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Summary

The persistence probability up to time T of a stochastic process is the probability that
the process does not cross a certain constant barrier until time T . For many processes
of interest, this probability converges to zero at polynomial or exponential speed, and it
is typically nontrivial to determine the rate of the decay. Sometimes this problem is also
referred to as one-sided exit problem. Although it is a classial problem, the behaviour
of the persistence probability is unknown for most processes except for random walks,
Lévy processes, certain integrated processes such as integrated Brownian motion, frac-
tional Brownian motion and a few other Gaussian processes.

In this thesis, we study persistence of different stochastic processes. We start by
considering weighted sums of independent and identically distributed (i.i.d.) random
variables. Such processes have independent increments, but in contrast to random
walks, the increments are not stationary, and classical results from fluctuation theory
are therefore not applicable. Here we focus on weighted sums with weights that grow
polynomially or exponentially. In the former case, we determine the polynomial rate of
decay of the persistence probability, and the rate is shown to be universal over a class
of centred distributions.

Autoregressive processes are another example of weighted sums of i.i.d. random vari-
ables. Here the weights are the solution to a certain linear difference equation. The
behaviour of the persistence probability can range from exponential or polynomial de-
cay to convergence to a positive constant. We derive various results that allow for a
characterisation of the behaviour according to the weights. Particular emphasis is put
on autoregressive processes of order 2.

Given two independent real-valued stochastic processes (X(t), t ∈ R) and (Y (t), t ≥
0), we can define a new process Z by composition: Z = X ◦ Y . Such processes are
referred to as iterated processes. The persistence problem for Z reduces to studying
the supremum of the process X over the image of [0, T ] under the independent process
Y . This is a challenging problem if Y is discontinuous so that its image is not an in-
terval in general. We determine the polynomial rate of the persistence probability for
Lévy processes and fractional Brownian motion composed with (the absolute value of)
a random walk or a Lévy process.

In the last part of the thesis, we discuss persistence probabilities related to fractional
Brownian motion (FBM). We study persistence of FBM involving a moving boundary
that is allowed to increase or decrease like some power of a logarithm. Our results
show that the presence of such a boundary does not change the persistence probability
of FBM up to terms of lower order. As an application, we determine the asymptotic
behaviour of an integral functional related to a physical model involving FBM.
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Chapter 1

Introduction

1.1 Statement of the problem
Let X = (Xt)t∈T denote a real-valued stochastic process defined on some probability
space (Ω,F ,P), where T = R for continuous time processes and T = N for discrete time
processes. We define its persistence probability up to time T with barrier x by

pT (x) := P (Xt ≤ x,∀t ∈ [0, T ] ∩ T) , x, T ≥ 0. (1.1)

The probability above is also called survival probability up to time T . The main focus of
this thesis is to determine the asymptotic behaviour of pT (x) as T →∞ for fixed x and
for certain classes of stochastic processes. This question is sometimes called one-sided
exit problem in the literature since pT (x) = P (τx > T ), where τx := inf {t ≥ 0 : Xt > x}
is the first exit time of X from the set (−∞, x].
Without any additional assumptions on the process X, we cannot say much about the
behaviour of the survival probability (it could be equal to any number between zero and
one for all T , or it could go to zero arbitrarily fast). Generally, we assume that X is
not a nonnegative process in order to distinguish the one-sided exit problem from small
deviation and small ball problems described below. For instance, a typical situation
where finding the asymptotics of the survival probability is an interesting problem is as
follows: if X is a process that oscillates, i.e. almost surely,

−∞ = lim inf
t→∞

Xt < lim sup
t→∞

Xt =∞,

then clearly pT (x)→ 0 as T →∞ for every x. The difficulty then consists of determining
the speed of convergence to zero. For most processes considered here, the persistence
probability decays either polynomially or exponentially with time. To be more precise,
we say that pT (x) decreases polynomially if pT (x) = T−θ+o(1) as T →∞, i.e.

lim
T→∞

− log pT (x)

log T
= θ.

7
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In that case, θ is called the persistence or survival exponent which typically does not
depend on the value of x.
If the persistence probability decays exponentially, that is,

log pT (x) = −(λ(x) + o(1)) · T, T →∞,

then the rate λ = λ(x) is usually sensitive to the value of the barrier x.
Although (1.1) is a classical problem, it has not been studied very intensively so far
except for a few Gaussian processes such as fractional Brownian motion, processes hav-
ing independent and stationary increments such as random walks and Lévy processes,
and integrated processes such as integrated Brownian motion. We refer to [AS12] for
a recent survey on the subject. We will also introduce most of the known results in
Section 1.2 below that will be relevant later on.
Note that the probability in (1.1) is generally the probability of a rare event. In contrast
to large deviation probabilities ([DS89, DZ10]), survival probabilites describe the event
that a process stays below a certain threshold, and it is not surprising that the techniques
used differ significantly. A more related question are small deviation probabilities, that
is,

P (|Xt| ≤ x, ∀t ∈ [0, T ]) , T →∞, (1.2)

or small ball probabilites, i.e.

P (|Xt| ≤ ε,∀t ∈ [0, 1]) , ε ↓ 0. (1.3)

In fact, (1.2) is obviously a special case of (1.1), but as explained above, persistence
is generally related to processes that can also become negative and therefore, the per-
sistence probability (one-sided barrier) is usually much larger than the small deviation
probability (two-sided barrier).
Note that the problem of finding the asymptotics in (1.2) and (1.3) is equivalent if X
is self-similar. Small deviation and small ball probabilites are usually studied on a log-
arithmic scale, and in contrast to persistence probabilites, extensive research has been
carried out in this field. We refer to [LS01] for a survey and to [Lif13] for an up-to-date
bibliography.

Let us now mention some mathematical questions that are related to persistence
probabilities. For instance, research on persistence probabilities of integrated pro-
cesses was motivated by the investigation of the inviscid Burgers equation, see e.g.
[Sin92b, SAF92, Ber98, MK04]. If the initial condition of the Burgers equation is given
by a stochastic process such as (fractional) Brownian motion, persistence of the inte-
grated (fractional) Brownian motion has been found to be connected with the Hausdorff
dimension of the so-called Lagrangian regular points of the solution.
Moreover, survival probabilities also arise in the study of zeros of random polynomials
fn(z) :=

∑n
k=0 akξkz

k, where z ∈ C, (ξn)n≥0 is a sequence of i.i.d. random variables,
and (an)n≥0 is a deterministic sequence of complex numbers. Various questions such
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as the distribution of the zeros in the complex plane and the expected number of real
zeros have been considered in the literature (see [BRS86, EK95, DPSZ02] for further
information and references). In the context of persistence, Dembo et al. ([DPSZ02])
consider so-called Kaç polynomials (an ≡ 1 for all n) for centred random variables such
that E [|ξ0|]p is finite for all p ≥ 1. It is shown that the probability that f2n has no real
zeros decays polynomially in n, i.e.

P (f2n(x) 6= 0,∀x ∈ R) = n−4θ+o(1), n→∞,

and θ is the survival rate of a certain related stationary Gaussian process. This in-
teresting connection between the probability of no real zeros and persistence has been
further investigated for different classes of polynomials in [SM08, DM12].
A more detailed outline of the two examples can be found in [AS12, Section 4]. We also
refer to [LS04] where pursuit problems are mentioned as another application.

The problem of determining the persistence exponent is relevant in various physical
models such as diffusion equations with random initial condition, reaction diffusion sys-
tems, granular media, and Lotka-Volterra models for population dynamics, see the sur-
vey of Majumdar ([Maj99]) for references for these and other examples. Typically, physi-
cists are interested in the following question: given a random field Φ(x, t) = Φ(x, t, ω)
(t ≥ 0, x ∈ Rd) that evolves in space and time according to some dynamics, what is the
probability that Φ(x, ·) did not change its sign up to time T for a given point x ∈ Rd?
For instance, the evolution of Φ could be described by the heat equation with random
inital condition, that is,

∂tΦ = ∆dΦ, Φ(x, 0) = Φ0(x),

where Φ0(·) is a Gaussian random field, and ∆d is the Laplace operator in Rd. If Φ0(·)
is white noise, it is worth noting that the persistence exponent of Φ is related to the
exponent corresponding to the non-zero probability of random polynomials described
above, see [SM08, DM12].

1.2 Related work
Let us briefly summarise some important known results on persistence probabilities.
The processes of interest comprise random walks, Lévy processes, integrated processes
and fractional Brownian motion, which will reappear throughout this thesis. For a more
comprehensive account, we refer to [AS12].

1.2.1 Brownian motion, random walks and Lévy processes

For a Brownian motion (Bt)t≥0, the survival exponent is easily seen to be θ = 1/2, since
it is a well-known consequence of the reflection principle that sup {Bt, t ∈ [0, T ]} and
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|BT | have the same law for every T > 0. By scaling, as xT−1/2 → 0, we therefore have
that

P (Bt ≤ x,∀t ∈ [0, T ]) = P (|BT | ≤ x) = P
(
|B1| ≤ x/

√
T
)
∼
√

2/π xT−1/2. (1.4)

Survival probabilites of random walks have been studied in the context of fluctuation
theory, and very precise results have been obtained. Let (Sn)n≥1 denote a random walk,
i.e. Sn = Y1+· · ·+Yn where Y1, Y2, . . . is a sequence of i.i.d. random variables. Moreover,
let τ0 := inf {n ≥ 1 : Sn > 0} denote the first time that the random walk enters (0,∞).
τ0 is often called the first (ascending) ladder epoch and Sτ0 the first (ascending) ladder
height, see [Fel71, Section XII.1]. The famous Sparre-Andersen formula expresses the
generating function of the probabilities (P (τ0 > n))n≥0 in terms of the probabilities
(P (Sn ≤ 0))n≥1:

∞∑
n=0

snP (τ0 > n) = exp

(
∞∑
n=1

sn

n
P (Sn ≤ 0)

)
, s ∈ (−1, 1). (1.5)

(1.5) is stated in [AS12, Equation 2.2] and can be derived directly from [Fel71, Theo-
rem XII.7.1]. In particular, if P (Sn ≤ 0) = ρ ∈ (0, 1) for all n, (1.5) implies that

∞∑
n=0

snP (τ0 > n) = exp

(
ρ
∞∑
n=1

sn

n

)
=

1

(1− s)ρ
,

and if one writes down the Taylor series of the function s 7→ (1− s)−ρ, one finds that

P (τ0 > n) =
Γ(n+ ρ)

n!Γ(ρ)
∼ nρ−1

Γ(ρ)
, n→∞.

It is quite remarkable that for ρ ∈ (0, 1), the survival probability is exactly the same
for any random walk such that P (Sn ≤ 0) = ρ. For instance, if S1 has a continuous and
symmetric distribution, one has P (Sn ≤ 0) = 1/2 for all n and P (τ0 > N) ∼ N−1/2/

√
π.

More generally, we say that the random walk S fulfills Spitzer’s condition if there is
ρ ∈ [0, 1] such that

lim
n→∞

1

n

n∑
k=1

P (Sk ≤ 0) = ρ. (1.6)

In [Don95, BD97], this is shown to be equivalent to limn→∞ P (Sn ≤ 0) = ρ ∈ [0, 1]. For
instance, if E [S1] = 0 and E [S2

1 ] <∞, we have that ρ = 1/2 by the CLT.
In view of (1.5), we have that

∞∑
n=0

snP (τ0 > n) = (1− s)−ρ exp

(
∞∑
n=1

sn

n
(P (Sn ≤ 0)− ρ)

)
=: (1− s)−ρ`(1/(1− s)).
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If Spitzer’s condition holds, it can be shown that the function ` is slowly varying at
infinity (see e.g. [Rog71, Lemma 1]), and in combination with a Tauberian theorem for
power series ([Fel71, Theorem XIII.5.5]), this yields that P (τ0 > N) ∼ Nρ−1 `(N)/Γ(ρ),
see also [Rog71, Bin73]. In fact, Spitzer’s condition and regular variation of the function
P (τ0 > ·) are even equivalent. In order to state this result in full generality, let

V (x) := 1 +
∞∑
n=1

Hn∗(x), (1.7)

where H(x) := P (Sτ0 ≤ x) is the distribution function of the first ladder height and Hn∗

denotes n-fold convolution. V is called the renewal function of the first ladder height.
The following theorem is from [BGT87, Theorem 8.9.12].

Theorem 1.2.1. Let ρ ∈ (0, 1). The random walk S fulfills Spitzer’s condition with ρ if
and only if for some x ≥ 0, there is a constant Cx > 0 and a function ` slowly varying
at infinity such that

P (Sn ≤ x,∀n = 1, . . . , N) ∼ CxN
ρ−1`(N), N →∞. (1.8)

Moreover, if (1.8) holds for some x ≥ 0, it holds for all continuity points x of the
renewal function V (·) of the first ladder height given in (1.7) and Cx = V (x)/Γ(ρ).
Finally, if E [S1] = 0 and E [S2

1 ] < ∞, for all continuity points x of V , there is a
constant C̃x > 0 such that

P (Sn ≤ x,∀n = 1, . . . , N) ∼ C̃xN
−1/2, N →∞.

The last part of the theorem follows from the absolute convergence of the series∑∞
n=1 n

−1(P (Sn ≤ 0) − 1/2) if E [S1] = 0 and E [S2
1 ] < ∞ ([Ros62]) implying that the

slowly varying function ` is asymptotically constant.
Let us also mention that Dembo et al. ([DDG12]) give an elegant new proof of the fact
that pN(x) � N−1/2 if E [S1] = 0 and E [S2

1 ] < ∞. Here and in the sequel, fN � gN
means that the ratio fN/gN is bounded away from zero and infinity for large values of
N . Moreover, we remark that the persistence probability may decay polynomially even
in case E [S1] > 0, see [Don89] for details. On the other hand, if E [S1] < 0, it is clear
that ρ = 1, and it is known that P (Sn ≤ 0, ∀n ∈ N) > 0. More generally, without any
moment assumption, it holds that

Sn → −∞ a.s.⇐⇒ A :=
∞∑
n=1

P (Sn > 0)

n
<∞,

see [Fel71, Theorem XII.7.2]. By (1.5), we conclude that

∞∑
n=0

snP (τ0 > n) = exp

(
∞∑
n=1

sn

n
−
∞∑
n=1

sn

n
P (Sn > 0)

)
∼ 1

1− s
e−A, s ↑ 1,
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and using again Tauberian arguments, it follows that

P (Sn ≤ 0,∀n ∈ N) = e−A.

If (Xt)t≥0 is a Lévy process, classical results from fluctutation theory (in particular,
Wiener-Hopf factorisation, see [Don07, Section 4]) imply similar statements for the
continuous-time case. As before, we say that X satisfies Spitzer’s condition if

lim
t→∞

1

t

∫ t

0

P (Xs ≤ 0) ds = ρ ∈ [0, 1].

By [Don07, Theorem 23], this is equivalent to limt→∞ P (Xt ≤ 0) = ρ ∈ [0, 1]. Spitzer’s
condition implies again that the persistence exponent is equal to 1− ρ, see e.g. [Bin73,
Theorem 3]. In fact, we have the following equivalence, see [Don07, Proposition 6]:

Theorem 1.2.2. Let (Xt)t≥0 be a Lévy process and ρ ∈ (0, 1). Then X satisfies Spitzer’s
condition with ρ if and only if there is a function ` which is slowly varying at infinity,
and for some, and then all, x > 0, there is a constant Cx > 0 such that

P (Xt ≤ x,∀t ∈ [0, T ]) ∼ Cx`(T )T ρ−1, T →∞.

Finally, let us mention that instead of considering a constant barrier, one could also
study survival probabilities involving a moving barrier, that is, P (Xt ≤ f(t),∀t ∈ [0, T ])
where f is some measurable function. For instance, the probability that a Brownian
motion does not hit a moving boundary has been studied in [Uch80], and the same
problem is investigated for general Lévy processes in [AKS12].

1.2.2 Integrated processes

If (Sn)n≥1 is a random walk, the process (Xn)n≥1 given by Xn = S1+· · ·+Sn is called in-
tegrated random walk. The persistence exponent of an integrated simple random walk
(P (S1 = 1) = P (S1 = −1) = 1/2) has been shown to be θ = 1/4 by Sinăı ([Sin92a,
Theorem 3]). This result has been extended in several subsequent articles to more gen-
eral distributions, see [AD13], [Vys10] and [Vys12b]. Recently, Dembo et al. ([DDG12])
proved the following result:

Theorem 1.2.3 ([DDG12]). If E [S1] = 0 and E [S2
1 ] <∞, it holds that

P (Xn ≤ 1,∀n = 1, . . . , N) � N−1/4, N →∞.

Finally, assuming slightly more than finite variance, the following precise asymp-
totics have been derived:

Theorem 1.2.4 ([DW12]). If E [S1] = 0 and E
[
S2+δ

1

]
< ∞ for some δ > 0, it holds

that
P (Xn ≤ 0,∀n = 1, . . . , N) ∼ CN−1/4, N →∞.
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For continuous-time processes, it has been shown that the survival exponent of
integrated Brownian motion is θ = 1/4 ([McK63, Gol71, Sin92a, IW94]). To be more
precise, it is shown in [IW94] that

P
(∫ t

0

Bs ds ≤ 1,∀t ∈ [0, T ]

)
∼ CT−1/4, T →∞,

where C > 0 is some explicit constant. Since integrated Brownian motion is self-similar
with index H = 3/2, this entails that

P

(
sup
t∈[0,T ]

∫ t

0

Bs ds ≤ x

)
= P

(
sup

t∈[0,x−2/3T ]

∫ t

0

Bs ds ≤ 1

)
∼ Cx1/6T−1/4,

as x−2/3T →∞.
Aurzada and Dereich ([AD13]) use strong approximation techniques to show that the
persistence exponent is also equal to θ = 1/4 for integrated Lévy processes under the
assumption of exponential moments. Moreover, they consider fractionally integrated
processes and derive some results on their survival exponents. Let us finally mention
that results on integrated stable Lévy processes can be found in [Sim07].

1.2.3 Fractional Brownian motion

Recall that fractional Brownian motion (FBM) with Hurst index H ∈ (0, 1) is a centred
Gaussian process (Xt)t∈R with covariance

E [XsXt] =
1

2

(
|s|2H + |t|2H − |t− s|2H

)
, s, t ∈ R. (1.9)

We remark that X has stationary increments and is self-similar of index H, i.e. (Xct)t∈R
and (cHXt)t∈R have the same distribution for any c > 0. Let us remark that X is non-
Markovian unless H = 1/2 (see e.g. [MVN68]). The study of persistence for this process
has been motivated by the analysis of Burgers equation with random inital conditions
([Sin92b]) and the linear Langevin equation ([KKM+97]). Sinăı also derived estimates
on the persistence probability in a subsequent article ([Sin97]), and the exponent was
shown to equal θ = 1 − H by Molchan ([Mol99]), where H is the Hurst parameter of
the FBM. The estimates on the persistence probability have recently been improved by
Aurzada ([Aur11]): there is a constant c = c(H) > 0 such that

T−(1−H)(log T )−c - P (Xt ≤ 1,∀t ∈ [0, T ]) - T−(1−H)(log T )c, T →∞. (1.10)

The notation f(T ) - g(T ) means that lim supT→∞ f(T )/g(T ) <∞. However, it is still
an open problem to show that pT (1) � T−(1−H) as T → ∞. Note that in view of the
self-similarity, (1.10) translates into

|log ε|−c ε(1−H)/H - P (Xt ≤ ε,∀t ∈ [0, 1]) - |log ε|c ε(1−H)/H , ε ↓ 0. (1.11)



14 CHAPTER 1. INTRODUCTION

Finally, by [Mol12, Proposition 5], it holds for α ∈ [0, 1] that

P (Xt ≤ 1,∀t ∈ [−Tα, T ]) = T−(αH+1−H)+o(1), T →∞.

In particular, if α = 1, the survival exponent is equal to θ = 1, independent of H, which
had been shown in [Mol99, Theorem 3].

1.2.4 Other results

As a matter of fact, the explicit value of the persistence exponent is still unknown for
most processes that were not mentioned in the previous subsections except for a few
special cases. For instance, persistence of the process (Xn)n≥1 given by Xn = Yn+εYn−1,
where −1 ≤ ε ≤ 1 and Y0, Y1, . . . are i.i.d., is studied in [MD01]. If ε = 1 and if Y0 has
an absolutely continuous and symmetric law, it is shown that

lim
N→∞

−N−1 logP (Xn ≤ 0,∀n = 1, . . . , N) = log(π/2).

An explicit computation of a survival exponent was also achieved by Castell et al.
([CGPPS13]) who consider processes called random stable Lévy processes in random
scenery. To define such a process, recall that if (Yt)t≥0 is a strictly stable Lévy process
with index α ∈ (1, 2], there exists a continuous version (Lt(x))x∈R,t≥0 of its local time
process. If (W (x))x∈R is a two-sided Brownian motion defined on the same probability
space, define the process in random scenery by

Xt =

∫
R
Lt(x) dW (x), t ≥ 0.

The process X is non-Markovian, self-similar with index H = 1 − 1/(2α), and has
stationary increments. Castell et al. show that the persistence exponent is given by
θ = 1−H = 1/(2α). This confirms the findings in [Red97, Maj03].

Let us finally mention some articles where upper or lower bounds on persistence ex-
ponents have been established. For Gaussian processes, one of the main tools is Slepian’s
inequality. Slepian ([Sle62]) studied survival probabilities for stationary Gaussian pro-
cesses and among other things, he derived this important inequality that will also be a
very relevant tool throughout this work. Roughly speaking, Slepian’s inequality allows
for a comparison of persistence probabilities of different Gaussian processes based on
estimates of their covariances. For future reference, it will be useful to state Slepian’s
inequality at this point.

Lemma 1.2.5. 1. Let (T, d) be a separable metric space, and let (Xt)t∈T and (Yt)t∈T
denote two real-valued, separable, centred Gaussian processes such that

E
[
X2
t

]
= E

[
Y 2
t

]
, ∀t ∈ T, E [XsXt] ≤ E [YsYt] , s, t ∈ T.

Let f : T → R be a measurable function that is continuous on T \D, where D is
at most countable. Then the following inequality holds:

P (Xt ≤ f(t),∀t ∈ T) ≤ P (Yt ≤ f(t),∀t ∈ T) .
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2. With f : [0,∞)→ R as in part 1, if (Yt)t≥0 is a separable, centred Gaussian process
with E [YtYs] ≥ 0 for all s, t ≥ 0, it holds for all S, T > 0 that

P (Yt ≤ f(t),∀t ∈ [0, S + T ]) ≥ P (Yt ≤ f(t),∀t ∈ [0, S])

· P (Yt ≤ f(t),∀t ∈ [S, S + T ]) . (1.12)

In particular, if Y is also stationary, it holds for every x ∈ R that

− lim
T→∞

logP (Xt ≤ x,∀t ∈ [0, T ])

T
= − sup

T>0

P (Xt ≤ x, ∀t ∈ [0, T ])

T
∈ (0,∞].

The proof can be found in appendix A. Both versions of Slepian’s inequality stated
in Lemma 1.2.5 are frequently applied in [NR62], [LS04] and [Mol12] to derive general
upper and lower bounds on the survival probability of Gaussian processes. Let us also
mention the article [LS02] containing some more comparison inequalities that are useful
in the context of persistence probabilities.

1.3 Main results of the thesis
In this thesis, we study persistence for different stochastic processes such as weighted
sums of independent random variables, iterated processes, autoregressive processes and
fractional Brownian motion. The results are based on the articles [AB11], [Bau12],
[Bau13] and [AB13].

1.3.1 Weighted sums of i.i.d. random variables

In Chapter 2, we investigate the behaviour of persistence probabilites of processes Z =
(Zn)n≥1 defined by

Zn :=
n∑
k=1

σ(k)Yk, n ≥ 1,

where Y1, Y2, . . . are i.i.d. random variables such that E [Y1] = 0 and σ : [0,∞)→ (0,∞)
is a measurable function. We call Z a weighted random walk with weight function σ.
The results of Chapter 2 have been published in [AB11].
Note that Z has independent increments, but the increments are not stationary unless σ
is constant. For such processes, there is virtually no theory available so far, and despite
the obvious resemblance, the methods for computing the persistence probability of
(unweighted) random walks (σ(n) ≡ 1) do not carry over since they strongly rely upon
the stationarity of increments.
We mainly consider weight functions that grow polynomially or exponentially. In the
former case, that is, σ(N) � Np as N → ∞ for some p > 0, one can compute the
persistence exponent θ = θ(p) explicitly if the law of Y1 is standard Gaussian. Moreover,
under the assumption of Gaussian increments, it holds that

P (Zn ≤ 1,∀n = 1, . . . , N) = P
(
Bκ(n) ≤ 1,∀n = 1, . . . , N

)
, (1.13)
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where κ(n) =
∑n

k=1 σ(k)2 and (Bt)t≥0 is a Brownian motion. Hence, one needs to study
the persistence problem for Brownian motion evaluated at discrete time points. The fol-
lowing question is natural in this context: for what kind of functions κ is the asymptotic
behaviour of the probability in (1.13) and the probability P (Bt ≤ 1,∀t ∈ [0, κ(N)]) the
same (up to terms of lower order)? Intuitively, we expect that the distance between the
points κ(n) and κ(n+ 1) must not be too large. Among other things, we show that this
is the case for functions κ(x) = xp (p > 0).
Using strong approximation techniques, one can then infer that the exponent θ(p) is
universal for a larger class of distributions under suitable moment conditions for poly-
nomial weight functions σ(N) � Np. For exponential weight functions, such a universal
behaviour of the survival probability does not hold in general, and the rate of decay
has to be determined separately for different distributions of Y1. We present various
results for the exponential rate in the Gaussian framework. For instance, the rate can
be characterised as the largest spectral value of a certain integral operator which leads
to a useful variational characterisation of the rate.

1.3.2 Iterated processes

In Chapter 3, we consider the one-sided exit problem for processes Z = (X ◦ |Yt|)t≥0,
where X = (Xt)t≥0 and Y = (Yt)t≥0 are independent stochastic processes and Z =
(X ◦ Yt)t≥0 if X = (Xt)t∈R (◦ denotes function composition). Such processes will be
referred to as iterated processes. For instance, if (Xt)t∈R is a two-sided process, the
persistence probability of the iterated process is then

P (Zt ≤ 1,∀t ∈ [0, T ]) = P (X(Yt) ≤ 1,∀t ∈ [0, T ]) = P (Xt ≤ 1,∀t ∈ Y ([0, T ])) ,

where Y ([0, T ]) = {Yt : t ∈ [0, T ]} is the image of [0, T ] under Y . If Y is a continuous
process, Y ([0, T ]) is just the interval with the minimum of Y and the maximum of Y
over [0, T ] as endpoints. Hence, if the persistence exponent of X is known and if one can
control the lenght of Y ([0, T ]), by independence of X and Y , it is not difficult to obtain
estimates on the persistence probability of Z. For instance, for continuous self-similar
processes (Yt)t≥0, we show that the rate of decay of the survival probability of Z can be
inferred directly from the persistence probability of X and the index of self-similarity of
Y . As a corollary, we obtain that the survival probability of iterated Brownian motion
decays asymptotically like T−1/2.
If Y is discontinuous, the range of Y possibly contains gaps, and the persistence problem
becomes much harder in that case. We determine the polynomial rate of decay for X
being a Lévy process (possibly two-sided if I = R) or a fractional Brownian motion and
Y being a Lévy process or random walk under suitable moments conditions.
Let us remark that if (Bt)t≥0 is a Brownian motion and (Sn)n≥1 is a centred random
walk, the persistence probability of the iterated proces (B(|Sn|))n≥1 given by

P (B(|Sn|) ≤ 1,∀n = 1, . . . , N)
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is reminiscent of the second probability in (1.13). Instead of the deterministic function
κ in (1.13), the time points are now random, and again, it will be important to control
the gaps of the random set {|S1| , . . . , |SN |}.

1.3.3 Autoregressive processes

For fixed p ≥ 1, define Xn =
∑p

k=1 akXn−k + Yn, n ≥ 0, where (Yn)n≥1 is a sequence of
i.i.d. random variables, a1, . . . , ap ∈ R, and by convention, Xn = 0 for n ≤ 0. (Xn)n≥1

is called an autoregressive process of order p (AR(p)-process in short). In this context,
the random variables (Yn)n≥1 are often referred to as innovations in the literature.
Autoregressive processes are frequently used to model time series in many applications,
see [BD87].
Note that random walks and integrated random walks are special cases of AR-processes
with p = 1, a1 = 1 resp. p = 2, a1 = 2, a2 = −1, and the corresponding results on
persistence have been described in Section 1.2.
In Chapter 4, we investigate the behaviour of the persistence probability pN for such
processes under various conditions on the distribution of the innovations. An AR(p)-
process X can be written as Xn =

∑n
k=1 cn−kYk where (cn)n≥0 solves the difference

equation cn = a1cn−1 + · · · + apcn−p with a certain initial condition. In particular, Xn

is again a weighted sum of i.i.d. random variables, but in contrast to the processes
considered in Chapter 2, the weights now depend on n as well.
We search criteria for the sequence (cn)n≥0 that allow us to characterise the asymptotics
of the survival probability. Specifically, we are interested in the following question for
AR(p)-processes: when is pN of polynomial order, when does pN converge to a positive
limit, and when is the decay faster than any polynomial? This classification seems
natural if one recalls the results for AR(1)-processes Xn = ρXn−1 +Yn where cn = ρn for
all n. In this case, the behaviour of the persistence probability ranges from exponential
decay for ρ < 1 ([NK08]), polynomial decay if ρ = 1 and E [Y1] = 0 to convergence to a
positive constant if ρ > 1.
As we will see, the sequence (cn)n≥0 often has a much more complex form if p ≥ 2, so
the results for AR(1)-processes generally cannot be extended directly to higher order
processes. We will derive criteria that allow for the classification of the asymptotic
behaviour of the pN as above. Particular emphasis is put on AR(2)-processes. The
results of Chapter 4 have been accepted for publication ([Bau13]).

1.3.4 Fractional Brownian motion with moving boundaries

In Chapter 5, we consider various problems related to the persistence probability of
fractional Brownian motion (FBM). The results presented have been accepted for pub-
lication ([AB13]).
Recently, Oshanin et al. ([ORS12]) study a physical model where persistence properties
of FBM are shown to be related to scaling properties of a quantity JN , called steady-
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state current. It turns out that for this analysis it is important to determine persistence
probabilities of FBM with a moving boundary f , i.e. P (Xt ≤ f(t), ∀t ∈ [0, T ]).
We show that one can add a boundary of logarithmic order to a FBM without changing
the polynomial rate of decay of the corresponding persistence probability which proves
a result needed in [ORS12]. Moreover, we complement their findings by considering
the continuous-time version of JN . Finally, we use the results for moving boundaries in
order to improve estimates by Molchan ([Mol99]) concerning the persistence properties
of other quantities of interest such as the time when a FBM reaches its maximum on
the time interval (0, 1) or the last zero in the interval (0, 1).

1.4 Notation
Let us introduce some notation and conventions: If f, g : R→ R are two functions, we
write f - g as x→ x0 if lim supx→x0 f(x)/g(x) <∞, and f � g as x→ x0 if f - g and
g - f as x→ x0. Moreover, f ∼ g as x→ x0 if f(x)/g(x)→ 1 as x→ x0. We use the
usual Landau notation an = o(bn) if an/bn → 0 as n → ∞. 1{A} denotes the indicator
function of a set A.
If X is a random variable, we always assume that X is not concentrated at a single
point. If (Xt)t≥0 is a stochastic process, it will often be convenient to write X(t)

instead of Xt. If X and Y are random variables, we write X d
= Y to denote equality in

distribution. If X and Y are processes, X d
= Y means that they have the same finite

dimensional distribution. Moreover, we say that (Xt)t∈I is self-similar of index H if
(Yct)t∈I

d
= (cHYt)t∈I for all c > 0.

Finally, x ∧ y := min {x, y}, x ∨ y := max {x, y}, x+ := x ∨ 0, x− := (−x) ∨ 0,
btc := sup {k ∈ Z : k ≤ t}, and dte := inf {k ∈ Z : t ≤ k}.



Chapter 2

Sums of weighted i.i.d. random
variables

In this chapter, we consider persistence probabilities of weighted sums of i.i.d. random
variables. Recall that the process (Zn)n≥1 given by

Zn :=
n∑
k=1

σ(k)Yk, (2.1)

is called a weighted random walk with weight function σ, where σ : [0,∞)→ (0,∞) is a
measurable function and (Yn)n≥1 denotes a sequence of i.i.d. centred random variables.
We are interested in the persistence probability of Z mainly for the two classes of weight
functions σ that either grow polynomially or exponentially.

The remainder of this chapter is organised as follows. We begin by reviewing the
main results in Section 2.1. In Section 2.2, we consider the persistence probability
of Gaussian weighted random walks: polynomial weight functions are studied in Sec-
tion 2.2.1, and after discussing some extensions of these results, we turn to exponential
weight functions in Section 2.2.4. In Section 2.3, the results of the Gaussian case for a
polynomial weight function are extended to a broader class of weighted random walks
whose increments obey certain moment conditions.

2.1 Main results

Note that if the Yk have a standard normal distribution, then the processes (Zn)n≥1 and
(Bκ(n))n≥1 have the same law where κ(n) := σ(1)2 + · · · + σ(n)2 and B is a standard
Brownian motion. Therefore, the computation for the weighted Gaussian random walk
reduces to the case of Brownian motion evaluated at discrete time points. In this setup,
we prove the following theorem.

19
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Theorem 2.1.1. Let κ : [0,∞)→ (0,∞) be a measurable function such that κ(N) � N q

for some q > 0. If there is some δ < q such that κ(N + 1)− κ(N) - N δ, then

P
(
Bκ(n) ≤ 0, ∀n = 1, . . . , N

)
= N−q/2+o(1), N →∞.

In particular, we have under the assumptions of Theorem 2.1.1 that

P
(
Bκ(n) ≤ 0, ∀n = 1, . . . , N

)
= P (Bt ≤ 0, ∀t ∈ [1, κ(N)]) N o(1) = N−q/2+o(1). (2.2)

In the Gaussian framework, the weight function σ(n) = np corresponds to κ(n) =∑n
k=1 σ(k)2 � n2p+1 as remarked above. This implies that the survival exponent for the

weighted Gaussian random walk Z is equal to θ = p+ 1/2 in that case.
In fact, we show that this survival exponent is universal over a much larger class of
weighted random walks in case the Yk are not necessarily Gaussian:

Theorem 2.1.2. Let (Yk)k≥1 be a sequence of i.i.d. random variables with E [Y1] = 0
and E

[
ea|Y1|

]
< ∞ for some a > 0. If σ is increasing and σ(N) � Np, then for the

weighted random walk Z defined in (2.1), we have that

P (Zn ≤ 0,∀n = 1, . . . , N) = N−(p+1/2)+o(1), N →∞.

The proof of the lower bound for the survival probability in Theorem 2.1.2 under
weaker assumptions (Theorem 2.3.2) is based on the Skorokhod embedding. The upper
bound (Theorem 2.3.3) is established using strong approximation results in [KMT76].
In either case, the problem is reduced to finding the survival exponent for Gaussian
increments, i.e. to the case treated in Theorem 2.1.1.

As noted in (2.2), Theorem 2.1.1 shows that the survival exponent does not change
if one samples the Brownian motion at the discrete points (κ(n))n≥1 or over the corre-
sponding interval if κ increases polynomially. This result can be generalised to functions
of the type κ(n) = exp(nα), n ≥ 0, at least for α < 1/4 (Theorem 2.2.11). This fact
turns out to be wrong however for the case α = 1 in general. Namely, if we consider an
exponential function κ(n) = exp(βn) for n ≥ 0 and some β > 0, in the Gaussian case,
it follows from Slepian’s inequality and a subadditivity argument that

lim
N→∞

− 1

N
logP

(
B
(
eβn
)
≤ 0,∀n = 0, . . . , N

)
=: λβ

exists for every β > 0, and that β 7→ λβ is non-decreasing. However, we prove that

λβ < β/2 = lim
N→∞

− 1

N
logP

(
B
(
eβt
)
≤ 0,∀t ∈ [0, N ]

)
at least for β > 2 log 2 showing that the rates of decay in the discrete and continuous
time framework do not coincide in contrast to (2.2). Additionally, the rate of decay of
the survival probability for an exponentially weighted random walk now depends on the
distribution of Y1 even under an exponential moment condition, that is, a universality
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result similar to the polynomial case found in Theorem 2.1.2 does not hold.
In the Gaussian case, we state upper and lower bounds on the rate of decay λβ in
Theorem 2.2.14 and characterise exp(−λβ) as an eigenvalue of a certain integral operator
in Proposition 2.2.20. Upon applying a transformation, it can be shown that exp(−λβ)
is the largest spectral value of a related compact and self-adjoint operator which leads to
a useful variational characterisation of λβ in Theorem 2.2.28. Unfortunately, an explicit
computation of λβ does not seem to be possible easily.

2.2 The Gaussian case

Let B = (Bt)t≥0 denote a standard Brownian motion. Given a sequence (Yn)n≥1 of
independent standard Gaussian random variables and a weight function σ(·), let Z be
the corresponding weighted random walk defined in (2.1). Note that

(Zn)n≥1
d
= (Bκ(n))n≥1, κ(n) :=

n∑
k=1

σ(k)2. (2.3)

The problem therefore amounts to determining the asymptotics of

P
(
Bκ(n) ≤ 0,∀n = 1, . . . , N

)
. (2.4)

Intuitively speaking, if Bκ(1) ≤ 0, . . . , Bκ(N) ≤ 0, then typically Bκ(N−1) and Bκ(N) are
quite far away from the point 0 if N is large. One therefore expects that also Bt ≤ 0
for t ∈ [κ(N − 1), κ(N)] unless the difference κ(N) − κ(N − 1) is so large that the
Brownian motion has enough time to cross the x-axis with sufficiently high probability
in the meantime. So if κ(N)− κ(N − 1) does not grow too fast, one would expect that
the probability in (2.4) behaves asymptotically just as in the case where the supremum
is taken continuously over the corresponding interval (modulo terms of lower order). In
the proof of Theorem 2.2.2 and 2.2.11, this idea will be made explicit in a slightly differ-
ent way: we will require that the Brownian motion stays below a moving boundary on
the intervals [κ(N − 1), κ(N)] where the moving boundary increases sufficiently slowly
compared to κ(N) in order to leave the survival exponent unchanged. We therefore split
our results as follows: In Section 2.2.1, we consider polynomial functions κ(N) = N q for
q > 0 (so κ(N)−κ(N−1) � N q−1). In Section 2.2.3, we discuss the subexponential case
κ(N) = exp(Nα) for 0 < α < 1 (here κ(N)−κ(N−1) � κ(N)Nα−1) before finally turn-
ing to the exponential case κ(N) = exp(βN) for β > 0 (now κ(N)− κ(N − 1) � κ(N))
in Section 2.2.4.

Remark 2.2.1. In the statement of Theorem 2.2.2 and 2.2.11, the value 0 of the barrier
can be replaced by any c ∈ R without changing the result. Indeed, let κ : [0,∞) →
(0,∞) be such that κ(N) → ∞ as N → ∞, and let a := inf {κ(n) : n ∈ N} > 0. Note
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that for c, d ∈ R, it holds that

P
(
Bκ(n) ≤ c, ∀n = 1, . . . , N

)
≥ P

(
Ba/2 ≤ c− d, sup

n=1,...,N
Bκ(n) −Ba/2 ≤ d

)
= P

(
Ba/2 ≤ c− d

)
P
(
Bκ(n)−a/2 ≤ d,∀n = 1, . . . , N

)
> 0.

Now κ̃(n) := κ(n)− a/2 is positive for all n and satisfies the same growth conditions as
κ stated in all theorems. Hence, it suffices to prove Theorem 2.2.2 and 2.2.11 for the
barrier 1.

2.2.1 Polynomial weight functions

The first result is a slightly more precise version of Theorem 2.1.1.

Theorem 2.2.2. Let κ : [0,∞) → (0,∞) be a measurable function such that for some
q > 0 and δ < q

κ(N) � N q and κ(N)− κ(N − 1) - N δ, N →∞. (2.5)

Then for any γ ∈ (δ/2, q/2), it holds that

N−q/2 - P
(
Bκ(n) ≤ 0,∀n = 1, . . . , N

)
- N−q/2(logN)q/(4γ−2δ), N →∞.

Proof. By assumption, there are constants c1, c2 > 0 such that c1n
q ≤ κ(n) ≤ c2n

q

for n large enough. The constant c2 may be chosen so large that the second inequality
holds for all n ≥ 1. The lower bound is then easily established by comparison to the
continuous time case if the barrier 0 is replaced by 1: Using (1.4), one finds that

P
(
Bκ(n) ≤ 1,∀n = 1, . . . , N

)
≥ P (Bt ≤ 1,∀t ∈ [0, c2N

q]) � N−q/2, N →∞.

This also implies the same asymptotic order of the lower bound for any other barrier,
see Remark 2.2.1.
For the proof of the upper bound, we will assume without loss of generality that κ
is non-decreasing. Otherwise, consider the continuous non-decreasing function κ̃ with
κ̃(n) = max {κ(l) : l = 0, . . . , n} for n ∈ N and κ̃ linear on [n, n+ 1] for all n ∈ N. Then
κ̃(N) � N q as N → ∞. Moreover, κ̃(N)− κ̃(N − 1) = 0 if κ(N) ≤ κ̃(N − 1), and for
κ(N) > κ̃(N − 1), we have

κ̃(N)− κ̃(N − 1) = κ(N)− κ̃(N − 1) ≤ κ(N)− κ(N − 1).

Thus, κ̃ satisfies the same growth conditions as κ. Clearly, for all N ,

P
(
Bκ(n) ≤ 1,∀n = 1, . . . , N

)
≤ P

(
Bκ̃(n) ≤ 1,∀n = 1, . . . , N

)
,

since {κ(n) : n = 1, . . . , N} ⊆ {κ̃(n) : n = 1, . . . , N}, so it suffices to prove the assertion
of the theorem for a non-decreasing function κ.
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Choose any γ such that δ/2 < γ < q/2 and set g(N) = d(K · logN)
1

2γ−δ e for some
K > 0 to be specified later. Next, note that

N⋂
n=g(N)

{
Bκ(n) ≤ 1

}
⊆

N−1⋂
n=g(N)

{
sup

t∈[κ(n),κ(n+1)]

Bt ≤ nγ + 1

}

∪
N−1⋃

n=g(N)

{
sup

t∈[κ(n),κ(n+1)]

Bt −Bκ(n) > nγ

}
=: GN ∪HN .

Clearly, it holds that

P
(

sup
n=1,...,N

Bκ(n) ≤ 1

)
≤ P

(
sup

n=g(N),...,N

Bκ(n) ≤ 1

)
≤ P (GN) + P (HN) .

Let us first show that the term P (HN) decays faster than N−q/2 if we choose the
constant K in the definition of g large enough: Using the stationarity of increments
and the scaling property of Brownian motion, we obtain the following estimates:

P (HN) ≤
N−1∑

n=g(N)

P

(
sup

t∈[0,κ(n+1)−κ(n)]

Bt > nγ

)

=
N−1∑

n=g(N)

P

(
sup
t∈[0,1]

Bt >
nγ√

κ(n+ 1)− κ(n)

)
.

Let c denote a constant such that κ(n+ 1)− κ(n) ≤ c nδ for all n sufficiently large. In
particular, for N large enough,

P (HN) ≤ N max
n=g(N),...,N

P

(
sup
t∈[0,1]

Bt > c−1/2nγ−δ/2

)

= N P

(
sup
t∈[0,1]

Bt > c−1/2g(N)γ−δ/2

)
,

since γ was chosen such that γ − δ/2 > 0. Next, recall that

P

(
sup
t∈[0,1]

Bt > u

)
= P (|B1| > u) =

√
2

π

∫ ∞
u

e−x
2/2 dx ≤ e−u

2/2, u ≥ 0, (2.6)

so we finally conclude that

P (HN) ≤ N exp

(
−g(N)2γ−δ

2c

)
≤ N1− K

2 c .
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By choosing K large enough, the assertion that P (HN) decreases faster than N−q/2 is
verified.
It remains to show that P (GN) - N−q/2 (logN)q/(4γ−2δ). To this end, note that κ(n) ≤ t
implies that n ≤ (t/c1)1/q for n sufficiently large. Using also that κ(·) is non-decreasing,
we obtain that

P (GN) ≤ P

 N−1⋂
n=g(N)

{
sup

t∈[κ(n),κ(n+1)]

Bt − (t/c1)γ/q ≤ 1

}
= P

(
Bt − (t/c1)γ/q ≤ 1,∀t ∈ [κ(g(N)), κ(N)]

)
=: q1(N). (2.7)

Let us define the continuous, non-decreasing function F by

F (t) :=

{
c
−γ/q
1 tγ/q, t ≥ c1,

1, t < c1.

Clearly, we have for N large enough that

q1(N) = P
(
Bt − c−γ/q1 tγ/q ≤ 1,∀t ∈ [κ(g(N)), κ(N)]

)
= P (Bt − F (t) ≤ 1,∀t ∈ [κ(g(N)), κ(N)]) .

Since E [BsBt] ≥ 0 for all s, t ≥ 0, Slepian’s inequality (cf. (1.12) of Lemma 1.2.5 here)
implies that

P (Bt − F (t) ≤ 1,∀t ∈ [κ(g(N)), κ(N)]) ≤
P
(
supt∈[0,κ(N)] Bt − F (t) ≤ 1

)
P
(
supt∈[0,κ(g(N))]Bt − F (t) ≤ 1

) .
One has to determine the probability that a Brownian motion does not hit the moving
boundary 1 + F (·). Now

P (Bt ≤ c tα + 1, ∀t ∈ [0, T ]) � P (Bt ≤ 1,∀t ∈ [0, T ]) � T−1/2, T →∞

if α < 1/2 and c > 0 by [Uch80, Theorem 5.1], i.e. adding a drift of order tα (α < 1/2)
to a Brownian motion does not change the rate T−1/2. Since γ/q < 1/2, this implies
for the boundary 1 + F (·) that

P
(
supt∈[0,κ(N)] Bt − F (t) ≤ 1

)
P
(
supt∈[0,κ(g(N))] Bt − F (t) ≤ 1

) � P
(
supt∈[0,κ(N)] Bt ≤ 1

)
P
(
supt∈[0,κ(g(N))]Bt ≤ 1

)
� κ(g(N))1/2 κ(N)−1/2 � (logN)q/(4γ−2δ)N−q/2.

�
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Remark 2.2.3. The assertion of Theorem 2.2.2 above becomes false if we remove the
condition κ(N + 1)− κ(N) - N δ for some δ < q. Indeed, let q > 0 and for n ∈ N, set

κ(n) = exp(qk), if ek ≤ n < ek+1 for some k ∈ N.

Then κ(N) � N q as N → ∞. Moreover, κ(N + 1) − κ(N) = 0 if there is k ∈ N such
that N,N + 1 ∈ [ek, ek+1), and

κ(N + 1)− κ(N) = exp(q(k + 1))− exp(qk) = κ(N)(eq − 1)

for k ∈ N such that ek ≤ N < ek+1 ≤ N + 1. In particular, κ(N + 1) − κ(N) - N q,
whereas for every δ < q,

lim sup
N→∞

N−δ(κ(N + 1)− κ(N)) =∞,

so κ does not fulfill the assumptions of Theorem 2.2.2. Next, note that

P
(
Bκ(n) ≤ 0,∀n = 1, . . . , N

)
= P

(
B(eqk) ≤ 0, k ∈ N, ek ≤ N

)
= P

(
B(eqk) ≤ 0,∀k = 1, . . . , blogNc

)
≥
blogNc∏
k=1

P
(
B(eqk) ≤ 0

)
≥ (1/2)logN = N− log 2.

The first inequality holds by Slepian’s inequality (see also (2.20)). Hence, N−q/2 cannot
be an upper bound for the survival probability if q > 2 log 2.

2.2.2 Some extensions

The proof of the upper bound does not require properties that are specific to Brownian
motion. As a matter of fact, the conclusion of Theorem 2.1.1 remains true if we replace
the Brownian motion by other Gaussian processes such as fractional Brownian motion
or integrated Brownian motion. Moreover, we may also consider Lévy processes instead
of the Brownian motion. Let us discuss the necessary modifications in the proof of
Theorem 2.1.1 in more detail.
First of all, we state a technical lemma that reduces the problem of finding an upper
bound on the survival probability to controlling the probability that the process stays
below a certain moving barrier and the probability that the increments of the process
are very large.

Lemma 2.2.4. Let (Xt)t≥0 denote a stochastic process and κ : [0,∞) → (0,∞) some
measurable function with κ(N) � N q for some q > 0. Let γ > 0 and (gn)n≥1 some
sequence with gn ∈ N, gn < n and gn →∞ as n→∞. Then there are constants c1, N0 >
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0 such that for all N ≥ N0, it holds that P
(
supn=1,...,N Xκ(n) ≤ 1

)
≤ q1(N) + q2(N),

where

q1(N) := P

(
sup

t∈[κ(gN ),κ(N)]

Xt − (t/c1)γ/q ≤ 1

)
,

q2(N) :=
N−1∑
n=gN

P

(
sup

t∈[κ(n),κ(n+1)]

Xt −Xκ(n) > nγ

)
.

Proof. We have seen in the proof of Theorem 2.2.2 that we can assume without loss
of generality that κ is non-decreasing. As before, one verifies that

N⋂
n=gN

{
Xκ(n) ≤ 1

}
⊆

N−1⋂
n=gN

{
sup

t∈[κ(n),κ(n+1)]

Xt ≤ nγ + 1

}

∪
N−1⋃
n=gN

{
sup

t∈[κ(n),κ(n+1)]

Xt −Xκ(n) > nγ

}
=: GN ∪HN ,

Hence,

P
(
Xκ(n) ≤ 1,∀n = 1, . . . , N

)
≤ P

(
Xκ(n) ≤ 1,∀n = gN , . . . , N

)
≤ P (GN) + P (HN) .

By assumption, there is a constant c1 > 0 such that c1n
q ≤ κ(n) for n large enough.

Therefore, κ(n) ≤ t implies that n ≤ (t/c1)1/q for all n sufficiently large. Using also
that κ(·) is non-decreasing, we obtain that

P (GN) ≤ P

(
N−1⋂
n=gN

{
sup

t∈[κ(n),κ(n+1)]

Xt − (t/c1)γ/q ≤ 1

})
= q1(N),

whenever N is large enough (so that gN is large). Moreover, the inequality P (HN) ≤
q2(N) is trivial by subadditivity. �

As in the proof of Theorem 2.2.2, the goal is to show that the moving boundary
f(t) = (t/c1)γ/q does not change the survival exponent of the process X for a suitable
choice of γ, whereas the term q2 is of lower order. Let us carry this out for fractional
Brownian motion, integrated Brownian motion and Lévy processes.

Fractional Brownian motion

In this section, we consider fractional Brownian motion (FBM), see Section 1.2.3 for a
definition and properties. In particular, recall that the persistence exponent is equal to
1−H for a FBM with Hurst index H ∈ (0, 1). The following theorem is the analogue
of Theorem 2.2.2.
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Theorem 2.2.5. Let X be a FBM with Hurst index H ∈ (0, 1). Assume that κ satisfies
the assumptions of Theorem 2.2.2. Then

P
(
Xκ(n) ≤ 1,∀n = 1, . . . , N

)
= N−q(1−H)+o(1), N →∞.

Of course, the proof is again based upon estimates on the quantities q1 and q2 of
Lemma 2.2.4. In partiular, we have to determine the asymptotic behaviour of the
survival probability of FBM involving a moving boundary f in order to control the
term q1 stated in the lemma. To do so, we need the concept of the reproducing kernel
Hilbert space (RKHS).
Let us just give a very concise description of the RKHS. For a thorough introduction,
we refer to [Wei82]. Let (Xt)t∈T denote a mean-zero Gaussian process defined on a
probability space (Ω,F ,P) with covariance function R(t, s) = E [XsXt], s, t ∈ T, where
T denotes a closed subset of R. The covariance function R determines a Hilbert space
H with scalar product (·, ·)H, called the RKHS H of X, which consists of real functions
f : T→ R such that

R(·, t) ∈ H, ∀t ∈ T, (2.8)
(f,R(·, t))H = f(t), ∀t ∈ T. (2.9)

Property (2.9) is often called the reproducing property ofH. To give a more constructive
description, let

H0 := span {Xt : t ∈ T} , H := H0,

where the closure is taken w.r.t. the norm L2(Ω). If we equip the closed subspace H of
L2(Ω) with the scalar product (h1, h2)H := E [h1h2], it is a Hilbert space.
Define now the map

J : H→ RT, (J h)(t) := E [hXt] , t ∈ T.

Let H := J (H), and (J h1,J h2)H := (h1, h2)H = E [h1h2].
Indeed, it is not hard to show that J (H) fulfills the properties (2.8) and (2.9). If
h = Xt ∈ H, then (J h) = R(t, ·) ∈ H, and if h =

∑n
j=1 αjXtj ∈ H0 for some

t1, . . . , tn ∈ T, α1, . . . , αn ∈ R, then J h =
∑n

j=1 αjR(tj, ·) ∈ H and

(J h,R(·, t))H = (J h,J (Xt))H = (h,Xt)H = E [hXt] =
n∑
j=1

αjR(tj, t) = (J h)(t).

Moreover, if (hn)n≥1 is a sequence in H0 such that hn → h in H, then ‖J hn −J h‖H =
‖hn − h‖H → 0, and it follows that (J h,R(t, ·))H = (J h)(t), i.e. (2.9) holds for all
f ∈ J (H).

Let us now state the result that we need below to deal with moving boundaries:
If (Zt)t≥0 is a centred Gaussian process and f is an element of the RKHS (H, ‖·‖H)
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of Z, the following estimate is proved in [AD13, Proposition 3.1]: With pT (1) :=
P (Zt ≤ 1,∀t ∈ [0, T ]), it holds that

e−
√

2‖f‖2H log(1/pT (1))−‖f‖H/2 ≤ P (Zt − f(t) ≤ 1,∀t ∈ [0, T ])

P (Zt ≤ 1,∀t ∈ [0, T ])
≤ e
√

2‖f‖2H log(1/pT (1))−‖f‖H/2.

(2.10)
In particular, if pT (1) = T−θ+o(1) for some θ > 0, (2.10) implies that

P (Zt − f(t) ≤ 1) = T−θ+o(1), T →∞.

LetHH denote the RKHS corresponding to a FBM (Xt)t∈R with Hurst index H ∈ (0, 1).
Various characterisations of this space are known, see [BP88, DÜ99, PT00]. In general,
it is not easy to say whether a given function f belongs to HH . Since we are interested
in an upper bound on q1 given in Lemma 2.2.4, it is enough to find a function g ∈ HH

such that f ≤ g. Then

P (Xt − f(t) ≤ 1,∀t ∈ [0, T ]) ≤ P (Xt − g(t) ≤ 1,∀t ∈ [0, T ]) ,

and the probability on the right-hand side can be estimated in view of (2.10). The
following lemma will be helpful:

Lemma 2.2.6. Let 1/2 6= H ∈ (0, 1) and 0 < ρ < H. Let f be some measurable, locally
bounded function such that f(T ) - T ρ as T →∞. Let T0 > 0. Then there is a function
g ∈ HH such that g ≥ 0 and f ≤ g on [T0,∞).

Proof. Let η > 1/2 (to be specified later), T0 > 0, and set h(t) := t−η for t ≥ T0/2 and
h(t) = 0 for t < T0/2. Note that h ∈ L2(R). Moreover, the assumptions on f imply
that there is a constant C1 > 0 such that f(t) ≤ C1t

ρ for all t ≥ T0.
Case H > 1/2:
Since h ∈ L2(R), according to [BP88, Corollary 4.2], the function

H(t) :=

∫ t

0

∫ s

−∞
(s− u)H−3/2h(u) du ds, t ∈ R,

is an element of HH . Note that H ≡ 0 on (−∞, T0/2], and for t > T0/2, we have that

H(t) =

∫ t

0

∫ s

T0/2

(s− u)H−3/2u−η du ds ≥
∫ t

T0/2

s−η
∫ s

T0/2

(s− u)H−3/2 du ds

=

∫ t

T0/2

s−η
∫ s−T0/2

0

uH−3/2 du ds =
1

H − 1/2

∫ t

T0/2

s−η(s− T0/2)H−1/2 ds

≥ t−η

H − 1/2

∫ t−T0/2

0

sH−1/2 ds =
t−η(t− T0/2)H+1/2

(H + 1/2)(H − 1/2)
> 0.

In particular, if t ≥ T0, there is a constant C2 = C2(H,T0) such that H(t) ≥ C2 t
H+1/2−η

for all t ≥ T0. Since ρ < H, we may take η := H − ρ + 1/2 > 1/2, so H(t) ≥ C2 t
ρ for
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all t ≥ T0. Since f(t) ≤ C1t
ρ for all t ≥ T0, we see that f(t) ≤ (C1/C2) · H(t) for all

t ≥ T0. Hence, the function g(t) := (C1/C2) ·H(t) ∈ HH satisfies g ≥ 0 and f ≤ g on
[T0,∞).
Case H < 1/2:
According to [PT00, Proposition 6.1],

HH =
{
KHv : v ∈ L2(R)

}
,

where
(KHv)(t) :=

∫ ∞
−∞

v(u) (D
1/2−H
− 1{[0,t)})(u) du,

where Dβ
− is the Marchaud fractional derivative of order β ∈ (0, 1), see [SKM93]. For

our purposes, it is enough to know that for H < 1/2, by [PT00, Lemma 3.1],

Γ(H + 1/2) (D
1/2−H
− 1{[0,t)})(u) = (max {t− u, 0})H−1/2, t, u > 0.

With h as above, this implies that

H(t) := Γ(H + 1/2) · (KHh)(t) =

∫ ∞
T0/2

u−ηΓ(H + 1/2)(D
1/2−H
− 1{[0,t)})(u) du

= 1{t>T0/2} ·
∫ t

T0/2

u−η(t− u)H−1/2 du.

In particular, H(t) = 0 for t ≤ T0/2, and for t > T0/2,

H(t) ≥ t−η ·
∫ t

T0/2

(t− u)H−1/2 du = t−η ·
∫ t−T0/2

0

uH−1/2 du

=
1

(H + 1/2)
t−η(t− T0/2)H+1/2.

In particular, there is a constant C3 > 0 such that H(t) ≥ C3t
H−η+1/2 for all t ≥ T0.

As above, with η := H − ρ + 1/2 > 1/2, the function g(t) := (C1/C3) · H(t) has the
desired properties. �

Proof of Theorem 2.2.5. In view of Lemma 2.2.4, it suffices to show that for a
suitable choice of gN and γ, q1 yields the correct order whereas q2 is of lower order.
We start with the term q2. Let c denote a constant such that κ(n + 1) − κ(n) ≤ c nδ

for all n sufficiently large and write X∗1 = sup {Xt : t ∈ [0, 1]}. Using first that X has
stationary increments and then that X is self-similar, we find that

q2(N) =
N−1∑
n=gN

P

(
sup

t∈[0,κ(n+1)−κ(n)]

Xt > nγ

)
≤

N−1∑
n=gN

P

(
sup

t∈[0,cnδ]

Xt > nγ

)

≤
N−1∑
n=gN

P
(
X∗1 > c−Hnγ−δH

)
.
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If we take γ > δH, it follows that q2(N) ≤ N P
(
X∗1 > c−Hgγ−δHN

)
. Now set gN :=

d(K logN)1/((γ−δH)2)e and apply the Gaussian concentration inequality (see e.g. [LT91,
Section 3.1]) to obtain for suitable constants d1, d2 > 0 that

q2(N) ≤ d1N exp
(
−d2g(N)2(γ−δH)

)
≤ d1N exp (−d2K logN) = d1N

1−d2K .

By choosing K large enough, we see that q2(N) = o(N−q(1−H)).
Let us now show that q1(N) - N−q(1−H)+o(1). Let

F (t) := c
−γ/q
1 tγ/q, t ≥ 0.

Since δ < q, we can fix γ ∈ (δH, qH) such that ρ := γ/q < H. According to
Lemma 2.2.6, there is a function G : [0,∞) → [0,∞) such that F (t) ≤ G(t) for all
t ≥ 1, and G is an element of the RKHS of X. Combining this with Slepian’s inequality
(E [XsXt] ≥ 0 for all s, t) and the fact that G ≥ 0, we find that

q1(N) = P

(
sup

t∈[κ(gN ),κ(N)]

Xt − F (t) ≤ 1

)
≤ P

(
sup

t∈[κ(gN ),κ(N)]

Xt −G(t) ≤ 1

)

≤
P
(
supt∈[0,κ(N)] Xt −G(t) ≤ 1

)
P
(
supt∈[0,κ(gN )] Xt −G(t) ≤ 1

) ≤ P
(
supt∈[0,κ(N)] Xt −G(t) ≤ 1

)
P
(
supt∈[0,κ(gN )] Xt ≤ 1

) .

Since G is an element of the RKHS and P (Xt ≤ 1,∀t ∈ [0, T ]) = T−(1−H)+o(1), we
conclude from (2.10)) that

P (Xt −G(t) ≤ 1, ∀t ∈ [0, T ]) = T−(1−H)+o(1), T →∞,

i.e. the moving boundary G does not not change the survival exponent θ = 1 − H of
FBM. Hence, since gN = N o(1) and κ(N) � N q, it follows that

q1(N) ≤
P
(
supt∈[0,κ(N)] Xt −G(t) ≤ 1

)
P
(
supt∈[0,κ(gN )] Xt ≤ 1

) =
κ(N)−(1−H)+o(1)

κ(gN)−(1−H)+o(1)
= N−q(1−H)+o(1).

�

Remark 2.2.7. If X is a FBM, set Yk := Xk − Xk−1 for all k ≥ 1, i.e. Xn =
∑n

k=1 Yk.
Note that the Yk are correlated standard normal random variables unless H = 1/2. In
particular, since X has stationary increments and X0 = 0, we see from (1.9) that

E [YkYk+n] = E [(Xk −Xk−1)(Xk+n −Xk+n−1)] = E [X1(Xn+1 −Xn)]

=
1 + (n+ 1)2H − n2H

2
− 1 + n2H − (n− 1)2H

2
.
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With f(x) = (1 + x)2H , this can be written as

E [YkYk+n] =
n2H−2

2
· f(1/n) + f(−1/n)− 2f(0)

1/n2

∼ n2H−2f ′′(0)/2 = H(2H − 1)n2H−2, n→∞.

In particular, since H ∈ (0, 1), it holds that E [YkYk+n] → 0, and if we apply Theo-
rem 2.2.5 with κ(n) = n, we obtain that

P

(
n∑
k=1

Yk ≤ 1,∀n = 1, . . . , N

)
= N−(1−H)+o(1), N →∞.

This shows that the persistence exponent for sums of correlated random variables
(Yn)n≥1 depends on the speed of the decay of E [YkYk+n] as n → ∞ in this special
case. In contrast to the general results for random walks (see Section 1.2.1), persistence
of sums of correlated random variables has not been studied in the literature so far, and
although we do not pursue this here, it would be interesting to make progress in this
direction.

Integrated Brownian motion

Let B denote a Brownian motion, and define the integrated Brownian motion (It)t≥0 by
It :=

∫ t
0
Bs ds. Recall that the persistence exponent of I is θ = 1/4, see Section 1.2.2.

If κ is as in Theorem 2.2.2, we have again that

P
(
Iκ(n) ≤ 1,∀n = 1, . . . , N

)
= P (It ≤ 1,∀t ∈ [0, κ(N)]) ·N o(1), N →∞,

i.e. the persistence exponent in the continuous and discrete time framework coincides:

Theorem 2.2.8. Let κ : [0,∞)→ (0,∞) be as in Theorem 2.2.2. It holds that

P
(
Iκ(n) ≤ 1, ∀n = 1, . . . , N

)
= N−q/4+o(1), N →∞.

Proof. With the notation of Lemma 2.2.4, we consider the quantities q1 and q2 defined
there. First, note that, for t > s, we have that

It − Is =

∫ t

s

Bu du ≤ (t− s) sup
u∈[s,t]

Bu ≤ (t− s) sup
u∈[0,t]

Bu.



32 CHAPTER 2. SUMS OF WEIGHTED I.I.D. RANDOM VARIABLES

Therefore, for all N sufficiently large, we obtain that

q2(N) =
N−1∑
n=gN

P

(
sup

u∈[κ(n),κ(n+1)]

Iu − Iκ(n) > nγ

)

≤
N−1∑
n=gN

P

(
(κ(n+ 1)− κ(n)) sup

u∈[0,κ(n+1)]

Bu > nγ

)

≤
N−1∑
n=gN

P

(
sup
u∈[0,1]

Bu > c−1nγ−δκ(n+ 1)−1/2

)

≤
N−1∑
n=gN

P

(
sup
u∈[0,1]

Bu > d1n
γ−δ−q/2

)
.

We have used that κ(n + 1) − κ(n) ≤ c nδ in the third inequality, and c1n
q ≤ κ(n) in

the last inequality. Take γ > δ + q/2 so that

q2(N) ≤ NP

(
sup
u∈[0,1]

Bu > d1g
γ−δ−q/2
N

)
= NP

(
|B1| > d1g

γ−δ−q/2
N

)
.

In view of (2.6), it is easy to conclude that q2 decreases faster than N−q/4 if we set
gN := bK(logN)1/(2(γ−δ)−q)c, where K is some suitably large constant.
It remains to show that q1(N) - N−q/4+o(1). This follows again along similar lines as
in the proof of Theorem 2.2.2: Since E [IsIt] ≥ 0 for all s, t ≥ 0, Slepian’s inequality
implies that

q1(N) ≤ P

(
sup

t∈[κ(g(N)),κ(N)]

It − c−γ/q1 tγ/q ≤ 1

)
≤

P
(

supt∈[0,κ(N)] It − c
−γ/q
1 tγ/q ≤ 1

)
P
(
supt∈[0,κ(g(N))] It ≤ 1

) .

(2.11)
The moving barrier does not change the survival exponent of I for a suitable choice of
γ, since

P (It ≤ c tα + 1, ∀t ∈ [0, T ]) = T−1/4+o(1), T →∞,
if 0 < α < 3/2 and c > 0, see [AD13, Example 3.2]. For our moving barrier, this
amounts to taking γ/q < 3/2. Taking into account the condition on γ required for
treating the term q2, we must choose γ such that δ+ q/2 < γ < 3q/2. Note that this is
always possible since δ < q. Hence, for such γ, the assertion q1(N) - N−q/4+o(1) follows
easily from (2.11). �

Lévy processes

Finally, let us consider Lévy processes. Recall from Section 1.2.1 that the persistence
exponent is equal to θ = 1/2 if X is a Lévy process with E [X1] = 0 and E [X2

1 ] < ∞,
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see also Theorem 3.3.1 below for a slightly more precise result. Under a subexponential
moment condition, we can prove the analogue of Theorem 2.2.2 for Lévy processes.

Theorem 2.2.9. Let X = (Xt)t≥0 denote a centred Lévy process with E [exp(|X1|α)] <
∞ for some α > 0, and let κ : [0,∞)→ (0,∞) be as in Theorem 2.2.2. It holds that

P
(

sup
n=1,...,N

Xκ(n) ≤ 1

)
= N−q/2+o(1), N →∞.

Proof. Let us again show that the term q2 of Lemma 2.2.4 is of lower order than N−q/2
for a suitable choice of γ and gN . To this end, note that the stationarity of increments
and the fact that κ(n+ 1)− κ(n) ≤ cnδ for all n large enough imply that

q2(N) =
N−1∑
n=gN

P

(
sup

t∈[0,κ(n+1)−κ(n)]

Xt > nγ

)
≤

N−1∑
n=gN

P

(
sup

t∈[0,cnδ]

Xt > nγ

)
.

Recall the following maximal inequality for Lévy processes:

P

(
sup
t∈[0,T ]

|Xt| ≥ x

)
≤ 9P (|XT | ≥ x/30) , T, x > 0. (2.12)

This follows from Montgomery-Smith’s inequality for sums of centred i.i.d. random
variables ([MS93, Corollary 4]) since

P

(
sup
t∈[0,T ]

|Xt| ≥ x

)
= lim

n→∞
P
(

sup
k=1,...,n

∣∣XkT/n

∣∣ ≥ x

)
≤ 9P (|XT | ≥ x/30) .

The application of Montgomery-Smith’s inequality is possible since XkT/n = Y1,T/n +
· · · + Yk,T/n (k = 1, . . . , n) where Y1,T/n, . . . , Yn,T/n are i.i.d. random variables with
Y1,T/n

d
= XT/n.

Write mn = dcnδe. The inequality (2.12) implies that

q2(N) ≤
N−1∑
n=gN

P

(
sup

t∈[0,mn]

Xt >
(mn

2c

)γ/δ)
≤ 9

N−1∑
n=gN

P

(
|X(mn)| > m

γ/δ
n

(2c)γ/δ30

)
.

We can then conclude in view of the following large deviation result (see Lemma 2.2.10
below): Let ρ > 1/2 and d > 0. Since E [X1] = 0 and E [exp(|X1|α)] < ∞, there are
constants C, η > 0 such that for all n large enough,

P (|Xn| > dnρ) ≤ C exp(−nη).

In particular, if γ/δ > 1/2, it follows with ρ = γ/δ and d = 1/((2c)γ/δ30) that

q2(N) ≤ 9C
N−1∑
n=gN

exp(−mηγ/δ
n ) ≤ 9C N exp(−gηγ/δN ),
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and if we set gN := dK(logN)δ/(ηγ)e, we conclude that q2(N) - N1−K which is of lower
order than N−q/2 if we take K = q/2 + 2.
Let us now show that q1(N) - N−q/2+o(1). Let F (t) := c

−γ/q
1 tγ/q for t ≥ c1 and F (t) = 1

for t < c1. Clearly, we have that

q1(N) = P

(
sup

t∈[κ(gN ),κ(N)]

Xt − F (t) ≤ 1

)
≤ P (Xn − F (n) ≤ 1,∀n = dκ(gN)e, . . . , bκ(N)c)

≤ P (Xn − F (n) ≤ 1,∀n = 1, . . . , bκ(N)c)
P (Xn − F (n) ≤ 1,∀n = 1, . . . , dκ(gN)e − 1)

. (2.13)

The second inequality follows from [EPW67]. Indeed, we have that Xn = Y1 + · · ·+ Yn
where Yk = Xk − Xk−1 are i.i.d. Moreover, if u1, . . . , uN ∈ R, 1 ≤ K < L ≤ N , note
that the function

gK,L(x1, . . . , xN) 7→

{
−1,

∑n
k=1 xk ≤ un for all n = K, . . . , L,

0, else,

is non-decreasing in every component. Since independent random variables are associ-
ated ([EPW67]), the very definition of association of random variables implies that

E [g1,N0(Y1, . . . , YN)gN0+1,N(Y1, . . . , YN)] ≥ E [g1,N0(Y1, . . . , YN)]·E [gN0+1,N(Y1, . . . , YN)] ,

i.e. for 1 ≤ N0 < N , it holds that

P

(
N⋂
k=1

{Xn ≤ uk}

)
≥ P

(
N0⋂
k=1

{Xk ≤ uk}

)
· P

(
N⋂

k=N0+1

{Xk ≤ uk}

)
, (2.14)

so (2.13) follows.
By [Nov82, Theorem 1], it holds that

P (Xn − ns ≤ 1,∀n = 1, . . . , N) � N−1/2, N →∞,

whenever s ∈ (0, 1/2). For our function F , this amounts to γ/q < 1/2. Combining this
with the condition γ/δ > 1/2, let us fix γ ∈ (δ/2, q/2). Since κ(gN) = N o(1), the result
then follows easily from (2.13). �

Let us remark that one could also use the results of [AKS12] on moving boundaries
for Lévy processes to show that the boundary F does not change the persistence ex-
ponent of X in the previous proof under a slighlty more restrictive assumption on the
distribution of X1, see [AKS12, Theorem 2].

The large deviation estimate for a Lévy process needed in the proof of Theorem 2.2.9
follows from the very general results of [Nag79]. One could derive a more precise
estimate than the one we give in the Lemma 2.2.10, but in order not to make things
more complicated than necessary, we state the following result that is sufficient for our
purposes.
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Lemma 2.2.10. Let Y1, Y2, . . . denote a sequence of centred i.i.d. random variables
such that E [exp(|Y1|α)] < ∞ for some α > 0. Let Sn =

∑n
k=1 Yk. Let ρ > 1/2 and

c > 0. Then there are constant C, η,N0 > 0 such that

P (|Sn| ≥ cnρ) ≤ C exp(−nη), n ≥ N0.

Proof. We can assume w.lo.g. that ρ < 1. Let t ≥ 2 and set b = t/(t+2) and a = 1−b.
By [Nag79, Corollary 1.7], if x, y > 0, it holds that

P (Sn ≥ x) ≤ nP (Y1 ≥ y) + exp

(
− a2x2

2etnB(y)

)
+

(
nA(t, y)

bxyt−1

)bx/y
,

where B(y) = E [Y 2
1 ;Y1 < y] and A(t, y) = E [Y t

1 ; 0 < X1 < y].
If we apply this inequality with t = 3, x = cnρ, y = n1−ρ. Since B(y) ≤ E [Y 2

1 ] =: σ2

and A(3, y) ≤ E
[
|Y1|3

]
=: A for any y > 0, we see that

P (Sn ≥ cnρ) ≤ nP
(
Y1 ≥ n1−ρ)+ exp

(
−C1 c

2 n2ρ−1
)

+
(
C2n

ρ−1/c
)bcn2ρ−1

,

where C1 := a2/(2e3σ2) and C2 := A/b are constants that neither depend on n nor c.
Taking into account that P (Y1 ≥ x) ≤ E [exp(|Y1|α)] exp(−xα) for any x > 0 and also
that 1/2 < ρ < 1, we see that, whenever n ≥ n0 = n0(c),

P (Sn ≥ cnρ) ≤ nE [exp(|Y1|α)] exp(−nα(1−ρ)) + 2 exp
(
−C1 c

2 n2ρ−1
)
.

In particular, if we take η such that 0 < η < min {α(1− ρ), 2ρ− 1}, it follows that

lim
n→∞

P (Sn ≥ cnρ) · exp(nη) = 0.

Replacing S by −S in the above estimates, we find in the same way that also

lim
n→∞

P (Sn ≤ −cnρ) · exp(nη) = 0.

Hence, the result follows since P (|Sn| ≥ cnρ) = P (Sn ≤ −cnρ) + P (Sn ≥ cnρ). �

2.2.3 Subexponential weight functions

Let us turn again to the persistence problem for Brownian motion at discrete time points
κ(1), κ(2), . . . . Here we consider functions κ(·) that grow faster than any polynomial
but slower than any exponential function, i.e.

lim
N→∞

N q

κ(N)
= 0, ∀q > 0, lim

N→∞

κ(N)

eβN
= 0, ∀β > 0.

For simplicity, we restrict our attention to the natural choice κ(n) � exp(ν nα) for
ν > 0, α ∈ (0, 1). Under certain additional assumptions, the proof of Theorem 2.2.2
can be adapted to yield the following result:
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Theorem 2.2.11. Let κ : [0,∞)→ (0,∞) be a measurable function such that

κ(N) � exp(ν Nα), κ(N + 1)− κ(N) - κ(N)N−γ, N →∞,

where α, ν > 0 and γ > 3α. Then

lim
N→∞

N−α logP
(
Bκ(n) ≤ 0,∀n = 1, . . . , N

)
= −ν/2.

More precisely, for Λ := α/(γ − 2α) < 1, one has

exp
(
−ν

2
Nα
)
- P

(
Bκ(n) ≤ 0,∀n = 1, . . . , N

)
- exp

(
−ν

2
Nα
)
· exp

(
NΛα+o(1)

)
.

Proof. For simplicity of notation, we again use the barrier 1 instead of 0. The result
then follows in view of Remark 2.2.1. By assumption, there are constants N0, c1, c2 > 0
such that c1 exp(ν nα) ≤ κ(n) ≤ c2 exp(ν nα) for all n ≥ N0. Since the lower bound
follows easily by comparison to the continuous time case, we only prove the upper bound.
We can assume w.l.o.g. that κ is non-decreasing (see the proof of Theorem 2.2.2). The
assumption γ > 3α allows us to find constants ρ, δ with α < ρ < γ/2 and α/(γ− 2ρ) <
δ < 1. Set

f(t) := exp
(ν

2
tα
)
t−ρ, g(t) := dtδe, t > 0.

As in the proof of Theorem 2.2.2, it holds that

P
(

sup
n=1,...,N

Bκ(n) ≤ 1

)
≤ P

(
sup

n=g(N),...,N

Bκ(n) ≤ 1

)
≤ P (GN) + P (HN) ,

where

GN :=
N−1⋂

n=g(N)

{
sup

t∈[κ(n),κ(n+1)]

Bt ≤ f(n) + 1

}
,

HN :=
N−1⋃

n=g(N)

{
sup

t∈[κ(n),κ(n+1)]

Bt −Bκ(n) > f(n)

}
.

Next, using the stationarity and the scaling property of Brownian motion, we have that

P (HN) ≤
N−1∑

n=g(N)

P

(
sup
t∈[0,1]

Bt >
f(n)√

κ(n+ 1)− κ(n)

)
.

We first show that the term P (HN) is of lower order than exp(−Nα). To this end, since
κ(N+1)−κ(N) ≤ c4κ(N)N−γ ≤ c5 exp(νNα)N−γ for all N sufficiently large and some
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constants c4, c5 > 0, we get

P (HN) ≤ N max
n=g(N),...,N

P

(
sup
t∈[0,1]

Bt > c
−1/2
5 nγ/2−ρ

)

= N P

(
sup
t∈[0,1]

Bt > c
−1/2
5 g(N)γ/2−ρ

)
,

since γ/2− ρ > 0 by the choice of ρ. By (2.6), we obtain

P (HN) ≤ N exp

(
− 1

2c5

g(N)γ−2ρ

)
- N exp

(
− 1

2c5

N δ(γ−2ρ)

)
, N →∞.

Now δ(γ − 2ρ) > α by the choice of δ, so this term is o(exp(−Nα)).
It remains to show that

P (GN) - exp
(
−ν

2
Nα
)
· exp

(ν
2
N δα

)
, N →∞.

To this end, note that t ≥ κ(n) implies that n ≤ (log(t/c1)/ν)1/α =: h(t) if n ≥ N0.
Keeping in mind that f(·) is ultimately increasing and using that

F (t) := f(h(t)) =
νρ/α
√
c1

·
√
t

(log(t/c1))ρ/α
=: c3 ·

√
t

(log(t/c1))ρ/α
, t ≥ c1,

we obtain the following estimates for large N :

P (GN) ≤ P

 N−1⋂
n=g(N)

{
sup

t∈[κ(n),κ(n+1)]

Bt − f (h(t)) ≤ 1

}
= P (Bt − F (t) ≤ 1,∀t ∈ [κ(g(N)), κ(N)]) =: q1(N).

If we set F (t) = 0 for t ≤ c1, by Slepian’s inequality, one has for N sufficiently large

q1(N) = P

(
sup

t∈[κ(g(N)),κ(N)]

Bt − F (t) ≤ 1

)
≤

P
(
supt∈[0,κ(N)] Bt − F (t) ≤ 1

)
P
(
supt∈[0,κ(g(N))] Bt ≤ 1

) .

Since ρ > α entails that∫ ∞
1

F (t)t−3/2 dt = c3 ·
∫ ∞

min{c1,1}

1

t(log(t/c1))ρ/α
<∞,

the drift F (·) does not change the rate of the survival probability by [Uch80, Theo-
rem 5.1]. Therefore,

P
(
supt∈[0,κ(N)] Bt − F (t) ≤ 1

)
P
(
supt∈[0,κ(g(N))]Bt ≤ 1

) �
P
(
supt∈[0,κ(N)] Bt ≤ 1

)
P
(
supt∈[0,κ(g(N))]Bt ≤ 1

)
� κ(g(N))1/2 κ(N)−1/2 � exp

(
−ν

2
Nα
)
· exp

(ν
2
N δα

)
, N →∞.
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Finally, in order to make δ ∈ (α/(γ − 2ρ), 1) as small as possible, we can let ρ ↓ α, so
that δ = α/(γ − 2α) + o(1) = Λ + o(1) as ρ ↓ α. �

Corollary 2.2.12. If κ(n) = exp(ν nα) for some ν > 0 and α ∈ (0, 1/4), then

lim
N→∞

N−α logP
(
Bκ(n) ≤ 0,∀n = 1, . . . , N

)
= −ν/2.

Proof. Note that

κ(N + 1)− κ(N) = κ(N)(eν((N+1)α−Nα) − 1) ∼ νκ(N)((N + 1)α −Nα)

= νκ(N)Nα−1 (1 + 1/N)α − 1

1/N
∼ αν κ(N)Nα−1, N →∞.

Hence, we can apply Theorem 2.2.11 with γ = 1− α if γ > 3α, i.e. for α ∈ (0, 1/4). �

Remark 2.2.13. The case α ≥ 1/4 remains unsolved. In view of the heuristics presented
below (2.4), it would be interesting to know whether

lim
N→∞

N−α
logP

(
supn=1,...,N Bκ(n) ≤ 1

)
Nα

= −ν/2 = lim
N→∞

logP
(
supt∈[0,κ(N)] Bt ≤ 1

)
Nα

for all α ∈ (0, 1). At least for α = 1, the rate of decay of the continuous time and discrete
time survival probability is different in general as we prove in the next subsection, cf.
(2.19).

2.2.4 Exponential weight functions

In this section, we consider the asymptotic behaviour of

pN := P
(
B(eβn) ≤ 0,∀n = 0, . . . , N

)
,

as N → ∞ for β > 0. It will be helpful to rewrite the process as a discrete Ornstein-
Uhlenbeck process. Indeed, observe that

pN = P
(
e−βn/2B(eβn) ≤ 0,∀n = 0, . . . , N

)
= P (Uβn ≤ 0,∀n = 0, . . . , N) , (2.15)

where (Ut)t≥0 is an Ornstein-Uhlenbeck process, i.e. a centred stationary Gaussian pro-
cess with covariance function

ρ(t, s) = E [UtUs] = e−|t−s|/2, s, t ∈ R.

In particular, (e−t/2B(et))t∈R is an Ornstein-Uhlenbeck process.
To our knowlegde, the survival probability of the discrete Ornstein-Uhlenbeck process
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has not been computed in the literature. For the continuous time case, it is has been
shown in [Sle62] that

P (Ut ≤ 0,∀t ∈ [0, T ]) =
1

π
arcsin(e−T/2), T ≥ 0. (2.16)

In fact, this relation can be established by direct computation using an integral formula
(see [GR00, Eq. 6.285.1]). It is important to remark that the survival exponent of the
Ornstein-Uhlenbeck process depends on the value of the barrier, i.e. for c ≥ 0,

P (Ut ≤ c,∀t ∈ [0, T ]) � exp(−θ(c)T ), T →∞,

for some decreasing function θ : [0,∞)→ (0, 1/2]. Moreover, persistence of the Ornstein-
Uhlenbeck process is directly related to that of Brownian motion with a square root
boundary since

P (Ut ≤ c,∀t ∈ [0, T ]) = P
(
B(et) ≤ cet/2, ∀t ∈ [0, T ]

)
= P

(
Bt ≤ c

√
t, ∀t ∈ [1, eT ]

)
.

We refer to [Bee75, Sat77] for more details and related results. In the sequel, we work
with the barrier c = 0, although the techniques presented are applicable for c 6= 0 as
well.
Since U is stationary, recall from Slepian’s inequality (part 2 of Lemma 1.2.5) that there
is λβ ∈ (0,∞] such that

lim
N→∞

− 1

N
logP (Uβn ≤ 0, ∀n = 0, . . . , N) = λβ. (2.17)

Slepian’s inequality further implies that β 7→ λβ is non-decreasing. Unfortunately,
we are not able to obtain an explicit expression for λβ. However, we provide several
estimates which are summarised in the next theorem.

Theorem 2.2.14. For all β > 0, we have that

λβ ≥

{
log(2)− c(β), β > β0,

(log(2)− c(βm))/m, β ∈ (0, β0], m = dβ0/βe,
(2.18)

where β0 := 2 log(1 + 1/ log 2) ≈ 1.786, c(β0) = log 2, and

c(x) :=
e−x/2

1− e−x/2
, x > 0.

Moreover,

λβ ≤

{
β/2, β ∈ (0, β1],

log(2)− log
(
1 + 2

π
arcsin

(
e−β/2

))
, β ∈ [β1,∞),

(2.19)

where β1 ≈ 0.472 is the unique solution on (0,∞) to the equation

β

2
= log(2)− log

(
1 +

2

π
arcsin

(
e−β/2

))
.
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A plot of a numerical approximation of λβ and of the upper / lower bounds can be
found in Figure 2.1 on page 52.
Remark 2.2.15. Let us briefly comment on the lower bound for β ∈ (0, β0] in (2.18). Let
k ∈ N such that β ∈ [β0/(k+1), β0/k). Then k < β0/β ≤ k+1, so m = dβ0/βe = k+1,
and by (2.18),

λβ ≥
log(2)− c(β(k + 1))

k + 1
=: `(β), β ∈ [β0/(k + 1), β0/k).

Note that ` is increasing on [β0/(k+1), β0/k) with `(β0/(k+1)) = 0 since c(β0) = log 2.
On the other hand, upon considering ` on [β0/(k + 2), β0/(k + 1)), we have that

lim
β↑β0/(k+1)

`(β) =
log 2− c

(
β0
k+1

(k + 2)
)

k + 2
=

log 2− c
(
β0(1 + 1

k+1
)
)

k + 2
> 0.

In particular, the lower bound ` is discontinuous at the points β0/n for every n ∈ N.
Since we know that λβ in non-decreasing in β, one can improve the lower bound in
(2.18) upon setting ˜̀(β) = sup {`(u) : u ≤ β}. In particular, ˜̀ is positive, continuous
and non-decreasing.
Remark 2.2.16. For β > β0, the above theorem implies that

2

π
e−β/2 ∼ log

(
1 +

2

π
arcsin

(
e−β/2

))
≤ log(2)− λβ ≤ c(β) ∼ e−β/2, β →∞,

i.e. λβ ↑ log 2 exponentially fast as β ↑ ∞.
However, it remains an open question whether λβ is stricly less than β/2 also for β < β1

(this would imply that the rate in the discrete time and continuous time framework does
not coincide for all β) and whether λβ ∼ β/2 as β ↓ 0.

Upper bounds for the survival probability

Here we prove the first part of the inequality (2.18).

Lemma 2.2.17. Let β > β0 = 2 log(1 + 1/ log 2). Then for all N

P
(
B(eβn) ≤ 0,∀n = 0, . . . , N

)
≤ 1

2
exp (− (log 2− c(β)) N) , N ≥ 0,

where c(β) ∈ (0, log 2) is defined in Theorem 2.2.14.

Proof. First, note that c(·) is decreasing with c(β0) = log 2. Since P
(
B(eβn) ≤ 0

)
=

P (Uβn ≤ 0) = 1/2, we have by [LS02, Corollary 2.3] that

P
(

sup
n=0,...,N

B(eβn) ≤ 0

)
≤

N+1∏
n=1

P
(
Uβ(n−1) ≤ 0

)
exp

( ∑
1≤i<j≤N+1

e−β|i−j|/2

)

= 2−(N+1) exp

( ∑
1≤i<j≤N+1

e−β|i−j|/2

)
.
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One computes ∑
1≤i<j≤N+1

e−β|i−j|/2 =
N∑
i=1

N+1∑
j=i+1

e−β(j−i)/2 =
N∑
i=1

N+1−i∑
j=1

e−βj/2

= c(β)
N∑
i=1

(1− e−β(N+1−i)/2) ≤ c(β)N.

�

Next, we prove the second part of (2.18). For small β, we rescale the exponent of
the weight function in order to apply Lemma 2.2.17.

Lemma 2.2.18. Let 0 < β < β0 and set m = mβ = dβ0/βe. Then

P
(

sup
n=0,...,N

B(eβn) ≤ 0

)
≤ exp

(
− log 2− c(βm)

m
N − c(βm)

)
, N > m.

Proof. Clearly, for N > m,

P
(

sup
n=0,...,N

B(eβn) ≤ 0

)
≤ P

(
sup

n∈{0,1,2,...,bN/mc}
B(eβmn) ≤ 0

)
≤ 1

2
e−(log 2−c(βm))bN/mc

by Lemma 2.2.17 whenever βm > β0. Using that bN/mc ≥ N/m − 1, the assertion
follows.
If βm = β0, then log 2 − log(βm) = 0, and the lower bound holds trivially, cf. Re-
mark 2.2.15. �

Lower bounds for the survival probability

We now prove (2.19). In view of (2.16), a comparison to the continuous time framework
yields

P
(
B(eβn) ≤ 0,∀n = 0, . . . , N

)
≥ P (Uβt ≤ 0,∀t ∈ [0, N ]) ∼ π−1 e−βN/2, N →∞.

Obviously, for any sequence 0 = t0 < t1 < · · · < tN , we have

P
(

sup
n=1,...,N

B(tn) ≤ 0

)
≥ P

(
B(t1) ≤ 0, sup

n=2,...,N
B(tn)−B(tn−1) ≤ 0

)
= 2−N , (2.20)

by independence and symmetry of the increments (or simply Slepian’s inequality again).
For the exponential case, simple lower bounds are therefore

P
(
B(eβn) ≤ 0,∀n = 0, . . . , N

)
% exp(−(β

2
∧ log 2) ·N), N →∞.

In particular, this shows that λβ ≤ β/2 for all β > 0. The fact that the probability
P (Bt ≤ 0, Bs ≤ 0) admits an explicit formula in terms of s and t can be used to establish
a new lower bound that improves the trivial bound log 2 and completes the proof of
(2.19).
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Lemma 2.2.19. It holds that

P
(

sup
n=0,...,N

B(eβn) ≤ 0

)
≥ 1

2

(
1

2
+

1

π
arcsin

(
e−β/2

))N
, N ≥ 0.

Proof. Let An :=
{
B(eβk) ≤ 0,∀k = 0, . . . , n

}
. Then

P (AN) = P
(
B(eβN) ≤ 0|AN−1

)
P (AN−1) = P (X0 ≤ 0)

N∏
n=1

P
(
B(eβn) ≤ 0|An−1

)
≥ 1

2

N∏
n=1

P
(
B(eβn) ≤ 0|B(eβ(n−1)) ≤ 0

)
,

where the inequality follows from [Bra78, Lemma 5]. Next, recall that

P (Bs ≤ 0, Bt ≤ 0) =
1

4
+

1

2π
arctan

(√
s

t− s

)
, s < t,

see e.g. [GS01, Exercise 8.5.1]. In particular,

P
(
B(eβn) ≤ 0|B(eβ(n−1)) ≤ 0

)
=

1

2
+

1

π
arctan

(
1√

exp(β)− 1

)
, n ≥ 1,

independent of n. Now use that arctan(x) = arcsin(x/
√
x2 + 1). �

A related Fredholm integral equation

If (Yn)n≥0 is a sequence of independent standard normal random variables, set

X0 = Y0, Xn = e−β/2Xn−1 + (1− e−β)1/2Yn, n ≥ 1. (2.21)

It follows immediately that (Xn)n≥0 is a stationary Markov chain with transition density

p(x, y) :=
1√
2πσ

exp

(
−(y − ρx)2

2σ2

)
, x, y ∈ R,

where ρ = e−β/2 and σ =
√

1− e−β. Moreover, the recursion equation (2.21) is a
special case of an autogregressive process of order 1 (AR(1)-model). Persistence of such
processes is studied in [Lar04]. Larralde explicitly computes the generating function of
the first hitting time of the set (0,∞) if the Yn have a two-sided exponential distribution.
Conditions ensuring that exponential moments of the first hitting time of the set [x,∞)
(x ≥ 0) exist for an AR(1) process can be found in [NK08]. These results will be
presented in Chapter 4 where persistence of more general autoregressive processes will
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be discussed.
If we iterate the recursion equation for Xn, we see that

Xn = e−βn/2Y0 + (1− e−β)1/2

n∑
k=1

e−β(n−k)/2Yk, n ≥ 0,

and a simple computation shows that

E [XnXn+m] = e−βm/2, n,m ≥ 0.

Since (Xn)n≥0 is a Gaussian process, this implies that (Xn)n≥0 and (U(βn))n≥0 are equal
in distribution, where U is again the Ornstein-Uhlenbeck process. Hence, taking (2.15)
into account, we have that

P
(

sup
n=0,...,N

Xn ≤ 0

)
= P

(
sup

n=0,...,N
Uβn ≤ 0

)
= P

(
sup

n=0,...,N
B(eβn) ≤ 0

)
.

Studying persistence of the Gaussian AR(1)-process X is therefore equivalent to the
persistence problem for (B(eβn))n≥0. In this subsection, we mainly use the fact that
(Xn)n≥1 is Markovian in order to tackle this problem. The approach here provides an
alternative method to gain some new information about the rate λβ defined in (2.17).
In particular, we show that exp(−λβ) is the eigenvalue of a certain integral operator T
related to the transition density p(·, ·) of X. If we apply a suitable transfomation to
T , we can show that exp(−λβ) is the largest spectral value of a related compact and
self-adjoint operator S which leads to a useful variational characterisation of the rate
λβ.
Let us now carry out the necessary steps to prove the results just outlined. To begin,
set An := {X0 ≤ 0, . . . , Xn ≤ 0}, and let πn be the cumulative distribution function of
Xn given An, i.e.

πn(u) := P (Xn ≤ u|An) , u ≤ 0.

Proposition 2.2.20. With λβ defined in (2.17), it holds that

P (Xn ≤ 0|An−1)↗ exp(−λβ), n→∞.

Moreover, the sequence (πn)n≥0 converges weakly to a distribution function π on (−∞, 0]
which is absolutely continuous w.r.t. the Lebesgue measure on (−∞, 0]. Denote its
density by ϕ. Then ϕ satisfies the following Fredholm integral equation of second kind:

exp(−λβ)ϕ(u) =

∫ 0

−∞
p(y, u)ϕ(y) dy, u ≤ 0.

Proof. Let Fn(u) := P (Xn ≤ u|An−1), u ≤ 0. Note that

πn(u) =
P (Xn ≤ u,An−1)

P (An)
=

P (Xn ≤ u|An−1)

P (Xn ≤ 0|An−1)
=
Fn(u)

Fn(0)
, u ≤ 0. (2.22)
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Moreover, for u ≤ 0, we have

Fn(u) = P (Xn ≤ u|An−1) =

∫ 0

−∞
P (Xn ≤ u|Xn−1 = y)P (Xn−1 ∈ dy|An−1)

=

∫ 0

−∞

∫ u

−∞
p(y, z) dz dπn−1(y).

Assume for a moment that Fn(u) converges to F (u) for all u ≤ 0 and that (πn)n≥1

converges weakly to some distribution function π. Then the last equation and (2.22)
imply that

π(u) =
F (u)

F (0)
=

1

F (0)

∫ 0

−∞

∫ u

−∞
p(y, z) dz dπ(y), u ≤ 0.

Applying Fubini’s theorem, the previous equation reads

F (0)π(u) =

∫ u

−∞

∫ 0

−∞
p(y, z) dπ(y) dz, u ≤ 0. (2.23)

The right-hand side of (2.23) is clearly differentiable in u, so π is absolutely continuous
w.r.t. the Lebesgue measure. Denote its density by ϕ. Differentiating (2.23) w.r.t. u,
we conclude that

F (0)ϕ(u) =

∫ 0

−∞
p(y, u)ϕ(y) dy u < 0. (2.24)

In order to prove convergence of Fn(u) for u ≤ 0, it suffices to show that Fn(u) is
non-decreasing in n. Indeed,

Fn+1(u) = P (Xn+1 ≤ u|X0 ≤ 0, . . . , Xn ≤ 0)

≥ P (Xn+1 ≤ u|X1 ≤ 0, . . . , Xn ≤ 0) = Fn(u).

The inequality follows from [Bra78, Lemma 5], the last equality is due to the stationarity
of X. In view of (2.22), we can set π(u) := limn→∞ πn(u) = F (u)/F (0). Obviously,
π(0) = 1, and since Fn(·) is non-decreasing, so are F and π. In order to show that
π(−∞) = 0, recall that (Xn)n≥0 and (Uβn)n≥0 have the same law (U is the Ornstein-
Uhlenbeck process). Therefore, we can apply [LS02, Corollary 2.3] to infer that

P (Xn ≤ u,An−1) ≤ P (Xn ≤ u)P (An−1)Cβ, u ≤ 0,

where Cβ < ∞ is independent of n and u. Moreover, by Slepian’s inequality, it holds
that

P (An) ≥ P (An−1)P (Xn ≤ 0) = P (An−1) · 1

2
.

Since Xn
d
= X0 ∼ N (0, 1), if Φ denotes the cumulative distribution function of a

standard Gaussian random variable, this shows that

π(u) ≤ 2CβP (Xn ≤ u) = 2CβΦ(u), u ≤ 0. (2.25)
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In particular, π(−∞) = 0 proving that π is a distribution function, and by (2.22), the
sequence (πn)n≥0 converges weakly to π.
Next, since

Fn(0) = F (0) (1 + g(n)), n ≥ 0,

where g(n)→ 0 as n→∞, we get

P (Xn ≤ 0,∀n = 0, . . . , N) = P (XN ≤ 0|AN−1) P (AN−1)

= P (X0 ≤ 0)
N∏
n=1

P (Xn ≤ 0|An−1)

=
1

2
F (0)N exp

(
N∑
n=1

log(1 + g(n))

)
= F (0)N eo(N).

One concludes (recall (2.17)) that

lim
N→∞

− 1

N
logP (Xn ≤ 0,∀n = 0, . . . , N) = − logF (0) = λβ.

�

Proposition 2.2.20 shows that exp(−λβ) is an eigenvalue corresponding to a positive
eigenfunction ϕ of the positive (i.e. Tf ≥ 0 if f ≥ 0 a.e.) bounded linear operator

T : L1((−∞, 0])→ L1((−∞, 0]), (Tf)(z) :=

∫ 0

−∞
p(y, z)f(y) dy, z ≤ 0. (2.26)

Let us briefly discuss some properties of T . If Z is standard Gaussian and Φ(x) :=
P (Z ≤ x), it holds that∫ 0

−∞
p(y, z) dz =

1√
2πσ

∫ 0

−∞
e−(z−ρy)2/(2σ2) dz = Φ

(
−ρy
σ

)
, y ∈ R. (2.27)

Using this identity and Fubini’s theorem, one obtains

‖Tf‖1 ≤
∫ 0

−∞
|f(y)|Φ(−ρy/σ) dy ≤ ‖f‖1, f ∈ L1.

In particular, ‖T‖ ≤ 1. In fact, ‖T‖ = 1 since ‖Tfn‖1 → 1 if fn = 1[−n,−n+1] since
Φ(x) → 1 as x → ∞. Moreover, Tfn → 0 as n → ∞ pointwise showing that T is not
compact (Tfn(u) → 0 as n → ∞ for every u and ‖Tfn‖1 → 1 as n → ∞ implies that
there cannot be a subsequence that converges in L1).
One might suspect that exp(−λβ) is the largest spectral value of T , i.e. exp(−λβ) =
r(T ) where r(T ) := limn→∞‖T n‖1/n denotes the spectral radius of T . For instance,
such a result holds for positive matrices (by Perron-Frobenius type results, [Sch74,
Corollary I.2.3]). However, in our case, it can be shown that r(T ) = 1 > exp(−λβ) (see
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Lemma B.1.1 in the appendix). Moreover, 1 cannot be an eigenvalue of T : if Tf = f
for some f ∈ L1 \ {0}, it would follow that

‖f‖1 = ‖Tf‖1 ≤
∫ 0

−∞
|f(y)|Φ(−ρy/σ) dy < ‖f‖1,

a contradiction. If T were compact, this could not occur in view of [Sch74, Theo-
rem V.6.6].
It remains unclear if exp(−λβ) ≥ |µ| for every other eigenvalue µ of T . Results of this
type are known ([KLS89, Theorem 11.4]), but not applicable in our case.
The preceding discussion shows that the operator T does not have certain nice prop-
erties such as compactness, and therefore, it is not easily amenable to methods from
functional analysis to conclude that exp(−λβ) is the largest eigenvalue.

Remark 2.2.21. Majumdar et al. ([MBE01]) heuristically derived the same integral equa-
tion when studying persistence of the discrete Ornstein-Uhlenbeck process. The authors
were motivated by the following question: How accurately can one estimate the per-
sistence exponent θ of a continuous time process if one merely observes a discrete-time
sample? They also solved the integral equation numerically to obtain an approximate
value λ̂β for different choices of β.

We cannot show that exp(−λβ) is the largest eigenvalue of T . However, we prove
that exp(−λβ) is the largest spectral value of a related integral operator S which is
compact and self-adjoint. This leads to a nice variational characterisation of exp(−λβ)
that can be used for numerical computations and even analytic bounds on λβ. Let us
describe the necessary steps in the sequel.
For simplicity of notation, let Lp := Lp((−∞, 0]) for p ≥ 1 with the usual norm ‖·‖p,
and let L(Lp, Lq) denote the space of continuous linear functionals mapping from Lp to
Lq.
We know that there is a positive function ϕ ∈ L1 such that Tϕ = exp(−λβ)ϕ, where
T ∈ L(L1, L1) is defined in (2.26). Set

K(x, y) :=
1√
2πσ

exp

(
−1 + ρ2

4σ2
(x2 + y2) +

ρ

σ2
xy

)
=

1√
2πσ

exp

(
−1 + ρ2

4σ2
(x− y)2 − (1− ρ)2

2σ2
xy

)
, x, y ≤ 0.

Note that K is symmetric and bounded on (−∞, 0]2, and define the corresponding
integral operator S by

(Sf)(x) :=

∫ 0

−∞
K(x, y)f(y) dy, x ≤ 0

for suitable functions f . The next lemma shows that S : Lp → Lq is well-defined:
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Lemma 2.2.22. Let p, q ∈ [1,∞]. Then S ∈ L(Lp, Lq). Moreover, S : Lp → Lq is
compact if p, q ∈ (1,∞).

Proof. Consider first the case p, q ∈ (1,∞). Let p′ ∈ (1,∞) such that 1/p+ 1/p′ = 1.
For f ∈ Lp, an application of Hölder’s inequality yields that∫ 0

−∞
|Sf(x)|q dx ≤

∫ 0

−∞

(∫ 0

−∞
K(x, y) |f(y)| dy

)q
dx

≤
∫ 0

−∞

(∫ 0

−∞
K(x, y)p

′
dy

)q/p′ (∫ 0

−∞
|f(y)|p dy

)q/p
dx

= ‖f‖qp ·
∫ 0

−∞

(∫ 0

−∞
K(x, y)p

′
dy

)q/p′
dx.

Let us show that ∫ 0

−∞

(∫ 0

−∞
K(x, y)p

′
dy

)q/p′
dx <∞. (2.28)

To prove (2.28), recall that∫ 0

−∞
e−αy

2+βy dy =

√
π

2
√
α
eβ

2/(4α)Erfc(β/(2
√
α)), α > 0, β ∈ R, (2.29)

where Erfc(·) is the complementary error function given by

Erfc(x) :=
2√
π

∫ ∞
x

e−t
2

dt, x ∈ R.

Let r > 0, A := (1 + ρ2)/(4σ2) > 0 and B := ρ/σ2 > 0. Using (2.29) and the fact that
Erfc(u) ∈ (0, 2) for all u ∈ R, one obtains that∫ 0

−∞
K(x, y)r dy =

1

(
√

2πσ)r
e−rAx

2

∫ 0

−∞
e−Ary

2+Brxy dy

=
1

(
√

2πσ)r
e−rAx

2 ·
√
π

2
√
Ar

e(Brx)2/(4Ar)Erfc

(
Brx

2
√
Ar

)
(2.30)

≤
√
π

(
√

2πσ)r
√
Ar
· exp

(
−r
(
A− B2

4A

)
x2

)
. (2.31)

Since ρ > 0, it follows that A−B2/(4A) > 0 since

A− B2

4A
> 0⇐⇒ 2A > B ⇐⇒ 2

1 + ρ2

4σ2
>

ρ

σ2
⇐⇒ (ρ− 1)2 > 0. (2.32)

Now (2.31) clearly implies that (2.28) holds, so S ∈ L(Lp, Lq). Compactness follows
from [Alt02, Satz 8.15] or [DS58, Excercise VI.9.52].
If p = 1 and q ∈ [1,∞), let

K∗(x) := sup {K(x, y) : y ≤ 0} =
1√
2πσ

exp

(
− inf

y≤0
(Ay2 −Bxy)− Ax2

)
, x ≤ 0.
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The infimum is attained at y = Bx/(2A) which yields that

K∗(x) :=
1√
2πσ

exp
(
−(A−B2/(4A))x2

)
.

It follows that∫ 0

−∞
|Sf(x)|q dx ≤

∫ 0

−∞

(∫ 0

−∞
K(x, y) |f(y)| dy

)q
dx ≤ ‖f‖q1

∫ 0

−∞
K∗(x)q dx,

and since A−B2/(4A) > 0 by (2.32), it is clear that ‖K∗‖q <∞.
Similarly, if p = 1, q =∞,

|(Sf)(x)| ≤
∫ 0

−∞
K(x, y) |f(y)| dy ≤ K∗(x)‖f‖1,

so S ∈ L(L1, L∞) is well-defined.
The remaining cases p =∞ and q ∈ [1,∞] are similar, and the proof is omitted. �

Remark 2.2.23. If S : Lp → Lq for p, q ∈ (1,∞), the preceding proof shows that ‖Sf‖q ≤
‖K‖p,q‖f‖p where

‖K‖p,q :=

(∫ 0

−∞

(∫ 0

−∞
K(x, y)p

′
dy

)q/p′
dx

)1/q

, 1/p+ 1/p′ = 1.

If p = q = 2, we can compute the integral explicitly in view of the following formula
([GR00, Eq. 6.285]):∫ 0

−∞
e−αx

2

Erfc(βx) dx =
π − arctan(

√
α/β)√

πα
, α, β > 0, (2.33)

After some calculation (see Appendix B), we conclude from (2.30) that

‖K‖2,2 =

√
π − arctan (|1− ρ2| /(2ρ))

2π |1− ρ2|
. (2.34)

This identity will be useful in order to derive an estimate on λβ later.

Set

h(x) := exp

(
1− ρ2

4σ2
x2

)
, x ≤ 0.

For our choice ρ = e−β/2 and σ2 = 1 − e−β, h(x) = exp(x2/4). The following lemma
shows that that the operators S and T are related via a transformation involving the
function h. This observation is due to [MBE01].
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Lemma 2.2.24. Let p ∈ [1,∞). If f ∈ L1 and fh ∈ Lp, it holds that Tf(x) =
(1/h(x))S(hf)(x) for all x ≤ 0.

Proof. We have that

p(y, x) =
1√
2πσ

exp

(
−ρ

2y2 − 2ρxy + x2

2σ2

)
=

1√
2πσ

exp

(
−1 + ρ2

4σ2
(x2 + y2) +

ρ

σ2
xy

)
exp

(
1− ρ2

4σ2
y2

)
exp

(
−1− ρ2

4σ2
x2

)
= K(x, y)h(y)/h(x),

and therefore,

Tf(x) =

∫ 0

−∞
p(y, x)f(y) dy =

1

h(x)

∫ 0

−∞
K(x, y)h(y)f(y) dy =

1

h(x)
S(hf)(x).

�

In particular, Lemma 2.2.24 shows that if µ ∈ R is an eigenvalue of T with eigen-
function f ∈ L1, i.e. Tf = µf , then µ(hf) = S(hf) if hf ∈ L1, and vice versa. Of
course, since h(x) = exp(x2/4) in our case, hf /∈ L1 for f ∈ L1 in general. Fortunately,
we can show that the eigenfunction ϕ of T satisfies hϕ ∈ Lp for every p ∈ [1,∞].

Lemma 2.2.25. If ϕ is the eigenfunction defined in Proposition 2.2.20, then x ≤ 0 7→
eαx

2
ϕ(x) ∈ L1 for every α < 1/2. Moreover, hϕ ∈ Lp for every p ∈ [1,∞].

Proof. If Z ≤ 0 is a random variable distributed according to the density ϕ, we have
to show that E

[
eαZ

2
]
<∞ for α < 1/2. Assume w.l.o.g. that α > 0, so we have that

E
[
eαZ

2
]

=

∫ ∞
0

P
(
eαZ

2

> t
)
dt ≤ 2 +

∫ ∞
2

P
(
Z < −α−1/2

√
log t

)
dt. (2.35)

Recall from (2.25) that P (Z < −t) ≤ CΦ(−t), where C is a finite constant depending
on β, and Φ is the cumulative distribution function of a standard Gaussian random
variable. Hence,

E
[
eαZ

2
]
≤ 2 + C

∫ ∞
2

Φ(−α−1/2
√

log t) dt ≤ 2 + C1

∫ ∞
2

exp

(
− log t

2α

)
dt,

and the last quantity is finite whenever α < 1/2.
In particular, for α = 1/4, we see that hϕ ∈ L1, and since e−λβϕ = Tϕ, Lemma 2.2.24
implies that e−λβ(hϕ) = S(hϕ). Since S : L1 →

⋂
p≥1 L

p by Lemma 2.2.22, we conclude
that hϕ ∈ Lp for every p ∈ [1,∞]. �

Just as in the case of positive square matrices (Perron-Frobenius theorem, see [Sch74,
Chapter I]), one can show that a positive eigenfunction of S must correspond to the
largest eigenvalue of S.
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Lemma 2.2.26. Let p ∈ [1,∞]. If Sf = λf for some f ∈ Lp \ {0} with f > 0 a.e.,
then

λ = max {|µ| : µ ∈ R,∃g ∈ Lp \ {0} s.t. Sg = µg} .

Proof. Assume that Sg = µ g, where g ∈ Lp \ {0} and µ ∈ R. Since S maps from Lp

to Lp∩L2 for every p ∈ [1,∞] (Lemma 2.2.22), Sf, Sg ∈ Lp∩L2, and since f and g are
eigenfunctions, it follows that f, g ∈ Lp ∩ L2. Let (·, ·) denote the usual scalar product
in L2. Then (f, |g|) <∞, and

λ(f, |g|) = (Sf, |g|) = (f, S(|g|)) ≥ (f, |Sg|) = |µ| (f, |g|).

The inequality comes from the fact that S is a positive linear operator, i.e. Sξ ≥ 0 if
ξ ∈ Lp with ξ ≥ 0 a.e. (apply this with ξ = |g| − g). In the second equality, we have
used that the kernel K is symmetric, so Fubini’s Theorem implies that

(Sf, |g|) =

∫ 0

−∞

∫ 0

−∞
K(x, y)f(y) dy |g(x)| dx = (f, S |g|).

Since f > 0 and g is not identically zero, it holds that (f, |g|) > 0, and therefore, we
necessarily have that λ ≥ |µ|. �

It is now easy to deduce the following proposition from the above lemmata.

Proposition 2.2.27. For p ∈ [1,∞], it holds that

e−λβ = max {|µ| : µ ∈ R,∃f ∈ Lp \ {0} s.t. Sf = µf} .

Proof. Since hϕ ∈ Lp (Lemma 2.2.25) and Tϕ = e−λβϕ, we see from Lemma 2.2.24
that e−λβ(hϕ) = S(hϕ). Now hϕ > 0 on (−∞, 0], so the assertion follows from
Lemma 2.2.26. �

The above proposition has been derived by elementary arguments. If we use some
known results from functional analysis, we obtain a better result if we focus on the case
of the Hilbert space L2.

Theorem 2.2.28. Let S : L2 → L2, and let r(S) denote its spectral radius. It holds
that

e−λβ = r(S) = ‖S‖ = sup
{

(Sf, f) : f ∈ L2, ‖f‖2 = 1
}
.

Moreover, if µ is another eigenvalue of S, it holds that |µ| < e−λβ .

Proof. Since S : Lp → Lp is compact for every p ∈ (1,∞) (Lemma 2.2.22), we have by
[Sch74, Theorem V.6.6] that r(S) is an eigenvalue of S with a unique eigenfunction f
satisfying f > 0 a.e. and ‖f‖p = 1. Moreover, if µ is another eigenvalue, it holds that
|µ| < r(S) by [Sch74, Theorem V.6.6] as well.
The equality r(S) = e−λβ follows from Proposition 2.2.27.
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We are only interested in the case p = 2. Symmetry of K implies that S is self-adjoint,
and it is well-known that r(S) = ‖S‖ ([RS72, Theorem VI.6]) and

‖S‖ = sup
{

(Sf, f) : f ∈ L2, ‖f‖2 = 1
}

in that case. �

One can derive upper and lower bounds on λβ from Theorem 2.2.28. For instance,
recall from (2.34) that exp(−λβ) ≤ ‖K‖2,2, and with ρ = e−β/2, this amounts to

λβ ≥
1

2
· log

(
2π(1− e−β)

π − arctan(sinh(β/2))

)
=: L(β). (2.36)

One sees that L(β) → log 2 as β → ∞, whereas for small values of β, L(β) does not
provide a useful lower bound since L(β) < 0 in that case.
Moreover, an upper bound on λβ is given by λβ ≤ − log(Sf, f) for every f ∈ L2 with
‖f‖2 = 1. For instance, if one uses the test functions

fα(x) := (8α/π)1/4 e−αx
2

, x ≤ 0, α > 0,

then ‖fα‖2 = 1, and a direct calculation (see Appendix B.2) using (2.29) and (2.33)
shows that

I(α) := (fα, Sfα) =

√
α

πσ
·
π − arctan

(
2
√

(A+α)2−B2/4

B

)
√

(A+ α)2 −B2/4
, (2.37)

where

A =
1 + ρ2

4σ2
=

1 + e−β

4(1− e−β)
=

1

4 tanh(β/2)
, B =

ρ

σ2
=

e−β/2

1− e−β
=

1

2 sinh(β/2)
.

Then λβ ≤ − sup {log I(α) : α > 0}, and the last expression can be computed numeri-
cally. Moreover, one can also use test functions

gα,β(x) := C(x+ β) e−αx
2

, x ≤ 0, α, β > 0.

Even though the integral (Sgα,β, gα,β) can be computed explicitly, this leads to very
unwieldy expressions, and we shall refrain from stating them here.
In order to obtain an approximate solution λ̂β, the integral equation can be solved
numerically, see [Hac95, Chapter 4] for a description of different methods.

In Figure 2.1, we have plotted the upper and lower bounds on λβ from Theorem 2.2.14,
(2.36) and (2.37) for β ∈ (0, 2.5]. Moreover, the lower dotted line has been computed
by a numerical approximation of the largest eigenvalue of S. To do so, on a grid
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0.5

Figure 2.1: Numerical approximation of λβ (lower dotted line). The upper dotted line
is computed by numerically maximising (2.37), the solid line is the upper bound from
Theorem 2.2.14. The dashed lines are the lower bounds from Theorem 2.2.14 (short
dashes) and from (2.36) (long dashes).

xn = −n · T/N (n = 1, . . . , N) for large values of T and N , one can use the simple
approximation∫ 0

−∞
K(x, y)f(y) dy ≈

∫ 0

−T
K(x, y)f(y) dy ≈ (T/N)

N∑
j=1

K(x, xj)f(xj).

If µ is an eigenvalue of S with eigenfunction f , then

µf(xi) =

∫ 0

−∞
K(xi, y)f(y) dy ≈ (T/N)

N∑
j=1

K(xi, xj)f(xj).

We rewrite this as (µN/T )fN ≈ KNfN , where fN = (f(x1), . . . , f(xN)) and the matrix
KN is given by (K(xi, xj))i,j=1,...,N . One can then compute the largest eigenvalue µ̂N of
KN numerically in order to obtain an approximation for exp(−λβ).
We see from Figure 2.1 that the upper bound obtained by maximising (2.37) numeri-
cally and the numerical approximation of λβ are very close if β is not too small, whereas
for values of β close to zero, the simple estimate λβ ≤ β/2 stated in Theorem 2.2.14 is
better.
Concerning the lower bounds, we see that the lower bound from Theorem 2.2.14 (short
dashes in Figure 2.1) is quite irregular due to rounding in (2.18), cf. Remark 2.2.15.
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Note also that the lower bound stated in (2.36) (long dashes in Figure 2.1) improves
that of Theorem 2.2.14 for β not too close to zero.

Finally, Figure 2.2 shows the numerical solution for small values of β. In view of
these results, it seems reasonable to conjecture that λβ < β/2 for all β > 0 and that
λβ ∼ β/2 as β → 0, cf. Remark 2.2.16.

0.00 0.01 0.02 0.03 0.04 0.05
0.000

0.005

0.010

0.015

0.020

0.025

Figure 2.2: Numerical solution of λβ for β ∈ [0.005, 0.05] in comparison to the upper
bound β/2 (dashed line).

2.3 Universality results

Up to now, we have studied the persistence problem of weighted random walks only for
Gaussian increments Y1, Y2, . . . . In the sequel, we consider different distributions. As
before, we distinguish polynomial and exponential weight functions.

2.3.1 Polynomial weight functions

Let Y1, Y2, . . . be a sequence of i.i.d. random variables such that E [Y1] = 0 and E [Y 2
1 ] =

1 and σ : [0,∞) → (0,∞) some measurable function. Let Z denote the corresponding
weighted random walk defined in (2.1). For a sequence (Yn)n≥1 of standard normal
random variables, the persistence problem has already been solved for σ(n) = np.
Indeed, the survival exponent is equal to p + 1/2 in view of (2.3) and Theorem 2.2.2
applied to the function κ(·) defined by κ(n) = σ(1)2 + · · ·+ σ(n)2 such that

κ(N) � N2p+1, κ(N + 1)− κ(N) = σ(N + 1)2 � N2p, N →∞.

It is a natural question to ask whether the same results holds for any sequence of random
variables that obey a suitable moment condition. This is the subject of Theorem 2.3.2
and Theorem 2.3.3.
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Remark 2.3.1. Theorem 2.3.2 and Theorem 2.3.3 also hold if the barrier 0 is replaced
by any c ∈ R. The proof of Theorem 2.3.3 can be easily modified to cover this case.
We briefly indicate below how to adapt the proof of the lower bound. The proofs will
be then carried out again for the barrier 1 instead of 0.
Let c ∈ R. Take any x > 0 such that P (Y1 ≤ −x) > 0. Choose N0 such that −x(σ(1) +
· · ·+ σ(N0)) ≤ c− 1. On A0 := {Y1 ≤ −x, . . . , YN0 ≤ −x}, it holds that ZN0 ≤ c− 1 by
construction. Then, for N > N0,

P
(

sup
n=1,...,N

Zn ≤ c

)
≥ P

(
A0, sup

n=N0+1,...,N
Zn − ZN0 ≤ 1

)
= P (A0)P

(
sup

n=1,...,N−N0

n∑
k=1

σ(k +N0)Yk ≤ 1

)
.

Hence, it suffices to prove a lower bound for the survival probability of the weighted
random walk Z̃ with σ̃(k) := σ(k+N0) (k ≥ 1) and the barrier 1 since σ̃(N) � σ(N) �
Np.

Lower bound via Skorokhod embedding

Here we prove the lower bound of Theorem 2.1.2 under weaker assumptions.

Theorem 2.3.2. Let (Yn)n≥1 be a sequence of i.i.d. centred random variables such that
E [Y 2

1 ] = 1. Denote by Z = (Zn)n≥1 the corresponding weighted random walk defined in
(2.1). Let σ(N) � Np for some p > 0. Assume that E [|Y1|α] <∞ for some α > 4p+ 2.
Then

P (Zn ≤ 0, ∀n = 1, . . . , N) % N−(p+1/2), N →∞.

Proof. Step 1: Since the Yi are independent centred random variables, Z is a martin-
gale, and one can use a Skorokhod embedding: there exists a Brownian motion B and
an increasing sequence of stopping times (τ(n))n∈N such that (Zn)n∈N and (Bτ(n))n∈N
have the same finite dimensional distributions. Moreover,

E [τ(N)] = E
[
B2
τ(N)

]
= E

[
Z2
N

]
=

N∑
k=1

σ(k)2 =: κ(N),

see e.g. Proposition 11.1 in the survey on the Skorokhod problem of Obłój ([Obł04]).
In particular, this implies that (Bt∧τ(n))t≥0 is uniformly integrable.
From the contruction of the stopping times described in the cited article (Section 11.1),
one deduces that the increments of (τ(n))n≥1 are independent since those of Z are.
Note that there exist constants c1, c2 > 0 such that c1N

2p+1 ≤ κ(N) ≤ c2N
2p+1 for all

N sufficiently large. W.l.o.g. assume that c2 is so large that the upper bound holds for
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all N . Then one has for ε > 0 and N large enough

P (Zn ≤ 1,∀n = 1, . . . , N) = P
(
Bτ(n) ≤ 1,∀n = 1, . . . , N

)
≥ P

(
sup

t∈[0,(1+ε)κ(N)]

Bt ≤ 1, τ(N) ≤ (1 + ε)κ(N)

)
(2.38)

≥ P

(
sup

t∈[0,(1+ε)c2N2p+1]

Bt ≤ 1

)
− P

(
τ(N)− κ(N) > εc1N

2p+1
)
.

Clearly, by (1.4), we have that

P

(
sup

t∈[0,(1+ε)c2N2p+1]

Bt ≤ 1

)
∼

√
2

π(1 + ε)c2

N−(p+1/2), N →∞. (2.39)

The second term in (2.38) may be estimated with Chebychev’s inequality if one can
control the centred moments of the stopping times τ(N). Concretely, we claim that for
all N and γ ≥ 2 such that E

[
|Y1|2γ

]
<∞, it holds that

E [|τ(N)− κ(N)|γ] = E [|τ(N)− E [τ(N)]|γ] ≤ CN (2p+1/2)γ, (2.40)

where C > 0 is some constant depending only on γ. If (2.40) is true, Chebychev’s
inequality yields

P
(
τ(N)− κ(N) > εc1N

2p+1
)
≤ E [|τ(N)− κ(N)|γ] (εc1)−γ N−γ(2p+1)

≤ C (c1ε)
−γN−γ/2.

By choosing γ > 2p + 1, this term is of lower order than N−(p+1/2). The assertion of
the theorem follows from (2.38), (2.39), and Remark 2.3.1.
Step 2: It remains to verify the validity of (2.40). Choose γ > 2p + 1 such that
E
[
|Y1|2γ

]
<∞. Since (Bτ(n)∧t)t≥0 is a uniformly integrable martingale, we deduce from

the Burkholder-Davis-Gundy (BDG) inequality (see e.g. [Obł04, Proposition 2.1]) that

E [τ(n)γ] ≤ C(γ)E
[∣∣Bτ(n)

∣∣2γ] = C(γ)E
[
|Zn|2γ

]
<∞.

The finiteness of the last expectation follows from our choice of γ and the assumption
E
[
|Y1|2γ

]
<∞. This shows that τ(n)γ is integrable.

Recall that
B̃ = (Bt+τ(n−1) −Bτ(n−1))t≥0

is a Brownian motion w.r.t. the filtration G(n) = (G(n)
t )t≥0 := (Ft+τ(n−1))t≥0 if B is a

Brownian motion w.r.t. (Ft)t≥0. Note that τ(n)− τ(n− 1) is a G(n)-stopping time for
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all n. Using again the BDG inequality, we get

E [(τ(n)− τ(n− 1))γ] ≤ cγ E
[∣∣∣B̃τ(n)−τ(n−1)

∣∣∣2γ]
= cγ E

[∣∣Bτ(n) −Bτ(n−1)

∣∣2γ]
= cγ E

[
|Zn − Zn−1|2γ

]
= cγ E

[
|Y1|2γ

]
σ(n)2γ, (2.41)

where cγ is a constant depending on γ only and E
[
|Y1|2γ

]
< ∞ by assumption. For

n = 1, 2, . . . , let

An := τ(n)− τ(n− 1)− E [τ(n)− τ(n− 1)] = τ(n)− τ(n− 1)− σ(n)2.

As remarked at the beginning of the proof, the Ai are independent centred random
variables. Using the Marcinkiewicz-Zygmund inequality (or the BDG-inequality), we
get

E [|τ(N)− κ(N)|γ] = E

[∣∣∣∣∣
N∑
n=1

An

∣∣∣∣∣
γ]
≤ C(γ)E

( N∑
n=1

A2
n

)γ/2


= C(γ)‖
N∑
n=1

A2
n‖

γ/2
γ/2,

where C(γ) is again some constant that depends only on γ and ‖·‖p denotes the Lp-norm
(here we need that γ ≥ 2). An application of the triangle inequality yields

(E [|τ(N)− κ(N)|γ])2/γ ≤ C(γ)2/γ

N∑
n=1

‖A2
n‖γ/2 = C(γ)2/γ

N∑
n=1

(E [|An|γ])2/γ
.

Clearly |An|γ ≤ 2γ(|τ(n)− τ(n− 1)|γ + σ(n)2γ) implying that

E [|τ(N)− κ(N)|γ]2/γ ≤ 4C(γ)2/γ

N∑
n=1

(
E [|τ(n)− τ(n− 1)|γ] + σ(n)2γ

)2/γ

≤ 4C(γ)2/γ

N∑
n=1

(
(cγE

[
|Y1|2γ

]
+ 1)σ(n)2γ

)2/γ

≤ 4
{
C(γ)(cγE

[
|Y1|2γ

]
+ 1)

}2/γ
N∑
n=1

σ(n)4.

In the above estimates, the second inequality follows from (2.41). We finally arrive at

E [|τ(N)− κ(N)|γ] ≤ 2γC(γ)(cγE
[
|Y1|2γ

]
+ 1)

(
N∑
n=1

σ(n)4

)γ/2

≤ 2γC(γ)(cγE
[
|Y1|2γ

]
+ 1) c2γ

2 N (4p+1)γ/2,

proving (2.40) with C = 2γC(γ)(cγE
[
|Y1|2γ

]
+ 1)c2γ

2 <∞. �
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Upper bound via coupling

The upper bound in Theorem 2.1.2 is a consequence of the following more precise
statement.

Theorem 2.3.3. Let (Yn)n≥1 be a sequence of i.i.d. centred random variables such that
E
[
ea|Y1|

]
< ∞ for some a > 0. Let σ be increasing such that σ(N) � Np for some

p > 0. If Z = (Zn)n≥1 denotes the corresponding random walk defined in (2.1), it holds
for any ρ > 4p+ 2 that

P (Zn ≤ 0,∀n = 1, . . . , N) - N−(p+1/2)(logN)ρ/2, N →∞.

Proof. We may assume w.l.o.g. that E [Y 2
1 ] = 1. Let Z̃n :=

∑n
k=1 σ(k)Ỹk, where the Ỹk

are independent standard normal random variables constructed on the same probability
space as the Yk. As usual, denote by Sn = Y1 + · · · + Yn the corresponding random
walk, and define S̃ analogously. Let

EN :=

{
sup

n=1,...,N

∣∣∣Sn − S̃n∣∣∣ ≤ C logN

}
for some constant C > 0 to be specified later. We now use a coupling of the random
walks S and S̃ that allows us to work with the Gaussian process Z̃ instead of the original
process Z. Since E

[
ea|Y1|

]
<∞ for some a > 0, we may assume by [KMT76, Theorem 1]

that the sequences (Yn)n≥1 and (Ỹn)n≥1 are constructed on a common probability space
such that for all N and some C > 0 sufficiently large

P (Ec
N) = P

(
sup

n=1,...,N

∣∣∣Sn − S̃n∣∣∣ > C logN

)
≤ KN−(p+1/2), (2.42)

where K is a constant that depends only on the distribution of Y1 and on C.
In order to relate the quantities

∣∣∣Sn − S̃n∣∣∣ and ∣∣∣Zn − Z̃n∣∣∣, recall Abel’s inequality: If
(ak)k≥1, (bk)k≥1 are two sequences with ak ≤ ak+1, it holds that∣∣∣∣∣

n∑
k=1

akbk

∣∣∣∣∣ ≤ (2an − a1) sup
k=1,...,n

∣∣∣∣∣
k∑
j=1

bj

∣∣∣∣∣ , n ≥ 1. (2.43)

The inequality follows easily from Abel’s transformation, which is the discrete analogue
of integration by parts: If Bk = b1 + · · ·+ bk, one has

n∑
k=1

akbk = anBn −
n−1∑
k=1

Bk(ak+1 − ak), n ≥ 1.
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Since σ(·) is increasing and nonnegative, we can apply (2.43) to conclude that on EN ,
it holds for all n ≤ N that

sup
k=1,...,n

∣∣∣Zk − Z̃k∣∣∣ = sup
k=1,...,n

∣∣∣∣∣
n∑
j=1

σ(j)(Yj − Ỹj)

∣∣∣∣∣ (2.44)

≤ 2σ(n) sup
k=1,...,n

∣∣∣Sk − S̃k∣∣∣ ≤ 2C σ(n) logN.

Therefore, on EN ∩
{

supn=1,...,N Zn ≤ 1
}
, one has

Z̃n = Z̃n − Zn + Zn ≤ 2Cσ(n) logN + 1, n ≤ N.

We may now estimate

P
(

sup
n=1,...,N

Zn ≤ 1

)
≤ P

(
sup

n=1,...,N
Zn ≤ 1, EN

)
+ P (Ec

N)

≤ P
(

sup
n=1,...,N

Z̃n − 2Cσ(n) logN ≤ 1

)
+ P (Ec

N) .

In view of (2.42), the term P (Ec
N) is at most of order N−(p+1/2). It remains to show

that the order of the first term is N−(p+1/2)(logN)ρ/2 for ρ > 4p + 2. Let κ(n) :=
σ(1)2 + · · ·+ σ(n)2. If B is a Brownian motion, one has in view of (2.3) that

P
(

sup
n=1,...,N

Z̃n − 2Cσ(n) logN ≤ 1

)
= P

(
sup

n=1,...,N
Bκ(n) − 2Cσ(n) logN ≤ 1

)
.

One can now proceed similarly to the proof of Theorem 2.2.2. Note that

N⋂
n=1

{
Bκ(n) − 2Cσ(n) logN ≤ 1

}
⊆

N−1⋂
n=1

{
sup

t∈[κ(n),κ(n+1)]

Bt − 3Cσ(n) logN ≤ 1

}

∪
N−1⋃
n=1

{
sup

t∈[κ(n),κ(n+1)]

Bt −Bκ(n) > Cσ(n) logN

}
=: GN ∪HN .

Clearly, since κ(n+ 1)− κ(n) = σ(n+ 1)2, we have that

P (HN) ≤
N−1∑
n=1

P

(
sup
t∈[0,1]

Bt >
Cσ(n) logN√
κ(n+ 1)− κ(n)

)
≤ N P

(
sup
t∈[0,1]

Bt > C̃ logN

)
,

where C̃ = C inf {σ(n)/σ(n+ 1) : n ≥ 1} ∈ (0, C) since σ(·) is increasing and σ(n) �
np. By (2.6), the last term is o(N−α) for any α > 0.
It remains to estimate P (GN). Set c1 = inf {κ(n)/n2p+1 : n ≥ 1} ∈ (0,∞) since σ(n) �
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np and σ(n) > 0 for all n ≥ 1 by monotonicity. Hence, κ(n) ≥ c1n
2p+1, and t ≥ κ(n)

implies that (t/c1)1/(2p+1) ≥ n and therefore,

P (GN) ≤ P

(
N−1⋂
n=1

{
sup

t∈[κ(n),κ(n+1)]

Bt − 3Cσ
(
(t/c1)1/(2p+1)

)
logN ≤ 1

})

≤ P

(
sup

t∈[κ(1),κ(N)]

Bt − c2t
p/(2p+1) logN ≤ 1

)
.

Let ρ > 2(2p + 1), i.e. 1/ρ + p/(2p + 1) < 1/2. Then tp/(2p+1) logN ≤ tp/(2p+1)+1/ρ for
t ≥ (logN)ρ and

P (GN) ≤ P

(
sup

t∈[(logN)ρ,κ(N)]

Bt − c2t
p/(2p+1)+1/ρ ≤ 1

)
.

The last expression is already familiar from (2.7): using Slepian’s inequality, and re-
calling that the moving barrier tα does not change the survival exponent of Brownian
motion for α < 1/2, one deduces analogously that

P (GN) -
P
(
supt∈[0,κ(N)] Bt ≤ 1

)
P
(
supt∈[0,(logN)ρ] Bt ≤ 1

) � κ(N)−1/2 (logN)ρ/2 � N−(p+1/2)(logN)ρ/2.

�

Remark 2.3.4. In the proof of Theorem 2.3.3, we applied the Komlós-Major-Tusnády
(KMT) coupling to the random walk S where Sn = Y1 + · · · + Yn. If the Yi are
independent, but not necessarily identically distributed, one could use the coupling for
non-i.i.d. random variables introduced by Sakhanenko:

Theorem 2.3.5. ([Sak84]) Assume that (Yn)n≥1 is a sequence of independent centred
random variables and that there is λ > 0 such that

λE
[
eλYn |Yn|3

]
≤ E

[
Y 2
n

]
, ∀n ≥ 1, . (2.45)

Without changing the distribution of (Yn)n≥1, one can construct (Yn)n≥1 and centred
Gaussian random variables (Ỹn)n≥1 on a common probability space such that E [Y 2

n ] =

E
[
Ỹ 2
n

]
for all n, and for some absolute constant A > 0, it holds that

P

(
sup

n=1,...,N

∣∣∣∣∣
n∑
k=1

Yk −
n∑
k=1

Ỹk

∣∣∣∣∣ > C logN

)
≤

(
1 + λ

N∑
n=1

E
[
Y 2
n

])
N−λAC , N ≥ 1.

Note that one can find λ > 0 such that (2.45) is satisfied if Y1, Y2 . . . is a sequence
of i.i.d. random variables with E

[
eλ0|Y1|

]
< ∞ for some λ0 > 0, so the KMT coupling
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follows as a special case. Another simple condition that ensures that (2.45) holds for
some λ > 0 is that the Yn are uniformly bounded, i.e. P (|Yn| ≤ K) = 1 for all n and
some constant K.
Moreover, (2.45) implies by Jensen’s inequality that

λ
(
E
[
Y 2
n

])3/2 ≤ λE
[
|Yn|3

]
≤ λE

[
eλ|Yn| |Yn|3

]
≤ E

[
Y 2
n

]
,

i.e. 0 < λ ≤ (E [Y 2
n ])
−1/2 for all n implying that (E [Y 2

n ])n≥1 is necessarily bounded.
Under the assumptions of Theorem 2.3.5, if Zn =

∑n
k=1 σ(k)Yk, we can control the

term P (Ec
N) in the proof above as before, and thus, one could generalise Theorem 2.3.3

to independent, not necessarily i.i.d. sequence (Yn)n≥1 in that case.

2.3.2 Exponential weight functions

In this section, we briefly comment on universality in the case of an exponential weight
function, i.e. σ(n) = eβn for some β > 0. The situation here is completely different
compared to the polynomial case.
First of all, the rate of decay for the discretised process and for the continuous time
process is not the same in general. This was observed already in the Brownian case
where

P
(
B(eβt) ≤ 0,∀t ∈ [0, N ]

)
∼ 1

π
e−βN/2, N →∞,

in view of (2.16) and the fact that (e−βt/2B(eβt))t≥0 is an Ornstein-Uhlenbeck process.
In particular, for β > 2 log 2, the decay is faster than 2−N which is a universal lower
bound in the discrete framework (cf. (2.20)).
Secondly, the universality of the survival exponent that one observes in the polyno-
mial case no longer persists even under the assumption of exponential moments as the
following example shows.

Example 2.3.6. Let σ(n) = exp(βn) for some β ≥ log 2 and assume that P (Yn = 1) =
P (Yn = −1) = 1/2 for all n. Then for all N ≥ 1

Zn ≤ 0 ∀n = 1, . . . , N ⇐⇒ Y1 = · · · = YN = −1. (2.46)

The implication “⇐” is trivial. On the other hand, if Y1 = · · · = Yk−1 = −1 and Yk = 1,
for some k ≤ N , then

Zk = −
k−1∑
j=1

eβj + eβk = eβ(k−1) e
β − 2 + eβ(2−k)

eβ − 1
> 0

since β ≥ log 2. This proves the implication “⇒”.
Note that (2.46) implies that P (Zn ≤ 0, ∀n = 1, . . . , N) = 2−N = exp(− log(2)N). If
we consider (B(eβn))n≥0, the corresponding survival probability is strictly greater than
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2−N by Lemma 2.2.19. To be very precise, we actually have to consider (Bκ(n))n≥1

where

κ(n) =
n∑
k=1

σ(k)2 = e2β e
2βn − 1

e2β − 1
.

In particular, by scaling,

P
(
Bκ(n) ≤ 0,∀n = 1, . . . , N

)
= P

(
B(e2βn − 1) ≤ 0,∀n = 1, . . . , N

)
,

and the same arguments used in Lemma 2.2.19 show that

lim
N→∞

− 1

N
logP

(
Bκ(n) ≤ 0, ∀n = 1, . . . , N

)
< log 2.
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Chapter 3

Persistence of iterated processes

In this chapter, we consider persistence of processes Z = (X◦|Yt|)t≥0, whereX = (Xt)t≥0

and Y = (Yt)t≥0 are independent stochastic processes and Z = (X◦Yt)t≥0 ifX = (Xt)t∈R
(◦ denotes function composition). Such processes will be referred to as iterated processes.
Starting with the work of Burdzy ([Bur93]), the study of iterated Brownian motion has
attracted a lot of interest ([KL99]). Moreover, there are interesting connections be-
tween the exit times of iterated processes and the solution of certain fourth-order PDEs
([AZ01, Nan08]). The asymptotic behaviour of the survival probabilities of subordinated
Brownian motion is also relevant for the study of Green functions ([GR08]). However,
the one-sided exit problems for iterated processes has not been studied systematically
so far. Here we investigate how the survival exponent of X ◦ |Y | and X ◦ Y is related
to that of the outer process X and properties of the inner process Y . The relevant
scenario affecting the survival probability can be identified so that the results are quite
intuitive. For small ball probabilities (i.e. two-sided exit problems mentioned in (1.3)),
this problem has been investigated in [AL09].

The remainder of the chapter is organised as follows. We start by reviewing the
main results of the chapter in Section 3.1. In Section 3.2, we assume that the inner
process Y is a continuous self-similar process. We compute the survival exponent of
X ◦ |Y | (Theorem 3.1.1). Next, we turn to discontinuous processes Y . The survival
exponent of X ◦ |Y | is determined for X being a Lévy process or fractional Brownian
motion and Y being a random walk or Lévy process (Theorem 3.1.2 and 3.1.3) in Sec-
tion 3.3. Finally, we extend the previous results to two-sided processes (Theorem 3.1.4
and Theorem 3.1.5) in Section 3.4.

3.1 Main results

First, we consider processes (Xt)t≥0 and (Yt)t≥0 where Y is self-similar and continuous.
In this setup, the following result can be established without much difficulty:
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Theorem 3.1.1. Let (Xt)t≥0 be a stochastic process with

P (Xt ≤ 1,∀t ∈ [0, T ]) � T−θ, T →∞,

for some θ > 0. Let (Yt)t≥0 be an independent stochastic processes which is self-similar
of index H, has continuous paths, satisfies Y0 = 0, and for some ρ > θ, it holds that

P (|Yt| ≤ ε,∀t ∈ [0, 1]) - ερ, ε ↓ 0. (3.1)

Then
P (X(|Yt|) ≤ 1,∀t ∈ [0, T ]) � T−θH , T →∞.

Moreover, A := E
[
(sup {|Yt| : t ∈ [0, 1]})−θ

]
<∞, and if P (Xt ≤ 1,∀t ∈ [0, T ]) ∼ cT−θ

for some c > 0, it holds that

P (X(|Yt|) ≤ 1,∀t ∈ [0, T ]) ∼ cAT−θH , T →∞.

We remark that the assumption (3.1) is very weak since this so-called small devi-
ations probability usually decays faster than any polynomial as ε ↓ 0. Moreover, the
result can be explained intuitively: by self-similarity of Y , typical fluctuations of |Y |
up to time T are of order TH . The rare event that X stays below 1 until time TH is
then of order T−θH . The assumption (3.1) prevents a contribution of the event that Y
stays close to the origin to the survival exponent of Z = X ◦ |Y |. In short, the survival
probability of Z is determined by a rare event for X and a typical scenario for Y .
The assumption of continuity of the inner process Y allows us to write

P (X(|Yt|) ≤ 1,∀t ∈ [0, T ]) = P (Xt ≤ 1,∀t ∈ [0, (−IT ) ∨MT ]) ,

where I and M denote the running infimum resp. supremum process of Y . This will
simplify the proof of the upper bound of Theorem 3.1.1 very much. If Y is discontinuous,
the equality sign has to be replaced by ≥ in the preceding equation. It is then by far
more challenging to find the survival exponent of X ◦ |Y | since the gaps in the range of
|Y | have to be taken into account. We prove the following theorem for X being a Lévy
process and Y being a random walk or a Lévy process.

Theorem 3.1.2. Let (Xt)t≥0 be a centred Lévy process such that |X1|α has a finite
exponential moment for some α > 0. Let (Yt)t≥0 denote an independent random walk
or Lévy process such that |Y1|β has a finite exponential moment for some β > 0. It
holds that

P (X(|Yt|) ≤ 1,∀t ∈ [0, T ]) = T−θ+o(1), T →∞,

where θ = 1/4 if E [Y1] = 0, and θ = 1/2 if E [Y1] 6= 0.

Again, the results are intuitive: If E [Y1] = 0, the random walk oscillates, and typical
fluctuations up to time N are of magnitude

√
N . Since the survival exponent θ of a

centred Lévy process with second finite moments is 1/2, it is very plausible that the
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survival exponent of X ◦ |Y | is 1/4 at least if the gaps in the range of the random walk
are not too large. If E [Y1] > 0, then E [YN ] /N → E [Y1] by the law of large numbers,
and one expects the survival exponent of X ◦ |Y | to be 1/2 by the same reasoning.
The methods to prove Theorem 3.1.2 can be extended to the case that the outer process
is a fractional Brownian motion.

Theorem 3.1.3. Let (Xt)t≥0 denote a fractional Brownian motion with Hurst param-
eter H ∈ (0, 1). Let (Yt)t≥0 denote a Lévy process or a random walk such that |Y1|β
possesses a finite exponential moment for some β > 0. It holds that

P (X(|Yt|) ≤ 1,∀t ∈ [0, T ]) = T−θ+o(1), T →∞,

where θ = (1−H)/2 if E [Y1] = 0, and θ = 1−H if E [Y1] 6= 0.

Note that the outer processes in Theorem 3.1.2 and 3.1.3 share the property of
stationary increments. We provide an example showing that an analogous result can
fail without this property.
Up to now, the outer process X = (Xt)t≥0 had the index set [0,∞), so it was only
possible to evaluate X over the range of the non-negative process |Y |. In order to
consider the one-sided exit problem for X ◦ Y , we consider two-sided processes X =
(Xt)t∈R where

Xt :=

{
X+
t , t ≥ 0,

X−−t, t < 0,
(3.2)

and (X+)t≥0 and (X−t )t≥0 are stochastic processes. We refer to X+ and X− as the
branches of X. We prove that the previous results can be extended in a natural way
for two-sided processes.

Theorem 3.1.4. Let (Xt)t∈R be a two-sided process with

P (Xt ≤ 1,∀t ∈ [−T, T ]) � T−θ

for some θ > 0. Let (Yt)t∈R denote an independent self-similar process of index H
with Y0 = 0 and continuous paths such that E

[
|I|−θ

]
+ E

[
M−θ] < ∞ where I =

inf {Yt : t ∈ [−1, 1]} and M = sup {Yt : t ∈ [−1, 1]}. Then

P (X(Yt) ≤ 1,∀t ∈ [−T, T ]) � T−Hθ, T →∞.

As a corollary to Theorem 3.1.4, we compute the survival exponent of n-times iter-
ated Brownian motions.
The result corresponding to Theorem 3.1.2 in the two-sided setup is

Theorem 3.1.5. Let (Xt)t∈R denote a two-sided Lévy process with branches X+, X−

such that E
[
X±1
]

= 0, E
[
exp

(∣∣X±1 ∣∣α)] < ∞ for some α > 0. Let (Yt)t≥0 denote

another Lévy process or random walk independent of X with E
[
exp

(
|Y1|β

)]
< ∞ for

some β > 0. Then

P (X(Yt) ≤ 1,∀t ∈ [0, T ]) = T−1/2+o(1), T →∞.
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Theorem 3.1.5 shows that the survival exponent is equal to 1/2 no matter if E [Y1] =
0 or not (in contrast to Theorem 3.1.2, see Remark 3.4.5 for an explanation).

3.2 Taking the supremum over the range of a contin-
uous self-similar process

If Y = (Yt)t≥0 is a stochastic process, denote by FYt := σ(Ys : 0 ≤ s ≤ t) the filtration
generated by Y up to time t. Let us now prove Theorem 3.1.1 announced in Section 3.1.
Proof of Theorem 3.1.1. Let us write Y ∗t := sups∈[0,t] |Ys|. Note that our assumption
(3.1) implies that (Y ∗1 )−θ is integrable, see Lemma 3.2.2 below.
Upper bound: By assumption, there are constants C, T0 > 0 such that for any T > T0,
we have that P

(
supt∈[0,T ] Xt ≤ 1

)
≤ CT−θ. Clearly, we can choose C so large that

the inequality holds for all T > 0. By continuity of Y , the fact that Y0 = 0 and
independence of X and Y , and self-similarity of Y , we have that

P (X(|Yt|) ≤ 1,∀t ∈ [0, T ]) = E
[
P
(
Xt ≤ 1,∀t ∈ [0, Y ∗T ]|FYT

)]
≤ CE

[
(Y ∗T )−θ

]
= CE

[
(Y ∗1 )−θ

]
T−θH .

Lower bound : Note that for any C > 0, it holds that

P (X(|Yt|) ≤ 1,∀t ∈ [0, T ]) ≥ P
(
Y ∗T ≤ CTH , {Xt ≤ 1,∀t ∈ [0, Y ∗T ]}

)
≥ P

(
Y ∗T ≤ CTH

)
P
(
Xt ≤ 1,∀t ∈ [0, CTH ]

)
= P (Y ∗1 ≤ C)P

(
Xt ≤ 1,∀t ∈ [0, CTH ]

)
.

If C is large enough, P (Y ∗1 ≤ C) = P
(
Y ∗(c−1/H) ≤ 1

)
> 0 by continuity and the fact

that Y0 = 0. This proves the lower bound.
If P

(
supt∈[0,T ] Xt ≤ 1

)
∼ cT−θ, we can find for all ε > 0 small enough a constant T0(ε)

such that for all T ≥ T0(ε), it holds that (c−ε)T−θ ≤ P
(
supt∈[0,T ] Xt ≤ 1

)
≤ (c+ε)T−θ.

Hence,

T θH P

(
sup
t∈[0,T ]

X(|Yt|) ≤ 1

)
≥ T θH E

[
1{Y ∗T≥T0(ε)} P

(
Xt ≤ 1,∀t ∈ [0, Y ∗T ]|FYT

)]
≥ (c− ε)T θH E

[
1{Y ∗T≥T0(ε)}(Y

∗
T )−θ

]
= (c− ε)E

[
1{Y ∗1 ≥T0(ε)T−H}(Y

∗
1 )−θ

]
.

Letting T →∞, monotone convergence implies for all ε > 0 small enough that

lim inf
T→∞

T θHP (X(|Yt|) ≤ 1,∀t ∈ [0, T ]) ≥ (c− ε)E
[
(Y ∗1 )−θ

]
,

i.e. lim infT→∞ T
θHP (X(|Yt|) ≤ 1,∀t ∈ [0, T ]) ≥ c · E

[
(Y ∗1 )−θ

]
.

For the proof of the upper bound, note that

P (Xt ≤ 1, ∀t ∈ [0, Y ∗T ]) ≤ P (Y ∗T ≤ T0) + E
[
1{Y ∗T≥T0} P

(
Xt ≤ 1,∀t ∈ [0, Y ∗T ]|FYT

)]
≤ P

(
Y ∗1 ≤ T0T

−H)+ (c+ ε)E
[
1{Y ∗T≥T0}(Y

∗
T )−θ

]
.
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The assumption on the small deviation probability of Y implies that

T θHP
(
Y ∗1 ≤ T0(ε)T−H

)
- TH(θ−ρ)T0(ε)ρ → 0, T →∞.

Hence, as in the proof of the lower bound, we obtain that

lim sup
T→∞

T θHP (X(|Yt|) ≤ 1,∀t ∈ [0, T ]) ≤ (c+ ε)E
[
(Y ∗1 )−θ

]
,

which finishes the proof upon letting ε ↓ 0. �

Remark 3.2.1. The proof reveals that the lower bounds of Theorem 3.1.1 are also valid
without continuity of paths of Y and the assumption (3.1) on the small deviations of
Y . Moreover, we remark that the proof can be easily adapted to cover the case that
P
(
supt∈[0,T ] Xt ≤ 1

)
= T−θ+o(1).

As already mentioned in the proof, the small deviations probability in (3.1) is linked
to integrability of sup {|Yt| : t ∈ [0, 1]}. For convenience and later reference, let us state
this fact without proof in the following lemma.

Lemma 3.2.2. Let Z be a random variable such that Z > 0 a.s. and P (Z ≤ ε) - ερ

as ε ↓ 0 for some ρ > 0. Then for η ∈ (0, ρ), it holds that E [Z−η] <∞. Conversely, if
E [Z−η] <∞ for some η > 0, then P (Z ≤ ε) - εη as ε ↓ 0.

To conclude this section, let us give a simple application of Theorem 3.1.1.

Example 3.2.3. If X and Y are independent Brownian motions, recall from (1.4) that
P (Xt ≤ 1,∀t ∈ [0, T ]) ∼

√
2/π T−1/2 as T →∞. Moreover, since

lim
ε↓0

ε2 logP (|Yt| ≤ ε,∀t ∈ [0, 1]) = −π2/8,

see e.g. [LS01, Theorem 6.3], Lemma 3.2.2 implies that (supt∈[0,1] |Yt|)−η is integrable
for every η > 0. Hence, Theorem 3.1.1 implies that the survival exponent X ◦ |Y | of is
1/4.
More generally, if W and B(1), . . . , B(n) are independent Brownian motions, it follows
for any n ≥ 1 that

P
(
W
(∣∣B(1)

∣∣ ◦ · · · ◦ ∣∣∣B(n)
t

∣∣∣) ≤ 1,∀t ∈ [0, T ]
)
∼ cnT

−2−(n+1)

, T →∞,

with

cn =

√
2

π

n∏
k=1

E
[
(W ∗

1 )−2−k
]
<∞, n ≥ 1, W ∗

1 = sup
t∈[0,1]

|Wt| .
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3.3 Taking the supremum over the range of discontin-
uous processes

The goal of this section is to find the asymptotics of

P (X(|Sn|) ≤ 1,∀n = 1, . . . , N) , P (X(|Yt|) ≤ 1,∀t ∈ [0, T ]) N, T →∞.

Here X = (Xt)t≥0 is a centred Lévy process or a fractional Brownian motion, S is
a random walk, and Y is a Lévy process. First, we recall known results on survival
probabilities of Lévy processes and prove a slight generalisation. If X is a centred Lévy
process with E [X2

1 ] <∞, recall that

P (Xt ≤ 1,∀t ∈ [0, T ]) = T−1/2 l(T ), T →∞,

where l is slowly varying at infinity, see Section 1.2.1. Our first goal is to show that the
function l may be chosen asymptotically constant which is suggested by the analogous
result for random walks: If (Sn)n≥1 is a centred random walk with finite variance, then
P
(
supn=1,...,N Sn ≤ 0

)
∼ cN−1/2. However, to the author’s knowledge, an analogous

result for Lévy processes has not been proved in the literature so far.
Clearly, P

(
supt∈[0,T ] Xt ≤ 1

)
≤ P

(
supn=1,...,bT cXn ≤ 1

)
� T−1/2, since (Xn)n≥1 is a

centred random walk with finite variance. Moreover, if E
[
X2+ε

1

]
< ∞ for some ε >

0, then also P
(
supn=1,...,bT cXn ≤ 1

)
% T−1/2, see [AD13, Proposition 2.1]. The next

theorem states the precise asymptotic decay of P
(
supt∈[0,T ] Xt ≤ 1

)
as T → ∞ under

the assumption of finite variance. The idea to approximate the integral over P (Xt > 0)
by the sum over P (Xn > 0) in the proof below is due to Ron Doney.

Theorem 3.3.1. Let (Xt)t≥0 be a centred Lévy process with E [X2
1 ] < ∞. For any

x > 0, there is a constant c(x) > 0 such that

P (Xt ≤ x, ∀t ∈ [0, T ]) ∼ c(x)T−1/2, T →∞.

Proof. Let τx be the first hitting time of the set (x,∞), x > 0. According to [Don07,
Eq. 4.4.7], it holds that

1− E
[
e−λτx

]
∼ U(x)κ(λ), λ ↓ 0, (3.3)

where U is a renewal function (see [Don07, Eq. 4.4.6]), and

κ(u) = exp

(∫ ∞
0

e−t − e−ut

t
P (Xt > 0) dt

)
, u ≥ 0.

Using that
∫∞

0
t−1(e−t − e−ut) dt = log u for u > 0 (a Frullani integral), it follows that

κ(u) =
√
u exp

(∫ ∞
0

e−t − e−ut

t
(P (Xt > 0)− 1/2) dt

)
. (3.4)
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We will show that

lim
λ↓0

∫ ∞
0

e−λt − e−t

t
(P (Xt > 0)−1/2) dt =

∫ ∞
0

1− e−t

t
(P (Xt > 0)−1/2) dt =: A <∞,

(3.5)
implying that κ(λ) ∼

√
λe−A as λ ↓ 0. By a Tauberian theorem (see e.g. [Fel71,

Theorem XIII.5.4]), we conclude from (3.3) that

P (τx > T ) ∼ U(x)e−A

Γ(1/2)
· T−1/2 =

U(x)e−A√
π

· T−1/2, T →∞,

so the theorem follows.
In order to prove (3.5), we approximate the term P (Xt > 0) by P (Xn > 0) for t ∈
(n, n + 1], which allows us to use classical results from fluctuation theory of random
walks to show that the integral in (3.4) converges as u→ 0. To this end, note that for
u ∈ (0, 1), we have the following estimates:

0 ≤
∫ ∞

0

e−ut − e−t

t
|P (Xt > 0)− 1/2| dt ≤

∫ 1

0

1− e−t

t
|P (Xt > 0)− 1/2| dt

+
∞∑
n=1

∫ n+1

n

e−ut − e−t

t
(|P (Xt > 0)− P (Xn > 0)|+ |P (Xn > 0)− 1/2|) dt

≤ c+
∞∑
n=1

n−1 sup
t∈[n,n+1]

|P (Xt > 0)− P (Xn > 0)|+
∞∑
n=1

n−1 |P (Xn > 0)− 1/2| .

(3.6)

By [Ros62, Theorem 3], it is known that the series
∑∞

n=1 n
−1(P (Xn > 0)−1/2) converges

absolutely if E [X1] = 0 and E [X2
1 ] ∈ (0,∞), so the second series in (3.6) converges.

Next, we show that the first series also converges using results on the speed of conver-
gence in the CLT. To this end, let t ∈ (n, n + 1]. By independence and stationarity of
increments of X, we have that

P (Xt ≤ 0)− P (Xn ≤ 0) =

∫ ∞
−∞

(P (Xn ≤ −y)− P (Xn ≤ 0)) P (Xt−n ∈ dy)

=

∫ ∞
−∞

(
Fn(−y/

√
n)− Fn(0)

)
P (Xt−n ∈ dy) , (3.7)

where Fn(x) := P (Xn/
√
n ≤ x). Let Φ denote the cumulative distribution function

of a standard Gaussian variable. With ∆n := sup {|Fn(x)− Φ(x)| : x ∈ R}, we get for
y ∈ R that∣∣Fn(y/

√
n)− Fn(0)

∣∣ ≤ ∣∣Fn(y/
√
n)− Φ(y/

√
n)
∣∣+
∣∣Φ(y/

√
n)− Φ(0)

∣∣+ |Φ(0)− Fn(0)|
≤ 2∆n +

∣∣Φ(y/
√
n)− Φ(0)

∣∣ ≤ 2∆n + (2π)−1/2 |y| /
√
n.
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In view of (3.7), we obtain that

|P (Xt ≤ 0)− P (Xn ≤ 0)| ≤ 2∆n + (2π)−1/2E [|Xt−n|] /
√
n

≤ 2∆n + (2π)−1/2E [|X1|] /
√
n,

where we have used that 0 ≤ t−n ≤ 1 and that (|Xt|)t≥0 is a submartingale in the last
inequality. Since E [X2

1 ] < ∞,
∑∞

n=1 ∆n/n is finite by [Ego73, Theorem 1]. Hence, the
first series in (3.6) is also finite, so by dominated convergence,∫ ∞

0

1− e−t

t
|P (Xt > 0)− 1/2| dt = lim

u↓0

∫ ∞
0

e−ut − e−t

t
|P (Xt > 0)− 1/2| dt <∞.

�

Having determined the asymptotic behaviour of the survival probability for X, let
us continue to give some heuristics concerning the survival exponent of X ◦ |S|. If
E [S1] = 0 and E [S2

1 ] = 1, it follows from the invariance principle that

lim
N→∞

P
(
|Sn| ≤

√
N x, ∀n = 1, . . . , N

)
= P (|Bt| ≤ x,∀t ∈ [0, 1]) , x > 0.

Here, B denotes a standard Brownian motion. Intuitively, one would therefore expect
that

P (X(|Sn|) ≤ 1, ∀n = 1, . . . , N) � P
(
Xt ≤ 1,∀t ∈ [0,

√
N ]
)
� N−1/4,

at least if the points |S1| , . . . , |SN | are sufficiently “dense” in [0,
√
N ]. Under a subexpo-

nential moment condition on the random walk, we show that the survival exponent is
indeed 1/4. For simplicity of notation, we denote by X (γ) the class of non-degenerate
random variables X with E

[
e|X|

γ]
<∞ where γ > 0.

Before proving the upper bound of Theorem 3.1.2, we need the following auxiliary
result:

Lemma 3.3.2. Let (fn)n≥1 denote a sequence of positive numbers with fN → ∞ and
fN/
√
N → 0 as N → ∞. Let (Sn)n≥1 denote a centred random walk with E [S2

1 ] <
∞ and let Mn := max {S1, . . . , Sn}. There are a constants C,N0 independent of the
sequence (fn) such that

P (MN ≤ fN) ≤ CfN N
−1/2, fN , N ≥ N0.

Proof. Recall from (2.14) that for 1 ≤ N0 < N , it holds that

P (MN ≤ 0) ≥ P (MN0 ≤ 0) · P (Sn ≤ 0,∀n = N0 + 1, . . . , N) .

Now

P
(

sup
n=N0+1,...,N

Sn ≤ 0

)
≥ P

(
SN0 ≤ −fN , sup

n=N0+1,...,N
Sn − SN0 ≤ fN

)
= P (SN0 ≤ −fN)P

(
sup

n=1,...,N−N0

Sn ≤ fN

)
≥ P (SN0 ≤ −fN)P (MN ≤ fN) .
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Hence, we get that

P (MN ≤ fN) ≤ P (MN ≤ 0)

P (MN0 ≤ 0)P (SN0 ≤ −fN)
.

With N0 = bf(N)c2, it follows from the CLT that P (SN0 ≤ −fN)→ P (Z ≤ −1), where
Z is centred Gaussian with variance E [Y 2

1 ]. Moreover, since P (MN ≤ 0) ∼ cN−1/2, we
conclude that

P (MN ≤ 0)

P (MN0 ≤ 0)P (SN0 ≤ −fN)
∼ N−1/2

N
−1/2
0 P (Z ≤ −1)

∼ fNN
−1/2

P (Z ≤ −1)
.

�

Remark 3.3.3. We frequently need to apply Lemma 3.3.2 to Lévy processes in the
following situation: Let (Xt)t≥0 denote a centred Lévy process such that E [X2

1 ] < ∞.
Let g : [0,∞) → (0,∞) be a function such that g(T ) → ∞ as T → ∞. Since (Xn)n≥1

is a random walk, for any c, ρ > 0 and T large enough, we see from Lemma 3.3.2 that

P

(
sup

t∈[0,g(T )]

Xt ≤ c(log T )ρ

)
≤ P

(
sup

n=1,...,bg(T )c
Xn ≤ c(log T )ρ

)
≤ C

c(log T )ρ√
g(T )

.

We are now ready to establish the upper bounds of Theorem 3.1.2.
Proof of the upper bound of Theorem 3.1.2.
Let us first observe that it suffices to prove the upper bound for the case that the inner
process Y is a random walk. Indeed, if Y is a Lévy process, (Yn)n≥1 is a random walk
and we have for all T > 0 that

P (X(|Yt|) ≤ 1,∀t ∈ [0, T ]) ≤ P (X(|Yn|) ≤ 1, ∀n = 1, . . . , bT c) . (3.8)

In the sequel, we denote the random walk by (Sn)n≥0 and write Sn = Y1 + · · ·+Yn where
(Yn)n≥1 is a sequence of i.i.d. random variables. Let us begin to develop a method to
deal with the gaps in the range of the random walk. The idea is to fill the gaps in the
range, which will only result in a term of lower order if the gaps are not too large. Let
t(1) ≤ t(2) ≤ . . . , N ≥ 2, k ≥ 0, x, y > 0. Using that (XT−t −XT )t∈[0,T ]

d
= (−Xt)t∈[0,T ],

observe that

P

(
N⋂
n=1

{Xt ≤ x+ ky, ∀t ∈ [t(n)− k, t(n) + k]}

)

≤ P

(
N⋂
n=1

{Xt ≤ x+ (k + 1)y,∀t ∈ [t(n)− (k + 1), t(n) + (k + 1)]}

)

+
N−1∑
n=1

P

(
sup
t∈[0,1]

Xt(n)−k−t −Xt(n)−k ≥ y

)
+

N−1∑
n=1

P

(
sup
t∈[0,1]

Xt(n)+k+t −Xt(n)+k ≥ y

)

≤ P

(
N⋂
n=1

{
sup

t∈[t(n)−(k+1),t(n)+k+1]

Xt ≤ x+ (k + 1)y

})
+ 2NP

(
sup
t∈[0,1]

|Xt| ≥ y

)
.
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(Here and below, the interval [t(n)−k, t(n)+k] stands for [0, t(n)+k] whenever t(n)−k <
0.) Let pN := P

(
supn=1,...,N X(|Sn|) ≤ 1

)
. Conditioning on S1, . . . , SN and using the

previous inequality with x = 1 and y = (2 logN)1/α iteratively for k = 0, . . . , L, we
obtain that

pN ≤ P

(
N⋂
n=0

{
Xt ≤ 1 + (2 logN)1/α,∀t ∈ [|Sn| − 1, |Sn|+ 1]

})

+ 2(N + 1)P

(
sup
t∈[0,1]

|Xt| ≥ (2 logN)1/α

)

≤ · · · ≤ P

(
N⋂
n=0

{
Xt ≤ 1 + L(2 logN)1/α,∀t ∈ [|Sn| − L, |Sn|+ L]

})

+ L2(N + 1)P

(
sup
t∈[0,1]

|Xt| ≥ (2 logN)1/α

)
. (3.9)

Since X1 ∈ X (α) and X is a martingale, it is not hard to show that

C1 := E [sup {exp (|Xt|α) : t ∈ [0, 1]}] <∞.

Indeed, note that the function x 7→ exp(xα) is increasing on [0,∞) and convex [x0,∞),
where x0 > 0 is some suitable constant. In particular, if we set h(x) = exp(xα0 ) on
[0, x0] and h(x) = exp(xα) for x ≥ x0, then h is a non-decreasing convex function, so
(h(|Xt|))t≥0 is a submartingale. By Doob’s inequality, it follows that C1 is finite.
By Chebychev’s inequality, we find that

P

(
sup
t∈[0,1]

|Xt| ≥ (2 logN)1/α

)
≤ e−2 logN C1 = C1N

−2. (3.10)

Let S∗N := max {|S1| , . . . , |SN |}. With L = bC(logN)γc, we obtain from (3.9) and
(3.10) that

pN ≤ P

(
N⋂
n=0

{
sup

t∈[|Sn|−L,|Sn|+L]

Xt ≤ 1 + 21/αC(logN)γ+1/α

})
+ 4CC1(logN)γN−1

≤ P
(
Xt ≤ 21+1/αC(logN)γ+1/α,∀t ∈ [0, S∗N ]

)
+ P (AN) + C2(logN)γN−1, (3.11)

where AN is the event that the set {0, |S1| , . . . , |SN |} contains a gap larger than L =
bC(logN)γc. In particular, the event AN implies that the random walk must have a
jump larger than L up to time N . If Y1 ∈ X (β), take γ = 1/β, and note that

P (AN) ≤ P
(

max
n=1,...,N

|Yn| ≥ bC(logN)1/βc
)
≤ NP

(
|Y1| ≥ (C/2)(logN)1/β

)
≤ Ne−(C/2)β logN E

[
e|Y1|

β
]

= o(N−1/2), (3.12)
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where the last equality holds for C large enough. Now combining (3.11) and (3.12), we
arrive at

pN ≤ P
(
Xt ≤ 21+1/αC(logN)1/β+1/α,∀t ∈ [0, S∗N ]

)
+ o(N−1/2). (3.13)

We need to distinguish the cases E [S1] = 0 and E [S1] 6= 0.
Case E [Y1] = 0: First, note that

P
(
Xt ≤ C3(logN)1/β+1/α,∀t ∈ [0, S∗N ]

)
≤ P

(
Xt ≤ C3(logN)1/β+1/α, ∀ t ∈ [0,

√
N/ logN ]

)
+ P

(
S∗N ≤

√
N/ logN

)
.

(3.14)

By [dA83, Corollary 4.6] (or [Mog74, Theorem 4]), one has

lim
N→∞

a−2
N logP

(
S∗N ≤

√
N/aN

)
= −π2/8, (3.15)

whenever 0 < aN →∞ and a2
N/N → 0. This shows that

P
(
S∗N ≤

√
N/ logN

)
= N−π

2/8+o(1) = o(N−1). (3.16)

Finally, (3.13), (3.14), (3.16) and Remark 3.3.3 imply that

P
(

sup
n=1,...,N

X(|Sn|) ≤ 1

)
≤ P

 sup
t∈[0,
√
N/ logN ]

Xt ≤ C3(logN)1/β+1/α

+ o(N−1/4)

- (logN)1/α+1/β+1/4N−1/4.

Case E [Y1] 6= 0: Similarly, note that

P
(
Xt ≤ C2(logN)1/β+1/α,∀t ∈ [0, S∗N ]

)
≤ P

(
Xt ≤ C2(logN)1/β+1/α,∀t ∈ [0, |SN |]

)
≤ P

(
Xt ≤ C2(logN)1/β+1/α,∀t ∈ [0, N |E [Y1]| /2]

)
+ P (|SN | ≤ N |E [Y1]| /2) .

Write S̃n := Sn − nE [Y1], so S̃ is a centred random walk, and note that

P (|SN | ≤ N |E [Y1]| /2) ≤ P
(
N |E [Y1]| −

∣∣∣S̃N ∣∣∣ ≤ N |E [Y1]| /2
)

≤ P
(∣∣∣S̃N ∣∣∣ ≥ |E [Y1]|N/2

)
≤ 4

E
[
S̃2
N

]
E [Y1]2N2

= C3N
−1.

As above, in combination with (3.13) and Remark 3.3.3, we conclude that

pN ≤ P
(
Xt ≤ C2(logN)1/β+1/α,∀t ∈ [0, N |E [Y1]| /2]

)
+ o(N−1/2)

- (logN)1/α+1/βN−1/2, N →∞.
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�

Let us now prove the lower bound of Theorem 3.1.2. We only prove the lower bound
if the inner process Y is a Lévy process. If Y is a random walk, the proof is almost
identical.
Proof of the lower bound of Theorem 3.1.2.
Case E [Y1] = 0:
By independence of X and Y , we have that

P

(
sup
t∈[0,T ]

X(|Yt|) ≤ 1

)
≥ P

(
sup

t∈[0,c
√
T ]

Xt ≤ 1

)
P

(
sup
t∈[0,T ]

|Yt| ≤ c
√
T

)
Note that by Doob’s inequality applied to the submartingale (Y 2

t )t≥0, we obtain that

P

(
sup
t∈[0,T ]

|Yt| ≤ c
√
T

)
= 1− P

(
sup
t∈[0,T ]

Y 2
t > c2T

)
≥ 1− EY 2

T

c2T
= 1− EY 2

1 /c
2 = 1/2

for c :=
√

2E [Y 2
1 ]. We have used that E [Y 2

t ] = t · EY 2
1 for a square integrable Lévy

martingale. This proves the lower bound if E [Y1] = 0.
Case E [Y1] 6= 0:
As before, for any c > |E [Y1]|, we have

P

(
sup
t∈[0,T ]

X(|Yt|) ≤ 1

)
≥ P

(
sup

t∈[0,cT ]

Xt ≤ 1

)
P

(
sup
t∈[0,T ]

|Yt| ≤ cT

)
.

Next, since |Yt| ≤ |Yt − E [Yt]| + |E [Yt]| and E [Yt] = E [Y1] · t for a Lévy process, it
follows that

P

(
sup
t∈[0,T ]

|Yt| ≤ cT

)
≥ P

(
sup
t∈[0,T ]

|Yt − E [Yt]| ≤ (c− |E [Y1]|)T

)

≥ 1−
E
[
|YT − E [YT ]|2

]
(c− |E [Y1]|)2 T 2

= 1−
E
[
|Y1 − E [Y1]|2

]
(c− |E [Y1]|)2 T

→ 1

as T →∞. We have again used Doob’s inequality and the fact that E
[
|YT − E [YT ]|2

]
=

E
[
|Y1 − E [Y1]|2

]
· T . This completes the proof of the lower bound. �

Remark 3.3.4. The proof reveals that under the assumptions of Theorem 3.1.2, if
E [Y1] = 0, it holds that

N−1/4 - P
(

sup
n=1,...,N

X(|Sn|) ≤ 1

)
- N−1/4 (logN)1/α+1/β+1/4, N →∞.

Note that the lower bounds of Theorem 3.1.2 hold whenever E [X2
1 ] + E [Y 2

1 ] <∞.
The upper bound of Theorem 3.1.2 can be improved if X is a symmetric Lévy process
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and Y is a subordinator. Assume w.l.o.g. that Y1 ≥ 0 a.s. Then Z := X ◦ Y is a
symmetric Lévy process. In particular,

P (Zt ≤ 1, ∀t ∈ [0, T ]) ≤ P (Zn ≤ 1,∀n = 1, . . . , bT c]) � T−1/2,

without any additional assumption of moments, see e.g. [DDG12, Proposition 1.4]. This
observation suggests that Theorem 3.1.2 remains true under much weaker integrability
conditions. Indeed, Vysotsky ([Vys12a]) shows that if (Xt)t≥0 and (Yt)t≥0 are indepen-
dent centred Lévy processes such that E [X2

1 ] + E [Y 2
1 ] <∞, it holds that

P (X(|Yt|) ≤ 1,∀t ∈ [0, T ]) � T−1/4, T →∞.

The proof of the crucial upper bound relies on an identity from [Sin92a]. To explain
the idea in some more detail, let Tn denote the sequence of (ascending) ladder moments
of the random walk (Yn)n≥0, i.e.

T0 := 0, Tn = inf
{
k > Tn−1 : Yk > YTn−1

}
,

and Hn := Y (Tn) the corresponding ladder heights (see [Fel71, Section XII.1]). Set
Zn := X(Hn). Then (Tn, Zn)n≥1 defines a bivariate random walk. Now

P (X(Yt) ≤ 1,∀t ∈ [0, T ]) ≤ P (X(Hn) ≤ 1,∀n s.t. Tn ≤ T )

= P (Zn ≤ 1,∀n s.t. Tn ≤ T ) .

Let ξ := inf {n ≥ 0 : Zn > 0}. It can be shown that

P (Zn ≤ 0,∀n s.t. Tn ≤ T ) = P (Tξ > T ) . (3.17)

Indeed, let θ(T ) := inf {n > 0 : Tn > T}. Then

{Zn ≤ 0,∀n s.t. Tn ≤ T} =
{
Z1 ≤ 0, . . . , Zθ(T )−1 ≤ 0

}
= {ξ ≥ θ(T )} ,

and the latter event amounts to Tξ > T .
One can conclude from (3.17) in view of the results in [Sin92a] where the Laplace
transform of (ξ, Tξ) is given in terms of the probabilities P (Tn = k, Zn < 0) for k, n ∈ N.
This is a generalisation of Sparre-Andersen’s formula (1.5) to bivariate random walks.
The result P (Tξ > T ) � T−1/4 then follows by Tauberian arguments, see [Vys12a] for the
details. Let us also remark that the preceding arguments imply that the rather sparse
set of maxima {M1, . . . ,MN} ⊆ {Y1, . . . , YN} of the random walk (Yn)n≥1 suffices to
give the right order for the upper bound.
In the proof of Theorem 3.1.2, we needed stretched exponential moments in order to
ensure that the probability of a gap of size (C logN)γ in the set {0, |S1| , . . . , |SN |}
is asymptotically irrelevant, i.e. of lower order than N−1/2. This allowed us (at the
cost of a lower order term) to consider the supremum of the process X over the whole
interval from 0 to the maximum of the absolute value of the random walk up to time
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N instead of the set {0, |S1| , . . . , |SN |}. In contrast to the method in [Vys12a] that is
very specific to the random walk case, the technique presented here is also applicable
to other processes such as fractional Brownian motion (Theorem 3.1.3).
In (3.12), we have seen that the probability of a gap of size C(logN)1/β up to time N
can be made of arbitrarily small polynomial order by increasing the constant C under
the assumption that S1 ∈ X (β). However, if we only assume that E [|S1|p] is finite for
some p ≥ 2, it does not seem easy to get a polynomial upper bound on this probability.
Moreover, it is easy to see that a gap of size (logN)γ is much more likely in that case.
For simplicity, assume that E [S2

1 ] < ∞ and that P (S1 > x) � x−p as x → ∞ with
p > 2. The event that the random walk jumps above L at once and stays above the
level S1 after that up to time N clearly implies that the set {0, |S1| , . . . , |SN |} has a
gap of size L. Hence, the probability of a gap of size L is bounded below by

P
(
S1 ≥ L, sup

n=2,...,N
Sn − S1 ≥ 0

)
= P (S1 ≥ L)P

(
sup

n=1,...,N−1
Sn ≥ 0

)
,

and if L = C(logN)γ, the product is of order (logN)−pγN−1/2 = N−1/2+o(1). However,
it does not seem easy to find an upper bound of this order.
Moreover, as we have seen in Chapter 2, even for a deterministic increasing sequence
(sn)n≥1 such that sN →∞ as N →∞ and a Brownian motion (Bt)t≥0, it is not obvious
to find conditions on (sn)n≥1 such that

P (B(sn) ≤ 1,∀n = 1, . . . , N) � P (Bt ≤ 1, t ∈ [0, sN ]) � s
−1/2
N .

Let us now prove Theorem 3.1.3 for fractional Brownian motion.
Proof of Theorem 3.1.3. Let X be a FBM with Hurst index H, and recall that
P (Xt ≤ 1,∀t ∈ [0, T ]) = T−(1−H)+o(1), see [Mol99] or Section 1.2.3 here.
Upper bound: We can almost repeat the proof of Theorem 3.1.2. It suffices again to
prove the upper bound for the case that the inner process is a random walk (Sn)n≥1.
With c = E [sup {Xt : t ∈ [0, 1]}], recall that

P

(
sup
t∈[0,1]

|Xt| > (4 logN)1/2

)
= 2P

(
sup
t∈[0,1]

Xt > (4 logN)1/2

)
≤ C1 exp

(
−((4 logN)1/2 − c)2/2

)
= N−2+o(1),

by the Gaussian concentration inequality (see e.g. [LT91, Section 3.1]), which is the
equivalent of (3.10).
Write S∗N := max {|S1| , . . . , |SN |}. Since (Xt+T −XT )t∈[0,T ] and (XT−t −XT )t∈[0,T ] are
equal in law to (Xt)t∈[0,T ], we can proceed as in the proof of Theorem 3.1.2 to obtain
that

P
(

sup
n=1,...,N

X(|Sn|) ≤ 1

)
≤ P

(
Xt ≤ C(logN)1/β+1/2, ∀t ∈ [0, S∗N ]

)
+ o(N−1).
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Set gN := C(logN)1/β+1/2. If E [S1] = 0, in view of (3.15) and the self-similarity of X,
we obtain that

P (Xt ≤ gN ,∀t ∈ [0, S∗N ]) ≤ P
(
Xt ≤ gN ,∀t ∈ [0,

√
N/ logN ]

)
+ o(N−1)

= P
(
Xt ≤ 1,∀t ∈ [0, g

−1/H
N

√
N/ logN ]

)
+ o(N−1)

= (g
−1/H
N

√
N/ logN)−(1−H)+o(1) + o(N−1) = N−(1−H)/2+o(1).

If E [S1] 6= 0, a similar argument yields the upper bound. The proof of the lower bound
poses no difficulty and is omitted. �

Remark 3.3.5. In Theorem 3.1.2 and 3.1.3, the outer process X had stationary incre-
ments in both cases. One might wonder if this assumption can be relaxed. In view of
Theorem 3.1.1, one might guess that if X has a survival exponent θ > 0 and E [S1] = 0,
it would follow that

P
(

sup
n=1,...,N

X(|Sn|) ≤ 1

)
= N−θ/2+o(1), N →∞,

under suitable moment conditions. However, this turns out to be false in general.
As an example, consider a sequence X̃1, X̃2, . . . of independent random variables with
P
(
X̃n = 2

)
= 1− P

(
X̃n = 0

)
= 1/(n+ 1) for n ≥ 1 and define X = (Xt)t≥0 by

Xt = X̃n if t = (2n− 1)/2 for some n ∈ N, Xt = 0 else.

Obviously, X does not have stationary increments. Moreover, it is not hard to check
that

P

(
sup
t∈[0,T ]

Xt ≤ 1

)
� P

(
X̃1 = 0, . . . , X̃bT c = 0

)
=

bT c∏
n=1

(1− 1/(n+ 1)) � T−1.

If (Sn)n≥1 is a symmetric simple random walk, one has by construction that X(|Sn|) = 0
for all n, i.e. P (X(|Sn|)) ≤ 1,∀n ≥ 1) = 1.

3.4 Two-sided processes
In Sections 3.2 and 3.3, the outer process X = (Xt)t≥0 had the index set [0,∞), so
it was only possible to evaluate X over the range of the absolute value of the inner
process Y . In this section, we work with two-sided processes X = (Xt)t∈R allowing us
to consider the one-sided exit problem for the process X ◦ Y .
In Section 3.4.1, we assume that X is a two-sided process defined in (3.2) and that the
inner process Y is a self-similar continuous process before turning to the case of random
walks and Lévy processes in Section 3.4.2.
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3.4.1 Continuous self-similar processes

Let us first prove Theorem 3.1.4. As a corollary, we obtain the survival exponent of
iterated Brownian motions and iterated fractional Brownian motions.
Proof of Theorem 3.1.4.
The lower bound can be proved as in Theorem 3.1.1, so we only give the proof of
the upper bound. Denote by I and M the infimum and maximum process of Y , i.e.
It = infu∈[−t,t] Yu and Mt = supu∈[−t,t] Yu. By assumption, we can choose a constant C
such that for all T > 0

P (Xt ≤ 1,∀t ∈ [−T, T ]) ≤ C T−θ.

Since Y is independent of X and has continuous paths, we have

P (X(Yt) ≤ 1,∀t ∈ [0, T ]) = P (Xt ≤ 1,∀t ∈ [IT ,MT ])

≤ P (Xt ≤ 1,∀t ∈ [−(|IT | ∧MT ), |IT | ∧MT ])

≤ C E
[
(|IT | ∧MT )−θ

]
= C T−θHE

[
(|I1| ∧M1)−θ

]
.

Now E
[
(|I1| ∧M1)−θ

]
≤ E

[
(−I1)−θ

]
+ E

[
M−θ

1

]
, and the last expectation is finite by

assumption. This completes the proof. �

Let us apply Theorem 3.1.4 to iterated fractional Brownian motions.

Corollary 3.4.1. Let (Yn(t))t∈R be a FBM with Hurst index Hn for every n ≥ 1, all
independent. For t ∈ R, set X1(t) := Y1(t) and Xn(t) := Xn−1 ◦ Yn(t). Let θ1 = 1 and
θn = H2 · . . . ·Hn. It holds that

P (Xn(t) ≤ 1, ∀t ∈ [−T, T ]) = T−θn+o(1), T →∞, n ≥ 1.

Proof. By [Mol99, Theorem 3], if BH is a FBM with Hurst index H, it holds that

P
(
BH(t) ≤ 1,∀t ∈ [−T, T ]

)
= T−1+o(1), T →∞.

In view of the self-similarity, this amounts to P
(
supt∈[−1,1]B

H(t) ≤ ε
)

= ε1/H+o(1) as

ε ↓ 0. Hence, by symmetry, E
[(
− inft∈[−1,1]B

H(t)
)−η]

+E
[(

supt∈[−1,1]B
H(t)

)−η]
<∞

for any η < 1/H by Lemma 3.2.2. Since θn ≤ 1 for all n, the assertion follows now
easily by induction in view of Theorem 3.1.4. �

If we know the precise behaviour of P (Xt ≤ 1,∀t ∈ [−T1, T2]) for T1, T2 → ∞, we
can get a stronger result than Theorem 3.1.4. In particular, if X has independent
branches such as in the case of two-sided Brownian motion, the next theorem allows us
to determine the exact asymptotics of the survival probability (see Corollary 3.4.4).
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Theorem 3.4.2. Let (Xt)t≥0 be a stochastic process such that

P
(
X+
t ≤ 1,∀t ∈ [−T1, T2]

)
∼ c T−θ

−

1 T−θ
+

2 , T1, T2 →∞.

Let (Yt)t∈R denote an independent self-similar process of index H with Y0 = 0 and
continuous paths such that for some ρ > θ+ + θ−, it holds that

P (Yt ≥ −ε,∀t ∈ [−1, 1]) + P (Yt ≤ ε,∀t ∈ [−1, 1]) ≤ Cερ, ε ↓ 0. (3.18)

Then A := E
[
|inf {Yt, t ∈ [−1, 1]}|−θ

−
(sup {Yt : t ∈ [−1, 1]})−θ+

]
<∞ and

P (X(Yt) ≤ 1,∀t ∈ [−T, T ]) ∼ AcT−H(θ++θ−), T →∞.

Proof. Let IT := inf {Yt : t ∈ [−T, T ]} and MT := supt∈[−T,T ] Yt. By Lemma 3.2.2, we
know that E

[
|I1|−η

]
+ E

[
M−η

1

]
< ∞ for η ∈ (0, ρ). The finiteness of A then follows

from Lemma 3.4.3 below. The rest of the proof is analogous to the one of Theorem 3.1.1.
We only sketch the proof of the upper bound. For ε > 0, we can find T0 such that for
all T1, T2 ≥ T0, we have that

P (Xt ≤ 1,∀t ∈ [−T1, T2]) ≤ (c+ ε)T−θ
−

1 T−θ
+

2 .

Using the independence of X and Y , we see that

P (X(Yt) ≤ 1,∀t ∈ [−T, T ])

= E
[
P
(
X+
t ≤ 1, t ∈ [IT ,MT ]|FYT

)]
≤ P (IT ≥ −T0) + P (MT ≤ T0) + (c+ ε)E

[
|IT |−θ

−
M−θ+

T

]
.

Next, note that lim supT→∞ T
H(θ++θ−) (P (IT ≥ −T0)+P (MT ≤ T0)) = 0. Indeed, since

ρ > θ+ + θ−, this follows in view of (3.18):

P (IT ≥ −T0) + P (MT ≤ T0) = P
(
I1 ≥ −T0T

−H)+ P
(
M1 ≤ T0T

−H) ≤ CT ρ0 T
−ρH .

Hence, writing θ := θ++θ− and noting thatE
[
|IT |−θ

−
M−θ+

T

]
= T−HθE

[
|I1|−θ

−
M−θ+

1

]
,

we conclude that

lim sup
T→∞

THθ P (X(Yt) ≤ 1,∀t ∈ [−T, T ]) ≤ (c+ ε)E
[
|I1|−θ

−
M−θ+

1

]
.

Letting ε ↓ 0 establishes the desired upper bound. �

The following lemma is stated separately for better readability and is needed in the
preceding proof.

Lemma 3.4.3. Let X1, X2 denote nonnegative random variables with E [Xαi
i ] < ∞

(i = 1, 2) for some α1, α2 > 0. Then for βi ∈ (0, αi), it holds that E
[
Xβ1

1 Xβ2
2

]
<∞.
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Proof. We have that E
[
Xβ1

1 Xβ2
2

]
≤ E

[
Xβ1

1

]
+ E

[
Xβ2

2

]
+ E

[
Xβ1

1 Xβ2
2 1{X1>1,X2>1}

]
. It

suffices to show that the last expectation is finite. If 1/p + 1/q + 1/r = 1, we deduce
from a generalised version of Hölder’s theorem that

E
[
Xβ1

1 Xβ2
2 1{X1>1,X2>1}

]
≤ E

[
Xβ1p

1

]1/p

E
[
Xβ2q

2

]1/q

E
[
1{X1>1,X2>1}

]1/r
.

With p = α1/β1 > 1, q = α2/β2 > 1 and appropriate r, the claim follows. �

Theorem 3.4.2 allows us to state the precise behaviour of the survival probability
for n-times iterated Brownian motion.

Corollary 3.4.4. Let (Bn)n≥1 denote a sequence of independent two-sided Brownian
motions. Set W (1)

t := B1(t) and W (n)
t := Bn(W (n−1)(t)). For every n ≥ 1, let θn :=

2−(n−1). It holds that

P
(
W

(n)
t ≤ 1,∀t ∈ [−T, T ]

)
∼ 2

π
cn T

−θn , T →∞, n ≥ 1,

where c1 = 1 and for n ≥ 2,

cn = E
[∣∣∣inf

{
W

(n−1)
t : t ∈ [−1, 1]

}∣∣∣−1/2 (
sup

{
W

(n−1)
t : t ∈ [−1, 1]

})−1/2
]
<∞.

Proof. If B is a two-sided Brownian motion, note that the branches are independent
Brownian motions by (1.9). Hence, we have that

P

(
sup

t∈[−T1,T2]

Bt ≤ 1

)
= P

(
sup

t∈[0,T1]

Bt ≤ 1

)
P

(
sup

t∈[0,T2]

Bt ≤ 1

)
∼ 2

π
T
−1/2
1 T

−1/2
2 ,

whenever T1, T2 → ∞. The assertion is therefore clear for n = 1. By induction, if
the assertion holds for some n ≥ 1, we can apply Theorem 3.4.2 with X = Bn+1 and
Y = W (n). Indeed, W (n) is 2−n-selfsimilar. Moreover, since W (n) is symmetric, and by
the induction hypothesis, we have that

P
(
W

(n)
t ≥ −ε,∀t ∈ [−1, 1]

)
+ P

(
W

(n)
t ≤ ε,∀t ∈ [−1, 1]

)
= 2P

(
W

(n)
t ≤ ε,∀t ∈ [−1, 1]

)
= 2P

(
W

(n)
t ≤ 1,∀t ∈ [−ε−2n , ε−2n ]

)
∼ (4/π)cnε

2nθn = (4/π)cnε
2, ε ↓ 0.

Hence, we infer from Theorem 3.4.2 (c = 2/π, θ+ = θ− = 1/2, ρ = 2, H = 2−n) that

cn+1 = E
[∣∣∣inf

{
W

(n)
t : t ∈ [−1, 1]

}∣∣∣−1/2 (
sup

{
W

(n)
t : t ∈ [−1, 1]

})−1/2
]
<∞

and
P
(
W

(n+1)
t ≤ 1,∀t ∈ [−T, T ]

)
∼ (2/π)cn+1T

−2−n , T →∞.

�
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3.4.2 Two-sided Lévy processes at random walk or Lévy times

Let us now consider the one-sided exit problem for the process (X(Sn))n≥0, where S
is again a random walk and X is a two-sided Lévy process, i.e. the branches of X are
independent Lévy processes. Theorem 3.1.5 shows that the survival exponent is 1/2
under suitable integrability conditions regardless of the sign of E [S1] in contrast to
Theorem 3.1.2, see Remark 3.4.5 below.
We now give a proof of Theorem 3.1.5 for the case that the inner process Y is a ran-
dom walk. As before, the upper bound for the case that Y is a Lévy process follows
immediately, whereas the proof of the lower bound is similar and is omitted.
Proof of Theorem 3.1.5.
The lower bound can be established as in the proof of Theorem 3.1.2 if E [Y1] = 0. If
E [Y1] > 0 (say), using that infn≥1 Sn is a finite random variable a.s., the result follows
along similar lines.
The proof of the upper bound is also similar to that of Theorem 3.1.2, though it is a bit
more technical. Let pN := P

(
supn=1,...,N X(Sn) ≤ 1

)
. Repeating the steps before (3.9),

we obtain that

pN ≤ P

(
N⋂
n=0

{
Xt ≤ 1 + L(2 logN)1/α,∀t ∈ [Sn − L, Sn + L]

})
(3.19)

+ 2L(N + 1)

(
P

(
sup
t∈[0,1]

∣∣X+
t

∣∣ ≥ (2 logN)1/α

)
+ P

(
sup
t∈[0,1]

∣∣X−t ∣∣ ≥ (2 logN)1/α

))
.

Take L = C(logN)1/β, and let ÃN denote that the event that the set {0, S1, . . . , SN}
contains a gap larger than L. Let gN := 21+1/αC(logN)1/α+1/β. Let

Mn := max {0, S1, . . . , Sn} , In := min {0, S1, . . . , Sn} .

Since X+
1 , X

−
1 ∈ X (α), we get in view of (3.10) and (3.11) that

pN ≤ P (Xt ≤ gN ,∀ t ∈ [IN ,MN ]) + P
(
ÃN

)
+ C2(logN)1/βN−1

≤ P (Xt ≤ gN ,∀ t ∈ [IN ,MN ]) + o(N−1/2).

The last inequality follows from an estimate on P
(
ÃN

)
as in (3.12).

Let us again consider two cases:
Case E [Y1] 6= 0: Assume first that E [Y1] > 0. If E [Y1] < 0, the proof is almost identical.
Note that

P (Xt ≤ gN ,∀ t ∈ [0,MN ]) ≤ P (MN ≤ δN) + P
(
Xt ≤ gN ,∀ t ∈ [(2 logN1/α), δN ]

)
≤ C2N

−1 + C3gNN
−1/2 - N−1/2(logN)1/α+1/β,

where we have used that P (MN ≤ δN) ≤ P (SN ≤ δN) = o(N−1) for δ small enough,
and Remark 3.3.3 in the second inequality.
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Case E [Y1] = 0: Let us finally consider the case E [Y1] = 0. With gN as above, it
suffices to show that

hN := P (Xt ≤ gN , ∀ t ∈ [IN ,MN ]) - N−1/2+o(1), N →∞.

Let fN :=
√
N/ logN , N ≥ 2. Note that

hN ≤ P
(

sup
n=1,...,N

|Sn| ≤ fN

)
+ P (MN ≤ fN ,−IN > fN , Xt ≤ gN ,∀t ∈ [IN ,MN ])

+ P (MN > fN ,−IN ≤ fN , Xt ≤ gN ,∀t ∈ [IN ,MN ])

+ P (MN > fN ,−IN > fN , Xt ≤ gN ,∀t ∈ [IN ,MN ])

=: J1(N) + J2(N) + J3(N) + J4(N).

First, recall that J1(N) = o(N−1/2) (cf. (3.15)). It remains to estimate the terms J2

and J4. The term J3 can be dealt with analogously to J2.
Step 1: Note that

J2(N) ≤ P

(
MN ≤ N1/4,−IN > fN , sup

t∈[IN ,MN ]

Xt ≤ gN

)

+ P

(
N1/4 ≤MN ≤ fN ,−IN > fN , sup

t∈[IN ,MN ]

Xt ≤ gN

)
=: K2,1(N) +K2,2(N).

Let us now find upper bounds for K2,j for j = 1, 2. First, note that

K2,1(N) ≤ P
(
MN ≤ N1/4

)
P

(
sup

t∈[−fN ,0]

Xt ≤ gN

)
.

Applying Lemma 3.3.2 with f̃N := N1/4 to the first factor and Remark 3.3.3 to the
second, we conclude that

K2,1(N) - N−1/4 gNf
−1/2
N � N−1/2 (logN)1/α+1/β+1/4. (3.20)

Let us now find an upper bound on K2,2. Set a(k) :=
∑k

l=1 2−(l+1) = (1−2−k)/2, k ≥ 1.
Since a(N) → 1/2, we can find γ(N) such that Na(γ(N)) ≥ fN =

√
N/ logN . Indeed,

this just amounts to

a(γ(N)) =
(1− 2−γ(N))

2
≥ log fN

logN
=

1

2
− log logN

2 logN
, (3.21)

i.e.
γ(N) ≥ 1

log 2
log

(
logN

log logN

)
.
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Hence, it suffices to set γ(N) := d(log logN)/ log 2e.
Next, note that

{
N1/4 ≤MN ≤ N1/2/fN

}
⊆
{
Na(1) ≤MN ≤ Na(γ(N))

}
, so

K2,2(N) ≤
γ(N)−1∑
k=1

P

(
Na(k) ≤MN ≤ Na(k+1),−IN > fN , sup

t∈[IN ,MN ]

Xt ≤ gN

)

≤
γ(N)−1∑
k=1

P
(
Na(k) ≤MN ≤ Na(k+1)

)
P

(
sup

t∈[−fN ,Na(k)]

Xt ≤ gN

)

≤ P

(
sup

t∈[0,fN ]

X−t ≤ gN

)
γ(N)−1∑
k=1

P
(
MN ≤ Na(k+1)

)
P

(
sup

t∈[0,Na(k)]

X+
t ≤ gN

)
.

In view of Lemma 3.3.2, we can find constants C1 and N0 such that for N ≥ N0

P
(
MN ≤ Na(k+1)

)
≤ C1N

a(k+1)−1/2, k = 1, 2, . . .

Similarly, for all N large enough,

P

(
sup

t∈[0,Na(k)]

X+
t ≤ gN

)
≤ C2 gNN

−a(k)/2, k = 1, 2, . . .

Hence, for N large enough, we obtain that

K2,2(N) ≤ C3gN/
√
fN

γ(N)−1∑
k=1

Na(k+1)−1/2 gNN
−a(k)/2

= C3g
2
N(logN)1/4N−1/4

γ(N)−1∑
k=1

Na(k+1)−a(k)/2−1/2

= C4(logN)2/α+2/β+1/4(γ(N)− 1)N−1/2,

since a(k + 1) − a(k)/2 = 1/4. By definition of γ(N), we arrive at K2,2(N) -
(log logN) (logN)2/α+2/β+1/4N−1/2. Combining this with (3.20), it follows that

J2(N) - (log logN) (logN)2/α+2/β+1/4N−1/2, N →∞. (3.22)

Step 3 :
Finally, with gN as above, note that

J4(N) ≤ P

(
sup

t∈[−fN ,fN ]

Xt ≤ gN

)
= P

(
sup

t∈[0,fN ]

X−t ≤ gN

)
P

(
sup

t∈[0,fN ]

X+
t ≤ gN

)
- (gN/

√
fN)2 � (logN)2/α+2/β+1/2N−1/4.

�
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Remark 3.4.5. The proof reveals that the survival exponent is equal to 1/2 no matter
if E [Y1] = 0 or not for quite different reasons. If E [Y1] > 0, SN/N → E [Y1] by the law
of large numbers, so the random walk diverges to +∞ with speed N and the survival
probability is determined by the right branch X+ of X.
If E [Y1] = 0, the random walks oscillates and typical fluctuations are of order ±

√
N .

The survival probability up to timeN is therefore approximately equal to the probability
that both X+ and X− stay below 1 until time

√
N . By independence of X+ and X−,

this probability is equal to the product of these two probabilities which are each of order
N−1/4.



Chapter 4

Persistence of autoregressive processes

In the following chapter, we study persistence of autoregressive processes. Recall that
an autoregressive process X of order p ∈ N (AR(p) in short) is defined as

Xn =

p∑
k=1

akXn−k + Yn, n ≥ 1, (4.1)

with the convention that Xn = 0 for n ≤ 0. Here Y1, Y2, . . . denote a sequence of i.i.d.
random variables, often referred to as innovations in this context, and a1, . . . , ap ∈ R.
One verifies that Xn =

∑n
k=1 cn−kYk, where

cn = 0, n < 0, c0 = 1, cn =

p∑
k=1

akcn−k, n ≥ 1.

In particular, Xn is again a weighted sum of i.i.d. random variables, but in contrast to
the processes considered in Chapter 2, the weights now depend on n as well.
Let again

pN(x) := P (Xn ≤ x,∀n = 1, . . . , N) , N ≥ 1, x ∈ R,

denote the persistence probability of X. We write pN instead of pN(0) in the sequel.
Persistence of AR(1)-processes with a1 ∈ (0, 1) has been studied in [NK08], and it is
shown that pN decays at least exponentially under a mild moment condition. Note
that the AR(1)-process X with Xn = ρXn−1 + Yn is given by Xn =

∑n
k=1 ρ

n−kYk, and
therefore, if ρ > 0, we clearly have that

P (Xn ≤ 0, n = 1, . . . , N) = P

(
n∑
k=1

ρ−kYk ≤ 0, n = 1, . . . , N

)
.

In other words, the persistence probability pN(0) of an AR(1)-process with a1 = ρ > 0
is equal to that of a weighted random walk with weight function σ(x) := ρ−x defined
in Section 2.1. In particular, if ρ ∈ (0, 1), σ increases exponentially, and bounds on the

85
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exponential rate of decay for Gaussian innovations were stated in Section 2.2.4.
To the author’s knowledge, persistence of other AR-processes has not been studied in the
literature, so taken as a whole, very little is known about persistence of AR-processes.
As noted in [DDG12], this would be of much interest in view of the frequent appearance
of AR-processes and persistence probabilities in physical and ecomomic models.

The remainder of this chapter is organised as follows. We begin by presenting
some preliminaries on AR-processes in Section 4.1 before presenting the main results
for AR(2) processes in Section 4.2. In Section 4.3, we state general conditions ensuring
that pN decays exponentially or at least faster than any polynomial. Special emphasis is
put on the case that (cn)n≥0 is absolutely summable and AR(2)-processes. We also prove
exponential lower bounds for certain classes of AR-processes. We then determine the
pairs (a1, a2) where the persistence probability decays polynomially for AR(2)-processes
in Section 4.4, before briefly treating the case that pN converges to a positive constant
in Section 4.5.

4.1 Preliminaries
We begin by recalling a few facts about autoregressive processes that we need in the
sequel. For more details, the reader may consult [BD87, Chapter 3].
In order to determine the coefficients (cn)n≥0 corresponding to an AR(p)-process, one
needs to solve the linear difference equation

cn = a1cn−1 + . . . apcn−p, n ≥ p,

with initial conditions

c0 = 1, c1 = a1c0, c2 = a1c1 + a2c0, . . . , cp−1 = a1cp−2 + · · ·+ ap−1c0.

Solving this equation amounts to finding the roots s1, . . . , sp ∈ C of the characteristic
polynomial fp(·), given by fp(x) := xp −

∑p
k=1 akx

p−k, x ∈ R.
In the sequel, special emphasis is put on AR(2)-processes. In that case, the roots s1, s2

of f2(λ) = λ2 − a1λ− a2 are given by

s1 := (a1 + h)/2, s2 := (a1 − h)/2, h :=
√
a2

1 + 4a2 ∈ C. (4.2)

Taking into account the inital conditions c0 = 1, c1 = a1, one can show that

cn =

{
h−1

(
sn+1

1 − sn+1
2

)
, n ≥ 0, a2

1 + 4a2 6= 0,

(a1/2)n (n+ 1), n ≥ 0, a2
1 + 4a2 = 0.

(4.3)

If a2
1 + 4a2 < 0, writing s1 = reiϕ and s2 = s1 = re−iϕ in polar form, elementary

manipulations show that the solution is given by

cn = |a2|(n+1)/2 · 2 sin((n+ 1)ϕ)/h̃, (4.4)
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where

h̃ =
√
−(a2

1 + 4a2) > 0, ϕ =


arctan(h̃/a1) ∈ (0, π/2), a1 > 0,

π/2, a1 = 0,

π + arctan(h̃/a1) ∈ (π/2, π), a1 < 0.

Note that the behaviour of the sequence (cn)n≥0 may change significantly for different
values of (a1, a2): it can grow or decay exponentially, oscillate, converge to a constant,
grow polynomially,. . . For later reference, let us remark that cn → 0 if and only if
max {|s1| , |s2|} < 1, which is easily seen to be equivalent to the conditions

a1 + a2 < 1, a2 < 1 + a1, a2 > −1, (4.5)

see [Ela99, Theorem 2.37].

-2 -1 1 2
a1

-1

1

a2

Figure 4.1: The region of parameters (a1, a2) where cn → 0

Remark 4.1.1. The convention that Xn = 0 for n < 0 is not standard to define autore-
gressive processes. It is often customary to define AR(p)-processes as follows, see e.g.
[BD87, Chapter 3]: If (Yn)n∈Z is a sequence of i.i.d. random variables, X = (Xn)n∈Z is
AR(p) if

Xn = a1Xn−1 + · · ·+ apXn−p + Yn, n ∈ Z.
Moreover, X is called causal if there exists a deterministic sequence (cn)n≥0 with∑
|cn| < ∞ such that Xn =

∑∞
k=0 ckYn−k. From a practical perspective, it is nat-

ural to consider only causal processes such that Xn only depends on the past values
Yn, Yn−1, . . . . By [BD87, Theorem 3.1.1], X is causal if and only if the polynomial
p(z) = 1 − a1z − · · · − apzp has no zeros in {z ∈ C : |z| ≤ 1}. In that case, the coef-
ficients cn are determined by the relation

∑∞
k=0 ckz

k = 1/p(z) for |z| ≤ 1. Equating
the coefficients of zk, one easily verifies (or see [BD87, Section 3.3]) that the sequence
(cn)n≥0 satisfies the same recursion equation with the same initial conditions as above.
Hence, if X is a causal AR(p)-process, we can decompose it for n ≥ 1 in the following
way:

Xn =
n−1∑
k=0

ckYn−k +
∞∑
k=n

ckYn−k =
n∑
k=1

cn−kYk +
∞∑
k=0

cn+kY−k = X(1)
n +X(2)

n .
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Note that X(1) and X(2) are independent and that X(1) is an AR(p)-process in the sense
of this chapter. The term X(2) can be seen as a small perturbation for large values of
n in general. For instance, if E [|Y0|] <∞, it follows that X(2)

n → 0 in probability, since

P
(∣∣X(2)

n

∣∣ ≥ ε
)
≤ ε−1 E

[∣∣∣∣∣
∞∑
k=0

cn+kY−k

∣∣∣∣∣
]
≤ ε−1 E [|Y0|]

∞∑
k=0

|cn+k|

= ε−1 E [|Y0|]
∞∑
k=n

|ck| → 0, n→∞.

By using the alternative definition in (4.1), we do not have to assume that the ck
are summable in order to define AR-processes, and therefore get a much larger class
of processes including, for example, random walks. Moreover, Theorem 4.3.5 below
provides a general upper bound on the persistence probability for a class of processes
that contains AR-processes in the sense of Brockwell and Davis as a special case.

We will use different methods to prove certain statements about the persistence
probability depending on the parameters (a1, a2). To this end, set

E1 := {(a1, a2) : a1 < 0, a2 > 0, a2 > 1 + a1} , E2 := (−∞, 0]2,

E3 :=
{

(a1, a2) : a1 > 0, a2
1 + 4a2 < 0

}
.

Figure 4.2 will be helpful to visualise the regions that will be considered separately
below.

-3 -2 -1 1 2 3 4
a1

-4

-3

-2

-1

1

2

3
a2

Figure 4.2: The regions E1, E2, E3 and C.

Let us also comment briefly on the dependence of the persistence probability on the
barrier x for AR(p)-processes. In principle, the behaviour of the persistence probability
can vary significantly for different barriers. An extreme example is an AR(1)-process
Zn = ρZn−1 + Yn where ρ ∈ (0, 1) with P (Y1 = 1) = P (Y1 = −1) = 1/2. It is known
that pN - exp(−λN) for some λ > 0 (see Theorem 4.3.1 below), whereas pN(x) = 1
for all x ≥ 1/(1− ρ) since |Xn| =

∣∣∑n
k=1 ρ

n−kYk
∣∣ ≤∑∞k=0 ρ

k = 1/(1− ρ).
On the other hand, if cn ≥ δ > 0 for all n ≥ 0 and P (Y1 ≤ −ε) > 0 for some ε > 0, one
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can show that pN(x) � pN as N → ∞ for all x ≥ 0. Indeed, note that if Y1 ≤ −ε, it
follows that Xn = cn−1Y1 +

∑n
k=2 cn−kYk ≤ −εδ +

∑n
k=2 cn−kYk, so that

pN = P
(

sup
n=1,...,N

Xn ≤ 0

)
≥ P (Y1 ≤ −ε)P

(
sup

n=2,...,N

n∑
k=2

cn−kYk ≤ δε

)
≥ P (Y1 ≤ −ε) pN(δε).

Iteration shows that pN ≥ P (Y1 ≤ −ε)L pN(Lδε) for L = 1, . . . , N . Hence, if x ≥ 0, take
L with Lδε ≥ x to get that P (Y1 ≤ −ε)L pN(x) ≤ pN ≤ pN(x) for all N large enough.

4.2 Main results for AR(2) processes
Let us illustrate our main result when X is AR(2), i.e. Xn = a1Xn−1 + a2Xn−2 + Yn
with (Yn)n≥1 i.i.d. Recall that Xn =

∑n
k=1 cn−kYk for n ≥ 1. We decompose R2 into

three disjoint regions C,E and P (see Figure 4.3) defined as follows:

C :=
{

(a1, a2) : a1 ≥ 2, a2
1 + 4a2 > 0

}
∪ {(a1, a2) : a1 ∈ (0, 2), a1 + a2 > 1}

∪
{

(a1, a2) : a2
1 + 4a2 = 0, a1 > 2

}
∪ {(a1, a2) : a1 = 0, a2 > 1} ,

P := {(a1, a2) : a1 + a2 = 1, a2 ∈ [−1, 1]} ,
E := R2 \ (C ∪ P ).

-4 -3 -2 -1 1 2 3 4
a1

-4

-3

-2

-1

1

2

3
a2

Figure 4.3: The regions C and E. P corresponds to the dotted line. The dashed line is
the boundary of C whereas E is open.

Depending on the membership of (a1, a2) to one of these sets, we can characterise the
behaviour of the persistence probability under certain conditions on the law of Y1. The
main purpose is to determine whether the persistence probability decays polynomially
or exponentially or whether it converges to a positive constant.
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If (a1, a2) ∈ P , the persistence probability decays polynomially if E [Y1] = 0 under
suitable moment conditions. The choice a1 = 2, a2 = −1 corresponds to an integrated
random walk where pN � N−1/4 if E [Y1] = 0 and E [Y 2

1 ] <∞ ([DDG12]). If a1 +a2 = 1
with |a2| < 1, we will see that X can be seen as a perturbed random walk since
cn = c + Cεn where |ε| < 1. Moreover, X can also be written as an integrated AR(1)-
process. The process corresponding to a1 = 0, a2 = 1 describes two independent random
walks such that its persistence probability is the square of that of a random walk.

Theorem 4.2.1. Let (a1, a2) ∈ P \ {(2,−1)}. Assume that E [Y1] = 0 and that
E
[
e|Y1|

α]
<∞ for some α > 0. Then

pN = N−1/2+o(1) (|a2| < 1), pN ∼ CN−1 (a2 = 1).

Next, we also prove that the persistence probability decays faster than any polyno-
mial if (a1, a2) ∈ E under certain conditions on the law of Y1.

Theorem 4.2.2. Let (a1, a2) ∈ E. Assume that P (Y1 > 0) ∈ (0, 1), E
[
e|Y1|

α]
<∞ for

some α > 0 and that the characteristic function ϕ of Y1 satisfies ϕ(t)→ 0 as |t| → ∞.
Then pN - exp(−λN/ logN) for some λ = λ(a1, a2) > 0.

Actually, we can show that pN - exp(−λN) on most parts of E under much weaker
conditions on the distribution of Y1. For instance, on E2, we will see that the persistence
probability decays exponentially for a trivial reason, whereas the same holds on E3 by
Proposition 4.3.16.
The reason for the rapid decay of the persistence probability on E can be explained as
follows: either cn → 0 exponentially fast or (cn) oscillates and diverges to ±∞.
If (a1, a2) ∈ C, we will see that cn = exp(λn(1 + o(1)) for some λ > 0. One there-
fore expects that the process stays below a constant barrier at all times with positive
probability. This is confirmed by the following theorem:

Theorem 4.2.3. Let (a1, a2) ∈ C. Assume that P (Y1 < 0) > 0 and P (Y1 ≥ x) -
(log x)−α as x→∞ for some α > 1. Then it holds that

P
(

sup
n≥1

Xn ≤ x

)
= lim

N→∞
pN(x) > 0, x ≥ 0.

Note that the assumption E [Y1] = 0 is essential for the polynomial behaviour of pN if
(a1, a2) ∈ P . For instance, if (Sn)n≥1 is a random walk, it is known that the persistence
probability can decay polynomially or exponentially if E [S1] > 0 (see [Don89]) whereas
it converges to a positive constant if E [S1] < 0. In contrast, if (a1, a2) ∈ E ∪ C, the
behaviour of pN is more stable in the sense that Theorem 4.2.3 and Theorem 4.2.2 do
not rely on the condition E [Y1] = 0.
The best results can be obtained if the innovations are Gaussian, where we can actually
prove that pN admits an exponential upper bound for all (a1, a2) ∈ E. Summing up,
this leads to the following theorem:
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Theorem 4.2.4. If Y1 is Gaussian with zero mean, the following statements hold:

1. limN→∞ pN = p∞ > 0 if and only if (a1, a2) ∈ C,

2. pN ∼ cN−1 iff (a1, a2) = (0, 1), and pN � N−1/4 iff (a1, a2) = (2,−1),

3. pN = N−1/2+o(1) if and only if (a1, a2) ∈ P and |a2| < 1, and

4. pN - e−λN for some λ > 0 if and only if (a1, a2) ∈ E.

The theorems above are mostly corollaries to more general theorems that are also
applicable to AR(p)-processes if p ≥ 3 (see e.g. Theorem 4.3.2 and 4.3.10 and Propo-
sition 4.3.17 and 4.5.1 below). We will indicate possible extensions throughout this
chapter. The main advantage of focussing on AR(2)-processes consists of the fact that
we have an explicit solution of the difference equation for the sequence (cn)n≥0. For
instance, this allows us to explicitly describe the parameters (a1, a2) such that cn → 0.
However, even for AR(2)-processes, one is forced to distinguish a variety of cases that
require different treatment. It is clear that this becomes much more complicated for
processes of higher order.

4.3 Exponential bounds

4.3.1 Exponential upper bounds

Let us begin with a trivial observation: If a1 ≤ 0, . . . , ap ≤ 0, we have that

P
(

sup
n=1,...,N

Xn ≤ 0

)
≤ P (Y1 ≤ 0)N ,

since X1 ≤ 0, . . . , Xn ≤ 0 implies that Yk ≤ −a1Xk−1 − · · · − apXk−p ≤ 0 for all
k = 1, . . . , n. If p = 2, this shows that pN decays at least exponentially on E2, see
Figure 4.2.
As we will see in the sequel, exponential decay of pN occurs for two differnt reasons: first,
if cn → 0 (exponentially fast) and second, if (cn)n≥0 oscillates and diverges exponentially
fast.
Let us first consider the case that cn goes to zero. Recall that for AR(1)-processes
(Zn)n≥1 with Zn = ρZn−1 +Yn for ρ ∈ (0, 1), cn = ρn → 0, and pN decays exponentially
under mild assumptions on the distribution of Y1:

Theorem 4.3.1 ([NK08]). Let 0 < ρ < 1, x > 0 and assume that E
[
(Y −1 )δ

]
< ∞ for

some δ ∈ (0, 1) and P (Y1 > x(1− ρ)) > 0. Then E [exp(ατx)] <∞ for some α > 0.

Let us remark that Theorem 4.3.1 implies also that E [exp(ατ0)] <∞ for some α > 0
if E

[
(Y −1 )δ

]
<∞ and P (Y1 > 0) > 0.

We now state a similar weaker result that provides a simple criterion for AR(p)-processes
to ensure that pN decays faster to zero than any polynomial.
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Theorem 4.3.2. Let (ck)k≥0 denote a sequence with c0 = 1, A :=
∑∞

k=0 |ck| < ∞ and∑∞
k=q |ck| ≤ Ce−λq for every q ≥ 1 where C, λ > 0 are constants. Assume that there are

constants γ, δ > 0 with min {P (Y1 < −γ) ,P (Y1 > γ)} > 0 and that E
[
|Y1|δ

]
<∞. Let

Xn =
∑n

k=1 cn−kYk. Then for x ∈ [0, γA), there is c(x) > 0 such that

pN(x) - exp
(
−c(x)

√
N
)
, N →∞.

Moreover, if E [exp(|Y1|α)] <∞ for some α > 0 and x ∈ [0, γA), there is c(x) > 0 such
that

pN(x) - exp (−c(x)N/ logN) , N →∞.

Proof. For q ≥ 1, define Zq,n =
∑n

k=n−q cn−kYk for n ≥ q+1. Note that Zq,n is measur-
able w.r.t. σ(Yn−q, . . . , Yn) which implies that (Zq,n(q+1)+1)n≥1 defines a sequence of i.i.d.
random variables with Zq,q+2

d
= Xq+1. We will show that Zq,n is a good approximation

of Xn if q is large. We then obtain an estimate on pN(x) by computing the persistence
probability of the independent random variables (Zq,(q+1)n+1)n≥1.
First, observe that

P
(

sup
n=q+2,...,N

|Xn − Zq,n| > u

)
≤

N∑
n=q+2

P

(∣∣∣∣∣
n−q−1∑
k=1

cn−kYk

∣∣∣∣∣ > u

)

=
N∑

n=q+2

P

(∣∣∣∣∣
n−1∑
k=q+1

ckYk

∣∣∣∣∣ > u

)
=: hN(u). (4.6)

In the first equality, we have used that the Yk are i.i.d., and therefore exchangeable.
Hence,

P
(

sup
n=1,...,N

Xn ≤ x

)
≤ P

(
sup

n=q+2,...,N
Zq,n ≤ x+ ε

)
+ hN(ε)

≤ P

(
sup

n=1,...,b(N−1)/(q+1)c
Zq,n(q+1)+1 ≤ x+ ε

)
+ hN(ε)

= P (Zq,q+2 ≤ x+ ε)b(N−1)/(q+1)c + hN(ε), (4.7)

where we have used the fact that (Zq,n(q+1)+1)n≥1 is an i.i.d. sequence. Using again the
exchangeability, we get for y ∈ R that

P (Zq,q+2 ≤ y) = P

(
q∑

k=0

ckYk+1 ≤ y

)
→ P

(
∞∑
k=0

ckYk+1 ≤ y

)
, q →∞, (4.8)

since the series
∑∞

k=0 ckYk+1 =: Z converges a.s. by Kolmogorov’s Three Series Theorem.
Next, P (Z ≤ y) < 1 for every 0 ≤ y < γA. To see this, let us construct an event Ω0 of
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positive probability that implies Z > y: Fix m ∈ N, and let

Ω0 :=
m⋂
k=0

{ckYk+1 > γ |ck|} ∩
∞⋂

k=m+1

{
|Yk+1| ≤ (1− e−λ/2)eλk/2

}
.

Using that |ck| ≤ Ce−λk for all k, it holds on Ω0 that

Z ≥
m∑
k=0

ckYk+1 −
∞∑

k=m+1

|ck| |Yk+1| ≥ γ
m∑
k=0

|ck| − C(1− e−λ/2)
∞∑

k=m+1

e−λk/2

= γ

m∑
k=0

|ck| − Ce−λ(m+1)/2.

Since
∑m

k=0 |ck| → A and y < γA, we can choose m so large that indeed Z > y on Ω0.
Finally, using that min {P (Y1 > γ) ,P (Y1 < −γ)} > 0 and E

[
|Y1|δ

]
< ∞, one verifies

readily that P (Ω0) > 0.
Then for 0 ≤ y < γA, by (4.8), there is ρ = ρ(y) < 1 such that P (Z2,q+2 ≤ y) ≤ ρ for
all q sufficiently large.
Note that in view of our assumption on the sequence (cn),

sup
n=q+1,...,N

∣∣∣∣∣
n∑

k=q+1

ckYk

∣∣∣∣∣ ≤ sup
l=q+1,...,N

|Yk|
∞∑

k=q+1

|ck| ≤ Ce−λq sup
l=q+1,...,N

|Yk| ,

so we deduce that

hN(u) ≤
N∑

n=q+1

P
(

sup
k=q+1,...,N

|Yk| > eλqu/C

)
≤ N2P

(
|Y1| > eλqu/C

)
.

Let q = qN := b
√
Nc - 1. Since E

[
|Y1|δ

]
<∞, we can apply Chebychev’s inequality:

hN(u) ≤ N2E
[
|Y1|δ

]
e−δλ

√
N(u/C)−δ. (4.9)

For x ∈ [0, γA), let ε > 0 such that x+ε < γA, and recall that we can fix ρ ∈ (0, 1) such
that P (Zq,q+2 ≤ x+ ε) ≤ ρ for q large enough. Combining (4.7) and (4.9), we obtain
that

pN(x) - ρ
√
N +N2e−δλ

√
N ,

so the theorem follows under the assumption E
[
|Y1|δ

]
<∞. If E [exp(|Y1|α)] <∞, the

estimate on hN can be improved as follows:

hN(u) ≤ N2P
(
|Y1| > eλqu/C

)
≤ N2 exp

(
−eαλq(u/C)α

)
E [exp(|Y1|α)] .
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In particular, with q = qN = bκ logNc, if κ is large enough, this implies together with
(4.7) that, for some c(x) > 0,

pN(x) - N2e−N
2

+ ρb(N−1)/(qN+1)c - exp(−c(x)N/ logN), N →∞.

�

The proof of Theorem 4.3.2 reveals that fast decay of pN can be explained intuitively
as follows: if we write Xn =

∑n−q−1
k=1 cn−kYk +

∑n
k=n−q cn−kYk, the first summand is

typically small if q is large and cn → 0. Hence, heuristically,

P
(

sup
n=1,...,N

Xn ≤ 0

)
≈ P

(
sup

n=q+1,...,N

n∑
k=n−q

cn−kYk ≤ 0

)
≈ P

(
q+1∑
k=1

cn−kYk ≤ 0

)N/q

.

Remark 4.3.3. If (ck)k≥0 denote a sequence with c0 = 1 and
∑∞

k=0 |ck| <∞ and |Y1| ≤M
a.s. for some M < ∞, one can prove in an analogous way that even pN - exp(−cN)
for some c > 0 since hN(u) in the proof of Theorem 4.3.2 vanishes for q large enough.

Remark 4.3.4. As it was already remarked by [NK08], if (ck)k≥0 denotes a sequence of
positive numbers, one has that

Xn =
n∑
k=1

cn−kYk ≥
n∑
k=1

cn−kYk1{Yk≤M} =
n∑
k=1

cn−kỸk =: X̃n,

such that P (Xn ≤ x,∀n ≤ N) ≤ P
(
X̃n ≤ x,∀n ≤ N

)
. Hence, if the cn are positive,

one can assume without loss of generality that the innovations are bounded from above
in order to establish an upper bound on the persistence probability. Hence, the moment
conditions of Theorem 4.3.2 only apply to Y −1 in that case.

For AR(2)-processes, Theorem 4.3.2 is applicable if a1 + a2 < 1, a2 < a1 + 1 and
a2 > −1, cf. (4.5) and Figure 4.1. Moreover, the preceding theorem can be generalised
easily to cover more general processes (Xn)n∈Z that can be written as

Xn =
∞∑

k=−∞

cn−kYk, n ∈ Z,

where (cn)n∈Z is a deterministic sequence. This class contains autoregressive moving
average models (ARMA(p,q)) and moving average processes of infinte order (MA(∞)),
see [BD87, Section 3].

Theorem 4.3.5. Let (ck)k∈Z denote a sequence with c0 = 1, A :=
∑∞

k=−∞ |ck| < ∞
and

∑
|k|≥q |ck| ≤ Ce−λq for all q ≥ 1 and some λ > 0. Let (Yk)k∈Z be a sequence of

i.i.d. random variables such that min {P (Y1 > γ) ,P (Y1 < −γ)} > 0 for some γ > 0,
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and E
[
|Y1|δ

]
<∞ for some δ > 0. Let Xn :=

∑∞
k=−∞ cn−kYk for n ∈ Z. If x ∈ [0, γA),

it holds for some c(x) > 0 that

P

(
sup
|n|≤N

Xn ≤ x

)
- exp(−c(x)

√
N), N →∞.

Moreover, if E [exp(|Y1|α)] <∞ for some α > 0 and x ∈ [0, γA), there is c(x) > 0 such
that

P

(
sup
|n|≤N

Xn ≤ x

)
- exp(−c(x)N/ logN), N →∞.

Proof. Note that Xn is well defined for every n ∈ Z by Kolmogorov’s Three Series
Theorem. The proof is then very similar to that of Theorem 4.3.2. We define Zq,n :=∑n+q

k=n−q cn−kYk. Note that (Zq,n(2q+1))n∈Z forms a sequence of i.i.d. random variables
with Zq,0 =

∑q
k=−q ckYk. The remainder of the proof is along the same lines of the proof

of Theorem 4.3.2. �

In certain special cases, we can improve Theorem 4.3.2. Namely, if (cn) is a sequence
of positive numbers and cn = ρn(1+o(1)) where ρ ∈ (0, 1), it follows from Theorem 4.3.1
that pN goes to zero exponentially fast under mild assumptions on Y1:

Proposition 4.3.6. Let (cn)n≥0 be a sequence such that αCρn ≤ cn ≤ Cρn for all n ≥ 0
where ρ ∈ (0, 1), 0 < α < 1, C > 0. Assume that E

[
(Y −1 )δ

]
< ∞ for some δ ∈ (0, 1).

Let x ≥ 0 be such that P (Y1 > x(1− ρ)/(αC)) > 0, and Xn :=
∑n

k=1 cn−kYk. Then
there is some λ = λ(x) > 0 such that pN(x) - exp(−λN).

Proof. Define the i.i.d. random variables Ỹk := Yk1{Yk<0} + αYk1{Yk>0}, k ≥ 0. Since
ck ≥ 0 for all k, we obtain that

Xn =
n∑
k=1

cn−kYk ≥
n∑
k=1

Cρn−kYk1{Yk<0} +
n∑
k=1

αCρn−kYk1{Yk>0} = C
n∑
k=1

ρn−kỸk =: CZn,

where Zn := ρZn−1 + Ỹn. In particular, we conclude that

P
(

sup
n=1,...,N

Xn ≤ x

)
≤ P

(
sup

n=1,...,N
Zn ≤ x/C

)
.

Now P
(
Ỹ1 > x(1− ρ)/C

)
= P (Y1 > x(1− ρ)/(αC)) > 0 by the choice of x. Hence,

the result follows from [NK08, Theorem 1] (Theorem 4.3.1 above). �

The preceding proposition yields the following corollary for AR(2)-processes:

Corollary 4.3.7. Let a1 ∈ (0, 2), a2 < 0 with a1 + a2 < 1 and a2
1 + 4a2 > 0. Assume

that E
[
(Y −1 )δ

]
< ∞ for some δ ∈ (0, 1) and P (Y1 ≥ y) > 0 for every y. For every

x ≥ 0, there is λ = λ(x) > 0 such that pN(x) - exp(−λN).
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Proof. It is not hard to check that 0 < s2 < s1 < 1. Hence, cn = sn1 (s1− s2(s2/s1)n)/h
and h−1(s1 − s2)sn1 ≤ cn ≤ h−1sn+1

1 for all n. The result follows from Proposition 4.3.6.
�

If |Y1| ≤ M a.s., the preceding corollary is not applicable. However, we already
know that pN - e−cN for some c > 0 in that case, see Remark 4.3.3.

Let us now establish exponential upper bounds for pN for certain distributions if the
sequence (cn) oscillates and diverges exponentially. The proof relies on the following
proposition.

Proposition 4.3.8. Let ρ ∈ (−1, 1) (ρ 6= 0) and set Z :=
∑∞

n=1 ρ
nYn. Moreover,

suppose that E
[
|Y1|δ

]
< ∞ for some δ > 0. Let ϕ denote the characteristic function

of Y1 and assume that there are ∆ ∈ (0, |ρ|) and t0 > 0 such that |ϕ(t)| ≤ ∆ for all
|t| ≥ t0. It follows that P (|Z| ≤ ε) - ε as ε ↓ 0.

Proof. Z is well-defined, and its characteristic function ϕ̃ is given by ϕ̃(t) =
∏∞

n=1 ϕ(ρnt),
see e.g. [Luk70, Section 3.7]. Let us show that ϕ̃ is absolutely integrable. If this holds,
by [Luk70, Theorem 3.2.2], Z admits a continuous density g given by

g(x) :=
1

2π

∫ ∞
−∞

e−ixtϕ̃(t) dt, x ∈ R.

In particular, g is bounded by C := ‖ϕ̃‖1/(2π) implying that P (|Z| ≤ ε) ≤ C ε for any
ε ≥ 0.
To prove the integrability of ϕ̃, let ∆ and t0 be as in the statement of the proposition
and note that

|ϕ̃(t)| =
∞∏
n=1

|ϕ(ρnt)| ≤ ∆N(t),

where N(t) = # {n ≥ 1 : |ρnt| ≥ t0} = b(log |t| − log(t0))/ log(1/ |ρ|)c. In particular,

|ϕ̃(t)| ≤ exp

(
log ∆

(
log |t| − log(t0)

log(1/ |ρ|)
− 1

))
= C |t|−α ,

where C depends on t0, ρ and ∆ only and α := log(1/∆)/ log(1/ |ρ|) > 1. This shows
that |ϕ̃(t)| is integrable over R. �

Remark 4.3.9. Recall that lim|t|→∞ E
[
eitX

]
= 0 if X has an absolutely continuous

distribution, see e.g. [Luk70, Section 2.2]. In general, even if the characteristic function
does not tend to zero as |t| → ∞, the preceding proof might still be applicable if one
can control the quantity N(t) above.
However, if the distribution of X is purely discrete, lim sup|t|→∞

∣∣E [eitX]∣∣ = 1, and in
general, it is a very challenging problem to find conditions such that the random series∑∞

n=1 ρ
nYn has a density. This question has attracted a lot of attention for so-called

infinite Bernoulli convolutions. We refer to the survey of Peres and Solomyak([PSS00]).
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We can now prove the following theorem.

Theorem 4.3.10. Let Xn :=
∑n

k=1 cn−kYk where cn = dρn +βnr
n where d 6= 0, ρ < −1

and |ρ| > |r| and |βn| e−λn → 0 as n → ∞ for every λ > 0. Assume E
[
|Y1|δ

]
< ∞

for some δ > 0. Moreover, suppose that the characteristic function ϕ of Y1 satisfies
|ϕ(t)| ≤ ∆ < 1/ |ρ| for all |t| ≥ t0. Then there is a constant C > 0 such that for every
x ≥ 0, it holds that

lim inf
N→∞

−N−1 logP
(

sup
n=1,...,N

Xn ≤ x

)
≥ C.

If E [exp(|Y1|α)] <∞ for some α > 0, then

C ≥

{
log |ρ/r| , |r| > 1,

log |ρ| , else.

Proof. Assume w.l.o.g. that d = 1 (write Xn =
∑n

k=1(cn−k/d)(dYk)). Let β̂n :=
sup {|β0| , . . . , |βn|} and EN := {|Y1| ≤ fN , . . . , |YN | ≤ fN} where 1 ≤ fN →∞ is to be
specified later. On EN , it holds for n = 1, . . . , N that

Xn =
n∑
k=1

cn−kYk =
n∑
k=1

ρn−kYk +
n∑
k=1

βn−kr
n−kYk

≥
n∑
k=1

ρn−kYk − β̂nfN
n∑
k=1

|r|n−k ≥
n∑
k=1

ρn−kYk − β̂NfN
N∑
k=0

|r|k .

Case 1: Consider first the case that βn 6= 0 for some n. Let RN :=
∑N

k=0 |r|
k. Then

pN(x) ≤ P (Ec
N) + P

(
sup

n=1,...,N

n∑
k=1

ρn−kYk ≤ x+ β̂NfNRN , EN

)
. (4.10)

Note that Zn :=
∑n

k=1 ρ
n−kYk is an AR(1)-process satisfying Zn = ρZn−1 + Yn. Let us

begin with the following useful observation: if ZN−1 ≤ z and ZN ≤ z for some large
z > 0, we have with high probability that |ZN−1| ≤ z. This will allow us to reduce the
estimation of pN(x) to controlling P (|ZN | ≤ zN) where zN → ∞ as N → ∞. To be
precise, recall that ρ < −1, and note that

{ZN−1 ≤ z, ZN ≤ z} ⊆ {|ZN−1| ≤ z} ∪ {ZN−1 < −z, ZN ≤ z}
⊆ {|ZN−1| ≤ z} ∪ {YN ≤ −(|ρ| − 1)z} . (4.11)

For the last inclusion, we have used that the event {ZN−1 < −z, ZN ≤ z} implies that
z ≥ ZN = ρZN−1 + YN ≥ −ρz+ YN . Hence, combining this with (4.10), we obtain that

pN(x) ≤ P (Ec
N) + P

(
ZN−1 ≤ x+ β̂NfNRN , ZN ≤ x+ β̂NfNRN

)
≤ P (Ec

N) + P
(
|ZN−1| ≤ x+ β̂NfNRN

)
+ P

(
YN ≤ −(|ρ| − 1)(x+ β̂NfNRN)

)
.

(4.12)
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It remains to estimate the three probabilities above. Clearly,

P (Ec
N) = P

(
N⋃
n=1

{|YN | > fN}

)
≤ NP (|Y1| > fN) .

Next, since |ρ| > 1 and β̂N ≥ β > 0 for some β > 0 and for all N ≥ N0 large enough
and RN ≥ 1, it follows that

P
(
YN ≤ −(|ρ| − 1)(x+ β̂NfNRN)

)
≤ P (|Y1| ≥ (|ρ| − 1)βfN) , N ≥ N0.

For large N , using the last two inequalities in (4.12), we arrive at

pN(x) ≤ (N + 1)P (|Y1| ≥ C1fN) + P
(
|ZN−1| ≤ 2β̂NfNRN

)
, (4.13)

where C1 := min {1, (|ρ| − 1)β}. Set Z̃n := ρ−nZn =
∑n

k=1 ρ
−kYk. Then

P
(
|ZN−1| ≤ 2β̂NfNRN

)
= P

(∣∣∣Z̃N−1

∣∣∣ ≤ 2 |ρ|−(N−1) β̂NfNRN

)
.

Note that Z̃n converges a.s. to a random variable Z̃∞ by Kolmogorov’s Three Series
Theorem. Moreover, for u, v > 0,

P
(∣∣∣Z̃∞∣∣∣ ≤ u+ v

)
≥ P

(∣∣∣Z̃∞ − Z̃N−1

∣∣∣ ≤ u+ v −
∣∣∣Z̃N−1

∣∣∣ , ∣∣∣Z̃N−1

∣∣∣ ≤ u
)

≥ P
(∣∣∣Z̃∞ − Z̃N−1

∣∣∣ ≤ v,
∣∣∣Z̃N−1

∣∣∣ ≤ u
)

= P
(∣∣∣Z̃∞ − Z̃N−1

∣∣∣ ≤ v
)
P
(∣∣∣Z̃N−1

∣∣∣ ≤ u
)
.

The last equality follows from the independence of increments of Z̃. Hence,

P
(∣∣∣Z̃N−1

∣∣∣ ≤ u
)
≤

P
(∣∣∣Z̃∞∣∣∣ ≤ u+ v

)
1− P

(∣∣∣Z̃∞ − Z̃N−1

∣∣∣ > v
) , u, v > 0, N ≥ 1.

Using this inequality with u = v = 2 |ρ|−(N−1) β̂NfNRN , we obtain that

P
(∣∣∣Z̃N−1

∣∣∣ ≤ 2 |ρ|−(N−1) β̂NfNRN

)
≤

P
(∣∣∣Z̃∞∣∣∣ ≤ 4 |ρ|−(N−1) β̂NfNRN

)
1− P

(∣∣∣Z̃∞ − Z̃N−1

∣∣∣ > 2 |ρ|−(N−1) β̂NfNRN

)
≤ 2P

(∣∣∣Z̃∞∣∣∣ ≤ 4 |ρ|−(N−1) β̂NfNRN

)
,

where the last inequality holds for all N sufficiently large in view of the following
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estimates: Since E
[
|Y1|δ

]
<∞ for some δ ∈ (0, 1) and fN →∞, we have that

P
(∣∣∣Z̃∞ − Z̃N−1

∣∣∣ > 2 |ρ|−(N−1) β̂NfNRN

)
= P

∣∣∣∣∣
∞∑
n=N

ρ−nYn

∣∣∣∣∣
δ

> 2δ |ρ|−δ(N−1) (β̂NfNRN)δ


≤ P

(
∞∑
n=N

|ρ|−δn |Yn|δ > 2δ |ρ|−δ(N−1) (β̂NfNRN)δ

)

≤
E
[
|Y1|δ

]∑∞
n=N |ρ|

−δn

2δ |ρ|−δ(N−1) (β̂NfNRN)δ
≤ C2

|ρ|−δN

|ρ|−δN β̂δNf δNRδ
N

= C2
1

β̂δNf
δ
NR

δ
N

→ 0.

In the first inequality, we have used that (x+ y)δ ≤ xδ + yδ for x, y ≥ 0 and δ ∈ (0, 1),
and for the convergence to 0, recall that β̂N ≥ β and RN ≥ 1 for all N . We have shown
that (4.13) implies for all N large enough that

pN(x) ≤ (N + 1)P (|Y1| ≥ C1fN) + 2P
(∣∣∣Z̃∞∣∣∣ ≤ 4 |ρ|−(N−1) β̂NfNRN

)
. (4.14)

If fN → ∞ is chosen such that |ρ|−N β̂NfNRN → 0, we conclude from (4.14) and
Proposition 4.3.8 (recall that ∆ < 1/ |ρ|) that

pN(x) ≤ (N + 1)P (|Y1| ≥ C1fN) + C3 |ρ|−N β̂NfNRN , N →∞. (4.15)

Let us now state the suitable choice for fN . First, recall that by assumption, we have
that β̂N = eo(N).
Assume first that |r| ≤ 1. Then RN ≤ N . One can set fN := AN where 1 < A < |ρ|,
use Chebychev’s inequality (recall that E

[
|Y1|δ

]
<∞) and (4.15) to show that

pN(x) - NA−δN + |ρ/A|−N eo(N)N = eo(N)
(
Aδ ∧ (|ρ| /A)

)−N
, N →∞.

If |r| > 1, RN � |r|N , take fN := AN where 1 < A < |ρ/r|, and as above, one sees that

pN(x) - NA−δN + |ρ/(Ar)|−N eo(N) = eo(N)
(
Aδ ∧ (|ρ/(rA)|

)−N
, N →∞.

If E [exp(|Y1|α)] <∞ for some α > 0, it suffices to take fN := N2/α to obtain

pN(x) ≤ (N + 1)E [exp(|Y1|α)] exp(−Cα
1 N

2) + C3 |ρ|−N eo(N)N2/αRN ,

and it is then easy to conclude that lim inf −N−1 log pN(x) ≥ − log(1/ |ρ|) = log(|ρ|) if
|r| ≤ 1 and lim inf −N−1 log pN(x) ≥ log(|ρ/r|) if |r| > 1.



100 CHAPTER 4. PERSISTENCE OF AUTOREGRESSIVE PROCESSES

Case 2: Finally, assume that βn = 0 for all n. Then Xn = Zn =
∑n

k=1 ρ
n−kYk. Let

0 ≤ fN →∞ to be specified later. Clearly, for large N ,

P
(

sup
n=1,...,N

Zn ≤ x

)
≤ P (ZN−1 ≤ x, ZN ≤ x) ≤ P (ZN−1 ≤ fN , ZN ≤ fN)

≤ P (|ZN−1| ≤ fN) + P (Y1 ≤ −(|ρ| − 1)fN) ,

where we have used (4.11) in the last inequality. But the last line is just a special case
of (4.12) with x = 0, β̂N = RN = 1, so we can proceed as above. �

We can apply Theorem 4.3.10 to prove that pN decays exponentially for (a1, a2) ∈ E1,
cf. Figure 4.2.

Corollary 4.3.11. Let (a1, a2) ∈ E1. Assume that Y1 satisfies the conditions of The-
orem 4.3.10. Then there is a constant C > 0 such that for every x ≥ 0, it holds
that

lim inf
N→∞

−N−1 logP
(

sup
n=1,...,N

Xn ≤ x

)
≥ C.

If E [exp(|Y1|α)] <∞ for some α > 0, then

C ≥

{
log(|s2| /s1), a1 + a2 > 1,

log |s2| , a1 + a2 ≤ 1.

Proof. For (a1, a2) ∈ E1, we have that s2 < −1 and |s2| > s1 > 0. Hence, we can
apply Theorem 4.3.10 with ρ = s2 and r = s1. To get the lower bound on C, note that
|r| = s1 ≤ 1 amounts to a1 + a2 ≤ 1. �

Remark 4.3.12. One can show by direct computation that the correlation coefficient ρn
of Xn−1 and Xn, given by

ρn = E [Xn−1Xn] /
√

E
[
X2
n−1

]
E [X2

n],

satisfies ρn = −1 + O(|s1/s2|n). Clearly, pN ≤ P (XN−1 ≤ 0, XN ≤ 0), and if Y1 is a
centred Gaussian random variable, we get in view of a well-known formula for Gaussian
random variables (see e.g. [GS01, Exercise 8.5.1]) that

P (XN−1 ≤ 0, XN ≤ 0) =
1

2π

(π
2

+ arcsin ρN

)
.

Since π/2 + arcsinx ∼
√

2(1 + x) as x ↓ −1 (by l’Hôpital’s rule), it follows that pN -
|s1/s2|N/2.

Note that the previous results do not cover the case a1 +1 = a2 if a2 ∈ (0, 1). Let us
now turn to this particular case. One verifies that cn = (an+1

1 + (−1)n)/(a1 + 1), i.e. cn
oscillates but does not diverge as in Theorem 4.3.10. We show that pN still decreases
at least exponentially in this case.
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Proposition 4.3.13. Let a1 + 1 = a2 and set Zn = a2Zn−1 + Yn for n ≥ 1. Then, for
all x ≥ 0 and N ≥ 1,

P
(

sup
n=1,...,N

Xn ≤ x

)
≤ P

(
sup

n=1,...,N
Zn ≤ 2x

)
.

In particular, if a2 ∈ (0, 1), E
[
(Y −1 )α

]
<∞ for some α > 0 and P (Y1 > 2x(1− a2)) >

0, it holds that pN(x) - exp(−λN) for some λ = λ(x) > 0.

Proof. Note that Xn+1 +Xn = (a1 + 1)Xn + a2Xn−1 + Yn+1 = a2(Xn +Xn−1) + Yn+1.
Hence, (Zn)n≥1 can be written in the form Zn := Xn +Xn−1. In particular, Xn ≤ x for
n = 1, . . . , N implies that Zn ≤ 2x for n = 1, . . . , N .
If a2 ∈ (0, 1), we deduce from Theorem 4.3.1 that pN(x) decays exponentially under the
conditions stated above. �

In fact, the proof of Proposition 4.3.13 can be generalised as follows: if X is AR(p),
one can try to determine b > 0 such that (Zn)n≥1 is AR(p−1) where Zn := Xn+bXn−1.
Then we always have that Xn ≤ 0 for n = 1, . . . , N implies Zn ≤ 0 for n = 1, . . . , N .
We carry this out for p = 2.

Proposition 4.3.14. Let a2
1 + 4a2 > 0. Moreover, assume that either a1, a2 < 0 or

that a1 + a2 < 1 if a2 > 0. Then s2 < 0, −a2/s2 < 1 and Zn := Xn − s2Xn−1 satisfies
Zn = −a2/s2Zn−1 + Yn. In particular,

P
(

sup
n=1,...,N

Xn ≤ x

)
≤ P

(
sup

n=1,...,N
Zn ≤ (1− s2)x

)
, x ≥ 0.

Proof. Let ρ := −a2/s2. We claim that Zn := Xn − s2Xn−1 is an AR(1)-process with

Zn = ρZn−1 + Yn.

Moreover, the assumptions on the coefficients a1, a2 imply that s2 < 0, so by definition
of Z, we have that

N⋂
n=1

{Xn ≤ x} ⊆
N⋂
n=1

{Zn ≤ (1− s2)x} , x ≥ 0.

In order to verify our claim, let us determine b > 0 such that (Zn)n≥1 defined by
Zn := Xn + bXn−1 is an AR(1)-process: we have that

Zn = (a1 + b)Xn−1 + a2Xn−2 + Yn = (a1 + b)Xn−1 +
a2

b
bXn−2 + Yn.

Hence, if a1 + b = a2/b, it follows indeed that Zn = a2/bZn−1 + Yn. Now a1 + b = a2/b
amounts to b2 +a1b−a2 = 0, and the solutions to this equation are −s1 and −s2. Since
a2

1 + 4a2 > 0, we have that s2 < s1. Hence, we can only find b > 0 such that Z defines
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an AR(1)-process if s2 < 0, and b := −s2 in that case. Now s2 < 0 amounts to a1 ≤ 0
or a1, a2 > 0 since h =

√
a2

1 + 4a2 > 0.
Finally, ρ = a2/(−s2) < 1 if and only if a1 + 2a2 < h. If a1, a2 > 0, this amounts to
a1 + a2 < 1.
In the remaining cases, we necessarily have that a1 ≤ 0. If also a1 + 2a2 ≤ 0 (in
particular, if a1, a2 ≤ 0), the inequality a1 + 2a2 ≤ 0 is obviously satisfied. Finally, if
a1 + 2a2 > 0, a1 + 2a2 < h is equivalent to a2

1 + 4a1a2 + 4a2
2 < a2

1 + 4a2, i.e. a1 + a2 < 1
since a2 > 0. �

The preceding proposition allows us to find exponential upper bounds for the persis-
tence probability pN for a wide class of distributions. Specifically, we obtain exponential
upper bounds for certain parameters a1 and a2 and distributions that do not fulfill the
requirements of Theorem 4.3.10. Let us record this result as a corollary:

Corollary 4.3.15. Let a1, a2 be such that a2 > 0 and a1 + a2 < 1. Assume that
E
[
(Y −1 )α

]
<∞ for some α > 0. Let x ≥ 0 such that P (Y1 > x(1− s2)(1 + a2/s2)) > 0.

Then pN(x) - exp(−λN) for some λ = λ(x) > 0.

Proof. Set ρ := −a2/s2 and let (Zn)n≥1 satisfy Zn = ρZn−1+Yn. By Proposition 4.3.14,
we have that ρ ∈ (0, 1) and that pN(x) ≤ P

(
supn=1,...,N Zn ≤ x(1− s2)

)
. The claim now

follows from Theorem 4.3.1. �

Let us finally turn to the region a1 > 0 and a2
1 + 4a2 < 0 (E3 in Figure 4.2) so that

the expression of the sequence cn involves the function sine, cf. (4.4).

Proposition 4.3.16. Let (a1, a2) ∈ E3. Assume that P (Y1 > 0) > 0. Then there exists
λ > 0 such that pN - exp(−λN) as N →∞.

Proof. The recursion Xn = a1Xn−1 + a2Xn−2 + Yn allows us to express Xn as follows
(n ≥ k + 2):

Xn = αkXn−k + βkXn−k−1 + Lk(Yn−k+1, . . . , Yn)

where Lk(x1, . . . , xk) is some linear combination of x1, . . . , xk. Clearly, α1 = a1, β1 = a2

and L1(x1) = x1 and iteratively, we get that αk+1 = a1αk + βk, βk+1 = a2αk and
Lk+1(x1, . . . , xk+1) = αkx1 + Lk(x2, . . . , xk+1) for k ≥ 1. In particular, αk = a1αk−1 +
a2αk−2 for k ≥ 2 with α0 = 1 and α1 = a1, hence,

αk = ck, βk = a2ck−1, Lk(x1, . . . , xk) =
k∑
j=1

ck−jxj.

Let q := inf {k ≥ 1 : ck ≤ 0} ≥ 2 (c0 = 1, c1 = a1 > 0). Assume for a moment that
q <∞. Then, if Xn ≤ 0 for all n ≤ N , it follows that

0 ≥ Xn = cqXn−q + a2cq−1Xn−q−1 + Lq(Yn−q+1, . . . , Yn)

≥ 0 + 0 + Lq(Yn−q+1, . . . , Yn), n = q + 2, . . . , N,
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where we have used that a2cq−1 < 0 since a2 < 0 on E3 and cq−1 > 0 by the definition
of q.
In particular, we have that

P
(

sup
n=1,...,N

Xn ≤ 0

)
≤ P

(
sup

n=q+2,...,N
Lq(Yn−q+1, . . . , Yn) ≤ 0

)
≤ P

(
sup

k=1,...,b(N−2)/qc
Lq(Y(k−1)q+3, . . . , Ykq+2)) ≤ 0

)
≤ P (Lq(Y3, . . . , Yq+2) ≤ 0)b(N−2)/qc ,

since (Lq(Y(k−1)q+3, . . . , Ykq+2)k=0,1,... are i.i.d. Next, note that Xq and Lq(Y3, . . . , Yq+3)
have the same law. Hence, using that c0, . . . , cq−1 > 0 and P (Y1 > 0) > 0, we have that

P (Xq > 0) = P

(
q∑

k=1

cq−kYk > 0

)
≥ P (Y1 > 0)q > 0.

It remains to show that q <∞. Let ϕ ∈ (0, π/2) (since a1 > 0) be the angle associated
with (a1, a2) in (4.4). We see from (4.4) that cn ≤ 0 for some n if sin((n+ 1)ϕ) ≤ 0 for
some n. Take n = dπ/ϕe. Clearly, π < (n+ 1)ϕ ≤ (π/ϕ+ 2)ϕ < 2π since ϕ < π/2. In
particular, we have shown that q ≤ dπ/ϕe. �

We are now ready to give a proof of Theorem 4.2.2 which is a corollary of the
previous results. A look at Figure 4.2 will be helpful to distinguish the different cases.
Proof of Theorem 4.2.2. On E1, the assertion follows from Corollary 4.3.11. On
E2 = (−∞, 0]2, the assertion is trivial. If (a1, a2) ∈ E3, we can apply Proposition 4.3.16.
The remaining cases covered by Theorem 4.3.2 and Proposition 4.3.13 (the latter is
needed for the strip a2 = 1 + a1 with a1 ∈ (−1, 0) only). �

Note that we have established exponential upper bounds on pN under various con-
ditions on the distribution of Y1 in the region ∆2 defined as the set of (a1, a2) such that
cn goes to 0 for AR(2)-processes (cf. (4.5)). Indeed, on ∆2 ∩E2, the assertion is trivial,
and on ∆2 ∩ E3, we can use Proposition 4.3.16. Taking into account the corollaries
4.3.7 and 4.3.15, we see that we have obtained exponential upper bounds on pN under
different conditions on Y1 except for the the curve a2

1 + 4a2 = 0 with a1 ∈ (0, 2). In that
case, cn = (a1/2)n(n+ 1), and by Theorem 4.3.2, we know that pN - exp(−λN/ logN)
if E [exp(|Y1|α)] is finite. If Y1 has a Gaussian law with zero mean, the next propo-
sition establishes an exponential upper bound on pN for these values of (a1, a2). In
particular, in combination with the Theorems 4.2.1, 4.2.2 and 4.2.3, we directly obtain
Theorem 4.2.4.

Proposition 4.3.17. Let Y1 have a Gaussian law. Let ρ ∈ (0, 1) and (αn)n≥0 denote a
sequence of positive numbers with the following properties:

∃C > 0 such that αn+m ≤ Cαnαm ∀n,m ≥ 0, lim
n→∞

e−λn αn = 0 ∀λ > 0.
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Set Xn :=
∑n

k=1 αn−kρ
n−kYk. It holds that

lim inf
N→∞

−N−1 logP
(

sup
n=1,...,N

Xn ≤ x

)
> 0, x ∈ R.

Proof. Clearly, we may suppose that E [(Y1 − E [Y1])2] = 1. Moreover, it suffices to
consider the case E [Y1] = 0. To see this, set

∑n
k=1 αn−kρ

n−k(Yk−µ). If µ := E [Y1] < 0,
we have that

Xn =
n∑
k=1

αn−kρ
n−k(Yk − µ) + µ

n−1∑
k=0

αkρ
k ≥ X̃n + µ

∞∑
k=0

αkρ
k,

where A :=
∑∞

k=0 αkρ
k <∞ since ρ < 1 and αn = eo(n). Hence,

P
(

sup
n=1,...,N

Xn ≤ x

)
≤ P

(
sup

n=1,...,N
X̃n ≤ x− µA

)
.

Similarly, if µ > 0, Xn ≥ X̃n for all n, and therefore

P
(

sup
n=1,...,N

Xn ≤ x

)
≤ P

(
sup

n=1,...,N
X̃n ≤ x

)
.

Hence, we can assume from now on that E [Y1] = 0 and E [Y 2
1 ] = 1. Let ρ < δ < 1 and

set

γn :=

√∑n−1
k=0 ρ

2kα2
k∑n−1

k=0 δ
2k

, Zn := γn

n∑
k=1

δn−kYk.

We would like to apply Slepian’s inequality (part 1 of Lemma 1.2.5) to compare the
probabilities that X and Z stay below 0 until time N . By construction, we have that
E [X2

n] = E [Z2
n] for all n ≥ 1. Next, note that γn ≥ α0

√
1− δ2 for all n ≥ 1. Hence, if

n > m ≥ 1, we have that

E [ZnZm] = γnγm

m∑
k=1

δn−kδm−k ≥ α2
0(1− δ2)δn−m

m∑
k=1

δ2(m−k) ≥ C1δ
n−m,

where C1 := α2
0(1− δ2). Moreover,

E [XnXm] =
m∑
k=1

αn−kαm−kρ
m−kρn−k = ρn−m

m∑
k=1

α(n−m)+m−kαm−kρ
2(m−k)

≤ Cρn−mαn−m

m∑
k=1

α2
m−kρ

2(m−k) ≤ Cρn−mαn−m

∞∑
k=0

α2
kρ

2k =: C2ρ
n−mαn−m.

In the last equality, we have used that
∑∞

k=0 α
2
kρ

2k converges since αn = eo(n). Now
C1δ

n−m ≥ C2αn−mρ
n−m holds whenever n − m ≥ q for some q ≥ 1 since δ > ρ and
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αn grows slower than any exponential. In particular, E [XnXm] ≤ E [ZnZm] whenever
|n−m| ≥ q.
Hence, using Slepian’s inequality, we obtain that

P
(

sup
n=1,...,N

Xn ≤ x

)
≤ P

(
sup

n=1,...,bN/qc
Xnq ≤ x

)
≤ P

(
sup

n=1,...,bN/qc
Znq ≤ x

)
.

Let Z̃n := δ−nqZnq/γnq =
∑nq

k=1 δ
−kYk. One verifies easily that (Z̃n)n≥1 is equal in

distribution to (B(tn))n≥1 where (Bt)t≥0 is a one-dimensional Brownian motion and
tn :=

∑nq
k=1 δ

−2k = Cδ(δ
−2nq − 1), so

P
(

sup
n=1,...,N

Xn ≤ x

)
≤ P

(
sup

n=1,...,bN/qc
Znq ≤ x

)
= P

bN/qc⋂
n=1

{
Z̃n ≤ xδ−nq/γnq

}
= P

bN/qc⋂
n=1

{
B(Cδ(δ

−2qn − 1)) ≤ xδ−nq/γnq
} ≤ P

(
sup

n=1,...,bN/qc
B(δ−2qn − 1) ≤ x̃

)
,

where we have used the scaling property of Brownian motion and the fact that γn ≥
C1α0/δ

n for all n (i.e. x̃ := x/(C1α0C
1/2
δ )). Next, note that

P
(

sup
n=1,...,N

B(δ−2qn) ≤ 0

)
≥ P

(
B1 ≤ −x̃, sup

n=1,...,N
B(δ−2qn)−B1 ≤ x̃

)
= P (B1 ≤ −x̃) P

(
sup

n=1,...,N
B(δ−2qn − 1) ≤ x̃

)
.

Hence,

P
(

sup
n=1,...,N

Xn ≤ x

)
≤ P (B(δ−2qn) ≤ 0, ∀n = 1, . . . , bN/qc)

P (B1 ≤ −x̃)
.

If (Ut)t≥0 is the Ornstein-Uhlenbeck process, an application of Slepian’s inequality
together with a subadditivity argument (see (2.17) above) yields for a := δ−2q > 1 that

lim
N→∞

−N−1 logP (B(an) ≤ 0,∀n = 1, . . . , N)

= lim
N→∞

−N−1 logP (U(log(a)n) ≤ 0,∀n = 1, . . . , N) > 0,

so the claim follows. �

4.3.2 Exponential lower bounds

Let us now comment on exponential lower bounds for AR-processes. In general, we
cannot expect to find exponential lower bounds in the whole region where we have
established exponential upper bounds. The following example illustrates this point for
AR(2)-processes.
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Example 4.3.18. If X is AR(p) and the innovation Y1 takes only the values ±y for
some y > 0 and a1 < −1, then p2 = P (X1 ≤ 0, X2 ≤ 0) = 0. Indeed, on {X1 ≤ 0} =
{Y1 = −y}, we have that X2 = a1Y1 + Y2 ≥ −ya1 − y = −y(a1 + 1) > 0.
Similarly, if a1 ∈ [−1, 0] and a1(a1 + 1) + a2 < −1, one has that p3 = 0.

Note that even if one chooses a very large boundary x > 0, it can happen that
pN(x) = 0 for all N large enough. Indeed, if Zn = ρZn−1 + Yn with ρ < −2 and
P (Y1 = 1) = 1− P (Y1 = −1), note that

EN :=
N⋂
n=1

{Zn ≤ x} ⊆
N−1⋂
n=1

{Zn ∈ [(x+ 1)/ρ, x]} ,

since x ≥ Zn ≥ ρZn−1 − 1. Hence, the event EN+1 implies that the absolute value of Z
remains bounded by a constant independent of N until time N . However, note that

|ZN | =

∣∣∣∣∣
N∑
k=1

ρN−kYk

∣∣∣∣∣ ≥ |ρ|N−1 |Y1| −

∣∣∣∣∣
N∑
k=2

ρN−kYk

∣∣∣∣∣ ≥ |ρ|N−1 −
N−2∑
k=0

|ρ|k

= |ρ|N−1 − |ρ|
N−1 − 1

|ρ| − 1
=
|ρ|N−1 (|ρ| − 2) + 1

|ρ| − 1
.

Since |ρ| > 2, it is clear that P (ZN ∈ [(x+ 1)/ρ, x]) = 0 for all N large enough, and
hence, pN(x) = 0.
Let us also remark that if X is AR(p) with a1 ≥ 0, . . . , ap ≥ 0, it is trivial to obtain the
exponential lower bound pN(x) ≥ pN ≥ P (Y1 ≤ 0)N .
The following theorem states a simple condition on the coefficients a1, . . . , ap such that
the persistence probability cannot decay faster than exponentially.

Theorem 4.3.19. If X is AR(p) with
∑p

k=1 |ak| < 1, it holds for some c ∈ (0, 1) that
cN - pN as N →∞. Moreover, if ak > 0 for some k ∈ {1, . . . , p}, one may take

c := sup {P (Y1 ∈ [α(1− a+), α |a−|]) : α < 0}

where (with the convention that
∑
∅ = 0)

a+ :=
∑
k∈I+

ak, a− :=
∑
k∈I−

ak, I+ = {k : ak > 0} , I− = {k : ak < 0} .

Proof. The goal is to find intervals ([αn, βn])n≥1 such that

n⋂
k=1

{Yk ∈ [αk, βk]} ⊆
n⋂
k=1

{Xk ∈ [γk, 0]} , n ≥ 1. (4.16)

If (4.16) holds and P (Yn ∈ [αn, βn]) ≥ c > 0 for all n ≥ 1, we immediately obtain that
cN - P (Xn ≤ 0,∀n = 1, . . . , N).



4.3. EXPONENTIAL BOUNDS 107

Using the recursive definition of X, we can iteratively define the sequences (αn)n≥1,
(βn)n≥1,(γn)n≥1 as follows: Start with γ1 = α1 < β1 ≤ 0. Define successively (with the
convention γn = 0 for n ≤ 0)

βk := −
∑
j∈I−

ajγk−j, αk < βk, γk :=
∑
j∈I+

ajγk−j + αk.

It is clear that γk ≤ 0 and βk ≤ 0 for all k. We claim that (4.16) holds for such sequences
(αn), (βn) and (γn). For n = 1, this is obvious, and inductively, if the statement holds
for some n− 1 ≥ 1, we have that

Xn =

p∑
j=1

akXn−j + Yn ≤
p∑

j∈I−

ajXn−j + βn ≤
∑
j∈I−

ajγn−j + βn = 0,

and

Xn =

p∑
j=1

akXn−j + Yn ≥
p∑

j∈I+

ajXn−j + αn ≥
∑
j∈I+

ajγn−j + αn = γn.

Note that the above inequalities hold even if I+ = ∅ or if I− = ∅.
Let us now state a suitable choice for the sequences (αn), (βn) and (γn). Fix α1 = γ1 <
β1 = 0 and let αk = −α1(a+ − 1) for all k ≥ 2. We claim that γk ≥ α1. Inductively, if
the claim holds for all k ≤ n− 1, we have that

γn =
∑
j∈I+

ajγn−j − α1(a+ − 1) ≥ α1a+ − α1(a+ − 1) = α1.

It follows that βn ≥ −α1a− and in particular, αk < βk since

αk − βk ≤ −α1(a+ − 1) + α1a− = −α1

(
p∑

k=1

|ak| − 1

)
< 0.

In view of (4.16), we obtain that

P
(

sup
k=1,...,n

Xk ≤ 0

)
≥

n∏
k=1

P (Yk ∈ [αk, βk])

≥ P (Y1 ∈ [α1, 0])P (Y1 ∈ [−α1(a+ − 1),−α1a−])n−1

�

Remark 4.3.20. In general, there is no reason to believe that the lower bound of Theo-
rem 4.3.19 is sharp.
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Corollary 4.3.21. Let (Yn)n≥0 be a sequence of i.i.d. standard Gaussian random vari-
ables. Using the notation of Theorem 4.3.19, if I− and I+ are nonempty, we have that
pN ≥ cN where

c = P (α∗(1− a+) ≤ Y1 ≤ α∗ |a−|) = P

(
−
√
− logA2

1− A2
≤ Y1 ≤ −A

√
− logA2

1− A2

)

and

α∗ := −

√
log(1− a+)2 − log |a−|2

(1− a+)2 − |a−|2
< 0, A :=

|a−|
1− a+

∈ (0, 1).

Proof. By Theorem 4.3.19, we have to determine

sup
α≤0

P (α(1− a+) ≤ Y1 ≤ α |a−|) = sup
α≤0
{Φ(α |a−|)− Φ(α(1− a+))} ,

where Φ is the cumulative distribution function of a standard normal random variable.
It is not hard to verify that the unique maximum is attained at

α∗ := −

√
log(1− a+)2 − log |a−|2

(1− a+)2 − |a−|2
< 0.

�

4.4 Polynomial order
If X is an AR(2)-process and E [Y1] = 0 and E [Y 2

1 ] < ∞, it is known that pN decays
polynomially if X is a random walk (a1 = 1, a2 = 0) or an integrated random walk
(a1 = 2, a2 = −1). These results have been outlined in Section 1.2.1. For instance, if
Sn =

∑n
k=1 Yk, recall that P (Sn ≤ 0, n = 1, . . . , N) ∼ C N−1/2. Moreover, note that the

process Xn = 2Xn−1 −Xn−1 + Yn is given by Xn =
∑n

k=1(n− k + 1)Yk =
∑n

k=1 Sk, so
X is indeed an integrated random walk and pN � N−1/4.

4.4.1 Integrated AR-processes

In this subsection, we will prove that pN = N−1/2+o(1) under suitable moment conditions
if a1 +a2 = 1 and |a2| < 1. As we will see shortly, these AR(2)-processes can be written
as integrated AR(1)-processes.

Let us begin by characterising the behaviour of the sequence (cn)n≥0 for such a1, a2.
Instead of manipulating the explicit expression for cn in (4.3), we give a short proof of
the following lemma.
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Lemma 4.4.1. The sequence (cn) converges to a constant c 6= 0 if and only if a1 +a2 =
1 and |a2| < 1. In that case, limn→∞ cn = 1/(1 + a2). Moreover, if a1 + a2 = 1,
cn = (1− (−a2)n+1)/(1 + a2) if a2 6= −1, and cn = n+ 1 if a2 = −1 for n ≥ 0.

Proof. Assume that a1 + a2 = 1. Then cn+1 = (a1 + a2− a2)cn + a2cn−1 = cn− a2(cn−
cn−1), i.e. cn+1 − cn = −a2(cn − cn−1). Iteration yields cn+1 − cn = (−a2)n(c1 − c0) =
(−a2)n+1 since c1 − c0 = a1 − 1 = −a2. Hence, since c0 = 1, we find that

cn = 1 +
n∑
k=1

(ck − ck−1) =

{
1 +

∑n
k=1(−a2)k = 1−(−a2)n+1

1−(−a2)
, a2 6= −1,

n+ 1, a2 = −1,

and therefore, cn → c = 1/(1 + a2) 6= 0 if and only if |a2| < 1.
On the other hand, if lim cn = c 6= 0, then the recursion equation implies that c =
a1c+ a2c, i.e. a1 + a2 = 1. By the preceding lines, convergence implies that |a2| < 1. �

In particular, the preceding lemma shows for a1 + a2 = 1 and |a2| < 1 that

Xn =
1

1 + a2

(
n∑
k=1

Yk −
n∑
k=1

(−a2)n−k+1Yk

)
, n ≥ 1,

and since |a2| < 1, one expects that the behaviour of X is similar to that of a random
walk.
Moreover, AR(2)-processes with a1 + a2 = 1 and |a2| < 1 can also be regarded as
integrated AR(1)-processes. Let us explain this in more detail.
If X̃ is AR(p) with coefficients a1, . . . , ap, set Xn :=

∑n
k=1 X̃k. Then

Xn = Xn−1 +

p∑
k=1

akX̃n−k + Yn = Xn−1 +

p∑
k=1

ak(Xn−k −Xn−k−1) + Yn

= (1 + a1)Xn−1 +

p∑
k=2

(ak − ak−1)Xn−k − apXn−p−1 + Yn,

i.e. X is AR(p+ 1) and the transfomation of the coefficients Tp : Rp → Rp+1 is given by

Tp(a1, . . . , ap) = (a1 + 1, a2 − a1, . . . , ap − ap−1,−ap). (4.17)

Note that Tp is one-to-one and that Tp(Rp) is an affine subspace of Rp+1.
Now, if X̃ is AR(1) with X̃n = ρX̃n−1 + Yn, we have that X with Xn =

∑n
k=1 X̃k is

AR(2) with coefficients T1(ρ) = (ρ−1,−ρ) =: (a1, a2). In other words, AR(2)-processes
with a1 +a2 = 1 and |a2| < 1 are integrated AR(1)-processes with ρ = −a2 and |ρ| < 1.
Finally, let us mention that the class of AR(p)-processes contains p-times integrated
random walks S(p) as a special case (i.e. S(1) is a centred random walk, and S

(p)
n =∑n

k=1 S
(p−1)
k ). Here, the behaviour of the persistence probability is not known for p ≥ 3.

The next theorem states conditions under which the persistence probability of an inte-
grated process behaves like N−1/2+o(1).
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Theorem 4.4.2. Let (c̃k)k≥0 denote a sequence of real numbers such that
∑∞

k=1 k |c̃k| <
∞ and

∑∞
k=0 c̃k 6= 0. Let X̃n =

∑n
k=1 c̃n−kYk where Y1, Y2, . . . is a sequence of centred

i.i.d. random variables. Set Xn :=
∑n

k=1 X̃k.

1. If |Y1| ≤M <∞ a.s., there is x0 ≥ 0 such that for all x ≥ x0, it holds that

P
(

sup
n=1,...,N

Xn ≤ x

)
� N−1/2, N →∞.

2. If E [exp(|Y1|α)] <∞, it holds for all x ≥ 0 that

P
(

sup
n=1,...,N

Xn ≤ x

)
- N−1/2(logN)1/α, N →∞.

3. If E [exp(|Y1|α)] <∞ and
∑n

k=0 c̃k ≥ 0 for all n ≥ 0, it holds for all x ≥ 0 that

N−1/2(logN)−1/α+o(1) - P
(

sup
n=1,...,N

Xn ≤ x

)
, N →∞.

Proof. First, note that

Xn =
n∑
k=1

k∑
j=1

c̃k−jYj =
n∑
j=1

Yj

n∑
k=j

c̃k−j =
n∑
j=1

Yj

n−j∑
k=0

c̃k =
n∑
k=1

cn−kYk

where cn :=
∑n

k=0 c̃k → c =
∑∞

k=0 c̃k 6= 0. Set Sn :=
∑n

k=1 cYk, so that for all n ≥ 1,

|Sn −Xn| =

∣∣∣∣∣
n∑
k=1

(c− cn−k)Yk

∣∣∣∣∣ ,
In particular, if |Y1| ≤M <∞ a.s., it follows that

|Sn −Xn| ≤M
n−1∑
k=0

|c− ck| ≤M
n−1∑
k=0

∞∑
j=k+1

|c̃j| = M
∞∑
j=1

j |c̃j| =: M̃ <∞.

Hence, Sn − M̃ ≤ Xn ≤ Sn + M̃ for all n, and we get for x ≥ M̃ that

P
(

sup
n=1,...,N

Sn ≤ 0

)
≤ P

(
sup

n=1,...,N
Xn ≤ x

)
≤ P

(
sup

n=1,...,N
Sn ≤ x+ M̃

)
,

and the proof of part 1. is complete since S is a centred random walk with finite variance.
The proof of part 2. is similar. Let EN :=

{
|Yk| ≤ (2 logN)1/α, k = 1, . . . , N

}
. On EN ,

we get as above that

|Sn −Xn| ≤ (2 logN)1/α

n−1∑
k=0

|c− ck| ≤ (2 logN)1/α

∞∑
j=1

j |c̃j| =: C(logN)1/α. (4.18)
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Hence,

P
(

sup
n=1,...,N

Xn ≤ x

)
≤ P (Ec

N) + P
(

sup
n=1,...,N

Sn ≤ x+ C(logN)1/α

)
.

By Chebyshev’s inequality,

P (Ec
N) ≤ NP

(
|Y1| ≥ (2 logN)1/α

)
≤ NE [exp(|Y1|α)]N−2 � N−1.

Finally, by Lemma 3.3.2, it holds that

P
(

sup
n=1,...,N

Sn ≤ x+ C (logN)1/α

)
- (logN)1/αN−1/2,

which proves part 2.
It suffices to prove the lower bound of part 3 for x = 0. Moreover, we use that inde-
pendent random variables Y1, . . . , YN are associated for every N , cf. [EPW67]. Since
cn =

∑n
k=0 c̃k ≥ 0 for every n by assumption, the function

fK,L(x1, . . . , xN) 7→

{
−1,

∑n
k=1 cn−kxk ≤ 0 for all n = K, . . . , L,

0, else,

is non-decreasing in every component. Hence, the very definition of associated random
variables implies for 1 ≤ N0 < N that

cov (f1,N0(Y1, . . . , YN), fN0+1,N(Y1, . . . , YN)) ≥ 0,

or equivalently,

P
(

sup
n=1,...,N

Xn ≤ 0

)
≥ P

(
sup

n=1,...,N0

Xn ≤ 0

)
P
(

sup
n=N0+1,...,N

Xn ≤ 0

)
. (4.19)

Hence, we can bound the persistence probability pN of X from below as follows:

pN ≥ pN0 · P
(

sup
n=N0+1,...,N

Xn ≤ 0, EN

)
≥ pN0 · P

(
sup

n=N0+1,...,N
Sn ≤ −C (logN)1/α, EN

)
. (4.20)

Note that we have used (4.18) in the second inequality. Next,

P
(

sup
n=N0+1,...,N

Sn ≤ −C (logN)1/α, EN

)
≥ P

(
sup

n=N0+1,...,N
Sn ≤ −C (logN)1/α

)
− P (Ec

N)

≥ P
(

sup
n=N0+1,...,N

Sn − SN0 ≤ 0, SN0 ≤ −C (logN)1/α

)
− P (Ec

N)

≥ P
(

sup
n=1,...,N

Sn ≤ 0

)
P
(
SN0 ≤ −C (logN)1/α

)
− P (Ec

N) .
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Let N0 := blogNc2/α. Then P
(
SN0 ≤ −C (logN)1/α

)
≥ P

(
SN0/

√
N0 ≤ −C

)
and the

r.h.s. converges to a positive constant by the central limit theorem. Using the estimate
on P (Ec

N) from above and (4.20), we have for N large enough that

pN ≥ C1 pN0 ·N−1/2 = C1 P

(
sup

n=1,...,blogNc2/α
Xn ≤ 0

)
N−1/2. (4.21)

Since cn ≥ 0 for all n, we can now use the trivial estimate pN0 ≥ P (Y1 ≤ 0)N0 = e−κN0

implying for N large enough that

pN ≥ C1 exp(−κblogNc2/α)N−1/2.

Using this as an a priori estimate for pN0 , we get for large N in view of (4.21) that

pN ≥ C2
1 exp(−κblogN0c2/α)N

−1/2
0 N−1/2

= C2
1 exp

(
−κblog

(
blogNc1/α

)
c2/α

)
blogNc−1/αN−1/2

≥ C2 exp(−C3(log logN)2/α) (logN)−1/αN−1/2.

Using this improved estimate again to obtain a lower bound on pN0 , we deduce from
(4.21) that (logN)−1/α+o(1)N−1/2 - pN . �

Remark 4.4.3. One cannot expect to get a useful lower bound without any restriction
on the weights cn. For instance, if Y1 takes only values ±1 and Xn =

∑n
k=1 cn−kYk with

c0 = 1, c1 = −3, then P (X1 ≤ 0, X2 ≤ 0) = P (X1 ≤ 0, X1 +X2 ≤ 0) = 0.

Corollary 4.4.4. Assume that E [Y1] = 0. Let a1 + a2 = 1 with |a2| < 1 and x ≥ 0.

1. If |Y1| ≤M a.s., it holds that pN(x) � N−1/2 as N →∞.

2. If E [exp(|Y1|α)] <∞ for some α > 0, it holds that pN(x) = N−1/2+o(1) as N →∞.

Proof. If X is AR(2) with coefficients a1, a2 as in the statement of the corollary, we
have seen that Xn =

∑n
k=1 Zk where Z is AR(1) with Zn = −a2Zn−1 + Yn, i.e. Zn =∑n

k=1(−a2)n−kYk. Since
∑n

k=0(−a2)k > 0 for all n, part 2 and part 3 of Theorem 4.4.2
imply part 2 of the corollary. Similarly, by part 1 of Theorem 4.4.2 and the fact that
pN(x) � pN (see the comment on p. 88), we obtain part 1 of the corollary. �

In analogy to the results for random walks, it is very likely that the assertion of
Corollary 4.4.4 remains true under the much weaker integrability assumption E [Y 2

1 ] <
∞. Depending on the sign of a2, we can improve the preceding corollary by proving an
upper or lower bound of order N−1/2:

Proposition 4.4.5. Let a1 +a2 = 1 with |a2| < 1. Assume that E [Y1] = 0, E [Y 2
1 ] <∞.

1. If a2 > 0, we have that pN(x) - N−1/2 for all x ≥ 0.
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2. If a2 < 0, we have that pN(x) % N−1/2 for all x ≥ 0.

Proof. For n ≥ 1, set Sn := Xn + a2Xn−1, and since a1 + a2 = 1, note that

Sn = a1Xn−1 + a2Xn−2 + Yn + a2Xn−1 = Xn−1 + a2Xn−2 + Yn = Sn−1 + Yn,

i.e. (Sn)n≥1 defines a centred random walk. In particular, if a2 > 0, it holds that Xn ≤ x
for n = 1, . . . , N implies that Sn ≤ (1 + a2)x for n = 1, . . . , N and therefore,

pN(x) ≤ P
(

sup
n=1,...,N

Sn ≤ a2x

)
- N−1/2.

Similarly, we may write Xn = −a2Xn−1 + Sn. If a2 < 0, this yields by induction that
Sn ≤ 0 for n = 1, . . . , N implies that Xn ≤ 0 for n = 1, . . . , N . Hence, the lower bound
follows. �

Let us finally remark that Theorem 4.4.2 is also applicable to integrated AR(p)-
processes such that the roots s1, . . . , sp of the corresponding characteristic polynomial
lie inside the unit disc. Let us just state the simplest case of bounded innovations Yn.
Set

∆p :=

{
(a1, . . . , ap) : max

k=1,...,p
|sk| < 1

}
,

where s1, . . . , sp are the roots of the characteristic polynomial, see p. 86.

Corollary 4.4.6. Let X be the AR(p)-process corresponding to (a1, . . . , ap) ∈ ∆p. As-
sume that |Y1| ≤ M < ∞ a.s. Then there is x0 ≥ 0 such that for all x ≥ x0, we have
that

P

(
sup

n=1,...,N

n∑
k=1

Xk ≤ x

)
� N−1/2.

Since we know the region ∆2 explicitly (cf. Figure 4.1), we obtain the following result
for AR(3)-processes:

Corollary 4.4.7. Let X be AR(3) with a1, a2, a3 satisfying

a1 + a2 + a3 = 1, a2 < min {1, 3− 2a1} , a2 > −a1.

Assume that |Y1| ≤ M a.s. for some M <∞. Then there is x0 ≥ 0 such that pN(x) �
N−1/2 for all x ≥ x0.

Proof. Let us show that X is an integrated AR(2)-process X̃ with parameters in ∆2.
Since a1 + a2 + a3 = 1, we have that T2(a1 − 1, a1 + a2 − 1) = (a1, a2, a3) where T2 was
defined in (4.17). Hence, by Corollary 4.4.6, we only need to show that

(a1 − 1, a1 + a2 − 1) ∈ ∆2 = {(ã1, ã2) : ã1 + ã2 < 1, ã2 < 1 + ã2, ã2 > −1} ,

(see (4.5)) whenever (a1, a2, a3) satisfy the constraints stated in the corollary. Let
ã1 = a1−1 and ã2 = a1 +a2−1. Now a2 < 3−2a1 amounts to ã1 + ã2 = 2a1 +a2−2 < 1.
Next, ã2 < 1 + ã1 is equivalent to a2 < 1, whereas ã2 > −1 translates into a1 > −a2. �
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4.4.2 The case a1 = 0

We still have to consider the case Xn = Xn−2 +Yn which is a special case of the equation
Xn = ρXn−2 + Yn. The solution of the latter equation is given by

Xn =

{∑k
j=1 ρ

k−jY2j−1, n = 2k − 1, k ∈ N,∑k
j=1 ρ

k−jY2j, n = 2k, k ∈ N.

In particular, (X2n) and (X2n−1) define two independent sequences with the same law
as (Zn)n≥1 given by Zn = ρZn−1 + Yn. Hence,

P
(
supn=1,...,2N Xn ≤ x

)
=

(
P
(
supn=1,...,N Zn ≤ x

))2
,

P
(
supn=1,...,2N−1Xn ≤ x

)
= P

(
supn=1,...,N Zn ≤ x

)
P
(
supn=1,...,N−1 Zn ≤ x

)
.
(4.22)

In particular, the behaviour of the persistence probability can be determined by the
persistence probabilities of AR(1)-processes. If ρ = 1, X defines two indpendent random
walk, so we immediately obtain the following lemma:

Lemma 4.4.8. Assume that E [Y1] = 0, E [Y 2
1 ] < ∞, and consider the AR(2)-process

Xn = Xn−2 + Yn. For any x ≥ 0, there is a constant c(x) such that

P
(

sup
n=1,...,N

Xn ≤ x

)
∼ c(x)N−1, N →∞.

Proof. By the preceding discussion, (X2n) and (X2n−1) define two independent centred
random walks with finite variance that have the same law. Recall from Section 1.2.1
that P

(
supn=1,...,N

∑n
k=1 Yk ≤ x

)
∼ d(x)N−1/2, so the assertion follows in view of (4.22).

�

Remark 4.4.9. By the same reasoning, if Xn = Xn−p + Yn (p ≥ 1), we have that
pN(x) ∼ c̃(x)N−p/2 for any x ≥ 0 if E [Y1] = 0 and E [Y 2

1 ] <∞.

4.5 A positive limit

We now turn to the case that the persistence probability converges to a positive limit,
i.e. pN(x) → p∞(x) > 0 as N → ∞, implying that the process (Xn)n≥1 stays below
x at all times with positive probability. If Xn =

∑n
k=1 cn−kYk, one would expect that

this happens if 0 < cn → ∞ and cn − cn−1 → ∞ sufficiently fast. Indeed, if cn is
very large compared to ck for k ≤ n − 1, then Y1 ≤ −δ for some δ > 0 implies that
Xn ≤ −δcn+

∑n
k=2 cn−kYk, and one expects that the expression on the r.h.s. stays below

a fixed barrier with high probability. In fact, we can transform this idea directly into a
proof.
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Proposition 4.5.1. Let (αn)n≥0 denote a sequence of positive numbers. Let ρ > 1 and
assume that P (Y1 < 0) > 0 and P (Y1 ≥ x) - (log x)−α as x→∞ for some α > 1. Let
Xn :=

∑n
k=1 ρ

n−kαn−kYk.

1. If (αn)n≥0 is non-decreasing, there is a constant c > 0 such that

P

(
∞⋂
n=1

{
Xn ≤ −cαn−1ρ

n−1
})

> 0.

2. If 0 < l ≤ αn ≤ u <∞ for all n ≥ 0, there is a constant c > 0 such that

P

(
∞⋂
n=1

{
Xn ≤ −cρn−1

})
> 0.

Proof. We first prove part 1. Let δ > 0 such that P (Y1 ≤ −δ) > 0, and fix β > 0 such
that β

∑∞
k=1 k

−2 ≤ δ/2. Then

AN := {Y1 ≤ −δ} ∩
N⋂
n=2

{
Yn ≤ ρn−1βn−2

}
⊆

N⋂
n=1

{
Xn ≤ −δαn−1ρ

n−1/2
}

Indeed, since (αn) is non-decreasing, the event AN implies that X1 = α0Y1 ≤ −α0δ and
for all n = 2, . . . , N that

Xn = ρn−1αn−1Y1 +
n∑
k=2

ρn−kαn−kYk ≤ −δαn−1ρ
n−1 + ρn−1

n∑
k=2

αn−kβk
−2

≤ −δαn−1ρ
n−1 + ρn−1αn−1β

∞∑
k=1

k−2 = αn−1ρ
n−1

(
β

∞∑
k=1

k−2 − δ

)
≤ −δαn−1ρ

n−1/2.

Finally, in view of the assumption on the tail behaviour of Y1, it is not hard to show
that

lim
N→∞

P (AN) = P (Y1 ≤ −δ) lim
N→∞

N∏
n=2

(
1− P

(
Y1 > βρn−1n−2

))
> 0.

The proof of part 2 is very similar. Let AN be defined as above. Then, using the bounds
on (αn), we get for n = 2, . . . , N that

Xn ≤ −δαn−1ρ
n−1 + ρn−1

n∑
k=2

αn−kβk
−2 ≤ −δlρn−1 + ρn−1uβ

∞∑
k=1

k−2

= ρn−1

(
βu

∞∑
k=1

k−2 − δl

)
.
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For β > 0 sufficiently small, this implies that Xn ≤ −(δ l/2) ρn−1 for all n = 2, . . . , N .
�

We can now prove Theorem 4.2.3 showing that the persistence probability converges
to a positive constant if X is AR(2) with (a1, a2) ∈ C (cf. Figure 4.3) under mild
conditions.
Proof of Theorem 4.2.3.
Let (a1, a2) ∈ C. Assume first that a1 > 0 and a2 ∈ R such that a2

1 + 4a2 > 0.
Moreover, assume that either a1 ≥ 2 or a1 + a2 > 1 if a1 < 2. Recall from (4.3) that
cn = sn+1

1 /h − sn+1
2 /h where h > 0 since a2

1 + 4a2 > 0. Note that s1 = (a1 + h)/2 > 1
if and only if either a1 ≥ 2 or if a1 + a2 > 1 in case a1 < 2. Moreover |s2| < s1

if and only if a1 > 0 and h > 0. Hence, in view of our assumptions, we have that
cn = sn1s1/h (1 − (s2/s1)n+1) =: sn1αn ≥ 0 for all n. Note that αn → s1/h > 0. Hence,
the assertion follows by part 2 of Proposition 4.5.1.
If a2

1 + 4a2 = 0 and a1 > 2, cn = (a1/2)n(n+ 1) by (4.3). Hence, the result follows from
part 1 of Proposition 4.5.1 with ρ = a1/2 > 1 and αn = n+ 1.
Finally, if a1 = 0 and a2 > 1, the claim follows in view of (4.22) and Proposition 4.5.1.

�



Chapter 5

Persistence of fractional Brownian
motion with moving boundaries

In this chapter, we discuss persistence probabilities related to fractional Brownian mo-
tion (FBM). Recall that FBM with Hurst index H ∈ (0, 1) is a centered Gaussian
process (Xt)t∈R with covariance

E [XsXt] =
1

2

(
|s|2H + |t|2H − |t− s|2H

)
, s, t ∈ R.

We remark that X has stationary increments and is self-similar of index H, i.e. (Xct)t∈R
and (cHXt)t∈R have the same distribution for any c > 0. Results concerning persistence
of FBM have been described in Section 1.2.3.
The main motivation of this chapter comes from a physical model involving FBM that
has been studied recently in [ORS12]. In general, FBM has received a lot of inter-
est in physical applications. Since the behavior of many dynamical systems exhibits
long-range correlations, one observes so-called anomalous dynamics which are typically
characterised by a nonlinear growth in time (i.e. E [X2

t ] ∝ t2H where H 6= 1/2) where
X models the evolution of the corresponding quantity ([BG90]). In order to take such
features into account, FBM has been proposed in [MVN68] in 1968. For instance, FBM
has been used in polymers models ([ZRM09, WFCV12]) and in finance to describe
longe-range dependence of stock prices and volatility ([CR98, Øks07]). We also refer to
[EK08] and [ES12] where the emergence of FBM in certain complex systems is investi-
gated.
Oshanin et al. ([ORS12]) study an extension to the Sinăı model involving FBM. If
(Xt)t≥0 denotes a FBM with Hurst index H, the authors are interested in the asymp-
totics of the k-th moment E

[
JkN
]
of the quantity JN , called the steady-state current JN

through a finite segment of length N , given by

JN :=
1

2

(
1 +

N−1∑
n=1

exp(Xn)

)−1

.

117
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Oshanin et al. find that E
[
JkN
]

= N−(1−H)+o(1) as N →∞ for any k > 0. In particular,
the exponent is independent of k. In order to prove the lower bound, the authors need
the following estimate: If Y0, Y1 > 0 are some constants, then

N−(1−H)(logN)−c - P (Xn ≤ Y0 − Y1 log(1 + n), ∀n = 1, . . . , N) , N →∞. (5.1)

In general, the following question arises: What kind of functions f are admissible such
that P (Xt ≤ f(t),∀t ∈ [0, T ]) = T−(1−H)+o(1), i.e. what kind of moving boundaries f do
not change the persistence exponent of a FBM? Given the increasing relevance of FBM
for various applications, it is important to understand such questions since they convey
information about the path behavior of FBM. In the remainder of this chapter, we take
a further step in this direction. Let us now briefly summarise our main results.
We begin to study the persistence probability of FBM involving a moving boundary
that is allowed to increase or decrease like some power of a logarithm. Our results show
that the presence of such a boundary does not change the persistence exponent of FBM,
and (5.1) will follow as a special case.

Proposition 5.0.2. Let Y0, Y1 > 0 and X denote a FBM with Hurst index H ∈ (0, 1).

1. Let γ ≥ 1 and f−(t) := Y0 − Y1(log(1 + t))γ. There is a constant c = c(H, γ) > 0
such that

T−(1−H)(log T )−c - P (Xt ≤ f−(t),∀t ∈ [0, T ]) - T−(1−H), T →∞.

2. Let γ > 0 and f+(t) := Y0 + Y1(log(1 + t))γ. There is a constant c = c(H, γ) > 0
such that

T−(1−H)(log T )−c - P (Xt ≤ f+(t),∀t ∈ [0, T ]) - T−(1−H)(log T )c, T →∞.

Considering the continuous-time version of J , we prove the following result:

Proposition 5.0.3. Set

JT :=

(∫ T

0

eXt dt

)−1

, T > 0.

For any k > 0, there is c = c(H, k) > 0 such that

T−(1−H)(log T )−c - E
[
JkT
]
- T−(1−H)(log T )c, T →∞. (5.2)

Solving the case k = 1 was actually the key to the computation of the persistence
exponent in [Mol99] where it is shown that E [JT ] ∼ CT−(1−H) for some constant C > 0.
Our proof is based on estimates of the persistence probability of FBM in [Aur11], an
estimate on the modulus of continuity of FBM in [Sch09] and Proposition 5.0.2.
Finally, we discuss various related quantities such as the time when a FBM reaches its
maximum on the time interval (0, 1), the last zero in the interval (0, 1) and the Lebesgue
measure of the set of points in time when X is positive on (0, 1). If ξ denotes any of
these quantities, we are interested in the probability of small values, i.e. P (ξ < ε) as ε
goes to zero. In Proposition 5.3.1 below, we improve the estimates given in [Mol99].
These issues are addressed in Sections 5.1, 5.2 and 5.3 respectively.
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5.1 FBM and moving boundaries

In this section, we prove Proposition 5.0.2. We need to distinguish between increasing
and decreasing boundaries. Let us begin with a simple general upper bound on the
probabilitiy that a FBM stays below a function f until time T when f(x) → −∞ as
x→∞.

Lemma 5.1.1. Let f be some measurable function such that there is a constant b > 0
such that

∫∞
0
ebf(s) ds <∞. Then

P
(
Xt ≤ f(b1/Ht),∀t ∈ [0, T ]

)
- T−(1−H).

Proof. Recall from [Mol99, Statement 1] that

lim
T→∞

T 1−HE [JT ] ∈ (0,∞).

Therefore, there is a constant c > 0 such that, for T large enough,

c T−(1−H) ≥ E

[
1∫ T

0
eXt dt

]
≥ E

[
1∫ T

0
eXt dt

1{Xt≤bf(t),∀t∈[0,T ]}

]
≥ 1∫ T

0
ebf(t) dt

P (Xt ≤ bf(t), ∀t ∈ [0, T ])

≥ 1∫∞
0
ebf(t) dt

P (Xb−1/H t ≤ f(t),∀t ∈ [0, T ])

= C(b)P
(
Xt ≤ f(b1/Ht),∀t ∈ [0, b−1/HT ]

)
,

and the lemma follows. �

The next lemma provides a lower bound on the survial probability if the function f
does not decay faster than some power of the logarithm.

Lemma 5.1.2. Let f be a continuous function with f(0) > 0. Assume that there are
constants T0, K, α > 0 such that f(T ) ≥ −K(log T )α for all T ≥ T0. Then there is a
constant c > 0 such that

P (Xt ≤ f(t),∀t ∈ [0, T ]) % T−(1−H)(log T )−c.

Proof. Set g(T ) := P (Xt ≤ f(t), ∀t ∈ [0, T ]) and fix s0 > 0 (to be chosen later). Since
E [XsXt] ≥ 0 for all t, s ≥ 0, Slepian’s inequality yields

g(T ) ≥ P
(
Xt ≤ f(t),∀t ∈ [0, s0(log T )α/H ]

)
· P
(
Xt ≤ f(t),∀t ∈ [s0(log T )α/H , T ]

)
.
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Note that

P
(
Xt ≤ f(t), ∀t ∈ [s0(log T )α/H , T ]

)
= P

(
X(log T )α/H t ≤ f

(
(log T )α/Ht

)
,∀t ∈ [s0, T/(log T )α/H ]

)
= P

(
(log T )αXt ≤ f

(
(log T )α/Ht

)
,∀t ∈ [s0, T/(log T )α/H ]

)
= P

(
Xt ≤

f((log T )α/Ht)

(log T )α
,∀t ∈ [s0, T/(log T )α/H ]

)
. (5.3)

Certainly, for all T large enough,

inf
t∈[s0,T/(log T )α/H ]

f((log T )α/Ht)

(log T )α

= inf
t∈[s0,T/(log T )α/H ]

f((log T )α/Ht)

(log[(log T )α/Ht])α
· (log[(log T )α/Ht])α

(log T )α
≥ −K.

Thus, the term in (5.3) can be estimated from below by

P
(
Xt ≤ −K, ∀t ∈ [s0, T/(log T )1/H ]

)
. (5.4)

Let us first consider the case H ≥ 1/2. Recall that the increments of FBM are positively
correlated if and only if H ≥ 1/2, so using Slepian’s lemma in the second inequality, we
obtain the following lower bound for the term in (5.4):

P (Xt ≤ −K, ∀t ∈ [s0, T ]) ≥ P

(
Xs0 ≤ −(K + 1), sup

t∈[s0,T ]

Xt −Xs0 ≤ 1

)
≥ P (Xs0 ≤ −(K + 1)) · P (Xt −Xs0 ≤ 1,∀t ∈ [s0, T ])

≥ c(s0, K) · P (Xt ≤ 1,∀t ∈ [0, T ]) .

Hence,
g(T ) ≥ c(s0, K)g(s0(log T )α/H) · P (Xt ≤ 1,∀t ∈ [0, T ]) ,

and (1.10) implies that there is c > 0 such that, for all large T ,

g(T ) ≥ g(s0(log T )α/H)T−(1−H)(log T )−c.

Let us now prove that a similar inequality also holds if H < 1/2. In this case, we
cannot use Slepian’s inequality since the increments of FBM are negatively correlated.
Applying [Aur11, Lemma 5] (and the specific choice of s0 there), the term in (5.4) is
lower bounded by

P
(
Xt ≤ 1,∀t ∈

[
0, k T/(log T )1/H(log log T )1/(4H)

])
· (log T )−o(1),

where k is some constant. Finally, by (1.10), this term admits T−(1−H)(log T )−c as a
lower bound with some appropriate constant c > 0 and all T large enough. Thus, we
have seen that

g(T ) ≥ g(s0(log T )1/H)T−(1−H)(log T )−c (5.5)
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for some constants s0, c > 0.
If we combine this result with the case H ≥ 1/2, this shows that for any H ∈ (0, 1),
there are constants c = c(H), β = β(H), s0 = s0(H) > 0 such that

g(T ) ≥ g(s0(log T )β)T−(1−H)(log T )−c. (5.6)

Using this inequality iteratively, we will prove the preliminary estimate g(T ) ≥ T−θ1

for some θ1 > 1 −H and all T large enough. Once we have this estimate, (5.6) shows
that

g(T ) % (log T )−(θ1β+c) T−(1−H), T →∞,
and the proof is complete for all H ∈ (0, 1).
Let us now establish the preliminary lower bound. (5.6) implies that if β1 > β and
θ > 1−H, there is a constant T0 ≥ 1 such that

g(T ) ≥ g((log T )β1) · T−θ, T ≥ T0. (5.7)

The idea is to iterate this inequality until log(log(. . . )β1)β1 is smaller than some constant.
As we will see, the number of iterations that are needed is very small and merely
leads to a term of logarithmic order. Since each iteration is valid only for large values
of T depending on the number of iterations, and the number of iterations is itself a
function of T , some care is needed to perform this step. To this end, fix β2 > β1 and
set T ′0 := max

{
log(T0)/β2, β

β1/(β2−β1)
2

}
. Define log(1) x = log x for x > x1 = 1 and

log(i) x = log(i−1)(log x) for x > xi := exp(xi−1). For any j ≥ 1 and T > 0, the following
implication holds:

log(j+1) T ≥ T ′0 =⇒ g((log(j) T )β2) ≥ g((log(j+1) T )β2) · (log(j) T )−θβ2 . (5.8)

Indeed, note that log(j+1) T ≥ T ′0 translates into

(log(j) T )β2 ≥ T0 and ββ12 (log(j+1) T )β1 ≤ (log(j+1) T )β2 .

Hence, in view of (5.7), we find that

g((log(j) T )β2) ≥ g((log((log(j) T )β2))β1) · (log(j) T )−β2θ

= g(ββ12 (log(j+1) T )β1) · (log(j) T )−β2θ

≥ g((log(j+1) T )β2) · (log(j) T )−β2θ,

so (5.8) follows. Denote by a(T ) := min
{
n ∈ N : log(n) T ≤ T ′0

}
. By definition, log(a(T )) T ≤

T ′0 < log(a(T )−1) T , so we can apply (5.8) iteratively for all j ≤ a(T )− 2 to obtain that

g((log T )β2) ≥ g((log(2) T )β2)(log T )−β2θ ≥ . . .

≥ g((log(a(T )−1) T )β2)

a(T )−2∏
j=1

(log(j) T )−β2θ

≥ g(eT
′
0β2)

a(T )−2∏
j=1

(log(j) T )−β2θ, (5.9)
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which holds for all T ≥ exp(exp(exp(T ′0))), i.e. such that a(T ) ≥ 3. Moreover, g(eT
′
0β2) >

0 since f is continuous with f(0) > 0. Finally,

a(T )−2∏
j=1

(log(j) T )−β2θ ≥ (log T )−β2θ · (log(2) T )−β2θa(T ).

In view of
a(T ) = 1 + a(log T ) = j + a(log(j) T ),

which holds for any j ∈ N and T large enough and the simple observation that a(T ) ≤ T ,
we obtain that a(T ) = o(log(j) T ) for any j ∈ N. Hence, for all T large enough,

(log(2) T )−β2θ a(T ) ≥ (log(2) T )−β2θ log(3) T = exp
(
−β2θ(log(3) T )2

)
≥ exp

(
− log(2) T

)
= (log T )−1. (5.10)

Combining (5.7), (5.9) and (5.10), we conclude that T−θ1 - g(T ) for any θ1 > θ. �

Combining Lemma 5.1.1 and Lemma 5.1.2, we obtain part 1 of Proposition 5.0.2.
Proof of part 1 of Proposition 5.0.2.
Lower bound: With f(t) := Y0 − Y1(log(1 + t))γ ≥ −2Y1(log(1 + t))γ for all large t, the
lower bound follows directly from Lemma 5.1.2.
Upper bound: If γ > 1, we can directly apply Lemma 5.1.1 with f(t) := Y0−Y1(log(1 +
t))γ and b = 1 to obtain the upper bound.
If γ = 1, take b > 0 such that bY1 > 1 and set f(t) := Y0 − Y1(log(1 + b−1/Ht)), so that∫∞

0
ebf(t) dt <∞ and by Lemma 5.1.1,

T−(1−H) % P
(
Xt ≤ f(b1/Ht),∀t ∈ [0, T ]

)
= P (Xt ≤ Y0 − Y1 log(1 + t),∀t ∈ [0, T ]) .

�

Remark 5.1.3. 1. We remark that the removal of the boundary by a change of mea-
sure argument (Cameron-Martin-formula) results in less precise estimates of the
form

T−(1−H)e−c
√

log T - P (Xt ≤ Y0 − Y1(log(1 + t))γ,∀t ∈ [0, T ]) - T−(1−H)ec
√

log T ,

see [AD13] ((2.10) here), [Mol99] or [Mol12]. Moreover, as we have seen in
Lemma 2.2.6, it requires some tedious computations to show that a function be-
longs to the RKHS of FBM.

2. In view of the results for Brownian motion (i.e. H = 1/2, see [Uch80]), it is
reasonable to expect that the upper bound in part 1 of Proposition 5.0.2 has the
correct order.
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3. The restriction γ ≥ 1 is necessary in order to apply Lemma 5.1.1. However, for
any γ > 0, (1.10) immediately implies the following weaker bound:

P (Xt ≤ Y0 − Y1(log(1 + t))γ, ∀t ∈ [0, T ])

≤ P (Xt ≤ Y0,∀t ∈ [0, T ]) - T−(1−H)(log T )c.

4. Let f(x) = Y0 − Y1 log(1 + x). Trivially, if we consider discrete time,

P (Xk ≤ f(k), k = 1, . . . , N) ≥ P (Xt ≤ f(t),∀t ∈ [0, N ]) % N−(1−H) log(N)−c.

This estimate is needed in [ORS12] (see Eq. (15) there) when proving a lower
bound for E

[
JkN
]
.

Clearly, Lemma 5.1.2 is only applicable if the boundary f satisfies f(x) → −∞
as x → ∞. It is natural to suspect that the persistence exponent does not change if
we introduce a barrier that increase like some power of a logarithm. This is part 2 of
Proposition 5.0.2 which follows from the next lemma:

Lemma 5.1.4. Let f : [0,∞)→ R denote a continuous function with f(0) > 0. More-
over, we assume that there are constants A,α, T0 > 0 such that f(x) ≥ −A for all x ≥ 0
and f(x) ≤ (log x)α for all x ≥ T0. Then there is a constant c > 0 such that

T−(1−H)(log T )−c - P (Xt ≤ f(t),∀t ∈ [0, T ]) - T−(1−H)(log T )c.

Proof. Lower bound: We can directly apply Lemma 5.1.2 directly since f(x) ≥ −A on
[0,∞).
Upper bound: Note that

P (Xt ≤ f(t), ∀t ∈ [0, T ]) ≤ P (Xt ≤ f(t),∀t ∈ [T0, T ])

≤ P (Xt ≤ (log t)α,∀t ∈ [T0, T ])

≤ P (Xt ≤ (log(2 + T ))α,∀t ∈ [T0, T ])

≤ P (Xt ≤ (log(2 + T ))α,∀t ∈ [0, T ])

P (Xt ≤ (log(2 + T ))α,∀t ∈ [0, T0])

∼ P (Xt ≤ (log(2 + T ))α,∀t ∈ [0, T ]) , T →∞.

We have used Slepian’s inequality in the last inequality. Using once more the self-
similarity of X and (1.10), the upper bound follows. �

5.2 Higher moments of JN
We are now ready to prove Proposition 5.0.3. The lower bound follows easily from our
result on moving boundaries in Proposition 5.0.2, whereas the proof of the upper bound
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is more involved.
Proof of Proposition 5.0.3.
Lower bound: Let γ > 1.

E
[
JkT
]
≥ E

[(∫ T

0

eXt dt

)−k
1{Xt≤1−(log(1+t))γ , ∀t∈[0,T ]}

]

≥
(∫ T

0

e

(1 + t)γ
dt

)−k
P (Xt ≤ 1− (log(1 + t))γ, ∀t ∈ [0, T ]) .

The lower bound now follows by part 1 of Proposition 5.0.2.
Upper bound: Let H/2 < γ < H and fix a such that a > 2/H > 1/γ and γ < H − 1/a.
Self-similarity and stationarity of increments imply for all s, t ∈ [0, 1] that

E [|Xt −Xs|a] = E
[∣∣X|t−s|∣∣a] = |t− s|aH E [|X1|a] = |t− s|(aH−1)+1 E [|X1|a] .

Since aH − 1 > 0, it follows from [Sch09, Lemma 2.1] that there is a positive random
variable S such that

E [Sa] ≤
(

2

1− 2−γ

)a
· E [|X1|a]

2aH−1−aγ − 1
, (5.11)

and for all ε ∈ (0, 1),

|Xt −Xs| ≤ Sεγ, ∀ s, t ∈ [0, 1], |t− s| ≤ ε. (5.12)

Write X∗1 := sup {Xt : t ∈ [0, 1]}, and let u∗ denote a point where the supremum is
attained. Using the self-similarity of X and (5.12) in the second inequality, we obtain
the following estimates:

E
[
JkT
]

= E

[(∫ 1

0

eT
HXtT dt

)−k]

= T−k E

[
e−kT

HX∗1

(∫ 1

0

e−T
H(X∗1−Xt) dt

)−k]

≤ T−k E

e−kTHX∗1 (∫ max{u∗+ε,1}

min{u∗−ε,0}
e−T

H(Xu∗−Xt) dt

)−k
≤ T−k E

e−kTHX∗1 (∫ max{u∗+ε,1}

min{u∗−ε,0}
e−T

HSεγ dt

)−k
≤ T−k E

[
e−kT

HX∗1 ε−kekT
HSεγ

]
.
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Set ε := min
{

(THS)1/γ, 1
}
. Then THSεγ ≤ 1 and ε−1 ≤ (THS)1/γ + 1, and we find

that

E
[
JkT
]
≤ T−kekE

[
e−kT

HX∗1 ((THS)1/γ + 1)k
]

≤ T−k(2e)k
(
E
[
e−kT

HX∗1Sk/γ
]
T kH/γ + E

[
e−kT

HX∗1

])
. (5.13)

Applying Hölder’s inequality (1/p+ 1/q = 1), we have that

E
[
e−kT

HX∗1Sk/γ
]
≤ E

[
e−qkT

HX∗1

]1/q

E [Sa]1/p ≤ E
[
e−kT

HX∗1

]1/q

E [Sa]1/p , (5.14)

where a = kp/γ, and the last inequality holds for all T > 0, a > 2/H and H/2 < γ <
H − 1/a. Fix δ ∈ (0, 1) and set

a := (log log T )−δ log T, γ = H − 2/a.

(Since a = kp/γ, this amounts to p = (H(log log T )−δ log T + 2)/k, a = (kp−2)/H and
γ = H − 2/a). Assume for a moment that there are constants M, ν ∈ (0,∞) such that
for all a large enough, it holds that

(E [|X1|a])1/a ≤Maν . (5.15)

Then in view of the relations 1/p = k/(aγ) and aH − aγ = 2, we obtain that

E [Sa]1/p ≤
(
(E [|X1|a])1/a

)k/γ
(2aH−1−aγ − 1)1/p

=
Mk/γaνk/γ

(22−1 − 1)1/p
= Mk/γakν/H+o(1), a→∞.

In particular, (E [Sa])1/p = o((log T )η) as a → ∞, or equivalently, T → ∞, for every
η > kν/H. For such η, combining (5.13) and (5.14), we find for T large enough that

E
[
JkT
]
≤ 2(2e)kT kH/γ−k(log T )ηE

[
e−kT

HX∗1

]1/q

. (5.16)

By Karamata’s Tauberian theorem (see [BGT87, Theorem 1.7.1]), (1.11) implies that
(with the same c > 0 as in (1.11))

λ−(1−H)/H(log λ)−c - E
[
e−λX

∗
1
]
- λ−(1−H)/H(log λ)c, λ→∞. (5.17)

(In fact, the lower bound is easy since E
[
e−λX

∗
1

]
≥ e−1P (X∗1 ≤ 1/λ). For our purposes,

it is enough to note that E
[
e−λX

∗
1

]
≤ P (X∗1 ≤ log(λ)/λ) + e− log λ, so the upper bound

follows from (1.11) with some c̃ > c.) By (5.17), we conclude that

THk/γ−kE
[
e−kT

HX∗1

]1/q

= THk/γ−kE
[
e−kT

HX∗1

]1−k/(aγ)

≤ C ′THk/γ−kT−(1−H)(1−k/(aγ))(log T )c(1−k/(aγ))

= C ′T k/(aγ)(aH−aγ+(H−1))T−(1−H)(log T )c+o(1).
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Using again that aH − aγ = 2, note that by definition of a,

T k/(aγ)(Ha−aγ+(H−1)) = T (H+1)/(aγ) = exp(γ−1(H + 1)(log log T )δ) = (log T )o(1).

Hence, we have shown that

E
[
JkT
]
- (log T )η+o(1)T−(1−H), T →∞,

as soon as we prove that (5.15) holds. Since X1 is standard Gaussian, it is well-known
that E [|X1|a] = 2a/2Γ((a + 1)/2)/

√
π for every a > 0, and therefore, it is not hard to

show that E [|X1|a]1/a ≤M
√
a for some M and all a large enough. This completes the

proof. �

Remark 5.2.1. Note that if X is a self-similar process with stationary increments (SSSI)
satisfying (5.15), the proof above shows that (5.16) holds in that case as well. By
(5.16), if we already know a lower bound on E

[
JkT
]
, we get a lower bound on the

Laplace transform of X∗1 , whereas a upper bound on the Laplace transform yields an
upper bound on E

[
JkT
]
. Since the behaviour of the Laplace transform E [exp(−λX∗1 )]

as λ → ∞ is related to that of the probability P (X∗1 ≤ λ) as λ ↓ 0 via Tauberian
theorems, this approach could be useful to study persistence of other SSSI-processes,
see [CGPPS13].

5.3 Some related quantities
Given a FBM X, the following quantities are studied in [Mol99]:

τmax := argmaxt∈[0,1]Xt, (5.18)

z− := sup {t ∈ (0, 1) : Xt = 0}, (5.19)
s+ := λ({t ∈ (0, 1) : Xt > 0}), (5.20)

where λ denotes the Lebesgue measure. We remark that the definition of τmax is un-
ambiguous since a FBM attains its maximum at a unique point on [0, 1] a.s. ([KP90,
Lemma 2.6]). If ξ denotes any of the three random variables above, by [Mol99, Theo-
rem 2], there is c > 0 such that

ε1−H exp(−(1/c)
√
|log ε|) - P (ξ < ε) - ε1−H exp(c

√
|log ε|), ε ↓ 0.

Upon combining our results (Proposition 5.0.2), the arguments used in [Mol99] and the
more precise estimate for the persistence probability of FBM in [Aur11], we obtain the
following improvement:

Proposition 5.3.1. If ξ denotes any of the random variables in (5.18), (5.19) or (5.20),
there is c > 0 such that

ε1−H |log ε|−c - P (ξ < ε) - ε1−H |log ε|c , ε ↓ 0. (5.21)
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Proof. Let us recall the relations of the probabilities involving the quantities τmax, s+

and z− that are used in the proof of [Mol99, Theorem 2]:
The symmetry and continuity of X imply that

P (Xt < 0,∀t ∈ (ε, 1)) = 1
2
P (Xt 6= 0,∀t ∈ (ε, 1)) = 1

2
P (z− < ε) , 0 < ε < 1. (5.22)

Moreover, we clearly have the following inequalities:

P (Xt < 0,∀t ∈ (ε, 1)) ≤ P (s+ < ε) , P (Xt < 0,∀t ∈ (ε, 1)) ≤ P (τmax < ε) . (5.23)

We will show that

ε1−H |log ε|−c - P (Xt < 0,∀t ∈ (ε, 1)) - ε1−H |log ε|c . (5.24)

If (5.24) holds, (5.22) proves the statement for z− whereas the lower bounds in (5.21)
for ξ = s+ and ξ = τmax follow from (5.23).
Before establishing the remaining lower bound, let us prove (5.24). Note that the
self-similarity of X implies that P (Xt < 0, ∀t ∈ (ε, 1)) = P (Xt < 0,∀t ∈ (1, 1/ε)). By
Slepian’s inequality, it holds that

P (Xt < 0,∀t ∈ (1, 1/ε)) ≤ P (Xt < 1, ∀t ∈ (1, 1/ε))

≤ P (Xt < 1, ∀t ∈ (0, 1/ε)) /P (Xt < 1,∀t ∈ (0, 1)) .

In view of (1.10), this proves the upper bound of (5.24). The lower bound follows from
part 2 of Proposition 5.0.2 since

P (Xt < 0,∀t ∈ (1, 1/ε)) ≥ P (Xt ≤ 1− log(1 + 3t), ∀t ∈ [0, 1/ε]) .

Let us now turn to the upper bound for P (τmax < ε). Note that

P (τmax < ε) ≤ P (X∗1 < h) + P (X∗ε > h) , h > 0.

Take h = εH |log ε|α where α > 1/2. Using (1.11), we obtain that

P (X∗1 < h) = P
(
X∗1 < εH |log ε|α

)
- ε1−H |log ε|α(1−H)/H+c+o(1) ,

whereas, for some constants A,B > 0, an application of the Gaussian concentration
inequality (or Fernique’s estimate stated in [Mol99]) yields that

P (X∗ε > h) = P
(
X∗1 > ε−Hh

)
= P (X∗1 > |log ε|α) ≤ Ae−B|log ε|2α ,

i.e. this term decays faster than any polynomial since 2α > 1.
Finally, to establish the upper bound on P (s+ < ε), it suffices to note that the argu-
ments in the proof of Theorem 2 of [Mol99] show that there is a constant c such that
P (s+ < ε) ≤ 2P

(
X∗1/ε < c |log ε|1/2

)
for all ε > 0 small enough. It is now straightfor-

ward to conclude in view of the self-similarity and (1.11). �

Remark 5.3.2. As already remarked in [Mol99], 1/z−
d
= z+ := inf {s > 1 : Xs = 0}

since (Xt)t>0 and (t2HX1/t)t>0 have the same law. Hence, Proposition 5.3.1 shows that
P (z+ > T ) decays like T−(1−H) modulo logarithmic terms as T →∞.
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Chapter 6

Open problems

Let us summarise some open questions at the end of this thesis. First of all, one could
try to strengthen the assertions of many theorems or weaken their assumptions. For
instance, concerning the result on weighted sums of independent random variables of
Theorem 2.1.2, it seems reasonable to make the following conjecture:

Conjecture 1. Let (Yn)n≥1 be a sequence of centered i.i.d. random variables with
E [Y 2

1 ] < ∞ and (σ(n))n≥1 a sequence of positive numbers such that σ(N) � Np for
some p > 0. Set Zn :=

∑n
k=1 σ(k)Yk. Then

P (Zn ≤ 0,∀n = 1, . . . , N) � N−(p+1/2), N →∞.

Let us continue to mention some open problems in the context of Chapter 2. In
the case of exponential weight functions, it does not seem easy to compute the expo-
nential rate of decay λβ (cf. (2.17)) even in the Gaussian case. To obtain new insights,
the variational characterisation of exp(−λβ) involving an integral operator in Theo-
rem 2.2.28 appears to be useful (for instance, one could use suitable test functions
to obtain better estimates on λβ, cf. (2.37)). Moreover, it is still open if λβ ∼ β/2
as β → 0 or if λβ < β/2 for all β > 0, see Remark 2.2.16. The latter question
is directly related to the following one: for which functions κ with κ(x) → ∞ is
P
(
Bκ(n) ≤ 1,∀n = 1, . . . , N

)
= κ(N)−1/2+o(1)? This problem was mentioned in Re-

mark 2.2.3 and 2.2.13.
Finally, almost nothing seems to be known about persistence of sums of correlated ran-
dom variables, cf. Remark 2.2.7.

Concerning persistence of iterated processes, Theorem 3.1.2 has been strengthened
in [Vys12a]. The assertions of the Theorems 3.1.2, 3.1.5 and 3.1.3 could be improved
as well if better estimates on the probability of gaps in the range of random walks were
known, cf. Remark 3.3.4.
Moreover, it would be interesting to study persistence of iterated Lévy processes if the
inner process does not have a finite second moment. For instance, let (Xt)t≥0 be a
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symmetric Lévy process and (Yt)t≥0 an independent α-stable subordinator with index
α ∈ (0, 1). Then (X(Yt))t≥0 is a symmetric Lévy process and

T−1/2 � P (X(Yt) ≤ 1,∀t ∈ [0, T ]) , T →∞.

In particular, note that the lower bound

P (Xt ≤ 1,∀t ∈ [0, YT ]) ≥ P
(
YT ≤ cT 1/α

)
P
(
Xt ≤ 1,∀t ∈ [0, cT 1/α]

)
� T−1/(2α)

does not provide the correct order. Hence, the gaps in the range of the inner process
cannot be neglected as in the case of finite variance. If (Yt)t≥0 is α-stable, but not a
subordinator, it seems challenging to compute the persistence exponent of X ◦ |Y |.

For autoregressive processes, it appears very difficult to compute the persistence
exponent of higher-order integrated random walks S(n) (S(1) is a usual centred random
walk and S(n)

k :=
∑k

j=1 S
(n−1)
j ).

For AR(p)-processes Xn = a1Xn−1 + · · ·+ apXn−p + Yn, it would be interesting to find
general conditions on the coefficients a1, . . . , ap such that the survival probability decays
exponentially. In particular, a generalisation of Theorem 4.3.1 to higher order processes
would be desirable.
If (cn)n≥1 is a sequence with

∑
|cn| <∞, let Z :=

∑∞
n=1 cnYn, where (Yn) is a sequence

of i.i.d. random variables such that Z is a.s. a finite (for instance, if E [Y 2
1 ] < ∞). As

we have seen in Theorem 4.3.10, it can be important to understand the behaviour of
P (|Z| ≤ ε) as ε ↓ 0. In Proposition 4.3.8, we have considered the case cn = ρn with
|ρ| < 1. However, this results does not cover purely discrete distributions. As already
mentioned in Remark 4.3.9, it would be interesting to make progess in this direction.

Finally, if (BH
t )t≥0 is a fractional Brownian motion with Hurst index H ∈ (0, 1),

it is still an open problem to prove that P
(
BH
t ≤ 1,∀t ∈ [0, T ]

)
� TH−1. Moreover, if

γ < H and f(t) = 1 + ctγ with c ∈ R, it can be shown by a change of measure that

exp(−c
√

log T )TH−1 - P
(
BH
t ≤ f(t),∀t ∈ [0, T ]

)
- exp(c

√
log T )TH−1,

see [AD13, Proposition 3.1] (equation (2.10) here). I suspect that the lower order terms
could be removed or at least reduced to a logarithmic error as in Chapter 5.



Appendix A

Slepian’s inequality

Let us now give the proof of Lemma 1.2.5.
Proof. Part 1: Let t1, t2, . . . denote a sequence in T. Using Slepian’s inequality as
stated in [LT91, Corollary 3.12], it holds that

P (X(tk) ≤ f(tk), ∀k = 1, . . . , n) ≤ P (Y (tk) ≤ f(tk),∀k = 1, . . . , n) , n ≥ 1. (A.1)

Clearly, the last inequality also holds for n = ∞. Hence, part 1 follows if we can find
a sequence (tn)n≥1 such that P (X(tk) ≤ f(tk),∀k ≥ 1) = P (X(t) ≤ f(t),∀t ∈ T) and
P (Y (tk) ≤ f(tk),∀k ≥ 1) = P (Y (t) ≤ f(t),∀t ∈ T).
Recall that separability of X means that there is a negligible set N , and a countable
set IX ⊂ T such that for all t ∈ T, all ε > 0 and all ω /∈ N ,

Xt(ω) ∈ {Xs(ω) : s ∈ IX , d(s, t) < ε},

see [LT91, p.45]. In particular, this implies that there are countable sets IX , IY ⊆ T
such that a.s.

sup {Xt : t ∈ IX} = sup {Xt : t ∈ T} , sup {Yt : t ∈ IY } = sup {Yt : t ∈ T} .

By enlarging the sets IX and IY if necessary, we may assume that they are countable
and dense in T since T is separable. Let IX ∪ IY ∪D = {t1, t2, . . .}. By continuity of f
on T \D and separability of X and Y , (A.1) implies that

P (X(t) ≤ f(t),∀t ∈ T) ≤ P (Y (t) ≤ f(t), ∀t ∈ T) . (A.2)

Indeed, on the event {X(tn) ≤ f(tn),∀n ≥ 1}, then a.s., for every t ∈ T \ D, there is
a subsequence tnk → t, and using the separability of X in the first inequality, and the
continuity of f on T \D in the last equality, we obtain that

Xt ≤ lim sup
k→∞

X(tnk) ≤ lim sup
k→∞

f(tnk) = f(t),
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and the same holds for Y .
Part 2: If (Yt)t≥0 is a centred Gaussian process with E [YtYs] ≥ 0, let (Y ′t )t≥0 denote an
independent copy of Y on the same probability space. Let S, T > 0. Define Xt = Yt on
[0, S] and Xt = Y ′t on (S,∞). Note that X is also a centred, separable Gaussian process.
Clearly E [X2

t ] = E [Y 2
t ]. Moreover, 0 = E [XtXs] ≤ E [YtYs] whenever s ∈ [0, S] and

t > S, whereas E [XtXs] = E [YtYs] for s, t ≤ S and s, t > S. Hence, by part 1,

P (Xt ≤ f(t),∀t ∈ [0, T + S]) ≤ P (Yt ≤ f(t),∀t ∈ [0, T + S]) ,

and by independence of Y and Y ′,

P (Xt ≤ f(t), ∀t ∈ [0, T + S]) = P (Yt ≤ f(t),∀t ∈ [0, S]) · P (Y ′t ≤ f(t), ∀t ∈ (S, T + S])

= P (Yt ≤ f(t),∀t ∈ [0, S]) · P (Yt ≤ f(t),∀t ∈ (S, T + S]) .

This proves (1.12).
If Y is additionally stationary, we can apply (1.12) with the constant function f ≡ x
to find that h(T ) := − logP (Xt ≤ x, ∀t ∈ [0, T ]) is subadditive. Hence, the existence
of the limit and its representation as a supremum follows from the usual subaddivity
argument (Fekete’s Lemma). �



Appendix B

An integral operator related to
persistence

B.1 The spectral radius of T
Lemma B.1.1. The spectral radius r(T ) of T defined in (2.26) is equal to 1.

Proof. Let T ′ : L∞ → L∞ denote the adjoint of T . Since the spectral radius of T and
T ′ coincides (see e.g.[RS72, Theorem VI.7]), it suffices to show that r(T ′) = 1. In fact,
we show that ‖(T ′)n‖ = 1 for all n ≥ 1.
It is easy to verify that T ′g(u) :=

∫ 0

−∞ p(u, y)g(y) dy, g ∈ L∞, is the adjoint of T : if
f ∈ L1, g ∈ L∞, denote by 〈f, g〉 =

∫ 0

−∞ f(y)g(y) dy the duality pairing. By Fubini’s
theorem, it holds that

〈Tf, g〉 =

∫ 0

−∞

∫ 0

−∞
p(x, y)f(x) dx g(y) dy =

∫ 0

−∞

∫ 0

−∞
p(x, y)g(y) dy f(x) dx = 〈f, T ′g〉,

which proves that T ′ is the adjoint of T .
Let g0(u) = 1{(−∞,0]}(u). We claim for all n ≥ 1 that

lim
u→−∞

(T ′)ng0(u) = 1, and ‖(T ′)n‖ = 1.

If this is true, it is evident that r(T ′) = 1, and the lemma follows.
For n = 1, we get in view of (2.27) that

T ′g0(u) =

∫ 0

−∞
p(u, y) dy → 1, u→ −∞. (B.1)

Moreover, by (2.27), we have that

|T ′g(u)| ≤ ‖g‖∞ ·
∫ 0

−∞
p(u, y) dy ≤ ‖g‖∞,
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so clearly ‖T ′‖ = 1.
If the claim holds for some n ≥ 1, then for any u < 0, we have

(T ′)n+1g0(u) ≥
∫ ρu/2

−∞
p(u, y)(T ′)ng0(y) dy ≥

{
inf

z∈(−∞,ρu/2]
(T ′)ng0(z)

} ∫ ρu/2

−∞
p(u, y) dy.

By the induction hypothesis, the term {. . . } → 1 as u→ −∞. Moreover, one computes∫ ρu/2

−∞
p(u, y) dy =

1√
2πσ

∫ ρu/2

−∞
exp

(
− (y−ρu)2

2σ2

)
dy

=
1√
2πσ

∫ −ρu/2
−∞

exp
(
− y2

2σ2

)
dy → 1, u→ −∞.

Hence, lim infu→−∞(T ′)n+1g0(u) ≥ 1. Since ‖(T ′)n+1‖ ≤ ‖T ′‖‖(T ′)n‖ = ‖(T ′)n‖ = 1
by the induction hypothesis, it follows easily that ‖(T ′)n+1g0‖∞ ≤ 1. Consequently, it
holds that limu→−∞(T ′)n+1g0(u) = 1 and ‖(T ′)n+1‖ = 1. �

B.2 Bounds on the eigenvalues
Here we give a proof of (2.34) and (2.37). Let A := (1 + ρ2)/(4σ2) > 0 and B := ρ/σ2.
We first compute ‖K‖2,2 stated in (2.34). In view of (2.30) and (2.33), we have that

‖K‖2
2,2 =

∫ 0

−∞

∫ 0

−∞
K(x, y)2 dy dx

=
1

2πσ2
·
∫ 0

−∞
e−2Ax2

√
π

2
√

2A
eB

2x2/(2A)Erfc

(
Bx√
2A

)
dx

=
1

4
√

2π
√
Aσ2

∫ 0

−∞
e−2(A−B2/(4A))x2Erfc

(
Bx√
2A

)
dx

=
1

4
√

2π
√
Aσ2

·
π − arctan

(√
2(A−B2/(4A))

B/
√

2A

)
√
π
√

2(A−B2/(4A))

=
1

8πσ2
·
π − arctan

(
2
√
A2−B2/4

B

)
√
A2 −B2/4

.

Note that
A2 − B2

4
=

1 + 2ρ2 + ρ4

16σ4
− ρ2

4σ4
=

(1− ρ2)2

16σ4
,

so it follows that
‖K‖2

2,2 =
1

2π
· π − arctan (|1− ρ2| /(2ρ))

|1− ρ2|
.
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This proves (2.34).
In order to prove (2.37), let fα(x) := (8α/π)1/4 e−αx

2 and I(α) := (Sfα, fα). Then

I(α) =

∫ 0

−∞

∫ 0

−∞
f(y)K(x, y)f(x) dy dx =

∫ 0

−∞

∫ 0

−∞
f(y)

e−A(x2+y2)+Bxy

√
2πσ

f(x) dy dx

=
1√
2πσ
·
√

8α

π
·
∫ 0

−∞
e−(A+α)x2

∫ 0

−∞
e−(A+α)y2+Bxy dy dx

=
2
√
α

πσ
·
∫ 0

−∞
e−(A+α)x2 ·

√
π

2
√
A+ α

eB
2x2/(4(A+α))Erfc

(
Bx

2
√
A+ α

)
dx

=

√
α

σ
√
π
√
A+ α

·
∫ 0

−∞
e−(A+α−B2/(4(A+α)))x2Erfc

(
Bx

2
√
A+ α

)
dx.

We have used (2.29) in the third equality. Let ∆ := B/(2
√
A+ α). Using (2.33), we

obtain that

I(α) =

√
α

σ
√
π
√
A+ α

·
∫ 0

−∞
e−(A+α−∆2)x2Erfc(∆x) dx

=

√
α

σ
√
π
√
A+ α

· π − arctan(
√
A+ α−∆2/∆)

√
π
√
A+ α−∆2

=

√
α

σπ
·
π − arctan

(
2
√

(A+α)2−B2/4

B

)
√

(A+ α)2 −B2/4
.
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