Automatische Unterstützungsanpassung in der Schlaganfallrehabilitation

vorgelegt von
Dipl.-Ing.
Robert Steingräber
aus Berlin

von der Fakultät V — Verkehrs- und Maschinensysteme
der Technischen Universität Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr.-Ing. Michael Rethmeier
1. Gutachter: Prof. Dr.-Ing. Jörg Krüger
2. Gutachter: Prof. Dr.-Ing. Marc Kraft

Tag der wissenschaftlichen Aussprache: 13. August 2013

Berlin 2014
D 83
Inhaltsverzeichnis

1 Einleitung

2 Wissensstand in Rehabilitation und Robotik

2.1 Therapie nach neurologischen Erkrankungen
2.2 Der Mensch und die Folgen neurologischer Erkrankungen
 2.2.1 Der Muskel
 2.2.2 Reflexe
 2.2.3 Das Gehirn
2.3 Robotik und Kybernetik
 2.3.1 Kybernetik und ihre geistigen Nachkommen
2.4 Reglungsstrategien für Rehabilitationsgeräte
 2.4.1 Identifikation von Muskel-, Reflex- und Lerneigenschaften
 2.4.2 Bewegungsplanung und Lernen
2.5 Automatisierte Unterstützungsanpassung
 2.5.1 Iterativ lernende Regelung
 2.5.2 Optimale Lernrate
 2.5.3 Frequenzabhängige Lernrate
2.6 Telepräsenz für häusliche Therapie

3 Ziel dieser Arbeit

3.1 Unterstützungsanpassung
3.2 Telehaptik
3.3 Beurteilung von Muskel-, Reflex- und Lerneigenschaften

4 Konzept

4.1 Bimanuelles Training
 4.1.1 Anwendungsszenarien
 4.1.2 Aufgabenvisualisierung
 4.1.3 Positionsabhängiges maschinelles Lernen
 4.1.4 Lernen mit Menschmodell
 4.1.5 Anpassung der Reglersteifigkeit und Führung der gesunden Hand
 4.1.6 Stabilität und Konvergenz
4.2 Patientenbeurteilung durch Mess- und Schätzverfahren

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Einleitung</td>
<td>14</td>
</tr>
<tr>
<td>2 Wissensstand in Rehabilitation und Robotik</td>
<td>18</td>
</tr>
<tr>
<td>2.1 Therapie nach neurologischen Erkrankungen</td>
<td>18</td>
</tr>
<tr>
<td>2.2 Der Mensch und die Folgen neurologischer Erkrankungen</td>
<td>21</td>
</tr>
<tr>
<td>2.2.1 Der Muskel</td>
<td>21</td>
</tr>
<tr>
<td>2.2.2 Reflexe</td>
<td>22</td>
</tr>
<tr>
<td>2.2.3 Das Gehirn</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Robotik und Kybernetik</td>
<td>24</td>
</tr>
<tr>
<td>2.3.1 Kybernetik und ihre geistigen Nachkommen</td>
<td>24</td>
</tr>
<tr>
<td>2.4 Reglungsstrategien für Rehabilitationsgeräte</td>
<td>28</td>
</tr>
<tr>
<td>2.4.1 Identifikation von Muskel-, Reflex- und Lerneigenschaften</td>
<td>29</td>
</tr>
<tr>
<td>2.4.2 Bewegungsplanung und Lernen</td>
<td>31</td>
</tr>
<tr>
<td>2.5 Automatisierte Unterstützungsanpassung</td>
<td>38</td>
</tr>
<tr>
<td>2.5.1 Iterativ lernende Regelung</td>
<td>40</td>
</tr>
<tr>
<td>2.5.2 Optimale Lernrate</td>
<td>47</td>
</tr>
<tr>
<td>2.5.3 Frequenzabhängige Lernrate</td>
<td>48</td>
</tr>
<tr>
<td>2.6 Telepräsenz für häusliche Therapie</td>
<td>49</td>
</tr>
<tr>
<td>3 Ziel dieser Arbeit</td>
<td>56</td>
</tr>
<tr>
<td>3.1 Unterstützungsanpassung</td>
<td>56</td>
</tr>
<tr>
<td>3.2 Telehaptik</td>
<td>59</td>
</tr>
<tr>
<td>3.3 Beurteilung von Muskel-, Reflex- und Lerneigenschaften</td>
<td>60</td>
</tr>
<tr>
<td>4 Konzept</td>
<td>62</td>
</tr>
<tr>
<td>4.1 Bimanuelles Training</td>
<td>62</td>
</tr>
<tr>
<td>4.1.1 Anwendungsszenarien</td>
<td>64</td>
</tr>
<tr>
<td>4.1.2 Aufgabenvisualisierung</td>
<td>65</td>
</tr>
<tr>
<td>4.1.3 Positionsabhängiges maschinelles Lernen</td>
<td>66</td>
</tr>
<tr>
<td>4.1.4 Lernen mit Menschmodell</td>
<td>72</td>
</tr>
<tr>
<td>4.1.5 Anpassung der Reglersteifigkeit und Führung der gesunden Hand</td>
<td>77</td>
</tr>
<tr>
<td>4.1.6 Stabilität und Konvergenz</td>
<td>78</td>
</tr>
<tr>
<td>4.2 Patientenbeurteilung durch Mess- und Schätzverfahren</td>
<td>84</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

4.2.1	Kriterien zur Beurteilung der lernenden Regelung	85
4.2.2	Patientenbeurteilung über Muskel-, Reflex- und Lerneigenschaften	87
4.3	Telerehabilitation	89

5 Umsetzung

5.1	Simulationen	94
5.1.1	Modellschätzung	94
5.1.2	Optimierung der konstanten Lernparameter	95
5.1.3	Testumgebung für unterschiedliche ILRen	96
5.1.4	Mess- und Schätzverfahren	99
5.1.5	Telehaptik	101
5.2	Soft- und Hardwareüberblick	102
5.3	Firmware	104
5.3.1	Neue Reglungsmodi für den Bi-Manu-Track	105
5.3.2	Kommunikation zwischen Firmware und Echtzeitrechner	105
5.3.3	Scheduling	107
5.4	Echtzeitkern	107
5.5	Steuerung	110
5.5.1	Gespiegelte Zustandsmaschinen für Aufgabe und Haptikverbindung	110
5.5.2	Erweiterungen für die iterativ lernende Regelung	111
5.6	Grafische Benutzerschnittstelle	112

6 Evaluation

6.1	Simulationen	116
6.1.1	Gerätemodell	116
6.1.2	Optimierung der konstanten Lernrate	118
6.1.3	Schätzung eines Mensch-Maschine-Modells	118
6.1.4	Interpolation und radiale Basisfunktionen	121
6.1.5	Lernratenanpassung	123
6.1.6	Telehaptik	123
6.2	Experimente	139
6.2.1	Verhalten der lernenden Regelung bei unterschiedlichen Behinderungen	139
6.2.2	Evaluation mit hemiparetischen Patienten	144
6.2.3	Lineare und nichtlineare Impedanzanpassung	153
6.2.4	Telehaptik	154
6.2.5	Mess- und Schätzverfahren	159

7 Zusammenfassung und Ausblick

164
Inhaltsverzeichnis

Literaturverzeichnis 172
Wichtige Abkürzungen

<table>
<thead>
<tr>
<th>Akürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-ILR</td>
<td>Drehmomentlernverfahren mit konstanter Verstärkung</td>
</tr>
<tr>
<td>RBF</td>
<td>Lernverfahren mit radialen Basisfunktionen</td>
</tr>
<tr>
<td>O-ILR</td>
<td>Lernverfahren mit optimaler Lernrate</td>
</tr>
<tr>
<td>F-ILR</td>
<td>Lernverfahren mit frequenzabhängiger Lernrate</td>
</tr>
<tr>
<td>τ-ILR</td>
<td>Überbegriff für Drehmomentanpassung</td>
</tr>
<tr>
<td>Z-ILR</td>
<td>Impedanzanpassung (Anpassung der Reglersteifigkeit)</td>
</tr>
<tr>
<td>NZ-ILR</td>
<td>Nichtlineare Impedanzanpassung</td>
</tr>
<tr>
<td>AFFC</td>
<td>Adaptive Feedforward Control</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>α</td>
<td>Winkel gesunden Hand, auf Bewegungsumfang normiert</td>
</tr>
<tr>
<td>β</td>
<td>Winkel betroffenen Hand, auf Bewegungsumfang normiert</td>
</tr>
<tr>
<td>τ</td>
<td>Drehmoment aus der gelernten Vorsteuerung</td>
</tr>
<tr>
<td>τ_{FB}</td>
<td>Drehmoment durch Feedback-Regler</td>
</tr>
<tr>
<td>τ_{S}</td>
<td>Summe aus Vorsteuerungs- und Feedbackdrehmoment</td>
</tr>
<tr>
<td>τ_{D}</td>
<td>Drehmomentstörung in Simulationen</td>
</tr>
<tr>
<td>τ_{h}</td>
<td>Menschliches Drehmoment</td>
</tr>
<tr>
<td>k</td>
<td>Positionsreglerverstärkung, proportional zur Impedanz</td>
</tr>
<tr>
<td>γ</td>
<td>Lernrate für das Drehmoment</td>
</tr>
<tr>
<td>ε</td>
<td>Lernrate für die Z-ILR</td>
</tr>
<tr>
<td>ε_{N}</td>
<td>Lernrate für die NZ-ILR</td>
</tr>
<tr>
<td>s</td>
<td>Vergessensrate für die τ-ILR</td>
</tr>
<tr>
<td>f</td>
<td>Vergessensrate für Z-ILR und NZ-ILR</td>
</tr>
<tr>
<td>γ_{h}</td>
<td>Lernrate des Menschmodells</td>
</tr>
<tr>
<td>s_{h}</td>
<td>Vergessenrate des Menschmodells</td>
</tr>
<tr>
<td>e</td>
<td>Symmetriefehler (α-β)</td>
</tr>
<tr>
<td>d</td>
<td>Positionsstörung in Simulationen</td>
</tr>
<tr>
<td>r</td>
<td>Resetwert, der Lernrichtungsumschaltungen bewirkt</td>
</tr>
<tr>
<td>v</td>
<td>Vektor, meist mit positionsdiskretisierten Werten von v</td>
</tr>
<tr>
<td>I</td>
<td>Einheitsmatrix passender Dimension</td>
</tr>
<tr>
<td>diag</td>
<td>Operator, gibt Diagonalmatrix zurück</td>
</tr>
<tr>
<td>rank</td>
<td>Operator, gibt Rang des Arguments zurück</td>
</tr>
<tr>
<td>O</td>
<td>Nullmatrix passender Dimension</td>
</tr>
<tr>
<td>Z</td>
<td>Z-Transformation des Arguments</td>
</tr>
<tr>
<td>vec</td>
<td>Vektorisierung einer Matrix</td>
</tr>
<tr>
<td>a</td>
<td>Parametervektor der RBF</td>
</tr>
<tr>
<td>Akürzung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Y</td>
<td>Matrix mit radialen Basisfunktionen für RBF</td>
</tr>
<tr>
<td>H</td>
<td>Systemmatrix</td>
</tr>
<tr>
<td>c_e</td>
<td>Mittlerer Symmetriefehlerbetrag</td>
</tr>
<tr>
<td>c_u</td>
<td>Mittlere Stellenergie</td>
</tr>
<tr>
<td>$c_{e,s}$</td>
<td>Mittlerer Symmetriefehler am Bewegungsanfang</td>
</tr>
<tr>
<td>$c_{e,e}$</td>
<td>Mittlerer Symmetriefehler am Bewegungsende</td>
</tr>
<tr>
<td>$c_{\tau,s}$</td>
<td>Mittleres Drehmoment am Bewegungsanfang</td>
</tr>
<tr>
<td>$c_{\tau,e}$</td>
<td>Mittleres Drehmoment am Bewegungsende</td>
</tr>
<tr>
<td>$c_{e,d}$</td>
<td>Schwankung des Fehlers</td>
</tr>
<tr>
<td>$c_{\tau,d}$</td>
<td>Schwankung des Drehmoments</td>
</tr>
<tr>
<td>$c_{\gamma,d}$</td>
<td>Schwankung der Lernrate</td>
</tr>
<tr>
<td>T_p</td>
<td>Transparenzzahl für Positionsgenauigkeit</td>
</tr>
<tr>
<td>T_f</td>
<td>Transparenzzahl für Kraftgenauigkeit</td>
</tr>
<tr>
<td>λ</td>
<td>Ziel für Zielkriterium</td>
</tr>
<tr>
<td>J_R</td>
<td>Gütekriterium für Roboterkraft, mit λ gewichtet</td>
</tr>
<tr>
<td>J_e</td>
<td>Gütekriterium für Symmetriefehler</td>
</tr>
<tr>
<td>J</td>
<td>Gütekriterium: Summe aus J_R und J_e</td>
</tr>
<tr>
<td>ZNS</td>
<td>Zentrales Nervensystem</td>
</tr>
<tr>
<td>EMG</td>
<td>Elektromyografie</td>
</tr>
<tr>
<td>EEG</td>
<td>Elektroenzephalogramm</td>
</tr>
</tbody>
</table>
Symbole

Zur besseren Orientierung werden folgenden Symbole in Übersichtsabbildungen eingeführt und später dort am Seitenrand abgebildet, wo das zugehörige Konzept behandelt wird.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Menschliches Gehirn</td>
</tr>
<tr>
<td></td>
<td>Menschliche Reflexe</td>
</tr>
<tr>
<td></td>
<td>Muskel</td>
</tr>
<tr>
<td></td>
<td>(Kognitive) Softwarearchitektur</td>
</tr>
<tr>
<td></td>
<td>Lokaler Kraft- oder Positionsregler</td>
</tr>
<tr>
<td></td>
<td>Motor und Sensoren</td>
</tr>
<tr>
<td></td>
<td>Lernende Reglung</td>
</tr>
<tr>
<td></td>
<td>Telehaptikverbindung</td>
</tr>
<tr>
<td></td>
<td>Mess- und Schätzverfahren für menschliche Eigenschaften</td>
</tr>
<tr>
<td></td>
<td>(Aufgaben)visualisierung</td>
</tr>
<tr>
<td></td>
<td>Lernen mit konstanter Rate (K-ILR)</td>
</tr>
<tr>
<td></td>
<td>Lernen mit variabler Rate (O-ILR und F-ILR)</td>
</tr>
<tr>
<td></td>
<td>Anpassung der Reglersteifigkeit (Z-ILR)</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Übersicht</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Überblick über die Gliederung des Wissenstandes in diesem Kapitel vom allgemeinen hin zu den konkreten Verfahren</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Prinzip der iterativ lernenden Regelung</td>
<td>41</td>
</tr>
<tr>
<td>2.3</td>
<td>Wellentransformation zur passiven haptischen Verbindung von Therapeut (m) und Patient (s), die Übertragung kann über das Internet oder ein anderes Kommunikationsnetz erfolgen</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Überblick über das Konzept dieser Arbeit</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Prinzip der positionsbasierte iterativ lernende Regelung für die beidhändige Bewegungsaufgabe</td>
<td>68</td>
</tr>
<tr>
<td>4.3</td>
<td>Framework zum Vergleich unterschiedlicher ILR</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>Gekoppeltes Lernen von Mensch und Maschine in Parameterdarstellung</td>
<td>80</td>
</tr>
<tr>
<td>4.5</td>
<td>Blockschaltbild der adaptiven Regelung für die mechanische Armidentifikation</td>
<td>88</td>
</tr>
<tr>
<td>4.6</td>
<td>Modifizierte Scattering-Transformation für die Impedanzkausalität mit Leitungsimpedanz b und Dämpfungsskalierung s</td>
<td>91</td>
</tr>
<tr>
<td>5.1</td>
<td>Blockdiagramm für die Optimierung der Lernparameter</td>
<td>97</td>
</tr>
<tr>
<td>5.2</td>
<td>Simulationen zur Optimierung der K-ILR-Parameter γ, s, ϵ und f</td>
<td>99</td>
</tr>
<tr>
<td>5.3</td>
<td>Grobstruktur der Interaktions-Simulation von Mensch und Gerät</td>
<td>100</td>
</tr>
<tr>
<td>5.4</td>
<td>Iteratives Lernen von Kraft und Impedanz zur Simulation von Mensch und Gerät</td>
<td>101</td>
</tr>
<tr>
<td>5.5</td>
<td>Hardwarekomponenten des Versuchsaufbaus — Links oben: Drehmomentsensor, Messverstärker und Echtzeitrechner; Rechts unten: Bi-Manu-Track während des Armtrenings; Rote Linien: Einbauorte</td>
<td>103</td>
</tr>
<tr>
<td>5.6</td>
<td>Software-Architektur: Überblick über die Kommunikationswege zwischen den Programmen</td>
<td>104</td>
</tr>
<tr>
<td>5.7</td>
<td>Gespiegelte Zustandsmaschinen für Training (a) und Austausch von Haptik-Daten (b)</td>
<td>111</td>
</tr>
<tr>
<td>5.8</td>
<td>Bildschirmfotos von Training und Messungen</td>
<td>114</td>
</tr>
</tbody>
</table>
6.1 Übersicht zur Evaluation der vorgeschlagenen Verbesserungen für die Armrehabilitation 117
6.2 Optimierung aller Parameter ohne Störung: Gütekriterien J (——), J_e (——) und J_R (——) für $1000 \cdot \lambda = 5, 10, 50, 100$ und 200 über alle 14 Iterationen der Simulation 119
6.3 Optimierung aller Parameter mit großer Störung d. Oben: Zusammensetzung des Gerätedrehmoments (——) aus Feedback- (——) und Feedforward-Anteil (——); Unten: menschlicher Anteil (——) und Geräteanteil (——) an dem auf den Griff wirkenden Drehmoment für $1000 \cdot \lambda = 5, 10, 50, 100$ und 200 über alle 14 Iterationen der Simulation 120
6.4 Überblick über die Simulationsläufe zum Vergleich der Verfahren K-ILR, O-ILR und F-ILR 125
6.5 Exemplarische Verläufe von Winkel der unterstützten Seite β und unterstützendem Drehmoment τ in Abhängigkeit vom Winkel der führenden Seite in der neunten Iteration (oben) und der 15. Iteration (unten); K-ILR (——), O-ILR (——) und F-ILR (——) 127
6.6 Mittlerer Symmetriefehlerbetrag und Vergessensrate für Bedingung 1 (eine ILR ohne Vergessensrate); K-ILR (——), O-ILR (——) und F-ILR (——) 128
6.7 Drehmoment von Mensch (oben) und Gerät (unten) für Bedingung 5 (Beide ILRen aktiv); K-ILR (——), O-ILR (——) und F-ILR (——) 130
6.8 Vergleich der normierten Kriterien für die Bedingungen 1 ($s = 1$), 2 ($s < 1$), 3 ($d \neq 0$) und 4 (\hat{h}) für eine ILR und Mittelwerte (unten); K-ILR (links), O-ILR (mitte) und F-ILR (rechts) 133
6.9 Vergleich der normierten Kriterien für die Bedingungen 5 ($s < 1$), 6 ($d \neq 0$), 7 (\hat{h}) und 8 (α_e) für zwei ILRen und Mittelwerte (unten); K-ILR (links), O-ILR (mitte) und F-ILR (rechts) 135
6.10 Modellbasierte Prädiktion der Gütekriterien aus Gl. (5.12) mit $\lambda = 10$ für die nächste Iteration: a) Schätzung mit dem Modell der F-ILR, b) Schätzung mit dem Modell der O-ILR, c) Verhältnis der Güte von F-ILR zu O-ILR aus Sicht des Modells der F-ILR (——) und aus der Sicht der O-ILR (——), d) Mittlere Standardabweichung aller Modellparameter für die F-ILR (——) und die O-ILR (——) 138
6.11 Prinzipskizzen zu den Versuchen mit Dämpfung und Steifigkeit mit Griffwinkel β, Masse M, Reibkoeffizient μ, Steifigkeit k, Seil- bzw. Federlänge l und Abstand l_1 140
<table>
<thead>
<tr>
<th>Zahl</th>
<th>Abbildungsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.12</td>
<td>ILR-Verhalten mit Reibung: Mittleres Drehmoment (links) und mittlerer Symmetriefehler (rechts) mit (oben) und ohne Reibung (unten); starre Führung (—) K-ILR (—), O-ILR (—young) und F-ILR (—)</td>
</tr>
<tr>
<td>6.13</td>
<td>ILR-Verhalten mit Feder: Mittleres Drehmoment (links) und mittlerer Symmetriefehler (rechts) mit (oben) und ohne Feder (unten); starre Führung (—) K-ILR (—), O-ILR (—young) und F-ILR (—)</td>
</tr>
<tr>
<td>6.14</td>
<td>Vergleich von losem Griff (links), realer Dämpfung (Mitte) und Feder (rechts): Position (oben) und Drehmoment (unten) in der 12. Iteration; starre Führung (—) K-ILR (—), O-ILR (—young) und F-ILR (—)</td>
</tr>
<tr>
<td>6.15</td>
<td>Verlauf von a) Drehmoment b) Reglerimpedanz und c) Fehler für die ersten 13 Bewegungen von vier Patienten</td>
</tr>
<tr>
<td>6.16</td>
<td>Normierte Abweichungen von den Mittelwerten für den Betrag des Drehmoments, der Impedanz und dem Fehler für vier Patienten</td>
</tr>
<tr>
<td>6.17</td>
<td>ILR-Vergleich für zwei Patienten mit unterschiedlichem Symmetriefehler: (P_{7}) (1: nach außen, 2: nach innen), (P_{14}) (3: nach außen, 4: nach innen); Mittlerer Symmetriefehlerbetrag (oben) und mittleres unterstützendes Drehmoment (unten); Volle Unterstützung (ganz links), K-ILR (links), O-ILR (mitte) und F-ILR (rechts)</td>
</tr>
<tr>
<td>6.18</td>
<td>Fragebogen zu den Aufgaben: Modus spezifische Mittelwerte [oben, volle Unterstützung (ganz links), K-ILR (links), O-ILR (mitte) und F-ILR (rechts)], Boxplot für die Antworten von vier Probanden [unten]</td>
</tr>
<tr>
<td>6.19</td>
<td>Lineare (—) und nichtlineare (—young) Impedanzanpassung mit geringer Behinderung (links) und starker Behinderung (rechts): Symmetriefehler (oben) und Reglersteifigkeit (unten)</td>
</tr>
<tr>
<td>6.20</td>
<td>Telehaptik-Verbindung mit einer virtuellen Feder: Drehmoment (oben) und Griffposition (unten) von führender Bewegung (—) und Folgebewegung des freien Griffs (—young)</td>
</tr>
<tr>
<td>6.21</td>
<td>Telehaptik-Verbindung mit Sensor zwischen zwei Geräten: Drehmoment (oben) und Griffposition (unten) von führender Bewegung (—) und dagegenhaltender Folgebewegung (—young), Leitungsimpedanz (b = 1), Dämpfungsfaktor (s = 0,2)</td>
</tr>
<tr>
<td>6.22</td>
<td>Drehmomentmessungen eines Probanden von paretischem (—young) und gesundem Arm (—), gleichzeitiges Drücken beider Arme (oben), zeitlich getrenntes Drücken beider Arme (unten), Handgeleksflexion (links) und Handgelenksextension (rechts), 1: Griffposition ganz innen, 4: ganz außen</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

6.23 Schätzung der Dämpfung mit dem AFFC: Ohne Proband für die ersten zwei Bewegungen und mit Proband für die letzten beiden Bewegungen 161

7.1 Störungsabhängige Verschiebung der Unterstützungsmischung aus Vorsteuerung und steifem Regler → Es gibt keine optimalen Parameter für alle Patienten, siehe Abschnitt 6.1.2 165

7.2 Überblick über die Vorteile der unterschiedlichen lernenden Reglungen (bester: Text, 2: mittlere Merkmalsausprägung, 3: schlechteste Wertung) 167
Was, von Menschen nicht gewußt
Oder nicht bedacht,
Durch das Labyrinthe der Brust
Wandelt in der Nacht.

Johann Wolfgang Goethe, An den Mond

1

Einleitung

Der hier zweifach und unterschiedlich konkret gestellten zentralen Frage und den beiden Antworten widmet sich diese im Graduiertenkolleg prometei entstandene Arbeit aus folgenden Gründen:

- Es handelt sich um eine zentrale Frage der prospektive Gestaltung der Mensch-Technik-Interaktion, der Thematik des Graduiertenkollegs. Gute Modelle und darauf basierende Unterstützungsmethoden in der Rehabilitation haben das Potential, die Gestaltung kommender Trainingssoftware, Roboter und Trainingsgeräte maßgeblich zu beeinflussen.
Kapitel 1 Einleitung

• Die Zielgruppe wächst. Wegen wachsender Schlaganfallzahlen aufgrund einer älter werdenden Bevölkerung in Industriestaaten wie Deutschland müssen neue Lösungen gefunden werden, damit die Qualität der Therapie aufrecht erhalten oder verbessert werden kann.

• Die Frage ist so gestellt, dass sie auch für die meisten anderen künftigen Herausforderungen in der Rehabsrobotik Einsichten liefert und teilweise zu deren Lösung beiträgt. Diese Herausforderungen sind vor allem eine bessere gerätebasierte Patienteneinstufung und die Telerhabilitation. Letztere wird in der ambulanten Gruppentherapie und in der häusliche Therapiefortsetzung ihre Einsatzorte finden.

Wie das konkret erreicht werden kann, beschreibt Kapitel 4. Es stellt die Weiterentwicklung der Lernverfahren für das bimanuelle Training und das Vorgehen bei Telehaptik und Patientenbeurteilung vor. Für die Simulationen und Experimente werden Zielkriterien definiert.

Kapitel 5 greift dann exemplarische Details der Umsetzung von Simulationen und Experimenten heraus, die konzeptuell bedeutsam oder für die Verwendung wichtig sind.

In der folgenden Evaluierung in Kapitel 6 wird in Simulationen und Experimenten festgestellt: Die vorgeschlagenen Reglungsstrategien sind in Simulationen und an Patienten mit Einschränkungen verwendbar. Es gibt eine modellbasierte lernende Reglung, die besser abschneidet, als herkömmliche Verfahren. Für die Telehaptikverbindung ist eine Verbindung mit einer virtuellen Feder wenig transparent, eine Verbindung mit Scattering-Transformation ist deutlich
transparenter, erfordert aber einen zusätzlichen Sensor. Für die Patientenbe- urteilung mit dem Versuchsgerät Bi-Manu-Track eignet sich die adaptive Reg- lung zur Spastikidentifikation und die Maximalkraftmessung, Kraftfeldversuche sind nur eingeschränkt möglich, die Genauigkeit für die getrennte Identifikation von Muskel- und Reflexeigenschaften aus Sprungantworten ist an diesem Gerät nicht groß genug.

Schließlich wird im Kapitel 7 ein Ausblick gegeben, der den Zusammenhang der Teilergebnisse und ihre Bedeutung für kommende Forschungsprojekte deut- lich macht.
Kapitel 1 Einleitung
So wie die frommen Denker früherer Zeiten etwa das kreatürliche Leben darstellten als zu Gott hin unterwegs und die Mannigfaltigkeit der Erscheinungswelt in der göttlichen Einheit erst vollendet und zu Ende gedacht sahen, so ähnlich bauten, musizierten und philosophierten die Figuren und Formeln des Glasperlenspieles in einer Weltsprache, die aus allen Wissenschaften und Künsten gespeist war, sich spielend und strebend dem Vollkommenen entgegen, dem reinen Sein, der voll erfüllten Wirklichkeit.

Hermann Hesse, Das Glasperlenspiel

2

Wissensstand in Rehabilitation und Robotik

2.1 Therapie nach neurologischen Erkrankungen

Hochrechnungen in der Metastudie [41] von Heuschmann und anderen zufolge ereignen sich in Deutschland jährlich ca. 196000 erstmalige und 66000 wiederholte Schlaganfälle. Auf Grund der steigenden Lebenserwartung und des mit dem Alter wachsen Risikos sind die Zahlen steigend. Es gibt weitere neurologische Erkrankungen, wie das Schädel-Hirn-Trauma mit ähnlichen Symptomen.
Kapitel 2 Wissensstand in Rehabilitation und Robotik

Abbildung 2.1: Überblick über die Gliederung des Wissenstandes in diesem Kapitel vom allgemeinen hin zu den konkreten Verfahren
ben bereits eingesetzt wird, existiert nicht. Außerdem gibt es kaum Studien, in denen unterschiedliche Unterstützungsverfahren verglichen werden [54] und modellbasierte Verfahren wurden bisher nicht auf ihre Eignung für die Patientenunterstützung untersucht.

Da unterstützende Geräte meist mit einer Aufgabenvizualisierung ausgestattet sind, stehen diese Trainingsspiele im Mittelpunkt einiger Untersuchungen [53], [13]. Sie stellen fest, dass die Spiele einen wichtigen Motivator für den Patienten darstellen. Johnson und Schmidt zeigen zudem das Potential auf, das die Robotik durch die Integration von Spielen und Beurteilungs-Modi für die künftige Telerehabilitation darstellt [45]. Demnach sind erschwingliche Systeme zu erwarten, die bei der Bewertung motorischer Fähigkeiten in der Klinik helfen und das Training zu Hause durch vom Therapeuten auswertbare und parametrierbare Spiele unterstützen.

2.2 Der Mensch und die Folgen neurologischer Erkrankungen

Die Physiologie des Menschen soll hier kurz aus der Perspektive der Regelungstechnik betrachtet werden, indem mechanische Eigenschaften und Regelkreise, die für Messungen und Unterstützung in der Armrehabilitation interessant sein könnten, zusammengestellt werden.

2.2.1 Der Muskel

Die Skelettmuskulatur wird über die Frequenz von elektrischen Aktionspoten
tialen in Motoneuronen angesteuert und setzt chemische in mechanische Ener
gie um. Der Zusammenhang zwischen Kraft und Geschwindigkeit ist hyper
bolisch, wodurch der höchste Wirkungsgrad bei mittlerer Anstrengung liegt. Beim nicht erregten Muskel wächst die Spannung überproportional mit der Ruhebedehnung, das Eishalitätsmodul nimmt also mit der Dehnung zu. Ein de
tailiertes Skelettmodell mit 15 Muskeln für die Handgelenkflexion wurde in [36] vorgestellt. Es erklärt drei Beobachtungen. Erstens ist das Flexionsdrehmoment hauptsächlich wegen des größeren Querschnitts der Flexoren größer als das Extensionsdrehmoment und nicht wegen den Hebelarmen. Zweitens variiert das Flexionsdrehmoment mehr mit dem Handgelenkwinkel, weil die Hebelarme wichtiger Flexoren stärker variieren. Drittens ist das Drehmoment in der ge
beugten Handgelenkposition am größten, weil dort die Hebelarme am größten sind.

Muskelerkrankungen Krankhafte Veränderungen der Skelettmuskulatur sind selten, Durchblutungsstörungen und neurogene Störungen führen häufiger zu Funktionseinschränkungen. Bei neurologischen Erkrankungen sind vor allem
die natürlichen Anpassungen des Muskels an niedrigere oder erhöhte Energie von Belang. Bei der Antrophie sinkt bei gleichbleibender Zellzahl der Muskelquerschnitt. Wenn drei bis fünfmal am Tag 25% der Maximalkraft aufgebracht werden lässt sie sich verhindern. Dies kann auch durch elektrische Reizung geschehen. Das Gegenteil, die Hypertrophie, tritt bei ausreichender Eiweißzufuhr und hoher Muskelbeanspruchung auf.

2.2.2 Reflexe

2.2.3 Das Gehirn

2.3 Robotik und Kybernetik

2.3.1 Kybernetik und ihre geistigen Nachkommen

Nach einem groben Überblick über heutige relevante Forschungsdisziplinen soll unten vor allem anhand von repräsentativen Beispielen gezeigt werden, wie gut aktuelle Modelle Menschen und Maschinen beschreiben und vor allem wo die Grenzen der Theorien und Modellierungen liegen.

Obwohl Mensch- und Technikmodelle sich also nie ganz trennen lassen, ist folgende Aufteilung in vorwiegend mit dem Menschen und vorwiegend mit Maschinen befasste Forschungsrichtungen möglich. Auf der Seite des Menschen stehen die Systembiologie, die neuronale Modellierung, die kognitive Psychologie und die Linguistik. Dem gegenüber steht auf technischer Seite die Regelungstechnik und die künstliche Intelligenz. Orthogonal zu dieser Einteilung finden sich überall Methoden aus Informatik und Mathematik, weil sie mächtige Werkzeuge für Simulationen und Abstraktionen zur Verfügung stellen, ohne die sich die neuesten Fortschritte nicht denken lassen.

Systemtheorie und Mathematik Diese allgemeinen Methoden können als Fortsetzung dessen aufgefasst werden, was Norbert Wiener 1948 im Sinn hatte, als er nach anstrengenden aber fruchtbaren interdisziplinären Diskussionen die Kybernetik als gemeinsame Sprache stark machte [97, 9]. Demnach lohnt die abstrakte Analyse von Feedback-Mechanismen und die Abstraktion von Schätzverfahren, weil so das Menschenmodell von Erkenntnissen aus der Technik profitiert und anders herum. Einige Schritte werden zudem erst durch die Beteiligung von Mathematikern möglich. Hier soll nicht die unzeitgemäße platonische Wissenspyramide verteidigt werden, der entsprechend das mathematische Wissen das einzig wahre sei. Die von zeitgenössischen Philosophen wie Günter Abel vertretene irreduzible Pluralität von gleichberechtigten Wissensformen ist ein besseres Bild um der heutigen Wissenschaft gerecht zu werden. Doch trotz der mit Abstraktionen einhergehenden Verluste, ist der Wert einer gemeinsamen Sprache hoch. Neben der Systemtheorie gibt es weitere eng verwandte Model-
2.3 Robotik und Kybernetik

Beispiele Drei repräsentative Beispiele zeigen im Folgenden, was auf dem Gebiet der Mensch-Technik-Interaktion derzeit möglich ist. Geordnet sind sie nach der Art der Menschmodellierung. Mit dem ersten Beispiel beginnt der Überblick im Kleinen, bei den Neuronen und dem neuromorphologischen Rechnen. Er wird dann mit Kognitionsmodellen fortgesetzt, die von Psychologen in der Forschung und von Ingenieuren für die Ansteuerung von humanoiden Robotern eingesetzt werden. Schließlich wird kurz auf die Sprache eingegangen, mit deren besserem Verständnis die Interaktion am nachhaltigsten verbessert werden kann.

Gehirn aus den neuronalen Aktivitäten im Sinne eines Neurodarwinismus ein situationsabhängiger Wettkampf ergibt, den die dazu am besten passendste Idee gewinnt, beschreibt der Neurowissenschaftler Gerald Edelman [23], der in der Philosophie als einer der vielversprechensten Ideengeber für die KI gehandelt wird [71]. Diese Beschreibung zeigt einerseits, wie künstliche Intelligenz implementiert werden müsste, die auch Negation und Kreativität beinhaltet, statt wie bisher starren Regeln zu folgen. Andererseits macht sie aber auch die enge Verwobenheit der Intelligenz mit dem menschlichen Körper und der gesamten Lerngeschichte des Menschen deutlich, die höchstens ein sehr menschenähnlicher humanoider Roboter nachempfunden könnte.

Kognition Kognitive Modellierungen entsprechen am besten dem zielorientierten vorgehen der Systemtheorie, weil sie zwar das Denken umfassen quantifizieren wollen, sich aber nicht in neuronalen Details oder abstrakten linguistischen Überlegungen verlieren. Es wird versucht, die Erkenntnisse aus unterschiedlichen Untersuchungen zum deklarativen oder zum prozeduralen Lernen, zu visuellen Mechanismen für visuelle Objekte und Orte zur Sprache oder zur Arithmetik in einem Gesamtmodell zu vereinigen, welches in Simulationen möglichst viele Beobachtungen reproduziert [4]. Es verwundert also nicht, dass diese Modellierung für die Steuerung lernender, humanoider Roboter zum Einsatz kommt [35].

Kapitel 2 Wissensstand in Rehabilitation und Robotik

2.4.1 Identifikation von Muskel-, Reflex- und Lerneigenschaften

Rehabilitationsgeräte lassen sich auch verwenden, um Schäden zu quantifizieren. Mit diesen zusätzlichen Informationen kann das Training weiter verbessert werden. Die Messungen und Parameterschätzungen können in drei Bereiche un-
terteilt werden: Der Muskel verändert sich durch Störungen der Innervation. Er kontrahiert, seine Maximalkraft nimmt ab und sein Widerstand gegenüber passiven Bewegungen nimmt zu. Bei den Reflexen ist besonders die langsame Anpassung an den Bewegungsstimulus, der sogennante tonische Reflex, interessant. Auf der Ebene von Gehirn und Rückenmark interessiert vor allem eine Beschreibung des Lernverhaltens: „Wie schnell nimmt die aufgabenrelevante Muskelaktivierung zu?“ und „Wie schnell nimmt sie ab, wenn sie überflüssig geworden ist?“ Hier sollen exemplarisch fünf Studien vorgestellt werden, die sich um die Erfassung relevanter Parameter gekümmert haben.

Der ARM Guide aus Kalifornien wurde ebenfalls für Messungen eingesetzt und zwar bei Zielbewegungen [73]. Der Bewegungswiderstand bei passiven Bewegungen mit paretischen Armen war erhöht. Die Spastikmessung liefert kein eindeutiges Ergebnis, was vielleicht auch am Identifikationsverfahren liegt. Es wurde die Steifigkeitsänderung zwischen passiver und aktiver Bewegung ermittelt. Dazu wurden jeweils am Ende der Bewegung eine definierte Auslenkung eingestellt und Kräfte gemessen. Der geänderte tonische Reflex zeigt sich aber auch bei passiven Bewegungen. Die Annahme, nach der passiven Bewegung nur intrinsische Muskelsteifigkeiten zu messen, ist also nicht gerechtfertigt.

Ein anderer Ansatz zur Spastikmessung wurde im Rahmen von Muskelstimulationen mit Magnetfeldern erprobt [8]. Die aus der Stimulationsintensität berechnete Muskelkraft wird verwendet, um ein mechanisches Modell durch nichtlineare Funktionen zu approximieren. Darin gibt es einen positionsabhängigen Kraftanteil \(N(\varphi) \) und einen geschwindigkeitsabhängigen \(N(\dot{\varphi}) \). Das resultierende Moment \(\tau \) ist dann die Summe

\[
\tau = N(\varphi) + N(\dot{\varphi})
\]

Nach der 15 minütigen Stimulation einer Patientin und einer einstündigen Pause war \(N(\varphi) \) kleiner als zuvor. Bei \(N(\dot{\varphi}) \) gab es geringe richtungsabhängige Unterschiede. Das heißt erst einmal nur, dass die Kraft nach Stimulation zunimmt. Ob wirklich ungewollte Reflexe unterdrückt werden oder die Kraft durch die bessere Versorgung des Muskels größer wurde, kann diese Untersuchung nicht zeigen.

Messungen am Gehirn sind während des Trainings prinzipiell möglich. Mit der Nahinfrarotspektroskopie können die während der Armbewegung aktiven Areale lokalisiert werden [88]. Dieses Verfahren wurde bisher noch nicht bei Lernexperimenten zur Kraftanpassung von Schlaganfallpatienten eingesetzt.

2.4.2 Bewegungsplanung und Lernen

Seit etwa 50 Jahren wird versucht, die Korrelationen von Messungen am primären motorischen Kortex (M1) und der damit einhergehenden Armbewegung auf eine Formel zu bringen, die möglichst viele Messungen korrekt beschreibt. Da die Stärke eines neuronale Netzes aber gerade darin liegt, dass es nicht
2.4 Regelungsstrategien für Rehabilitationsgeräte

mit stark abgegrenzten Symbolen operiert, ist es wenig verwunderlich, dass man zwar zu einigen bewegungsspezifischen Begriffen gute Korrelationen findet, jedoch nicht das eine Regelgesetz, dass aus den neuronalen Aktivitäten Bewegungen richtig vorhersagt. Eine lange verbreitete Interpretation von M1 Aktivitäten war ein Populationsvektor. Dieser Richtungsvektor entsteht aus der Annahme das Entladungsverhalten einzelner Neuronen kodiert die Koeffizienten eines Basisvektors [77]. Doch der alternative Ansatz von Todorov [95], der davon ausgeht, die M1 Aktivitäten kodieren Muskelaktivitäten, erklärt die Ergebnisse vieler Experimente ähnlich gut und mit einer einfachen Beschreibung der Zusammenhänge. Da es also nicht die eine gültige Modellierung gibt, werden in diesem Abschnitt drei Beispiele für die Modellierung des motorischen Lernens von Armbewegungen gegeben, um am Ende ihre Gemeinsamkeiten herauszuarbeiten.

1. die Planung von motorischen Kommandos,
2. die Reglung zur Ausführung dieser Kommandos,
3. die Schätzung des inneren Zustands,
4. die Schätzung der Umgebung und
5. die Modellierung des Lernverhaltens.

Für die Planung von motorischen Kommandos hat sich die optimale Reglung als elegantes Framework durchgesetzt. Hier wird das Aufgabenziel zum Beispiel als Positionsgenauigkeit und minimaler Energieeinsatz spezifiziert und dann nach der Stellgröße gesucht, welche zur Minimierung des Zielkriteriums führt. Dabei ist unklar, wie dieser Algorithmus im Nervensystem repräsentiert oder neu erworben wird. Bei der Reglung zur Ausführung der motorischen Kommandos geht es um die Frage, welche Informationen die Aktivitäten im primären motorischen Kortex und im Rückenmark kodieren. Froschexperimente legen beispielsweise die These nahe das motorische Programm kodiere Kraftfelder, die über
Kapitel 2 Wissensstand in Rehabilitation und Robotik

Bewegungsplanung

An der University of California haben die Kognitionswissenschaftler um Todorov zwei Modelle entwickelt. Das eine beschreibt, wie neuronale Aktivität und Bewegung zusammenhängen [95] und das andere wie zu einer gegebenen Bewegungsaufgabe die Muskelkraft berechnet wird [51].

Folgende Gleichungen (2.1) und (2.2) zur Beschreibung des Zusammenhanges zwischen neuronaler Aktivität in M1 und der Muskelmechanik stellen trotz ihrer Einfachheit nur eine von unterschiedlichen möglichen Interpretationen dar.

\[c_A(t - \Delta) = C + \frac{1}{2} (f(t) + m\ddot{x}(t) + kx(t)) + b\dot{x}(t) \]

\[c_N(t - \Delta) = C - \frac{1}{2} (f(t) + m\ddot{x}(t) + kx(t)) \]

Demnach wird die lokalisierbare, muskelpaarspezifische Aktivität im motorischen Kortex oberhalb einer Schwelle \(C/2 \) gleichmäßig auf Agonist \((c_A)\) und Antagonist \((c_N)\) aufgeteilt, um eine gerichtete Kraft zu erzeugen. Diese Kraft steht im Gleichgewicht mit der Summe einer externen Last \(f(t) \), einer Kraft durch die Muskelsteifigkeit \(k \) und einer durch die Dämpfung \(b \). Letztere wird als einzige Kraft wegen ihrer Richtungsabhängigkeit nur dem Agonisten zugewiesen. Dieses Modell beinhaltet die lange bekannte Anpassung der Muskelsteifigkeit nicht, ist also nur bei bestimmten Aufgaben anwendbar, bei denen keine Instabilitäten durch Kinematik oder Umgebung auftreten. Eine solche Aufgabe ist die spiralförmige Handbewegung, die immerhin mit Gln. (2.1)–(2.2) besser vorhergesagt werden kann, als mit der Annahme, die M1-Aktivität kodiere die Bewegungsrichtung.

Es verwundert nicht, dass diese Arbeitsgruppe ihr Menschmodell mit begrenzter Übertragbarkeit nicht verwendet, um die Bewegungsplanung zu beschreiben, sondern dort auf eine Art Black-Box-Ansatz setzt. Dieser Ansatz
2.4 Reglungsstrategien für Rehabilitationsgeräte

wird als vielversprechend und elegant gehandelt [99], weil damit das Ziel sprachnah formuliert werden kann, alle ohnehin nicht nachverfolgbaren neuronalen Rechenschritte von einem Optimierer übernommen werden und am Ende eine berechnete Kraftvorgabe steht, die der am Menschen gemessenen Kraft gut entspricht. Wie Liu und andere zeigen, verlagert sich damit die Komplexität von der Modellierung in einen erhöhten Rechenaufwand [51]. Um das Vorgehen etwas besser zu verstehen, seien hier die relevanten Schritte grob skizziert. Zunächst wird eine zu minimierende Kostenfunktion J aufgestellt:

$$J = \|g - p(t_f)\|^2 + w_{\text{stop}} (\|v(t_f)\|^2 + \|s_a a(t_f)\|^2) + w_{\text{energy}} \int_0^{t_f} \|u(t)\|^2 dt.$$ \hspace{1cm} (2.3)

Für eine zielgerichtete Bewegung setzt sie sich typischer Weise aus Kosten für die Zielgenauigkeit am Bewegungsende, Kosten für Endgeschwindigkeit und -beschleunigung und einem energieproportionalen Kostenterm zusammen. Die Parameter s_a, w_{stop} und w_{energy} werden in Versuchen ermittelt, g ist die Zielposition. Statt wie Flash und Hogan per Variationsrechnung analytisch zu optimieren [28], vereinfachen und diskretisieren Liu und andere die Kostenfunktion und berechnen im Brute-Force-Verfahren 220 Millionen zustandsabhängige Stellgrößen im Voraus, um später menschenähnliche Bewegungen zu simulieren.

Shadmehr argumentiert für den Optimierungsansatz [78], weil er eine Entsprechung im Gehirn habe. Die Basalganglien ordnen den potentiell lohnenswerten Zuständen Werte zu und helfen Ziele zu definieren. Wie oben zu ACT-R beschrieben ist es jedoch fraglich, inwiefern die wenigen korrelierbaren Aktivitäten, die sich zu jedem kognitiven Simulations-Algorithmus finden lassen, Rückschlüsse auf dessen Güte zulassen.

Bimanualität

Die Optimierung eignet sich auch, um Erkenntnisse über die Bimanualität zu überprüfen oder zu gewinnen. Diedrichsen und Dowling haben beispielsweise untersucht, ob die motorischen Programme sich unterscheiden, wenn einmal zwei Cursor die Einzelbewegungen beider Hände und einmal ein Cursor den Mittelwert beider Handpositionen visualisiert [21]. Die bestätigte Hypothese
war, dass in der gemeinsamen Bewegungsaufgabe eine einseitig störende Kraft durch beide Hände kompensiert wird, während bei der Einzeldarstellung nur die gestörte Hand korrigiert. Folgende Kostenfunktionen ermöglichen ein Simulieren der Zusammenhänge. Bei handspezifischen Zielpositionen $g_{L/R}$ wird das diskrete Kriterium J_B in Gl. (2.4) minimiert.

$$J_B = J_{p,i} + w_v \left(v_{L,t}^2 + v_{R,t}^2 \right) + w_u \left(u_{L,t}^2 + u_{R,t}^2 \right)$$
(2.4)

Im Gegensatz zu Gl. (2.3) gibt es zeitabhängige Gewichte für Geschwindigkeit $v_{L/R,t}$ und Kraft $u_{L/R,t}$, die in Versuchen angepasst werden. Die Beschleunigung geht nicht in die Optimierung ein. Die Kosten für die Positionsabweichung $J_{p,i}$ sind ebenfalls zeitabhängig und unterscheiden sich nach Aufgabenstellung. Für zwei angezeigte Cursor ($i = 1$) gilt

$$J_{p,1} = \sum_{t=1}^{T} w_{p,t} \left(\| p_{L,t} - g_L \|^2 + \| p_{R,t} - g_R \|^2 \right)$$
(2.5)

für einen Cursor ($i = 2$)

$$J_{p,2} = \sum_{t=1}^{T} 2w_{p,t} \left\| \frac{p_{L,t} + p_{R,t}}{2} - g \right\|^2$$
(2.6)

Dass diese unterschiedlichen Gütekriterien gute Vorhersagen liefern, zeigt vor allem den großen Einfluss der Visualisierung aber auch der bimanuellen Aufgabenstellung, der bei der Übertragung von einhändigen Lernalgorithmen auf den bimanuellen Fall stets berücksichtigt werden muss.

Diesen Unterschied zeigt auch die Biomedizin [92], aus deren Ergebnissen zur Bimanualität hier nur einige relevante Beispiele genannt werden sollen.

1. Die Koordinationsdynamik weißt angeborene Attraktorzustände auf, neue können beim Lernen erworben werden. Zum Beispiel fällt die synchrone Muskelaktivierung beider Arme vor allem bei schnellen zyklischen Bewegungen leichter als die asynchrone und ein Versatz von 0 oder 180 Grad zwischen beiden Händen kann leichter gehalten werden, als andere Phasenverschiebungen.

2. Es werden andere Netzwerke rekrutiert, wenn Bewegungen extern, also vor allem visuell geführt werden, als wenn sie interne Ursprünge haben.

5. In gemessenen neuronalen Aktivitäten des Gehirns finden sich Hinweise, dass die Koordination von bimanuellen Bewegungen mehr ist als die Überlagerung zweier Einzelbewegungen.

Aus diesen Ergebnissen lassen sich Anforderungen an Trainingsaufgaben ableiten. Entsprechend Beispiel 1 ist die synchrone Muskelaktivierung am Anfang die geeignetste, weil die angeborene und früh verwendeten Bewegungsmuster am einfachsten auszuführen sind, danach kann eine Phasenverschiebung von 180 Grad verwendet werden, andere Phasenverschiebungen sind erst in späten Trainingsphasen sinnvoll. Weil die visuellen Reize Teil des eingeübten Programms sind und die motorischen Fähigkeiten ohne diese Hilfe schnell verlernten werden, sollte das Feedback nicht fortwährend gegeben werden (Beispiele 2 und 4). Diese interessante Forschungsfrage wird unter anderem in anderen Arbeiten am GRK prometei untersucht und soll hier ausgeklammert werden. Schließlich soll und darf die Bewegungsdarstellung auf einfache Elemente reduziert sein (Beispiel 3) und bimanuelle Performance-Steigerungen gehen wegen der gefundenen Aktivitätsunterschiede nicht zwangsläufig mit besseren Einzelbewegungen einher (Beispiel 5).

Lernen als Optimierungsproblem

Den Zusammenhang zwischen Optimierung und iterativem Lernen verdeutlichen vor allem die Arbeiten des Department of Biomedical Engineering an der University of California. Dort wurde untersucht, wie Menschen sich bei Greif- oder Beinbewegungen an neue Kraftfelder anpassen [72]. Die Parameter, die diese Anpassung beschreiben, können auch als das Resultat einer Optimierung interpretiert werden. Dadurch wird es möglich, ein neues Regelgesetz anzuschreiben, das dem menschlichen Lernen entspricht. Die Anpassung an viskose Kraftfelder wird angenähert als

\[x_{i+1} = a_0 x_i + b_1 F_i + b_0 F_{i+1} + c_0 \] \hspace{1cm} (2.7)

worin \(x_i \) die \(i \)-te Bewegung und \(F_i \) das Kraftfeld quantifizieren. \(x_i \) ist z. B. die maximale Fußhöhe beim Gehen. Mit der Annahme, der Mensch minimiert

\[J = \frac{1}{2} (x_{i+1} - x_d)^2 + \frac{\lambda}{2} (u_{i+1} - \alpha u_i)^2 \] \hspace{1cm} (2.8)

mit Gewichten \(\lambda \) und \(\alpha \), kommt man auf die dem Menschen zu unterstellende Reglerstruktur

\[u_{i+1} = f u_i + g (x_d - x_i) \] \hspace{1cm} (2.9)
Dazu wurde die intrinsische Muskelimpedanz als reine Steifigkeit modelliert. Die Muskelkraft \(u_{i+1} \) wird also nicht wie bis dahin angenommen nur proportional zum Positionsfehler \(x_d - X_i \) mit \(g \) verstärkt, sondern es besteht auch eine Tendenz zur Abnahme, beschrieben durch den Vergessensfaktor \(f \). In Versuchen lassen sich zunächst die Parameter der Gl. (2.7) \(a_0, a_1, b_0, b_1 \) und \(c_0 \) abschätzen. Daraus können dann die Reglerparameter \(f \) und \(g \) und auch die Gewichte \(\lambda \) und \(\alpha \) berechnet werden. Identifiziertes Optimierungskriterium und menschliche Regelparameter stehen dann als Basis für die Auslegung einer automatischen Unterstützung zur Verfügung.

Lernen als mehrschichtige Anpassung

\[
u_{FF}^{k+1}(t) \equiv \left[u_{FF}^k(t) + \Delta u_{FF}^k(t + \psi) \right]_+ , \quad [\cdot]_+ \equiv \max\{\cdot,0\} \] (2.10)

Hierin ist \(u_{FF}^k \) die Muskelaktivierung aus dem motorischen Programm zur \(k \)-ten Bewegung. Es handelt sich um einen Vorsteuerungsterm (\(FF \)). Die auf Reflexe zurückgehenden Kraftanteile sind also nicht enthalten. Um die Kraft für die \(k + 1 \)-te Iteration zu ermitteln scheint das Nervensystem die Kraft in der \(k \)-ten Iteration um einen fehlerabhängigen \(\Delta u_{FF}^k(t + \psi) \) zu erhöhen. Die Zeitverzögerung \(\psi \) zeigt, dass die Signallaufzeit vom Gehirn bis zum Muskel kompensiert wird. Da die Lerngleichung für Einzelmuskeln gilt, die nur Ziehen können, werden negative Rechenergebnisse auf null aufgerundet. Die EMG-
2.5 Automatisierte Unterstützungsanpassung

Daten legen nahe, dass die Anpassung der Aktivität richtungsabhängig erfolgt:

\[\Delta u_{FF}^k(t) = \alpha |e^k(t)|I_{\{e^k(t) \geq 0\}} + \beta |e^k(t)|I_{\{e^k(t) < 0\}} - \gamma \] \hspace{1cm} (2.11)

\[e^k(t) = e^k_\lambda(t) + g_{d} \dot{e}^k_\lambda(t), \alpha > \beta > 0, \gamma > 0. \] \hspace{1cm} (2.12)

Die Kronecker Funktion \(I_A \) ist innerhalb der Menge \(A \) und außerhalb 0. Der Fehler \(e^k \) setzt sich aus der Positionsabweichung \(e^k_\lambda \) von einer Solltrajektorie, die als Mittelwert in Nullfeldversuchen bestimmt wurde, und aus deren über \(g_d \) gewichteten Ableitung zusammen. Über den Summanden \(\gamma \) wird eine stetige Tendenz zur Reduktion der Aktivierung modelliert. Da bei Antagonist und Agonist \(\alpha > \beta \) ist, jedoch der Fehler ein umgekehrtes Vorzeichen hat, beschreibt Gl. (2.13) gleichzeitig die Erhöhung der resultierenden Kraft in einem gerichteten Kraftfeld und die in einem divergenten Kraftfeld dominante Erhöhung der Steifigkeit, also die Stabilisierung in instabilen Umgebungen. In der Simulation setzt sich die Muskelaktivierung \(u \) aus der Vorsteuerung \(u_{FF} \), einem Feedbackterm \(u_{FB} \), der Reflexen entspricht, und Rauschen \(u_N \) zusammen:

\[u = [u_{FF} + u_N + u_{FB}]_+. \] \hspace{1cm} (2.13)

\(u \) enthält nicht die ebenfalls als Regelkreis modellierte Kräfte, die auf intrinsische Muskeleigenschaften zurückgehen. Muskelsteifigkeit und -dämpfung werden wiederum als proportional zur Aktivierung beschrieben.

Das Rauschen ist ein von der Aktivierung abhängiger Zufallsprozess:

\[u_N(t) = (\mu_0 + \mu_1 u_{FF}) \mu(t), \] \hspace{1cm} (2.14)

\(\mu(t) \) ist ein Wiener-Prozess und \(\mu_0 \) und \(\mu_1 \) sind Konstanten.

Für den Reflex-Regler wurde die gleiche Zeitverzögerung wie beim motorischen Programm angenommen, was aufgrund der unterschiedlichen überlagerten Reflexe mit unterschiedlichen Zeitkonstanten eine grobe Vereinfachung ist, die sich jedoch in den Versuchen bewährt hat. Er wurde formuliert als

\[u_{FB}(t) = r (e_\lambda(t - \psi) + r_{d} \dot{e}_\lambda(t - \psi)) \] \hspace{1cm} (2.15)

mit den Parametern \(r \) und \(r_{d} \). Dieser Algorithmus wurde später ausführlicher evaluiert [94]. Er ist demnach in der Lage die Anpassung von Muskelaktivierungsmustern für eine große Anzahl an Bedingungen korrekt vorherzusagen.

2.5 Automatisierte Unterstützungsanpassung

Um die beste Unterstützung für an Geräten übende Patienten zu finden, lassen sich zwei Ziele aufstellen.

1. Bei starken Behinderungen soll das Gerät viel unterstützen.
Kapitel 2 Wissensstand in Rehabilitation und Robotik

2. Patienten sollen so wenig wie möglich unterstützt werden, also möglichst viel selbst machen.

Diese scheinbar widersprüchlichen Ziele gehen direkt aus Rehabilitationspradigmen hervor, wie sie im Abschnitt 2.1 beschrieben sind. Vom Gerät muss also eine situationsspezifische Unterstützung eingestellt werden, die sowohl vom Patienten als auch von dessen Fortschritt abhängt. Das Grundprinzip dazu zeigt eine iterativ lernende Regelung erster Ordnung, wie sie in Gl. (2.16) dargestellt ist.

\[G_{i+1} = f \cdot G_i + g \cdot e_i \]

(2.16)

Hier ist \(G_i \) ein Maß für die Unterstützung und \(e_i \) eines für den Fehler. Wie schon beim einfachen Modell des menschlichen Lernens in Gl. (2.9) gibt es einen Faktor \(0 < f < 1 \), der eine Tendenz zur Unterstützungsabnahme beschreibt und eine Fehlerverstärkung \(g \). Die gleiche Reglerstruktur ist schon auf Grund der ähnlichen Ziele sinnvoll, da Mensch und Gerät beide den Fehler zu minimieren haben und möglichst wenig Energie dafür einsetzen wollen bzw. sollen. Diese auf den ersten Blick so eindeutige und allgemeine Lösung des Problems, ist bei näherer Betrachtung nur eine abstrakte Formulierung folgender Fragestellungen:

1. Welche Quantifizierungen von \(G_i \) und \(e_i \) sind für welche Aufgabenstellung geeignet?

2. Wie sind \(f \) und \(g \) im Gerät einzustellen, damit die obigen Ziele aus Gerätesicht und nicht die Faulheit des Patienten das Gesamtsystem aus Mensch und Gerät dominieren?

3. Genügt eine lineare iterativ lernende Regelung (ILR) erster Ordnung, wie sie Gl. (2.16) beschreibt oder gibt es Aufgaben, in denen andere iterative Lernverfahren bessere Unterstützungswerte liefern?

Die Antwort auf Frage 1 kann sehr unterschiedlich ausfallen. Zum Beispiel kann der Fußgelenkwinkel gemessen (\(e_i \)) und der Fußheber stimuliert werden (\(G_i \)) [64], es kann der mittlere Bewegungsfehler bei einer repetitiven Handbewegung (\(e_i \)) genutzt werden, um die Frequenz der visualisierten Sollbewegung anzupassen [55], die Steifigkeit (\(G_i \)) kann beim unterstützten Lernen der Rollstuhlsteuerung [19] adaptiert werden und die mittlere Positionsabweichung während einer Laufaufgabe (\(e_i \)) wird genutzt, um eine Unterstützungskraft (\(G_i \)) einzustellen [24].

Die aufschlussreichsten Informationen zur Einstellung von \(f \) und \(g \) und damit zur Beantwortung der Frage 2 liefert eine Optimierung, wie sie von Emken und anderen durchgeführt wurde [25]. Sie stellen das Gütekriterium

\[J = \frac{1}{2} (x_{i+1} - x_d)^2 + \frac{\lambda R}{2} R_{i+1}^2 \]

(2.17)
2.5 Automatisierte Unterstützungsanpassung

auf, wonach die Abweichung der tatsächlichen Bewegung \(x_{i+1} \) von der Sollbewegung \(x_d \) in der \(i + 1 \)-ten Ausführung und die Kraft des Roboters \(R_{i+1} \) zu minimieren sind. Wesentliches Ergebnis der Analyse, die auf dem Menschmodell aus Gleichung (2.7) basiert, ist, dass der Vergessensterm des Geräts \(f_R \) kleiner als der des Menschen \(f_H \) sein muss und für größer werdende \(\lambda_R \) kleiner sein muss. Der Algorithmus wurde später verfeinert und für die Gangunterstützung auf dem Laufband eingesetzt [24]. Hinzu kam eine Nichtlinearität, die dafür sorgt, dass kleine Fehler beim Lernen nicht berücksichtigt werden. Definiert wurde die Unterstützung als geschwindigkeitsproportionale Kraft. In den Versuchen wurde eine ebenfalls zur Geschwindigkeit proportionale, umgekehrt gerichtete Kraft aufgeschaltet, um Behinderungen zu simulieren. Es konnten Parameter gefunden werden, für die der Roboter nur unmittelbar nach dem Hinzuschalten der behindernden Kraft unterstützt. Eine ähnliche Unterstützungsanpassung wurde für eine weitere Studie mit sechs Probanden umgesetzt [26]. In diesem Fall wurden jedoch die unterstützende Reglersteifigkeit und Reglerdämpfung positionsabhängig gelernt.

Die Literatur zeigt, dass es für die Regelung von Rehabilitationsrobotern durchaus vorteilhaft ist, nicht bei der linearen ILR stehen zu bleiben, die Frage 3 also mit „Nein.“ zu beantworten. Beim Gangtrainer Lokomat wurde zum Beispiel das Lernen von konservativen Kraftfeldern umgesetzt [22]. Durch diese passiven Felder ist die während eines Gangzyklus an den Patienten abgegebene Energie null, was einen konservativen, stabilen Regler zur Folge hat, der dennoch sehr wohl in den Phasen, in denen der Patientenfehler besonders groß ist, die Bewegung unterstützt und formt. Wolbrecht und andere parametrieren die Unterstützung von Armbewegungen mit an neuronale Netze angelehnten radialen Basisfunktionen (RBF) [98]. Doch haben diese Änderungen tatsächlich einen Vorteil und bietet die Theorie zur ILR weiteres unausgeschöpftes Potential für die Rehabilitation? Diese Fragen stellt sich der allgemeine Blick auf die ILR-Forschung im nächsten Abschnitt, der zudem zeigt, wo noch Untersuchungen fehlen, um zu einer klaren Antwort zu gelangen.

2.5.1 Iterativ lernende Reglung

Kapitel 2 Wissensstand in Rehabilitation und Robotik

Abbildung 2.2: Prinzip der iterativ lernenden Regelung

Das allgemeine Prinzip der ILR ist in Abb. 2.2 dargestellt. Der zeitabhängige Systemeingang von der \(k \)-ten Iteration \(u_k(t) \) und der Ausgang \(y_k(t) \) werden gespeichert und als Eingang für die iterativ lernende Regelung verwendet, die daraus den Stellgrößenverlauf \(u_{k+1}(t) \) berechnet. Nach der Diskretisierung lässt sich ein lineares System durch die Übertragungsfunktion \(G(z) \) beschreiben, die den Zusammenhang zwischen den \(Z \)-transformierten Größen Systemeingang \(U(z) \) und Ausgang \(Y(z) \) angibt:

\[
Y(z) = G(z)U(z) \\
= (h_m z^{-m} + h_{m+1} z^{-m+1} + h_{m+2} z^{-m+2} + \ldots) U(z)
\]

(2.18)

In Gl. (2.18) ist \(G(z) \) zudem durch die alternative Darstellung mit Markov-Parametern \(h_i \) ersetzt worden. Die Länge der Impulsantwort \(m \) ist im allgemeinen nicht endlich. Durch die begrenzte Dauer jeder Iteration auf \(N \) Zeitschritte spielt der theoretische Einfluss von mehr als \(N - 1 \) vergangenen Stellgrößen für die Berechnung des Systemausgangs keine Rolle und die Anzahl der Markov-Parameter ist auf \(N \) beschränkt. Beim sogennanten Supervektor-Ansatz werden nun alle Stell-, Regel- und Sollgrößen einer Iteration \(k \) in je einem Vektor
2.5 Automatisierte Unterstützungsanpassung

zusammengefasst:

\[U_k = [u_k(0) u_k(1) \ldots u_k(T_0(N - 1))]^T \]
(2.19)

\[Y_k = [y_k(0) y_k(1) \ldots y_k(T_0(N - 1))]^T \]
(2.20)

\[Y_d = [y_d(0) y_d(1) \ldots y_d(T_0(N - 1))]^T \]
(2.21)

\[E_k = Y_d - Y_k \]
(2.22)

mit der Abtastrate \(T_0 \). Der Regelfehler \(E_k \) nach Gl. (2.22) ist dann die vektorwertige Differenz von Soll- und Regelgröße. Mit der Definition einer Markov-Matrix

\[
H = \begin{bmatrix}
 h_m & 0 & 0 & \ldots & 0 \\
 h_{m+1} & h_m & 0 & \ldots & 0 \\
 h_{m+2} & h_{m+1} & h_m & \ldots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 h_{m+N-1} & h_{m+N-2} & h_{m+N-3} & \ldots & h_m
\end{bmatrix} \tag{2.23}
\]

vereinfacht sich die Systemgleichung (2.18) zu

\[Y_k = H \cdot U_k \]
(2.24)

Mit dieser Umformulierung stellen sich Ahn und andere vor allem die Frage, wann unterschiedliche iterativ lernende Reglungen (ILRen) stabil sind und monoton gegen die Solltrajektorie konvergieren. Dazu werden Stabilität und monotone Konvergenz wie folgt definiert.

Definition 1 (Stabilität und Konvergenz von ILRen) Sei eine Solltrajektorie \(y_d(t) \), \(t = 0, \ldots, T_0 \cdot N \) mit der Rate \(T_0 \) diskretisiert und \(y_k(t) \) mit der gleichen Rate abgetastet. Werden daraus die Supervektoren \(Y_d \) und \(Y_k \) gebildet, ist das System

- stabil, wenn für jedes \(\epsilon > 0 \) ein \(\delta = \delta(\epsilon) > 0 \) existiert, für das
 \[\|Y_d - Y_k\| < \delta \Rightarrow \|Y_d - Y_k\| < \epsilon, \forall k > n \] für ein beliebiges aber festes \(n \),
- monoton konvergent (MC), wenn es stabil ist und
 \[\|Y_d - Y_{k+1}\| < \|Y_d - Y_k\|, \forall k \]

Für die ILR erster Ordnung lässt sich ein einfaches Kriterium für monotone Konvergenz zeigen:

\[\|I - H\Gamma\| < 1 \]
(2.25)

Durch den Supervektor-Ansatz wurde es auch möglich, ähnliche Kriterien für ILRen höherer Ordnung zu entwickeln, die für die Berechnung des nächsten
Kapitel 2 Wissensstand in Rehabilitation und Robotik

Stellgrößenverläufs die Stellgrößen und Regelfehler der letzten \(n \) Iterationen verwenden, mit vorzugebendem \(n \). Auch die robuste Auslegung von ILRen wird möglich, wenn die Systemeigenschaften einer ganzen Modellfamilie \(H^I \) betrachtet werden. Um die große Matrizenmenge

\[
H^I = \left\{ H : H = [h_{ij} \in [\underline{h}_{ij}, \overline{h}_{ij}]]^{-1} \right\}, \quad (2.26)
\]

die durch obere und untere Schranken \(\underline{h}_{ij} \) und \(\overline{h}_{ij} \) für jedes Element \(h_{ij} \) entsteht, numerisch handhabbar zu machen, werden für die Analyse Knotenmatrizen \(H^v \) verwendet, mit

\[
H^v = \left\{ H : H = [h_{ij} \in \{\underline{h}_{ij}, \overline{h}_{ij}]]^{-1} \right\}. \quad (2.27)
\]

Es können MC-Kriterien für die \(H^v \) angegeben werden, aus denen die monotone Konvergenz für alle \(H \in H^I \) folgt. Manuell oder per Optimierer kann dann die Erfüllung dieser Konvergenzkriterien durch Variation der Lernraten angestrebt werden.

2.5 Automatisierte Unterstützungsanpassung

\[
\varepsilon = \dot{\varepsilon}(t) + \kappa \varepsilon(t), \quad \kappa > 0.
\] (2.28)

Dann lässt sich eine Kostenfunktion \(V_p \) definieren, die Bewegungsenergie und die Potentialdifferenz zu einem der Solltrajektorie entsprechenden Potential bewertet:

\[
V_p(t) = \frac{1}{2} \dot{\varepsilon}^T(t)M\dot{\varepsilon}(t).
\] (2.29)

Darüber wird die Stabilität definiert als äquivalent zu

\[
\exists \delta > 0 : \int_t^{t_1} \dot{V}_p(\sigma) d\sigma < \delta, \forall t_1 > t.
\] (2.30)

Aus diesem Kriterium können aufgabenspezifische Minimalwerte für Reglersteifigkeit \(K_E \), -dämpfung \(D_E \) und Kraftvorsteuerung \(\tau \) berechnet werden. Diese
Kapitel 2 Wissensstand in Rehabilitation und Robotik

Minimalwerte wurden in einem Unterstützungsvektor zusammengefasst als
\[\Phi_s(t) \equiv [\text{vec}(K_E)^T \text{vec}(D_E)^T \tau_E^T]^T \] (2.31)
mit dem Spaltenvektorisierungsoperator \(\text{vec}(\cdot) \). Ziel der Regelung ist die Konvergenz zu dieser Minimalunterstützung. Die Unterstützung
\[\Phi(t) \equiv [\text{vec}(K)^T \text{vec}(D)^T \tau^T]^T \] (2.32)
ist also mit \(\Phi_s \) zu vergleichen, was über die Differenz \(\tilde{\Phi} = \Phi - \Phi \) mit der Diagonalmatrix \(Q \) zur zweiten Kostenfunktion führt:
\[V_c(t) = \frac{1}{2} \int_{t-T}^{t} \tilde{\Phi}^T(\sigma)Q^{-1}\tilde{\Phi}(\sigma)d\sigma . \] (2.33)
Es wird also bei der periodischen Bewegung immer eine ganze Periode der Dauer \(T \) betrachtet. Die Minimierung der Summe
\[V_p(t) \equiv V_p(t) + V_c(t) \] (2.34)
ergibt schließlich die verfeinerten Lerngesetze
\[\delta \tau(t) = \tau(t) - \tau(t-T) = Q_\tau (\xi(t) - \gamma(t) \tau(t)) \] (2.35)
\[\delta K(t) = K(t) - K(t-T) = Q_K (\xi(t) \xi^T - \gamma(t)K(t)) \] (2.36)
\[\delta D(t) = D(t) - D(t-T) = Q_D (\xi(t)\dot{\xi}^T - \gamma(t)D(t)) \] (2.37)
mit positiv definierten \(Q_\tau \), \(Q_K \) und \(Q_D \) und dem zeitabhängigen Vergessensfaktor
\[\gamma(t) = \frac{a}{1 + b\|\xi\|^2}, \quad a > 0, \quad b > 0 . \] (2.38)
Trotz des erheblichen analytischen Aufwands erfolgt das zeitabhängige Lernen aber weiterhin nur mit lokalen Informationen. Das heißt, die Unterstützung zu einem Zeitpunkt wird nur aus dem Fehler zum gleichen Zeitpunkt in vorangegangenen Iterationen erlernt. Dadurch erfolgt die erwünschte Verschiebung der Unterstützung von \(K \) und \(D \) zu \(\tau \) später als nötig. Wenn von Anfang an ein approximiertes Systemmodell verwendet wird, um \(\tau(t) \) zu formen, kann die Vorsteuerung früher mehr übernehmen. Eine für die Armrehabilitation bereits umgesetzte Idee ist daher, ein nichtlineares Systemmodell von Manipulator und Arm mit radialen Basisfunktionen (RBF) während der Übung zu schätzen und mit dessen Hilfe die Unterstützung zu berechnen [98]. Ausgegangen wird von der Reglersynthese für nichtlineare Systeme mit Lyapunov-Funktionen, wie sie von Slotine und anderen entwickelt wurde [82], [81]. Statt wie dort die Systemmatrizen abzuschätzen, wird die Systemdynamik als Produkt von Basis-
funktionen Y und Koeffizienten a notiert. Eine weitere Vereinfachung ist die Reduktion des Zustands auf die Position α, sodass sich
\[
\tau(t) = Y(\alpha(t)) a
\] (2.39)
as Modell für die Dynamik von Arm und Gerät ergibt. Die verwendeten Basisfunktionen
\[
g_n = \exp \left(-\frac{(\alpha - \mu_n)^2}{2\sigma^2} \right)
\] (2.40)
haben gleichmäßig über den Arbeitsraum verteilte Mittelpunkte μ_n, können aber theoretisch auch durch eine Optimierung wie sie von Chen und anderen beschrieben wird besser platziert werden [17]. Die m RBF werden in g zusammengefasst:
\[
g = [g_1, g_2, \ldots, g_m]^T
\] (2.41)
und führen bei einem System mit drei Freiheitsgraden zu
\[
Y = \begin{bmatrix}
g^T & \mathcal{O} & \mathcal{O} \\
\mathcal{O} & g^T & \mathcal{O} \\
\mathcal{O} & \mathcal{O} & g^T
\end{bmatrix}
\] . (2.42)

Als unterstützende Vorsteuerung wird $\tau(t)$ verwendet, was bei idealer Modellschätzung zu keinem Bewegungsfehler führt. Um dennoch die fürs Lernen wichtige Unterstützungs-Abnahme (siehe oben) zu gewährleisten, werden die Parameter a kontinuierlich reduziert. Für die Änderungsrate der Parameter ergibt sich
\[
\frac{da}{dt} = -\frac{1}{\tau} Y^T (Y Y^T)^{-1} Y a + \Gamma^{-1} Y^T \xi
\] (2.43)
mit einem wie in Gl. (2.28) definierten ξ. Der erste Term mit einstellbarer Zeitkonstante τ sorgt für das Abklingen der Unterstützung, indem immer die Einträge a_i besonders stark abnehmen, die für den aktuellen Zustand den größten Einfluss auf die berechnete Kraft haben. Der zweite Term mit einstellbarer Verstärkung Γ^{-1} ist mit der Lernrate vergleichbar, wobei hier bereits während der Bewegung die Unterstützung angepasst wird anstatt von Iteration zu Iteration diskrete Unterstützungs-Lösungen umzusetzen. Laut Chen und anderen sind RBF-Netze, die auch als einschichtige künstliche neuronale Netze aufgefasst werden können, oft in ihrer Performance kaum mehrschichtigen Netzen unterlegen [17]. Tatsächlich konnten Wolbrecht und andere an 11 Patienten zeigen, dass die mehrdimensionale Zielerreichung mit der behinderten Hand von einem Manipulator mit RBF personenspezifisch unterstützt wird. Doch ob die RBF in der Rehabilitation Vorteile über die reine Kurvenglättung hinaus haben, zeigen Theorie und Experimente bisher nicht.
Kapitel 2 Wissensstand in Rehabilitation und Robotik

Weitere Verbesserungen lassen sich erzielen, wenn Ziele in Form von nichtlinearen Schwellwerten formuliert und integriert werden. Konkrete Beispiele sind virtuelle Tunnel um die Trajektorien von Beinbewegungen in [24] oder um die Trajektorien von Rollstühlen [19], in denen kleine Fehler zu null gesetzt werden. Ein weiteres Beispiel sind die Schwellwerte bei der Wavelet-Filterung, die Merry für die ILR vorschlägt [58]. Dort wird vorgeschlagen, den Fehler mit einem diskreten Wavelet-Filter zu filtern. Über einen Vergleich mit vorherigen Fehlern sollen nicht periodische Fehler erkannt und nicht berücksichtigt werden. Konkret wird jeder Wavelet-Koeffizient c_2 mit dem Koeffizienten für die gleiche Frequenz und Zeit der vorherigen Iteration c_1 verglichen. Wenn das Ähnlichkeitsmaß

$$\text{SIM} \equiv \frac{c_1 - c_2}{c_1 + c_2}$$

(2.44)

einen bestimmten Wert unterschreitet, wird der Koeffizient nicht verwendet, um das transformierte Signal zurück in den Zeitbereich zu bringen. Analog kann auch mehr als ein zurückliegender Fehlerverlauf verwendet werden.

2.5.2 Optimale Lernrate

Im Gegensatz zu den bisher vorgestellten Verfahren, verwenden Owens und Feng Modellwissen und den Fehler, um monotone Konvergenz der ILR sicherzustellen [69]. Sie passen die Lernrate der ILR in einem optimalen Sinne bzgl. des Kriteriums $J(g)$ an, mit

$$J(g) = \| e_{k+1} \|^2 + w g_{k+1}^2, \quad w > 0 .$$

(2.45)

In der Analyse sollen also gleichzeitig der Fehler e und die Lernrate g in der nächsten, $k+1$-ten Iteration klein sein, wobei das Gewicht w an die eigenen Ziele anzupassen ist. Bei großem w wird die Lernrate klein sein, wodurch kurzzeitige Störungen ausgefiltert werden und ein Überschwingen vermieden wird. Kleine w machen die ILR schneller, erhöhen aber auch den Einfluss von Störungen.

Das verwendete Lerngesetz beinhaltet keine Vergessensrate, da nur die monotone Konvergenz der Anpassung untersucht wird, die später um die Abnahme der Stellgröße ergänzt werden kann. Der $k + 1$-te Stellvektor ist

$$u_{k+1} = u_k + g_{k+1} \cdot e_k$$

(2.46)

mit der Systemgleichung (2.24) ergibt sich für die Fehlerfortpflanzung

$$e_{k+1} = (I - g_{k+1} H) \cdot e_k$$

(2.47)
2.5 Automatisierte Unterstützungsanpassung

Ableiten nach g_{k+1} und Nullsetzen von Gl. (2.45) führt zur optimalen Lernrate

$$g_{k+1} = \frac{\langle e_k, H \rangle}{w + \| H e_k \|^2}.$$ \hspace{1cm} (2.48)

Um das Verfahren auf die Rehabilitation zu übertragen, muss vor allem ein geeigneter Algorithmus gefunden werden, um H abzuschätzen. Nur wenn Mensch und Gerät darin ausreichend genau modelliert sind, kann die Lernrateanpassung zu Verbesserungen führen.

2.5.3 Frequenzabhängige Lernrate

Rockel und Konigorski stellen einen allgemeinen Rahmen zur ILR vor [74], der einer Erweiterung des oben eingeführten Supervektor-Ansatzes entspricht. Die Vektoren sind nicht mehr zwangsläufig Zeitdiskretisierungen sondern allgemeine Parametervektoren, die z. B. auch Fourier-Koeffizienten darstellen. Durch eine Analogiebetrachtung wird mit den so definierten Signalen die ILR auf die Analyse eines Mehrgrößensystems zurückgeführt. Dadurch werden Analysenmethoden aus der digitalen Regelung anwendbar, die hier in reduzierter Form vorgestellt werden. Die um Störungen d erweiterte Systemgleichung ist

$$y_k = H u_k + d_k.$$ \hspace{1cm} (2.49)

Das Lerngesetz wird durch die Trennung von Führungsgrößenfilter V und Lernrate Γ mit der Führungsgröße r allgemeiner:

$$u_{k+1} = S u_k + V r - \Gamma y.$$ \hspace{1cm} (2.50)

Fasst man nun eine Iteration als einen Zeitschritt auf, lassen sich die Gleichungen in den Z-Bereich bringen. Dort beschreiben die Übertragungsfunktionen für Führungsgröße und Störung wie sich die Verläufe dieser Größen über die Iterationen ändern:

$$y = H [z I - S + \Gamma H] V r(z)$$

$$+ H [z I - S + \Gamma H] V(z I - S) H^{-1} d.$$ \hspace{1cm} (2.51)\hspace{1cm} (2.52)

Kapitel 2 Wissensstand in Rehabilitation und Robotik

Dann bekommt H Diagonalstruktur und die Systemgleichung ist

$$
\begin{bmatrix}
\hat{y}_k(0) \\
\hat{y}_k(j\omega_1) \\
\vdots \\
\hat{y}_k(j\omega_N)
\end{bmatrix} =
\begin{bmatrix}
\hat{h}(0) & 0 & \cdots & 0 \\
0 & \hat{h}(j\omega_1) & \cdots \\
\vdots & \vdots & \ddots & 0 \\
0 & \cdots & 0 & \hat{h}(j\omega_M)
\end{bmatrix}
\begin{bmatrix}
\hat{u}_k(0) \\
\hat{u}_k(j\omega_1) \\
\vdots \\
\hat{u}_k(j\omega_N)
\end{bmatrix} + d_k. \quad (2.53)
$$

Die frequenzabhängigen Größen werden darin zur besseren Unterscheidung mit einem hochgestellten Kreis gekennzeichnet. Durch diese Entkopplung lässt sich für jede Frequenz im Z-Bereich eine Übertragungsfunktion mit nur einem Eingang und einem Ausgang angeben (SISO):

$$
\hat{y}_i(z) = \frac{\hat{h}_i}{z - s_i + \gamma_i \hat{h}_i} \left(v_i \cdot r_i(z) + \frac{z - s_i}{\hat{h}_i} \cdot d_i(z) \right). \quad (2.54)
$$

Über s_i und γ_i lassen sich die Pole dieser Übertragungsfunktion vorgeben. Die Lage der Pole entscheidet über die Konvergenzrate der ILR hin zum Führungsgrößenprofil. Bei unsicheren Systemen kann darüber hinaus ein Stabilitätsradius definiert werden, der angibt, wie stark die frequenzabhängige Abweichung vom Nominalmodell sein darf, damit die Pole innerhalb des Einheitskreises liegen. Im Falle der Rehabilitation könnte, ggf. abhängig vom Patienten, nicht nur ein Nominalmodell sondern auch die zu erwartende Abweichung davon geschätzt werden. Darüber ließe sich dann online oder im Voraus die maximale Geschwindigkeit der ILR bestimmen, indem die Lage des Poles ermittelt wird, für den sie im Z-Bereich gerade noch stabil ist. Zur Identifikation der Übertragungsfunktionen kommt auch die empirische Schätzung, wie sie in [93] beschrieben wird, in Frage.

2.6 Telepräsenz für häusliche Therapie

2.6 Telepräsenz für häusliche Therapie

Interaktionspartner \(B \) von seinem Gerät gedrückt wird. Zugleich sollen die Geschwindigkeiten \(v_A \) und \(v_B \) auf beiden Seiten einander entsprechen. Dieses Ziel lässt sich auch mit Gl. (2.55) ausdrücken:

\[
\begin{bmatrix}
 f_A \\
 v_A
\end{bmatrix} = \begin{bmatrix}
 -1 & 0 \\
 0 & 1
\end{bmatrix} \cdot \begin{bmatrix}
 f_B \\
 v_B
\end{bmatrix} = H \cdot \begin{bmatrix}
 f_B \\
 v_B
\end{bmatrix}.
\]

2.6 Telepräsenz für häusliche Therapie

Konkret bedeutet Wellentransformation, dass nicht Kraft f und Geschwindigkeit v einzeln übertragen werden, sondern eine spezielle Linearkombination, die ausgehende Welle u. Die Stellgröße für die nächste Iteration wird dann aus

Kapitel 2 Wissensstand in Rehabilitation und Robotik

der eingehenden Welle \(w \) berechnet. \(u \) und \(w \) sind definiert als

\[
\begin{align*}
 u &= \frac{bv + f}{\sqrt{2b}} \\
 w &= \frac{bv - f}{\sqrt{2b}}.
\end{align*}
\]

(2.56)

(2.57)

\(b \) ist die Leitungsimpedanz, welche die wahrgenommenen Eigenschaften der Übertragung beeinflusst. Zum Beispiel bewirkt \(b \) solange noch kein Paket \(w \) vom Interaktionspartner angekommen ist, dass \(f = bv \). Diese Beobachtung zeigt einen wesentlichen Aspekt der Transformation. Je später die Pakete vom Interaktionspartner kommen, desto mehr Energie wird dem Bediener über die virtuelle Dämpfung entzogen. Erst wenn der Interaktionspartner selbst aktiv wird oder das Paket des Bedieners als Reflexion zurück kommt, wird die Dämpfung niedriger. Das Prinzip der Wellentransformation ist in Abbildung 2.3 dargestellt. Darin ist der Therapeut als Master (m) und der Patient als Slave (s) bezeichnet, was jedoch nicht bedeutet, dass es auf den beiden Seiten Unterschiede in der Regelung gibt. Es ist bewusst keine Kausalität für die Personen angegeben, da die Transformation prinzipiell Impedanz- (Geschwindigkeitsvor- gabe, Kraftmessung) und Admittanzkausalität zulässt. Die Impedanzkausalität ist aber besser geeignet, weil so auch bei ruhenden Griffen eine Kraftinteraktion stattfinden kann. In der Abbildung ist die Wellen- oder Scattering-Transformation als Block mit der charakteristischen Leitungsimpedanz \(b \) zusammengefasst und es wird ersichtlich in welcher Richtung die Pakete über das Internet übertragen werden. Um die Koeffizienten in Gl. (2.56) und Gl. (2.57) besser zu verstehen, soll hier noch eine vereinfachte Version des Passivitätsbeweises gegeben werden, der von Stramigioli und anderen in [91] und [90] geführt wurde. Ähnliche Beweise für die Robustheit gegenüber Paketverlusten und variablen Zeitverzögerungen sind dann diesen Quellen zu entnehmen.

Beweis (Passivität der Wellentransformation) Die Leistung lässt sich mit den Scattering-Varialbren schreiben als

\[
P(k) = f(k)v(k) = \frac{1}{2} u(k)^2 - \frac{1}{2} v(k)^2.
\]

(2.58)

Hierin sind alle Variablen diskretisiert und werden für den Zeitschritt \(k \) über die Abtastdauer \(T \) hinweg vereinfacht als konstant angenommen. Die Leistung, die von Master und Slave zusammen an das Übertragungssystem abgegeben wird ist dann

\[
P_L(k) = \frac{1}{2} u_m(k)^2 + \frac{1}{2} u_s(k)^2 - \frac{1}{2} v_m(k)^2 - \frac{1}{2} v_s(k)^2.
\]

(2.59)

52
Das System ist passiv genau dann, wenn für die Energie E_L gilt:

\[
\int_0^t f(\tau) v(\tau) d\tau + E_L(0) \geq 0 \quad \forall t \geq 0 \quad .
\]
(2.60)

Setzt man die initiale Energie $E_L(0) = 0$, ergibt sich die Energie im diskretisierten Fall zu

\[
E_L(k) = T \cdot \sum_{i=\infty}^k P_L(i) = \frac{T}{2} \sum_{i=k-d+1}^k \left[u_m(i)^2 + u_s(i)^2 \right] \quad .
\]
(2.61)

Darin wird von einer konstanten Verzögerung durch das Internet um d Zeitstufen ausgegangen, die wegen $v_s(k) = u_m(k-d)$ und $v_m(k) = u_s(k-d)$ zu einer Vereinfachung der Summe führt. $E_L(k)$ ist also immer positiv, Gl. (2.60) erfüllt und somit die Passivität nachgewiesen.

\[\blacksquare\]

3.1 Unterstützungsanpassung

Das Ziel der Unterstützungsanpassung lässt sich grob in Form eines Gütekriteriums angeben: Die über \(\lambda \) gewichtete Summe aus Unterstützungsenergie und Bewegungsfehlerbetrag

\[
J = \lambda E + S
\]

(3.1)

mit geeigneter definiert Stellenergie \(E \) und einer Quantisierung des Symmetriefehlers \(S \) ist zu minimieren. Eine Konkretisierung liefert folgende Teilziele:

1. Trainingsaufgaben sollen definiert und mit Visualisierungen ausgestattet werden.
2. Ein für die Aufgabe adäquates Lerngesetz soll gefunden werden. Es muss die Unterstützungennergie und den Bewegungsfehler mit einstellbarer Gewichtung möglichst gleichmäßig und vorhersehbar reduzieren.

3. Die Anforderungen sollen in Form von genaueren Gütekriterien verfeinert werden.

4. Das Verhalten des Lerngesetzes ist mit weiteren Algorithmen zu vergleichen, die durch ein zusätzlich geschätztes Menschmodell genau oder störanfälliger sein können.

5. Für starke Behinderungen oder kognitive Störungen reicht die gelernte Vorsteuerung als alleinige Unterstützung nicht, weil sie nur reproduzierbare Fehler kompensieren kann. Für derartige Anwendungsszenarien soll eine geeignete Impedanzanpassung gefunden werden und eine starre Führung der gesunden Hand vorgesehen werden.

Die Anforderungen an die Trainingsaufgabe gemäß Teilziel 2 ergeben sich unmittelbar aus der im letzten Kapitel vorgestellten medizinischen Forschung. Es sollen die beiden natürlichen beidhändigen zyklischen Bewegungen mit Phasenverschiebungen von 0 und 180 Grad unterstützt und visualisiert werden. Abstrakte, einfache Darstellungen sind für die Zielgruppe der Schlaganfallpatienten in der frühen Rehabilitation zu bevorzugen. Der Patient soll möglichst viel selbst an der Bewegungskoordination und der Kraftaufbringung teilnehmen.

3.1 Unterstützungsanpassung

Für den Vergleich weiterer Anpassungsverfahren bleibt J zwar weiterhin das wichtigste Minimierungsziel. Es müssen gemäß Teilziel 3 aber weitere Kriterien definiert werden, um zusätzliche Vorteile aufspüren zu können. Erwartete Vorteile von besseren Lernverfahren sind die rechtzeitige Beschleunigung durch die Unterstützung, die auch weniger unerwünschtes aktives Abbremsen durch Gegenkraft zur Folge haben sollte und eine gleichmäßige Konvergenz hin zum finalen Unterstützungsprofil.

Kapitel 3 Ziel dieser Arbeit

3.2 Telehaptik

Das Ziel an die in die Versuchsumgebung zu integrierende Telehaptikverbindung ist möglichst hohe Transparenz bei gleichzeitiger Stabilität. In folgenden Teilschritten soll es erreicht werden:

6. In Simulationen sollen Algorithmus-Kandidaten für die Übertragung ausgewählt und verfeinert werden. In Frage kommen die Scattering-Transformationen mit ihren unterschiedlichen Kausalitäten und intuitive Ansätze wie eine virtuelle Feder.

7. Mit zu definierenden Transparenzzahlen wird dann in Experimenten systematisch nach dem geeignetsten Algorithmus und seinen Einstellungen gesucht.

Zu Teilziel 6 sei noch einmal daran erinnert, dass die Telehaptik-Literatur eine weit größere Methodenvielfalt zu enthalten scheint. Bei näherer Betrachtung fällt jedoch auf, dass höhere Transparenz bei gleichzeitiger Stabilität nur
3.3 Beurteilung von Muskel-, Reflex- und Lerneigenschaften

3.3 Beurteilung von Muskel-, Reflex- und Lerneigenschaften

Die Integration von Identifikationsverfahren soll zeigen, welche Identifikationsverfahren an handelsüblichen Rehabilitationsgeräten umgesetzt werden können und möglichst ihre Einsatzmöglichkeit für die Verbesserung der Unterstützung aufzeigen. Umgesetzt und getestet werden sollen:

Kapitel 3 Ziel dieser Arbeit

Um die Ziele Unterstützungsanpassung für das bimanuelle Training, geräteunterstützte Patientenbeurteilung und haptische Telerehabilitation zu erreichen, werden in diesem Kapitel geeignete Algorithmen ausgewählt und weiterentwickelt, die später in einer Simulationsumgebung und am Bi-Manu-Track umzusetzen sind. Einen Überblick über das Konzept gibt Abbildung 4.1. Zunächst werden die Anwendungsszenarien in Abschnitt 4.1.1 detaillierter betrachtet, um zusätzliche Anforderung zu identifizieren, die für die Erreichung der im vorangehenden Kapitel formulierten Ziele zu erfüllen sind. All diese Anforderungen fließen wie abgebildet in die Erreichung der Teilziele ein. Wie die Teilziele erreicht werden sollen, stellen dann die Abschnitte 4.1 (Lernende Reglung), 4.2 (Mess- und Schätzverfahren) und 4.3 (Telerehabilitation) vor.

4.1 Bimanuelles Training

Um das bimanuelle Training zu verbessern, werden im Folgenden kurz die Anwendungsszenarien beschrieben. Dann werden Trainingsaufgaben mit Visualisierungen definiert. Für diese Trainingsaufgaben werden Unterstützungsanpassungen entwickelt, die auf unterschiedlichen Vorarbeiten beruhen. Schließlich wird eine darüber liegende Regelungsebene betrachtet, die regelbasiert zwischen Unterstützungsmodi hin und her schaltet.
Kapitel 4 Konzept

Gerätebasierte Armrehabilitation

Ziel (3)

Aufgabe verstehen
Kognitive Beeinträchtigungen
Sensomotorische Beeinträchtigungen

Patientenbeurteilung
Patient einstufen
Forstschritt beurteilen
Unterstützung verbessern

Szenario (4.1.1)

Teilziele

Visualisierung
Lernende Regelung
Telehaptik
Messen / Schätzen

Abbildung 4.1: Überblick über das Konzept dieser Arbeit
4.1 Bimanuelles Training

4.1.1 Anwendungsszenarien

Es können grob vier Anwendungsszenarien unterschieden werden.

1. Der Patient lernt die Aufgabe kennen.
2. Der Patient übt mit kleinen oder repetitiven Fehlern.
3. Der Patient kann die Bewegung mehr oder weniger gut ausführen, aber die Visualisierung nicht verfolgen.
4. Der Patient kann die Visualisierung verfolgen, macht aber große, und sehr unterschiedliche Bewegungsfehler.

den Patienten mittels Head-Tracking wurde an anderer Stelle untersucht [85] und soll hier nicht thematisiert werden.

4.1.2 Aufgabenvizualisierung

Aufgabenziel ist die repetitive Übung von Pronation und Supination oder der Handgelenkflektion und -extension am Bi-Manu-Track, dessen Griffe separat programmierbar sind und die jeweilige Bewegung unterstützen können. Sei α der normierte Winkel der gesunden Hand und β der normierte Winkel der betroffenen Hand, wobei ein Wert von null der rechten Bewegungsgrenze des patientenindividuellen Bewegungsumfangs entspricht und ein Wert von eins der linken Bewegungsgrenze. Dann sind die zwei zu visualisierenden Aufgaben die gleichzeitige und gleichmäßige Bewegung von $\alpha = 1, \beta = 0$ nach $\alpha = 0, \beta = 1$ und zurück (symmetrische Bewegung) und die gleichzeitige, gleichmäßige Bewegung von $\alpha = \beta = 0$ nach $\alpha = \beta = 1$ und zurück. Wie im Abschnitt 2.4.2 angesprochen, beeinflussen die Darstellung von Bewegung, Fehlern, Solltrajektorien, Kraft und Beurteilungen die dem Patienten unterstellte Optimierung. Für die Versuchsumgebung wurden daher im Zweifelsfall mehrere Gestaltungsalternativen implementiert, um in Experimenten die geeignetere zu bestimmen.

4.1 Bimanuelles Training

In allen Fällen informieren zusätzliche Pfeile über die aktuelle Bewegungsrichtung. Die unterstützende Kraft wird in Rücksprache mit Therapeuten nicht visualisiert, um die Oberfläche nicht zu überladen.

4.1.3 Positionsabhängiges maschinelles Lernen

Wie aus der Literatur im vorangegangenen Kapitel hervorgeht, ist der allgemeine Ansatz einer iterativ lernenden Reglung ein breit eingesetzter Ansatz, um die Patientenunterstützung anzupassen. Bisher wurde jedoch keine Implementierung vorgeschlagen, die speziell auf beidhändige Bewegungen eingeht. Das Ziel, die Besonderheiten dieser Bewegungsaufgabe in die Unterstützungsanpassung aufzunehmen, führt zu zwei grundsätzlichen Änderungen:

1. Es wird keine feste Solltrajektorie verwendet. Stattdessen gibt die gesunde Seite das Bewegungszeitverhalten vor.

Kapitel 4 Konzept

Der grundsätzliche Aufbau der unterstützenden ILR ist in Abb. 4.2 (b) dargestellt. Sie generiert ein Drehmoment und eine Reglerverstärkung für die betroffene Seite. Sollgröße ist die Position des gesunden Arms α_i, die mit der Position des betroffenen Arms β_i den Regelfehler

$$e_i(\alpha) = \alpha_i - \beta_i(\alpha)$$ \hspace{1cm} (4.1)

ergibt, wobei i den in der Abbildung unterdrückten Iterationsindex bezeichnet. Dieser Fehler wird vom PD-Regler k_i verwendet, um ein Drehmoment τ_{FB} zu erzeugen, das den betroffenen Arm in eine parallele Stellung zum gesunden bringt, indem es auf das gekoppelte Mensch-Maschine-System H wirkt:

$$\tau_{FB}^i = k_i(\alpha) \left[c_k e(\alpha) + c_d \dot{e}(\alpha) \right], \quad c_k > 0, \quad c_d \geq 0 .$$ \hspace{1cm} (4.2)

Die Verstärkung $k_i(\alpha)$ wird von der ILR angepasst. Darauf abgestimmt soll die Adaptierung der Drehmomentenvorsteuerung $\tau_i(\alpha)$ erfolgen. Im Teil (a) der Abb. 4.2 sind die zwei ortsabhängigen Unterstützungskomponenten auf der betroffenen, in diesem Fall rechten Seite als Federsteifigkeit und Drehmoment dargestellt. Die virtuelle Feder, die auch einen Dämpfungsanteil enthält, soll nur so steif wie nötig sein, um dem Patienten eine möglichst freie Bewegung zu ermöglichen. Alle periodischen Störungen sollen also von $\tau(\alpha)$ kompensiert werden. Eine Tendenz zur Unterstützungsabnahme soll den Patienten zu mehr eigenem Einsatz bewegen.

4.1 Binaneuelles Training

(a) Unterstützung der betroffenen Seite durch Reglersteifigkeit k und Drehmomentvorsteuerung τ

(b) Regelkreis mit Regler k, Mensch und Gerät H und der iterativ lernenden Reglung ILR

Abbildung 4.2: Prinzip der positionsbasierte iterativ lernende Reglung für die beidhändige Bewegungsaufgabe
Kapitel 4 Konzept

verglichen werden sollen. Es sind dies die klassische lineare ILR mit konstanter Lernrate (K-ILR), die ILR mit Lernratenoptimierung (O-ILR), die Polvorgabe im Frequenzbereich (F-ILR) und die Verwendung von radialen Basisfunktionen (RBF). Für die Rehabilitation wurden bisher nur K-ILR und RBF eingesetzt. In das System, also das geregelte Gerät mitsamt dem zu unterstützenden Arm, gehen in der k-ten Iteration die disretisierten Unterstützung in Form von τ_k und K_k hinein. Ausgang ist die Position der betroffenen Seite β_k. Die disretisierten Größen d_k sind mit N Abtastungen wegen Ziel 2 definiert als

$$d_k = \begin{bmatrix} d_k(\alpha_1) & d_k(\alpha_2) & \ldots & d_k(\alpha_N) \end{bmatrix}^T$$

(4.3)

$$\alpha = \begin{bmatrix} 0 & 1 & \ldots & N-1 \end{bmatrix}^T$$

(4.4)

Alte Ein- und Ausgänge werden gespeichert und für das iterative Lernen, die Lernratenanpassung und die Modellschätzung eingesetzt. Die Schalter s_1 bis s_4 deuten an, dass immer nur ein Signalpfad aktiv ist, der des gewählten Algorithmus. Die K-ILR nutzt Modellwissen höchstens vorab in der Auslegungsphase, aber nicht für eine Onlineanpassung. Die Optimierung der Lernrate basiert auf einem Modell und dem Regelfehler der vorangegangenen Iteration. Es bietet sich an, von einem Startmodellauszugehen und dieses im Laufe des Trainings an den Patienten anzupassen, um individuellen Behinderungen gerecht zu werden. Analog arbeitet auch die F-ILR. Durch die Lernratenanpassung in Form einer frequenzabhängigen Polvorgabe ergeben sich zusätzlich die in Abschnitt 2.5.3 beschriebenen potentiellen Vorteile von Robustheit, Signalglättung und frühzeitiger Unterstützung. Auch das RBF-Netzwerk ist eine Modellschätzung, jedoch vom inversen Modell, dass direkt für die Unterstützungsberechnung eingesetzt wird. Die Anpassung der Parameter erfolgt über ein typisches Lerngesetz, das jedoch nicht angepasst wird. Alle Verfahren berechnen τ_{k+1} und K_{k+1}.

In diesem Abschnitt werden die Lerngleichungen für die Verfahren K-ILR und RBF auf die beidseitige Unterstützungsanpassung zugeschnitten. Später werden dann die Modellbildung und die Lernratenanpassung thematisiert und es wird auf die Impedanzeinstellung eingegangen.

Bei der linearen ILR erster Ordnung wird die Drehmomentvorsteuerung $\tau_{i+1}(\alpha)$ für die $i+1$-te Iteration abhängig von α berechnet als

$$\tau_{i+1}(\alpha) = s \tau_i(\alpha) + \gamma e_i(\alpha) \quad 0 < s < 1, \quad 0 < \gamma$$

(4.5)

also aus dem vorherigen Drehmomentprofil $\tau_i(\alpha)$ und dem Symmetrieaehler $e_i(\alpha)$. Darin sind γ und s die Parameter Vergessensrate und Lernrate, welche die Zunahme- und Abnahmegeschwindigkeit des Profs beeinflussen.

Diskretisierung und Interpolation Um die Lerngleichungen numerisch umzusetzen wird eine ortsabhängige Diskretisierung mit relativ wenigen N Stütz-
4.1 Bimanuelles Training

Abbildung 4.3: Framework zum Vergleich unterschiedlicher ILRen
Kapitel 4 Konzept

stellen eingeführt. Die Verläufe der Griffpositionen und der Drehmomentunterstützung lassen sich dann schreiben als:

\[
\alpha = \begin{bmatrix}
\frac{0}{N-1} & \frac{1}{N-1} & \cdots & \frac{N-1}{N-1}
\end{bmatrix}^T
\]

(4.6)

\[
\beta = \begin{bmatrix}
\beta(\alpha_1) & \beta(\alpha_2) & \cdots & \beta(\alpha_N)
\end{bmatrix}^T
\]

(4.7)

\[
\tau = \begin{bmatrix}
\tau(\alpha_1) & \tau(\alpha_2) & \cdots & \tau(\alpha_N)
\end{bmatrix}^T
\]

(4.8)

Die Unterstützung soll jedoch auch für \(\alpha\) zwischen diesen Stützstellen erfolgen. Daher sollen drei Interpolationsverfahren implementiert werden. Im einfachsten Fall wird ein Halteglied verwendet, sodass

\[
\tau(\alpha) = \tau(\alpha_i), \quad \forall \alpha_i \leq \alpha < \alpha_i
\]

(4.9)

Außerdem soll es eine lineare Interpolation und eine Polynominterpolation geben. Das Polynom \(p_k(x)\) bekommt als Argument den zwischen zwei Stützstellen normierten Winkel

\[
x = \frac{\alpha - \alpha_k}{\alpha_{k+1} - \alpha_k}
\]

übergeben und wird rechenzeitarm mit dem Horner-Schema in der Form

\[
p_k(x) = (\ldots (b_n^k x + b_{n-1}^k)x + \ldots)x + b_0^k
\]

(4.10)

ausgewertet. Es erfüllt die Randbedingungen

\[
p_k(-1) = \begin{cases}
y_{k-1}, & k > 0 \\
0, & \text{sonst}
\end{cases}
\]

(4.11)

\[
p_k(0) = y_k
\]

(4.12)

\[
p_k(1) = \begin{cases}
y_{k+1}, & k + 1 < N \\
0, & \text{sonst}
\end{cases}
\]

(4.13)

\[
p_k(2) = \begin{cases}
y_{k+2}, & k + 2 < N \\
0, & \text{sonst}
\end{cases}
\]

(4.14)

Das heißt \(p(x)\) verläuft durch die unmittelbar benachbarten Stützstellen, und, falls vorhanden eine weitere Stützstelle pro Seite, deren Funktionswert an den Rändern zu null gesetzt wird.

Radiale Basisfunktionen Das alternative Lernverfahren mit radialen Basisfunktionen (RBF) berechnet die Unterstützung aus einem zustandsabhängigen Modell, das sich aus den zustandsabhängigen Basisfunktionen in der Matrix \(Y\)
4.1 Bimanuelles Training

und den Parametern \(a \) zusammensetzt:

\[
\tau(\alpha) = Y(\alpha) a .
\] (4.15)

Als Basisfunktionen werden hier positionsabhängige Gauß'sche Glockenkurven \(Y_n(\alpha) \) verwendet, theoretisch ist auch eine Berücksichtigung von Geschwindigkeit und Beschleunigung möglich. \(Y \) setzt sich dann zusammen aus den \(Y_n \) mit über den Arbeitsraum verteilten Zentren \(\mu_n \) und Koeffizienten \(a \):

\[
Y_n = \exp \left(\frac{(\alpha - \mu_n)^2}{2\sigma^2} \right), \quad Y = [Y_1 \ Y_2 \ \ldots \ Y_n] .
\] (4.16)

Die Varianz \(\sigma^2 \) ist für alle Basisfunktionen gleich und beeinflusst in erster Linie die Glättung des Profils. In dieser positionsabhängigen Formulierung mit RBF wird die Lerngleichung zu

\[
\frac{d a}{d x} = -s_R Y^T (Y Y^T)^{-1} Y a + \gamma_R Y^T e .
\] (4.17)

Analog zu Gl. (4.5) gibt es wieder Konstanten \(s_R \) und \(\gamma_R \), die Abnahme- und Zunahmegeschwindigkeit des Drehmomentprofils beeinflussen. Die umständlich erscheinende Skalierung zwischen \(s_R \) und \(\gamma \) ist in der Robotik üblich [98], geht aus einer Optimierung hervor und bewirkt, dass stets derjenige Eintrag in \(a \) am stärksten angepasst wird, der den aktuellen Funktionswert am stärksten beeinflusst. Eine ähnliche Funktion übernimmt \(Y^T \) für die Zunahme von \(\tau(\alpha) \).

4.1.4 Lernen mit Menschmodell

In diesem Abschnitt werden für Zeit- und Frequenzbereich Modellidentifikationsverfahren vorgeschlagen. Für die resultierenden Modelle werden zudem Bewertungskriterien angegeben, die mitgeschätzt werden sollen, um z. B. auf zu große Unsicherheiten angemessen zu reagieren. Für die Modelle wird zudem angegeben, wie daraus neue Lernraten bestimmt werden.

Variable optimale Lernrate

Um die im Abschnitt 2.5.2 beschriebene optimale Lernrate zu berechnen, wird der Zusammenhang zwischen \(\tau \) und \(\beta \) modelliert. Aus diesem Modell und dem aktuellen Fehler \(e \) kann dann eine bzgl. Konvergenz optimale Lernrate berechnet werden.
Modellbildung Ziel der Modellbildung ist eine gute Schätzung für die Matrix H, sodass sie für die nächste Bewegung möglichst gut β vorhersagt:

$$\beta = H \tau \ .$$ (4.18)

Ein Modell ist dadurch charakterisiert, dass sich seine Parameter langsamer ändern, als die Systemgrößen. Trotzdem soll das Modell sich an den Patienten und auch an seine aktuelle Verfassung anpassen. Damit scheiden die beiden trivialen Ansätze aus, nur die Daten der letzten Bewegung heranzuziehen oder vorab ein mittleres Modell zu berechnen, dass sich für alle Patienten anwenden lässt. Ein klassischer Luenberger-Beobachter oder ein Kalman Filter können derartige Schätzungen liefern. Sie sind vor allem dann geeignet, wenn etwas über die Modellstruktur bekannt ist. Jede Annahme einer konkreten Struktur, wie ein einfaches Feder-Masse-Dämpfer-System, scheint aber eine zu starke Vereinfachung zu sein, auf die sich durch eine Problem spezifische Parameterschätzung verzichten lässt. Trotzdem wird die Parameteranzahl deutlich reduziert, indem ein lineares Systemverhalten angenommen wird. Wenn sich die Parameter dieses Modells robust vorhersagen lassen, wird es zu besseren Lernraten führen, als viele unsichere Modellparameter. H hat durch die Linearitätsunterstellung die Toeplitz-Struktur aus Gl. (2.23) und enthält nur die N Markov-Parameter der Impulsantwort, die für die k-te Iteration in h_k zusammengefasst sind. Gl. (4.18) lässt sich dann auch schreiben als

$$\beta = \begin{bmatrix} 0 & \ldots & 0 & 0 & \tau_1 \\ 0 & \ldots & 0 & \tau_1 & \tau_2 \\ \vdots & \ddots & \ddots & \ddots & \ddots \\ \tau_1 & \ldots & \tau_{N-2} & \tau_{N-1} & \tau_N \end{bmatrix} \cdot h = U \Sigma V^H \ .$$ (4.19)

Aus τ wird also eine Hankel-Matrix aufgebaut, die für die Invertierung des Gleichungssystems als Singularwertzerlegung mit den orthonormalen Matrizen U und V und der Diagonalmatrix Σ dargestellt wird. V^H ist die adjungierte Matrix von V, also die komplexe konjugierte Transponierte. Um aus Gl. (4.19) h zu bestimmen, wird Σ^I eingeführt. Sie unterscheidet sich von der Inversen Σ^{-1} dadurch, dass nur Singularwerte oberhalb eines Mindestwertes σ_{min} invertiert werden. Andere Diagonalelemente werden nicht invertiert sondern in Σ^I zu null gesetzt:

$$\sigma_i^I = \begin{cases} \frac{1}{\sigma_i}, & \sigma_i > \sigma_{\text{min}} \\ 0, & \text{sonst.} \end{cases}$$ (4.20)
4.1 Bimanuelles Training

Damit ist die Berechnung der Modellparameter aus der k-ten Iteration möglich:

$$h_k = U^H \Sigma^I V \beta$$

(4.21)

$$= \begin{bmatrix}
h_{1,k} \\
h_{2,k} \\
\vdots \\
h_{N-1,k}
\end{bmatrix}.$$ (4.22)

Durch schlechte Anregungen, wie sie z. B. bei $\tau \approx \theta$, also verschwindender Unterstützung auftritt, kann das Gleichungssystem schlecht konditioniert sein und daher zu ungenaue Vorhersagen liefern. Deswegen wird ein Mindestrang R_{min} eingeführt. Sobald Σ^I einen niedrigeren Rang hat, werden die alten Modellparameter weiterverwendet:

$$h^*_{i,k} = \begin{cases} h_{i,k}, & \text{rank}(\Sigma^I) \geq R_{\text{min}} \\ h_{i,k-1}, & \text{sonst.} \end{cases}$$ (4.23)

Das Ergebnis wäre immer noch unbefriedigend, da es zu schnellen Modellschwankungen und nicht zur langsamen Modellanpassung führt. Daher werden die Modellparameter mit einem Tiefpassfilter $F(z)$ gefiltert, was mit den Z-transformierten Komponenten $h^*_i(z)$ des Parametervektors h^* zu Gl. (4.24) führt.

$$\hat{h}_i(z) = F(z)h^*_i(z)$$ (4.24)

Durch die Variabilität des Patientenverhaltens ist zu erwarten, dass die Modelle nicht immer mit der gleichen Zuverlässigkeit Vorhersagen können. Um geeignet reagieren zu können und z. B. automatisch auf eine andere Unterstützungsform umzuschalten, falls die Vorhersage zu schlecht ist, ist eine Quantifizierung der Modellgüte erforderlich. Grundsätzlich kommen zwei Herangehensweisen in Frage: Man quantifiziert das Konvergenzverhalten oder man quantifiziert die Modellunsicherheit. Für die erste Herangehensweise bietet sich ein Kriterium an, dass sich aus der Fehlerfortpflanzung Gl. (2.47) ergibt:

$$\|I - \gamma_{k+1} H\| < 1.$$ (4.25)

Wenn die Norm dieser Matrix kleiner 1 ist, nimmt die gleiche Norm des Fehlers ab. Wenn modellbasiert ermittelte Lernrate γ_{k+1} zur Erfüllung von Gl. (4.25) für die nächste Iteration führen, ist das Modell geeignet, auch wenn es unter Umständen eine schlechte Vorhersage für die tatsächliche Bewegung liefert.

Die zweite Herangehensweise besteht aus der statistischen Beschreibung der letzten M gefilterten Parametervektoren \hat{h}. Berechnet werden Mittelwert, Stan-
Kapitel 4 Konzept
dardabweichung und Parameterunsicherheit. Der Mittelwert ist definiert als
\[
\bar{h}_{i,k} = \frac{1}{M} \sum_{j=k-M}^{k} \hat{h}_{i,j}.
\] (4.26)
Eine erwartungstreue Schätzung für die Standardabweichung ist
\[
s_{i,k}^2 = \frac{1}{M-1} \left[\left(\sum_{j=k-M}^{k} \hat{h}_{i,j}^2 \right) - \frac{1}{M} \left(\sum_{j=k-M}^{k} \hat{h}_{i,j} \right)^2 \right].
\] (4.27)
Diese Formulierung hat den Vorteil, dass die Summen von Iteration zu Iteration in linearer Laufzeit \(O(1)\) aktualisiert werden können, also schneller als mit der gebräuchlicheren Formulierung in \(O(M)\). Hierbei ist die \(O\)-Notation wie in der Informatik üblich definiert, siehe [18]. Die Parameterunsicherheit \(\Delta h_{i,k}\) ist der maximale Betrag der Abweichung zwischen gefilterten Parametern und deren Mittelwert:
\[
O_{i,k} \equiv \left\{ |\bar{h}_{i,j} - \hat{h}_{i,j}| : j \in \{k - M, k - M + 1, \ldots, k\} \right\}
\]
\[
\Delta h_{i,k} = \max(O_{i,k}).
\] (4.28)
Sie kann nur in \(O(M)\) berechnet werden, was für große \(M\) u. U. zu berücksichtigen ist, entweder durch eine Parallelisierung oder durch Vermeidung der Online-Schätzung von \(\Delta h_{i,k}\).

Lernratenoptimierung Wie in Abschnitt 2.5.2 beschrieben, kann das Modellwissen verwendet werden, um eine bzgl. Fehlerreduktion und Störunterdrückung optimale Lernrate zu bestimmen. Hierzu müssen die geeigneste Schätzung der Modellparameter gefunden und das Gewicht \(w\) eingestellt werden, das der Priorisierung der Teilziele entspricht. In Simulationen soll untersucht werden, wie das Filter \(F(z)\) in Gl. (4.24) bei realen Patientenbewegungen auszulegen ist, um die Modellschwankungen zu reduzieren. Gesucht ist die maximale Bandbreite, bei der die Änderungen in den Parametern die Konvergenz der ILR nicht negativ beeinflussen. Um das Gewicht \(w\) einzustellen, wird eine Konvergenzgeschwindigkeit vorgegeben, also zum Beispiel das Ziel, nach 15 Iterationen muss unter idealen Bedingungen der quadrierte, integrierte Fehler auf 10 Prozent seines Ausgangswerts sinken. Damit wird das Verfahren O-ILR mit einer K-ILR vergleichbar, bei der in analoger Weise \(\gamma\) eingestellt wird. Ob der zu erwartende Vorteil von geringerer Störänfälligkeit in Phasen kleinerer Fehler erreicht wird, soll ebenfalls in den Simulationen untersucht werden.
4.1 Bimanuelles Training

Frequenzabhängige Lernrate

Analog zur Lernratenoptimierung wird auch im Frequenzbereich ein Modell berechnet, um durch Polvorgabe für jede Frequenz eine komplexe Verstärkung zu bestimmen.

Modellbildung

Das Modell im Frequenzbereich ist durch die N komplexen Verstärkungen $\hat{h}(j\omega_i)$ beschrieben. Die Transformation zwischen Positions- und Zeitbereich erfolgt mit der diskreten Fourier-Transformation (DFT), also über die Summe

$$
\hat{f}(j\omega_k) = \sum_{j=0}^{N-1} e^{i\omega_k j} \cdot f_j \quad \omega_k = \frac{2\pi k}{N},
$$

(4.29)

welche die komplexe Exponentialfunktion mit unterschiedlichen Frequenzen ω_k als orthogonale Basisfunktionen verwendet. Durch die elementweise Multiplikation mit diesen Basisfunktionen findet eine Projektion statt, deren Ergebnis eine Amplitude und eine Phase für jede Frequenz ist. In der Implementierung sollen Bibliotheken zur schnellen Berechnung dieser Summe durch Zwischenspeicherung wiederkehrender Teilsummen verwendet werden (FFT). Um die Systemmatrix aus Gl. (2.53) zu bestimmen, können direkt die Quotienten

$$
\hat{h}_k^d = \hat{h}(j\omega_k) = \frac{y(j\omega_k)}{u(j\omega_k)}
$$

(4.30)

berechnet werden. Als Alternative soll zudem die empirische Schätzung der Übertragungsfunktion berechnet und untersucht werden. Dafür wird zunächst die Spektraldichte $S_{uu}(\omega_k)$ des Eingangs u geschätzt:

$$
S_{uu}(\omega_k) = \hat{\tau}(j\omega_k)\hat{\tau}(-j\omega_k).
$$

(4.31)

S_{uu} ist eine Schätzung der Fourier-Transformierten Autokorrelation vom Eingang u, der in diesem Fall dem Drehmoment τ entspricht. Entsprechend wird S_{uy} berechnet:

$$
S_{uy}(\omega_k) = \hat{\alpha}(j\omega_k)\hat{\tau}(-j\omega_k),
$$

(4.32)

um schließlich die Übertragungsfunktionen $\hat{h}(j\omega_k)$ wie z. B. in [93] vorgeschlagen zu schätzen als

$$
\hat{h}_k^e = \frac{S_{uy}(\omega_k)}{S_{uu}(\omega_k)}.
$$

(4.33)

Wie im Positionsbereich wird ein Filter eingeführt, dass schnelle Schwankungen von Modellparametern unterdrückt. Es wird aufgeteilt in ein Amplituden-
filter $F_a(z)$ und ein Phasenfilter $F_\varphi(z)$:

\[
|h_i(z)| = F_a(z)|\hat{h}_i^*(z)| \quad (4.34)
\]

\[
\arg\{\hat{h}_i(z)\} = F_\varphi(z)\arg\{\hat{h}_i^*(z)\} \quad (4.35)
\]

Die Modellunsicherheit kann ähnlich wie im Positionsbereich über die Standardabweichung $s_{i,k}^2$ vom Mittelwert $\hat{h}_{i,k}$ und die maximale Abweichung vom Nominalmodell $\Delta \hat{h}_{i,k}$ innerhalb der letzten M Iterationen quantifiziert werden. Definiert sind diese Größen wie in den Gleichungen (4.27), (4.26) und (4.28), mit dem Unterschied, dass mit den Fourier- transformierten komplexen Größen gerechnet wird. Diese Systemkenntnis kann unmittelbar eingesetzt werden, um die ILR robust monoton konvergent zu machen, mittelbar für Schaltvorgänge genutzt werden oder langfristig als Indikator für die Performance des Patienten herangezogen werden.

Polvorgabe Für die Polvorgabe wird die im Abschnitt 2.5.3 vorgestellte allgemeine Modellierung zunächst so vereinfacht, dass wie im Positionsbereich nur aus dem Positionsfehler und nicht durch getrennte Filter für Soll- und Istbewegung gelernt wird, d. h. es wird

\[
\Gamma \equiv S \quad (4.36)
\]

gesetzt. Die Übertragungsfunktion im Z-Bereich für die i-te Frequenz aus Gl. (2.54) wird dann zu

\[
\hat{h}_i = \frac{\beta^*_{i}}{\alpha^*_{i}} = \frac{g^*_i \gamma^*_i z}{z - 1 + g^*_i \gamma^*_i} = \frac{1 - z_{p,i}}{g^*_i} \quad (4.37)
\]

4.1.5 Anpassung der Reglersteifigkeit und Führung der gesunden Hand

4.1 Bimanuelles Training

i-te Iteration zu dem zusätzlichen zeitabhängigen Feedback-Drehmoment

\[\tau_{FBi}(t) = k_i \cdot e(t)_i \] \hspace{1cm} (4.38)

Von der Z-ILR wird sie über die konstante Lern- und Vergessensrate ϵ und f aus dem gemittelten Fehlerbetrag angepasst:

\[k_{i+1} = f k_i + \epsilon \int_0^1 |e(\alpha)|d\alpha \quad 0 < f < 1, \quad 0 < \epsilon \] \hspace{1cm} (4.39)

Die NZ-ILR lernt aus der p-ten Potenz des Fehlerbetrages $\bar{e} = \int_0^1 |e(\alpha)|d\alpha$:

\[k_{i+1} = f k_i + \begin{cases} 0, & \bar{e} < e_{\text{min}} \\ \epsilon_N (\bar{e} - e_{\text{min}})^p, & \bar{e} \geq e_{\text{min}} \land \bar{e} \leq e_{\text{max}} \\ 1, & \bar{e} > e_{\text{max}} \end{cases} \] \hspace{1cm} (4.40)

Zusätzlich können Mindest- und Maximalfehler e_{min} und e_{max} vorgegeben werden, um den Effekt weiter zu verstärken, dass kleine Fehler kaum oder keine Anpassung bewirken und bei großen Fehlern eine steife Unterstützung gegeben wird. Die Verstärkung ϵ_N wird dann so gewählt, dass die Unterstützungsannahme stetig ist.

4.1.6 Stabilität und Konvergenz

Eine Definition für Stabilität und monotone Konvergenz von iterativ lernenden Reglern findet sich im Abschnitt 2.5.1 dieser Arbeit. Hier soll zunächst anhand der Fehlerfortpflanzung der Einfluss eines zusätzlichen Feedback-Reglers auf die Konvergenz betrachtet werden. Danach werden in Operatorschreibweise die Lerngleichungen von Mensch und Gerät im z-Bereich aufgestellt und zunächst allgemein, also für die O-ILR und die F-ILR gemeinsam interpretiert. Es wird der Einfluss des Menschens in Form zusätzlicher Lernrate und Steifigkeit und einer veränderten Modellschätzung diskutiert. Schließlich wird für den Frequenzbereich eine Modellunsicherheit definiert. Mit ihrer Hilfe kann mit Messdaten die Polvorgabe so erfolgen, dass das Lernen robust stabil und robust monoton konvergent ist, also für alle real gemessenen Modelle. Ob die dafür unter Umständen nötige Reduktion der Konvergenzrate hinnehmbar ist, kann nur mit Daten beantwortet werden.

Fehlerfortpflanzung mit Feedback-Regler

Die monotone Konvergenz des Fehlerbetrages gegen null folgt für die modellbasierten Verfahren bei hinreichend genauen Modellen unmittelbar aus der Auslegung. Deshalb wird hier nur gezeigt, dass die monotone Konvergenz der Dreh-
momentanpassung auch die monotone Konvergenz der gekoppelten ILR mit Impedanz- und Drehmomentanpassung zur Folge hat. Dazu wird angenommen, dass die Systemmatrix H hinreichend genau bekannt ist und es wird nur das Konvergenzverhalten ohne die Vergessensrate betrachtet. Das Drehmomentprofil für die $k+1$-te Iteration setzt sich zusammen aus dem alten Profil, der Zunahme durch den Fehler der k-ten Iteration und dem Feedbackanteil, der im allgemeinen aus dem Produkt einer positiv definiten Reglermatrix K_{k+1} und dem aktuellen Fehler e_{k+1} berechnet wird. Für die Z-ILR und die NZ-ILR ist K_{k+1} eine Diagonalmatrix, bei der alle Diagonalelemente gleich k_{k+1} sind. In Supervektorschreibweise gilt:

$$\tau_{k+1} = \tau_k + \Gamma_{k+1} e_k + K_{k+1} e_{k+1}$$ \hspace{1cm} (4.41)

Mit der Modellgleichung (4.18) und der Definition des Fehlers aus Gl. (4.1) berechnet sich der Fehler für die nächste Iteration als

$$e_{k+1} = \alpha_{k+1} - H [\tau_k + \Gamma_{k+1} e_k + K_{k+1} e_{k+1}]$$ \hspace{1cm} (4.42)

$$e_{k+1} = (I + H K_k)^{-1} (I - H \Gamma_{k+1}) e_k$$ \hspace{1cm} (4.43)

Die modellbasierten Verfahren wählen die Lernrate Γ so, dass $\|I - H \Gamma_{k+1}\|$ abnimmt. Solange H positiv definit ist, folgt deswegen und mit Gl. (4.43), dass die entsprechende Fehlernorm durch die Steifigkeit K_k nur noch weiter abnimmt. Wenn beim Lernen des Drehmoments weiterhin das Feedbackdrehmoment nicht berücksichtigt wird, nimmt durch die Reglersteifigkeit die Drehmomentunterstützung zwar langsamer zu, führt aber nicht zur unkontrollierten Unterstützungsanzunahme. Problematisch wird es, wenn durch starken Gegendruck das identifizierte Modell H nicht positiv definit ist. Ob und wie oft dieser Fall in der Praxis auftritt, muss überprüft werden. Die hier vorgestellte Argumentation ist sowohl für die O-ILR als auch für die F-ILR gültig.

Einfluss des menschlichen Lernens auf die Auslegung

In Abbildung 4.4 ist das gekoppelte System aus Mensch und Gerät in Operatorschreibweise dargestellt. Alle Signale sind Parametervektoren, die im Zeitbereich die Koeffizienten von Blockpulsfunktionen und im Frequenzbereich komplexe Fourierkoeffizienten darstellen. Bis auf den skalaren Verzögerungsopera-
Abbildung 4.4: Gekoppelteres Lernen von Mensch und Maschine in Parameterdarstellung
Kapitel 4 Konzept

tor z^{-1} sind alle Operatoren quadratische Matrizen passender Dimension. Die Indizes 1 und 2 stehen für maschinelles und menschliches Lernen. Für die Drehmomentvorsteuerung ergibt sich mit den Vergessensoperatoren S_1 und S_2 und den Lernoperatoren Γ_1 und Γ_2

$$\tau_1 = [S_1 \tau_1 + \Gamma_1 \varepsilon] z^{-1} \quad (4.44)$$
$$\tau_2 = [S_2 \tau_2 + \Gamma_2 \varepsilon] z^{-1} \quad (4.45)$$

und nach Umstellen

$$\tau_1 = (zI - S_1)^{-1} \Gamma_1 \varepsilon \quad (4.46)$$
$$\tau_2 = (zI - S_2)^{-1} \Gamma_2 \varepsilon \quad . \quad (4.47)$$

Die Vergessensoperatoren S_1 und S_2 werden im Folgenden zur Einheitsmatrix I gesetzt, was keinem Vergessen entspricht. Unter Berücksichtigung der Steifigkeiten K_1 und K_2 ist das resultierende, auf Arm und Griff wirkende Drehmoment

$$\tau^* = \left[\frac{K_1 + K_2 + (z - 1)^{-1}}{K} \left(\begin{array}{c} \Gamma_1 + \Gamma_2 \\ \Gamma \end{array} \right) \right] \cdot \varepsilon = A \varepsilon \quad (4.48)$$

Hieraus ist ersichtlich, dass die resultierende Steifigkeit K gleich der Summe aus menschlicher und maschiner Steifigkeit ist und dass der Lernoperator Γ der Summe der Einzellernoperatoren gleich. Um die Auswirkungen auf die Konvergenz nachzuvollziehen, soll mit der in Gl. (4.48) eingeführten Abkürzung A, die Systemgleichung aufgestellt werden. Ausgehend vom Systemoperator H, für den

$$\beta = H \tau^* = H A \varepsilon = H A (\alpha - \beta) \quad (4.49)$$

gilt, ergibt sich für die diskrete Übertragungsfunktion zwischen der Position der gesunden Hand α und der Position der betroffenen Hand β

$$\beta = (I + H A)^{-1} H A \alpha \quad . \quad (4.50)$$

Einsetzen für A entsprechend Gl. (4.48) liefert

$$[z I - I + H \Gamma + (z - 1) H K] \beta = [H \Gamma + (z - 1) H K] \alpha \quad . \quad (4.51)$$

Die homogene Lösung der Differenzengleichung wird mit $\alpha \equiv 0$ bestimmt. Mit dem Ansatz $\beta = z^p P$ ergibt sich für die Basis bzw. den Pol z_P

$$z_P I = (I + H K)^{-1} (I + H K - H \Gamma). \quad (4.52)$$
Für den Frequenzbereich kann diese Gleichung quantitativ ausgewertet werden. Die unten hergeleiteten Zusammenhänge sind aber auch für andere Basisfunktionen bereits an Gl. (4.52) erkennbar. Wird \(\Gamma \) so gewählt, dass \(z_P \) betragsmäßig kleiner eins ist, dann wird \(|z_P|\) durch größere \(K \) monoton gegen 1 streben, aber immer kleiner als eins bleiben. Das heißt durch zusätzliche Feedbackregler in Form von Reflexen oder Positionsreglern wird das gekoppelte System langsamer konvergieren, aber weiterhin monoton. Problematischer sind zusätzliche Lernratenänderungen in \(\Gamma \) durch das menschliche Lernen. Gl. (4.52) bestätigt für positive \(z_P \), dass zuerst die Konvergenz beschleunigt wird, weil der Wert von \(|z_P|\) abnimmt. Bei positiv definitem \(H \) wird \(H \Gamma \) aber irgendwann so groß, dass \(z_P \) negativ wird und damit die ILR nicht mehr monoton sondern mit einer alternierenden Fehlerfolge konvergiert. Wenn \(z_P \) für sehr große \(\Gamma \) gar kleiner \(-1\) wird, ist das gekoppelte System instabil.

Ein anderer Effekt durch Kopplung von Mensch und Gerät wirkt entgegengerichtet. Das von der Gerätereglung verwendete Systemmodell ist eine aus den Bewegungsdaten stets angepasste Schätzung. Wenn zusätzlich der Mensch aktiv ist, wird der eigene Einfluss überschätzt und die Regelung wird langsamer. Eigentlich bildet der Systemoperator \(H \) die Summe der Drehmomente auf die Position der betroffenen Seite ab:

\[
\beta = H (\tau_1 + \tau_2),
\]

wobei die Steifigkeit \(K \) zu null gesetzt wurde, da sie bereits als unkritisch bzgl. der Konvergenz eingestuft wurde. Aus Sicht des Geräts ist ohne Drehmomentensensor nur die Schätzung \(H_1 \) möglich, die durch den Zusammenhang

\[
\beta = H_1 \tau_1
\]

definiert ist. Sei für eine Abschätzung des Einflusses dieses Unterschieds \(H \) das \(r \)-fache Vielfache von \(H_1 \):

\[
H = r H_1
\]

Dann liefert Einsetzen von Gl. (4.55) in Gl. (4.53) und Gleichsetzen von Gl. (4.53) mit Gl. (4.54)

\[
\tau_1 = r (\tau_1 + \tau_2)
\]

Wenn nun das menschliche Drehmoment genauso groß wie das des Gerätes ist, gilt \(\tau_1 = \tau_2 \) und damit

\[
r = \frac{1}{2}
\]

Das heißt, \(H \) ist kleiner als das für die Einstellung des Lernoperators \(\Gamma \) verwendete \(H_1 \) und zwar für das Beispiel, dass menschlicher und maschineller Drehmomentanteil gleichgroß sind genau halb so klein. In diesem Fall ist nach Gl. (4.52) die Verdopplung des Lernoperators zulässig, um die Konvergenzrate
Kapitel 4 Konzept

der Auslegung beizubehalten. Im Allgemeinen kann Γ noch mit $1/r$ multipli-
ziert werden, ohne dass das gekoppelte System schneller als in der Auslegung
angestrebt wird. Dieser Effekt hilft bei der Zielerreichung. Bei aktiven Patienten
ist die Überschätzung der Modellverstärkung besonders groß, was aber durch
ihren Lernprozess im besten Fall zu keiner Veränderung der Konvergenzrate
führt. Bei passiven Patienten entsprechen H und H_1 einander. Die Konvergenz-
rate entspricht somit der in der Auslegung angestrebt. Trotzdem bleibt eine
robuste Auslegung entscheidend, weil diese Annahmen, insbesondere bezüglich
der Korrelation von Lernen und Drehmomentbeteiligung nicht immer zutreffen
werden und das Verhalten sehr variabel ist.

Robustheit

Im Frequenzbereich gelingt die robuste Auslegung durch die Entkopplung der
Differenzengleichungen für die i-te Frequenz von allen anderen Frequenzen be-
sonders gut. Das zeigt in diesem Abschnitt die Berechnung der realen Pollage
z_R unter der Annahme die komplexe Verstärkung \hat{h}_i entspricht der mit Unsi-
cherheit beaufschlagten nominellen Verstärkung $\hat{h}_{i,N}$:

$$\hat{h}_i = \hat{h}_{i,N}(1 + w \Delta_i), \quad |\Delta_i| \leq 1.$$

Der Faktor w soll in der Umsetzung aus der maximalen Betragsabweichung
vom mittleren Modell aus zurückliegenden Iterationen abgeschätzt werden.
Für alle möglichen komplexen $\Delta_i < 1$ soll z_R dann zumindest im Einheits-
kreis liegen (Stabilität) und wenn möglich positiv sein (monotone Konvergenz).
Aus Gl. (4.51) ergibt sich für jede Frequenz eine Übertragungsfunktion im Z-
Bereich:

$$\hat{\beta}_i = \frac{\hat{h}_i \hat{\gamma}_i + (z - 1)\hat{h}_i \hat{k}_i}{z - 1 + \hat{h}_i \hat{\gamma}_i + (z - 1)\hat{h}_i \hat{k}_i} \hat{\alpha}_i.$$

$\hat{\gamma}_i$ wird nun für das nominelle System so berechnet, dass der Pol bei z_P liegt.
Nach Einsetzen dieser für $\hat{\gamma}_i$ berechneten Verstärkung in Gl. (4.59) ergibt sich
 durch Nullsetzen des Zählers die reale Pollage:

$$z_R = \frac{z_P (1 + w \Delta_i)(1 + \hat{h}_{i,N} \hat{k}_i) - w \Delta_i}{1 + (1 + w \Delta_i)\hat{h}_{i,N} \hat{k}_i}.$$

Wie schon in Operatorschreibweise, rückt der Betrag des Pols durch Steifig-
keiterhöhungen in \hat{k}_i innerhalb des Intervalls $[0, 1]$ näher an die eins. Das Un-
terstützungsprofil wird dann zwar langsamer aufgebaut, die Stabilität ist aber
nicht gefährdet. Bis zum Ende dieses Abschnitts wird daher $\hat{k}_i \equiv 0$ gesetzt und
damit der bzgl. Stabilität kritischste Fall betrachtet. Die Sprungantwort auf
4.2 Patientenbeurteilung durch Mess- und Schätzverfahren

Den Eingangssprung von 0 auf $\hat{\alpha}_i$ ist somit

$$\hat{\beta}_i = \frac{zh_{i,N}(1+w\Delta_i)}{(z-1)(z-1+h_{i,N}(1+w\Delta_i))}\hat{\alpha}_i. \quad (4.61)$$

Nach der Partialbruchzerlegung und Rücktransformation ergibt sich die Sprungantwort für den Zeitschritt k:

$$\hat{\beta}_i(k) = \sigma(k) \cdot \left[1 - (1 - (1 + w\Delta_i)(1 - z_P))^n\right] \cdot \hat{\alpha}_i \quad (4.62)$$

mit dem Einheitssprung

$$\sigma(k) = \begin{cases}
0, & k < 0 \\
1, & k \geq 0
\end{cases}$$

Ohne Unsicherheit ist wie erwartet die Differenz zwischen den Griffpositionen proportional zu z_P^k, nimmt also für $|z_P| < 1$ ab. Aus dieser Darstellung geht hervor, dass für Polvorgaben $0 < z_P < 1$ die stabilisierungserfordernde Unsicherheit eine Phase von 0 aufweist, d. h. $\Delta_i = 1$ ist, weil dann $(1 + w\Delta_i)(1 - z_P)$ besonders groß wird. $\Delta_i = -1$ ist weniger kritisch, weil z_P durch seine Vorgabe positiv ist und damit der reale Pol z_R bei gleichem w noch im Einheitskreis läge. In der Praxis ist also zu prüfen, ob

$$(1 + w)(1 - z_P) < 1 \quad (4.63)$$

gilt. Ist das nicht der Fall, helfen langsamere Vorgaben mit Polen in der Nähe von 1 unter Umständen die gewünschte robuste Stabilität zu erzielen. Diese konservative Einstellung steht jedoch im Widerspruch zum Ziel einer maschinellen Anpassung, die schneller als der Mensch lernen soll. Deswegen lässt sich nur in Experimenten abschließend entscheiden, welche Pollage die günstigste ist.

4.2 Patientenbeurteilung durch Mess- und Schätzverfahren

Kapitel 4 Konzept

4.2.1 Kriterien zur Beurteilung der lernenden Reglung

Als Maß für den Fehler wurde der über alle N Iterationen gemittelte Fehlerbetrag c_e gewählt:

$$c_e = \frac{1}{N - N_3 + 1} \sum_{i=N_3}^{N} \int_0^1 |e_i(\alpha)| d\alpha . \quad (4.64)$$

Mit $N_3 > 1$ kann ggf. der Einschwingvorgang aus der Bewertung ausgeschlossen werden. Ähnlich wird die Stellenergie über das mittlere quadrierte Drehmoment bewertet als

$$c_u = \frac{1}{N} \sum_{i=1}^{N} \int_0^1 \tau_i(\alpha)^2 d\alpha . \quad (4.65)$$

Die Kriterien zur Beurteilung der asymptotischen Verläufe von Position und Drehmoment müssen auf die Aufgabe zugeschnitten werden. Ist die Aufgabe wie in vielen Simulationen und Experimenten, die Griffe von einer definierten Startposition zu einer Zielposition zu bewegen und wird dabei nur die gesunde Hand verwendet, muss die Unterstützung die komplette Führung des u. U. mit Störungen beaufschlagten Griffes der betroffenen Seite übernehmen. Dann soll trotz niedrigem Fehler am Anfang der Bewegung die Unterstützung in einer modellprädiktiven Art bereits vorhanden sein, um erst später auftretende Fehler zu kompensieren und es soll kein Überschwingen der ILR auftreten, das heißt, am Ende soll die beschleunigte betroffene Hand nicht durch eine Gegenkraft gebremst werden. Stattdessen soll die Kraft frühzeitig zurück gehen. Zur Quantifizierung der lokalen Symmetriefehler werden $c_{e,s}$ und $c_{e,e}$ definiert als:

$$c_{e,s} = \frac{1}{N_2 - N_1 + 1} \sum_{i=N_1}^{N_2} \int_0^{\alpha_e} e_i(\alpha) d\alpha \quad (4.66)$$

$$c_{e,e} = \frac{1}{N_2 - N_1 + 1} \sum_{i=N_1}^{N_2} \int_{\alpha_s}^{1} e_i(\alpha) d\alpha . \quad (4.67)$$
4.2 Patientenbeurteilung durch Mess- und Schätzverfahren

Zur Beurteilung des lokalen Fehlers am Anfang der Bewegung als \(c_{e,s} \) wird also für alle Positionen der gesunden Hand \(\alpha \) aus dem Intervall \([0, \alpha_e]\) das Fehlerintegral berechnet. Es sollen Mittelwerte im eingeschwungenen Zustand betrachtet werden, was über die Wahl der ersten berücksichtigten Iteration \(N_1 \) und der letzten berücksichtigten Iteration \(N_2 \) erfolgt. In die Berechnung des Kriteriums zur finalen Positionsabweichung \(c_{e,e} \) gehen nur die Fehler für \(\alpha \in [\alpha_s, 0] \) ein. \(c_{\tau,s} \) und \(c_{\tau,e} \) sind analog definierte Kriterien zur Beurteilung des initialen und finalen Drehmoments:

\[
c_{\tau,s} = \frac{1}{N_2 - N_1 + 1} \sum_{i=N_1}^{N_2} \int_0^{\alpha_e} \tau_i(\alpha) \, d\alpha \quad (4.68)
\]
\[
c_{\tau,e} = \frac{1}{N_2 - N_1 + 1} \sum_{i=N_1}^{N_2} \int_{\alpha_s}^{1} \tau_i(\alpha) \, d\alpha . \quad (4.69)
\]

Schließlich erfolgt die Beurteilung von Schwankungen zwischen den Iterationen über eine numerische Ableitung der Mittelwerte von Symmetriefehler, Drehmoment und Lernrate. Zunächst sind die Mittelwerte für die Iteration \(i \) gegeben als:

\[
e_i^M = \int_0^1 |e_i(\alpha)| \, d\alpha \quad (4.70)
\]
\[
\tau_i^M = \int_0^1 \tau_i(\alpha) \, d\alpha \quad (4.71)
\]
\[
\gamma_i^M = \int_0^1 \gamma_i(\alpha) \, d\alpha \quad . \quad (4.72)
\]

Daraus wird der mittlere Betrag der Differenz berechnet, wobei die ersten \(N_3 - 1 \) Iterationen nicht berücksichtigt werden. So geht der Einschwingvorgang, indem große Schwankungen erwünscht sind, nicht in die Bewertung ein. Die Kriterien für Schwankungen von Fehler, Drehmoment und Lernrate \(c_{e,d}, c_{\tau,d} \) und \(c_{\gamma,d} \)
sind dann

\[c_{e,d} = \frac{1}{N - N_3} \sum_{i=N_3}^{N-1} |e_{i+1}^M - e_i^M|, \quad (4.73) \]

\[c_{\tau,d} = \frac{1}{N - N_3} \sum_{i=N_3}^{N-1} |\tau_{i+1}^M - \tau_i^M| \quad \text{und} \quad (4.74) \]

\[c_{\gamma,d} = \frac{1}{N - N_3} \sum_{i=N_3}^{N-1} |\gamma_{i+1}^M - \gamma_i^M|. \quad (4.75) \]

4.2.2 Patientenbeurteilung über Muskel-, Reflex- und Lerneigenschaften

Bei vier Identifikationsverfahren soll die Übertragbarkeit auf die Armrehabilitation geprüft werden, die Maximalkraftmessung, die Identifikation von mechanischen Muskeleigenschaften, die getrennte Identifikation von Muskel- und Reflexeigenschaften und die Ermittlung von Lernraten.

Die Maximalkraftmessung soll mit Hilfe von zusätzlichen Drehmomentsensoren erfolgen. Außerdem soll eine grafische Oberfläche umgesetzt werden, die für beide Seiten separat die gewünschte Krafrichtung anzeigt. In Versuchen werden dann die Griffe gemeinsam und getrennt Verfahren und die Richtungsvorgaben für beide Hände bzw. für die Hände einzeln angezeigt. Mit Hilfe der Daten soll dann diskutiert werden, ob sie sich für die Patientenbeurteilung oder gar für die Parametrierung der Unterstützungsanpassung heranziehen lassen.

Zur Identifikation weiterer mechanischer Eigenschaften soll die in der Roboterik für die Systemidentifikation eingesetzte adaptive Reglung verwendet werden. Es soll ein parametrisches Verfahren verwendet werden, weil so das Identifikationsergebnis physikalisch interpretiert werden kann, was bei den alternativen nichtparametrischen Verfahren wie künstlichen neuronalen Netzen oder Look-Up-Tabellen nicht der Fall wäre. Wie Burdet und andere in [11] und [12] zeigten, ist der adaptive Feedforward-Regler (AFFC) eine auch bei Reibung und Rauschen robuste Wahl. Er sollte auch für Schlaganfallpatienten verwendbar sein, da die nötige Bewegungsvorgabe der früherer Spastikmessungen ähnelt [68]. Das Blockschaltbild Abbildung 4.5 zeigt seine Funktionsweise. Eine geeignete Anregung \(q_d \) wird als Positionsanregung in einen klassischen Regelkreis mit Regler \(K \) und Strecke \(D \) eingelegt. Ein zusätzliches inverses Streckenmodell \(\hat{D}^{-1} \) berechnet eine Vorsteuerung \(\tau_{FF} \), sodass die Stellgröße des Reglers \(\tau_{FB} \) null wird, wenn die Modellschätzung \(\hat{D} \) zu D konvergiert. Als Regler wird der
4.2 Patientenbeurteilung durch Mess- und Schätzverfahren

\[\beta_d \rightarrow D^{-1} \]

\[e \rightarrow K \rightarrow \tau_{FB} \rightarrow \tau \rightarrow D \rightarrow \beta \]

Abbildung 4.5: Blockschaltbild der adaptiven Regelung für die mechanische Armidentifikation

PD-Regler mit der Stellgröße

\[\tau_{FB} = k_p e + k_d \dot{e} \] (4.76)

verwendet, mit den Parametern \(k_p \) und \(k_d \) und dem Regelfehler \(e = \beta_d - \beta \). Die Modellanpassung erfolgt dann fehler- und zustandsabhängig:

\[\Delta[k d m]^\prime = \Gamma[\beta_d \dot{\beta}_d \ddot{\beta}_d]^\prime \tau_{FB} . \] (4.77)

Das heißt die Dämpfung \(d \) wird besonders dann angepasst, wenn die Geschwindigkeit \(\dot{\beta}_d \) groß ist, die Masse bzw. Trägheit wird dann stark adaptiert, wenn die Beschleunigung \(\ddot{\beta}_d \) groß ist und die Steifigkeit wird besonders dann als fehlerverursachend angenommen, wenn die Auslenkung einen großen Wert hat. Die Gewichtung erfolgt über die quadratische Matrix \(\Gamma \).

Ein Vorteil dieses Schätzverfahrens ist es, dass es ohne Drehmomentsensor auskommt. Es soll direkt in der Firmware implementiert werden, um die Zeitverzögerungen klein zu halten und in Simulationen vorab getestet werden.

Auch die von Franklin und anderen in [30] vorgestellte Lernratenidentifikation lässt sich vielleicht auf das Armtraining übertragen. Es sollen dazu ein divergentes und ein geschwindigkeitsabhängiges Drehmoment während der Aufgabenausführung durch gesunde Probanden erzeugt werden. Das divergente Moment zieht den Probanden in jedem Fall von der idealen Position weg, es ist definiert als

\[\tau_d(\beta; \alpha) = -k_d (\alpha - \beta) . \] (4.78)
mit der Fehler verstärkenden Konstante k_d. Hierauf kann nur mit einer Steifigkeitsanpassung reagiert werden, um den Fehler zu reduzieren, deren Lern- und Vergessensraten also mit Hilfe von τ_d bestimmt werden können. Analog soll für die Untersuchung der Vorsteuerung das Drehmoment

$$\tau_f(\beta) = k_f \dot{\beta}$$ (4.79)

ezur Simulation von richtungsabhängigen Behinderungen aufgeschaltet werden.

4.3 Telerehabilitation

Der Suchraum, in dem der geeignetste Transformations-Algorithmus für die Haptik-Verbindung gesucht wird, wird durch intuitive Verfahren wie virtuelle Federn und die Scattering-Transformation mit unterschiedlichen Kausalitäten aufgespannt. Auch die integrierten wellentransformierten Größen, zusätzliche Glättungsfilter, Dämpfer und eine Zeitsynchronisierung beider Rechner sollen mit betrachtet werden. Das Ziel ist stets, Gl. (2.55) möglichst zu erreichen, also die Master- und Slavegeschwindigkeiten v_m und v_s einander anzugleichen, bei gleichzeitigem Kräftegleichgewicht $f_m = -f_s$.

Admittanzkausalität

Es werde zunächst das Gerät als Admittanz geregelt und modelliert. Das heißt, es wird eine Kraft über den Sollstrom vorgegeben und die Geschwindigkeit gemessen. Wenn keine Geschwindigkeitsmessung vorliegt ist zudem zu überlegen, nur die Positions werte zu verwenden und auf das numerische Differenzieren zu verzichten. Das führt direkt zu dem ersten intuitiven Ansatz, einer virtuellen Feder, die um einen Geschwindigkeitsanteil ergänzt
werden kann und die Kraft beim Master berechnet als

\[f_m = b_T(v_m - v_s) + k_T(x_m - x_s) \] (4.80)

mit den Positionen \(x_m \) und \(x_s \) von Master- und Slavegriff und positiven Konstanten \(b_T \) und \(k_T \). Um die Geschwindigkeit abzuschätzen, soll der Differenzenquotient aus Positions- und Zeitwerten mit variabler Schrittweite \(M \) verwendet werden, was einer Mittelwertfilterung der Geschwindigkeit über die letzten \(M \) Abtastwerte der Steuerung entspricht.

Die Scattering-Transformation kann theoretisch auch für die Admittanzkausalität angewandt werden. Durch Umformen der Definitionsgleichungen (2.56) und (2.57) wird dann aus der eingehenden Welle \(w \) und der berechneten Geschwindigkeit \(v \) die nötige Kraft \(f \) als Stellgröße bestimmt. Da hier eine Bewegung jeder Reaktion vorausgehen muss, ist diese Variante insbesondere für langsame Bewegungen nicht geeignet. Deswegen und wegen der erforderlichen numerischen Ableitung, soll zudem eine integrierte Formulierung getestet werden. Aus den Wellenintegralen

\[
U = \int_0^t u(\tau)d\tau \quad \text{und} \\
W = \int_0^t w(\tau)d\tau
\] (4.81)

wird dann mit der gemessenen Position direkt die integrierte Kraft berechnet, die allerdings vor ihrer Verwendung als Stellgröße auch wieder zu differenzieren ist, siehe Gl. (2.56) und Gl. (2.57).

Abbildung 4.6: Modifizierte Scattering-Transformation für die Impedanzkausalität mit Leitungsimpedanz b und Dämpfungsskalierung s

wird als ausgehende Welle an das andere Gerät gesendet. Wenn diese Vorgabe als eingehende Welle w eintrifft, wird die Sollgeschwindigkeit und damit auch die Kraft erhöht. Aus dem Schaltbild ist ersichtlich, dass die Skalierung $\sqrt{2b}$ sich heraus kürzt, also nur für die Energiebetrachtungen interessant ist und im Betrieb der Geräte weggelassen werden kann.

Vergleichskriterien Um unterschiedlichen Telehaptik-Methoden zu vergleichen, sind die Ziele Stabilität und Transparenz zu prüfen. Die Überprüfung der Stabilität mit zwei Probanden und unterschiedlichen Bewegungen ist relativ einfach möglich, auch wenn ein kleines Restrisiko bleibt, dass in der Praxis anderes Bedienverhalten doch zur Instabilität führt. In Vergleichen ist demnach nur noch die Transparenz zu quantifizieren. Dafür werden zwei Transparenzzahlen eingeführt, mit denen Positionen und Kräfte beider Geräte verglichen werden. Im Gegensatz zur Regelung ist hier die Betrachtung der Position an Stelle der
4.3 Telerehabilitation

Geschwindigkeit unkritisch, weil die Positionsgenauigkeit einerseits ein mehr als gleichberechtigtes Ziel darstellt und andererseits die für die Stabilität relevante Leistungsbilanz nicht mehr überprüft werden muss. Definiert seien die Transparenzzahl für die Position T_p und die Kraft T_f mit der Experimentdauer T als:

$$T_p = \frac{1}{T} \int_0^T \left| 1 - \frac{x_m(t)}{x_s(t)} \right| dt$$

und

$$T_f = \frac{1}{T} \int_0^T \left| 1 - \frac{f_m(t)}{f_s(t)} \right| dt .$$

Bei hoher Transparenz, also Positions- und Kraftgleichheit, sind diese Transparenzzahlen null, sie wachsen mit den Abweichungen zwischen den Geräten. Es ist zu beachten, dass diese Definitionen richtungsabhängig sind und deswegen die Testbewegungen so gewählt werden müssen, dass die Bewegungen in beide Richtungen in ihrer Dauer und Art ähnlich ausfallen.
Kapitel 4 Konzept

5.1 Simulationen

Simuliert wurde für alle drei Teilziele, die ILR, die Patientenbeurteilung und die Telehaptik. Die ILR-Simulationen lassen sich weiter unterteilen in solche, die sich mit der Modellidentifikation befassen, andere die einzelne ILRen betrachten und jene, in denen zwei ILRen zu einem gekoppelten Mensch-Maschine-System verschaltet sind. Letztere unterscheiden sich wieder in ihrem Ziel, das einmal eine grobe Modellierung für eine numerische Optimierung ist, ein anderes Mal einen realitätsnahen Vergleich der ILR-Verfahren beinhaltet, ein drittes Mal die Parametrierung fokussiert und ein viertes und letztes Mal die Auswirkungen unterschiedlicher Anregungen und Störungen zum Gegenstand macht.
Kapitel 5 Umsetzung

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>Länge des diskretisierten Vektors</td>
</tr>
<tr>
<td>(\Omega)</td>
<td>Grenzfrequenz für Modellfilter</td>
</tr>
<tr>
<td>(R_{\min})</td>
<td>minimaler Rang für Matrixinvertierung</td>
</tr>
<tr>
<td>(T_n)</td>
<td>Normtyp für Gl. (4.25) (\in {1, \ldots, \infty})</td>
</tr>
<tr>
<td>(\gamma_d)</td>
<td>Default-Wert für Lernrate</td>
</tr>
<tr>
<td>(w)</td>
<td>Gewicht für Gütekriterium Gl. (2.45)</td>
</tr>
<tr>
<td>(\tau_k(t))</td>
<td>Unterstützendes Drehmoment</td>
</tr>
<tr>
<td>(\alpha_k(t))</td>
<td>Position der gesunden Hand</td>
</tr>
<tr>
<td>(\beta_k(t))</td>
<td>Position der betroffenen Hand</td>
</tr>
</tbody>
</table>

Tabelle 5.1: Eingänge der Simulation zur Modellschätzung für das Verfahren O-ILR

5.1.1 Modellschätzung

Die Simulationen zur Modellschätzung sind zunächst losgelöst von der Verwendung des Modells in einer Regelung. Sie führen zu vollständigen Identifikations-Algorithmen für die Verfahren O-ILR und F-ILR, die das Konzept um geeignete Initialisierungen, passende Einstellungen und zusätzliche Robustheitserweiterungen ergänzen.

Konkret wurden die Gln. (4.18) bis (4.28) für das Zeitbereichs-Modell sowohl in MATLAB als auch in C++ implementiert. Für das Modellfilter aus Gl. (4.24) wird ein Butterworth-Filter zweiter Ordnung verwendet, mit der normierten Grenzfrequenz \(\Omega \). Dieser Wert liegt zwischen 0 und 1, wobei 1 einem Filter entspricht, dessen Grenzfrequenz bei der halben Bewegungsfrequenz liegt. Das Filter und seine Speicher für alle Ein- und Ausgänge werden mit dem ersten gültigen Modell initialisiert. Die Simulation lässt sich anschaulich charakterisieren durch ihre Eingänge und ihre Ausgänge, die durch die genannten Berechnungen verknüpft und in den Tabellen 5.1 und 5.2 dargestellt sind.

Ausgehend von einer lauffähigen Startparametrierung sollen später die Parameter, also die ersten 6 Einträge in Tabelle 5.1 so variert werden, dass die Bewertung mit den Kriterien aus Tabelle 5.2 eine gute Zielerreichung anzeigt.

Da das Problem nicht stark gekoppelt ist, lässt sich das in getrennten Anpassungen für jeden Parameter durchführen. Die Verläufe \(\tau_k(t) \), \(\alpha_k(t) \) und \(\beta_k(t) \) kommen aus verschiedenen möglichst repräsentativen Experimenten. Zu beachten ist noch, dass in der MATLAB-Berechnung auch die Art der Norm \(T_n \) für das Gütekriterium aus Gl. (2.45) eingestellt werden kann, die sich durch die weiteren Berechnungen zieht und unter idealen Bedingungen zur Folge hat, dass die entsprechende Norm von \(e_k \) abnimmt. Mit \(T_n = 2 \), wird beispielsweise
Bezeichnung	Beschreibung
γ_k | Lernrate ohne Modellfilter
$\hat{\gamma}_k$ | Lernrate mit gefiltertem Modell
N_1 | $\|I - \gamma_{k+1} H_k\|$ |
N_2 | $\|I - \gamma_{k+1} H_{k+1}\|$ |
N_3 | $\|I - \hat{\gamma}_{k+1} H_{k+1}\|$ |

Tabelle 5.2: Ausgänge der Simulation zur Modellschätzung für das Verfahren O-ILR

Die Lernrate so berechnet, dass die euklidische Norm des Fehlers abnimmt. Um zu beurteilen, wie gut dieses Ziel tatsächlich erreicht wird werden die Kriterien N_1 bis N_3 in Tabelle 5.2 definiert. N_1 gibt gemäß Gl. (4.25) an, wie sich die entsprechende Norm des Fehlers ändert, wenn die aktuelle Modellschätzung auch noch für die nächste Iteration gilt. N_2 betrachtet den Fall, wenn der Lernschritt bis ans Ende der Bewegung verzögert wird, sodass schon ein Modell H_{k+1} vorliegt, wenn γ_{k+1} berechnet wird. N_3 schließlich betrachtet diesen letzten Fall unter Verwendung der Lernrate $\hat{\gamma}_{k+1}$, die mit Hilfe des gefilterten Modells berechnet wurde.

5.1.2 Optimierung der konstanten Lernparameter

Um optimale Einstellungen für γ, s, ϵ und f zu ermitteln, wird das System im Bildbereich so vereinfacht, dass es schnell genug simuliert werden kann, um von einem MATLAB-Optimierer zur Berechnung der Gütekriterien aufgerufen zu werden. Dementsprechend werden hier das vereinfachte System und die Gütekriterien vorgestellt. Im Bildbereich ergibt sich das Blockschaltbild aus Abb. 5.1. Die veränderlichen Muskeleigenschaften und der Geräteregler werden jeweils zerlegt in einen dynamischen Teil Z_0 und eine konstante Verstärkung Z_h bzw. Z_d. Über Z_0 kann vor allem das Verhältnis von Dämpfung c_d und Steifigkeit c_k vorgegeben werden, da diese Übertragungsfunktion definiert ist als

$$Z_0 = c_k + c_d s$$ \hspace{1cm} (5.1)

siehe Gl. (4.2) im Abschnitt 4.1.3. Wie auch in den folgenden Gleichungen, sind alle Größen Laplace-transformiert, also abhängig vom komplexen s. Die Momentensumme aus dem Drehmoment der Regler τ_{FB} und der gelernten Vorsteuerung $\tau + \tau_h$ geht auf die experimentell ermittelte Übertragungsfunktion
Kapitel 5 Umsetzung

Abbildung 5.1: Blockdiagramm für die Optimierung der Lernparameter

des Griffes Z_d, der sich auf die Position β bewegt:

$$\beta = Z_d \cdot \tau_S$$

(5.2)

$$\tau_S = \tau + \tau_h + \tau_{FB}$$

(5.3)

$$\tau_{FB} = \tau_{FB,h} + \tau_{FB,c}.$$

(5.4)

τ_{FB} setzt sich aus dem menschlichen Anteil $\tau_{FB,h}$ und dem Anteil des Geräts $\tau_{FB,c}$ zusammen.

In diesem linearisierten System ist es möglich, das Übertragungsverhalten des offenen Kreises L_i, die Sensitivität S_i und die komplementäre Sensitivität T_i für jede Iteration i zu berechnen.

$$L_i = (k_i + k_{h,i}) \cdot Z_0 \cdot Z_d$$

(5.5)

$$S_i = \frac{1}{1 + L_i}$$

(5.6)

$$T_i = L_i \cdot S_i.$$

(5.7)

Eingänge sind die Positionsannahme mit der gesunden Hand $\alpha_i(t)$, die über die Lerngleichung (4.5) angepassten Drehschritte $\tau(t)$ und $\tau_h(t)$ und eine optionale Störung dieser Drehmomente. Auch die Impedanzen k und k_h werden entsprechend Gl. (4.39) adaptiert. Mit dem lsim-Befehl von MATLAB wird der Ausgang $\beta_i(t)$ berechnet:

$$\beta_i = T_i \alpha_i + Zd \cdot S_i (\tau_i + \tau_{hi})$$

(5.8)

Schließlich wird noch ein Skalar benötigt, der dem Optimierer für jede Wahl von

$$\Theta = [\gamma \ s \ \epsilon \ \varphi]^T$$

(5.9)

eine Bewertung dieser Wahl zurück gibt. Für diese Bewertung wird N Zeit-
5.1 Simulationen

schritte lang simuliert und für jeden Zeitschritt i ein Maß für den Fehler $J_{e,i}$ und ein mit λ gewichtetes Maß für die Roboterunterstützung $J_{R,i}$ berechnet:

$$J_{R,i} = \lambda \frac{1}{T} \int_0^T \tau_i(t)^2 dt$$ \hspace{1cm} (5.10)

$$J_{e,i} = \frac{1}{T} \int_0^T e_i(t)^2 dt$$ \hspace{1cm} (5.11)

$$J_i = J_{R,i} + J_{e,i}.$$ \hspace{1cm} (5.12)

Die Parameterbewertungen sind dann die Mittelwerte J_R, J_e und J über alle N Iterationen. Der Optimierer hat die Aufgabe Θ so zu wählen, dass J minimal wird, wobei der Zielkompromiss zwischen Symmetriefehler und Roboterkraft über λ eingestellt wird.

Als Optimierer wird `fmincon` verwendet, also eine MATLAB-Implementierung, die sich die Beschränkung des Suchraums zu eigen macht. So werden die Vergessensraten nur im Interval $[0, 1]$ variiert und die Lernraten sind auf positive Werte beschränkt. Es sollen für unterschiedliche λ die optimierten Parameter und die Gütekriterien verglichen werden. Außerdem stehen zwei Störungssarten zur Verfügung, deren Einfluss ebenfalls zu untersuchen ist. Zum einen die bereits erwähnte Drehmomentenstörung d und zum anderen eine Beschränkung des menschlichen Drehmoments auf Werte $\tau_h \leq \tau_{\text{max}}$. τ_{max} soll in Vorabsimulationen so gewählt werden, dass die menschliche ILR asymptotisch den Griff nicht über die Hälfte des Bewegungsumfangs hinaus zu bewegen in der Lage ist. Für d wurde mit einem Butterworth-Filter zweiter Ordnung tiefpassgefiltertes weißes Rauschen verwendet. Es wird also eine pseudorandomisierte tiefrequente Störung einstellbarer Energie erzeugt, die sich zwar zwischen den Iterationen aber nicht zwischen den Funktionsaufrufen durch den Optimierer unterscheidet. Wie aus den Variationsmöglichkeiten in den Einstellungen die Simulationsplanung erfolgte, ist in Abb. 5.2 zu sehen. Es gibt insgesamt 10 Bedingungen, in denen jeweils 5 Werte für λ eingesetzt werden, also 50 Optimierungen. Die Struktur hat die Beantwortung folgender Fragen zum Ziel:

- Unterscheiden sich die Lernraten (stark), wenn einmal die optimale Vergessensrate ermittelt wird und ein anderes Mal eine Vergessenrate vorgegeben wird, die vorab entsprechend anderer Ziele gewählt wurde?

- Welchen Einfluss hat die Drehmomentenstörung d auf die Parameterwahl?

- Welchen Einfluss hat eine Begrenzung des menschlichen Drehmoments auf τ_{max}?
Kapitel 5 Umsetzung

Optimierung der ILR-Parameter

Konstante Vergessenrate

1. $d = 0$

2. d klein

3. d groß

4. $\tau_h < \tau_{\text{max}}$

Variable Vergessenrate

5. $d = 0$

6. d klein

7. d groß

8. $d = 0$

9. d klein

10. d groß

Abbildung 5.2: Simulationen zur Optimierung der K-ILR-Parameter γ, s, ϵ und f

Die Optimierungsdurchläufe werden daher unterteilt in Durchläufe mit konstanter Lernrate und solche mit variabler Lernrate. In denen mit konstanter Lernrate (Durchgänge 1 bis 4), werden drei Stufen von d unterschieden, und eine Bedingung mit begrenztem τ_h definiert. Bei der variablen Vergessenrate wird diese zusätzlich mit kleinem und großem d untersucht.

5.1.3 Testumgebung für unterschiedliche ILRen

Zum Vergleich der lernenden Reglung wird eine SIMULINK-Simulation verwendet. Die später in der Steuerung verwendeten C- und C++-Programmabschnitte für das iterative Lernen sind in einem eigenen Block gekapselt, der sowohl als Menschmodell als auch zur Beschreibung des Gerätelernens verwendet wird. Über die Simulation lässt sich das Systemverhalten bei unterschiedlichen Be-
wegungen und Bewegungsstörungen analysieren.

Der grundlegende Aufbau der Simulation ist in Abb. 5.3 dargestellt. Die Position der betroffenen Seite β ist die Regelgröße, die Strecke ist der zu bewegende Griff und als Regler arbeiten Mensch und Gerät parallel, indem sie aus der Position der gesunden Hand α und β ein Drehmoment berechnen. Die Positionen beider Hände sind im Vektor

$$q = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$ \hspace{1cm} (5.13)

Die Griffdynamik wird über ein klassisches Feder-Dämpfer-Masse-System beschrieben, also im Bildbereich als

$$\beta = \frac{1}{ms^2 + ds + k} \tau_S + d$$ \hspace{1cm} (5.14)

mit der Positionsstörung d.

Für die Simulationsblöcke von Mensch und Gerät wurde ein allgemeiner, lernfähiger Regler geschaffen, der größtenteils direkt in C++ implementiert ist. Abb. 5.4 zeigt den Aufbau eines solchen Interaktionspartners. Der unterste Zweig enthält den klassischen Feedback-Regler K, der den Symmetrieehler e reduziert. Der mittlere Zweig enthält die Impedanzanpassung, also die Anpassung von K. Bei der oben dargestellten Kraftanpassung lassen sich die unterschiedlichen ILRen einstellen. Für die Lernverfahren F-ILR und O-ILR werden die
Bibliotheken FFTW und Newmat eingebunden. Bei der Impedanzanpassung wird zunächst auf unterschiedliche Verfahren verzichtet, weil die Unterschiede einen geringeren Einfluss haben und weil eine positionsabhängige Steifigkeit für die Bewegungsaufgabe einer konstanten Steifigkeit pro Iteration unterlegen ist.

5.1.4 Mess- und Schätzverfahren

Für die Drehmomentmessung, die kleinen Positionssprünge, die Lernraten- schätzung und die Spastikidentifikation wurden in die GUI Visualisierungen integriert. Die ersten beiden Identifikationsverfahren mit positionsabhängigen Messungen nutzen eigene Zustandsmaschinen und das MoveTo-Kommando, das von der GUI über die Steuerung an die Firmware weitergereicht wird. Die Lernratenanpassung verwendet die Kommunikationswege des normalen Trainings mit seiner Zustandsmaschine. Um die AFFC umzusetzen, wurden die Gl. (4.77) diskretisiert und in dem Modul MechanicalEstimator zusammen mit dem Regler in C so implementiert, dass es sich in SIMULINK-Simulationen und in die Firmware integrieren lässt. Der MechanicalEstimator wird über ein
5.2 Soft- und Hardwareüberblick

eigenes Kommando gestartet. Die identifizierten Parameter können in MATLAB angezeigt oder in die Datenbank geschrieben werden.

5.1.5 Telehaptik

5.2 Soft- und Hardwareüberblick

Die Hardware für die Evaluation mit gesunden und behinderten Probanden ist in Abbildung 5.5 abgebildet. An die Griffe des Versuchsgeräts Bi-Manu-Track wurden zwei Drehmomentsensoren angebracht. Sie sind über Messverstärker an einen Echtzeitrechner angeschlossen, in dem ein Großteil der Software implementiert wurde.

101
Abbildung 5.5: Hardwarekomponenten des Versuchsaufbaus — Links oben: Drehmomentsensor, Messverstärker und Echtzeitrechner; Rechts unten: Bi-Manu-Track während des Armtrainings; Rote Linien: Einbauorte
5.3 Firmware

Der Mikroprozessor DS80C320 mit einer Taktfrequenz von 33 MHz, der Arbeitsspeicher mit seiner Größe von 32 KB, der Programmspeicher von 64 KB und die Bandbreite der seriellen Schnittstelle mit einer maximalen Baudrate von 9600 Bits/s stellen enge Rahmenbedingungen an die Firmware-Entwicklung. Um in dieser und ähnlichen Situationen ein leistungsstarkes Echtzeitsystem aufzubauen, muss die Firmware auf eine effiziente Programmierung von zeiktischen Aufgaben reduziert werden. Alle rechenintensiven, weniger zeiktischen Aufgaben werden dann vom angeschlossenen Rechner übernommen.

Abbildung 5.6: Software-Architektur: Überblick über die Kommunikationswege zwischen den Programmen
die Details beschrieben, die helfen, einen Überblick und Einblicke in wichtige Entwurfsentscheidungen zu bekommen.
5.3.1 Neue Reglungsmodi für den Bi-Manu-Track

5.3.2 Kommunikation zwischen Firmware und Echtzeitrechner

Die Umsetzung der Kommunikation zwischen Firmware und Echtzeitrechner über die serielle Schnittstelle richtet sich nach den Zielen

1. sichere Übertragung von Kommandos,
2. flexible Definition von Datenpaketen für Datenströme und
3. schnelle und sichere Übertragung dieser Datenpakete.

Die Anforderungen an die Kommandos und die Datenpakete unterscheiden sich leicht. Bei den Kommandos muss unbedingt sicher gestellt werden, dass

Kommandos Wenn das Gerät Kommandos empfängt, werden alle Bytes in zwei Schichten verarbeitet. In der ersten Schicht wird ein vordefiniertes Kommandostartbyte abgewartet. Dann werden solange alle Bytes in eine FIFO-Queue geschrieben, bis das Kommandoendbyte empfangen wird. Nur wenn die mit dem Kommando übertragene Prüfsumme der zyklischen Redundanzprüfung (cyclic redundancy check, CRC), die aus 16 Bits besteht, mit der des empfangenen Kommandos übereinstimmt, werden die Bytes einzeln an die zweite Schicht, den Kommandoparser weitergereicht. Die Prüfsummenberechnung er-
Kapitel 5 Umsetzung

5.3.3 Scheduling

5.4 Echtzeitkern

Alle echtzeitkritischen Programmenteile sind im Linux-Kernel programmiert und dort auf sieben neue Module aufgeteilt. Der Kernel wurde mit der Betriebssystemerweiterung RTAI gepatched, die Echtzeitscheduling und Interprozess-Kommunikation ermöglicht. Die dort abgearbeiteten zeitkritischen Aufgaben sind die adaptive Regelung im Modul Adaptation, die Kommunikation mit dem Bi-Manu-Track im Modul BMTConnection, die Transformation für die
5.4 Echtzeitkern

Telehaptik-Verbindung im Modul **Scattering**, der Treiber für den Drehmomentssensor im Modul **SerialDriver**, die Prüfung und Korrektur von Datenströmen im Modul **Streaming**, das Senden der Daten an die Datenbank oder Matlab im Modul **SystemImage** und kleine Testfunktionen im Modul **Tools**.

Grundsätzlich kann jedes Modul eigene Kommandos zur Verfügung stellen, die vom User-Space aus aufgerufen werden. Da aber die Summe aller Kernel-Module auch als Treiber für den Bi-Manu-Track verstanden werden kann, verwundert es nicht, dass im Modul **BMTConnection** und seiner periodischen Routine die Hauptsteuerung zu finden ist, von der aus die anderen Module angesprochen werden. Denn die meisten Befehle an das Gerät werden nicht nur an die Firmware weitergeleitet sondern haben Nebeneffekte im Kernel. Beispielsweise soll die Stellgrößenberechnung gestartet werden, wenn der Regler gestartet ist und die Datenströme aktiv sind, die vom Gerät empfangenen Daten müssen weitergeleitet und zu sendende Daten von anderen Modulen abgefragt werden. Im Folgenden soll keine vollständige Beschreibung des Funktionsumfangs gegeben werden, sondern einige zentrale Designentscheidungen und Implementierungsdetails vorgestellt werden.

Iteratives Lernen Das Modul **Adaptation**, für die ILR verantwortlich, exportiert als Schnittstelle zu anderen Modulen die Funktion **SupportAdaptationIfRequired**. Alle Eingabeparameter sind zu einer Datenstruktur zusammengefasst, die zuvor durch alle Software-Schichten weitergereicht wurde. Die Einstellungen wurden vorm Reglerstart über TCP von der GUI an die Steuerung im User-Space und von dort an den Kernel weitergeleitet. Dort werden von **BMTConnection** immer die neuesten Messwerte vom Gerät eingetragen, bis schließlich ein Zeiger auf die Daten an **Adaptation** übergeben wird. Analog ist auch der Funktionsausgang eine Struktur mit Stellgrößen, die auf Anfrage an den User-Space weitergeleitet werden, ansonsten aber von **BMTConnection** an die Firmware gesendet werden. Die ILRen selbst sind als **IterativeLearner** implementiert, der im Sinne einer objektorientierten Programmierung wie die Module selbst aus einer eigenen Datenstruktur mit einer zugehörigen Funktionssammlung besteht. Zusätzlich werden Kommandos für den User-Space zur Verfügung gestellt, die eine externe ILR-Implementierung in der User-Space-Klasse **ILCTuner** erlauben, in dem sie die ILR-Daten zur Verfügung stellen und entgegen nehmen. Das hat bei der F-ILR den Vorteil, dass die schnelle Fouriertransformation von der MIT-Bibliothek **fftw** berechnet werden kann und bei der O-ILR die Matrix-Bibliothek **newmat** die Gleichungen übersichtlich und effizient umgesetzt werden können. Ohne externe ILR-Berechnung arbeitet der **IterativeLearner** mit zwei Tabellen, einer aktiven, und einer nicht aktiven. Die aktive Tabelle kann als Reihe nebeneinander stehender Eimer aufgefasst werden, wobei der linke Rand der Reihe $\alpha = 0$ entspricht und sich der Rechte...

Telehaptik

Treiber für die Drehmomentsensoren
5.5 Steuerung

5.5.1 Gespiegelte Zustandsmaschinen für Aufgabe und Haptikverbindung

Beim Training müssen die Programme Steuerung und GUI synchronisiert werden, bei der Telehaptik-Verbindung kommen zwei weitere Programme des entfernten Geräts hinzu. Um eine situationsabhängigen Datenaustausch zu ermöglichen und sichere Kommandofolgen zu gewährleisten, wurden zwei Zustandsmaschinen eingeführt, die in allen beteiligten Programmen gespiegelt sind. Mit ihrer Hilfe kann ein zustandsabhängiges Protokoll für die Datenübertragung definiert werden und die erlaubten Zustandsübergänge sind vorab begrenzbar. In der Steuerung gibt es einen separaten Thread in der Klasse `HapticSocketInterface`, der die Zustandsmaschine in seiner Hauptschleife regelmäßig aufruft, in der GUI übernimmt der Timer, der auch für die Oberflächenaktualisierung zuständig ist, diese Aufgabe. Die Zustandsmaschinen sind in Abbildung 5.7 dargestellt. Ausgangszustand ist immer ein Idle zustand \(T_I \) oder \(H_I \), in dem nichts getan wird. Beim Training kann von dort aus zum Einstellen des Bewegungsumfangs \(T_R \), zur Aufgabenausführung \(T_M \) und zu einer Zielanfahrbewegung \(T_{MT} \) gewechselt werden. Zum Wechseln in die Aufgabe schaltet zunächst die GUI in \(T_{ST} \). In diesem Zustand startet die Steuerung mit den von der GUI über den gleichen TCP-Socket empfangenen Einstellungen den Regler und die Datenströme und schaltet dann weiter in \(T_M \). Analog erfolgt das Abschalten über den Zwischenzustand \(T_{SP} \). Neben den eingezeichneten Kanten sind keine weiteren Zustandsübergänge zulässig, außer der Übergang von
Kapitel 5 Umsetzung

Abbildung 5.7: Gespiegelte Zustandsmaschinen für Training (a) und Austausch von Haptik-Daten (b)

5.5.2 Erweiterungen für die iterativ lernende Reglung

Wie im Abschnitt 5.4 erwähnt, gibt es in der Steuerung ILR-Erweiterungen, um die Bibliotheken fftw und newmat einzubinden und so die Implementierung von F-ILR und O-ILR zu erleichtern. Diese Erweiterungen sind in der Klasse ILCTuner gebündelt. In seiner Grundkonfiguration genügt es, die Funktionen minimizeErrorAndGain() oder polePlacement() mit den ILR-Daten aus dem

5.6 Grafische Benutzerschnittstelle

Parallele Bewegung Ein Halbkreis mit kleinen Zielscheiben an seinen Enden zeigt die mit beiden Händen parallel durchzuführende Bewegung. Griffvisualisierung, Smileys, Bewegungsumfang und angezeigte Sollbewegung lassen sich wie im Abschnitt 4.1.2 beschrieben umstellen.
Symmetrische Bewegung Die Darstellung zur symmetrischen Armbewegung ist mit einer Zielscheibe realisiert, auf deren Mitte eine Kugel zu halten ist. Symmetriefehler bewirken horizontale Kugelverschiebungen, Abweichungen von der Solltrajektorie vertikale.

Internet-Training Mit oder ohne Sensor wird eine Telehaptikverbindung zu einem entfernten Gerät hergestellt und die Position visualisiert, wie zur Haptik-Zustandsmaschine in Abschnitt 5.5.1 beschrieben.

Maximalkraftmessung Die gewünschte Drehmomentrichtung und seine Ausprägung werden mit dem `ForceMeter` für beide Seiten dargestellt. Über den `VisualController` werden die Kommandos für die zwischen den Messungen liegenden Verfahrbewegungen über Steuerung und Kernel an die Firmware gesendet.

Muskel und Reflex Die Visualisierung ist ähnlich wie in der Maximalkraftmessung, es muss jedoch eine vorgegebene geringe Kraft möglichst konstant gehalten werden, während an den unterschiedlichen Griffpositionen kleine Positionssprünge erfolgen.

Einstufung Hier wird eine langsame sinusförmige Bewegung abgefahren, während der `MechanicalEstimator` in der Firmware mechanische Parameter, insbesondere die Dämpfung schätzt, um Rückschlüsse z. B. auf die Spastik im Arm zu ziehen.

Kraftfelder Es lassen sich Folgen von unbehinderten Bewegungen, solchen mit divergenterem Drehmoment entsprechend Gl. (4.78) und solche mit gerichtetem Drehmoment entsprechend Gl. (4.79) einstellen, um Lern- und Vergessensraten abzuschätzen.

Abbildung 5.8 zeigt die Visualisierung zu den ersten drei Aufgaben und das `ForceMeter` für die beiden Messverfahren.

5.6 Grafische Benutzeroberfläche

(a) Ziele, Griffpositionen und Smiley der parallelen Bewegung

(b) Zielscheibe für die symmetrische Bewegung mit zentral zu haltender Kugel und Richtungspfeilen

(c) Vertikale Visualisierung zur symmetrischen Bewegung mit Sollbewegung (gelbe Kugel)

(d) ForceMeter zur Kraftdarstellung bei der Maximalkraftmessung und den Positionssprüngen

Abbildung 5.8: Bildschirmfotos von Training und Messungen
Mit \texttt{systemimage.m} können u. A. Drehmoment-, Impedanz- und Positionsdaten angezeigt werden. Alternativ können die Daten mit dem Programm \texttt{SystemImageDBStream} in die Datenbank geschrieben werden. Die Programme können im Moment nicht parallel arbeiten, um Rechenzeit beim Senden der Daten zu sparen. Die Bewegungsdaten in der Datenbank werden für die Auswertung durch das Skript \texttt{loadFromDB.m} in Matlab geladen, das entweder einen Patientennamen oder alle interessierenden Sitzung-IDs übergeben bekommt. Jede ausgeführte Übung lässt sich über eine solche ID identifizieren. In der Datenbank gibt es vier Tabellen: \texttt{patients}, \texttt{sessions}, \texttt{movements} und \texttt{iterations}. Wie die Namen schon sagen, sind Patientendaten in \texttt{patients}, Sitzungsdaten, wie die gewählte Aufgabe und ihre Einstellungen in \texttt{sessions}, die Bewegungsdaten in \texttt{movements} und zusätzlich iterationsbezogenen Daten wie Ein- und Ausgänge der aktiven ILR in \texttt{iterations} zu finden. Diese Tabellen können für eine Auswertung durch den Therapeuten auch direkt in der GUI ausgelesen werden. Eine erste Implementierung zeigt den Bewegungsverlauf, den Geschwindigkeitsverlauf, den Vergleich der Bewegung mit einer Minimalen-Rücktragektorie, den Symmetriefehler oder den Unterstützungsverlauf. Die Übersichtlichkeit muss jedoch durch die Reduktion der Datenmenge auf wesentliche Merkmale noch erhöht werden.
But whatever time is, the common-sense, everyday version of it as linear, regular, absolute, marching from left to right, from the past through the present to the future, is either nonsense or a tiny fraction of the truth.

Ian McEwan, The Child in Time

6.1 Simulationen

Kapitel 6 Evaluation

Abbildung 6.1: Übersicht zur Evaluation der vorgeschlagenen Verbesserungen für die Armrehabilitation
6.1 Simulationen

6.1.1 Gerätemodell

Ein einfaches Gerätemodell wurde in zwei Schritten identifiziert. Zuerst wurde aus Sprungantworten unterschiedlicher Höhe die Dynamik zwischen Pulsweite der am Motor anliegenden Spannung \(u_p \) und Strom \(i \) mit einem \(\text{PDT}_2 \)-Glied angenähert. Es gilt in guter Näherung

\[
i = \frac{0,17(1 + 0,04s) \cdot 2A}{(1 + 0,004s)^2} \cdot \frac{5V}{u_p}.
\]

(6.1)

6.1.2 Optimierung der konstanten Lernrate

Es wurden 50 Optimierungen bei konstanter Lernrate durchgeführt, wie sie im Abschnitt 5.1.2 beschrieben sind. Die betrachtete Iterationsanzahl \(N \) wurde auf 14 festgesetzt, weil die Unterstützungsänderungen danach vernachlässigbar sind. Wie Vorabsimulationen zeigten, genügt eine reduzierte Abtastrate von 100 Hz, die zur Beschleunigung statt der 1000 Hz in der Steuerung verwendet wurde.

Um geeignete Gewichte \(\lambda \) zu bestimmen, wurde zunächst ein \(\lambda \) ermittelt, bei dem der Einfluss von \(J_e \) und \(J_R \) auf \(J \) nach Konvergenz ungefähr gleich ist. Das ist bei \(\lambda = 0,05 \) der Fall. Davon ausgehend wurden kleinere \(\lambda \) gleich 0,01 und 0,005 hinzugenommen, um die nötigen Parameteränderungen für höhere Positionsgenauigkeit zu ermitteln. Ebenso wurden größere \(\lambda = 0,1 \) und 0,2 verwendet, um geringere Unterstützungsenergie zu erzielen. Wie die Gütekriterien durch die \(\lambda \) beeinflusst werden, zeigt Abbildung 6.2. Die Daten sind durch Optimierung von Kraft- und Impedanzanpassung ohne Störung entstanden, also entsprechend Bedingung 5 in Abbildung 5.2. Am Anfang jeder Simulationsreihe dominiert der Positionsfehler. Seine Abnahmerate fällt mit wachsendem \(\lambda \), während sein Endwert größer wird. Erstaunlicher Weise nimmt \(J_R \) mit wachsendem...
λ sogar ab. Die Erhöhung durch das Gewicht wird also durch die Minimierung überkompensiert, vermutlich weil die Unterstützung in den ersten Iterationen stärker ins Gewicht fällt.

Abbildung 6.2: Optimierung aller Parameter ohne Störung: Gütekriterien J (—), J_e (—) und J_R (– –) für $1000 \cdot \lambda = 5, 10, 50, 100$ und 200 über alle 14 Iterationen der Simulation

Für eine Simulation mit Störungen entsprechend Bedingung 7 soll exemplarisch die Zusammensetzung des Drehmoments τ_S betrachtet und letzteres mit dem vom Menschen aufgebrachten Drehmoment τ_h verglichen werden. In Abbildung 6.3 werden oben der Feedbackanteil τ_{FB} und der gelernte Feedforwardanteil τ über alle Iterationen und für alle λ gezeigt. Offensichtlich wird τ vor allem für große λ bevorzugt. Aber auch für kleine λ wird es trotz der Störung zur Minimierung des Positionsfehlers eingesetzt. Im unteren Teil der Abbildung wird zudem deutlich, warum die Unterstützung nicht zu stark sein darf. Lernt der Mensch wie in der Simulation eine aufgabenspezifische Kraft und Steifigkeit, wächst sein Kraftanteil nur dann über den des Geräts hinaus,
wenn über ein großes \(\lambda \) die Roboterkraft klein gehalten wird.

\[\tau \]

\[\tau_{S,T}, \tau_{FB} \]

\[\text{Iteration } i \]

\[\text{Abbildung 6.3: Optimierung aller Parameter mit großer Störung } d. \text{ Oben: Zusammensetzung des Gerätedrehmoments } (\ldots) \text{ aus Feedback- } (\ldots-) \text{ und Feedforward-Anteil } (\ldots); \text{ Unten: menschlicher Anteil } (\ldots-) \text{ und Geräteanteil } (\ldots) \text{ an dem auf den Griff wirkenden Drehmoment für } 1000 \cdot \lambda = 5, 10, 50, 100 \text{ und } 200 \text{ über alle 14 Iterationen der Simulation.} \]

Für alle 10 Bedingungen aus Abbildung 5.2 wurden die Gütekriterien und Lernparameter berechnet. Um die Fragen aus Abschnitt 5.1.2 zu beantworten, wurden die Bedingungen zu Gruppen zusammengefasst. So entstand für jede Frage eine Gruppe, in der das untersuchte Merkmal vorhanden war und eine Vergleichsgruppe. In diesen Gruppen wurden die Gütekriterien über alle \(\lambda \) gemittelt. Tabelle 6.1 (a) zeigt die Gruppen und Parameteränderungen.
Kapitel 6 Evaluation

bedeutet, dass der entsprechende Parameter um mehr als 20 Prozent erhöht ist, + wurde für Erhöhungen zwischen 5 und 20 Prozent verwendet, analog sind für Absenkungen −− und − definiert. Teil (b) der Tabelle zeigt die genauen Prozentwerte. Die Tabelle legt folgende Schlussfolgerungen nahe:

- Um schwachen Menschen gute Unterstützung zu bieten, sollte die Unterstützung schneller aufgebaut, aber auch schneller verlernt werden.
- Bei kleinen Störungen kann die Reglerverstärkung etwas schneller abgebaut werden.
- Bei großen Störungen hingegen hilft nur eine Erhöhung der Reglerverstärkung und das Kraftprofil kann schwächer ausfallen.
- Die konstanten Vergessensraten $s = 0,8$ und $f = 0,9$ bedeuteten eine deutliche Erhöhung dieser Raten. Wenn beispielsweise das Ziel einer Stabilisierung durch wenig Vergessen angestrebt wird, legt der Optimierer nahe, auch die Drehmomentverstärkung γ zu erhöhen. Da die Erhöhung von s schon eine Erhöhung des Drehmomentprofils bewirkt, wäre eher eine Absenkung von γ zu erwarten gewesen. Die Ursache für die unerwartete Erhöhung könnte entweder eine Reduktion zu großer Kräfte durch negative Fehler, also ein Überschwingen der ILR sein oder in der besseren Ausformung eines Drehmomentprofils durch höhere Fehlerverstärkungen liegen, das wegen der niedrigen Vergessensrate ohnehin vorhanden ist.

6.1.3 Schätzung eines Mensch-Maschine-Modells

Die Mensch-Maschinen-Modelle für die O-ILR und die F-ILR wurden mit Hilfe der im Abschnitt 5.1.1 beschriebenen Simulationsumgebung parametriert. Es wurden einmal Bewegungsdaten eines gesunden Probanden verwendet, der den nicht unterstützten Griff langsam möglichst gut entlang der Solltrajektorie bewegte und einmal die Daten einer Patientin, die den Bewegungsvorgaben schlecht folgte und Schwierigkeiten hatte, der Bewegung mit der betroffenen Seite zu folgen. In beiden Fällen wurde eine K-ILR zur Unterstützungsanpassung verwendet, die für den gesunden Probanden mit $\gamma = 0,1$ und $s = 0,9$ parametriert war und für die Patientin mit $\gamma = 0,5$ und $s = 0,7$. Als brauchbare Parameter erwiesen sich $N = 10$ Werte für die Diskretisierung, eine Grenzfrequenz des Modellfilters von $\Omega = 0,5$ mit einem Filter zweiter Ordnung und eine initiale Lernrate γ_d von 0,1. H war mit der Rangbedingung $R_{\text{min}} = 6$ für beide Bewegungen immer positiv definit, was für die Konvergenz mit zusätzlicher Steifigkeit wichtig ist. Die hinreichenden aber nicht notwendigen Konvergenzkriterien N_1 bis N_3 erwiesen sich für die Auslegung als zu konservativ. Sie
6.1 Simulationen

(a) Merkmalsbewertung und Gruppenzusammensetzung

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>s</th>
<th>γ</th>
<th>f</th>
<th>ε</th>
<th>Gruppe 1</th>
<th>Gruppe 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_h < \tau_{\text{max}})</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td>5, 6, 7</td>
<td>8, 9, 10</td>
</tr>
<tr>
<td>d klein</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1, 5, 8</td>
<td>2, 6, 9</td>
</tr>
<tr>
<td>d groß</td>
<td></td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>1, 5, 8</td>
<td>3, 7, 10</td>
</tr>
<tr>
<td>Vergessen konstant</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td></td>
<td>1, 2, 3, 4</td>
<td>5, 6, 7, 8</td>
</tr>
</tbody>
</table>

(b) Veränderung der mittleren Parameter in Prozent

<table>
<thead>
<tr>
<th>Merkmal</th>
<th>s</th>
<th>γ</th>
<th>f</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_h < \tau_{\text{max}})</td>
<td>-7</td>
<td>10</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>d klein</td>
<td>0</td>
<td>0</td>
<td>-20</td>
<td>0</td>
</tr>
<tr>
<td>d groß</td>
<td>0</td>
<td>-6</td>
<td>23</td>
<td>50</td>
</tr>
<tr>
<td>Vergessen konstant</td>
<td>100</td>
<td>11</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Tabelle 6.1: Optimierung bei konstanter Lernrate: Einfluss von unterschiedlichen Störungen auf die Lernparameter

lassen sich nur erfüllen, wenn der minimale Singularwert \(\sigma_{\text{min}} \) in der Singulärwertzerlegung Gl. (4.19) so groß gewählt wird, dass in \(\Sigma^f \) nur ein invertierter Singularwert enthalten bleibt. Die Modellfilterung glättet die Lernrate merklich. Im Frequenzbereich ergibt sich beim gesunden Probanden ein über die Iterationen recht konsistenter Amplituden- und Phasengang. Dieser zeigt auch den Vorteil der Darstellung von \(\beta(\alpha) \) und \(\tau(\alpha) \) als Funktionen von \(\alpha \), da ein derart konsister Verlauf für die Darstellung als zeitabhängige Größen nicht zu beobachten ist. Mit der Polvorgabe von \(z_P = 0,6 \) ist der nach Gl. (4.60) berechnete größte Betrag des reale Pols \(|z_R| < 0,9 \) für die Bewegungen des gesunden Probanden, die lernende Regelung ist also robust stabil. Da \(z_R \) auch stets nicht negativ war, liegt unter idealen Bedingungen auch ein robust monoton konvergentes Verhalten vor. Dies gilt allerdings nur, wenn die Unsicherheiten \(w\Delta_i \) als maximale Abweichung der letzten drei oder weniger Modellschätzungen vom mittleren Modell berechnet werden. Diese Nichtlinearität ist aber weniger problematisch, weil die aktuelle Verstärkung nur zu dem System, also zum menschlichen Verhalten der nächste Iteration gut passen muss, damit der Fehler monoton abnimmt. Danach wird ohnehin die Modellschätzung angepasst. Stabilitätsgefährdender ist, dass bei realen Patientendaten die schlimmste Annahme für \(z_R \) nicht immer im Einheitskreis liegt. In diesem Fall ist ein starker zusätzlicher Feedback-Anteil daher unumgänglich. Wie die Modellvorschläge sich in unterschiedlichen Situationen bewähren, zeigen die unten dokumentierten Simulationen und Experimente.
Kapitel 6 Evaluation

6.1.4 Interpolation und radiale Basisfunktionen

6.1.5 Lernratenanpassung

Die Zwei-ILR-Simulation soll zunächst helfen, die ILR-Einstellungen für alle Verfahren geeignet zu wählen und dient dann einem realitätsnahen Vergleich von Vor- und Nachteilen.

Vorabeinstellung von ILR-Parametern Auch wenn teilweise die Lernraten automatisch angepasst werden, so ist doch für alle Verfahren eine Lerngeschwindigkeit und die Vergessensrate einzustellen. In Vorabsimulationen ergaben sich ähnliche Konvergenzgeschwindigkeiten mit \(\gamma = 0,1 \) für die K-ILR, einem Gewicht von \(w = 1 \) entsprechend Gl. (2.45) für die O-ILR und eine Polvorgabe von \(z_{p,i} = 0,8 \) für jede Frequenzen \(i \) entsprechend Gl. (4.37).

Modelleingänge In den Simulationen sind für die Eingänge Position der gesunden Hand \(\alpha(t) \) und Störungen \(d(t) \) der betroffenen Seite geeignete Signale zu wählen. Für \(\alpha(t) \) kann zwischen drei unterschiedlichen Verläufen umgeschaltet werden. Erstens modelliert ein Sinus mit einer Periodendauer von 10 s einen Verlauf, welcher der von Flash und Hogan empfohlenen optimalen Minimalen-Ruck-Trajektorie [28] sehr ähnlich ist. Zweitens wurde am Gerät eine Trajektorie eines gesunden Probanden aufgenommen, der die Aufgabe hatte, einer visuell vorgegebenen Minimalen-Ruck-Trajektorie zu folgen. Die Daten sind
6.1 Simulationen

also mit realistischen Schwankungen behaftet, die bei idealer Aufgabenerfüllung auftreten. Drittens sind Bewegungsdaten von einer Patientin einstellbar, die zwar die Aufgabe verstanden hatte, aber große Schwierigkeiten bei ihrer Erfüllung zeigte. Hier treten auch Bewegungen in die falsche Richtung auf. Mit diesen Daten soll der Extremfall großer Fehler simuliert werden, dem die Verfahren zumindest kurzzeitig gewachsen sein müssen, bis automatisch oder manuell eine starrere Führung eingestellt wird.

Vergleich der ILR-Verfahren Um die ILR-Verfahren zu vergleichen werden pro Verfahren 8 Simulationen durchgeführt. Für eine Bewertung wurden 7 Kriterien definiert, deren Mittelwert die Gesamtbewertung eines Verfahrens entspricht. Ein Überblick über die Experimente ist in Abbildung 6.4 gegeben. Für die drei Verfahren K-ILR, O-ILR und F-ILR (siehe Abschnitte 4.1.3–4.1.4) wurden Simulationen mit nur einer ILR, der ILR des Geräts, ($\gamma_h = 0$) und mit zwei ILR nicht durchgeführt ($\gamma_h \neq 0$). Der Fall einer ILR entspricht einem Menschen, der keinen eigenen Beitrag zur Bewegung leistet, beim zweien ILR-Fall wird zur Simulation des Menschen die K-ILR verwendet. Diese Wahl birgt die Gefahr, dass sie nur aus systematischen Gründen Lernverfahren besser abschneiden lässt, die bei einer anderen Wahl zur Annäherung des menschlichen Lernens keine Vorteile hätten. Derartige Verzerrungen sollen ggf. durch zusätzliche Simulationsdurchläufe ausgeschlossen werden. Für den Fall einer ILR werden die Simulationen 1 bis 4 mit einer sinusförmigen Trajektorie der gesunden Hand durchgeführt:

1. Das Konvergenzverhalten wird ohne maschinelles Vergessen untersucht ($s = 1$). In dieser Bedingung verschwindet der Fehler idealer Weise vollständig und die Abweichungen zwischen den Verfahren sollten besonders stark hervortreten.

2. Das maschinelle Vergessen wird eingeschaltet ($s < 1$). Hier zeigt sich, ob mögliche Unterschiede auch mit Vergessensrate fortbestehen.

3. Der Einfluss von Störungen wird untersucht ($d \neq 0$), es wird also gefragt, welches Verfahren robuster gegenüber zufälligen Positionsschwankungen ist.

4. Die Modellfilter werden eingeschaltet (\hat{h} statt h), um folgende Fragen zu beantworten. Verändern sie Kraft- und Positionsverläufe und tritt dabei die gewünschte Dämpfung von Schwankungen ein? Eignen sich die Modellunsicherheiten und modellbasierte Indikatoren, um situationsabhängig Bewertungen zu berechnen, die für Schaltvorgänge genutzt werden können?
Abbildung 6.4: Überblick über die Simulationsläufe zum Vergleich der Verfahren K-ILR, O-ILR und F-ILR.

Im Zwei-ILR-Fall entfällt die Untersuchung der idealen Bedingung ohne Vergessen, weil durch die zweite ILR ohnehin eine reine Konvergenzuntersuchung nicht möglich ist. Die Simulationen 5 bis 7 entsprechen den Simulationen 2 bis 4 im Eine-ILR-Fall. Zusätzlich wird in Simulation 8 die Anregung geändert, das heißt, es wird bei eingeschaltetem Modellfilter und ohne Störungen eine am Gerät geloggte Positionsvorgabe für die gesunde Hand eingespeist. Damit ist diese Simulation am nächsten an der Realität und gibt wichtige Hinweise, inwieweit dort mögliche Unterschiede bestehen.

Das Vorgehen bei der Datenauswertung erfolgt wie bei der Optimierung vom Konkreten zum Abstrakten. Es werden zunächst die freien Parameter in den Kriterien aus Abschnitt 4.2.1 an exemplarische Verläufen von Messgrößen eingestellt und diskutiert inwiefern sie das entsprechende Merkmal erfassen. Dann werden die in allen Simulationen ermittelten Kriterien durch Mittelwertbildung und ein Rangverfahren so zusammengefasst, dass Antworten auf die oben genannten Fragen möglich werden.

In Abbildung 6.5 sind die Griffwinkelverläufe und das Drehmoment in Abhängigkeit vom Winkel der führenden Seite α in der neunten und in der 15. Iteration zu sehen. Die Simulation entspricht der ersten Bedingung in Abbildung 6.4, also einer ILR ohne menschliches Lernen und bei ausgeschaltetem Vergessen. Es fällt auf, dass die konstante Lernrate zu einem Überschwingen am Ende führt. Bereits vor der neunten Iteration muss die zu frühe Zielerreichung einen negativen Fehler zur Folge gehabt haben, der für eine Abnahme
6.1 Simulationen

des Drehmoments gesorgt hat. Spätestens in der 15. Iteration wird deutlich, dass die Griffbewegung in die falsche Richtung, die kurz vor der Zielerreichung erfolgt, nicht akzeptabel ist. Auch im Drehmoment wird dies in Form einer starken Negativierung sichtbar. Da alle drei Verfahren ohne Vergessensrate zu schnell sind, sind \(c_{e,e} \) und \(c_{\tau,e} \) wenig aussagekräftig. Der Positionsfehler ist am Ende konstant negativ und das Drehmoment wurde nach der Zielerreichung der gesunden Seite zu 0 gesetzt. Für die meisten anderen Bedingungen eignen sich jedoch \(\alpha_e = 0.8 \), \(N_1 = 8 \) und \(N_2 = 10 \), um Fehler und Unterstützung am Ende zu beurteilen, siehe Gl. (4.67) und Gl. (4.69). Das heißt, es werden die letzten 20 Prozent der Bewegung in den Iterationen 8 bis 10 betrachtet. Die Kriterien \(c_{e,s} \) und \(c_{e,e} \) lassen sich in Bedingung 1 hingegen gut einstellen. Vor allem im Frequenzbereich ist hier ein frühzeitiges Drehmoment zu beobachten, das solange erwünscht ist, wie es den Fehler frühzeitig reduziert. Dadurch können auch die ungewollten starken Abbremsungen in späteren Bewegungsphasen vermieden werden. \(c_{e,s} \) ist für die F-ILR tatsächlich ungefähr halb so groß, wie bei den anderen Verfahren. \(c_{\tau,s} \) hingegen ist ungefähr so groß wie bei der K-ILR, die zwar später anspricht, aber schon am Anfang eine große Steigung in \(\beta \) und \(\tau \) bewirkt. Die Wahl von \(\alpha_a = 0.2 \) in Gl. (4.66) und Gl. (4.68) scheint angesichts dieser Beobachtung noch zu groß zu sein. Da aber bei den real vorgegebenen Bewegungen für zu kleine \(\alpha_a \) die Kriterien nicht ausgewertet werden können, sollen die 20 Prozent für die Quantifizierung der anfänglichen Stellgröße beibehalten werden. Die Werte für \(c_{e} \) und \(c_{u} \) entsprechen den Erwartungen, die Abbildung 6.5 hervorruft. Der mittlere Fehlerbetrag \(c_{e} \) ist für die F-ILR am kleinsten, für die O-ILR größer und für die K-ILR am größten. Die gleiche Reihenfolge findet sich auch bei der Stellenergie \(c_{u} \), wobei hier die zusätzliche Energie durch die Negativierung einen mehr als doppelt so hohen Wert bei der K-ILR zur Folge hat.
Abbildung 6.5: Exemplarische Verläufe von Winkel der unterstützten Seite β und unterstützendem Drehmoment τ in Abhängigkeit vom Winkel der führenden Seite in der neunten Iteration (oben) und der 15. Iteration (unten); K-ILR (—), O-ILR (—) und F-ILR (—–)

Die Schwankungsbewertung ist vor allem bei Störungen von Belang. Aber bereits in Bedingung 1 kann mit dem Kriterium $c_{e,d}$ die deutlich erhöhte Schwankung des Fehlers bei der K-ILR detektiert werden, die in diesem Fall durch eine nicht abklingende Schwingung aufgrund einer zu hohen Lernrate verursacht wird. Abbildung 6.6 zeigt den mittleren Fehlerbetrag und die Lernraten. Es ist zu sehen, dass die große konstante Lernrate deutliche Fehlerschwankungen zur Folge hat. Trotzdem genügt es nicht, sie zu reduzieren, da sonst die Unterstützung bei mehr Gegenkraft zu gering ausfällt. Die O-ILR kann die Schwingungen durch das Absenken der Lernrate unterdrücken, stellt jedoch die Lernrate so gering ein, dass der Fehler nach wenigenIterationen konstant bleibt. Bei der
F-ILR wird die Lernrate langsamer abgesenkt, wodurch die Schwingungen unterdrückt werden und der Fehler weiter abnimmt. In den Gleichungen (4.73), (4.74) und (4.75) wurde $N_3 = N/4$ gesetzt. Das bedeutet für $N = 40$ Iterationen, dass erst die Schwankungen ab der 10-ten Iteration berücksichtigt werden, um den Einschwingvorgang auszuklammern. In diesem Fall ist $c_{e,d}$ wie erwartet für die K-ILR deutlich am größten, durch den konstanten Fehler bei der O-ILR hat die F-ILR den zweitniedrigsten Wert und die O-ILR den kleinsten. $c_{\gamma,d}$ ist verschwindend klein. Ein ähnliches Bild ergibt sich bei der Drehmomentbewertung mit $c_{\tau,d}$.

Für die Betrachtung der Drehmomente von Mensch und Gerät muss das menschliche Lernen aktiviert sein, um zu überprüfen, ob der gewünschte Verlauf erzielt wird. Daher werden in Abbildung 6.7 die Drehmomente für Bedingung 1 (eine ILR ohne Vergessensrate); K-ILR (—), O-ILR (— -) und F-ILR (— · ·)
Kapitel 6 Evaluation

gung 5 gezeigt. Beim Gerätemoment wird der Vorteil der Lernratenanpassung offensichtlich. Die F-ILR sorgt in der frühen Phase mit großen Fehlern für eine große Unterstützung, die aber durch eine Lernratenreduktion aufgrund der menschlichen Beteiligung nach 10 Iterationen stetig abnimmt. Auch die O-ILR verursacht eine ähnliche Abnahme, unterstützt aber am Anfang weniger. Die Beteiligung des Menschen nimmt entsprechend zu. Zumindest wenn dem Menschen eine konstante Vergessensrate unterstellt wird, wie es beispielsweise die Modelle von Emken und anden nahe legen [24], ist eine variable Lernrate also besser geeignet, um große Unterstützungen bei großen Fehlern und geringe Unterstützung bei kleinen Fehlern zu erzielen. Denn eine Absenkung des Vergessensfaktors \(s \) würde eine Erhöhung der Lernrate \(\gamma \) nötig machen, damit die Unterstützung am Anfang nicht zu niedrig ausfällt. Damit würde aber bei konstantem kleinen Fehler die Unterstützung wiederum nicht abgebaut werden, weil dieser dann auch mehr verstärkt werden würde. Bleibt noch zu zeigen, dass die Kriterien die Überprüfung dieser Aussage abbilden. Hierfür genügt wiederum der Vergleich der Stellenergie \(c_u \) und des Fehlerbetrags \(c_e \). Während die Stellenergie für die K-ILR weiterhin ungefähr doppelt so groß ist, wie für die F-ILR und \(c_u \) bei der O-ILR sogar noch kleiner ist, ist der \(c_e \) bei der F-ILR am kleinsten, und ungefähr gleich groß wie bei den anderen Verfahren. Das Ziel wenig Stellenergie einzusetzen, um dem Menschen mehr Eigenleistung abzuverlangen, aber trotzdem den Fehler klein zu halten, wird durch die Kriterien also abgebildet.

Nachdem nun die Kriterien parametriert sind, sollen die oben formulierten Fragen mit ihrer Hilfe beantwortet werden. Zunächst werden nur die Bedingungen 1 bis 4 betrachtet, also nur eine alleinstehende ILR. Da die absoluten Kriterien für den Vergleich nicht von Belang sind, sind alle Einzelbewertungen auf den maximal für dieses Kriterium erreichten Wert normiert. Abbildung 6.8 zeigt alle normierten Kriterien für die Bedingungen 1 bis 4 und unten ihre Mittelwerte. Die erste Hypothese war, dass sich bei einer einzelnen ILR ein gutes Urteil über die Konvergenzeigenschaften bzw. die Merkmalserfüllung bilden lassen sollte. Bevor für die eine ILR aus dem Mittelwerten ein Gesamturteil gefällt wird, soll für jedes Kriterium überprüft werden welche Bedingungen den Mittelwert dominieren. Nur wenn der Mittelwert noch genügend Informationen enthält, kann daraus das Gesamturteil generiert werden. Beim wichtigen Kriterium \(c_e \) sorgt die F-ILR im Mittel für den kleinsten Wert, die O-ILR für den zweitkleinsten und die K-ILR für den größten. Die Reihenfolge kehrt sich nur einmal um, und zwar bei eingeschalteter Vergessensrate ohne Störung zwischen O-ILR und K-ILR. In dieser Bedingung sind aber auch die Abweichungen am geringsten, weil die Abnahme auf das Unterstützungsprofil einen stabilisierenden Einfluss hat, also alle ILRen ungefähr gleich gut arbeiten und das durch die Unterstützungsabnahme vorgegebene Ziel zwar ein kleiner Fehler, aber eben nicht der kleinstmögliche Fehler ist. Dass dieser Unterschied durch Störungen

128
Abbildung 6.7: Drehmoment von Mensch (oben) und Gerät (unten) für Bedingung 5 (Beide ILRen aktiv); K-ILR (—I), O-ILR (—) und F-ILR (——)
wieder umgekehrt wird, zeigt, dass die Reihenfolge der Mittelwerte in diesem Fall die Gesamtbewertung gut widerspiegelt. Denn Störungen werden in der Praxis auftreten und es ist richtig, dass jenes Verfahren, welches sie besser zu kompensieren vermag, besser abschneidet. Bei der Betrachtung der Stellenergie c_u sind es offensichtlich die Bedingungen ohne Vergessen, die den Mittelwert dominieren. Ohne stabilisierende Vergessensrate braucht die K-ILR deutlich mehr Stellenergie, obwohl der Fehler größer ist. Dieses ungünstige Profil durch Überschwingen der ILR wurde bereits am Beispiel aus Abbildung 6.5 diskutiert. Auch mit Vergessen bleibt eine deutlich höhere Stellenergie bei der K-ILR. Hier ist der Wert der F-ILR leicht höher als bei der O-ILR. Da sie aber ebenfalls sehr klein wird und vor allem im Falle der Störung gewinnbringend eingesetzt wird, um den Fehler zu reduzieren, wird diesem Mittelwert im weiteren ebenfalls vertraut, zumal er den ähnlichen Wert von O-ILR und F-ILR gut repräsentiert. Bei $c_{e,s}$ wird es schon weniger eindeutig. Ohne Vergessen sieht es so aus, als könne die F-ILR den initialen Fehler wie vermutet am besten Kompensieren, während die O-ILR das erstaunlicherweise am schlechtesten kann. Mit Vergessen hingegen liegen K-ILR und F-ILR gleich auf, während die O-ILR für den niedrigsten Fehler sorgt. Zumindest für eine ILR bestättigt sich die Annahme, die F-ILR kann mit ihrer Phasenverschiebung den initialen Fehler am besten reduzieren nur bei einer Vergessensrate $s = 1$. Dies ist für den Praxisfall, in dem mit $s < 1$ gearbeitet wird, nicht besonders entscheidend und die positive Bewertung durch kleine $c_{e,s}$ ist bei der Gesamtbewertung kritisch zu betrachten, da ein nur auf ihr basierender Vorteil nicht relevant wäre. Anders sieht es beim Fehlerendwert $c_{e,e}$ aus, der von den praktischen Fällen mit Vergessensrate dominiert wird. Die F-ILR sorgt hier für den kleinsten Fehler, gefolgt von O-ILR und K-ILR. Beim initialen Drehmoment $c_{\tau,s}$ gilt das gleiche wie beim initialen Fehler $c_{e,s}$, die ursprüngliche Annahme, dass es bei der F-ILR am größten ist wurde nicht bestätigt, stattdessen ergibt sich ein nicht besonders aussagekräftiger Mittelwert. Der Endwert des Moments $c_{\tau,e}$ zeigt wiederum klarere Unterschiede, die auf den Vorteil der Phasenverschiebung hindeuten. Durch die F-ILR bleibt das finale Drehmoment positiv, weil wegen der rechtzeitigen Beschleunigung und Abbremssung kein negativer Fehler entsteht, der nur durch das aktive Abbrem- sen des Patienten reduziert werden kann. Dieser Vorteil der F-ILR gegenüber der O-ILR und der K-ILR zeigt sich auch im Mittelwert, der bei der O-ILR nur deshalb deutlich über dem der K-ILR liegt, weil sie als einzige auch ohne Vergessen einen positiven Fehler aufweist, der aber eigentlich nicht erwünscht ist. Bei der späteren Gesamtwertung wird das Vorzeichen von $c_{\tau,e}$ invertiert, weil im Gegensatz zu den anderen Kriterien hier der größte Wert am besten ist. In die Gesamtwertung fließen auch die Schwankungen von Fehler und Drehmoment $c_{e,d}$ und $c_{\tau,d}$ ein. Die modellbasierten Verfahren können fast immer die Schwankungen deutlich reduzieren, sie konvergieren also gleichmäßig. Die einzige Ausnahme ist die Bedingung 2 ($s < 1$, $d = 0$). Hier gilt wiederum, ein
6.1 Simulationen

kleiner Vorteil der nur auf der Stabilisierung durch die Vergessensrate beruht, aber sobald Störungen hinzugeschaltet werden wieder verschwindet, dominiert zu recht nicht den Mittelwert. Beide Schwankungsbewertungen fallen bei der O-ILR besser aus, als bei der F-ILR, was insbesondere deswegen verwundert, weil die Lernratenschwankungen \(c_{e,d} \) erheblich größer ausfallen und ein unruhigeres Konvergenzverhalten vermuten lassen. Betrachtet man nur den praxis-näheren Fall mit Vergessensrate fällt denn auch der Vergleich von \(c_{e,d} \) genau umgekehrt aus. Mit \(s = 1 \) ist sogar \(c_{e,d} \) für die O-ILR ungefähr gleich wie bei der K-ILR und nur die F-ILR kommt auf einen deutlich niedrigeren Wert. Die Drehmomentschwankungen \(c_{\tau,d} \) sind hingegen nicht nur im Mittel, sondern in jedem Fall mit einer ILR bei der optimalen Lernrate (etwas) geringer als bei der frequenzabhängigen Lernrate.

Gesamiturteil für eine ILR Es kann also nicht allen Mittelwerten gleich gut vertraut werden. Trotzdem soll zunächst ein Gesamiturteil auf der Basis aller Kriterien gebildet werden. Danach werden dann die problematischen Kriterien ausgeschlossen. Falls die Urteile sich nicht grundsätzlich unterscheiden, sind die Uneindeutigkeiten in einigen Merkmalen vernachlässigbar, andernfalls müssen die Unterschiede näher betrachtet werden. Wie in diesem Fall und für die weiteren Fragestellungen das Gesamiturteil gebildet wird, veranschaulicht Tabelle 6.2. Für jedes Merkmal bekommt das Verfahren die beste Beurteilung (1), welches dieses Merkmal am besten erfüllt. Am besten ist bis auf den Fall \(c_{\tau,e} \) der kleinste Wert, bei \(c_{\tau,e} \) ist es der größte. Das zweitbeste Verfahren wird mit 2 bewertet, das schlechteste mit 3. Aus diesen bereits diskutierten Reihenfolgen wird dann ein Mittelwert berechnet. Je näher diese Mittelwerte zusammenliegen, desto weniger eindeutig sind die festgestellten Unterschiede. Die Reihenfolge der Unterschiede wiederum entspricht der Eignung des Verfahrens für die Unterstützungsanpassung. Unter Berücksichtigung aller Kriterien zeigen sich die O-ILR und die F-ILR der K-ILR deutlich überlegen, die nur für das nicht eindeutige \(c_{e,s} \) einmal Platz 2 erzielt. Der Vorteil der F-ILR gegenüber der O-ILR hingegen ist geringer. Er beruht aber unter anderem auf den wichtigen Kriterien \(c_{e} \) und \(c_{w} \). Es ist in Tabelle 6.2 zu erkennen, dass ein Weglassen der weniger eindeutigen Kriterien \(c_{e,s}, c_{\tau,s}, c_{e,d}, \) und \(c_{\tau,d} \) an der Reihenfolge nichts ändern würden. Im Gegenteil, die Reihenfolge entspräche dann für alle Kriterien ihrem Mittelwert.

Gesamiturteil für zwei ILRen Nach den Bedingungen mit einer ILR werden nun die Bedingungen 4 bis 8 mit menschlichem Lernen, also zwei zusammenschaltet simulierten ILRen betrachtet. Wie Abbildung 6.9 zeigt, sind die Rangfolgen der Kriterien für zwei ILRen denen für eine ILR mit Vergessensrate ähnlich. Der Symmetriefehler \(c_{e} \) wird in allen Fällen von der F-ILR am stärks-
Abbildung 6.8: Vergleich der normierten Kriterien für die Bedingungen 1 \((s = 1)\), 2 \((s < 1)\), 3 \((d \neq 0)\) und 4 \((\hat{h})\) für eine ILR und Mittelwerte (unten); K-ILR (links), O-ILR (mitte) und F-ILR (rechts)

<table>
<thead>
<tr>
<th>ILR</th>
<th>(c_e)</th>
<th>(c_u)</th>
<th>(c_{e,s})</th>
<th>(c_{e,e})</th>
<th>(c_{\tau,s})</th>
<th>(c_{\tau,e})</th>
<th>(c_{e,d})</th>
<th>(c_{\tau,d})</th>
<th>(c_{\gamma,d})</th>
<th>Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-ILR</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2,9</td>
</tr>
<tr>
<td>O-ILR</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1,8</td>
</tr>
<tr>
<td>F-ILR</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1,4</td>
</tr>
</tbody>
</table>

Tabelle 6.2: Bildung eines Gesamtplurteils aus den Mittelwerten der Bedingungen 1 bis 4 (eine ILR) als mittlerer Rang für alle Kriterien; 1 = beste Merkmalsfüllung, 2 = mittlerer Rang, 3 = schlechteste Bewertung
6.1 Simulationen

ten reduziert, die O-ILR hat gegenüber der K-ILR nur noch ohne Störungen einen Vorteil und ist zurecht auch im Mittel schlechter. Ob die erhöhte Stellenergie \(c_e \) für Bedingung 8 mit realen Daten wirklich ein Nachteil ist, obwohl die F-ILR damit erfolgreich den Fehler reduziert, ist nicht eindeutig. Die Uneinheitlichkeit von \(c_{e,s} \) und \(c_{\tau,s} \) bestätigt sich. Bei den Schwankungen gibt es einen Unterschied im praxisnahen Fall. Hier geht mit der gleichmäßig stärkeren Lernrate von F-ILR gegenüber der von O-ILR auch ein gleichmäßigerer Symmetrieverlauf \(c_{e,d} \) und ein gleichmäßigerer Drehmomentverlauf \(c_{\tau,d} \) einher der sich direkt auf den Mittelwert durchschlägt, was in der Gesamtbewertung auch gerechtfertigt ist, weil die relevantere Bedingung 8 dadurch stärker ins Gewicht fällt. Werden nun Mittelwerte über alle Simulationen mit zwei ILRen gebildet ergibt sich Tabelle 6.3, die das vorherige Urteil für eine ILR noch klarer bestätigt. Werden wiederum die weniger eindeutigen Kriterien \(c_{e,s} \), \(c_{\tau,s} \), \(c_{e,d} \) und \(c_{\tau,d} \) außen vor gelassen, ergeben sich die Rangwerte 2,5, 2,2 und 1,2 für K-ILR, O-ILR und F-ILR. Das heißt, der klare Vorteil der F-ILR lässt sich weiterhin ablesen, O-ILR und F-ILR rücken aber näher zusammen.

<table>
<thead>
<tr>
<th>ILR</th>
<th>(c_e)</th>
<th>(c_u)</th>
<th>(c_{e,s})</th>
<th>(c_{e,e})</th>
<th>(c_{\tau,s})</th>
<th>(c_{\tau,e})</th>
<th>(c_{e,d})</th>
<th>(c_{\tau,d})</th>
<th>Mittelwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-ILR</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2,8</td>
</tr>
<tr>
<td>O-ILR</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2,0</td>
</tr>
<tr>
<td>F-ILR</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1,2</td>
</tr>
</tbody>
</table>

**Tabelle 6.3: Bildung eines Gesamturteils aus den Mittelwerten der Bedingungen 5 bis 8 (zwei ILRen) als mittlerer Rang für alle Kriterien; 1 = beste Merkmalsfüllung, 2 = mittlerer Rang, 3 = schlechteste Bewertung

Einfluss von Vergessensrate, Störungen Modellfilter und realer Bewegungsvorgabe Nach diesem detaillierten Einblick in die Bedeutung der Kriterien sollen nun die letzten drei an die Simulation gestellten Fragen beantwortet werden. Dazu wurden die Versuche in Gruppen zusammengefasst, bei denen jeweils die Vergessensrate, die Störungen, das Modellfilter oder die realen Bewegungsvorgaben aktiv waren. Für alle Fragestellungen wird dann geprüft ob die Mittelwerte über die Kriterien dann die Bewertungsreihenfolge bestätigen. Tabelle 6.4 zeigt diese Mittelwerte. Die Reihenfolge ist von Vergessensrate und Störungen unabhängig das zeigen die Gruppierungen von Bedingungen 2, 3, 5 und 6 bzw. 3 und 6. Die Mittelwerte lassen vermuten, dass ein Modellfilter für die F-ILR besser geeignet ist als für die O-ILR, weil der mittlere Rangunterschied zunimmt. Sie reichen aber nicht, um zu zeigen, ob das Modellfilter durch die langsamer Anpassung von Modellparametern einen Vorteil bietet oder durch die nicht zur aktuellen Situation passenden Parameter einen Nachteil darstellt. Deswegen
Abbildung 6.9: Vergleich der normierten Kriterien für die Bedingungen 5 \((s < 1)\), 6 \((d \neq 0)\), 7 \((\hat{h})\) und 8 \((\alpha_e)\) für zwei ILRen und Mittelwerte (unten); K-ILR (links), O-ILR (mitte) und F-ILR (rechts)
6.1 Simulationen

<table>
<thead>
<tr>
<th></th>
<th>Eine ILR</th>
<th>Vergessen</th>
<th>Störungen</th>
<th>Modellfilter</th>
<th>reale Bewegung</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-ILR</td>
<td>2,9</td>
<td>3,0</td>
<td>2,9</td>
<td>2,9</td>
<td>2,0</td>
</tr>
<tr>
<td>O-ILR</td>
<td>1,8</td>
<td>1,6</td>
<td>1,6</td>
<td>1,9</td>
<td>2,1</td>
</tr>
<tr>
<td>F-ILR</td>
<td>1,4</td>
<td>1,4</td>
<td>1,5</td>
<td>1,2</td>
<td>1,9</td>
</tr>
</tbody>
</table>

Tabelle 6.4: Vergleich der Gesamtbewertung bezogen auf eine ILR (Bedingungen 1 bis 4), Vergessensrate (Bedingungen 2, 3, 5, 6 und 7), Störungen (Bedingungen 3 und 6), Modellfilter (Bedingungen 4 und 7) und reale Bewegungsvorgabe (Bedingung 8)

wurde das Verhältnis aller Merkmalsausprägungen zwischen den Bedingungen 4 und 7 mit Filter zu den Merkmalsausprägungen in den Bedingungen 1 und 5 ohne Filter gebildet. In den Hauptkriterien \(c_e \) und \(c_u \) ist bei der F-ILR eine erneute Abnahme auf 82% bzw. 86% zu sehen. Bei der O-ILR hingegen steigen die Werte leicht auf 106% des Ausgangswerts. Das Modellfilter scheint also nur für die F-ILR ein Vorteil zu sein. Das bestätigt sich auch in den Schwankungen der Lernrate \(c_\gamma, d \) und des Drehmoments \(c_\tau, d \), die auf 91 und 93% zurück gehen bzw. bei der O-ILR gleich bleiben. Die Schwankungen des Fehlers \(c_{e, d} \) werden sogar bei beiden Verfahren größer (123 und 145%). Die Verhältnisse der Start- und Endkriterien \(c_{e, s}, c_{e, e}, c_{\tau, s} \) und \(c_{\tau, e} \) sollen nicht herangezogen werden, da ihre Werte zwar Unterschiede signalisieren, aber in diesem Fall keine klare Aussage möglich ist, ob eine Erhöhung oder eine Absenkung als besser zu bewerten ist. Als Empfehlung lässt sich also ableiten, dass ein Modellfilter für die F-ILR eingesetzt werden kann, wenn die Konvergenz durch starke Fehlerschwankungen gefährdet ist. Das Ziel der \(\tau \)-ILR ist es ohnehin nur, den gleichbleibenden Fehler zu kompensieren. Für zu große kurzfristige Schwankungen ist dann eine zusätzliche, ebenfalls anpassbare Reglersteifigkeit verantwortlich. Bei der O-ILR hingegen ist von einem Modellfilter abzuraten.

Bei den Modellparametern interessiert auch, ob sie für Schaltvorgänge zwischen den Verfahren F-ILR und O-ILR im Sinne einer adaptiven Regelung herangezogen werden können. Prinzipiell sollte es möglich sein, mit den jeweiligen Modellen aus dem alten Stellgrößenverlauf \(\tau_i \) und dem von den Verfahren berechneten neuen Verlauf \(\tau_{i+1} \) das Gütekriterium \(J_{i+1} \) aus Gl. (5.12) im Voraus für die nächste Iteration auszuwerten und demjenigen Verfahren die Vorsteuerung zu überlassen, das den niedrigsten Wert verspricht. Um die Genauigkeit dieser Vorhersage zu überprüfen, wurden bei der Anpassung beide Modelle mit eingeschaltetem Modellfilter mitberechnet. Ein Schaltvorgang war noch nicht implementiert, stattdessen wurde das Profil der F-ILR angewendet. Damit die nicht verwendete Stellgröße der O-ILR nicht dazu führt, dass das von der O-ILR berechnete Drehmomentprofil eine falsche, da nicht an der Praxis geprüfte
Kapitel 6 Evaluation

Abbildung 6.10: Modellbasierte Prädiktion der Gütekriterien aus Gl. (5.12) mit $\lambda = 10$ für die nächste Iteration: a) Schätzung mit dem Modell der F-ILR, b) Schätzung mit dem Modell der O-ILR, c) Verhältnis der Güte von F-ILR zu O-ILR aus Sicht des Modells der F-ILR (—) und aus der Sicht der O-ILR (– –), d) Mittlere Standardabweichung aller Modellparameter für die F-ILR (—) und die O-ILR (– –)
6.1.6 Telehaptik

Die Simulationsergebnisse zur Telehaptik lassen sich kurz zusammenfassen:

- Die virtuelle Feder führt zu einer großen Phasenverschiebung bei den Positionen und zu großen Interaktionskräften.

- Für die Impedanzkausalität ergibt sich trotz Störungen und variabler Zeitverzögerung ein breites Interval von Leitungsimpedanzen, für das die Verbindung stabil und recht transparent ist.

Da unten zu den Experimenten detaillierter auf die Einstellungen und ihre Auswirkungen eingegangen wird und diese sich nicht wesentlich von den Simulationsergebnissen unterscheiden, soll hier auf eine ausführlichere Darstellung verzichtet werden.

6.2 Experimente

Im Mittelpunkt der Experimente steht die τ-ILR, die erst mit zusätzlichen mechanischen Behinderungen und dann an Patienten untersucht wird. Auch ihr Zusammenspiel mit der Z-ILR und die subjektive Wahrnehmung der neuen Trainingsumgebung werden untersucht. Am Ende dieses experimentellen Abschnitts werden einige Versuche zur Telehaptik und den Identifikationsverfahren beschrieben.

6.2.1 Verhalten der lernenden Regelung bei unterschiedlichen Behinderungen

6.2 Experimente

2. Um das Verhalten der ILR-En bei starker Dämpfung zu beurteilen, wie sie durch Spastik auftreten kann, wurde über ein Seil eine Masse am Griff befestigt, die von diesem über eine Unterlage gezogen wurde. Die Materialien wurden so gewählt, dass sich ein hoher Reibkoeffizient \(\mu \) ergibt.

Eine grobe Aufbauskizze beider mechanischer Behinderungen ist in Abbildung 6.11 zu sehen. Der normierte Griffwinkel \(\beta \) nimmt in der parallelen Stellung zum Untergrund sein Minimum 0 und sein Maximum 1 an, bewegt sich um 180° und hat die eingezeichnete Richtung. Die Abmaße sind ungefähr \(l = 20\text{ cm} \) und \(h = 10\text{ cm} \). Mit Federwaage und aus den Drehmomentdaten wurde die Steifigkeit \(k \) zu 0,7 N/mm, die Haftreibungszahl \(\mu_H \) zu 0,5 bis 0,6 und die Gleitreibungszahl \(\mu_R \) zu 0,39 bis 0,45 abgeschätzt. Die angehängte Masse betrug 5 kg.

Abbildung 6.12 zeigt die Entwicklung der Mittelwerte von Gerätedrehmoment \(\tau \), und Symmetrieerror \(|\alpha - \beta| \) für beide Bewegungsrichtungen des Versuchs mit der reibenden Masse. Diese Masse wurde nur in der Richtung, die oben dargestellt ist, angehängt, für die unten dargestellte Rückbewegung blieb.
Kapitel 6 Evaluation

Abbildung 6.12: ILR-Verhalten mit Reibung: Mittleres Drehmoment (links) und mittlerer Symmetriefehler (rechts) mit (oben) und ohne Reibung (unten); starre Führung (—) K-ILR (—), O-ILR (– –) und F-ILR (– · –)

Abbildung 6.13: ILR-Verhalten mit Feder: Mittleres Drehmoment (links) und mittlerer Symmetriefehler (rechts) mit (oben) und ohne Feder (unten); starre Führung (---) K-ILR (——), O-ILR (– –) und F-ILR (– · –)
6.2 Experimente

Abbildung 6.14: Vergleich von losem Griff (links), realer Dämpfung (Mitte) und Feder (rechts): Position (oben) und Drehmoment (unten) in der 12. Iteration; starre Führung (—) K-ILR (—), O-ILR (—) und F-ILR (—)

6.2.2 Evaluation mit hemiparetischen Patienten

Gleichzeitige Anpassung von Kraft- und Impedanz

Bei den Versuchen zur gleichzeitigen Anpassung von Kraft und Impedanz wurden die Griffpositionen als Bogen dargestellt und somit der zu minimierende Symmetrie Fehler visuell dargeboten. Die Impedanz wurde nicht positionsabhängig sondern aus dem über die Iteration gemittelten Fehler angepasst, mit der Verstärkung $\epsilon = 0.25$ und der Vergessenrate $f = 0.6$. Das Anpassen der Kraft erfolgte mit der li-
Kapitel 6 Evaluation

nearen K-ILR, die mit einer Drehmomentverstärkung von $\gamma = 0.7$ und einer Vergessensrate von s in Vorversuchen so parametriert wurde, dass sie weniger agil ist als die Impedzanpassung. So soll das Ziel erreicht werden, dass systematische Fehler langsam von der Vorsteuerung ausgeglichen werden, anstatt durch die Reglersteifigkeit, während große Fehler schnell von der Reglersteifigkeit reduziert werden. Die initiale Kraftunterstützung wurde zu null gesetzt, während die initiale Impedanz auf den Maximalwert gesetzt wurde.

Vorher soll noch eine andere Sicht auf die Daten von P_{A1} bis P_{A4} eingenommen werden. Um zu beantworten, ob sich eine patientenindividuelle Mischung aus Kraft- und Impedanzunterstützung ergibt, wurden die Abweichungen von den Mittelwerten von Drehmoment, Steifigkeit und Fehler für alle vier Patienten berechnet. Sie wurden auf das jeweilige Maximum normiert und sind als Balken in Abbildung 6.16 eingezeichnet. Besonders am Vergleich von P_{A1} und P_{A2} wird ersichtlich, das bei ungefähr gleichem, kleinen Fehler einmal, bei P_{A1} die Unterstützung einen höheren Impedanzanteil aufweist und insgesamt größer ausfällt und ein anderes mal, bei P_{A2} einen höheren Vorsteuerungsanteil aufweist.

Diese ersten Versuche zeigten auch, dass die Aufgabe unterschiedlich verstanden wurde, weil durch den angezeigten Symmetriefehler und die nicht vorhandene Geschwindigkeitsvorgabe jeder Proband einen anderen Kompromiss aus geringem Symmetriefehler und hoher Geschwindigkeit fand.

Vergleich der ILR Verfahren Deswegen wurde für die weiteren Versuche zum Vergleich der ILR-Verfahren die visuelle Bewegungsvorgabe eingeblendet. Mit fünf Sekunden pro Bewegung war sie so langsam eingestellt, dass sie von mög-
Abbildung 6.16: Normierte Abweichungen von den Mittelwerten für den Betrag des Drehmomentes, der Impedanz und dem Fehler für vier Patienten
Verfahren zurück zu führen ist, zeigt er, dass die modellbasierten Verfahren bei kleinen Fehlern mit ihrer geringeren Lernraten für mehr Gleichmäßigkeit und daher niedrigere Fehlerwerte sorgen. Diese Unterschiede könnten auch auf die Reihenfolge der Übungen zurück gehen. Diese war bei \(P_7 \{ F, V, O, K \}, \) das \(F \) steht darin für die F-ILR, das \(V \) für die volle Unterstützung, \(O \) für O-ILR und \(K \) für die K-ILR. Lägen die Unterschiede nur an der Reihenfolge dürfte der schlechteste Wert nicht in der Mitte auftreten, sondern müsste am Rand liegen. Dass der beste Wert am Anfang erreicht wird, kann zwar an einer zunehmenden Ermüdung liegen, ist aber aufgrund der nötigen Einübung in die neue Aufgabe eher erstaunlich. Das zeigen auch die Werte von \(P_{14} \), bei denen die Reihenfolge \(\{ K, F, V, O \} \) gewählt wurde und damit der schlechteste Wert an erster Stelle erzielt wurde. Die Drehmomentwerte zeigen zunächst, dass dort, wo der Fehler größer ist, auch mehr unterstützt wurde. Für die volle Unterstützung liegen keine Werte vor, da die Drehmomentvorsteuerung dargestellt ist und nicht die Summe aus Vorsteuerung und Feedback-Anteil, die nur innerhalb der Firmware berechnet wird. Bei \(P_7 \) zeigt sich erneut, dass die Kraft durch die O-ILR mehr eine Behinderung als eine Unterstützung darstellt, weil sie viel mehr Stellenergie einsetzt und trotzdem den größten Fehlerwert verursacht. Das Drehmoment, dass die F-ILR benötigt, liegt in den Fällen 2 und 4 im gleichen Bereich, wie das der K-ILR, der resultierende Fehler ist aber kleiner. Das spricht für eine bessere Form des Unterstützungsprofils. In den Fällen 1 und 3 liegt der Drehmomentwert der F-ILR leicht über dem der K-ILR, es reduziert aber auch den Fehler stärker.
Kapitel 6 Evaluation

Geistige Anforderung Wie hoch waren die geistigen Anforderungen der Aufgabe?

Körperliche Anforderung Wie hoch waren die körperlichen Anforderungen der Aufgabe?

Aufgabenerfüllung Wie erfolgreich haben Sie die geforderte Aufgabe Ihrer Ansicht nach durchgeführt?

Anstrengung Wie sehr mussten Sie sich anstrengen, um die Leistung zu erreichen?

Frustration Wie verunsichert, entmutigt, gereizt und verärgert waren Sie?

dafür genutzt werden sollte, in die volle Unterstützung der gesunden Hand zu schalten und ggf. die Visualisierung abzuschalten oder auf den Smiley allein zu reduzieren. Andererseits ist auch der Smiley selbst ein Element, um das sich die Anwendung reduzieren ließe. Dafür spricht, dass fast die Hälfte der Probanden angab, das Gesicht nicht zu beachten. Dagegen spricht eine große Beliebtheit dieser Rückmeldung bei einigen Patienten und Therapeuten. Dem entgegen steht eine Tendenz, die Anwendung als eher langsam als schnell zu bewerten. Diese Aussage bezieht sich vermutlich auf die Bewegung selbst, die etwas langsamer als ohne Visualisierung auszuführen ist, damit die Solltrajektorie verfolgt werden kann. Dem Wunsch nach mehr Geschwindigkeit kann wohl nur entsprochen werden, wenn die Patienten die Aufgabe voll verstanden haben und ohne eingeblendete Solltrajektorie ihre Geschwindigkeit allmählich erhöhen oder wenn sie immer voll unterstützt werden.
Abbildung 6.18: Fragebogen zu den Aufgaben: Modus spezifische Mittelwerte [oben, volle Unterstützung (ganz links), K-ILR (links), O-ILR (mitte) und F-ILR (rechts)], Boxplot für die Antworten von vier Probanden [unten]

6.2.3 Lineare und nichtlineare Impedzanpassung

Die Drehmoment-ILR (τ-ILR) soll nur für reproduzierbare und nicht zu große Fehler zum Einsatz kommen. Große oder nicht reproduzierbare Fehler müssen von einer zusätzlichen Impedanz-ILR reduziert werden. In diesem Abschnitt werden Versuche vorgestellt, die eine lineare Impedanz-ILR (Z-ILR) mit einer nichtlinearen Vergleichen (NZ-ILR). Die Frage ist, ob und bei welchen Einstellungen die NZ-ILR es schafft, bei größeren Behinderungen den Fehler schneller und dauerhafter kleiner als die Z-ILR zu machen und gleichzeitig bei kleinen Behinderungen weniger stark zu unterstützen. Für die Versuche wurde der e_{min}
zu null und e_{max} auf den bei nicht bewegtem Griff maximal zu erwartenden Wert $1/2$ gesetzt, um die NZ-ILR unabhängig von diesen Ausnahmen zu betrachten. Die Fehlerpotenz p in aus Gl. (4.40) war 3. Die Verstärkung ϵ der Z-ILR wurde auf die Verstärkung ϵ_N der NZ-ILR so abgestimmt, dass sich für mittlere Fehler \bar{e} von $0,35 \cdot e_{\text{max}}$ die gleiche Zunahme ergab. Abbildung 6.19 zeigt Fehler und angepasste Steifigkeiten für zwei unterschiedlich starke, simulierter Behinderungen. Die schwache wurde durch einen losen Griff erzeugt, die starke mit der Masse wie im Abschnitt 6.2.2 beschrieben und in Abbildung 6.11 skizziert. In diesen Geräteversuchen bestätigt sich das gewünschte Verhalten. Die NZ-ILR braucht bei großen Fehlern nur eine Iteration, um die größtmögliche Unterstützung einzustellen, während die Z-ILR die Unterstützung deutlich langsamer aufbaut und den Maximalwert nie erreicht. Bei starken Behinderungen ist der Unterstützungsendwert zudem größer und der asymptotisch erreichte Fehler kleiner. Auf der anderen Seite lässt die NZ-ILR bei kleinen Fehlern mehr Spielraum für die Drehmomentanpassung, weil ihre finale Unterstützung hier kleiner als die der Z-ILR ausfällt, was sich in etwas größeren Symmetrie-fehlern bemerkbar macht.

6.2.4 Telehaptik

Die Steifigkeit der virtuellen Feder darf nicht zu groß sein, weil dann die Gegenkraft bei der Führungsbewegung zu groß wird und sie darf nicht zu klein sein, weil dann die Positionen beider Griffe zu stark voneinander abweichen. Einen Kompromiss stellt die Steifigkeit $k = 1$ dar. Für diese Steifigkeit wurde eine periodische Bewegung mit einem Gerät, dem Master, vorgegeben. Am anderen Gerät, dem Slave, blieb der Griff frei, es wurde also keine Gegenkraft aufgebracht. In Abbildung 6.20 sind die Drehmomente und Griffpositionen von Master und Slave dargestellt. Trotz hoher Drehmomente auf der führenden Seite bleibt die Positionsabweichung groß. Außerdem wird die Bewegung wegen der ungleichmäßigen Rückstellkraft der virtuellen Feder ruckelig, was sich durch Drehmomentverhöhnungen und damit einhergehender Geschwindigkeitsreduktion bemerkbar macht. Eine bidirektionale Interaktion ist also aus systematischen Gründen mit der virtuellen Feder nie ganz transparent. Das zeigt auch die Positions-Transparennzahl T_p, die in diesem Experiment bei 41% Abwei-
Abbildung 6.19: Lineare (− · −) und nichtlineare (—) Impedanzanpassung mit geringer Behinderung (links) und starker Behinderung (rechts): Symmetriefehler (oben) und Reglersteifigkeit (unten)
6.2 Experimente

Abbildung 6.20: Telehaptik-Verbindung mit einer virtuellen Feder: Drehmoment (oben) und Griffposition (unten) von führender Bewegung (---) und Folgebewegung des freien Griffs (----)

Abbildung zwischen Master und Slave liegt. Bessere Ergebnisse sind möglich, wenn unterschiedliche Steifigkeiten bei Master und Slave verwendet werden. Ist es beispielsweise erwünscht, dass der Therapeut die Bewegung vorgibt aber über die Haptik-Verbindung eine geringe Rückmeldung über die Kraft des Patienten bekommt, kann auf der Patientenseite die Steifigkeit sehr hoch und beim Therapeuten-Rechner eine niedrige Steifigkeit eingestellt werden.

Mit Drehmomentsensor und Scattering-Transformation wird die Transparenz deutlich erhöht. Auch hier stellen die Einstellungen einen Kompromiss dar, der auf die Anwendung abgestimmt werden muss, nötigenfalls auch durch Adaption der Parameter. Konkret sind die Leitungsimpedanz b und die Dämpfungsskalierung s zu wählen. Für kleine b sinkt die empfundene Dämpfung bei freien Bewegungen sogar unter die Reibung von Getriebe und Motor. Doch spätestens, wenn beide Griffe angefasst werden, ist die Wellenreflexion groß, was sich in nicht abklingenden Schwingungen von Position und Kraft bemerkbar macht. Bis zu einem bestimmten Grad schafft eine zusätzliche Dämpfung durch kleine s Abhilfe. Bei großen b hingegen ist die Bewegung stärker gedämpft. Das verhindert die Wellenreflexion und ermöglicht dadurch auch bei starken Gegenkräften eine gute Interaktion. Bei freien Bewegungen ist dann aber die Dämpfung grö-
Abbildung 6.21: Telehaptik-Verbindung mit Sensor zwischen zwei Geräten: Drehmoment (oben) und Griffposition (unten) von führender Bewegung (—) und dagegenhaltender Folgebewegung (— –), Leitungsimpedanz $b = 1$, Dämpfungsfaktor $s = 0, 2$

Ein Überblick über weitere Versuche zeigt Tabelle 6.5. Sie soll einen Eindruck vermitteln, wie sich die maximalen und minimalen Werte für Leitungsämpfung b und Dämpfungsskalierung s auf die Transparenz und wahrnehmbare Verbindungseigenschaften auswirken. Bewertet wurde jeweils eine freie Bewegung und eine mit leichtem Gegenhalten auf Slave-Seite. Bei minimalem b ist die Verbindung so agil, dass schon kleine Störungen zu einer ruckeligen Bewegung führen.
6.2 Experimente

<table>
<thead>
<tr>
<th>b</th>
<th>s</th>
<th>Gegenkraft</th>
<th>T_f [%]</th>
<th>T_p [%]</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1</td>
<td>0,2</td>
<td>nein</td>
<td>94</td>
<td>37</td>
<td>niedrigste Dämpfung für freie Bewegung</td>
</tr>
<tr>
<td>1,0</td>
<td>0,2</td>
<td>nein</td>
<td>93</td>
<td>9</td>
<td>Dämpfung und Wellenreflexion leicht spürbar</td>
</tr>
<tr>
<td>1,0</td>
<td>0,2</td>
<td>ja</td>
<td>39</td>
<td>14</td>
<td>hohe Steifigkeit, Reflexion nicht spürbar</td>
</tr>
<tr>
<td>1,0</td>
<td>0,8</td>
<td>nein</td>
<td>92</td>
<td>21</td>
<td>Wellenreflexion verstärkt</td>
</tr>
<tr>
<td>1,0</td>
<td>0,8</td>
<td>ja</td>
<td>36</td>
<td>24</td>
<td>starke, nicht abklingende Wellenreflexion</td>
</tr>
<tr>
<td>10,0</td>
<td>0,8</td>
<td>nein</td>
<td>96</td>
<td>17</td>
<td>große Dämpfung</td>
</tr>
<tr>
<td>10,0</td>
<td>0,8</td>
<td>ja</td>
<td>74</td>
<td>44</td>
<td>große Dämpfung, schwingungsarme Führung</td>
</tr>
<tr>
<td>10,0</td>
<td>1,0</td>
<td>nein</td>
<td>97</td>
<td>89</td>
<td>sehr große Gegenkraft durch Wellenreflexion</td>
</tr>
</tbody>
</table>

Tabelle 6.5: Telehaptik mit Sensor und Wellen-Transformation: Überblick über die Versuche

Mit zwei anfassenden Personen ist das gekoppelte System instabil. Auch in der freien Bewegung ist die Transparenz schlecht. Das ändert sich für $b = 1$, wo vor allem für kleine s die Positionstransparenz gut ist und auch die Kraft bei Gegendruck auf den beiden Seiten gut übereinstimmt. Große s sollten aber für die Interaktion mit Gegenkraft nicht verwendet werden, weil sich dann durch Wellenreflexion Schwingungen ungedämpft im Kommunikationskreis halten. Da für große b die aufzubringende Führungskraft sehr groß ist, sind sie nicht zu empfehlen, auch wenn die Wellenreflexion etwas geringer ausfallen mag. s muss selbst hier kleiner eins bleiben, da sonst Scattering-Pakete zwischen Master und Slave hin und her übertragen werden, die für große Kräfte und schlechte Transparenzwerte sorgen.

Zusammenfassend lässt sich sagen, dass eine mittlere Leitungsimpedanz b einen guten Kompromiss zwischen Übertragungsgeschwindigkeit und Unterdrückung der Wellenreflexion darstellt. s kann dann auf die Anwendung abgestimmt werden. Für hohe Interaktionskräfte, ist ein niedriges s erforderlich, für vorwiegend freie Bewegungen sind auch höhere Werte möglich, die eine niedrigere Dämpfung bewirken. Im Falle der Therapeuten-Patienten-Interaktion sind kleine s anzuraten, weil ja gerade davon ausgegangen wird, dass der Patient nicht richtig mitarbeiten kann und eine Gegenkraft aufbringen wird.
Zum Vergleich wurde der gemessene Iststrom als Drehmomentwert für die Übertragung von wellentransformierten Haptikdaten verwendet. Eine Wiederholung der Versuche zeigte, dass es für diese Konstellation keine Kombination aus Leitungsinduktanz \(b \) und Dämpfungsskalierung \(s \) gab, für die gleichzeitig eine Unterdrückung der Wellenreflexionen und Transparenz erzielt werden konnten. Bei kleinem \(b = 0,1 \) hielten sich selbst bei \(s = 0,2 \) nicht abklingende Schwingungen im System. Bei mittlerem \(b = 1 \) waren die Schwingungen in gedämpfter Form weiter vorhanden. Doch schon bei leichtem Gegendruck folgte der Slave der Bewegung nicht mehr und die weiterhin mit den Drehmomentsensoren bestimmte Transparenz \(T_f \) lag bei 149\%. Der niedrigste Wert von 132\% für \(T_f \) konnte mit \(b = 10 \) und \(s = 0,8 \) in der Griffbewegung mit Gegendruck erzielt werden. Hier kann also kaum von einer transparenten Verbindung gesprochen werden. Für diese hohe Leitungsinduktanz ist außerdem die zusätzliche Dämpfung während der freien Bewegung eine deutlich spürbare Behinderung.

6.2.5 Mess- und Schätzverfahren

Zu den Mess- und Schätzverfahren lässt sich feststellen, dass die Drehmomentmessung an unterschiedlichen Griffstellungen mit Patienten und die Online-Schätzung von Dämpfung an einem gesunden Probanden erfolgreich getestet wurden, aber noch keine für die Rehabilitation relevanten Daten aufgenommen wurden. Die Versuchsmodi für die Lernratenschätzung und die Positionssprünge weisen noch Mängel auf, die in diesem Abschnitt ebenfalls kurz vorgestellt werden.

Abbildung 6.22: Drehmomentmessungen eines Probanden von paretischem (—) und gesundem Arm (—), gleichzeitiges Drücken beider Arme (oben), zeitlich getrenntes Drücken beider Arme (unten), Handgeleksflexion (links) und Handgelenksextension (rechts), 1: Griffposition ganz innen, 4: ganz außen

Identifikation mit adaptivem Regler Der AFFC wird mit der Steifigkeit aus den Sprungversuchen und zu null gesetzter Dämpfung und Masse initialisiert. Bei den beiden letztgenannten Startwerten hatten positive Ausprägungen keine
Änderungen der Schätzung zur Folge. Für die Verstärkungen Γ aus der Modellanpassung Gl. (4.77) wird eine Diagonalmatrix verwendet. Für die gleichzeitige Schätzung von mehr als einem mechanischen Parameter konnten keine Einstellungen gefunden werden, die zu dauerhafter Stabilität führen. Daher wird mit $\Gamma_{22} = 1$, $\Gamma_{11} = 0$ und $\Gamma_{33} = 0$ nur die Dämpfung geschätzt. Mit einer sinusförmigen Anregung mit einer Kreisfrequenz $\Omega = 0,1 \text{ rad/s}$ ergibt sich für die geschätzte Dämpfung der Verlauf in Abb. 6.23. In diesem Fall umfasste ab der halben Experimentaldauer ein gesunder Proband den sich bewegenden Griff und hielt den Arm möglichst entspannt. Auch wenn die Schätzung mit der Geschwindigkeit schwankt, unterscheidet sich die mittlere Dämpfung in diesem Abschnitt deutlich. Ähnliche Verläufe können auch mit höheren Kreisfrequenzen Ω erzielt werden.

Abbildung 6.23: Schätzung der Dämpfung mit dem AFFC: Ohne Proband für die ersten zwei Bewegungen und mit Proband für die letzten beiden Bewegungen
Kapitel 6 Evaluation
Zusammenfassung und Ausblick

Am Ende dieser Arbeit steht eine umfangreiche Versuchsumgebung für haptische Interaktionsalgorithmen und eine vorläufige Antwort auf die Ausgangsfra-ge. Bevor die durchgeführten und möglich gemachten Simulationen und Experimente beurteilt und eingeordnet werden, soll noch einmal der Weg zu ihnen nachgezeichnet werden.

Um die Frage nach der besten haptischen Patientenunterstützung zu beantworten, wurde von einem abstrakten Blick in die Forschungslandschaft gestartet, der Mediziner, Neurowissenschaftler, Philosophen und Psychologen auf der einen Seite und Informatiker, Mathematiker und Regelungstechniker auf der anderen Seite mit Hilfe von repräsentativen Beispielen kurz zu Wort kommen lässt. Die Einengung des Feldes führt zur detaillierten Beschreibung bestehender Algorithmen und Modelle, die das menschliche und das maschinelle Lernen mit Lerngleichungen annähern, Messverfahren darstellen oder die haptische Interaktion über das Internet ermöglichen. Das Ziel folgt unmittelbar aus festgestellten Defiziten: Modellbasierte Lernalgorithmen sind in der Regelungstechnik bekannt, wurden aber noch nicht in der Rehabilitation eingesetzt, außerdem existieren kaum Studien, die unterschiedliche Unterstützungsverfahren testen. Messverfahren haben für die Patientenbeurteilung ein großes, kaum ausgeschöpftes Potential und können u. U. helfen, die individuelle Unterstützung zu verbessern. Telehaptikverbindungen wurden bisher nicht eingesetzt, um das Therapeutenverhalten beim Lehren von Bewegungen zu untersuchen. Es wurden daher die vier Unterstützungsverfahren K-ILR, RBF, O-ILR und F-ILR
Kapitel 7 Zusammenfassung und Ausblick

Abbildung 7.1: Störungsabhängige Verschiebung der Unterstützungsmischung aus Vorsteuerung und steifem Regler → Es gibt keine optimalen Parameter für alle Patienten, siehe Abschnitt 6.1.2

auf das bimanuelle Lernen zugeschnitten und implementiert. Außerdem wurden die vier Messverfahren Maximalkraftmessung, AFFC zur Spastikidentifikation, Kraftfelder zur Lernratenabschätzung und Positionssprünge für die Identifikation von Muskel- und Reflexeigenschaften in die Versuchsumgebung integriert. Auch eine Telehaptikverbindung zwischen zwei Geräten wurde ermöglicht. Zu allen Verfahren existieren Simulationsumgebungen und eine Experimentalversion. Für letztere wurde eine möglichst intuitive grafische Benutzerschnittstelle entwickelt, mit mehreren Darstellungsvarianten für die Bewegungsaufgaben.

Kapitel 7 Zusammenfassung und Ausblick

Konstante Rate (K-ILR) Zeitbereich (O-ILR) Frequenzbereich (F-ILR)

<table>
<thead>
<tr>
<th>2</th>
<th>3</th>
<th>Positionsfehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Stellenergie</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Fehlerschwankung</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Kraftschwankung</td>
</tr>
</tbody>
</table>

Simulationen (6.1.5)

Experimente (6.2.1, 6.2.2)

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>Anpassung an Dämpfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>Anpassung an Patienten</td>
</tr>
</tbody>
</table>

Abbildung 7.2: Überblick über die Vorteile der unterschiedlichen lernenden Reglungen (bester: Text, 2: mittlere Merkmalsausprägung, 3: schlechteste Wertung

Damit lautet die vorläufige Antwort auf die Ausgangsfrage:

Die vorgestellte Versuchsumgebung eröffnet zudem die Möglichkeiten detaillierterer Antworten zu finden, die vorläufige Antwort abzusichern und verwandten Fragestellungen nachzugehen. Detailliertere Antworten sind zum einen durch längere Studien mit gleichen Versuchsbedingungen zu erwarten, bei denen auch Bewegungsarten variiert werden können, also zum Beispiel die parallele Handgelenksflexion oder die symmetrische Pronationsbewegung untersucht werden können. Zusätzliche EMG-Messungen könnten helfen, Aktivitätsunterschiede zwischen Unterstützungsarten zu finden. Zum anderen liefern Experimente mit der Telehaptik und den Messverfahren Ergebnisse, die zu detaillierten Antworten integriert werden können. Das Wissen über positionsabhängige Maximalkräfte oder spastikbedingte Dämpfungen kann für die Einstellung der initialen Unterstützungskraft und -steifigkeit verwendet werden. Lernratenabschätzungen aus noch zu verbessernden Kraftfeldversuchen machen die Simulationen realistischer und abgeleitete Empfehlungen genauer. Die Analyse der Bewe-
gungen des über die Televerbindung angeschlossenen Therapeuten kann mögli-
cher Weise Unterstützungseinstellungen verfeinern oder zu neuen Algorithmen
führen. Verwandte Fragestellungen sind zum einen Detailfragen zu den Ein-
zelkomponenten und zum anderen die nach der geeignetsten Integration aller
Komponenten zu einem Gesamtsystem. Zu jedem Messverfahren sind einzel-
ne Studien vorstellbar und die Unterstützungsverfahren können erweitert oder
um Alternativen ergänzt werden. Eine derartige Erweiterung wäre eine besse-
re Modellschätzung für die O-ILR und die F-ILR. Mögliche Alternativen sind
eine konstante Drehmomentvoreinstellung pro Iteration oder ein zeitabhängig-
ges Lernen. Letzteres wurde zwar in Vorversuchen implementiert und wegen
der starken Anforderungen an das Timing der gesunden Hand aus der Be-
trachtung ausgeschlossen, kann aber für geführte gesunde Seiten oder einar-
mige Bewegungen geringe Vorteile wegen des genauere Unterstützungsverlaufs
in Bereichen geringer Geschwindigkeit haben. Die Untersuchung und Formung
des Gesamtsystems ist aus zwei Perspektiven sinnvoll. Zum einen kann eine
abstrakttere Softwareschicht die jetzt nur teilweise vorhandenen Schaltvorgänge
zwischen Unterstützungen im Sinne einer symbolischen Interaktion mit dem
Nutzer übernehmen. Aus den Fehlern des Nutzers wird der für ihn beste Mo-
dus erlernt. Zum Beispiel wird die gesunde Hand nach chaotischen Bewegungen
einige Iterationen unterstützt, wenn der Patient dann weiterhin große Fehler
macht, wird das Interval verlängert usw. Diese Überlegungen können in ganzen
Dialogen münden, die kognitive Architekturen auf der Seite des Geräts erfor-
derlich machen und damit auch die Kognition des Patienten zu verstehen hel-
fen. Die zweite Perspektive ist die der wichtiger werdenden Therapieformen in
Gruppen und zu Hause, für die der Therapeut eine abstrakttere Softwareschicht
benötigt, um die Übungen zu planen und den Erfolg und die Schwierigkeiten
seiner Patienten zu erkennen. Wichtige, vorhandene Bausteine hierfür sind die
Telehaptikverbindung und die Erfassung von Bewertungen wie dem mittleren
Symmetriefehler, der Abweichung von der Sollbewegung oder die mittlere Un-
terstützung.

Zum Schluss wird noch einmal auf die Übertragbarkeit des mit dieser Ver-
suchsumgebung gewonnenen Wissens hingewiesen. Die Frage nach der besten
beidseitigen Unterstützung stellt sich unabhängig von der Zahl der Bewegungs-
freiheitsgrade an allen Rehahilitationsgeräten, die zwei Extremitäten gleichzei-
tig unterstützen können, also für sämtliche Bein- und Armroboter und -geräte,
egual ob sie als Exoskelett oder Endeffektorgerät entwickelt wurden. Eine Ant-
wort, die auf die vorgestellte Weise gefunden wird, lässt sich höchstwahrschein-
llich auf eine Vielzahl dieser Geräte übertragen. Zudem sind die Versuche mit
starrer Führung der gesunden Seite, die auch ohne Anfassen der gesunden Hand
durchgeführt werden können, den einseitigen Arm- und Beinunterstützungen
so ähnlich, dass die Aussagen auch auf eine Vielzahl bloß einseitig unterstüt-
zender Rehahilitationsgeräte übertragbar sein sollten. Ähnliches gilt für die
Messverfahren und die Telehaptikverbindung.
Kapitel 7 Zusammenfassung und Ausblick
Literaturverzeichnis

Literaturverzeichnis

Duschau-Wicke, Alexander; Morger, André; Vallery, Heike; Rie-ner, Robert: Adaptive Patientenunterstützung für Rehabilitationsroboter. In: at (2010), Nr. 5, S. 260–268

Edelman, Gerald M.: Das Licht des Geistes — Wie Bewusstsein entsteht. Walter, 2004

Franklin, David W.; Burdet, Etienne; Osu, Rieko: Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics. In: Experimental Brain Research 151 (2003), S. 145–157

Franklin, David W.; Burdet, Etienne; Tee, Keng P.; Osu, Rieko; Chew, Chee-Meng; Milner, Theodore E.; Kawato, Mitsuo: CNS Learns Stable, Accurate, and Efficient Movements Using a Simple Algorithm. In: The Journal of Neuroscience 28 (2008), Nr. 44, S. 11165–11173

Literaturverzeichnis

175
LITERATURVERZEICHNIS

[54] MARCHAL-CRESPO, Laura ; REINKENSMYER, David J.: Review of control strategies for robotic movement training after neurologic injury. In: Journal of NeuroEngineering and Rehabilitation 6 (2009), Nr. 20

[55] MASIA, Lorenzo ; CASADIO, Maura ; GIANNONI, Psiche ; SANDINI, Giulio ; MORASSO, Pietro: Performance adaptive training control strategy for recovering wrist movements in stroke patients: a preliminary, feasibility study. In: Journal of NeuroEngineering and Rehabilitation 6 (2009), December, Nr. 44

[58] MERRY, R. J.: Iterative Learning Control With Wavelet Filtering, Eindhoven University of Technology, Diplomarbeit, 2005

[59] MIRBAGHERI, Mehdi M. ; ALIBIGLIOU, Laila ; THAJCHAYAPONG, Montakan ; RYMER, William Z.: Muscle and reflex changes with varying joint angle in hemiparetic stroke. In: Journal of NeuroEngineering and Rehabilitation 5 (2008), Nr. 6

[60] MONTAGNER, Alberto ; FRISOLI, Antonio ; BORELLI, Luigi ; PROCOPIO, Caterina ; BERGAMASCO, Massimo ; CARBONICINI, Maria C. ; ROSSI, Bruno: A pilot clinical study on robotic assisted rehabilitation in VR with an arm exoskeleton device. In: Virtual Rehabilitation, 2007, S. 57–64

[65] Nef, Tobias; Mihelj, Matjaz; Riener, Robert: ARMin: a robot for patient-cooperative arm therapy. In: Medical and Biological Engineering and Computing 45 (2007), S. 887–900

[73] Reinkensmeyer, David J.; Kahn, Leonard E.; Averbuch, Michele; McKenna-Cole, Alicia; Schmit, Brian D.; Rymer, Zev: Understanding and treating arm movement impairment after chronic brain injury:
Progress with the ARM guide. In: Journal of Rehabilitation Research and Development 37 (2000), November/December, Nr. 6, S. 653–662

Literaturverzeichnis

[97] Wiener, Norbert: *Cybernetics or control and communication in the animal and the machine*. The M.I.T. Press, 1961

[100] Yang, Chenguang; Ganesh, Gowrishankar; Haddadin, Sami; Parusel, Sven; Albu-Schäffer, Alin; Burdet, Etienne: Human-Like Adaptation of Force and Impedance in Stable and Unstable Interactions. In: *IEEE Transactions on Robotics* 27 (2011), Nr. 5, S. 918–930

[101] Yokokohji, Yasuyoshi; Yoshikawa, Tsuneo: Bilateral Control of Master-Slave Manipulators for Ideal Kinesthetic Coupling — Formulation and Experiment. In: *IEEE Transactions on Robotics and Automation* 10 (1994), Nr. 5