diversity over all kernel pairs7it68
when the maximum is computed over 8B binary classi cation problems. This concludes
the rst step: our kernel set does have partially disjoint sets of truéipesnd true negative

samples between pairs of kernels. The informative subsets of keradhrdy disjoint.

Figure 3.5: Diversity measure from Equation (3.9) between correctly classi ed samples for
all pairs of 32 kernels. Left: Average over all concept classs. Right: Maximum over all
concept classesRows and columns correspond to entries for a particulardténdex. Red colors
correspond to highest diversity, blue to lowest.

In the second step we will construct two toy data sets in which by design veekeanels
with disjoint informative subsets of varying sizes. The goal is to show thiat. Mutper-
forms the average kernel SVM under such conditions. This implies that KieiMormation
criterion given in Eq. 8.7) is able to capture such differences in informative subsets despite
being aglobal information measure. In other words, the kernel weights are global vgeigh
that uniformly hold in all regions of the input space. While on the rst lookppaars to be
a disadvantage, explicitly nding informative subsets of the input spaceeahdata may not
only imply a too high computational burden (note that the number of partitionsmfelement
training set is exponential in) but also is very likely to lead to over tting.

We performed the following toy experiment. The coarse idea is that we aneaitures
of dimension6k, wheren is the number of data samples. We will complateernels such that
the i-th kernel is computed only from the i-th consecutive block &¢ature dimensions from

all available6k dimensions. We want the i-th kernel to have an informative subset of sample
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and an uninformative complement. After drawing labels fonabmples, we partition all data
samples intk blocks of varying size. The precise sizes of the blatkwill be given below.

The i-th block of data samples will be the informative subset for the i-th kefirigs will
be achieved in the following way: for the i-th block of samples the i-th blockmokasions will
be drawn from two Gaussians having different means such that thercl@mussian depends
on the label of the data sample. This implies that each of the two Gaussiangdasixse for
creating the samples of one label. For all other samples (except for thédeth df samples)
the i-th block of dimensions will be drawn from an unconditional mixture of twau&sians,
i.e. which Gaussian is used will be independent of the sample labels. dtetieé i-th kernel
which is computed from the i-th block of dimensions contains discriminativerimdtion only
for the samples coming from the i-th block of samples. For all other samplesthhernel
uses features from a mixture of Gaussians independent of the samptevddieh allows no
discrimination of labels. By this construction the i-th kernel will have the i-tto§samples as
discriminative subset. Furthermore, all kernels will have mutually disjointin&tive subsets,
because the i-th kernel is discriminative only on the i-th subset.

We generated a fraction pf = 0:25 of positively labeled ang = 0:75of negatively la-
beled training examples (motivated by the unbalancedness of training satly @ncountered
in computer vision). The precise data creation protocol is given in theriexpetal section
parts for experiments one and two.

We consider two experimental setups for sampling the data, which differ inuheer
of employed kernel& and the sizes of the informative sets. In both cases, the informative
features are drawn from two suf ciently distant normal distributions (famesach class) while
the uninformative features are just Gaussian noise (mixture of GaugsiEms experimental
setup of the rst experiment can be summarized as follows:

Experimental Settings for Experiment 1 (k=3 kernels):

Let n; be the size of the I-th informative subset amd- i :‘:1 n; the total sample size.
ff; 2 R ji = f1:nggare the features to be drawn whéﬁé) is the r-th dimension of the
i-th feature.

(300; 300 500)
P(y=+1)=0 :25

Ni=1;2;3 -

P+ -

S;=f1:ng; S-1=1fn 1+1:ng
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informative subset if2 S andr2f1+6(1 1):lIg

£ 2 _ _ (3.10)
uninformative subset  else
The features for the informative subset are drawn according to
( .
fi(r) N (0.0, |) ff Vi = 1 (3.11)
N(0:4; ) ify;j=+1
( 0:3 ifl=1;2
= T (3.12)
04 ifl=3
The features for the uninformative subset are drawn according to
£ (@ ps)N(0:0;0:5) + ps N (0:4; 0:5): (3.13)
Finally the I-th kernel is de ned as
ki(f1f2) =exp( K r1ae1 pugfs f2)KE); 1=151005k (3.14)

where f1.6(1 1).19( ) i the projection on the feature dimensions ranging in thé set6(|
1):lg.

For Experiment 1 the three kernels had disjoint informative subsets f 1sjizg.2.3 =
(300; 300, 500). We usedl100data points for training and the same amount for testing. We
repeated this experimeb00times with different random draws of the data.

Note that the features used for the uninformative subsets are drawmaduae of the
Gaussians with a higher variance, though. The increased varianogesnihe assumption that
the feature extraction produces unreliable results on the uninformatigesdbset. None of
these kernels are pure noise or irrelevant. Each kernel is the onlynafive one for its own
informative subset of data points.

We now turn to the experimental setup of the second experiment which igems®a to
ve kernels:

Experimental Settings for Experiment 2 (k=5 kernels):

Let n; be the size of the I-th informative subset amd- |k=1 n| the total sample size.
ff; 2 R ji = f1:nggare the features to be drawn whéq‘é) is the r-th dimension of the
i-th feature.

Ni=1:2:3:.4;5 = (300; 300 500, 200, 500);
p: =P(y=+1)=0 :25
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S;=f1:mg Ss1=1fn 1+1:ng

informative subset if2Sandr2f1+6(1 1):Ig

£ 2 ) , (3.15)
uninformative subset  else
The features for the informative subset are drawn according to
(
N (0:0; ifyy= 1
fi(r) (O 0! |) I yl (316)
N(mp; ) ifyi=+1
04 ifl=1;2;3
m, = ! (3.17)
0:2 ifl=4;5
3 ifl=1;2
= O3 M= (3.18)
04 ifl=3;45
The features for the uninformative subset are drawn according to
£ (@ ps)N(0:0,0:5) + ps N(m;; 0:5) (3.19)
Finally the I-th kernel is de ned as
ki(f1f2) =exp( K rave(1 puglfa f2)K3); 1=15:0005k (3.20)

where ¢1.6(1 1):19( ) is the projection on the feature dimensions ranging in thé ket6(|

1):1g.

As for the real experiments, we normalized the kernels to having stanéardtidn 1

in Hilbert space and optimized the regularization constant by grid searchanf 10 ji =
2; 15:::;29.

Table3.8 shows the results. The null hypothesis of equal means is rejected bytavittes
a p-value 0f0:000266and0:0000047 respectively, for Experiment 1 and 2, which is highly
signi cant.

Experiment 2 shows that the design of the Experiment 1 is no singular luakywe can
extend the setting of experiment 1 and observe similar results again whemusia kernels;
the performance gaps then even increased. Experiment 2 uses nalkarstead of just three.
Again, the informative subsets are disjoint, but this time of s2@§ 300, 500, 200, and
500 the the Gaussians are centere@:4t 0:4, 0:4, 0.2, and0:2, respectively, for the positive

class; and the variance is taken as= (0:3;0:3; 0:4; 0:4; 0:4). Compared to Experiment 1,
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Table 3.8: AP Scores in Toy experiment using Kernels with disint informative subsets of
Data. Higher scores are better. Lower p-values imply highestatistical signi cance of differ-
ences in scores.

Setup ;1 -SVM “1:0625-MKL  t-test p-value
1 68.72 3.27 69.49 3.17 0.000266
2 55.07 2.86 56.39 2.84 47 106

this results in even bigger performance gaps between the sum-kerneb8¥khe non-sparse
“1:.0625-MKL. One can imagine to create learning scenarios with more and more kéarrbés
above way, thus increasing the performance gaps—since we aim ativeretanparison, this,
however, would not further contribute to validating or rejecting our hygsith

Furthermore, we also investigated the single-kernel performance bfkeginel: we ob-
served the best single-kernel SVM (which attained AP scoreS860, 43:40, and58:90 for
Experiment 1) being inferior to both MKL (regardless of the employed noanametep) and
the sum-kernel SVM over the whole set of kernels. The differences gigni cant with fairly
small p-values (for example, fog.o5-MKL the p-value was still aboud:02).

We emphasize that we did not design the example in order to achieve a maxifioal pe
mance gap between the non sparse MKL and its competitors. For suchraplexaee the
toy experiment of§6). Our focus here was to con rm our hypothesis that kernels in semantic
concept classi cation are based on varying informative subsets of ate—-hlthough MKL
computes global weights, it emphasizes on kernels that are relevant ¢arghst informa-
tive set and thus approximates the infeasible combinatorial problem of ¢omg@un optimal
partition/grid of the space into regions which underlie identical optimal weighit®ugh, in
practice, we expect the situation to be more complicated as informative sutsgigverlap
between kernels instead of being disjoint as modeled here.

Nevertheless, our hypothesis also opens the way to new directions foinigaf kernel
weights, namely restricted to subsets of data chosen according to a meapiirgfiple. Find-
ing such principles is one the future goals of MKL—we sketched one glssitbocality in
feature space. A rst starting point may be the work 84, 135 on localized MKL.

We conclude the second step. MKL did outperform the average kekfdli8 this con-
trolled toy data scenario with disjoint informative subsets for each kertehay serve as

empirical evidence for our hypothesis why we observe gains using MKteal data: MKL
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with its global information criterion can exploit scenarios in which each Kesnaformative

for a subset of the data and these subsets are patrtially disjoint betweefske

3.5 Conclusions

When measuring data with different measuring devices, it is always abalte combine the
respective devices' uncertainties in order to fuse all available serfsomiation optimally. For
images using many different features is a common strategy in visual obgeginmiéon. This
raises the question diowto combine these features.

In this chapter, we revisited this important topic and discussed machine lgappnoaches
to adaptively combine different image features in a systematic and theoretiedllfounded
manner. While MKL approaches in principle solve this problem it has besarvéd that the
standard 1-norm based MKL often cannot outperform SVMs that use an avershgdarge
number of kernels. One hypothesis why this seemingly un-intuitive resultaoeyr is that
the sparsity prior may not be appropriate in many real world problems—eedigewhen prior
knowledge is already at hand. We tested whether this hypothesis holdisrtooenputer vision
and applied the recently developed non-spagdéKL algorithms to object classi cation tasks.
The ",-norm constitutes a less severe method of sparsi cation. By chogsasja hyperpa-
rameter, which controls the degree of non-sparsity and regularizaten,d set of candidate
values with the help of a validation data, we showed thaMKL signi cantly improves SVMs
with averaged kernels and the standard spar$ékL.

From a theoretical viewpoint the works ihd6 137) show that under certain conditions,
like differing decay rates of eigenspectra of kernel operators betkemels, non-sparse MKL
yields faster convergence rates for increasing sample sizes compaeatse 1-norm MKL.
However, the analysis undertaken in this chapter identi ed over tting gfpsurt vector ma-
chines as one source of issues with information fusion in practice. Thk Wwdi67) and
stacking in 68) used cross-validation to generate SVM outputs which were subsequsatly
for computing kernels employed in information fusion. From a practical vaemtplesigning
multiple kernel learning criteria based on outputs computed by cross-validatme potential
direction for reducing the over tting issues with the current MKL apptoes. When compared
to more heuristic schemes of iteratively removing the weakest kernel fradding the next

best kernel into a uniform mixture and evaluating the kernel mixture usivggealidation the
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approach to use MKL on crossvalidated outputs might offer an advantage a non-uniform
mixture of a subset of all kernels yields the optimal performance.

This approach based on outputs computed by cross-validation can ledappsettings
where higher over tting is expected due to a more exible or higher-dimeraiparametriza-
tion such as localized MKL1(23, 126).

Future work may study the application of MKL in structured prediction setapsiggested
for label kernels used in classi cation with taxonomies in Sec@ofiof Chapter2. Another
interesting direction is MKL-KDA {21, 122). The difference to the method studied in the
present paper lies in the base optimization criterion: KRAY leads to non-sparse solutions
in the support vectors of the SVM while ours leads to sparse ones (i.e., a low number of
support vectors). While on the computational side the latter is expected tvhatageous,
the rst one might lead to more accurate solutions. We expect that the iderggzdarization
over kernel weights (i.e., the choice of the norm paramgtegrelds similar effects for MKL-
KDA like for MKL-SVM. Another reason to believe in observing similar effeéin KDA is
that the rst two observed effects in this study discussed in Se@&idwriginate from feature
and kernel design such that any kernel-based algorithm will have tovitbahem.

Information fusion based on multiple kernel learning does matter in practme-sparse
MKL was employed for the best purely visual submission by mAP measure iinthge-
CLEF2011 Photo Annotation challengk (.8).
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Outlook

This thesis is naturally not a complete treatment of the eld of image annotationeakéhg.

| left some closely-related questions aside. One can try a similar analysisatflwlid with
MKL-SVM in chapter3 using MKL-KDA. | did not expect a qualitatively new insights from
it, however MKL-KDA seems to be much slower than MKL-KDA, resulting in muiche for
experiments without any new message. Similarly, | did not combine the higrarchassi -
cation analyzed in chapt@with MKL for the classi ers at the edges. | have no doubts that
one can see improvement from this combination compared to at classi catitmow with-
out MKL for some datasets. Again, | did not expect any qualitatively nesighits from that
straightforward combination.

There are many interesting questions which go beyond the setting of pure anagtation
and ranking. One example is incorporation of more prior knowledge inl@mublike human
action recognition. Segmentation did not prove very useful for imagetation with highly
varying concepts in the sense that it is not used in the top submissions td becehmark
competitions on concept classi cation. It may however be useful in humtorarecognition
where the images are expected to come from a narrower domain. They @easicted by
showing humans being centered and of a certain minimum scale in the image.eAsoth
cessful example from a narrower domaini89 where segmentation is used to segment Cats
and Dogs for discriminating between breeds. The images show animalsackatel covering
a larger part of the image which constitutes a difference to generic coremygnition where
the scale and position of parts contributing to a concept can be small. | thiokporating

prior knowledge about a problem without ending up in messy engineermtyi® art.
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Another direction would be to consider more complex settings compared t@fsgyocy
ranking up the far goal of understanding an image by guessing the itiver@€ components
in it. What happens if one wants not only to annotate concepts but unognsteat parts of
an image contribute to them? If one is interested in extracting interactions betereapts
or regions which contribute to the classi cation of belonging to a conceptteMomplex
problems could break the dominance of Bag of Word features or eveeldeased methods,
in particular when the complexity of a problem makes it hard to design onedituss function
or a score to be optimized. This hypothesis can be supported by the fadistrdminatively
trained part models are dominating in image detectigti); Part models have been revived in
that setting. One extension of Bag of word features for representdtietations between parts
(beyond weighted but orderless sets of features as dord@)jwould be a view of images as
sets of local graphs with weighted edges and local features at the. Adue®lea is to represent
an image by some way of aggregating many small graphs to circumvent proioeemsoise-
corrupted edge weights in single graphs. In contrast to earlier agm@esamn image would not
correspond to one single large graph but to a set of smaller ones aral &lattire can be part
of multiple disjoint graphs. The graphs allow to aggregate smaller regions ngter lanes and
encode relations between parts, yet avoiding the rigidity of early part imeddch tried to
represent one object by one graph rigidly. The challenge would berergie the graphs and
to aggregate the graphs into one representation as it is done with mappilogaldeatures
into a BoW feature. However the rst step would be to de ne a meaningfy o understand
an image via an interpretation of relations in it.

A general question related to more complex image understanding settingshatgi@int
generative methods may have advantages over discriminative ones.ly Clisariminative
methods are strong when an objective function can be formulated and opmtinmize with
BoW features, discriminative methods may be limiting on very complex image undeirsga
problems where the design of one loss function to be used for optimizatiamtescdif cult.
When a large number of different concepts and relations is to be predigtedrative methods

could become more attractive again.
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Appendix

5.1 Tables for Chapter2: Semantic Concept Recognition with a
Tree Structure over Concepts

The full comparison for Caltech256 animals 13 class subset and VOG2886wn in Tables

5.2and5.3.

Table 5.1: Errors on Caltech256 52 animals classes, 20 spglitLower losses are better.

Method Taxonomy Loss 0/1 Loss
onevs all 30.66 0.46 62.56 0.67
structmemr = ¢ 32.29 0.35 66.91 0.64
structmcsr= 7 33.48 0.39 68.86 0.60

structmcsr= g 3409 0.38 68.05 0.64

local tax AM 30.01 0.31 79.82 0.55
local tax scaled GM 29.62 0.34 76.19 0.57
local tax greedy path-walk  40.310.34  77.65 0.46

structtaxmr = 7 30.58 0.31 81.19 0.53
structtaxsr= 1 -a - - -
structtaxsr = g4 39.16 045 76.85 0.59

2Did not terminate after over seven days. Jobs consume over 20GB.
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Table 5.2: Errors on Caltech256 animals 13 class subset dat20 splits. Lower losses are
better.

Method Taxonomy Loss 0/1 Loss

one vs all 4249 146 57.04 1.98
structmemr = T 42.76 0.96 64.35 1.40
structmecsr = 7 42,49 1.49 57.06 2.01
structmcsr = o4 42,40 129 57.05 1.77
local tax AM 41.78 1.16 62.57 1.42

local tax scaled GM 40.58 1.15 58.33 1.50
local tax greedy path-walk  47.651.13 63.33 1.57
struct tax mr T 41.48 1.22 61.54 1.55
struct tax sr T 4155 1.65 58.21 2.20
structtaxsr = g4 44.32 1.07 59.22 151

Table 5.3: Errors on VOC2006 as multi-class problem, 20 spié. Lower losses are better.

Method Taxonomy Loss 0/1 Loss

onevs all 27.09 1.88 5054 251
structmemr = 7 26.37 1.77 51.04 2.53
structmcsr = 7 27.20 1.89 50.73 2.54
structmcsr = 27.18 1.87 50.70 2.41
local tax AM 26.02 1.66 50.48 2.34

local tax scaled GM 25.86 1.56 50.10 2.29
local tax greedy path-walk  27.151.65 51.85 2.28
structtaxmr = 7 2578 1.67 50.17 2.17

struct tax sr
struct tax sr

T 2724 161 5255 2.23
0=1 2763 171 51.73 2.50
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Kernel Learning

5.2 Tables for Chapter 3: Insights from Classifying Visual Con-
cepts with Multiple Kernel Learning

This supplement delivers the average precigfidp) scores for the ImageCLEF2010 test dataset

listed for all 93 visual concepts and aj-norms used including the average kernel as the spe-

cial casel .

Table 5.4: AP scores on ImageCLEF2010 test data with xed,-norm. Higher scores are

better. Part 1.

Partylife ~ FamilyFriends Beach BuildSights  Snhow Citylife
Tl 28.41 50.82 39.36 54.94 12.75 50.14
T1:125 30.52 52.55 42.75 57.23 19.97 52.79
T 1:333 30.84 52.26 42.71 56.87 20.38 52.8
"2 30.46 51.54 41.77 55.72 19.94 52.34
1 30.55 50.76 40.78 55.26 20.49 51.69
Landscape Sports Desert Spring Summer Autumn
1 81.42 7.464 10.85 5.962 28.39 26.12
T 1125 81.97 10.37 15.3 13.52 29.12 32.79
*1:333 81.8 10.33 15.12 15.59 29.42 33.49
"2 81.48 10.19 16.55 16 29.34 33.26
1 81.16 10.07 15.82 16.54 29.3 33.58
Winter NoSeason Indoor Outdoor NoPlace Plants
1 15.66 96.51 61.8 90.79 60.1 78.04
1125 19.49 96.61 62.53 91.39 60.65 79.28
T 1:333 20.11 96.61 62.44 91.49 60.92 79.44
"2 20.09 96.53 62.12 91.43 60.33 79.23
Tl 19.81 96.47 61.69 91.26 60.06 78.85
Flowers Trees Sky Clouds Water Lake
1 43.25 63.03 91.39 87.65 62.69 26.24
T1125 46.42 65.35 91.8 88 65.43 26.95
T1:333 47.47 65.39 91.73 87.93 66.03 27.13
2 47.89 64.87 91.64 87.77 66.01 26.92
1 47.91 64.13 91.39 87.54 65.79 25.79
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Table 5.5: AP scores on ImageCLEF2010 test data with xed,-norm. Higher scores are

better. Part 2.

River Sea Mountains Day Night NoTime
Tt 15.68 47.55 53.21 88.03 55.89 80.1
T1i125 19.75 48.74 52.86 88.68 57.85 80.83
t1:333 18.92 48.79 51.95 88.69 58.19 80.83
"2 18.57 48.19 51.03 88.54 58.13 80.62
1 17.8 47.77 50.36 88.4 57.85 80.38
Sunny Sunset StillLife Macro Portrait Overexpos
1 46.51 81.16 37.64 48.5 65.58 17.43
T1125 49.82 81.58 40.72 50.2 67.58 19.9
t1:333 50.13 81.37 40.65 49.66 67.62 18.9
22 49.97 81.09 39.76 49.07 67.24 18.51
1 50.08 80.77 39.54 50.02 66.72 17.61
Underexpos Neutrallllum MotionBlur Outoffocus PartBlur oBlur
1 27.74 98.38 13.35 10.28 72.37 90.92
T1125 28 98.4 19.82 15.08 74.26 91.39
T1:333 27.43 98.31 19.72 14.88 74.2 91.14
2 26.99 98.26 19.22 14.21 73.8 91.21
Tl 29.22 98.49 18.47 13.47 73.31 91.06
SinglePers  SmallGroup BigGroup NoPersons Animals Food
Tl 54.52 30.74 34.31 91.5 44.24 49.57
T1125 55.85 32.88 41.11 91.99 49.78 52.73
*1:333 55.78 32.78 41.81 92.03 50.08 53.31
"2 55.34 32.28 41.29 92 49.78 53.26
1 54.81 31.83 40.5 91.81 49.17 52.81
Vehicle Aesthetic OverallQuality Fancy Architecture Stre
Tt 45.17 28.63 22.6 17.14 27.04 29.46
T1125 47.62 28.25 22.41 17.95 28.8 33.7
t1:333 47.35 27.14 21.57 17.15 29.25 33.91
"2 47 26.01 20.77 16.92 28.91 33.42
1 46.25 28.34 22.46 18.82 27.84 32.79
Church Bridge ParkGarden Rain Toy Musiclnstr
Tt 5.29 5.087 42.02 0.6378 15.27 5.066
T1125 8.15 7.437 44.44 0.8926 22.05 5.231
T1:333 7.441 7.546 44.75 0.9725 22.35 5.445
"2 6.577 7.243 44.53 0.9875 21.97 5.609
1 6.241 7.117 43.91 1.017 20.58 5.33
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5.2 Tables for Chapter3: Insights from Classifying Visual Concepts with Multiple
Kernel Learning

Table 5.6: AP scores on ImageCLEF2010 test data with xed,-norm. Higher scores are
better. Part 3.

Shadow Bodypart Travel Work Birthday VisualArt

Tl 11.23 22.46 11.68 4264 1.143 32.98
T 1125 10.93 23.84 12.89 4596 0.9434 32.99
" 1:333 10.15 24.15 12.49 4.468 0.9152 32.62
"2 9.702 23.63 12.33 4.314 0.8556 31.97
tl 10.89 23.07 12.69 4.257 0.8731 33.05
Grafti Painting Articial Natural Technical Abstract
N1 3411 12.66 12.64 71.16 5979 2553
T1:125 4.467 18.57 13.96 71.66 6.107 2.33
" 1:333 4.273 18.83 13.67 71.64 5.853 2.137
22 4.094 18.9 13.18 70.62 5.82 2.099
1 3.882 19.58 13.97 7132 6.01 2.025
Boring Cute Dog Cat Bird Horse
N1 7.281 59.58 22.04 2.132 13.02 1.48
T1125 7.68 59.13 31.54 8.586 23.87 4.414
" 11333 7.388 59.46 31.99 8.97 23.98 3.931
12 7.23 58.08 31.85 8.208 23.33 3.408
Tl 7.167 58.88 31.11 7.626 22.7 3.279
Fish Insect Car Bicycle Ship Train
Nl 0.915 11.51 31.27 18.9 8.157 12.97
T1i125 1.844 16.2 34 26.17 9.749 15.42
1333 1.684 15.6 33.89 26.13 9.164 14.4
"2 1.594 14.94 33.51 25.53 8.688 13.45
1 1.605 15.06 32.54 24.5 8.581 12.48
Airplane  Skateboard Female Male Baby Child
Tt 5.913 0.2205 44.4 20.65 8.028 6.304
T 1125 11.08 0.4211 45.78 21.02 17.85 10.36
T 1:333 11.14 0.41 45.51 21.01 1814 11.01
"2 10.22 0.3963 4478  21.03 17.12 10.8
N1 10.18 0.4172 43.58 20.86 15.22 10.67
Teenager Adult Oldperson
Tl 21.32 53.03 5.068
T 1125 23.69 54.33 5.624
" 1:333 23.35 53.96 5.66
12 23.03 53.4 5.58
Tt 23.78 53 5.46
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