Modellierung, Simulation und Optimierung solarthermischer Anlagen in einer objektorientierten Simulationsumgebung

von
Dipl.-Phys. Tobias Schrag
aus München

Vom Fachbereich 13 - Informatik
der Technischen Universität Berlin
zur Erlangung des akademischen Grades
DOKTOR-INGENIEUR
genehmigte Dissertation

Promotionsausschuß:
Vorsitzender Prof. Dr.rer.nat. Klaus Obermayer
Berichter: Prof. Dr.-Ing. S. Jähnichen
Berichter: Prof. Dr.h.c. Dr.-Ing G. Bartsch

Tag der wissenschaftlichen Aussprache: 6.7.2000

Berlin 2001
D 83
... es nicht darauf ankommt die Natur zu beherrschen,
sondern unser Verhältnis zur Natur.

Walter Benjamin
Inhaltsverzeichnis

1 Einleitung und Zielsetzung 7

2 Die Simulationsumgebung SMILE 11
 2.1 Das SMILE -System 12
 2.1.1 Der Aufbau des Systems 12
 2.1.2 Die Experimentbeschreibung 14
 2.1.3 Die numerischen Löser 15
 2.2 Die Modellierung in SMILE 18
 2.2.1 Gleichungsorientierung 19
 2.2.2 Objektorientierte Modellierung 21
 2.3 Erweiterungen im aktuellen SMILE Release 25

3 Die SMILE -Komponentenbibliothek 29
 3.1 Modellaufbau 29
 3.1.1 Struktur der Komponentenbibliothek 29
 3.1.2 Komponenten zur Gebäudesimulation 31
 3.1.3 Komponenten zur Anlagensimulation 33
 3.1.4 Die Bedeutung der Objektorientierung für komplexe Systeme 38
 3.2 Validierung 39
 3.2.1 Validierung einzelner Komponenten 40
 3.2.2 Validierung ganzer Systeme 43

4 Optimierung 47
 4.1 Die Kombination von Simulation und Optimierung 48
 4.1.1 Einführung 48
 4.1.2 Stationäre Optimierung dynamischer Simulationen 50
 4.1.3 Implementationsentwicklung in SMILE 51
 4.1.4 Die Rechenzeitproblematik 54
 4.2 Vergleich verschiedener Optimierungsverfahren 56
 4.2.1 Mathematische Methoden der Optimierung 56
 4.2.2 Bewertung der Verfahren 61
 4.3 Optimierung auf der Basis von reduzierten Datensätzen 64
 4.3.1 Datenreduktion mit neuronalen Netzen 64
4.3.2 Optimierung mit Typperioden, die durch Datenreduktion gewonne-
nen wurden ... 69

5 Solarthermische Großanlagen zur Warmwasserbereitung 73
5.1 Solare Warmwasserbereitung ... 74
 5.1.1 Pufferspeicheranlagen ... 74
 5.1.2 Dimensionierung der wesentlichen Anlagenparameter 76
 5.1.3 Konzepte zur Integration der Nachheizung 78
5.2 Entladestrategien .. 79
 5.2.1 Durchlauf- und Speicherladenprinzip 79
 5.2.2 Vergleichende Simulation unterschiedlicher Entladestrategien . . . 81
5.3 Dimensionierung der Wärmeübertrager 84
 5.3.1 Wärmeübertragerauslegung 85
 5.3.2 Beurteilung der Wärmeübertrager in Pufferspeicheranlagen mit Hilfe
dynamischer Simulationen ... 89
 5.3.3 Numerische Optimierung des Entladewärmeübertragers 97

6 Energetische Sanierung von Plattenbauten 101
6.1 Altbausanierung .. 101
 6.1.1 Potentiale und Probleme der Plattenbausanierung 102
 6.1.2 Simulation eines sanierten Plattenbaus 108
6.2 Reduzierung des Primärenergiebedarfs von Plattenbauten durch Solarener-
gienutzung .. 113
 6.2.1 Simulation eines Altbaus mit solar unterstützter Luftheizung . . . 115
 6.2.2 Energetische Betrachtung der solar unterstützten Luftheizung 126
 6.2.3 Solarfassaden zur Heizungsunterstützung 131
 6.2.4 Optimierung der Regelung zur Minimierung des Primärenergieei-
satzes ... 133
 6.2.5 Wirtschaftlichkeitsbetrachtung 136

7 Nahwärmesysteme 139
7.1 Solare Nahwärmesysteme .. 141
 7.1.1 Stand der Technik .. 143
 7.1.2 Simulation und Erfahrungen mit solarer Nahwärme 149
7.2 Das solar-, geothermische Nahwärmesystem GeSo\-therm S 152
 7.2.1 Geothermische Energiequellen 152
 7.2.2 Die geothermische Tiefensonde 154
 7.2.3 Simulation des GeSo\-therm S - Systems 159
 7.2.4 Ergebnisse .. 160
 7.2.5 Wirtschaftlichkeitsbetrachtung 166
 7.2.6 Kostenoptimale Auslegung für eine erforderliche Deckungsrate . . . 166

8 Zusammenfassung und Ausblick 171
A Anhang 191
 A.1 Schaltskizzen . 191

Abbildungsverzeichnis 194
Tabellenverzeichnis 199
Zeichenerklärung 200
Kapitel 1

Einleitung und Zielsetzung

Der aktiven und passiven Nutzung thermischer Solarenergie gelten hohes Interesse, da hier ein großes Potential (ca. ein Drittel des Endenergieverbrauchs der Bundesrepublik Deutschland wird für Warmwasserbereitung und Raumheizung aufgewendet) mit heute noch annehmbaren Energiepreisen zusammentritt. Auf dem Gebiet der aktiven Solarthermie kann man seit Anfang der neunziger Jahre sogar von einem ausgebildeten und rasch wachsenden Markt sprechen. Die große Einschränkung dieser Entwicklung ist jedoch, daß sie bisher auf den privaten Einfamilienhaussektor beschränkt ist. Die Betreiber können hier einen direkten Bezug zur gesparten, bzw. gewonnenen Energie herstellen, was wesentlich zum Erfolg der Solarenergie in diesem Bereich beiträgt. Da in den Industrieländern mit hohem Energiebedarf jedoch der Groß-

Schon für die Entwicklung kleiner Solaranlagen waren Simulationswerkzeuge notwendig, um eine Technik zu optimieren, die unter stark wechselnden Umgebungsbedingungen eingesetzt wird. Mit der ansteigenden Größe und Komplexität der Anlagen steigen auch die Anforderungen an die für die Entwicklung und Planung benötigten Simulationsprogramme. Die meisten dieser bestehenden Programme bieten jedoch nur eingeschränkte Möglichkeiten bestehende Lösungen vereinfacht abzubilden. Umfangreichere Simulationsumgebungen hingegen gestatten dem Nutzer die Modelle selbst zu erstellen und dadurch deren Komplexität und Genauigkeit selbst festzulegen.

Die Weiterentwicklung des SmiLe-Systems (Kap. 2) und deren Auswirkungen auf Modellbildung und Simulation (Kap. 3) werden ebenso vorgestellt wie die Kombination der Simulation mit numerischer Optimierung (Kap. 4). Neben den Methoden der numerischen Optimierung und den möglichen Kombinationen wird auch auf das für die Praxis entscheidende Problem der Rechenzeiten eingegangen. Es werden sowohl die verschiedenen bekannten Lösungsansätze als auch ein Versuch dargestellt, die Rechenzeit durch die Verwendung von Ausgangsinformationen zu verringern, die mit neuronalen Netzen komprimiert werden. Simulation und Optimierung werden aber nicht nur theoretisch vorgeführt, sondern an drei ausführlichen Beispielen demonstriert. Diese stammen aus unterschiedlichen solarthermischen Anwendungsbereichen. Es handelt sich aber immer um Ansätze, den Solarmarkt jenseits des Eigenheims auszuweiten. Die Beispiele zeichnen nicht bekannte Lösungen in SmiLe nach, sondern beschäftigen sich mit bisher nicht untersuchten Fragestellungen, sind jeweils mit aktuellen Forschungsprojekten verbunden und stellen auch unabhängig vom verwendeten Werkzeug neue Erkenntnisse dar. Diese Solarsysteme können noch nicht nach rein wirtschaftlichen Kriterien beurteilt werden. Trotzdem werden die damit verbundenen Kosten und deren mögliche Entwicklung dargestellt, da diese für die Umsetzung der ge-
Die dargestellten Beispiele unterscheiden sich aber auch deutlich. Es werden jeweils unterschiedliche Schwerpunkte und Vorteile der Anwendung einer modernen Simulationsumgebung hervorgehoben. Aber nicht nur die mit Hilfe der Simulationen untersuchten Problemstellungen und die eingesetzte Technik sondern auch die mit den jeweiligen Maßnahmen verbundenen Energieeinsparungsmöglichkeiten und ihre momentane Bedeutung für den Wärmemarkt lassen sich schwer miteinander vergleichen. Es werden daher nicht nur die Modellierung dieser Systeme und die Ergebnisse der Simulationen, sondern auch das spezielle Umfeld dieser Systemlösungen dargestellt, um die Ergebnisse in den Kontext der jeweiligen Forschung und Entwicklung einzuordnen.

Hiervon unterscheidet sich sowohl hinsichtlich der Schwerpunkte der SMILE-Anwendung als auch bezüglich der energetischen Relevanz das zweite Anwendungsbeispiel: die Integration von Solartechnik bei der energetischen Sanierung eines Gebäudes (Kap. 6). Der größte mögliche Beitrag zur Reduzierung des Wärmebedarfs kann durch bauliche Maßnahmen, vor allem durch die Sanierung von Altbauten geleistet werden. Genauer wird die Sanierung von Typenbauten aus industriell vorgefertigten Teilen in den neuen Bundesländern besprochen,

Kapitel 2

Die Simulationsumgebung SMILE

In der Planung werden bisher meist stationäre Simulationsprogramme angewandt, die das Verhalten von Anlagen für durchschnittliche oder extremale Randbedingungen bestimmen. Um komplexere Anlagen zu optimieren, um Regelungsprobleme zu untersuchen oder um neue Komponenten zu entwickeln, muß aber auch das instationäre Verhalten untersucht werden. In SMILE stehen daher neben impliziten und algebraischen auch Differentialeigleichungen zur Beschreibung dynamischer Prozesse zur Verfügung. Unstetigkeiten, wie Schaltvorgänge, werden hingegen durch diskrete Gleichungen beschrieben. Dadurch unterscheidet sich SMILE von stationären Simulationsprogrammen und von solchen, die nur kontinuierliche oder nur diskrete Gleichungen zulassen. Von sogenannten Simulatoren (abgeschlossenen Programmen zur Behandlung spezieller Fragen), die dem Benutzer nur die Veränderung bestimmter Parameter gestatten, unterscheidet SMILE sich durch seinen Grad an Flexibilität. Der Begriff SMILE bezeichnet sowohl die Simulationsumgebung als auch e-

2.1 Das SMILE -System

Soweit nicht anders gekennzeichnet, bezieht sich die folgende Darstellung der Grundzüge der Simulationsumgebung ebenso wie die später vorgestellten Berechnungen auf die Versionen 1.0.19 und 1.0.20, die sich voneinander nur geringfügig unterscheiden. Es werden nur die wesentlichen Unterschiede zur vorangegangenen SMILE -Generation (0.7) und schon feststehende Veränderungen der nächsten Generation (1.1) erwähnt. Detailliertere Beschreibungen des Programms und der Konzeption sind in [1] und im Smile-Handbuch [6] zu finden.

2.1.1 Der Aufbau des Systems

- Instanziierung, Initialisierung und Verbindung der getrennt übersetzten Komponenten zu einem Anlagenmodell
- Konfiguration eines Simulationsexperiments aus Anlagenmodell und Löser, sowie Definition der Eingabe und Ausgabedaten
- Steuerung des Simulationsablaufs.

Die Ablaufsteuerung der Simulation wird nach dem Warteschlangenprinzip durchgeführt. Darin enthalten sind als Aufgaben u.a. die Initialisierung, die Lösung des Gleichungssystems zu jedem Zeitschritt und die jeweiligen Ausgabefunktionen. Nicht in der obigen Abbildung dargestellt sind weitere Hilfsprogramme, die nicht zum SMILE-System gehören, aber von vielen SMILE-Anwendern momentan genutzt werden, da sie in den meisten Unix Dialekten, unter denen SMILE lauffähig ist, zur Verfügung stehen. Notwendig ist MAKE oder ein ähnliches Programm zur Ablaufsteuerung des Kompilationsprozesses und AWK oder eine andere Scriptsprache zur Filterung der Ausgabedaten. Sinnvoll
sind aber auch MPI oder eine andere Unterstützung zur parallelen Simulationsausführung
bei Optimierungsrechnungen sowie ein Verwaltungssystem zur Versionskontrolle.

2.1.2 Die Experimentbeschreibung

2.1.3 Die numerischen Löser

Werden die im Anlagenmodell und dessen Komponenten formulierten Gleichungen zusammengefasst, entsteht ein Algebro-Differentialgleichungssystem (ADGL), das allgemein in folgender Form geschrieben werden kann:

$$\dot{y} = f(y, z, \alpha, t), \quad (2.1)$$
$$0 = g(y, z, \alpha, t), \quad (2.2)$$
$$\alpha = \alpha(y, z, t). \quad (2.3)$$

y und z stellen die kontinuierlichen Variablen des Modells dar. Gleichungen (2.1) und (2.2) repräsentieren ein ADGL, das durch numerische Integrationsmethoden gelöst werden kann,
wenn für jeden Zustand der Differentialvariablen y eine Lösung für die algebraischen Variablen $z = z(y)$ existiert, so daß $g(y, z(y), t) = 0$ erfüllt ist und beispielsweise durch ein Newton-Verfahren berechnet werden kann. Diese Bedingung, die als Index-1-Bedingung bezeichnet wird, kann bei der Modellierung fast aller energietechnischen Anlagen eingehalten werden. In [9] und [10] wird genauer auf die Indexproblematik bei der numerischen Lösung von ADGLs eingegangen und in Kap. 6 ist ein Problem erwähnt, welches diese Bedingung nicht erfüllt. Die Variablen α beschreiben den diskreten Anteil des Modells. Sie sind stückweise konstant und hängen von den kontinuierlichen Variablen (y, z) und der Zeit t ab. Neben diesem hybriden Charakter aus kontinuierlichen und diskreten Anteilen ist für die Konstruktion des Lösers wichtig, daß die entstehenden Gleichungssysteme teilweise nicht nur sehr groß und nichtlinear, sondern auch steif sind, d.h. sie besitzen stark abklingende Komponenten, die kaum zur Dynamik des Systems beitragen, aber die Schrittweite stark einschränken können.

Der in Abb. 2.2 dargestellte objektorientierte Aufbau des Lösers ermöglicht den Einbau

Der Gleichungsauswerter ist die Schnittstelle zum SMILE-System, die die Modellgleichungen in der Form der Gleichungen (2.1)-(2.3) an die anderen Komponenten des Lösers weiterreicht und die benötigten Ableitungen berechnet. Der Synchronisator organisiert die Abstimmung der einzelnen Löserkomponenten untereinander (s.[11]).

- DASSL, ein BDF-Verfahren (Backward Differentiation Formulae), das auch in anderen Simulationsprogrammen Verwendung findet, aber für Systeme, deren Lösungen sich in der Nähe von Singularitäten bewegen, häufig ineffizient ist.
- SDIRK4, ein einfach diagonal implizites Runge-Kutta-Verfahren, welches bei Systemen mit aufwendigen Jakobi-Matrizen effizient ist.
- DOPRI5, ein halb explizites Runge-Kutta-Verfahren, das nur für nichtstifte Systeme geeignet ist.
- LINEX, einer Abwandlung des LIMEX, eines linear impliziten Euler Verfahrens, das kein anschließendes Newton-Verfahren benötigt und bei linearen Systemen sehr effizient ist.
- EULER, ein vollkommen implizites Euler Verfahren, das speziell für sehr steife Systeme geeignet ist.
- TRAPEZ, auf der Trapezregel aufbauend, ebenso wie LINEX und EULER ein Extrapolationsverfahren, das bei verschiedensten Problemen nicht immer die höchste, aber immer zufriedenstellende Effizienz aufweist und deshalb am häufigsten eingesetzt wird.

2.2 Die Modellierung in SMILE

\[
\text{double T_out [eq,hist,\text{scale:} "0.001",\text{doc:} "Austrittstemperatur"]};
\]

- eq (equation)
 Der Variablen wird eine Gleichung zugeordnet.
- hist (history)
 Es kann auf den Wert der Variablen beim letzten Zeitschritt zurückgegriffen werden.

Bei Überschreitung eines maximalen bzw. minimalen Wertebereichs wird vom Löser eine Warnung ausgegeben.

Es kann eine Beschreibung der Variablen angegeben werden.

Ebenfalls deklariert, aber noch nicht vom Laufzeitsystem unterstützt und daher nur zur Dokumentationszwecken verwendet, wird das Attribut „unit“ zur Angabe der Einheit. Die einzelnen Sprachelemente zur Modellierung werden im Folgenden unter den beiden Gesichtspunkten dargestellt, die SMILE neben der vom Modell unabhängigen Numerik auszeichnen: Gleichungsorientierung und Objektorientierung.

2.2.1 Gleichungsorientierung

Alle Gleichungen in SMILE sind Variablen zugeordnet und folgen der gleichen syntaktischen Regel: Nach dem Schlüsselwort „eq“ folgt die Bezeichnung des Gleichungstyps, der Variablenname und in runden Klammern die Liste der Parameter, von denen die Variable abhängt. In geschweiften Klammern folgt die Berechnungsanweisung, die einer C-Funktion entspricht. Für die in Gl. (2.1) bis Gl. (2.3) abstrakt zusammengefaßten darstellbaren Gleichungen stehen in SMILE vier Gleichungstypen zur Verfügung: Implizite algebraische
Gleichungen:

\[a = b + c \]

lauten in SMILE:

\[\text{@eq cont a(b,c) {return b+c;}} \]

Implizite algebraische Gleichungen:

\[\sin(x) + 0.5 \cdot x = 0 \]

lauten in SMILE:

\[\text{@eq impl x(x) {return sin(x) + 0.5*x;}} \]

Gewöhnliche Differentialgleichungen:

\[\frac{dy}{dt} = a \cdot y \]

lauten in SMILE:

\[\text{@eq diff y(y,a) {return a*y;}} \]

Sprunggleichungen:

\[on = \begin{cases} 1 & \text{falls } a > 0 \\ 0 & \text{sonst} \end{cases} \]

lauten in SMILE:

\[\text{@eq discrete on(a) {if (a>0.0)return 1.0; else return = 0.0;}} \]

Probleme, die durch partielle Differentialgleichungen beschrieben werden, in SMILE durch eine örtliche Diskretisierung gelöst. Die dabei notwendige Art (äquidistant, linear wachsend, etc.) und Feinheit der Diskretisierung hängt vom jeweiligen Problem ab und muß vom Modellierer gewählt werden. Für eine örtliche Diskretisierung werden vorgestellten vier Gleichungstypen als Feldgleichungen verwendet.

```latex
@eq diff T_node[i] (T_node, lamda, rho, V_node[i])
{return lamda*(T_node[i]- T_node[i-1])/(rho*V_node[i]); }
```


2.2.2 Objektorientierte Modellierung

Neben der Verringerung des Abstraktionsaufwandes durch die Gleichungsorientierung ist die Möglichkeit zur Strukturierung durch die Objektorientierung entscheidendes Qualitätsmerkmal der Modellierungssprache von SMILE. Dadurch können, genauso wie reale Anlagen aus einzelnen Aggregaten aufgebaut werden, Modelle komplexer Anlagen aus einzelnen Modellen, sogenannten Komponenten, zusammengesetzt werden. Darüberhinaus können sowohl diese Komponenten strukturiert als auch größere Anlagen in unterschiedliche Bereiche unterteilt werden.

Für das Paradigma der objektorientierten Programmierung gibt es eine Vielzahl von Beschreibungen (z.B. [15, 16]). Man kann sie als Analogie der Programmierung zu unserer Wahrnehmung formulieren, in der es abgrenzbare Objekte gibt, die mit ihrer Umgebung kommunizieren. Sie läßt sich von der klassischen imperativen Programmierung mit Blöcken und Prozeduren unterscheiden, in der getrennte Daten- und Funktionshierarchien existieren, die sich wechselseitig aufeinander beziehen.

21

Im Bereich der objektorientierten Programmierung gibt es mehrere strukturierende Konzepte [17, 18]. Im Folgenden werden aber nur die Strukturierungsmöglichkeiten durch Vererbung und Aggregierung eingehender erläutert, da diese sowohl in SMILE implementiert als auch beim Aufbau der Komponentenbibliothek eingesetzt werden.

Vererbung und Aggregierung

Während die Kapselung zwar zu den grundlegenden Prinzipien der Objektorientierung gehört, aber oft eine funktionale Entsprechung durch Komponentenorientierung oder Modularität in herkömmlichen Programmen findet, ist die Vererbung ein mächtiges Prinzip, das es nur in der objektorientierten Programmierung gibt. Es ermöglicht den Aufbau hierarchischer Strukturen mit allgemeinen Modellen, von denen spezialisierte problemlos abgeleitet werden können.

Ein spezialisiertes Modell, eine sogenannte Kindklasse, kann aus einem allgemeineren Modell, einer sogenannten Elternklasse entwickelt werden, ohne daß diese verändert werden muß. Dabei erbt die Kindklasse alle Eigenschaften der Elternklasse. Wie in Abb. 2.3
und Abb. 2.4 dargestellt, wird in der graphischen Notation für objektorientierte Klassenhierarchien UML [20] die Vererbung durch einen Pfeil, der auf die Elternklasse zeigt, verdeutlicht. In SMILE erfolgt die Angabe der Elternklasse im @interface, die durch einen Doppelpunkt vom Klassennamen der Kindklasse getrennt wird:

@interface DetailliertesModell : Basismodell

Abbildung 2.4: UML-Notation für Vererbung und Aggregierung

Unter Aggregierung versteht man das Zusammenfassen mehrerer Objekte zu einem Objekt. Schafft das Vererbungsprinzip eine hierarchische, spezialisierende Struktur, so wird durch die Aggregierung die Möglichkeit zu einer Komposition gegeben (s. Abb. 2.5).
Abbildung 2.5: Aggregierungsprinzip

In einer neuen Klasse können damit nicht nur Gleichungen formuliert, sondern auch Subkomponenten aufgerufen werden. Wie in Abb. 2.5 und Abb. 2.4 zu sehen, wird Aggregierung in UML durch eine Raute an dem Ende der Verbindungslinie die auf die aggregierende Klasse zeigt, dargestellt. In SMILE werden Subkomponenten im Interface als geschützte (protected) Variablen deklariert, d.h. es werden diesen Variablen Zeiger auf die entsprechenden Klassen zugeordnet. Eine Besonderheit der Aggregierung in SMILE ist, daß beim Laden einer Klasse durch das Laufzeitsystem die deklarierten Subkomponenten instanziert werden. Dadurch erfolgt zu Beginn der Simulation von der obersten Klasse (i.e. dem Anlagenmodell) aus eine rekursive Instanziierung des gesamten Systems.

Im @implementation-Teil werden die Subkomponenten durch einen @component-Block initialisiert. Die dortige der Verwendung angepasste Initialisierung überschreibt vorherige Festlegungen. Die Verbindung mit Subkomponenten oder die Verbindung mehrerer Subkomponenten untereinander wird durch Gleichsetzen der entsprechenden Variablen im @connect-Block realisiert, d.h. die entsprechenden Variablen verweisen auf den selben Speicherplatz.

```plaintext
@protected ..
Collector * collector_1; // Deklaration der Subkomponenten
Collector * collector_2;
..
@component collector_1
{..
    incidence_angle = 35; // Neigungswinkel in Grad
}
@connect
{collector_1.Stream_out[i] = collector_2.Stream_in[i];
  ..}
```

Denn es erleichtert nicht nur die Modellierung, sondern erfordert auch eine erhöhte Disziplin des Modellierers, um bei größeren Systemen Unübersichtlichkeiten zu vermeiden. Mehrfachverwendungen von Variablennamen, die nicht nur in einer Elternklasse belegt werden, müßten vom Compiler erkannt und durch Umbenennung verhindert werden. Unter Polymorphie versteht man die Differenzierung zwischen einer Referenz, d.h. einem statischen Typ und einem zugehörigen dynamischen Typ der während der Laufzeit ausgetauscht werden kann. Der dynamische Typ muß typkonform sein, d.h. er ergibt sich aus der Menge aller direkten oder indirekten Erben sowie dem statischen Typ selbst. Eine Erweiterung von SMILE um dieses Konzept wäre eine Voraussetzung für die im Kap. 8 angesprochene variable Modellierungstiefe, bei der während der Laufzeit ein einfacheres Modell durch ein detaillierteres ersetzt wird.

2.3 Erweiterungen im aktuellen SMILE Release

SMILE wird nicht zur energietechnischen Forschung eingesetzt, sondern auch als Simulationsumgebung stetig weiterentwickelt. Um den Gang dieser Weiterentwicklung aufzuzeigen, sollen die Erweiterungen gegenüber der in [3] beschriebenen Version hier zusammenfassend dargestellt und ein Ausblick auf die weitere Entwicklung gegeben werden. Der mit der Version 1.0 grundlegend geänderte Systemaufbau läßt sich durch folgende vier Punkte charakterisieren:

- Experimentbeschreibungssprache

- Löser
 Der numerische Löser war auch in der vorhergehenden Version so aufgebaut, daß die Integrationsverfahren ausgewechselt werden konnten. Leider stand aber nur die Implementation eines expliziten Runge-Kutta-Verfahrens zur Verfügung. Da der Vorteil der Konfigurierbarkeit, d.h. die Anpassungsmöglichkeit des Lösers an den speziellen numerischen Charakter der Modelle nicht zum Tragen kam, wurde zum Teil auch die Modellierung der Komponenten auf dieses eine explizite Lösungsverfahren ausgerichtet, was deren Wiederverwendbarkeit verhinderte.
• Modellierungssprache

• Optimierer

Die weiteren Entwicklungen in der nächsten SMILE-Version setzen an unterschiedlichen Punkten an und befinden sich zum Teil noch in der Implementations- oder Erprobungsphase. Während die Modellierungssprache erweitert wird, um nicht nur einzelne Komponenten sondern auch Felder von Komponenten zu definieren, wird die bisherige Experimentsprache ersetzt durch die Scriptsprache Python [33]. Diese bietet nicht nur die Möglichkeit die bisherigen Sprachkonstrukte zu erhalten und durch neue zu ergänzen, sondern zeichnet sich auch durch eine Vielzahl von Schnittstellen zu existierenden Programmmpaketen aus. So kann vor allem für die Visualisierung der Simulationsergebnisse auf bestehende Lösungen zurückgegriffen werden. Aber auch die Erweiterung der Experimentbeschreibung wird erleichtert; für die Anbindung des Optimierers steht beispielsweise eine Schnittstelle zu MPI zur Verfügung, mit dem der parallele Ablauf verschiedener Simulationen gesteuert werden kann.
Kapitel 3

Die SMILE-Komponentenbibliothek

Die in Kap. 2 vorgestellten Prinzipien der Vererbung und Aggregierung wirken sich auch auf die Struktur der Komponentenbibliothek aus, die in 3.1.1 erläutert wird. In 3.1.2 werden die Prinzipien des in Kap. 6 angewandten Gebäudemodells, in 3.1.3 die Komponenten zur Anlagensimulation und in 3.1.4 die Strukturierungsmöglichkeiten auf Anlagenebenen jenseits einzelner Aggregate vorgestellt. In 3.2 wird auf die vor der Anwendung notwendige Überprüfung eines Modells eingegangen. Die Vorteile der Objektorientierung für die Validierung auf Komponentenebene werden in 3.2.1 erklärt und in 3.2.2 wird die weitere Validierung für ganze Systeme besprochen.

3.1 Modellaufbau

3.1.1 Struktur der Komponentenbibliothek

Von einer einheitlichen Komponentenbibliothek kann nur gesprochen werden, wenn man den Blick auf die TU Berlin beschränkt, da SMILE mittlerweile an verschiedenen Instituten genutzt wird und diese eigene Bibliotheken aufgebaut haben. Um diese lokal verteilten Arbeiten zusammenzuführen, wurde eine Namenskonvention für die Benennung von Variablen und eine Vorlage zur einheitlichen Dokumentation erarbeitet. Damit Parallelarbeit vermieden und möglichst schnell eine attraktive umfassende Bibliothek entsteht, muß die

Um die Suche nach vorhandenen Modellen zu erleichtern wurde die Bibliothek nach thematischen Sachgebieten, wie in Abb. 3.1 dargestellt, geordnet:

Abbildung 3.1: Aufteilung der Komponentenbibliothek in Sachgebiete

Die einzelnen Sachgebiete werden wiederum in Abteilungen für bestimmte Aggregate getrennt. So befinden sich beispielsweise alle Komponenten für Speicher in einer Abteilung. Komponenten die in einer direkten Vererbungshierarchie stehen, sind in einer Datei zusammengefasst, während aggregierte Komponenten in eigenen Dateien separiert werden. Komponenten, die in mehrere Modelle integriert werden, sind über sogenannte Links in verschiedenen Abteilungen der Bibliothek zugänglich. So werden beispielsweise, wie in
Abbildung 3.2: Aufteilung der Luftkollektormodelle in einzelne Komponenten

Abb. 3.2 dargestellt, mehrere Komponenten, die in Luftkollektormodellen integriert sind, auch im Wasserkollektor-, im Gebäude- oder anderen Modellen verwendet. Verbunden werden die Komponenten nach außen mit festgelegten Stoffstromschnittstellen, die für alle Komponenten gültig sind und deren Belegung in Tab. 3.1 aufgelistet ist:

<table>
<thead>
<tr>
<th>Nr</th>
<th>Bezeichnung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>fluid_id</td>
<td>Kennnummer des Fluids</td>
</tr>
<tr>
<td>1</td>
<td>(\dot{m})</td>
<td>Massenstrom in (kg/s)</td>
</tr>
<tr>
<td>2</td>
<td>(T)</td>
<td>Temperatur in (K)</td>
</tr>
<tr>
<td>3</td>
<td>(p)</td>
<td>Druck in (Pa)</td>
</tr>
<tr>
<td>4</td>
<td>(X)</td>
<td>absolute Feuchte in (kg\text{H}_2\text{O}/kg\text{trockeneLuft})</td>
</tr>
</tbody>
</table>

Tabelle 3.1: Belegung der Schnittstellen in Stoffkreisläufen

3.1.2 Komponenten zur Gebäudesimulation

In dem flexiblen Mehrzonenmodell, in dem einzelne Elemente, wie z.B. eine Wand mehrfach und zum Teil in abgewandelter Form verwendet werden, können die Strukturierungsmöglichkeiten von SMILE gut genutzt werden: Im Modell wird, wie in Abb. 3.3 dargestellt, ein Gebäude aus verschiedenen Zonen zusammengesetzt. Eine Zone wiederum besteht aus dem abstrakten Zonenmodell, den enthaltenen Raumluftvolumina, den Fenstern, Böden, Decken und Außenwänden sowie den Innenwänden, die sowohl ganz in der Zone enthalten sein als auch als Grenzflächen zu benachbarten Zonen dienen können.

Sowohl für das Raumluftvolumen als auch für die Fenster und Wände gibt es unterschiedlich detaillierte Modellgenerationen. Aus dem Modell einer stationären Wand beispielsweise sind sukzessive eine dynamische Wand mit beliebiger Schichtenanzahl, eine Außenwand und daraus eine Bibliothek bestimmter Wandaufbauten sowie eine Wand mit Rohrleitungen und andere Spezialfälle abgeleitet.
Abbildung 3.3: Aufbau eines Gebäudes aus Zonen und einer Zone aus einzelnen Elementen

Beim Aufbau eines Gebäudemodells werden die einzelnen Elemente über vordefinierte Schnittstellen, die Orientierung, Temperatur, etc. enthalten, aneinander gekoppelt. Bei der detaillierteren Abbildung komplexer Gebäude können auch einzelne Zonen zu größeren Strukturierungseinheiten (Geschoß oder Gebäudeflügel) zusammengefaßt werden. Das Modell beruht auf folgenden physikalischen Grundlagen und Vereinfachungen:

- Die Temperatur eines Luftvolumens wird aus der Energiebilanz für die feuchte Luft gewonnen. Diese ist über die absolute Feuchte mit der Massenbilanz des im Volumen enthaltenen Wasserdamps verbunden. Wärme- und Feuchtequellen können in beliebiger Anzahl über diese Bilanzgleichungen eingekoppelt werden, wobei der Strahlungsanteil der Wärmequellen vorgegeben werden muß. Falls mehrere Raumluftvolumina in einer Zone vorhanden sind, kann der Luftaustausch zwischen ihnen bestimmt werden.

- Beim konvektiven Wärmeübergang an Bauteiloberflächen wird unterschieden zwischen freier Konvektion an der Innenseite und (durch den Wind) erzwungener Konvektion an der Außenseite. Geometrie und Orientierung der Flächen werden bei der Berechnung des Wärmeübergangskoeffizienten berücksichtigt.

- Der langwellige Strahlungsaustausch mit der Umgebung wird über die Temperatur des Himmelsgewölbes berechnet. Da ein geometrisches Strahlenverfolgungsmodell sehr rechenzeitenaufwendig ist, wird der Strahlungsaustausch der Innenseiten der Bauteile über ein Sternmodell bestimmt [24].

32
Abbildung 3.4: Vererbungsstruktur der Wandkomponenten

- Um die solaren Gewinne zu beurteilen, wird die Transmission der kurzwelligen Strahlung durch die Fenster und die Verteilung an den Innenwänden bestimmt. Die Absorption an den einzelnen Wänden ist proportional zu deren Fläche und ihrem Absorptionskoeffizienten.

- Der Luftaustausch zwischen den Zonen oder zur Umgebung kann entweder über vorgegebene Luftwechselzahlen und daraus resultierende feste Luftmassenströme oder in einem erweiterten Modell über druckabhängige Massenströme durch vorgegebene Strömungspfade berechnet werden.

- Wärmeleitung kann bei geringen Wärmekapazitäten (z.B. Fenster) stationär bestimmt werden. Um die thermische Trägheit des Gebäudes zu bestimmen, werden Innen- und Außenwände i.allg. aber instationär berechnet. Da partielle Differentialgleichungen nicht implementiert werden können, wird die Wärmeleitung durch gewöhnliche Differentialgleichungen wiedergegeben, die entsprechend der Bauteil- schichten diskretisiert werden.

3.1.3 Komponenten zur Anlagensimulation

Die im folgenden vorgestellte Modellbibliothek umfasst die grundlegenden Komponenten, die zur Durchführung der Simulation von Solaranlagen notwendig sind und in einem oder mehreren der Anwendungsbeispiele eingesetzt werden. Komponenten, wie die Modelle für eine besondere Wärmeübertragerklasse oder die geothermische Tiefensonde, die mit einem speziellen Anwendungsfall verbunden sind, werden in den entsprechenden Kapiteln eingehender besprochen. Es werden hier nur der prinzipielle Aufbau, die zugrunde liegenden Modellannahmen und die wesentlichen Gleichungen der Modelle angegeben. Eine detailliertere Dokumentation und der Quellcode finden sich unter [6].
Kollektoren

Speicher

Speicher können in Hülle, Inhalt sowie Be- und Entladungseinheit unterteilt werden. Der erhöhte Aufwand Schnittstellen zu definieren und diese Teilmodelle in einer Speicherklasse zusammenzufassen (zu aggregieren), wird durch die Möglichkeit gerechtfertigt, diese Teil-
modelle mit Hilfe der Vererbung zu detaillieren und zu spezialisieren. Anderernten können
diese Teilmodelle separat modelliert und getestet werden. In Abb. 3.5 ist die Objektstruktur
der Speichermodelle veranschaulicht.

Abbildung 3.5: Objektorientierte Strukturierung der Speicherkomponenten

Gerade für die Be- und Entladung eines Speichers gibt es eine Vielzahl an techni-
schen Möglichkeiten, die nicht mehr sinnvoll in einer Komponente zusammengefasst wer-
den können. Wird ein anderer Lademechanismus modelliert, können bereits existierende
Modelle erweitert oder ein gänzlich verschiedenes Modell geschrieben werden. In jedem Fall
cann aber auf die vorhandenen Hüll- und Inhaltskomponenten zurückgegriffen werden, wie
das beispielhaft für Speicher dargestellt ist, bei denen sich abhängig vom Schaltzustand
der Anlage verschiedene Be- und Entladeströme vermischen [21]. In Abb. 3.5 sind nur
zwei mögliche Speicherklassen eingezeichnet; andere Kombinationsmöglichkeiten, u.U. mit
veränderten Hüll- oder Inhaltskomponenten, sind selbstverständlich auch möglich.
In dem Schichtenmodell des Speicherinhaltes wird die Temperatur einer Schicht durch deren
Kapazität und die ein- und ausgehenden Energieströme bestimmt. Zu diesen gehören neben
der Wärmeleitung und den Enthalpieströmen auch der an die Umgebung abgegebene Ver-
lust, der in der Hüllkomponente berechnet wird und die durch Wärmetauscher oder Heizung
ingetragenen Wärmemengen, die von der Be- und Entladeeinheit an die entsprechenden
Schichten übergeben werden. Konvektionsscheinungen, die durch interne Wärmeübertra-
ger hervorgerufen werden, können in dem eineindimensionalen zylindersymmetrischen Modell
nicht abgebildet, sondern nur durch eine erhöhte Wärmeleitfähigkeit berücksichtigt wer-
den. Die direkte Beladung wird durch eine Pfropfenströmung von oben nach unten und die
Abbildung 3.6: Enthalpie- und Wärmeströme um eine Speicherschicht

Hydraulische Komponenten

senstromänderungen und dem damit verbundenen schnellen Übergängen von laminarer zu turbulenter Strömung hohe Anforderungen an den numerischen Löser stellt [28, 29].

Regelung

Datenverarbeitung

\[
\eta_{kol} = \frac{Q_{solar}}{G} \tag{3.1}
\]
\[
\eta_{sys} = \frac{Q_{last} - Q_{konv}}{G} \tag{3.2}
\]
\[
f_{sol} = \frac{Q_{last} - Q_{konv}}{Q_{last}}. \tag{3.3}
\]

\(G \) ist die im Verlauf des Jahres auf die Kollektorfläche fallende Einstrahlung, \(Q_{solar} \) die Energie, die durch die Temperaturerhöhung des Fluids im Kollektor dem System zugeführt
wird, Q_{last} die gesamte Last und Q_{konv} die durch andere Energiewandler dem System zugeführte Energie. Wichtig ist vor allem die Festlegung der Systemgrenzen, d.h. welche Verluste und Quellen noch zur Energieerzeugung und welche zur Last gezählt werden. Die umfangreichste Komponente zur Weiterverarbeitung der Simulationsergebnisse ist eine Klasse zur dynamischen Wirtschaftlichkeitsberechnung nach der Barwertmethode mit der Wärmepreise und Amortisationszeiten bestimmt werden können.

Wärmequellen und -Übertrager

Es existieren verschiedene detaillierte Modelle von allgemeinen Gleichstrom- und Gegenstromwärmerübergängen sowie rein lüftungs technischen Wärmerückgewinnern. Da es sich um stationäre Modelle handelt, mußte vor allem bei der Formulierung des Gegenstromwärmerübergänges besondere Sorgfalt zur Vermeidung numerischer Instabilitäten angewandt werden [1]. Auf ein detaillierteres Modell mit temperatur- und strömungsabhängigen Wärmedurchgang wird in Kap. 5.3 genauer eingegangen.

3.1.4 Die Bedeutung der Objektorientierung für komplexe Systeme

Die Vorteile der Strukturierungsmöglichkeiten auf Anlagenebene liegen nicht so sehr in der sukzessiven Weiterentwicklung, als vielmehr in der Übersichtlichkeit und der möglichen Arbeitsteilung. In Abb. 3.7 ist dies an der detailliert modellierten Integration einer Solaranlage in eine Fernwärmeübergabestation illustriert [22].

Abbildung 3.7: Objektorientierte Strukturierung am Beispiel einer Solaranlage

beispielsweise nur die Schnittstelle zwischen Gebäude und Anlage zwischen zwei Entwicklern abgesprochen werden.

3.2 Validierung

Unter Validierung eines Modells versteht man den Vergleich der berechneten Ergebnisse mit Meßdaten, die unter den gleichen Randbedingungen wie sie in die Simulation eingehen, aufgenommen wurden. Da weder eine ganze Simulationsumgebung validiert werden kann, noch einzelne, oft überprüfte Teilmodelle, wie beispielsweise die Wärmeleitungsgleichung, über-

3.2.1 Validierung einzelner Komponenten

Um das Vorgehen bei der Validierung zu erläutern, werden zwei Beispiele herausgegriffen: Am Modell des Kollektors wird gezeigt, wie die Genauigkeit dem Verwendungszweck angepaßt werden muß und am Modell der Tiefensonde werden die Vorteile der Objektorientierung bei der Modellüberprüfung demonstriert. Wie in Kap. 3.1.3 beschrieben, wird im Kollektormodell aus numerischen Gründen eine Kennlinie, die mit der Kollektor mitteltemperatur bestimmt wurde, mit der Austrittstemperatur ausgewertet. Der damit verursachte Fehler kann durch Diskretisierung des Kollektors verringert werden und verschwindet bei unendlich feiner Diskretisierung. Bei dem in Abb. 3.8 dargestellten Vergleich der simulierten Austrittstemperaturen für hohe Durchflußraten mit Messungen, die am Kollektorprüfstand des Fraunhofer Instituts für solare Energiesysteme [36] durchgeführt wurden, ist keine nennenswerte Abweichung zu erkennen. Betrachtet man hingegen die in Abb. 3.9 dargestellte maximale Abweichung bei niedrigen Durchflußraten und dem damit verbundenen stärkeren Temperaturanstieg innerhalb des Kollektors, kann man eine deutliche Verringerung des auftretenden Fehlers für höhere Knotenanzahlen erkennen. Sowohl für große Knotenanzahlen als auch für ein Kennlinienmodell, das mit einer mittleren Kollektortemperatur ausgewertet wird, bleibt ein restlicher Fehler bestehen, der auf die Unzulänglichkeit jedes Kennlinienmodells hinweist. Um eine Voreinstellung für einen allgemeinen Nutzer zu treffen, die nicht zu hohe Rechenzeiten verursacht, aber auch nicht erst auf Verwendbarkeit überprüft werden muß, wurde ein Kollektormodell mit fünf Knoten in der Komponentenbibliothek abgelegt.

Bei komplexeren Modellen erfordert die Fehlersuche oft wesentlich mehr Zeit als die
Abbildung 3.8: Vergleich der Kollektoraustrittstemperaturen bei einer Durchflußrate von 50\(kg/m^2s\) für verschiedene Knotenanzahlen und \(T_{out}\) bzw. \(T_{mean}\) als Kennlinientemperatur (Gesamt)

Abbildung 3.9: Vergleich der Kollektoraustrittstemperaturen für eine Durchflußrate von 20\(kg/m^2s\) für verschiedene Knotenanzahlen und \(T_{out}\) bzw. \(T_{mean}\) als Kennlinientemperatur (Ausschnitt)
Abbildung 3.10: Verzögerung eines Temperatursignals im Doppelrohr (siehe Abb. 7.10)

Während bei der Sonde die Simulationsergebnisse noch leicht mit Erwartungen, die auf einfachen Gleichungen beruhen, verglichen werden können, kann die Wärmeleitung im Erdreich auf diese Weise nur unbefriedigend überprüft werden. Deshalb wurden u.a. Vergleichsrechnungen mit einem bereits validierten Programm TFELD [37] angestellt. Abb. 3.11 zeigt die Berechnungen beider Programme der von einer linienförmigen Wärmequelle ausgehenden radialen Temperaturausbreitung im Vergleich.

Abbildung 3.11: Vergleich der radialen Temperaturausbreitung im Erdreich zwischen SMILE und dem Programm TFELD
Durch diese Tests der Teilmodelle können zwar viele, aber nicht alle Fehler ausge-

schlossen werden. Es wird weder das korrekte Verbinden der Einzelkomponenten noch die

Berechtigung der vereinfachenden Modellannahmen, wie beispielsweise die Vernachlässi-

gung von Grundwasserkonvektion im Erdreich, überprüft. Deswegen kann auch durch viele

Testläufe ein Vergleich des simulierten Sondenverhaltens mit Meßdaten nicht ersetzt wer-

den. In Abb. 3.12 ist der Vergleich der simulierten Sondenaustrittstemperaturen mit den

gemessenen für den dreimonatigen Probebetrieb gezeigt[38]. Massenstrom und Eintritts-

temperatur werden für die Simulation aus den Meßdaten eingelesen. Die in das Modell

eingehenden Bodenparameter können nur mit Unsicherheit bestimmt werden, sodaß ei-

ne maximale Abweichung von ca. 6% zwischen Simulation und Messung als ausreichende

Bestätigung des Modells angesehen werden muß.

3.2.2 Validierung ganzer Systeme

Um die Möglichkeit der Kopplung sowie das Zusammenwirken der einzelnen Modelle
zu überprüfen, ist es auch notwendig nicht nur einzelne Komponenten-, sondern ganze
Anlagensimulationen mit Meßergebnissen zu vergleichen. Mit den Modellen der SMILE -
Komponentenbibliothek wurden zwei Vergleiche mit Solaranlagen, die sich sowohl hinsicht-
Abbildung 3.13: Abweichungen gegenüber der Messung bei fortschreitender Anlagensimulation

Kapitel 4

Optimierung

Nach einer allgemeinen Einführung in mathematische Optimierung (Kap. 4.1.1) wird auf die verschiedenen Möglichkeiten, diese mit Simulation zu verbinden, eingegangen (Kap. 4.1.2). Die im Kontext der SMILE Entwicklung unternommenen Implementaionen werden ebenso dargestellt (Kap. 4.1.3) wie die Ansätze zur Reduktion der Rechenzeit (Kap. 4.1.4). An eine Vorstellung der verschiedenen Optimierungsverfahren (Kap. 4.2.1)
schließt ein Vergleich hinsichtlich der Eignung für Kopplung mit der Simulation an (Kap. 4.2.2). In dem letzten Abschnitt wird der Versuch dargestellt, Optimierung mit reduzierten Datensätzen durchzuführen. Dazu wird die Datenreduktion mit neuronalen Netzen (Kap. 4.3.1) und die anschließende Verwendung der berechneten Datensätze (Kap. 4.3.2) erläutert.

4.1 Die Kombination von Simulation und Optimierung

4.1.1 Einführung

\[
\begin{align*}
&\text{Sei } \mathcal{D} \subset \mathbb{R}^n \\
&f : \mathcal{D} \to \mathbb{R} \quad f(\vec{x}) = \min! \\
g : \mathcal{D} \to \mathbb{R}^m \quad g(\vec{x}) \geq \vec{0} \\
h : \mathcal{D} \to \mathbb{R}^p \quad h(\vec{x}) = \vec{0}.
\end{align*}
\]

(4.1)

\(f \) stellt die Zielfunktion, \(g \) die Ungleichheits- und \(h \) die Gleichheitsnebenbedingungen dar. Der gesuchte Satz von Parametern \(\vec{x} \) der Gl. 4.1 erfüllt, wird als Lösung bezeichnet. Durch die Nebenbedingungen wird eine Teilmenge des Definitionsbe-reichs \(\mathcal{D} \) bestimmt:

\[
\mathcal{G} := \{ \vec{x} \in \mathcal{D} \mid g(\vec{x}) \geq \vec{0}, h(\vec{x}) = \vec{0} \}.
\]

(4.2)

In Abb. 4.1 ist ein zweidimensionales Optimierungsproblem veranschaulicht. Der Ausschnitt aus der zweidimensionalen Ebene stellt den durch die Nebenbedingungen eingeschränkten Lösungsbereich \(\mathcal{G} \) dar. Die an der \(y \)-Achse aufgetragenen Zielfunktionswerte bilden ein Zielfunktionsgebirge. Diese Bezeichnung wird auch auf weniger anschauliche, höher dimensionale Problemen übertragen. Man unterscheidet zwischen lokalen Optima.
Abbildung 4.1: Zielfunktionsgebirge für ein 2-parametriges Problem

\[f(\bar{x}_0) \leq f(\bar{x}) \quad \text{für alle } \bar{x} \in \mathcal{G}, \| \bar{x}_0 - \bar{x} \| < \epsilon \] \hspace{1cm} (4.3)

mit \(\epsilon > 0 \) und globalen Optima

\[f(\bar{x}_0) \leq f(\bar{x}) \quad \text{für alle } \bar{x} \in \mathcal{G}. \] \hspace{1cm} (4.4)

Gesucht ist meistens das globale Optimum. Es existiert jedoch keine allgemeine Methode, um das globale Optimum zu berechnen, bzw. um herauszufinden, ob die gefundene Lösung die globale oder nur eine lokale Lösung ist. Nur wenn alle lokalen Minima bekannt sind, wie bei analytischen Lösungen, kann das globale mit Sicherheit bestimmt werden.

4.1.2 Stationäre Optimierung dynamischer Simulationen

Dynamische Optimierung wird jedoch wesentlich häufiger in der Regelung von Kraftwerken, beispielsweise für den Anfahrvorgang eines Dampferzeugers [46], als in der Simulation von Solaranlagen eingesetzt. Deshalb wird im Folgenden nur die gewöhnliche Parameteroptimierung, also die stationäre Optimierung dynamischer Simulationen betrachtet.

Eine mögliche Kombination von Simulation und Optimierung wird in [59] vorgestellt:

4.1.3 Implementationsentwicklung in Smile

Es wurden verschiedene Ansätze untersucht, wie die Optimierung in die Simulationsumgebung Smile integriert werden kann. Für den in Kap. 2 beschriebenen Prototypen von Smile wurde eine Smile-interne Komponente geschrieben, die auf einem erweiterten Simplex...

Da diese Optimierungsprogramme vom Standpunkt eines Software-Entwicklers unbefriedigend waren, wurde von den am Projekt beteiligten Informatikern ein objekt-orientierter Rahmen zur Integration von Optimierern in SMILE entwickelt [54]. Es sollte eine enge Einbindung in das System mit der Auswechselbarkeit des Optimierungsverfahrens und der Möglichkeit zur parallelen Simulation verbunden werden. Abb. 4.2 zeigt den Kommunikationsstruktur des Frameworks: Das Optimierungsverfahren bestimmt die Parameter in Abhängigkeit von den Nebenbedingungen und der Zielfunktion. Diese erhalten die benötigten Simulationsergebnisse über eine Schnittstelle, die die parallel ablaufenden Simulationen ausliest und die veränderten Parameter weitergibt. Der zeitliche Ablauf von Optimierung und Simulationen wird durch die Schnittstelle zum Laufzeitsystem gesteuert.

Mit diesem Framework wurden das Simplex-, das Complex- und ein FSQP-Verfahren (s.Kap. 4.2.1) in SMILE eingebunden. Die parallelen Ausführungen verschiedener Simulationen wurde ebenfalls mit MPI realisiert. Die enge Verzahnung mit dem Laufzeitsystem erwies sich aber leider als problematisch bei der Weiterentwicklung des Systems, so daß die Implementation des Optimierers nicht auf neue Versionen übertragen wurde. Daher wurde nur der in Kap. 4.2.2 dargestellte Vergleich dieser drei Optimierungsverfahren mit
Abbildung 4.2: Objektorientiertes Framework zur Anbindung von Optimierungsverfahren an SMILE [40]

Neben der schon erwähnten optionalen Nutzung von MPI sollten vor allem definierte Schnittstellen zu großen numerischen Bibliotheken, wie NAG oder IMSL, die über eine Vielzahl an Optimierungsroutinen verfügen, geschaffen werden, damit beliebige Probleme mit einem jeweils angepassten Algorithmus bearbeitet werden können. Auch eine automatische Sensibilitätsanalyse, nicht nur im Optimum sondern im gesamten ausgewerteten Parameterbereich ist für ein Auslegungswerkzeug wichtig, damit Planer wissen wie stark sie von den optimalen Parametern abweichen können, ohne vom angestrebten Ziel deutlich abzuweichen. Da in den erwähnten Bibliotheken viele effiziente Gradientenverfahren, jedoch keine Polytopenverfahren (s. Kap. 4.2.1) zur Verfügung stehen, wurden bisher nur das Simplex- und das Complexverfahren in die neue Experimentsprache übertragen. Auch für fernere Ziele, wie die Durchführung dynamischer Optimierungen oder einer automatischen Strukturoptimierung, ist die flexiblere Experimentbeschreibung eine wichtige Voraussetzung.
4.1.4 Die Rechenzeitproblematik

• Steigerung der Systemeffizienz

Neben der Steigerung der Rechenleistung der Computer entschärft vor allem eine Effizienzsteigerung des SMILE-Systems die Rechenzeitproblematik kontinuierlich. Die deutlichste Beschleunigung der Numerik verspricht die geplante Implementierung symbolischer Ableitungen, die häufig die zeitaufwendige und ungenaue numerische Differentiation ersetzen können.

• Geeignetes Optimierungsverfahren

Da die Anzahl der notwendigen Jahressimulationen vom gewählten Optimierungsverfahren abhängt, werden in Kap. 4.2.1 die verschiedenen mathematischen Methoden zur Optimierung vorgestellt und ihre jeweiligen Vor- und Nachteile besprochen. Es ist jedoch viel Erfahrung nötig, um entscheiden zu können, welche Probleme am effektivsten von welchen Verfahren gelöst werden können.

• Parallelisierung

• Modellreduktion

Durch die Verwendung einfacher Modelle wird zwar die Rechenzeit reduziert, aber auch die für die Optimierung nötige Genauigkeit häufig preisgegeben. Ein Ansatz, ähnlich wie der in Kap. 4.1.2 beschriebene, wurde auch in SMILE verfolgt [3]. Durch
mehrfache Simulationsauswertung und anschließende multilineare Regression werden die Abhängigkeiten der Modelle von den zu optimierenden Parametern in Kennlinien ausgedrückt. Bei der Optimierung werden dann diese Kennlinien anstelle der ursprünglichen Modelle ausgewertet. Diese Methode ermöglicht eine schnelle Optimierung, doch gilt auch hier die Kritik aus Kap. 4.1.2 der mangelnden Flexibilität und des hohen Zeitaufwandes zur Erstellung der Kennlinien.

• Reduktion der Auflösung

• Reduktion der Gesamtlänge

In einem Jahresdatensatz ist aber ein gewisses Maß an Wiederholung und dadurch an Redundanz enthalten. In Kap. 4.3 wird daher ein Versuch beschrieben diese Redundanz zu verringern, ohne aber auf Genauigkeit durch hohe zeitliche Auflösung zu verzichten.

Das schon für die Simulation eminenten und für die Durchführbarkeit von Optimierung entscheidende Problem der Rechenzeit kann nicht generell durch eine einzige der oben beschriebenen Methoden befriedigend gelöst werden. Ein Zusammenwirken und eine Verfolgung aller Ansätze ist daher notwendig.
4.2 Vergleich verschiedener Optimierungsverfahren

Da die Optimierungsprobleme, die in Gl. 4.1 allgemein dargestellt sind, sehr verschieden sein können, gibt es auch eine Vielzahl von Lösungsmethoden, die für unterschiedliche Anwendungsfälle entsprechend geeignet sind. Im Folgenden sollen die wichtigsten Herangehensweisen genannt werden. Da hier keine umfassende Darstellung angestrebt ist, werden auch nicht die übliche Unterteilungen in restringiert/unrestringiert und linear/nichtlinear [41, 42] getroffen. Es werden die Verfahren, die bisher in SMILE eingesetzt wurden, so vorgestellt, daß zugleich eine Übersicht über die Verfahrensklassen, deren Einsatz überhaupt in Frage kommt, gegeben werden kann. Anschließend werden die mit den implementierten Verfahren erzielten Ergebnisse verglichen und deren Vor- und Nachteile besprochen.

4.2.1 Mathematische Methoden der Optimierung

Analytische Optimierung

Mit Gl. 4.1 ist nur dann ein Optimierungsproblem gegeben, wenn \(p < n \), die Anzahl der Ungleichheitsnebenbedingungen \(m \) kann aber wesentlich größer als \(n \) sein, solange die Menge der zulässigen Punkte \(\vec{x} \) nicht leer ist. Als zusätzliche Voraussetzung um eine analytische Lösung bestimmen zu können, müssen \(f, g, h \) stetig differenzierbar sein. Durch Einführung von zusätzlichen Schlupfvariablen können die Ungleichheitsnebenbedingungen in Gleichheitswidersprüche transformiert werden:

\[
\begin{align*}
g(\vec{x}) &\geq \vec{0} \iff g(\vec{x}) - \begin{pmatrix} y_1^2 \\ \vdots \\ y_m^2 \end{pmatrix} = \vec{0}.
\end{align*} \tag{4.5}
\]

Dadurch kann Gl. 4.1 in

\[
f : D \rightarrow R \\
h : D \rightarrow R^{m+p}
\]

mit den entsprechenden Multiplikatoren gewonnen läßt. Wenn \(\vec{x}_0 \) ein lokales Extremum unter den Nebenbedingungen \(h(\vec{x}) = \vec{0} \) ist und die zugehörige Jakobimatrix \(J_h(x) \) regulär ist, dann gilt:
\[\frac{\partial L}{\partial x_i} = \frac{\partial f}{\partial x_i}(\vec{x}) - \sum_{j=1}^{p+m} \mu_j \frac{\partial h_j}{\partial x_i}(\vec{x}) = 0. \] (4.8)

Welche der Lösungen dieses Gleichungssystems mit \(n + p \) Unbekannten Maxima, Minima oder Sattelpunkte sind, kann nur aus dem physikalischen Zusammenhang oder durch Berechnung der zweiten Ableitungen der Lagrangefunktion bestimmt werden. Denn Gl. 4.8 ist nicht nur notwendig, sondern auch hinreichend, wenn die Hessematrix der Lagrange Funktion positiv definit ist.

Gradientenverfahren

Einen wichtigen Sonderfall stellen konvexe Optimierungsprobleme dar, da dadurch die hinreichenden Bedingungen für ein Minimum eingeschränkt werden. Ein Optimierungsproblem heißt konvex, wenn sowohl die Funktion \(f(\vec{x}) \) als auch die Menge der zulässigen Lösungen \(\mathcal{G} \) konvex ist:

\[\vec{x}_1, \vec{x}_2 \in \mathcal{G}, \lambda \in [0, 1] \implies \lambda \vec{x}_1 + (1 - \lambda) \vec{x}_2 \in \mathcal{G} \]
(4.9)

\[f(\vec{x}_2) \geq f(\vec{x}_1) + (\vec{x}_2 - \vec{x}_1)^T \nabla f(\vec{x}_1). \]
(4.10)

Einen wichtigen Sonderfall der konvexen Probleme stellen wiederum die quadratischen Optimierungsprobleme dar:
Quadratische Probleme können durch Projektionen oder das Goldfarb-Idnani-Verfahren gelöst werden. Bei ersterem wird das ohne die Ungleichheitsnachbedingungen resultierende lineare Gleichungssystem für einen Startvektor gelöst und anschließend die Restriktionen schrittweise hinzugenommen. Da die Bestimmung des Startvektors kritisch ist, wird häufiger das zweite Verfahren eingesetzt, das mit Hilfe der Lagrange-Dualität das Minimierungsproblem in ein Minimax umwandelt und löst [41].

Von besonderer Bedeutung ist diese Methode, da in den für große Systeme effizientesten Optimierungsverfahren, den SQP-Verfahren (Sequential Quadratic Programming) allgemeine Optimierungsprobleme lokal durch quadratische approximiert werden. Dazu wird eine lokale quadratische Approximation aus

\begin{align}
\tilde{f}(\tilde{x}) &= \frac{1}{2} \tilde{x}^T A \tilde{x} - b^T \tilde{x} + \gamma \\
\tilde{g}(\tilde{x}) &= \tilde{G}^T \tilde{x} + \tilde{g}_0 \geq 0 \\
\tilde{h}(\tilde{x}) &= \tilde{H}^T \tilde{x} + \tilde{h}_0 = 0.
\end{align}

(4.11)

Polytopeverfahren

Eine Möglichkeit das Optimum ohne Bestimmung der Gradienten zu finden, bieten das nichtlineare Simplexverfahren [56] oder dessen Erweiterung, das Complexverfahren [57]. Ein Simplex ist eine geometrische Figur im \(n\)-dimensionalen Raum, die durch \(n+1\) Eckpunkte festgelegt wird. Ausgehend von einem Startsimplex werden die Funktionswerte \(f(\tilde{x})\) berechnet und versucht, den schlechtesten Punkt durch einen neuen, besseren zu ersetzen. Der neue Punkt \(\tilde{x}_n\) wird erzeugt, indem der schlechteste Punkt \(\tilde{x}_s\) über den Schwerpunkt des Simplex \(\tilde{s}\) gespiegelt wird:

\begin{align}
\tilde{x}_n &= \tilde{s} + \alpha (\tilde{s} - \tilde{x}_s) \quad \text{mit} \quad \alpha > 0, \quad \tilde{s} = \frac{1}{n} \sum_{j=0}^{n-1} \tilde{x}_j. \tag{4.13}
\end{align}

Ist der neue Funktionswert \(f(\tilde{x}_n)\) der niedrigste Funktionswert des gesamten Simplex, wird versucht durch Vergrößerung von \(\alpha\) das Ergebnis noch weiter zu verbessern (Expansion). Ist der Funktionswert zwar besser als der Ausgangspunkt der Spiegelung, aber größer
als andere Eckpunkte, wird \(\vec{x}_s \) durch \(\vec{x}_n \) ersetzt und das Minimum des neuen Simplex bestimmt, um dieses an dem neuen Schwerpunkt zu spiegeln. War die Spiegelung nicht erfolgreich, wird \(\alpha \) zuerst verkleinert (eindimensionale Kontraktion). Führt auch dies nicht zum Erfolg, wird der gesamte Simplex verkleinert (n-dimensionale Kontraktion).

Da das Simplexverfahren in seiner ursprünglichen Form keine Nebenbedingungen gestattet, wurde es zum Complex (Constrained Simplex) erweitert. Liegen Nebenbedingungen in Form von Intervallgrenzen vor, werden die neu erzeugten Punkte in den zulässigen Bereich projiziert. Andere Nebenbedingungen können nicht so effizient berücksichtigt werden und erfordern zusätzliche Funktionsauswertungen. Da das Simplexverfahren auch Stabilitätsprobleme aufweist, wenn sehr spitzwinklige Gebilde entstehen oder eine vorzeitige Kontraktion in Randgebieten auftreten kann, arbeitet der Complex nicht mit \(n + 1 \) sondern mit \(2n \) Eckpunkten [57, 54]. Dadurch sind mehr Funktionsauswertungen notwendig, es wird aber eine größere Robustheit des Verfahrens und eine größere Wahrscheinlichkeit globale Optima zu finden erreicht.

Abbildung 4.3: Simplexverfahren im zweidimensionalen Raum

Genetische Algorithmen und Evolutionsstrategien

Genetische Algorithmen [52] und Evolutionsstrategien [53] nützen die Prinzipien der natürlichen Evolution - Mutation, Rekombination und Selektion in formalisierter Weise zur Bestimmung eines Optimums. Durch genetische Algorithmen werden Elemente (Individuen) einer Menge (Population) aus dem zulässigen Definitionsbereich ausgewählt (selektiert) und durch Mutation und Rekombination verändert. Dieser Prozess wird iterativ (über mehrere Generationen) wiederholt. Bei der Selektion wird den Individuen eine Wahrscheinlichkeit zugeordnet, mit der sie unverändert in die nächste Generation übernommen werden oder mit der auf sie die Veränderungsmechanismen angewandt werden. Einerseits hängt die Selektionswahrscheinlichkeit vom Rang \(r \) des Individuums \(\vec{x} \) ab, der wiederum mit dem Funktionswert \(f(\vec{x}) \) korreliert ist. Andererseits wird sie aber auch vom gewählten Selektionsdruck \(q \) bestimmt.
\[
\text{prob}(\vec{x}) = cq(1 - q)^r \quad \text{mit } c = \frac{1}{(1 - q)^n}.
\]

(4.14)

Für Populationen der Größe \(n \) muß noch ein Normierungsfaktor \(c \) eingefügt werden, um die Gesamtwahrscheinlichkeit auf eins zu beschränken. Bei der Mutation wird eine Komponente \(x_k \) eines Elternindividuums \(\vec{x} \) zufällig ausgewählt und durch \(x'_k \) ersetzt. Je nach Art der Veränderung unterscheidet man zwischen gleichmäßiger, ungleichmäßiger und MinMax-Mutation.

\[
\vec{x}' = [x_0, \ldots, x_{k-1}, x'_k, x_{k+1}, \ldots, x_{n-1}].
\]

(4.15)

Auch für die Rekombination, bei der Nachkommen durch zwei Elternindividuen bestimmt werden, unterscheidet man verschiedene Varianten. Während bei der einfachen, die Elternvektoren an einer zufälligen Stelle gekreuzt werden (s. Gl 4.15), entstehen bei der arithmetischen die Nachkommen durch zufällige Linearkombination und bei der heuristischen durch eine Linearkombination, die vom Funktionswert beeinflußt wird.

\[
\vec{x}'_1 = [x_{1,0}, \ldots, x_{1,k-1}, x'_{2,k}, \ldots, x_{2,n-1}]
\]

\[
\vec{x}'_2 = [x_{2,0}, \ldots, x_{2,k-1}, x'_{1,k}, \ldots, x_{1,n-1}].
\]

Nebenbedingungen, sofern sie linear sind, können durch eine Einschränkung des Definitionsreichs erreicht werden [50]. Nicht lineare Nebenbedingungen können, falls sie überhaupt zugelassen werden, nur über eine aufwendige Projektion in den zulässigen Bereich berücksichtigt werden.

4.2.2 Bewertung der Verfahren

Eine allgemeine Bewertung der Verfahren ist auf Grund der verschiedenen Anwendungsfälle nicht möglich, doch können speziell für die Kopplung mit der Simulation folgende Kriterien benannt werden:

- **Universalität**
 Das Verfahren muß für verschiedene Aufgaben geeignet sein. Das bedeutet insbesondere, daß auch über die Grenzwerte der Parameter hinausgehende Nebenbedingungen formulierbar sein müssen. Auch sollten Probleme bearbeitet werden können, für die kein Startvektor im zulässigen Bereich bekannt ist.

- **Robustheit**

- **Gradientenbestimmung**

- **Anzahl der Zielfunktionsauswertungen**
 Wie in Kap. 4.1.2 ausgeführt, ist bei der geplanten Anwendung wegen der langen Simulationszeit nicht die für das Optimierungsverfahren benötigte Rechenzeit, sondern die Anzahl der nötigen Simulationsaufrufe entscheidend.

- **Stabilität**
 Stabilität eines Optimierungsverfahrens bedeutet, daß für ein Problem immer das gleiche Optimum erreicht wird, unabhängig von welchem Anfangsvektor das Verfahren gestartet wird. Durch das oben beschriebene Rauschen können schwache lokale Minima entstehen. Es gibt zwar kein Verfahren, das das Auffinden globaler Optima garantieren kann, aber die Verfahren unterscheiden sich in ihrer Tendenz in lokalen Minima zu konvergieren. Ein lokales Minimum, das allerdings wegen seiner Nähe zum globalen Optimum unbedeutend ist, konnte beispielsweise bei der Minimierung des Wärmepreises durch Optimierung des Speichervolumens festgestellt werden (s. Abb. 4.4).
Um die Eignung verschiedener Verfahren zu überprüfen, wurde mit den über das Framework (s. Abb. 4.2) angebundenen Verfahren die in Abb. 4.5(a) dargestellte Solaranlage optimiert. Optimierungsparameter waren das Speichervolumen, die einheitlichen Massenströme für die Beladung (Solangkreis und Speicherkreis) und der Neigungswinkel der Kollektoren. Zielfunktion war eine vereinfachte Abschätzung der Wärme- und der Investitionskosten. In den Abb. 4.5(b) bis Abb. 4.5(d) ist die Entwicklung der einzelnen Parameter und in Abb. 4.5(e) die Minimierung der Zielfunktion dargestellt. Da hier der Vergleich der Optimierer im Vordergrund steht, soll auf die genauen Randbedingungen der Simulation nicht eingegangen werden.

Das FSQP-Verfahren [55], das für analytische Zielfunktionen am schnellsten konvergiert, führt nur eine Reihe von Simulationen aus, um die Gradienten numerisch zu bestimmen und bricht anschließend ab. Bei anderen Versuchen konnten manchmal bessere Ergebnisse erzielt werden, doch erwies sich dieses Verfahren auf Grund der häufigen Abstürze als ungeeignet für die Kopplung mit Simulationen. Da die mangelnde Robustheit auf die notwendige Bestimmung der Ableitungen zurückzuführen war, wurden auch keine anderen Gradientenverfahren implementiert.

Da das Simplexverfahren [58] keine Angabe von Randbedingungen gestattet, wurden diese durch sogenaunte Penaltyfunctions, die ein Verlassen des zulässigen Bereiches bestrafen, in die Simulation eingebaut. In diesem Vergleich konvergiert es am schnellsten, doch liegt das Minimum geringfügig über den mit dem Complex [57] bestimmten. Hier scheint ein lokales Optimum vorzuliegen, in das der Complex auf Grund seiner breiteren Streuung an Stützstellen nicht konvergiert. Beim Massenstrom ist die Abweichung der erzielten Parameter am größten, was an der geringen Auswirkung der Massenstromänderung auf die gewählte Zielfunktion liegt. Der Mehraufwand für die häufigere Zielfunktionsauswertung des Complex ($2n$ anstelle von $n + 1$ Stützstellen) scheint durch die leichtere Berücksichtigung der Nebenbedingungen und die Vermeidung lokaler Minima gerechtfertigt.

Mit dem genetischen Algorithmus, der an der TU Hamburg Harburg implementiert wurde, wurde eine Gasturbine mit einer Population von siebzig Individuen über fünfzig Generationen optimiert [50]. Da dadurch zwar das Optimum bestimmt werden konnte, aber 3500 Simulationen selbst bei einer kurzen Simulationsdauer von 220 s problematisch sind, wurde auch hier eine Verringerung der Rechenzeit durch eine Kombination von ge-
(a) Optimierte Solaranlage und Zielfunktion

(b) Speichervolumen

(c) Kollektorneigungswinkel

(d) Belademassenstrom

(e) Zielfunktion

Abbildung 4.5: Vergleich verschiedener Optimierungsverfahren für eine Solaranlage mit den optimierten Parametern $V_{speicher}$, $\alpha_{Kollektor}$, $\dot{m}_{Beladung}$ und einer einfachen ökonomischen Zielfunktion [40]
netischem Algorithmus und Complexverfahren untersucht. Für solare Anwendungen, die eine Jahressimulation erfordern, scheint dieses Verfahren daher nicht geeignet.

4.3 Optimierung auf der Basis von reduzierten Datensätzen

4.3.1 Datenreduktion mit neuronalen Netzen

Neuronale Netze orientieren sich an der Wirkungsweise des menschlichen Gehirns. Das Verständnis der Informationsverarbeitung im Zentralnervensystem, das die Entwicklung neuronaler Netze stark beeinflußte [62, 63], ist ebenso unvollständig wie die Ausschöpfung der Anwendungsmöglichkeiten, die von der Analyse des Aktienmarktes bis zur Untersuchung von Zweiphasenströmungen reicht [65, 64]. Im Folgenden wird jedoch nur kurz auf das allgemeine Funktionsprinzip und die Unterscheidung der verschiedenen Verfahren eingegangen, um anschließend die Auswahl geeigneter Algorithmen für die Datenreduktion zu motivieren und die verschiedenen Charakteristika der erzeugten Datensätze zu verstehen.

Funktionsweise neuronaler Netze

Wie ihre biologischen Vorbilder nehmen künstliche Neuronen mehrere Informationen aus ihrer Umgebung auf und geben zu einem bestimmten Zeitpunkt eine Reaktion an diese weiter. Den einzelnen Neuronen i werden mehrere Eingänge x_j, und den Verbindungen zwischen den Neuronen werden Gewichte w_{ij}, mit $i = 1, \ldots, n$ und $j = 1, \ldots, m$ zugeordnet. Überschreitet die Netzeingabe

$$ net_i(t) = \sum_j x_j(t)w_{ij} \quad (4.16) $$

einen Schwellwert θ_i, wird die Neuronenaktivität

$$ a_i(t) = net_i(t) - \theta_i, \quad (4.17) $$

64
positiv. Die Neuronenausgabe y_i wird mit Hilfe einer Übertragungsfunktion $\rho(a_i)$ bestimmt. Diese ist eine Stufen-, eine sigmoide oder eine lineare Funktion. Die Netze können nach der Anordnung der einzelnen Neuronen unterschieden werden. Rückgekoppelte Netze sind meist einschichtig, während bei mehrschichtigen Netzen die Neuronen nach ihrer Funktion in Input-, Output-, und verborgene Schichten unterteilt werden [66]. In Abb. 4.3.1 ist der schematische Aufbau eines einzelnen Neurons dargestellt:

Wichtigstes Unterscheidungskriterium künstlicher neuronaler Netze ist das eingesetzte Lernverfahren. Es bestimmt, wie ein Netz aus gegebenen Beispielen lernt, eine Aufgabe selbständig zu lösen. Je nach Aufgabenstellung wird eine der drei grundlegenden Methoden als Lernverfahren eingesetzt:

- überwachtes Lernen
- bestärkendes Lernen
- unüberwachtes Lernen

Welche Eigenschaften des Netzes wann und wie durch das Lernverfahren geändert werden,
bezeichnet man als Lernregel. Es können die Anzahl der Zellen, die Verbindungsstärken, der Schwellwert, die Übertragungs- oder die Aktivierungsfunktion verändert werden. Am bekanntesten ist die Hebbsche Lernregel, nach der die Verbindungsstärke \(w_{ij} \) zwischen zwei Zellen erhöht wird, wenn die Zelle \(i \) eine Eingabe von der Zelle \(j \) erhält und beide Zellen gleichzeitig stark aktiviert sind:

\[
\Delta w_{ij} = \eta x_j a_i,
\]

mit der Lernrate \(\eta \).

Auswahl und Anwendung geeigneter Verfahren

Für die zu lösende Aufgabe einen Jahresdatensatz zu reduzieren und dabei möglichst wenig Information zu verlieren, sind nur unüberwachte Lernverfahren geeignet, da vor dem Training nicht bekannt ist, wie die Ausgangsdaten charakterisiert werden können. Vor der Reduzierung müssen die Daten jedoch aufbereitet werden. Für die geplanten Optimierungen werden die Außentemperatur und die Einstrahlung auf den Kollektor benötigt. Da durch die Datenreduzierung die Information über den jahreszeitlich schwankenden Sonnenstand verlorengehen, müssen zuerst die im Testreferenzjahr [31] enthaltene horizontale Direkt- und Diffusstrahlung auf die Gesamteinstrahlung in der Kollektorebene umgerechnet werden.

Als dritter Parameter der Datensätze dient der angewandte Algorithmus. Verwendet werden die beiden unüberwachten Lernverfahren, die in der *NeuralNetworkToolbox* [67] des Programmpakets *MATLAB* [68] implementiert sind: Wettbewerbslernen (*Compet*) und Selbstorganisierende Karten (*SOM*).

Beim Wettbewerbslernen wird anfangs jedem Neuron durch eine Zufallsfunktion ein Gewichtsvektor \(W \) zugeordnet, die Anzahl der Trainingszyklen und eine konstante Lernrate werden festgelegt. Anschließend wird ein Eingabedatenvektor \(X_p \) zufällig ausgewählt und dem Netz präsentiert. Das Neuron, dessen Gewichtsvektor \(W_c \) den geringsten Abstand zu diesem Eingabeverkotor hat, wird bestimmt. In dieser Minimierung sind die Aktivierungs- und Übertragungsfunktion des allgemeinen Neuronenmodells (Abb. 4.3.1) zusammengefasst. Die Lernregel entspricht der darauffolgenden Anpassung des Gewichtsvektors:
\[W_c \leftarrow W_c + \eta (X_p - W_c) . \]

(4.18)

Die Präsentation der Eingangsdaten wird entsprechend der Anzahl der Trainingszyklen wiederholt, so daß sich die Gewichtsvektoren den typischen Eingangsvektoren anpassen. Die Prozedur der selbstorganisierenden Karten ist ähnlich, unterscheidet sich aber durch die angewandte Lernregel. Es wird eine Nachbarschaftsfunktion definiert, die dafür sorgt, daß nicht nur das aktivierte Neuron seinen Gewichtsvektor ändert, sondern auch benachbarte Neuronen. Als benachbart gelten diejenigen Neuronen, deren Gitter-, oder auch euklidischer Abstand einen festgelegten Wert \(d \) nicht überschreitet. Während der fortschreitenden Präsentation der Eingangsdaten wird nicht nur dieser Abstand \(d \), sondern auch die Lernrate \(\eta \) veringert. Dadurch wird ein Konvergieren der Gewichtsvektoren \(W \) während des Trainings erreicht.

\[W_c \leftarrow W_c + \eta h_{ci}(d)(X_p - W_c). \]

(4.19)

Charakterisierung der Datensätze

Um die reduzierten Datensätze zu beurteilen, werden die Unterschiede ihrer Mittelwerte und Standardabweichungen von denen der Ausgangsdaten untersucht.

\[
\delta_{ml}(\dot{G}_{g,tilt}, \dot{G}_{g,tilt,red}) = \frac{\bar{G}_{g,tilt} - \bar{G}_{g,tilt,red}(n, \lambda)}{\bar{G}_{g,tilt}}
\]

(4.20)

\[
\delta_{\sigma}(\dot{G}_{g,tilt}, \dot{G}_{g,tilt,red}) = \frac{\sigma_{\dot{G}_{g,tilt}} - \sigma_{\dot{G}_{g,tilt,red}(n, \lambda)}}{\sigma_{\dot{G}_{g,tilt}}} .
\]

(4.21)

Da sich die Werte für die Außentemperatur nicht so stark auf die Anlagensimulation auswirken und die Ergebnisse sich kaum von denen für die Einstrahlung unterscheiden, sind in Abb. 4.7 nur die letzteren dargestellt:

Mit steigender Neuronenanzahl wächst bei beiden Verfahren die Abweichung vom Mittelwert der Ausgangsdaten. Im Gegensatz dazu nähert sich die Standardabweichung der ursprünglichen an. Beide Effekte sind darin begründet, daß die gesamten Ausgangsdaten auf die vorhandenen Neuronen abgebildet werden. Bei kleiner Neuronenanzahl muß die Information allgemeiner sein, wofür der gute Mittelwert Kennzeichen ist. Während hingegen bei größerer Anzahl auch weniger häufige Daten repräsentiert werden, was zwar zu größeren Unterschieden bei der Mittelung führt, aber die Streuung, deren Maß die Standardabweichung ist, besser widerspiegelt. Längere Typperioden führen zu besseren Mittelwerten und tendenziell zu schlechteren Standardabweichungen, wie weitere, nicht dargestellte Untersuchungen gezeigt haben. Die Nachbarschaftsfunktion durch die sich das SOM-Verfahren vom Wettbewerbslernen unterscheidet, führt zu einer Nivellierung, die ebenfalls eine bessere
Abbildung 4.7: Vergleich der Abweichungen $\delta_{mt}(\hat{G}_{g,tilt}, \hat{G}_{g,tilt,red}(n, \lambda = 4))$ und $\delta_{\sigma}(\hat{G}_{g,tilt}, \hat{G}_{g,tilt,red})$ für $\lambda = 1$ und $\lambda = 4$ [66]
4.3.2 Optimierung mit Typperioden, die durch Datenreduktion gewonnen wurden

Beurteilungskriterium für die reduzierten Datensätze ist die Abweichung der mit ihnen berechneten optimalen Parameter von den Parametern, die durch eine Optimierung mit dem Jahresdatensatz bestimmt werden.

\[
\delta_{\text{Parameter}} = \frac{\text{Parameter}_{\text{opt}} - \text{Parameter}_{\text{opt,red}}}{\text{Parameter}_{\text{opt}}}.
\]

(4.22)

Einerseits können mit den reduzierten Datensätzen nur Aussagen über ein optimales Verhalten getroffen werden, wenn diese Abweichung nicht zu groß ist. Andererseits ist diese nicht zu vermeidende Abweichung nur gerechtfertigt, wenn eine signifikante Reduktion der Rechenzeit erzielt wird. Der Reduktionsfaktor ergibt sich aus dem Verhältnis des reduzierten Simulationszeitraums zum ursprünglichen: \(R = n\lambda/365 \).

Die reduzierten Datensätze sollen nicht für die einmalige Lösung eines bestimmten Problems ermittelt werden, sondern für eine schnelle Auslegung unterschiedlicher Anlagen dienen. Daher werden zuerst mit einer einparametrigen Optimierungsaufgabe geeignete Datensätze bestimmt und anschließend die Eignung dieser Datensätze für eine andere Optimierungsaufgabe überprüft.

Bei der Bestimmung eines Speichervolumens, das zu den günstigsten Wärmepreisen führt, ergibt sich eine explizite Abhängigkeit des Ergebnisses von der Neuronenanzahl nur im Bereich \(n \leq 4 \) (s. Tabelle im Anhang). Für größere Werte ist der gesamte Simulationszeitraum \(n\lambda \) entscheidend. In Abb. 4.9 ist die Abweichung des Optimums gegenüber dem Simulationszeitraum für das Wettbewerbsslernen, die selbstoprganisierenden Karten sowie das Mittelwertverfahren aufgetragen.

Um die Übertragbarkeit der Ergebnisse zu überprüfen, wird mit Datensätzen von jeweils 16 Tagen für eine veränderte Solaranlage unter anderen ökonomischen Randbedingungen sowohl das Speichervolumen als auch die Kollektorfläche optimiert. Für beide Parameter liefern sowohl das Wettbewerbslernen wie die selbstorganisierenden Karten zufriedenstellende Ergebnisse, während mit den Datensätzen, die durch Mittelung erzeugt wurden, vollkommen andere Optima erzielt werden. Wie in Abb. 4.10 zu sehen, verläuft die Optimierung zu Beginn der Rechnung ähnlich, ab dem ca. zwanzigsten Simulationslauf werden mit den gemittelten Daten jedoch jeweils niedrigere Parameterwerte angestrebt. Zu Bedenken ist dabei, daß die Kollektorfläche für das Ergebnis dominierend ist und die Speichergroße entsprechend der optimalen Fläche bestimmt wird. Bei den ersten Simulationen, die noch weit weg vom Optimum sind, reicht anscheinend der Mittelwert aus, um die Richtung der Optimierung zu bestimmen. Da aber auch die Einstrahlungsmaxima für die Dimensionierung des Kollektorfeldes wichtig sind, wird mit den gemittelten Daten eine zu geringe Fläche bestimmt, die auch zu einem niedrigerem Speichervolumen führt.

Zusammenfassend kann man sagen, daß mit neuronalen Netzen im Gegensatz zu kon-
Abbildung 4.10: Entwicklung der Abweichungen der Parameteroptima während der Optimierungsrechnung [66]

Abbildung 4.11: Entwicklung der Abweichungen der Parameteroptima mit steigender Simulationszeit für das Compet-Verfahren [66]

Abbildung 4.12: Entwicklung der Abweichungen der Parameteroptima mit steigender Simulationszeit für das Mitelwert-Verfahren [66]
Kapitel 5

Solarthermische Großanlagen zur Warmwasserbereitung

Die Brauchwassererwärmung ist die älteste Form der direkten solarthermischen Energiegewinnung. Es kann damit nur ein geringer Teil unseres gesamten, heute bestehenden Energiebedarfs gedeckt werden. Bei Neubauten jedoch gewinnt der Energiebedarf für Warmwasser an Bedeutung und kann ebenso groß wie der Heizenergiebedarf sein, wenn diese in Niedrigenergie- oder Passivbauweise errichtet werden. Für Einfamilienhäuser stellt der Einbau einer Solaranlage nichts Ungewöhnliches mehr dar und auch der Aufbau der Anlagen ist weitgehend standardisiert. Für größere Anlagen ist die Verbreitung und auch der Standardisierungsprozess nicht so weit fortgeschritten. Jedoch sinken mit zunehmender Anlagengröße die spezifischen Kosten und damit der erzielte Wärmepreis. Der im Rahmen des SolarThermie-2000-Programms für große Warmwasserbereitung geforderte maximale Wärmepreis von 30 Pfennig wurde bisher von allen geförderten Anlagen eingehalten [79]. Solare Warmwasserbereitung stellt eine relativ einfache und gut erforschte Technik dar. Nach einer knappen Einführung wird im Folgenden (Kap. 5.1.1) auf die Besonderheiten von Großanlagen (Kap.5.1.2) und aktuelle Forschungsarbeiten (Kap.5.1.3) eingegangen. Anschließend wird die Unterstützung von SMILE für eine fortschreitende Spezialisierung eines Untersuchungsgebietes aufgezeigt. Diese beginnt mit der Simulation bestehender Anlagen und führt über den Vergleich verschiedener Varianten zu einer umfangreichen Parametervariation und schließlich zur Optimierung eines einzelnen Aggregats. Die unterschiedlichen Möglichkeiten der Speichereinladung, die bisher kaum untersucht wurden, werden vorgestellt (Kap. 5.2.1) und durch Simulationen miteinander verglichen (Kap. 5.2.2). Da für die Beurteilung dieser Konzepte die Dimensionierung der Wärmeübertrager entscheidend ist, wird abschließend auf dieses Problem genauer eingegangen. Dazu wird eine detaillierte Simulation vorgestellt und dargelegt, wie dieser Ansatz sich von bisherigen Untersuchungen unterscheidet (Kap. 5.3.1). Verschiedene Parameterstudien werden durchgeführt (Kap. 5.3.2) und die Größe des Entladewärmeübertragers und der anliegenden Maßenströme wird durch eine numerische Optimierung bestimmt (5.3.3).
5.1 Solare Warmwasserbereitung

Thermische Solaranlagen lassen sich nach dem verwendeten Medium in Luft- und Flüssigkeitsanlagen unterteilen. Letztere werden wiederum unterschieden in:

- Thermosyphonanlagen
 Dies ist die einfachste Art von Solaranlagen, bei der der Transport des Fluids zwischen Kollektor und Speicher durch die temperaturabhängige Dichteänderung erzielt wird. Am günstigsten und daher auch am häufigsten sind Anlagen, bei denen das Brauchwasser durch den Kollektor geleitet wird. Diese Anlagen können nur in kleinem Maßstab gebaut werden und nur dann, wenn keine Frostgefahr besteht.

- Kleinanlagen zur Warmwasserbereitung

- Kleinanlage mit Heizungsunterstützung
 Der Speicher wird so ausgeführt, daß auch Wärme zur Heizungsunterstützung entnommen werden kann. Derzeit konkurrieren verschiedene Kombispeichersysteme zur Trennung zweier Temperaturniveaus auf dem Markt. Bei hoher solarer Deckung für die Heizung werden häufig zwei verschiedene Speicher ausgeführt.

- Großanlagen zur Warmwasserbereitung
 Ab 100m² Kollektorfläche spricht man i.Allg. von Großanlagen, wie sie in diesem Kapitel eingehender beschrieben werden.

- solare Nahwärmesysteme
 Werden größere solare Deckungsraten angestrebt, ist ein saisonaler Wärmespeicher notwendig. Größere Speicher für Nahwärmesysteme, wie sie in Kap. 7 eingehender beschrieben werden, sind aus technischer und wirtschaftlicher Sicht sinnvoller als Einzelfällen.

Zusätzlich gibt es noch eine Reihe von Spezialfällen zur Wärmebereitstellung in der Industrie oder für verschiedene Dienstleistungsgewerbe.

5.1.1 Pufferspeichерanlagen

Pufferspeicheranlagen hingegen wird das Brauchwasser in den Bereitschaftsspeicher geleitet (s. Abb. 5.1(b)). Die Solarwärme, die in einen mit Heizwasser befüllten Pufferspeicher geladen wird, muß über einen weiteren Wärmeübertrager an das Brauchwasser abgegeben werden. In SMILE erfolgt der Umbau eines Modells einer Zweispeicher- zu einer Pufferspeicheranlage durch die Deklaration zwei weiterer Instanzen des Pumpen- und einer weiteren Instanz des Wärmetauschermodells sowie den Veränderungen der Anschlüsse, in denen alle Kenngrößen der Ströme zusammengefasst sind:

@Interface Zweispeicheranlage : SmileObject
@protected
StorageStandard * storage; //Brauchwasserspeicher
StorageStandard * buffer; //Pufferspeicher
...
@Implementation Zweispeicheranlage
@connect
tabwaterpipe.Stream_out[i] = buffer.Stream_in_load_1[i]; //kaltwasseranschluss
buffer.Stream_out_load_1[i] = storage.Stream_in_load_1[i]; //Verbindung beider Speicher
...
@end

@Interface Pufferspeicheranlage : SmileObject
@protected
StorageStandard * storage; //Brauchwasserspeicher
StorageStandard * buffer; //Pufferspeicher
Pump * pump_buffer;
Pump * pump_storage;
HeatExchangerStatic * heatexchanger_storage;
...
@Implementation Pufferspeicheranlage
@connect
tabwaterpipe.Stream_out[i] = storage.Stream_in_load_1[i];
buffer.Stream_out_load_1[i] = heatexchanger_storage.Stream_in_1[i];
heatexchanger_storage.Stream_out_1[i] = pump_buffer.Stream_in[i];
pump_buffer.Stream_out[i] = buffer.Stream_in_load_1[i];
storage.Stream_out_supply_1[i] = pump_storage.Stream_in[i];
pump_storage.Stream_out[i] = heatexchanger_storage.Stream_in_2[i];
heatexchanger_storage.Stream_out_2[i] = storage.Stream_in_supply_1[i];
...
@end

Grund für diese hydraulische Trennung von Pufferkreis und Trinkwasserkreis, die auch eine aufwändigere Regelung erfordert, sind vor allem die DVGW-Arbeitsblätter W 51 und W 52, die für trinkwasserführende Speicher ab 400 l eine Desinfektion gegen Legionellen vorschreiben [69]. Diese kann zwar auch chemisch oder durch UV-Bestrahlung vorgenommen werden [70, 71], erfolgt meist jedoch thermisch durch tägliches Aufheizen des Speichers auf mindestens 60°C. Neben dem zusätzlichen Energiebedarf bedeutet dies für Zweispeicheranlagen auch eine deutliche Herabsetzung des Wirkungsgrades, da durch die hohen Speichertemperaturen die Kollektoreintrittstemperaturen und -Verluste steigen. Durch die
Abbildung 5.1: Unterschied zwischen Zweispeicher- und Pufferspeicheranlagen

5.1.2 Dimensionierung der wesentlichen Anlagenparameter

Solaranlagen für Einfamilienhäuser werden im allgemeinen ausgelegt, um eine solare Deckungsrate von mehr als 50% bei der Warmwasserbereitung zu erzielen. Neben rein subjektiven Gründen ist dafür vor allem der Wunsch verantwortlich, die Heizzentrale im
Sommer abschalten zu können und so die hohen Stillstandsverluste zu vermeiden. Dieses Einsparpotential wird jedoch häufig überschätzt, da bei moderner Kesseltechnik diese Verluste minimiert werden [73].

Abbildung 5.2: Systemnutzungsgrad und Wärmepreis in Abhängigkeit von der Deckungsrate für eine Beispielanlage (Berlin, 4000 l Tagesverbrauch) [74]

Mit steigendem Gesamtverbrauch sinkt die sinnvolle Deckungsrate. Es wird unterschieden in Vorwärmanlagen, bei denen die Kollektorfläche pro Person mit ca. 0,5 m² rel. klein gehalten werden sollte [75] und Anlagen mittlerer Deckung, die mit ca. 1 m² Kollektorfläche pro Person geplant werden [76]. Erstere entsprechen einem Deckungsgrad um 20% und einem Systemnutzungsgrad bis zu 50%, während bei letzteren die Deckungsrate bis

5.1.3 Konzepte zur Integration der Nachheizung

Die Nachheizung zur Erwärmung des Warmwassers auf Solltemperatur kann auf unterschiedliche Weise in Solaranlagen integriert werden. Zur Bestimmung des Verhaltens der verschiedenen Verschaltungen wurden sowohl Messungen als auch vergleichende Simulationen durchgeführt [73, 80, 78, 81].

Parallele Einbindung im Pufferkreis

Bei diesem System wird ein Bereitschaftsvolumen im Pufferspeicher direkt vom Kessel erwärmt (s.Abb. 5.3(a)). Die Bereitstellungstemperatur muß so gewählt werden, daß trotz des Temperaturabfalls im Wärmeübertrager die Solltemperatur des Brauchwassers erreicht wird. Der Rücklauf aus dem Wärmeübertrager muß mit einem Schichtenlader temperaturorientiert in den Pufferspeicher eingeführt werden, da sonst dessen Schichtung zerstört werden kann. Durch das erhöhte Bereitschaftsvolumen ergeben sich auch höhere Speicherverluste.
Serielle Einbindung im Pufferkreis

Bei diesem System wird das aus dem Pufferspeicher entnommene Wasser nachgeheizt (s.Abb. 5.3(b)). Um die Erwärmung des Kessels durch nachgeheiztes Wasser zu minimieren, ist nicht nur eine Schichtladeverrichtung notwendig, sondern auch ein Ventil, das nicht abgekühltes Wasser wieder direkt zurück zum Kessel leitet (Rücklaufwächter). Der Kessel muß sowohl die maximal erforderliche Leistung aufbringen können als auch schnell aufhören können. Kleine Zapfungen verursachen häufiges Takten und die damit verbundenen Verluste.

Einbindung im Bereitschaftskreis

Hier wird die Nachheizung an den Brauchwasserkreis angeschlossen. Der obere Teil des Speichers ist für die Nachheizung vorgesehen, während der untere für eine solare Beladung zur Verfügung steht (s.Abb. 5.4). Auch eine Aufteilung in zwei separate Trinkwasserspeicher für solare Beladung und Nachheizung ist möglich. Eine Verrohrung zum Aufheizen des unteren Speicher(bereich)s muß für die thermische Desinfektion vorgesehen sein. In den vergleichenden Untersuchungen zeigte sich, daß die Einbindung der Nachheizung in den Bereitschaftskreis am günstigsten ist, da bei den beiden anderen Prinzipien ein Eintrag fossiler Energie in den Pufferspeicher nicht ganz vermieden werden kann. Die serielle Kopplung an den Pufferspeicher ist aber der parallelen überlegen, sofern die Funktionstüchtigkeit des Rücklaufwächters und des Schichtenladers sichergestellt sind. In die Untersuchungen mit-einbezogen waren auch die Zweispeichersysteme, bei denen das gesamte Volumen auf 60°C erwärmt werden muß, aber auf eine Wärmeübertragung verzichtet werden kann. Diese können ebenfalls hohe Nutzungsgrade erreichen, wenn die thermische Desinfektion kurz vor Zapfphasen erfolgt, die das gesamte Speichervolumen entleeren. Bei Systemen mittlerer Größe werden auch noch dezentrale Nacherwärmungsmöglichkeiten angewandt, um die Zirkulationsverluste zu verringern [82, 21]. Zu bedenken sind bei diesem Prinzip aber die hohen Kosten und der hohe Primärenergieaufwand für die benötigte elektrische Energie.

5.2 Entladestrategien

5.2.1 Durchlauf- und Speicherladeprinzip

Außer durch die Nachheizung unterscheiden sich die Systeme auch durch die Art der Kaltwasserzuführung. Das in Abb. 5.4(a) dargestellte System wird auch als Speicherladesystem bezeichnet, da das warme Wasser bei Erreichen einer minimalen Temperaturdifferenz mit konstantem Massenstrom aus dem Puffer- in den Trinkwasserspeicher geladen wird. Der Trinkwasserspeicher muß dafür genügend Volumen aufweisen, damit durch die Nachheizung bereitgestellte Wärme nicht in den unteren Bereich gelangt und eine Entladung des Pufferspeichers verhindert.

Im Gegensatz dazu wird bei dem Durchlaufkonzept das Kaltwasser durch den Wärmeübertrager geführt, bevor es in den Trinkwasserspeicher gelangt (s.Abb. 5.4(b)). Um an den
Abbildung 5.4: Pufferspeicheranlage nach dem Durchlauf- und Speicherladekonzept

schwankenden Zapfmassenstrom die solare Wärme übertragen zu können, sind ein auch für Spitzenlasten ausreichender Wärmeüberträger sowie eine drehzahlregelte Pumpe im Pufferspeicherkreis notwendig.

Die Vor- und Nachteile dieser beiden Entladungsstrategien sind in Tab. 5.1 systematisch gegenübergestellt.

<table>
<thead>
<tr>
<th>Speicherladekonzept</th>
<th>Durchlaufkonzept</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Zusätzliches Speichervolumen für die solare Beladung notwendig</td>
<td>+ Geringere Speicherkosten</td>
</tr>
<tr>
<td>- Nachträgliche Installation der Solaranlage nur bei großem Bereitschaftsspeicher möglich</td>
<td>+ Nachträgliche Installation der Solaranlage immer möglich</td>
</tr>
<tr>
<td>- Untere Pufferspeichertemperatur wird durch Temperatur im Bereitschaftsspeicher bestimmt</td>
<td>+ Untere Pufferspeichertemperatur wird durch Kaltwassertemperatur bestimmt</td>
</tr>
<tr>
<td>+ Konstanter Massenstrom und einfache Regelung</td>
<td>- Drehzahlregelte Pumpe, Strömungswächter und aufwendige Regelung notwendig</td>
</tr>
<tr>
<td>+ Mittlere Dimensionierung des Wärmeübertragers möglich</td>
<td>- Entladewärmeübertragerauslegung für Spitzenlasten wird empfohlen</td>
</tr>
<tr>
<td>+ Ausgleich von spitzen Zapffprofilen</td>
<td>- Zeitlicher Versatz zwischen Zapfprofil und trägem System, Starke Dynamik verursacht hydraulische Probleme</td>
</tr>
</tbody>
</table>

Tabelle 5.1: Vor- und Nachteile der Entladestrategien
5.2.2 Vergleichende Simulation unterschiedlicher Entladestrategien

Die in Tab. 5.1 zusammengefassten Eigenschaften der Entladestrategien sollen mit Hilfe von Simulationen überprüft werden. Dazu muß die notwendige Größe der Wärmeübertrager bestimmt und die Auswirkungen niedriger Kollektortemperaturen auf den Systemertrag beim Durchlaufprinzip quantifiziert werden. Die verbesserte Auskühlung ist nicht nur für große Warmwasseranlagen von Bedeutung, sondern auch für die in Kap. 7 besprochenen Nahwärmesysteme. Die darin für die Warmwasserbereitung eingesetzten Speicherladesysteme führen bislang zu erhöhten Rücklauftemperaturen, was die Effizienz der ganzen Anlagen beeinflußt.

Durchlaufkonzept

Ein Durchlaufkonzept wurde bei der in Abb. 3.7 dargestellten Anlage in Berlin/Hellersdorf verwirklicht. Es handelt sich bei diesem System mit 46 m^2 Kollektorfläche noch nicht um eine Großanlage, aber da in diesem Projekt die Möglichkeit der Einbindung einer Solaranlage in die Hausübergabestation eines Fernwärmesystems untersucht werden sollte, wurde sie als Pufferspeicheranlage konzipiert. Ein Trinkwasserspeicher ist auf Grund der großen Leistungskapazität des Netzes nicht notwendig. Abb. 5.5 zeigt den Vergleich der gemessenen und simulierten Speichertemperaturen. Abweichungen sind bei den Temperaturmaxima zu erkennen, ein prinzipieller Fehler durch die ungenaue Abbildung der Zapfung tritt jedoch nicht auf.

Während der Messungen wurden verschiedene Verbesserungen der Regelungsstrategie, wie eine Veränderung der Einstrahlungsbedingung für die Solarkreispumpe oder die Mindesttemperatur für eine Speicherentladung durchgeführt. Durch die Simulation konnten nicht nur die damit erzielten Ertragssteigerungen nachvollzogen, sondern auch ein darüber hinausgehende Verbesserungsvorschlag erarbeitet werden [22]. In Tab. 5.2 sind die schrittweisen Erfolge dieser Regelungsoptimierung zusammengefasst:

Tab. 5.2 zeigt, wie sehr die Leistungsfähigkeit einer Solaranlage von der Regelung beeinflußt wird. Daß die gleichen Effizienzsteigerungen durch die verbesserte Regelung sowohl in den Messungen als auch in den Simulationsergebnissen beobachtet werden konnten, macht
Abbildung 5.5: Vergleich der gemessenen und der simulierten Speichertemperaturen in Berlin/Hellersdorf [22]

<table>
<thead>
<tr>
<th>Regelung</th>
<th>Kollektornutzungsgrad</th>
<th>Systemnutzungsgrad</th>
<th>solare Deckungsrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29%</td>
<td>23%</td>
<td>13%</td>
</tr>
<tr>
<td>2</td>
<td>35%</td>
<td>31%</td>
<td>17%</td>
</tr>
<tr>
<td>3</td>
<td>40%</td>
<td>38%</td>
<td>22%</td>
</tr>
<tr>
<td>4</td>
<td>38%</td>
<td>35%</td>
<td>18%</td>
</tr>
<tr>
<td>5</td>
<td>43%</td>
<td>41%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Tabelle 5.2: Nutzungsgrade und Deckungsraten für verschiedene Regelungsstrategien der Hellersdorfer Anlage (Nr. 5 nur simuliert, Nr. 1 - 4 auch gemessen.)

deutlich, daß das Durchlaufkonzept ausreichend genau in SMILE abgebildet werden kann. Erleichtert wird die einfache Nachbildung der unterschiedlichen Regelungsstrategien durch die Schrittweitensteuerung des Lösgers, die die Schaltvorgänge detektiert, den Schaltvorgang auslöst und das Gleichungssystem neu initialisiert. Eine Untersuchung mit einem feiner aufgelösten Zapfprofil wäre in der Simulation jederzeit möglich, scheitert aber an der groben Diskretisierung der Meßwerte.

Speicherladekonzept

Die mit 658m² Kollektorfläche bisher größte Anlage zur solaren Warmwasserbereitung in Deutschland, die der Universität Magdeburg, wurde als Speicherladesystem gebaut. In Abb. 5.6, die die Verschaltung der Anlage schematisch wiedergibt, ist die Aufteilung der fünf Pufferspeicher in eine untere und eine obere Speichergruppe eingezeichnet. Ein Dreiegeventil steuert die Beladung entsprechend der Temperaturdifferenzen zwischen dem Wärmeübertragerausgang und den Speichertemperaturen. Die Abbildung von fünf einzelnen Pufferspeichern ist prinzipiell möglich, doch auf Grund der dafür benötigten Rechenzeiten nicht sinnvoll. Deshalb wurden die unteren drei und die oberen zwei jeweils zu einem Speicher zusammengefasst. Problematisch ist jedoch die Abbildung der verschiedenen hy-
draulischen Zustände, da je nach Stellung des Ventils und Status der Be- und Entladepum-
pen mehrere Ströme in einem Speicher zusammenfließen oder aber auch Stromverzweigun-
gen stattfinden. Auch die Fließrichtung im Verbindungsrohr zwischen den beiden Speicher-
gruppen wechselt in Abhängigkeit vom Betriebszustand. Es wurde daher das bestehende
Speichermöedell erweitert und die bereits in Abb. 3.5 dargestellten Spezialmodelle erstellt,
die dieses hydraulische Verhalten abbilden. Der Einfluß dieser komplizierten Strömungs-
bedingungen auf die Schichtung im Speicher ist jedoch minimal, da die Verweilzeit des
Fluids im Speicher so gering ist, daß schon die Unterteilung in zwei Speicherebenen den
Wirkungsgrad des Systems kaum erhöht. Ähnliche Ergebnisse wurden schon für andere
Zweispeichersysteme festgestellt [77], nur daß für diese Untersuchung nicht bestehende
Komponenten erweitert und in eine Simulationsumgebung integriert werden konnten, son-
dern ein eigenes Program zur Beschreibung des Systems erstellt werden mußte.

Abbildung 5.7: Vergleich der simulierten und der gemessenen Speichertemperaturen in
Magdeburg

Abb. 5.7 zeigt den Verlauf der simulierten und der gemessenen Temperaturen im unter-

Abbildung 5.6: Vereinfachtes Schaltschema der Solaranlage der Universität Magdeburg [21]
sten und obersten Speicher. Die Abweichungen deuten auf eine größere Trägheit des realen Systems im Vergleich zu dem modellierten hin. Dennoch konnte die Temperaturspreizung innerhalb der Pufferspeicher gut abgebildet werden. Auch die berechneten Gesamtergebnisse weichen nur um 2,5% von den gemessenen ab und liegen damit innerhalb der Meßgenauigkeit [21], sodaß SMILE auch zur Abbildung des Speicherladekonzepts als geeignet bezeichnet werden kann.

Simulationsvergleich

Wie in Abb. 5.8(a) zu sehen, ist die Entladeleistung beim Durchlaufkonzept fast durchgehend größer als beim Speicherladekonzept. Nur in den Abendstunden kann bei letzterem der noch nicht ausgekühlte Pufferspeicher weiter entladen werden. Der Grund für diese höheren Leistungen des Durchlaufsystems liegt in den niedrigeren Temperaturen, die im Entladewärmeübertrager erreicht werden. Dadurch kann, wie in Abb. 5.8(b) dargestellt, sowohl das Gesamttrenniveau im Pufferspeicher gesenkt als auch die Temperaturspreizung verbessert werden. Die Temperatur im unteren Bereich ist entscheidend für die Temperaturen und damit die Verluste im Solarkreis. Der durch die Simulationen bestimmte jährliche Mehrertrag von 13% des Durchlauf- gegenüber dem Speicherladeprinzip setzt einen maximal ausgelegten Wärmeübertrager, ein perfektes Funktionieren der Regelung und ein verzögerungsfreies Reagieren der Pumpe voraus. Dennoch sollte die Größe dieses Unterschiedes Motivation sein, die häufig auftretenden hydraulischen Probleme zu überwinden, die neben dem apparativen Aufwand viele Planer von der Verwirklichung eines Durchlaufkonzeptes abhält [78].

5.3 Dimensionierung der Wärmeübertrager

Zur Be- und Entladung des Pufferspeichers werden, wie in Abb. 5.4 dargestellt, externe Plattenwärmeübertrager eingesetzt. Zum Einsatz kommen meist hartgelötete Komponenten, die im Gegenstromprinzip betrieben werden. Seltener sind geschraubte Plattenwärmeübertrager, die zwar leichter zu reinigen, aber auch wesentlich teurer sind. Bei vielen ausgeführten Anlagen wurde eine falsche Dimensionierung oder eine ungünstige Einstellung der Massenströme festgestellt [79, 83]. Der oben angestellte
Abbildung 5.8: Entladeleistungen und Pufferspeichertemperaturen für das Durchlauf- und das Speicherladesystem

Vergleich der Entladestrategien jedoch setzt eine ausreichende Wärmeübertragung voraus, daher wird im Folgenden dieses Detailproblem genauer untersucht.
Um die Vorteile einer flexiblen Simulationsumgebung aufzuzeigen, wird in 5.3.1 die Praxis der Auslegung von Wärmeübertragern von Solaranlagen vorgestellt. Dazu gehören die grundlegenden Gleichungen eines Gegenstromwärmeübertragers, die in allen Simulations- oder Auslegungsprogrammen implementiert sind, und die üblichen Annahmen, die bei der Planung von Solaranlagen gemacht werden, sowie eine eingehende stationäre Analyse der Dimensionierung von Solarkreiswärmeübertragern. In 5.3.2 wird diese Analyse durch eine Reihe von dynamischen Simulationen überprüft. Dafür wird ein einfaches Wärmeübertragermodell schrittweise erweitert, um auch die Temperatur- und Strömungsabhängigkeiten der Übertragungsfähigkeit und den Druckabfall zu berücksichtigen. Daran wird demonstriert, wie in SMILE aus einem bestehenden und validierten Modell einer Anlage durch schrittweise Erweiterung erst durch eine genauere Modellierung des Wärmeübergangs, dann einer zusätzlichen Druckberechnung und schließlich einer Komponente zur ökonomischen Analyse ein Modell entsteht, das zur Beantwortung einer sehr speziellen Fragestellung dient. Mit diesem detaillierten Modell wird in 5.3.3 eine numerische Optimierung der Speicher- und Wärmeübertragergrößen sowie des Massenstroms durchgeführt, die in der aufwendigen Parameterstudie gewonnenen Erkenntnisse bestätigt.

5.3.1 Wärmeübertragerauslegung

\[
\dot{Q}_{\text{wt}} = k A \Delta T_{\text{log}}. \tag{5.1}
\]

Die mittlere logarithmische Temperaturdifferenz \(\Delta T_{\text{log}}\) ist durch
\[
\Delta T_{\text{log}} = \frac{1}{A} \int_{0}^{A} (T_1(A) - T_2(A)) \, dA \quad (5.2)
\]

definiert. \((T_1(A) - T_2(A))\) ist die lokale Temperaturdifferenz bei konstantem \(k\). Durch Aufstellen der Energiebilanzen für ein differentielles Element und Integration über die Wärmeübertragerfläche ergibt sich daraus für Gegenstromwärmeübertrager:

\[
\Delta T_{\text{log}} = \frac{(T_{\text{in},1} - T_{\text{out},2}) - (T_{\text{out},1} - T_{\text{in},2})}{ln\frac{T_{\text{in},1} - T_{\text{out},2}}{T_{\text{out},1} - T_{\text{in},2}}} \quad (5.3)
\]

Mit Gl. 5.1 und den Bilanzen für die beiden Seiten des Wärmeübertragers ergibt sich durch Einsetzen die Austrittstemperatur:

\[
T_{\text{out},1} = \frac{\dot{m}_1 c_p,1 e^{(-kA)p} T_{\text{in},1} - e^{(-kA)p} - 1}{\dot{m}_1 c_p,1 e^{(-kA)p} - e^{(-kA)p} - 1} \quad (5.4)
\]

\[
T_{\text{out},2} = \frac{\dot{m}_2 c_p,2 e^{(-kA)p} T_{\text{in},2} + e^{(-kA)p} - 1}{\dot{m}_1 c_p,1 e^{(-kA)p} + e^{(-kA)p} - 1} \quad (5.5)
\]

mit

\[
\rho = \frac{1}{\dot{m}_1 c_p,1} - \frac{1}{\dot{m}_2 c_p,2} \quad (5.6)
\]

Diese Zusammenhänge bilden die Grundlage nicht nur des SMILE - Wärmeübertragermodells und der anderer Auslegungs- und Simulationsprogramme, sondern auch für die in der Praxis übliche Dimensionierung der Solarkreiswärmeübertrager [75, 74]: Zu Beginn der Auslegung steht die Wahl der gewünschten Kollektorfläche, die sich nach Bedarf und gewünschter Deckungsrate richtet, und die Wahl der Durchflussmenge (Low-Flow oder High-Flow) und damit des Massenstroms im Kollektorkreis \(\dot{m}_1\). Die Eintrittstemperatur auf der Speicherseite \(T_{\text{in},2}\) wird von der Kaltwassertemperatur des Brauchwassers \(T_w\), der Durchmischung des Pufferspeichers und der Grädigkeit des Entladewärmeübertragers bestimmt. Bei geringen Deckungsraten kann die Erwärmung im Pufferspeicher vernachlässigt werden. Grädigkeiten für beide Wärmetauscher werden zwischen fünf und sieben Kelvin angestrebt. An Stelle einer maximalen solaren Einstrahlung von ca. 1000 W/m² wird auf Grund einer pauschalen Abschätzung der Kollektor- und Rohrleitungsverluste von einer maximalen Wärmeleistung von ca. 600 W/m² ausgegangen, die an den Speicher übertragen werden muß. Mit Hilfe der Kollektorfläche \(A_{\text{col}}\) und der Wärmekapazität des Fluids im
Kollektorkreis $c_p,1$ ergibt sich daraus die Eintrittstemperatur in den Wärmeübertreager auf der Kollektorseite $T_{in,1}$:

$$T_{in,2} = T_w + (5 - 7)K$$

$$T_{out,1} = T_{in,2} + (5 - 7)K$$

$$T_{in,1} = T_{out,1} + \frac{600 \text{ W/m}^2\text{A}_{col}}{c_p,m_1}.$$ \hspace{1cm} (5.9)

Als letzter freier Parameter kann nun entweder der Massenstrom \dot{m}_2 oder die Austrittstemperatur $T_{out,2}$ im Speicherkreis gewählt werden

$$\dot{m}_2 = \frac{600 \text{ W/m}^2\text{A}_{col}}{c_{p,2}(T_{out,2} - T_{in,2})}.$$ \hspace{1cm} (5.10)

Häufig wird der Volumenstrom im Speicherkreis gleich dem im Kollektorkreis gewählt, falls nicht ein bestimmtes Temperatur niveau im Pufferspeicher und dadurch eine festgelegte Austrittstemperatur angestrebt wird. Aus Gl. 5.1 kann somit das Produkt aus Wärmeübertragerfläche und Wärmedurchgangskoeffizient bestimmt werden:

$$kA = \frac{600 \text{ W/m}^2\text{A}_{col}}{\Delta T_{\text{log}}}.$$ \hspace{1cm} (5.11)

Eine zu grobzügige Dimensionierung erfordert unnötige Investitionskosten und kann auf Grund der geringen Turbulenz auch zu vermehrter Kalkablagerung und absinkender Übertragungsleistung führen. Eine zu sparsame Auslegung jedoch schränkt den Wärmetransport durch die Anlage ein und zieht dadurch Ertragseinbußen nach sich. Daher wurden in [84, 87] die übertragene Wärmeleistung in Abhängigkeit vom Verhältnis der beiden Massenströme und der auf die Kollektorfläche bezogenen Wärmeübertragergröße bestimmt. Dazu wird aus der Wirkungsgradkennlinie eines Flachkollektors und den Bilanzgleichungen an einem Gegenstromwärmeübertrager die Abhängigkeit der Übertragungsleistung von den wesentlichen Parametern abgeleitet:

$$P_{\text{Heatexchanger}} = \frac{P_{\text{Heatexchanger}}}{A_{\text{col}}} \hspace{1cm} (5.12)$$

$$= f[\dot{m}_{\text{col}}(c_{p,\text{col}}), \dot{m}_{\text{sto},1,s}(c_{p,\text{sto},1,s}), kA, \beta_{\text{tilted}}, T_{in,2}, T_{\text{env}}, F].$$

Die Parameter, mit denen Gl. 5.12 ausgewertet wurde, sind in Tab. 5.3 zusammengefasst. In Abb. 5.9 sind die berechneten und auf Referenzsysteme bezogenen Leistungen in einem Kennfeld dargestellt. Auf der Abszisse ist das Verhältnis der Massenströme am Solarkreiswärmeübertrager und auf der Ordinate der auf die Kollektorfläche bezogene spezifische kA-Wert aufgetragen. Der am oberen Bildrand angezeichnete Parameter der einzelnen Kurven ist die übertragene Leistung, die mit einer Referenzleistung normiert wurde
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
<th>Einheit</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{he})</td>
<td>-</td>
<td>W</td>
<td>spezifische Übertragungsleistung des Wärmeübertragers</td>
</tr>
<tr>
<td>(P_{he})</td>
<td>-</td>
<td>W/m(^2)</td>
<td>Übertragungsleistung des Wärmeübertragers</td>
</tr>
<tr>
<td>(A_{col})</td>
<td>-</td>
<td>m(^2)</td>
<td>Kollektorfläche</td>
</tr>
<tr>
<td>(\dot{m}_{col})</td>
<td>2,84275</td>
<td>(\frac{kg}{s})</td>
<td>Massenstrom Kollektorkreis (entspricht Low-Flow (\frac{1}{2} \text{l/m}))</td>
</tr>
<tr>
<td>(c_{p,col})</td>
<td>3568</td>
<td>(\frac{J}{kg,K})</td>
<td>Spezif. Wärmekapazität des Wärmeträgermediums im Kollektorkreis (Sole)</td>
</tr>
<tr>
<td>(\rho_{col})</td>
<td>1037,5</td>
<td>(\frac{kg}{m^3})</td>
<td>Dichte des Wärmeträgermediums im Kollektorkreis (Sole)</td>
</tr>
<tr>
<td>(c_{p,sto1,s})</td>
<td>4181</td>
<td>(\frac{J}{kg,K})</td>
<td>Spezif. Wärmekapazität des Wärmeträgermediums im Pufferkreis (Wasser)</td>
</tr>
<tr>
<td>(\rho_{sto1,s})</td>
<td>998,21</td>
<td>(\frac{kg}{m^3})</td>
<td>Dichte des Wärmeträgermediums im Pufferkreis (Wasser)</td>
</tr>
<tr>
<td>(F)</td>
<td>0,85</td>
<td>-</td>
<td>Kollektordurchflussfaktor für Absorber</td>
</tr>
<tr>
<td>(T_{env})</td>
<td>15</td>
<td>°C</td>
<td>Umgebungstemperatur</td>
</tr>
</tbody>
</table>

Tabelle 5.3: Parameter für stationäres Leistungskennfeld.

\(p/p_{ref} \). Die durchgezogenen Linien beziehen sich auf ein System mit einer Einstrahlung von 1000 W/m\(^2\) und einer Pufferspeichertemperatur von 16°C und die gestrichelten Linien auf eines mit 300 W/m\(^2\) Einstrahlung und 45°C Pufferspeichertemperatur. Für \(p/p_{ref} = 1,0 \) fallen die beiden Kurven zusammen, da sie sich auch auf jeweils unterschiedliche Referenzleistungen beziehen. Die gestrichelten Kennlinien für niedrige Einstrahlung und hohe Eintrittstemperaturen sind näher an der Referenzlinie, da in diesem Fall kleinere Wärmeleistungen übertragen werden und deswegen eine Veränderung des Massenstromverhältnisses oder der Wärmeübertragergröße eine stärkere relative Änderung der Leistung bewirkt.

88
Die geringen Abweichungen zwischen den extremen Betriebszuständen (durchgezogene und gestrichelte Linien) deuten auf eine Gültigkeit der Auslegungsgeraden für den ganzjährigen Betrieb hin. Das Modell weist aber folgende Einschränkungen auf:

- Das Modell besteht nur aus Flachkollektor und Wärmetauscher. Speicher und Entladung werden nicht berücksichtigt.
- Das Modell berücksichtigt keine instationären Vorgänge.
- Temperaturunabhängige Fluideigenschaften.
- Rohrleitungsverluste werden vernachlässigt.
- Rein thermische Betrachtung.

Um die Auswirkungen dieser Einschränkungen zu untersuchen, muß das in Abb. 5.9 dargestellte Leistungskennfeld mit Jahressimulationen eines detaillierteren Modells überprüft werden.

5.3.2 Beurteilung der Wärmeübertrager in Pufferspeicheranlagen mit Hilfe dynamischer Simulationen

Zur Untersuchung der Wärmeübertrager wurde das in 5.2.2 beschriebene Modell der Magdebuerger Solaranlage verwendet, das darin enthaltene Wärmeübertragermodell wurde jedoch erweitert, um die Abhängigkeiten der Übertragungsleistung von den eintretenden Fluidströmern und das hydraulische Verhalten wiederzugeben. Mit diesem Gesamtmodell wurden sowohl der Be- als auch der Entladewärmeübertrager hinsichtlich ihrer Leistungen und ihrer Kosteneffizienz untersucht [29].
Abbildung 5.10: Vererbungshierarchie der Wärmeübertragermodelle

Wärmeübertragermodell

die Ermittlung des Wärmedurchgangskoeffizienten

\[k = \frac{1}{\frac{1}{\alpha_1} + \frac{d}{\lambda_p} + \frac{1}{\alpha_2}}. \]

(5.13)

notwendige Dicke der Platten und deren Leitfähigkeit sind meist bekannt. Die Abhängigkeiten der Wärmeübergangskoeffizienten werden in einem Produktansatz wiedergegeben, in dem die Temperaturabhängigkeit in einer linearen Funktion

\[\frac{\alpha}{\alpha_{ref}} = d \frac{T_m - 273,15}{T_{ref} - 273,15} + e \]

(5.14)

und die Strömungsgeschwindigkeit in einer Potenzfunktion eingehen

\[\alpha_{ref} = bv^c. \]

(5.15)

\(\alpha_{ref} \) ist der Wärmeübergang bei einer Referenztemperatur \(T_{ref} \), der durch die Geschwindigkeit \(v \) und die ermittelten Koeffizienten \(b \) und \(c \) bestimmt wird und in die Gleichung für den von der Temperatur \(T_m \) und den Koeffizienten \(d \) und \(e \) abhängigen Wärmeübergang \(\alpha \) eingeht. Die Strömungsgeschwindigkeit ergibt sich aus dem Massenstrom, der Plattendicke und der gewählten Plattenanzahl. Die Koeffizienten aus Gl. 5.14 und Gl. 5.15 wurden für zwei Wärmeübertrager, die häufig in größeren Solaranlagen eingesetzt werden, bestimmt, indem das Auslegungsprogramm des Herstellers mehrmals für stationäre Zustände ausgewertet wurde und anschließend die entsprechenden Fitfunktionen bestimmt wurden (s.Abb.5.11 und Abb.5.12). So konnte in einem abschließendem Vergleich der Ausgangstemperaturen des SMILE-Modells und des Auslegungsprogrammes eine maximale Abweichung unter 1% erreicht werden. Die Gültigkeit der folgenden Untersuchungen setzt jedoch auch die Zuverlässigkeit des Auslegungsprogramms voraus.

Abbildung 5.11: Abhängigkeit des Wärmetransportkoeffizienten für den Bautyp SWEP,B57 von der Temperatur

Abbildung 5.12: Abhängigkeit des Wärmetransportkoeffizienten für den Bautyp SWEP,B57 von der Strömungsgeschwindigkeit
Solarkreiswärmeübertrager

Um die Übertragbarkeit des in Abb. 5.9 dargestellten stationären Leistungskennfeldes auf den Jahresenergieertrag und das zugrundeliegende dynamische Verhalten zu überprüfen, wurde das Kennfeld in enger Rasterung mit zahlreichen Jahressimulationen, für verschiedene Anlagengrößen nachgefahren. Abb. 5.13 zeigt das Ergebnis für eine Anlage mit mittlerer solarer Deckungsrate. Hier und in den folgenden Abbildungen Abb. 5.15 bis Abb. 5.17(b) wurde ebenfalls die Darstellung in Form eines Kennfeldes mit \(\frac{p}{p_{\text{ref}}} \) als Parameter der Kurvenparameter gewählt, wie sie für Abb. 5.9 bereits erläutert wurde. Der Systemertrag, der Nutzungsgrad sowie die solare Deckungsrate sind für das Referenzsystem angegeben. Im Gegensatz zu den in [39] berechneten und in Abb. 5.9 dargestellten analytischen Lösungen beruhen die Kurvenscharen hier jedoch auf der graphischen Interpolation einzelner Punkte, die durch Simulation gewonnen wurden.

Abbildung 5.13: Ertragskennfeld Beladewärmeübertrager mit \(\frac{p}{p_{\text{ref}}} \) als Kurvenparameter [29]

Abbildung 5.14: Veränderungen der Temperaturspreizung (zwischen oberster und unterster Temperatur) im Speicher durch den Belademassenstrom

vermieden werden.

Der mit zunehmender Plattenanzahl größer werdende Abstand zwischen den Kurven gleichen Ertrages in Abb. 5.13 macht deutlich, daß eine Steigerung der thermischen Leistung durch die Vergrößerung der Wärmeübertragergröße nur bis zu einem Sättigungsverhalten möglich ist. Die insgesamt geringe Sensitivität des Systems gegenüber der Dimensionierung des Wärmeübertragers liegt an der Erhöhung der Strömungsgeschwindigkeit bei Verringerung der Plattenanzahl. Dadurch wird die Turbulenz und die Übertragungsfähigkeit erhöht. Eine Verringerung der Fläche geht dadurch mit der Erhöhung des Wärmedurchgangskoeffizienten einher, sodaß der $k \cdot A$ - Wert kaum verändert wird.

Da bei verringriger Plattenanzahl aber auch der Druckverlust steigt, muß dieser in die Beurteilung miteinbezogen werden. Deshalb wurde auch das Wärmetauschermodell, wie in Abb. 5.10 dargestellt, um die Druckverlustberechnung erweitert. Als charakteristische Größe für die Auswirkungen einer anderen Wärmeübertragergröße oder eines anderen Massenstroms werden nicht mehr nur der Energieertrag sondern mit Hilfe der in Kap. 3.1.3 erwähnten Komponente zur Wirtschaftlichkeitsberechnung die solaren Zusatzwärme Kosten bestimmt. Diese beinhalten sowohl die Investitionskosten für den Wärmetauscher K_{he} und den solaren Ertrag Q_{sol} als auch die für den Pumpenstrom anfallenden Betriebskosten K_{pu}. Die Preise der Wärmeübertrager entstammen aktuellen Herstellerlisten und für die Pumpen wird ein mittlerer Wirkungsgrad von 50 % [89, 90, 91] angenommen. Die jährlichen Betriebskosten werden aus dem Strombedarf, einem elektrischen Arbeitspreis von $30 Pf/kWh$ und einer Preissteigerung von 2% berechnet. Mit einer Lebensdauer von 20 Jahren und einem Zinssatz von 6% ergibt sich ein Annuitätsfaktor a von 8,72 % und für den solaren Zusatzwärme preis:

$$P_{sol} = a(K_{he} + K_{pu}) / Q_{sol}.$$ \hspace{1cm} (5.16)

In Abb. 5.15 sind Linien konstanter Zusatzwärme preise in DM/MWh eingezeichnet.
Bei zu kleiner Plattenzahl sinkt nicht nur der Ertrag, sondern steigen auch die Betriebskosten stärker als die Annuitäten. Bei zu großen Plattenanzahl dominieren jedoch die Investitionskosten für die Wärmeübertrager, sodaß sich geschlossene Isokostenlinien und ein klar umgrenzter optimaler Bereich ergeben.

Abbildung 5.15: Kostenkennfeld für den Beladewärmeübertrager mit solaren Zusatzwärme- kosten in Pf/kWh als Kurvenparameter [29]

Die in Abb. 5.15 dargestellten Zusatzwärmpreise berücksichtigen die am Wärmeübertrager anfallenden Kosten, jedoch nicht die Investitionskosten für die anderen Komponenten der Anlage. Bei einer Auslegung sollte jedoch der solare Wärmeprice minimiert, d.h. auch die gesamten Investitionskosten berücksichtigt werden. Da diese stark nach Anlagentyp und -größe variieren, wurde für die in Abb. 5.16 dargestellten solaren Wärme- kosten ein pauschaler spezifischer Investitionspreis für die Gesamtanlage ohne Wärmeübertrager von 1000DM/m² angenommen. Dies entspricht den kostengünstigen Anlagen, die innerhalb des Solarthermie 2000 Programms gefördert wurden[79].

Das in Abb. 5.16 dargestellte Kostenkennfeld gleicht wesentlich mehr dem Ertragskennfeld aus Abb. 5.13 als dem Kostenkennfeld aus Abb. 5.15, da ein sinnvolles Maximum für die Plattenanzahl nicht mehr zu erkennen ist. Die konstanten Anlageninvestitionen sind wesentlich größer als die variablen Wärmeübertragerkosten und diese verlieren daher an Bedeutung. In Gl. 5.16 kommen im Nenner die konstanten Gesamtanlagenkosten hinzu, weshalb Veränderungen im solaren Jahresertrag die Funktion dominieren. Die Kurvenäste neigen sich erst bei extrem großen Plattenanzahlen nach innen und deuten geschlossene Isokostenlinien an. Daran wird deutlich, daß eine zu großzügige erst viel später als eine zu geringe Auslegung zu höheren Wärme- preisen führt.

Entladekreiswärmeübertrager

Zur Untersuchung des Entladekreiswärmeübertragers kann die gleiche Methode wie im Beladekreis angewandt werden. Es muß jedoch zwischen Speicherlade- und Durchlaufprinzip unterschieden werden. Abb. 5.17(a) und Abb. 5.17(b) zeigen die Ertragskennfelder für beide Entladestrategien.

95
Abbildung 5.16: Kostenennfeld Beladewärmeübertrager mit solarem Wärmepreis in Pf/kWh als Kurvenparameter [29]

Abbildung 5.17: Unterschiedliche Kostenoptimierung für Durchlauf- und Speicherladeanlagen

In Tab. 5.4 sind die auf die Kollektorflächen bezogenen spezifischen Wärmetauscherflächen a und die Massenstromverhältnisse r zusammengefasst, wie sie durch die Parameterstudien gewonnen wurden. Es sind die Richtwerte für eine thermisch ausreichende Auslegung dargestellt, da Kosten- und Ertragskennfelder sich nur wenig unterscheiden und genaue
Werte für eine kostenoptimale Auslegung stark von den Randbedingungen insbesondere den Systemkosten abhängen. Für die Beladeseite wird zwischen niedriger und mittlerer Deckungsrate f und für die Entladesseite zwischen den beiden Anlagentypen Durchlauf- und Speicherladeprinzip unterschieden.

Auffällig ist, daß entgegen der vorherschenden Meinung beim Durchlaufprinzip der Entladewärmeübertrager nicht größer als beim Speicherladeprinzip dimensioniert werden muß. Dies liegt zum einen am bereits besprochenen Ansteigen der Wärmeübergangskoeffizienten mit dem Massenstrom, zum anderen daran, daß nur an wenigen Stunden am Tag Zapfspitzen auftreten, der mittlere Entlademassenstrom jedoch kleiner als beim Speicherladeprinzip ausfällt.

5.3.3 Numerische Optimierung des Entladewärmeübertragers

<table>
<thead>
<tr>
<th>Belade-WU, $f \approx 0,15 - 0,2$</th>
<th>a</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belade-WU, $f \approx 0,35 - 0,4$</td>
<td>0,024</td>
<td>0,65</td>
</tr>
<tr>
<td>Entlade-WU, Durchlaufprinzip</td>
<td>0,023</td>
<td>1,0 - 1,1</td>
</tr>
<tr>
<td>Entlade-WU, Speicherladeprinzip</td>
<td>0,023</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Tabelle 5.4: Richtwerte für die Auslegung der Wärmeübertrager.
(a) Massenströme am Entladewärmeeübertrager

(b) Speichervolumen

(c) Plattenanzahl (Wärmeübertragerfläche)

(d) Wärmepreis

Abbildung 5.18: Entwicklung der Parameter und der Zielfunktion Wärmepreis mit fortschreitender Optimierung
Abb. 5.18,a-c zeigen die Entwicklung der Parameter mit fortschreitender Optimierung und Abb. 5.18,d die erzielte Minimierung des Wärmepeises. Die Entwicklung des Wärmepeises wird vor allem durch das Verhältnis der Massenströme bestimmt. Die anfängliche Relation von zwei zu eins wird zu Beginn schnell verringert und nach einem kurzen Über- schwingen erreichen beide Massenströme annähernd den gleichen Wert. Dies entspricht dem in der Parameteruntersuchung als günstig ermittelten Wert für ein Massenstromverhältnis von eins. Ebenfalls der durch die einzelnen Simulationen gewonnenen Erkenntnis entspricht die geringe Auswirkung einer Veränderung des Speichervolumens oder der Wärmeübertragerfläche auf den erzielten Wärmepeis. Auf Grund dieser geringen Signifikanz beendet der Optimierer das Experiment, da eine Verbesserung des Wärmepeises kaum mehr zu erzielen ist. Das Speichervolumen wird mit fortschreitender Optimierung geringfügig verkleinert und die Fläche des Wärmeübertragers zeigt eine leicht ansteigende Tendenz, was nach den in Abb. 5.17(b) dargestellten Ergebnissen auch zu erwarten war. Eine weitere Optimierung, die die Zielfunktion nur noch um wenige Prozente eines Pfennigs verändern würde, ist nicht sinnvoll, da die Genauigkeit eines Modells eine solch exakte Vorhersage gestattet.

Die durch die Optimierung erzielte Annäherung der Massenströme und die geringe Signifikanz der beiden anderen Parameter bestätigen die vorhergehende Analyse des Systems. Die Anzahl der Simulationen und damit die Rechenzeit für die Optimierung ist ca. doppelt so groß wie sie für die Erstellung eines Kennfeldes benötigt wurde. Auf Grund des automatisierten Ablaufs aber ist der Arbeitsaufwand für die Optimierung wesentlich geringer als der, der für die Durchführung und Auswertung der zahlreichen Simulationen im Rahmen der Parametervariationen notwendig war. Somit konnte durch diese Untersuchung an Wärmeübertragern nicht nur ein optimales Massenstromverhältnis im Solarkreis ermittelt werden, das deutlich geringer ist als das bisher übliche, sondern auch gezeigt werden, daß durch eine automatische Optimierung die gleichen Ergebnisse wie durch eine aufwendige Parametervariation erzielt werden können.
Kapitel 6

Energetische Sanierung von Plattenbauten

6.1 Altbausanierung

Rund 70 % der in Deutschland existierenden Gebäude sind älter als 25 Jahre und die Neubaurate liegt im Moment bei ca. 1 % pro Jahr. Das bedeutet, daß Maßnahmen zur
Energieeinsparung vordringlich am Gebäudebestand ansetzen müssen [93]. Während der Standzeit eines Gebäudes von knapp 100 Jahren findet durchschnittlich alle 20 Jahre ein Umbau bzw. eine Renovierung des Gebäudes statt. Erstrecken sich die Umbaumaßnahmen auch auf die Außenflächen des Gebäudes gilt die Wärmeschutzverordnung WSVO [94], die bei der Sanierung bestehender Gebäude keinen spezifischen Heizwärmebedarf, sondern maximale Wärmedurchgangskoeffizienten vorschreibt:

<table>
<thead>
<tr>
<th>Bauteil</th>
<th>Maximaler k-Wert in W/m^2K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Außenwände</td>
<td>0,4</td>
</tr>
<tr>
<td>Fenster</td>
<td>1,8</td>
</tr>
<tr>
<td>Dach</td>
<td>0,3</td>
</tr>
<tr>
<td>Kellerdecke</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Tabelle 6.1: Maximale Wärmedurchgangskoeffizienten nach der WSVO 95

Diese seit 1995 geltende Verordnung stellt höhere Anforderungen als die vorhergehenden Bestimmungen. Da die kontinuierliche Steigerung der Wärmeschutzanforderungen in Westdeutschland aber schneller voranschritt als in Ostdeutschland, und da hier auch die Energiepreise deutlich niedriger waren, eröffnet die Anwendung dieser Grenzwerte speziell im Osten ein großes Einsparpotential. Die Sanierung der industriellen Wohnbauten, der sogenannten Plattenbauten, die ein Drittel des Wohnungsbestandes der ehemaligen DDR umfassen, stellt hier die größte Bauaufgabe dar.

6.1.1 Potentiale und Probleme der Plattenbausanierung

Energieversorgung

Da ein Großteil der Plattenbauten mit Fernwärme versorgt wird, kann eine Reduzierung des CO2-Ausstoßes nicht nur durch Verbesserung der Gebäude- und -substanz, sondern auch der zentralen Energiewandlung und der Wärmeerteilung erzielt werden. Bei der Energiewandlung bieten der Wechsel des Energieträgers und der vermehrte Einsatz von Kraft-Wärme-Kopplung (KWK) das größte Reduktionspotential. Wie stark die emmissionsreiche

Gebäudehülle

Einerseits stellt die Beseitigung der baulichen Schäden die allerdringlichste Aufgabe der neu gegründeten WohnungsbaugeSELLSCHAFTEN dar. Andererseits müssen aber die Heizkosten unbedingt gesenkt werden, um einen weiteren Wegzug und eine Vergrößerung des Leerstandes zu vermeiden. Daher wurden kombinierte Maßnahmen zur Bauschadensbeseitigung, Wärmeschutzverbesserung und gestalterischen Aufwertung untersucht. Es wurden Kosteneinsparpotentiale und die Wirtschaftlichkeit der energiegerechten Bauschadenssanierung bestimmt. Viele Arbeitsschritte sind sowohl für die Instandsetzung als auch für die Wärmemasse nötig und fallen bei einer gemeinsamen Durchführung nur einmalig an. Andere Sanierungsarbeiten an der Fassade können bei einer zusätzlichen Dämmung der-
<table>
<thead>
<tr>
<th>Bauweise</th>
<th>Blockbau</th>
<th>Großplatte, mehrgeschoss., ein- und zweischichtig</th>
<th>Großplatte, mehrgeschoss., dreischichtig</th>
<th>Großplatte, vielgeschoss., einschichtig</th>
<th>Großplatte, vielgeschoss., dreischichtig</th>
<th>Hochhaus, dreischichtig</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-Wert Außenwände</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mittel/max</td>
<td>1,32</td>
<td>1,75</td>
<td>1,97</td>
<td>0,88</td>
<td>0,76</td>
<td>0,82</td>
</tr>
<tr>
<td>k-Wert Fenster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mittel/max</td>
<td>2,80</td>
<td>3,07</td>
<td>3,24</td>
<td>3,36</td>
<td>3,20</td>
<td>3,36</td>
</tr>
<tr>
<td>k-Wert Dach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mittel/max</td>
<td>1,01</td>
<td>1,44</td>
<td>1,97</td>
<td>1,29</td>
<td>0,84</td>
<td>0,79</td>
</tr>
<tr>
<td>k-Wert Kellerdecke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mittel/max</td>
<td>1,01</td>
<td>1,44</td>
<td>1,97</td>
<td>1,29</td>
<td>0,84</td>
<td>0,79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabelle 6.2: Klassifizierung der Typenbauten nach [100]</th>
</tr>
</thead>
</table>

Endenergieverbrauch (mittel) in kWh/m² |
| 261 224 206 172 183 167 180 |

Endenergieverbrauch (max.) in kWh/m² |
| 329 261 238 198 210 191 223 |

Einsparpotential wirtschaftlich vertretbar |
| 56% 54% 50% 38% 54% 52% 58% |

Einsparpotential technisch möglich |
| 76% 71% 69% 69% 72% 71% 78% |

K-Wert (denote) |
| 1,05 1,02 1,01 |

K-Wert (max) |
| 1,07 1,06 1,05 |

Metabauschüttung |
| Großplatten, Grundplatten, Grobplatten, Grobplatten, Grobplatten, Grobplatten, Grobplatten, Grobplatten |

Gebäudetechnik

Umstritten hingegen ist die Notwendigkeit und die Wirtschaftlichkeit der Umstellung von Einrohr- auf Zweirohrheizungen. Bei Einrohrheizungen gibt es einige Besonderheiten zu beobachten:

- Hohe Rohrwärmeabgabe
 Durch den konstanten Massenstrom und die höheren Netztemperaturen sind die Rohrleitungsverluste größer als bei Zweirohrensystemen. Besonders bemerkbar macht
sich dies bei nicht isolierten Rohrleitungen, da dann die unerfaßte Wärmeabgabe bei hohen Außentemperaturen bis zu 90% und bei niedrigen ca. 60% ausmacht.

- Schlechte Regelbarkeit

- Hohe Rücklauftemperaturen

• Ungenau Heizkostenverteilung

Im Gegensatz zu den Heizungs- und Warmwasserinstallationen sind „...die lüftungstechnischen Bedingungen in den industriellen Wohnbauten der neuen Bundesländer im Vergleich zu üblichen mehrgeschossigen Wohngebäuden durchaus günstig“ [109]. Problematisch aber ist zum einen der hohe Verschleißgrad, zum anderen die im Rahmen der Sanierungen erhöhte Gebäudedichtheit. So werden fast immer fugendichte Fensterkonstruktionen eingesetzt, die die Nachströmmöglichkeit verringern. Es wurden daher die Auswirkungen der Sanierungsmaßnahmen auf Schacht- und auf Querlüftung und die Luftverteilung innerhalb der Wohnungen untersucht [110]. Die Sanierung raumlufttechnischer Anlagen mit hohen Energieverbräuchen ist kein auf die Plattenbausanierung beschränkter Forschungsgegenstand [111], es wurden jedoch auch spezielle Zuluftelemente oder Dachlüfter aus diesem Kontext heraus entwickelt [112, 113]. Eine zumindest mechanisch unterstützte Lüftung erwies sich in vielen Fällen als notwendig um hygienischen und bauphysikalischen Mindestanforderungen gerecht zu werden. Für weitergehende energietechnische Verbesserungen ist eine teilkontrollierte Lüftung mit Wärmerückgewinnung die günstigste Alternative.

Die Auswirkungen der einzelnen Maßnahmen einer energiegerechten Sanierung sind trotz zahlreicher Messungen schwer zu bewerten, da selten eine einzelne Verbesserung vorgenommen wurde. Auch können die Reduktionspotentiale nicht einfach addiert werden. Vor allem aber hängen sie sehr stark vom jeweiligen Zustand des Gebäudes und den Rahmenbedin-
gungen ab. Mit Hilfe von Simulationen wurde in einem Projekt aber versucht, die erreichte Energieeinsparung auf einzelne Maßnahmen zurückzuführen. Die in Abb. 6.2 dargestellten Ergebnisse dieser Simulationen stimmen mit Erfahrungswerten aus vergleichbaren Projekten ungefähr überein.

6.1.2 Simulation eines sanierten Plattenbaus

Simulationsmodell

Die häufigste Bauform industriellen Wohnbaus ist die Wohnbauserie 70 (WBS70), ihr Anteil am gesamten Plattenbaubestand beträgt ca. 42 %. Im Rahmen einer ökologischen Mustersanierung wurde in Berlin Hellersdorf ein WBS 70 entsprechend der WSVO 95 saniert und anschließend der Heizwärmeverbrauch gemessen [114]. Die durchgeführten Wärmeschutzmaßnahmen wurden nachsimuliert und die Ergebnisse mit den Meßdaten verglichen [22]. In Tab. 6.3 sind die wichtigsten Wärmeverlustkoeffizienten der Gebäudehülle aufgelistet.

<table>
<thead>
<tr>
<th>Bauteil</th>
<th>k-Wert W/m²K vor der Sanierung</th>
<th>k-Wert W/m²K nach der Sanierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Außenwand</td>
<td>1,15</td>
<td>0,3/0,35</td>
</tr>
<tr>
<td>Fenster</td>
<td>2,8</td>
<td>1,4</td>
</tr>
<tr>
<td>Oberste Geschossdecke</td>
<td>0,32</td>
<td>0,32</td>
</tr>
<tr>
<td>Kellerdecke</td>
<td>1,5</td>
<td>0,34</td>
</tr>
</tbody>
</table>

Tabelle 6.3: Wärmeverlustkoeffizienten der Hellersdorfer Gebäudehülle vor und nach der Sanierung

Für die Simulation wurde das Gebäude in fünf Zonen aufgeteilt. Die drei Treppenaufgänge wurden zu einer Treppenhauszone zusammengefasst. Neben Erdgeschoss-, Mittelgeschoss- und oberster Geschosszone wurde auch der Keller als eigene Zone abgebildet. Abb. 6.3 zeigt die Unterteilung des Gebäudes in einzelne Zonen und Abb. 6.4 die

```java
@Interface Hellersdorf_gesamt : SmileObject
@protected
Building * building;  //Gesamtgebäude
Solarcircle * solarcircle; //Solarkreis
Environment * environment; //Umgebung
...
@Implementation Hellersdorf_gesamt
@connect
building.Gdot_tilted_beam_east = environment.Gdot_tilted_beam_east;
//Verbindung des Gebäudes mit der Umgebung
....
@end

@Interface Building : SmileObject
@export
double Gdot_tilted_beam_east [doc: direkte Strahlung aus dem Osten]
@protected
Basement * basement;  //Keller
Firstfloor * firstfloor; //Erdgeschoss
...
@Implementation Building
@connect
Gdot_tilted_beam_east = firstfloor.Gdot_tilted_beam_east;
//Weiterreichen an das Erdgeschoss
....
@end
```
Das Gebäude wird mit Fernwärme versorgt. Es standen aber weder genaue Informationen über das Wärmeverteilsystem, noch Messdaten der entsprechenden Massenströme und Temperaturen, sondern nur der gemessene Heizwärmebedarf für zwei Dezemberwochen zur Verfügung. Daher wurde die Gebäudetechnik, abgesehen von der in Kap. 5 beschriebenen Solaranlage, nicht genau abgebildet, sondern eine ideale Heizung angenommen und der Heizwärmebedarf berechnet. Mit Hilfe von Heizkurven für die Vor- und Rücklauftemperaturen konnte daraus der benötigte Fernwärmemassenstrom bestimmt werden.
Vergleich mit den Meßdaten

Abbildung 6.5: Simulierte Hellersdorfer Heizwärmeverbräuche im Vergleich zum gemessenen [22]

Der in Abb. 6.5 dargestellte Verlauf des Heizwärmebedarfs zeigt einen deutlichen Anstieg beim Absinken der Außentemperatur. Daß der gemessene Anstieg deutlich stärker ausfällt als bei allen Simulationen, könnte auf eine zu große Trägheit des Gebäudemodells schließen lassen. Diese Vermutung wird aber durch eine detaillierte Analyse der täglichen Schwankungen nicht bestätigt, so daß auch hier das Nutzerverhalten als Ursache am wahrscheinlichsten ist. Im Vorfeld der Sanierung wurde ein Wärmeschutznachweis auf Grundlage der WSVO95 mit einem Luftwechsel von $0.8 h^{-1}$ und einer Raumlufttemperatur von 20° durchgeführt. Der durch eine Simulation mit denselben Parametern bestimmte Wert ist etwas niedriger. Eine Abweichung dieser Größenordnung ist nicht überraschend, da es sich bei dem Wärmeschutznachweis um eine einfache stationäre Berechnung handelt. In Tab. 6.4 sind die berechneten Energieverbräuche nochmals zusammengestellt.
Rahmenbedingungen	Heizwärmebedarf MWh/a
Simulation, $LW = 0.5, T = 20°C$ | 100
Simulation, $LW = 0.8, T = 20°C$ | 145
WSVO 95, $LW = 0.8, T = 20°C$ | 155

Tabelle 6.4: Berechneter Jahresheizwärmebedarf mit unterschiedlichen Methoden bzw. Randbedingungen

Abbildung 6.6: Jahreszeitlicher Verlauf der Wärmegegewinne des Gebäudes [22]

Durch die Sanierung erzielte Verbesserungen

Mit dem an die Messung angepassten Luftwechsel von $0,43h^{-1}$ wurde der Heizbedarf des Gebäudes im Zustand vor und nach der Sanierung (s. Tab. 6.3) berechnet. In Abb. 6.6 ist der jahreszeitliche Verlauf der Wärmequellen des Gebäudes wiedergegeben:

Der Energieverbrauch wurde um ca. 60% reduziert und die Länge der Heizperiode deutlich verkürzt. Zugleich stieg durch die verbesserte Wärmeschutzdämmung die Bedeutung von solaren und inneren Wärmequellen. Aber auch die Anteile der Wärmeverluste verändern sich stark. Während die Lüftungsverluste nur geringfügig auf Grund der verkürzten Heizperiode zurückgehen, sinken die Transmissionsverluste der Wände und Fenster (s.Abb. 6.7). Durch das Absinken der Transmissionsverluste der Außenwände steigt der proportionale Anteil der Wärmeübertretung durch die Wände, an denen keine zusätzliche Dämmung angebracht wurde. Am signifikantesten ist der Anstieg der an das Treppenhaus abgegebenen Wärme.

Um den Heizwärmebedarf weiter zu senken, gibt es eine Vielzahl möglicher Ansatzpunkte, von denen aber keiner wirtschaftlich vertretbar wäre. Um dennoch die weiteren Möglichkeiten aufzuzeigen, wurden verschiedene Maßnahmen simuliert [22]. Die Untersuchungen umfassten eine Erhöhung der Wärmeschutzdämmung an allen Außenwänden (12 cm), dem Dach und der Kellerdecke (10 cm bzw. 12 cm), den Austausch der Fenster gegen Dreischleif-Wärmeschutzfenster (k-Wert: 0,7 W/K), eine Dämmung der Wände zum Treppenhaus

6.2 Reduzierung des Primärenergiebedarfes von Plattenbauten durch Solarenergienutzung

Sollen bei der Gebäudesanierungen die angestrebten Energieeinsparungen über die in der Wärmeschutzverordnung verlangten hinausgehen, sollte die auf das Gebäude eingestrahlte Sonnenenergie stärker genutzt werden. Für die thermische Solarenergienutzung in mehrgeschossigen Wohnbauten wurden von der Internationalen Energie Agentur (Task 20: Solar Energy in Building Renovation) drei Konzepte verstärkt untersucht [93]:

- Balkonverglasung
- Einsatz von Transparenter Wärmemäßigung (TWD)
- Gebäudeintegration von Solarkollektoren

Weitergehende Maßnahmen der passiven Solarenergienutzung bei Plattenbauten hingegen erfordern einen Teilneubau, wie bei dem bekannten Modellvorhaben in Leinefelde, das nicht mehr als Sanierung gewertet werden kann [118]. Balkone werden selten nur zur Energieeinsparung verglast. Häufig ist eine gestalterische Aufwertung des Gebäudes, das Beheben von konstruktiven Problemen oder die Schaffung einer temporär nutzbaren Fläche die Motivation für den Umbau. Thermisch wirken verglaste Balkone genauso wie Wintergärten als Pufferzonen, die die Transmissionsverluste senken und zur Vorwärmung der Außenluft dienen. Entscheidend für die mögliche Energieeinsparung ist das Nutzerverhalten; wird der verglaste Balkon als Wohnraum genutzt oder durch

Abbildung 6.7: Aufteilung der Wärmeverluste vor und nach der Sanierung [22]

6.2.1 Simulation eines Altbaus mit solar unterstützter Luftheizung

Das Zusammenwirken eines ungewöhnlichen Gebäudes mit einer solchen multivalenten Anlage stellt einen typischen Anwendungsfall für SMILE dar. Im Folgenden wird zuerst das Gebäude als Grundlage aller weiteren Berechnungen vorgestellt. Im Vordergrund steht jedoch die anschließend beschriebene thermohydraulische Simulation der komplexen Anlage. Hier wiederum gilt besondere Aufmerksamkeit der mehrstufigen Regelung.

Gebäude

Anlage und Gebäude sind auch in der Gebäudenhülle miteinander gekoppelt, da in der Nord- und Südfassade die Zuluftkanäle und an der Südfassade außerdem die Fassaden-
Tabelle 6.5: Wärmedurchgangskoeffizienten vor und nach der Sanierung in Friedland

<table>
<thead>
<tr>
<th>Bauteil</th>
<th>k-Wert W/m²K vor der Sanierung</th>
<th>k-Wert W/m²K nach der Sanierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Außenwand</td>
<td>1,4</td>
<td>0,4</td>
</tr>
<tr>
<td>Fenster</td>
<td>3,1</td>
<td>1,3</td>
</tr>
<tr>
<td>Oberste Geschoßdecke</td>
<td>0,9</td>
<td>0,2</td>
</tr>
<tr>
<td>Kellerdecke</td>
<td>0,8</td>
<td>0,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Typ</th>
<th>Eigenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dachkollektor</td>
<td>Grammer GLK2</td>
<td>Absorberfläche 40(m^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neigungswinkel 37°</td>
</tr>
<tr>
<td>Fassadenkollektor</td>
<td>Grammer GLK2</td>
<td>Absorberfläche 40(m^2)</td>
</tr>
<tr>
<td>Pufferspeicher</td>
<td>-</td>
<td>Volumen 1000l</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wärmedämmung 10cm</td>
</tr>
<tr>
<td>Wärmerückgewinner</td>
<td>KGXD mit int. Bypass</td>
<td>Rückwärmzahl 74%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wärmeleistung 32kW bei Volumenstrom 3600(m^3/h)</td>
</tr>
<tr>
<td>Zuluft-Nacherhitzer</td>
<td>2x Wolf KG 25F</td>
<td>Leistung je 23kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volumenstrom 1800(m^3/h)</td>
</tr>
<tr>
<td>Brauchwasservorwärmer</td>
<td>2x Wolf KG 25F</td>
<td>Leistung je 23kW</td>
</tr>
<tr>
<td>Ventilator Fortluft/Zuluft</td>
<td>T-HLZ 280</td>
<td>Motorleistung 1.5kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ventilatorleistung 1.05kW</td>
</tr>
<tr>
<td>Ventilator Brauchwasser</td>
<td>T-HLZ 225</td>
<td>Motorleistung 250kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ventilatorleistung 120kW</td>
</tr>
<tr>
<td>Luftkanäle</td>
<td>-</td>
<td>Tiefe 5cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Breite 31 bis 36cm</td>
</tr>
<tr>
<td>Elektrische Heizung</td>
<td>-</td>
<td>Maximale Leistung je 270W</td>
</tr>
<tr>
<td>Volumenstrom Nordstrang</td>
<td>-</td>
<td>1807(m^3/h)</td>
</tr>
<tr>
<td>Volumenstrom Südstrang</td>
<td>-</td>
<td>1802(m^3/h)</td>
</tr>
<tr>
<td>Volumenstrom BW/Luftseite</td>
<td>-</td>
<td>1000(m^3/h)</td>
</tr>
</tbody>
</table>

Tabelle 6.6: Anlagenparameter

Volumenstromberechnung und Druckberechnung werden getrennt durchgeführt. Die Volumenströme werden vom Regler dem Netz aufgeprägt. Es wird angenommen, daß die Ventile in der Lage sind, die Ströme durch Hubänderung sofort und exakt einzustellen. Die Druckverluste der einzelnen Komponenten werden mit diesen vorgegebenen Volumenströmen
berechnet (s.Kap.3). Die dazu notwendigen Druckverlustkomponenten werden in den je-
weiligen Komponenten (Kollektor, Wärmerückgewinner, etc.) aggregiert und der Druck
wird mit den Streams von Komponente zu Komponente weitergereicht, so daß die benötig-
ten Ventilatorleistung aus dem gesamten Druckabfall berechnet wird. In den Ventilen wird
außerdem der zusätzliche Druckverlust berechnet, der nötig ist, damit sich die Volumen-
ströme tatsächlich so einstellen, wie vom Regler vorgegeben. Die Ventilmodelle benötigen
dazu lediglich die Drücke der beiden Teilströme. In diesen Drücken sind die Druckverluste
durch die ungeregelte Vereinigung schon enthalten. Als System von Strömungswiderständen
stellt sich die simulierte Anlage wie in Abb.6.9 dar.

Abbildung 6.9: Friedländer Anlage als System von Strömungswiderständen

Das Simulationsmodell der Anlage wird in vier Teilanlagen und das Gebäude aufge-
teilt. In einem obersten Modell wird der Datenaustausch der Teilmodelle, das Einlesen der
Wetterdaten sowie die Regelung und Bilanzierung durchgeführt. In den Teilanlagen und
dem Gebäude sind dann die einzelnen Komponenten aggregiert, also z.B. Wärmetauscher,
Kollektoren, Luftkanäle, etc.. Komponenten, die Schnittstellen zwischen Anlagenteilen dar-
stellen, kommen nur einmal vor und übergeben die berechneten Daten der übergeordneten
Instanz, die diese an andere Teilmodelle weitergibt. Abbildung 6.10 zeigt den grundsätzli-
chen Aufbau des Simulationsmodells.

Abbildung 6.10: SMILE -Struktur des Gesamtmodells

Regelung

Da sich die Anlage zum Zeitpunkt dieser Untersuchung noch in der Planungsphase befand
und da die geplante Regelung in allen an die Anlage angeschlossenen Räumen individuell
unterschiedliche Solltemperaturen bestimmen soll, weichen reale und modellierte Regelung

119

- **Lüftung**

- Die Luft wird nicht erwärmt. Der gesamte Luftvolumenstrom wird über den Dachkollektorbypass zugeführt.
- Bei einer etwas größeren Heizlast wird auch der Dachkollektor der Luft erwärmung zugeschaltet. Es wird ebenfalls die Temperatur nach der Vereinigung auf die Raumtemperatur eingeregelt.
Bei weiterem Bedarf wird auch die konventionelle Nachheizung eingeschaltet. Der Massenstrom im Heizkreis insgesamt bleibt dabei konstant, der nach der Auskühlung zurückgeführte Massenstrom ist hingegen variabel und wird zur Regelung benutzt.

Die elektrische Heizung wird eingeschaltet. Dies geschieht jedoch nur, wenn der Volumenstrom für den entsprechenden Strang maximal ist. In der Realität wird dies häufig zum Ausgleich der individuellen Bedürfnisse erfolgen. In der Simulation mit nur einer Zone tritt dieser Fall nur bei nicht ausreichender Kesselleistung auf.

Als Mindestluftwechsel wird wie in Kap. 6.1.2 \(LW = 0.5 h^{-1} \) festgelegt. Wieviel davon durch die zyklische Lüftung der Anlage aufgebracht werden muß, hängt von der Größe des unkontrollierten Luftwechsels ab. Aufgrund der hohen Dichtigkeit des Gebäudes wird nur ein Fugenluftwechsel von \(0.05 h^{-1} \) angenommen. Wegen der aus Heizungsgründen zugeführten Luftmenge kann von einer verringerten Fensterlüftung während des Winterhalbjahres ausgegangen werden, während im Sommer mit einer verstärkten Fensterlüftung gerechnet werden muß. Es wurde von geschlossenen Fenstern und reiner Fugenlüftung bei Außentemperaturen unterhalb \(3{\degree}C \) und einem linearen Anstieg der Fensteröffnung mit der gemittelten täglichen Außentemperatur ausgegangen und folgende Funktion für den unkontrollierten Luftwechsel bestimmt:

\[
LW_{\text{Fenster}} = (-16.9715h^{-1} + 0.06146K/h \cdot T_{\text{env}}) + 0.05h^{-1}. \quad (6.1)
\]

Diese Festlegung entspricht keiner allgemeinen Vorschrift. Doch Mittelwerte aus verschiedenen Normen oder Verordnungen sind für Standardgebäude mit natürlicher Lüftung bestimmt und hier nicht anwendbar. Der hier gewählte Ansatz geht von plausiblen Annahmen aus. Bei \(+30{\degree}C\) ergibt sich beispielsweise ein Luftwechsel von \(LW_{\text{Fenster}} = 1.7h^{-1} \).

- Heizung

Bei einer Luftheizung muß die zugeführte Außenluft nicht nur die Lüftungs-, sondern auch die Transmissionsverluste des Gebäudes ausgleichen. Die maximale Zulufttemperatur ist auf \(45{\degree}C \) begrenzt. Sie soll bei der Auslegungstemperatur \(-15{\degree}C\) gelten. Ebenso wie bei der Lüftung werden im realen Gebäude alle 100 angeschlossenen Räume getrennt und in der Simulation nur eine Zone geregelt. Die Betriebsarten im Heizungsmodus entsprechen den vier letzten Fällen des Lüftungsmodus. Die Stellgröße ist jedoch nicht mehr die Temperatur, sondern der Luftvolumenstrom. Außerdem ist nicht mehr die Raumtemperatur \((T_{\text{Raum}}) \) die Sollgröße. Die letzte aktive Heizungskomponente (Fassaden-, Dachkollektor, Kessel oder Elektroheizung) wird nach einer linearen außentemperaturabhängigen Heizkurve \((T_{HK}) \) geregelt. Vorgeordnete Komponenten laufen dann bei maximaler Leistung. Die Heizung geht erst
Nr.	Betriebsart	Kollektoren	\(Q_{\text{Koll}} \)	\(Q_{\text{Kessel}} \)	\(Q_{\text{EI}} \)
1 | außer Betrieb | - | 0 | 0 | 0
2 | Kühlung | Bypass | 0 | 0 | 0
3 | Lüftung | Bypass | 0 | 0 | 0
4 | Lüftung | Bypass+Fass. | \(f(\Delta T_{\text{Raum}}) \) | 0 | 0
5 | Lüftung | Bypass+Fass.+Dach | \(f(\Delta T_{\text{Raum}}) \) | 0 | 0
6 | Lüftung | Fass.+Dach | maximal | \(f(\Delta T_{\text{Raum}}) \) | 0
7 | Lüftung | Fass.+Dach | maximal | maximal | \(f(\Delta T_{\text{Raum}}) \)
8 | Heizung | Bypass+Fass. | \(f(\Delta T_{\text{HK}}) \) | 0 | 0
9 | Heizung | Bypass+Fass.+Dach | \(f(\Delta T_{\text{HK}}) \) | 0 | 0
10 | Heizung | Fassade+Dach | maximal | \(f(\Delta T_{\text{HK}}) \) | 0
11 | Heizung | Fassade+Dach | maximal | \(f(\Delta T_{\text{HK}}) \) | \(f(\Delta T_{\text{Raum}}) \)

Tabelle 6.7: Regelgrößen der Heizkomponenten

in Betrieb, wenn die Solltemperatur \((20^\circ C)\) um 1°C unter- und erst außer Betrieb, wenn die Solltemperatur um 1°C überschritten wird.

- Kühlung

Es ergeben sich insgesamt elf verschiedene Betriebszustände, die in Tab. 6.7 aufgelistet sind. In Tab. 6.8 sind die Ein- und Ausschaltkriterien zusammengefasst und in Abb. 6.11 ist das Regelschema, zu dem vierzehn einzelne Zweipunktregler verbunden werden, dargestellt.

Relativ unabhängig von den Betriebszuständen werden die Wärmerückgewinnung und die Brauchwassererwärmung geregelt.

Der Wärmerückgewinner, ein Rekuperator, soll dann genutzt werden, wenn die Fortlufttemperatur die Austrittstemperatur aus den Kollektoren um mindestens 1°C überschreitet. Er wird ausgeschaltet, wenn die Fortlufttemperatur die Solltemperatur um mehr als 1°C überschreitet. Um unnötige Druckverluste und dadurch bedingte Ventilatorleistungen zu vermeiden, wird er ebenfalls umgangen, wenn die Fortlufttemperatur um weniger als 0.8°C über der Kollektoraustrittstemperatur liegt.

Die Heizungsunterstützung hat Vorrang für die Dachkollektoren vor der Brauchwassererwärmung. Die Beladung erfolgt, wenn keine Heizung notwendig und eine Mindesttem-
Abbildung 6.11: Schaltstruktur des Systems
Table 6.8: Ein- and Ausschaltbedingungen der Betriebszustände

<table>
<thead>
<tr>
<th>Nr.</th>
<th>ein</th>
<th>aus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>(T_{\text{ist}} - T_{\text{soll}} > 3 \text{°C}) und (T_{\text{ist}} - T_{\text{env}} > 5 \text{°C})</td>
<td>(T_{\text{ist}} - T_{\text{soll}} < 1 \text{°C}) oder (T_{\text{ist}} - T_{\text{env}} < 3 \text{°C})</td>
</tr>
<tr>
<td>3</td>
<td>immer</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>(T_{\text{ist}} - T_{\text{soll}} < -0.2 \text{°C})</td>
<td>(T_{\text{ist}} - T_{\text{soll}} > 1.2 \text{°C})</td>
</tr>
<tr>
<td>5</td>
<td>(\dot{m}_{\text{byp}} < 0.05 \dot{m})</td>
<td>(\dot{m}_{\text{byp}} > 0.95 \dot{m})</td>
</tr>
<tr>
<td>6</td>
<td>(T_{\text{ist}} - T_{\text{soll}} < -0.6 \text{°C})</td>
<td>(T_{\text{ist}} - T_{\text{soll}} > 0.4 \text{°C})</td>
</tr>
<tr>
<td>7</td>
<td>(T_{\text{ist}} - T_{\text{soll}} < -1 \text{°C})</td>
<td>(T_{\text{ist}} - T_{\text{soll}} > 0 \text{°C})</td>
</tr>
<tr>
<td>8</td>
<td>immer</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>(\dot{Q}{\text{Fass}} < \dot{Q}{\text{Bedarf}} + 5000 \text{W})</td>
<td>(\dot{Q}{\text{Fass}} > \dot{Q}{\text{Bedarf}} + 11000 \text{W})</td>
</tr>
<tr>
<td>10</td>
<td>(T_{\text{WRGout}} < T_{\text{HK}} - 1.5 \text{°C})</td>
<td>(T_{\text{WRGout}} > T_{\text{HK}} + 1.5 \text{°C})</td>
</tr>
<tr>
<td>11</td>
<td>(\dot{m} - \dot{m}_{\max} > -0.02 \text{kg/s})</td>
<td>(\dot{m} - \dot{m}_{\max} < -0.05 \text{kg/s})</td>
</tr>
</tbody>
</table>

Für die Umsetzung dieser Regelung wurden die in Kap.3 beschriebenen Komponenten benutzt. Mehrere Instanzen des Zweipunktreglers wurden kaskadenartig verknüpft, um die Betriebszustände, wie in Abb. 6.11 dargestellt, zu unterscheiden und diskrete Signale an Ventile und Aggregate weiterzugeben. Für folgende Größen reicht aber die Festlegung von Ein- und Ausschaltbedingungen nicht aus, da sie kontinuierlich geregelt werden müssen:

- Gesamtmassenstrom (\(\dot{m}\))
- Leistung der Elektroheizung (\(\dot{Q}_{\text{el}}\))
- Massenstrom im Nachheizkreis (\(\dot{m}_{\text{rec}}\))
- Massenstrom im Dachkollektorbypass (\(\dot{m}_{\text{byp}}\))
- Massenstrom im Dachkollektor (\(\dot{m}_{\text{roof}}\))

Hierfür müssen Regler und Regelparameter bestimmt werden. P-Regler sind leicht einzustellen, können jedoch gelegentlich zu Überschwingen und bleibender Regelabweichung

\[T_I = \frac{K_P}{K_I} \]

(6.2)

wird der Integralfaktor K_I bestimmt. Die Nachstellzeit sollte nicht zu klein gewählt werden, um ein zu starkes Überschwingen zu vermeiden, die Regelabweichung muß aber in einem angemessenen Zeitraum ausgeglichen werden.

Da in verschiedenen Betriebszuständen für die gleiche Stellgröße unterschiedliche Regellparameter gelten können, darf die Regelabweichung für jeden Regler nur in dem Zeitraum integriert werden, in dem dieser Regler auch aktiv ist, d.h. Einfluß auf die Stellgröße hat. Die Regellparameter wurden so angepaßt, daß im ungestörten Zustand innerhalb von maximal einer halben Stunde die Regelabweichung unter ±0,2°C fällt. Die Parameter wurden so skaliert, daß das Signal stets zwischen 0 und 1 liegt, durch lineare Interpolation wird die tatsächliche Ausgangsgröße aus dem Reglersignal berechnet. Tabelle 6.9 listet die Stell- und Regelgrößen der verschiedenen Zustände auf.

<table>
<thead>
<tr>
<th>Stellgröße</th>
<th>Zustand nach Tab. 6.7</th>
<th>Regelgröße</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{m}</td>
<td>8-11</td>
<td>ΔT_{Raum}</td>
<td>PI</td>
</tr>
<tr>
<td>\dot{Q}_{el}</td>
<td>7</td>
<td>ΔT_{Raum}</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>ΔT_{Raum}</td>
<td>P</td>
</tr>
<tr>
<td>\dot{m}_{rec}</td>
<td>10,11</td>
<td>ΔT_{HK}</td>
<td>PI</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>ΔT_{Raum}</td>
<td>PI</td>
</tr>
<tr>
<td>\dot{m}_{byp}</td>
<td>4</td>
<td>ΔT_{Raum}</td>
<td>PI</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>ΔT_{Raum}</td>
<td>PI</td>
</tr>
<tr>
<td></td>
<td>8,9</td>
<td>ΔT_{HK}</td>
<td>PI</td>
</tr>
<tr>
<td>\dot{m}_{roof}</td>
<td>5-7,9-11</td>
<td>T_{coll}</td>
<td>P</td>
</tr>
</tbody>
</table>

Tabelle 6.9: Kontinuierlich geregelte Größen
6.2.2 Energetische Betrachtung der solar unterstützten Luftheizung

Wärmeverluste des Gebäudes

Durch die geplanten Dämmmaßnahmen ergeben sich für eine Raumtemperatur von 20°C Wärmeverluste des Gebäudes durch Transmission und unkontrollierte Lüftung von 74 MWh/a während der Heizperiode (gegenüber geschätzten 148 MWh/a vor der Sanierung). In Abb. 6.12 ist der Verlauf der Verluste des Gebäudes während des gesamten Jahres dargestellt.

Abbildung 6.12: Monatliche Wärmeverluste des Gebäudes

In den bisherigen Betrachtungen ist nur der unkontrollierte Luftwechsel enthalten. Da dieser aber nur einen Teil der Luftmenge ausmacht und mit einer Luftheizungsanlage die Raumluft nicht direkt erwärmt werden kann, sondern die Wärme immer durch aufgeheizte Außenluft zugeführt wird, müssen 72 MWh von der Wärmerückgewinnung, den Kollektoren, dem Gaskessel oder der Elektroheizung aufgebracht werden, um die Raumtemperatur auf 20°C zu halten. Dieser erhöhte Energiebedarf weist auf den vergrößerten Luftwechsel hin, der notwendig ist, um dem Gebäude die Energie durch eine Luftheizung zuzuführen.

Die Elektroheizung springt in der Simulation nur nach Beendigung der Nachtabsenkung an und liefert weniger als 1 MWh/a. Dieser Anteil wird in der realen Anlage mit 100 unterschiedlichen Zuluftkanälen und Solltemperaturen sicher größer sein. Das regelmäßige Anspringen nach der Nachtabsenkung könnte jedoch daraufhin deuten, daß das geplante Leistungsvermögen der Gaskessel zu knapp bemessen und der Aufwand an elektrischer Energie deswegen größer als erforderlich ist. In der Simulation erfolgt aber auch ein abrupter Anstieg der Solltemperatur am Morgen, der durch individuelle eingestellte Nachabsenkungen vermieden wird.

Sieht man von dem verschwindend geringen Elektroenergieeinsatz ab wird die zugeführte Luft in etwa zu je einem Viertel durch die Kollektoren und den Wärmerückgewinner und zur Hälfte durch den Gaskessel aufgeheizt (vgl. Abb. 6.14). Der spezifische Heizwärmebedarf des Gebäudes entspricht also ca. 40kWh/m²a, wovon 20kWh/m²a durch die Gasheizung gedeckt werden müssen.

Obwohl die Fassadenkollektoren zuerst in Betrieb genommen werden, tragen sie nur 43% der zur Luftheizung benutzten Solarwärme bei. Der ungünstige Neigungswinkel von 90° kann nicht durch die vorrangige Nutzung ausgeglichen werden, da nur selten die Fassadenkollektoren alleine durchströmt werden. Auch eine Heizung beider Kollektorfelder ohne Gaseinsatz tritt kaum auf, so daß nicht von einer solaren, sondern nur von einer Luftheizung mit solarer Vorwärmung gesprochen werden kann.
Brauchwassererwärmung

Für die Brauchwassererwärmung werden nur die Dachkollektoren eingesetzt, und diese nur, falls keine Heizungsunterstützung notwendig ist. Dennoch macht die dadurch gewonnene thermische Energie 44% der gesamten genutzten Solarenergie aus.

Elektrischer Energiebedarf

Insgesamt verbrauchen die Ventilatoren 8MWh/a elektrischer Energie. Dies entspricht ca. 10% der Gesamtenergie, die der Außenluft zugeführt wird. In Abb. 6.15 ist die Aufteilung...
Erweiterte Szenarien

Im Folgenden werden aber nicht Veränderungen einzelner Parameter, sondern zwei Veränderungen der Verschaltung vorgestellt. Der Umbau eines bereits bestehenden Anlagemodells wird dabei durch die in Kap. 3.1.1 beschriebene Verbindung mit Streams erleichtert, da dadurch sichergestellt wird, daß alle Ein- und Ausgangsgrößen simultan verändert werden. In analoger Vorgehensweise zu dem in Kap. 5.1.1 dargestellten Umbau einer Zweispeicheranlage zu einer Pufferspeicheranlage wurden folgende Modellvariationen vorgenommen:

Abbildung 6.15: Ventilatorenergie

des Verbrauchs auf die drei Ventilatoren (Außen-, Zu- und Fortluft) und die verschiedenen Betriebsweisen dargestellt.

Etwa ein Viertel des vom Zuluftventilators auszugleichenden Druckverlusts entfällt auf die Kollektoren und deren Anschlußkanäle. Besonders kritisch ist der Verbrauch des Außenluftventilators, der nur zur Brauchwasserwärme dient. Mit 1,2 MWh/a liegt der Elektroenergieaufwand allein dieses Ventilators über 10% der thermisch für die Brauchwassererwärmung genutzten Energie. Bedenkt man den zusätzlichen Aufwand für Be- und Entladepumpe und den in etwa dreifachen Primärenergieaufwand für elektrische Energie, reduziert sich die durch die solare Brauchwassererwärmung erzielte CO₂-Einsparung deutlich.
Abbildung 6.16: Verschiedene Verschaltungsvarianten der Luftheizung

• Einbau des Rekuperators vor dem Dachkollektor

Die Anordnung von Dachkollektoren und Wärmerückgewinner wird wie in Abb. 6.16 dargestellt verändert. Der Rekuperator wird vor dem Dachkollektor durchströmt. Durch die größere Temperaturdifferenz wird bei der Wärmerückgewinnung mehr Energie übertragen, dafür steigen aber durch höhere Eintrittstemperaturen die Kollektorverluste. Im Jahresverlauf überwiegt die verbesserte Nutzung des Rekuperators die Verschlechterung des Kollektorwirkungsgrades, so daß der Beitrag des Gaskessels zur Wärmebereitstellung von 51% auf 45% sinkt.

• Parallelschaltung von Dach und Fassadenkollektoren

Durch eine Parallelschaltung der Fassaden- mit den Dachkollektoren könnten im Sommer auch die Fassadenkollektoren zur Brauchwassererwärmung genützt werden. Die ebenfalls in Abb. 6.16 dargestellte Verschaltung ist für das Friedländer Projekt hypothetisch, da hier der Verrohrungsaufwand für eine Parallelschaltung der beiden Kollektorflächen zu groß wäre. Es wurde außerdem das Volumen des Speichers auf 1600 l erhöht und die Regelung so angepasst, daß nun die Betriebszustände 4 und 8 entfallen. Der solare Beitrag für die Raumheizung würde sich durch diese Maßnahme kaum ändern, die Deckungsrate der Brauchwassererwärmung würde aber auf 22,1% steigen. Der ungünstige Neigungswinkel der Fassadenkollektoren macht sich im Sommer stärker bemerkbar, denn deren Beitrag zur solaren Warmwasserbereitung bleibt auf ein Drittel beschränkt.
• Kombination der beiden Maßnahmen

Auch eine Kombination der beiden Maßnahmen wurde untersucht. Die in den Simulationen der beiden Einzelmaßnahmen auftretenden Tendenzen werden dadurch verstärkt: Die Wirksamkeit des Wärmerückgewinners wird durch den größeren durchgeleiteten Massenstrom verbessert und der solare Beitrag zur Warmwassererwärmung erhöht sich auf 24%. Der Gaskessel muß nun noch 42% des Energiebedarfs decken.

6.2.3 Solarfassaden zur Heizungsunterstützung

• Ein erheblicher Arbeitsaufwand ist erforderlich, um entweder die Modelle mit einem eigenen numerischen Löser auszustatten oder vorhandene Programmpakete zu modifizieren.

• Die Programme sind meist auf die jeweiligen Projekte zugeschnitten, ein Vergleich ist auf Grund der unterschiedlichen Ansätze häufig nur bedingt möglich und ein Aufbauen auf vorangegangene Arbeiten wird durch die Notwendigkeit einer neuen Implementation erschwert.
Die Anwendung der für die Entwicklung geschriebenen, detaillierten Modelle zur Auslegungsunterstützung ist nur selten möglich.

Für die Simulation der Friedländer Anlage in SMILE wurde kein spezielles Modell für Fassadenkollektoren entwickelt. Es wurde das Gebäudemodell mit dem Modell des Luftkollektors wie in Abb. 6.17 dargestellt gekoppelt.

Abbildung 6.17: Kopplung des Wand- und des Kollektormodells zum Fassadenkollektor für Detailuntersuchungen des Wärmetransportes in der Fassade

Da hier die Gesamt betrachtung des Systems im Vordergrund stand, ist die Abbildung der Fassade nicht so detailliert wie in den genannten Beispielen. Falls notwendig, kann eine größere Genauigkeit aber durch Erweiterung der Knotenanzahl des Kollektors oder durch Einfügen weiterer Schichten oder mehrerer Wandsegmente problemlos erreicht werden. Auch notwendige Veränderungen für den Einsatz von TWD oder durchströmter Absorber sind auf Grund der Trennung von Numerik und Modell sowie der objektorientierten Struktur leicht möglich. Die Grenzen der mit SMILE sinnvoll abzbildenden Genauigkeit liegen bei der exakten Abbildung der Auftriebsströmung in Vorhangfassaden, wie sie mit speziellen CFD (Computed Fluid Dynamics) Programmen berechnet werden [136]. Die mit den Fassadenkollektoren erzielten Energien für die Luftvorwärmung liegen mit knapp 200 kWh/m²a in dem in [137] und [131] angegebenen Bereich zwischen 150 kWh/m²a und 270 kWh/m²a. Zusätzlich konnte noch eine Verringerung des Transmissionsverlustes in der Heizperiode durch die Solarfassade auf 3 kWh/m²a gegenüber 10 kWh/m²a durch die
benachbarte, bereits sehr gut isolierte Wand festgestellt werden. Abb. 6.18 zeigt den Temperaturverlauf an einem Tag der Übergangsperiode in verschiedenen Schichten der Solar- und der gedämmten Fassade.

![Graphik](image)

Abbildung 6.18: Temperaturverläufe am 6. März in der Südfassade

6.2.4 Optimierung der Regelung zur Minimierung des Primärenergieeinsatzes

Bei einer Optimierung des Solarsystems sind folgende Besonderheiten der vorgestellten Anlage zu bedenken:

- Die Dachkollektoren können sowohl zur Heizungsunterstützung als auch zur Brauchwassererwärmung eingesetzt werden. Auf Grund der zahlreichen Wärmemängen ist der Energiebedarf für die Warmwasserbereitung dem Heizwärmebedarf vergleichbar.

- Wie Variationsrechnungen gezeigt haben, ist die Kollektorfläche bereits so groß ausgelegt, daß eine weitere Vergrößerung zu Lasten der möglichen Nutzung des Wärmerückgewinners geht.

- Der Einsatz an Elektroenergie zum Betrieb der Ventilatoren und Pumpen überschreitet u.U. 10% der gewonnenen thermischen Energie und kann deshalb nicht mehr vernachlässigt werden.

Insbesondere die Beladung des Pufferspeichers in den Übergangszeiten muß optimiert werden, da ein Hin- und Herschalten der Dachkollektorregelung zwischen Heizungsunterstützung und Warmwasserbereitung zu einer Teilbeladung des Speichers führt, die nicht
für die Entladung genutzt werden kann. Die dadurch entstehenden hohen Speicherverluste
und die zum Betrieb des Ventilators eingesetzte Energie müssen bei der Einstellung der
Regelungsparameter bedacht werden.
An diesem Detailproblem wird die Anwendung eines numerischen Optimierers zur Einstel-
lung von Regelungsgrößen demonstriert. Als Zielfunktion dient der gesamte, zur Wärme-
versorgung benötigte Primärenergieeinsatz während der Nutzungszeit. Dieser beinhaltet
nicht nur den innerhalb eines Jahres für Heizung und Brauchwassererwärmung benötigten
Gasverbrauch, sondern auch den Strombedarf für die Ventilatoren und die Pumpen, aber
nicht den Aufwand zur Herstellung der Anlage. Als Primärenergiefaktoren PF für Gl. 6.3
wurden jeweils der für den ostdeutschen Strommix und der für atmosphärische Brenner
geltende [138] zu Grunde gelegt, da in Friedland weder der Einsatz von Brennwerttechnik,
noch eine spezielle Stromversorgung vorgesehen sind.

$$\text{Primärenergiebedarf}_{\text{Jahr}} = PF_{\text{gas}}(Q_{\text{gas.Heiz}} + Q_{\text{WW}}) + PF_{\text{Strom}}(Q_{\text{Vent.}} + Q_{\text{Pump.}}) \quad (6.3)$$

Bei der in Kap. 6.2.1 beschriebenen Modellierung der Gesamtanlage stand jedoch al-
lein die Nachbildung der geplanten Anlage und der Regelung in Vordergrund. Für eine
Optimierungsrechnung ist dieses Modell aufgrund der Rechenzeitproblematik ungeeignet.
Zusätzlich bereitet die komplexe Regelung Schwierigkeiten, da bei einer automatischen Op-
timierung Regelparameter vom Verfahren gewählt werden können, die zu inkonsistentem
Schalten und Abbruch der Simulation führen. Deswegen wurde ein vereinfachtes Modell
der Anlage erstellt, bei dem u.a. auf eine Abbildung der elektrischen Nachheizung, die
sich als nicht sinnvoll für gemittelte Verbraucherwerte erwiesen hatte, verzichtet wurde.
Auch die Regelung wurde vereinfacht abgebildet, wodurch ein Vergleich der Optimierungs-
ergebnisse mit den bisher dargestellten Simulationsergebnissen nur bedingt möglich ist. In
Abb. 6.19 ist nochmals die an den jeweiligen Zweck angepasste Entwicklung der Modelle
veranschaulicht. Das rein kontinuierliche detaillierte Gebäudemodell wurde vereinfacht, da
das Gesamtmodell nicht nur durch die Hinzunahme der Anlagenmodelle vergrößert wurde,
sondern auch durch die nach jedem Schaltvorgang der Regelung notwendige Neuinitia-
lisierung erheblich verlangsamt wird. Dieses Gesamtmodell wiederum mußte vereinfacht
werden, um eine Optimierung mit ca. hundert Jahressimulationen zu ermöglichen.

Optimiert werden vier Parameter, die sich auf drei Stellgrößen auswirken. Erster Para-
meter P_{WRG} ist die minimale Temperaturdifferenz zwischen der Abluft aus dem Gebäude
und der Zuluft vor dem Wärmerückgewinner. Wird diese Temperaturdifferenz unterschrit-
ten, schaltet das Ventil vor dem Wärmerückgewinner und der Bypass wird durchströmt.
Dieser Schalter hängt nur von einer Temperatur ab und ist unabhängig von der in Abb. 6.11
dargestellten Kaskadenschaltung. Abb. 6.22(a) zeigt, daß im Verlauf der Optimierung
diese minimale Temperaturdifferenz deutlich reduziert wird. Daran ist zu erkennen, daß
auf Grund des hohen Wirkungsgrades und des niedrigen Druckverlustkoeffizienten des
Wärmerückgewinners der durch den größeren Druckverlust erhöhte Stromverbrauch des
Ventilators gegenüber den thermischen Einsparungen kaum ins Gewicht fällt.

Der zweite und der dritte Parameter sind miteinander verknüpft und steuern über zwei
Ventile den Zuluftstrom. Überschreiten die Außenlufttemperatur P_A und die Einstrahlung

134
Abbildung 6.19: Angepasste Modellgenauigkeit bei der Plattenbausanierung

Abbildung 6.20: Logisches Schaltbild für die Kollektorregelung

P_V ihre Minimalwerte, wird der Zuluftstrom über den Kollektor gelenkt. Abb. 6.22(b) und Abb. 6.22(c) zeigen, daß für die Einstrahlung ein kleiner Minimalwert gewählt wird während für die Außentemperatur ein relativ hoher Wert als Einschaltkriterium gewählt wird. Diese beiden Parameter beeinflussen die Zielfunktion nicht nur durch die benötigte Ventilatorenergie und die der Zuluft im Kollektor zugeführte thermische Energie, sondern auch durch ihre Verknüpfung mit dem vierten Parameter, der die Brauchwassererwärmung steuert. Nur wenn die Kollektoren nicht für die Gebäudeheizung genutzt werden, kann der Ventilator für die Brauchwassererwärmung in Betrieb gehen. Wird die Zuluft nicht solar vorgewärmt, entscheidet der vierte Parameter P_V, dessen Entwicklung in Abb. 6.22(d) dargestellt ist, über die Inbetriebnahme des Ventilators und der Pumpe im Brauchwasserkreis. In Abb. 6.20 ist die logische Verknüpfung der drei Parameter P_A, P_E und P_V dargestellt. Sie sorgt dafür, daß P_V nur relevant ist, wenn die beiden Bedingungen für die solare Luftheizung nicht erfüllt sind.

Die Minimierung dieses Primärenergiebedarfs durch den Complex-Algorithmus ist in Abb. 6.21 dargestellt. Obwohl nach ca. 50 Simulationen der Primärenergiebedarf sich kaum mehr verändert, gibt es doch noch starke Schwankungen der einzelnen solaren Beiträge. Wie jedoch Abb. 6.23 zeigt, bedingt eine Verbesserung der Heizungsunterstützung einen Rück-
gang der solaren Deckung des Brauchwasserbedarfs und umgekehrt. Optimal erscheinen in etwa gleich große Beiträge, mit einer geringfügig stärkeren Brauchwasserunterstützung.

6.2.5 Wirtschaftlichkeitsbetrachtung

Die Wirtschaftlichkeit der geplanten Maßnahmen und die resultierenden CO$_2$-Vermeidungskosten können erst nach Abschluß der Bauarbeiten, Abrechnung aller Investitionskosten, Bestimmung des erzielten Wärmeenergieverbrauchs und Messung der variablen Kosten insbesondere des Stromverbrauchs bestimmt werden. Um aber den nötigen finanziellen Aufwand einordnen zu können, sind in Tab. 6.11 die von den Planern veranschlagten Kosten der Sanierung aufgelistet.

Etwa drei Viertel der geplanten Kosten sind Modernisierungskosten, die bis zu einer gewissen Höhe auf die Miete umgeschlagen werden können, der Rest sind Instandsetzungskosten, die vom Eigentümer getragen werden müssen. Eine genaue Bestimmung der Differenzkosten zu einer gewöhnlichen Sanierung, wie in Kap. 6.1.1 beschrieben, ist nicht möglich, weil dazu alternative Angebote eingeholt werden müßten. Die auf die Wohnfläche bezogenen spezifischen Bruttokosten von ca. 1300 DM/m2 liegen jedoch in der für Komplettierungen üblichen Spannbreite. Wenn diese Kosten eingehalten werden können, zeigt dies, daß ehrgeizige Energiesparmaßnahmen bei der Altbausanierung durchaus mit vertretbarem Aufwand durchgeführt werden können.
Abbildung 6.22: Veränderung der Regelungsparameter während der Optimierung

Abbildung 6.23: Solare Beiträge zur Deckung des Heizungs- und Brauchwasserbedarfs
<table>
<thead>
<tr>
<th>Maßnahmen</th>
<th>energetisch relevant</th>
<th>energetisch nicht relevant</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baustelleneinrichtung</td>
<td>0</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Gerüst</td>
<td>0</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Vollwärmeschutz</td>
<td>375</td>
<td>0</td>
<td>375</td>
</tr>
<tr>
<td>Luftkanäle</td>
<td>170</td>
<td>0</td>
<td>170</td>
</tr>
<tr>
<td>Heizung und Sanitär</td>
<td>165</td>
<td>50</td>
<td>215</td>
</tr>
<tr>
<td>Fenster und Türen</td>
<td>167</td>
<td>105</td>
<td>272</td>
</tr>
<tr>
<td>Lüftung</td>
<td>180</td>
<td>0</td>
<td>180</td>
</tr>
<tr>
<td>Kollektoren</td>
<td>85</td>
<td>0</td>
<td>85</td>
</tr>
<tr>
<td>Gaszentrale</td>
<td>47</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td>Klempnerarbeiten</td>
<td>45</td>
<td>33</td>
<td>88</td>
</tr>
<tr>
<td>Elektroinstallationen</td>
<td>32</td>
<td>21</td>
<td>53</td>
</tr>
<tr>
<td>Anstricharbeiten</td>
<td>0</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>6</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>Anstricharbeiten</td>
<td>77</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>Nettosumme</td>
<td>1349</td>
<td>577</td>
<td>1926</td>
</tr>
<tr>
<td>Bruttosumme</td>
<td>1598</td>
<td>683</td>
<td>2281</td>
</tr>
</tbody>
</table>

Tabelle 6.11: Geplante Kosten der Sanierung in TDM
Kapitel 7

Nahwärmesysteme

Das größte technische Potential zur Nutzung solarthermisch gewonnener thermischer Energie liegt in der Errichtung saisonaler Nahwärmesysteme [140]. Deshalb wird in diesem Kapitel der Aufbau dieser Systeme erläutert (7.1) und der Entwicklungsstand der einzelnen Komponenten aufgezeigt (7.1.1). Die für die Durchsetzung dieser Technik entscheidende Kostendegression wird ebenso besprochen, wie die Erfahrungen mit Simulationen, insbesondere bei den ersten größeren solaren Nahwärmenprojekten in der Bundesrepublik Deutschland (7.1.2). Fokus der eigenen Arbeit ist aber nicht die Simulation der bestehenden Systeme, sondern die Untersuchung eines anderen Konzeptes zur Integration geo- und solarthermischer Energiequellen in ein Nahwärmenetz (7.2). Die zentrale Komponente dieses Konzeptes ist eine Tiefensonde. Da es sich hier um eine neue Technik handelt, wird diese mit anderen, gebräuchlicheren Formen der Erdwärmenutzung verglichen (7.2.1). Die Simulationsumgebung SMILE wurde für die erste eingehende Untersuchung dieser Technik [139] gewählt, da durch die die Modellierung erleichternden Strukturierungsmöglichkeiten in einem knapp bemessenen Zeitraum ein geeignetes Modell dieser Tiefensonde (7.2.2) erstellt und dieses in ein Modell einer geplanten Nahwärmeversorgung integriert werden konnte (7.2.3). Es werden sowohl die energetischen Beiträge der einzelnen Systemkomponenten und Auswirkungen verschiedener Regelungsstrategien untersucht (7.2.4) als auch die resultierenden Energiekosten und eine Optimierung der Komponentendimensionierung für eine gewünschte regenerative Deckungsrate (7.2.5) dargestellt.

Bisher seltener realisiert, aber mit einem großen zukünftigen Potential sind geo- oder solarthermische Systeme[142, 143], auf die in 7.1.1 und 7.2.2 genauer eingegangen wird. Abgesehen von reinen Kessel- und einigen wenigen Holzhackschnitzelanlagen, sind die erwähnten Systeme immer multivalent, da zur 100%-igen Bedarfsdeckung oder aus Gründen der Versorgungssicherheit ein oder mehrere Spitzenkessel in die Systeme integriert werden. Es gibt aber auch darüber hinausgehende sinnvolle Kombinationsmöglichkeiten, wie solar unterstützte Holzhackschnitzelbrenner [141]. Die Kombination von BHKWs mit solarthermischen Anlagen wurden eingehend untersucht [59, 144, 145, 146, 147]. Da eine rein solare Deckung des Wärmebedarfs zu einer sehr ungünstigen Anlagenauslegung führen würde, wäre die Ergänzung durch ein BHKW mit einem Systemwirkungsgrad über 80% wünschenswert, vor allem, wenn dies mit einem CO$_2$-neutralen Brennstoff geschieht. Für eine derartige Kombination spräche auch eine zweifache Nutzung des Speichers: Als Langzeitspeicher zum Ausgleich zwischen solarem Angebot im Sommer und Wärmenachfrage im Winter einerseits, als Kurzzeitspeicher, um das BHKW stromgeführt fahren zu können andererseits. Technisch problematisch jedoch ist, daß sowohl Sonnenkollektoren als auch BHKW niedrige Vorlauftemperaturen benötigen um hohe Wirkungsgrade zu erzielen. Der Hinderungsgrund aber für eine bisherige Realisierung eines solchen Projektes sind die zu hohen Investitionskosten. Für die wirtschaftliche Betriebsweise eines BHKWs sind lange Laufzeiten, vor allem während der Hochtarifzeiten notwendig, was die Abstimmung mit einer saisonal arbeitenden Solaranlage erschwert. In [59] wird mit der in 4.1.2 beschriebenen Methode die optimale Auslegung solcher Kombinationssysteme unter diesen Rahmenbedingungen bestimmt.

140
Tabelle 7.1: Vor- und Nachteile von Nahwärmesystemen gegenüber Einzellosungen

<table>
<thead>
<tr>
<th>Vorteile:</th>
<th>Nachteile:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geringere Investitionen für die Energiewandlung</td>
<td>Netzkosten</td>
</tr>
<tr>
<td>Effizientere Energiewandlung</td>
<td>Netzverluste</td>
</tr>
<tr>
<td>Gleichmäßiger, gemittelter Bedarf</td>
<td>Geringere Flexibilität</td>
</tr>
<tr>
<td>Zentraler Speicher (geringere Investitionen und Energieverluste)</td>
<td>Höhere Vorlauftemperatur</td>
</tr>
<tr>
<td>Ein zentraler, kompetenter Betreiber</td>
<td></td>
</tr>
</tbody>
</table>

7.1 Solare Nahwärmesysteme

Unter solaren Nahwärmesystemen im engeren Sinn versteht man Systeme, die über die in 5. vorgestellte Warmwasserbereitung hinausgehen und auch einen solaren Beitrag zur Heizenergie leisten. Um im Winter benötigte Wärme bereitstellen zu können, muß diese nicht nur im strahlungsreichen Sommerhalbjahr gewonnen, sondern auch lange gespeichert werden. Daher zeichnen sich solche Anlagen durch einen saisonalen Speicher als zentrale Komponente aus. Wenn die gespeicherte Wärme nur eine geringere Temperatur erreicht, wird sie häufig durch eine Wärmepumpe auf ein höheres Temperaturniveau gebracht.

Bei den in Abb. 7.1(a) dargestellten Anlagen ohne Wärmepumpenunterstützung wird im Allgemeinen eine höhere solare Deckungsraten erreicht als bei den in Abb. 7.1(b) und Abb. 7.1(c) dargestellten solar unterstützten Wärmepumpensystemen. Den zusätzlichen Kosten für die Wärmepumpe stehen geringere Kollektor- und Speicherkosten gegenüber. Auf Grund des niedrigeren Temperaturniveaus können einfache und preisgünstige Kollektoren mit dennoch hohen Wirkungsgraden sowie Speicher mit geringerer Isolierung eingesetzt werden. Wenn der Speicher durch die Wärmepumpe nur entladen wird (Abb. 7.1(b)), kann er kleiner dimensioniert werden. Bei kontinuierlicher Beladung des Speichers durch die Wärmepumpe (Abb. 7.1(c)) ist eine geringere Leistung für diese, aber ein größerer Speicher mit einer besseren Schichtung notwendig [148]. Die Auslegung und Regelung von solar unterstützten Wärmepumpensystemen hat häufig Schwierigkeiten bereitet, da wenige Planer Erfahrungen sowohl auf dem Gebiet der Solarenergie als auch dem der Wärmepumpen haben und Simulationshilfen nicht immer die nötigen Anlagenkombination zulassen [149].

Da der Arbeitsbereich von Wärmepumpen durch maximale Verdampfungstemperaturen beschränkt ist und ihr Wirkungsgrad von den Temperaturen auf beiden Seiten bestimmt wird, schwankt die Speichertemperaturbereich meist zwischen $0\,^\circ-30\,^\circ$. In [149] sind aber auch Systeme mit maximalen Speichertemperaturen von $17\,^\circ$ bzw. $53\,^\circ$ genannt. Im Gegensatz zu Anlagen ohne Wärmepumpe, bei denen eine direkte Nutzung der Solarenergie unter Umgebung des Speichers den anlagentechnischen Aufwand nicht lohnt [150], ist eine direkte Kopplung der Kollektoren an die Wärmepumpe häufig möglich [151, 152].
(a) Solares Nahwärmesystem ohne Wärmpumpe

(b) Solares Nahwärmesystem mit direkt genutzter Wärmpumpe

(c) Solares Nahwärmesystem mit Wärmpumpe, die den Speicher belädt

Abbildung 7.1: Prinzipskizzen verschiedener solarer Nahwärmesysteme
7.1.1 Stand der Technik

„Das Konzept der solarunterstützten Nahwärmeversorgung befindet sich heute noch in der Phase der Entwicklung und Erprobung.“ [143] Zehn Jahre nach den ersten Projektstudien in Deutschland (Mannheim, Wolfsburg) ist die Entwicklung dieser Technik sicher alles andere als abgeschlossen und die erzielten Wärmepreise sind auch noch nicht zu konventionellen Systemen konkurrenzfähig. Dennoch konnten bisher viele technische Probleme gelöst und die Systemkosten deutlich gesenkt werden.

Kollektoren

Speicher

Ort Baujahr Fläche in m^2 Kosten in DM/m²

Holzgerlingen 1996 100 600
Ravensburg I 1992 100 580
Ravensburg II 1992 120 570
Neckarsulm I 1993 700 370
Neckarsulm II 1997 400 460
Neckarsulm III 1997 1600 400
Rohr 1997 200 400
Bühlstr 1998 100 420
Brenzstraße 1998 100 400
Wiggenhausen I 1996 700 470
Hamburg 1995 3000 470
Burgholzhof 1998 2000 450

Tabelle 7.2: Kosten verschiedener Kollektorfelder in Nahwärmesystemen, netto, inkl. Montage und Verrohrung, ohne Planung, nach [153]

relatives Maß für die äußeren Wärmeverluste zur Umgebung. Neben den Energie- sind auch die Exergieverluste durch Vermischung wärmerer und kälterer Speicherschichten entscheidend für den Nutzungswärmeinhalt des Speichers.

Wegen der geringen Auslastung zwischen 1,5 und 2 effektiven Speicherzyklen im Jahr sind geringe spezifische Baukosten das wichtigste Kriterium für die Beurteilung eines Speichers. Neben der Größe ist hier das Speicherkonzept entscheidend. Im Folgenden werden daher die verschiedenen, in Abb. 7.2 schematisch dargestellten Konzepte vorgestellt:

• Tankspeicher

• Erdbeckenspeicher

Bei diesen Speichern wird ein unterirdisches Erdbecken in Form eines Zylinders oder Kegelstumpfes angelegt und mit Wasser gefüllt. Ziel der momentanen Forschung ist es, kostengünstige Bauformen und Materialien zu finden, die eine genügend große Hitzebeständigkeit und Dichtigkeit aufweisen. [158] diskutiert verschiedene
neuere Konstruktionsvarianten. Von besonderem Interesse ist die Entwicklung von ultradichtem Hochleistungsbeton, der eine Edelstahlauskleidung, wie sie bei den ersten deutschen Pilotprojekten angewandt wurde, unnötig macht und die Kosten für dieses erprobte System um 25% reduzieren kann [159].

• Kavernenspeicher

• Erdsondenspeicher

• Aquiferspeicher

145

- Künstliche Aquiferspeicher

- Hybridspeicher

Welche der besprochenen Speichervarianten sich bei einer Verbreitung von solaren Nahwärmen durchsetzen wird, ist noch nicht abzusehen, da alle Techniken noch weit von einer Standardisierung entfernt sind. [153] weist auf die Notwendigkeit geologischer Voruntersuchungen am Speicherstandort hin und benennt vier Kriterien für die Wahl des Speicherkonzepts:

- Die spezifischen Wärmeverluste nehmen mit zunehmender Größe des Speichers ab. Kleine Speicher können nur mit einer Wärmedämmung gebaut werden, sehr große auch ohne (ab ca. 30.000 m³ bei Wasserspeichern und 100.000 m³ bei Erdsonden und Aquiferspeichern).
Die volumenbezogenen Baukosten nehmen mit zunehmender Größe ab. Heißwasserspeicher können ab einem Volumen von 10.000 m³ für weniger als 250 DM/m³ gebaut werden.

In [168] werden für Anlagen ab einem Jahreswärmebedarf von mehr als 1500 MWh Felskavernen oder Aquiferspeicher, ab 1000 MWh Erdbeckenspeicher oder Erdsondenspeicher und für 150-500 MWh Erdsonden- oder Tankspeicher empfohlen. In Abb. 7.3 sind die spezifischen Speicherkosten in Abhängigkeit vom Speichervolumen aufgetragen, die durch Planungsstudien oder beim Bau erster Pilotanlagen ermittelt wurden:

Systemtechnik

Neben der Entscheidung für ein direkt solares oder ein wärmepumpengestütztes System und den bestimmenden Komponenten Kollektor und Speicher, gibt es noch weitere Faktoren, die für eine optimale Konfiguration wichtig sind:

eine günstige Netzauslegung mit niedrigen Vor- und Rücklauftemperaturen ist.
Im Solarkreis wird ebenso wie bei großen Anlagen zur Warmwasserbereitung (s.Kap.5) Low-Flow-Technik mit Durchflußraten kleiner 0,02m³/m²h eingesetzt. Im Rahmen des Solarthermie-2000 Programms wurde ein neues Wärmeveerteil- und -sammelsystem entwickelt: Die in Kap. 7.1 beschriebenen 2- und 4-Leiternetze dienen nur der Wärmeerteilung. Bei Kollektorflächen, die auf mehreren Dächern verteilt sind, waren bisher außerdem noch mit einem Glykol-Wasser-Gemisch gefüllte Solarvor- und Solarrücklaufleitungen notwendig. Für die Anlage in Neckarsulm wurde ein 3-Leiter Netz installiert, bei dem in dezentralen Solarübergabestationen bereits die Wärme an einen Solarvorlauf abgegeben wird (siehe Abb. 7.4). Dadurch kann nicht nur ein viertes Rohr für den solaren Rücklauf eingespart werden, sondern auch die Anzahl der Wärmeübertragungen verringert und so die Rücklauftemperatur für den Langzeitspeicher gesenkt werden [153]. Darüberhinaus erleichtert dieses Netz die Erweiterbarkeit des Systems.

Die bisher in Deutschland realisierten und geplanten solaren Nahwärmesysteme unter-

7.1.2 Simulation und Erfahrungen mit solarer Nahwärme

Die Planung eines solaren Nahwärmesystems ist aufwendiger und grundsätzlich anders als die von konventionellen Heizungsanlagen, da Flexibilität und Energiedichte der Sonnenenergie nicht mit denen fossiler Energieträger zu vergleichen sind und die Systeme daher auf Wärmemengen und nicht auf Leistung ausgelegt werden. [172] und [149] geben Anhaltspunkte zum Entwurf saisonaler Anlagen und der Dimensionierung der Komponenten. Vereinfachend läßt sich sagen, daß die Deckungsrate zwischen 40% und 70%, die Kollektorflächen zwischen 1,5 – 2,5 m²/MWh und das wasserequivalente Speichervolumen zwischen 1,5 m³/m² und 2,5 m³/m² Kollektor liegen sollte. Diese einfachen Daumenregeln reichen aber nicht für eine Konzeption eines Systems aus, da Fehldimensionierungen sich stark auf die erzielten Wärmepreise auswirken. Deswegen wurde von Beginn an die Entwicklung der Technik durch die Entwicklung von Simulationswerkzeugen begleitet. Neben der Abhängigkeit von Metereologie und Bedarfsstruktur erfordert vor allem der saisonale Charakter eine instationäre Abbildung der Systeme. [3] gibt einen Überblick über vorhandene Simulationsprogramme.

Die Ende 1996 in Betrieb genommenen und von der Universität Stuttgart vermessenen Anlagen in Hamburg-Brahmfeld und Friedrichshafen-Wiggenhausen ermöglichten die Überprüfung der mit Hilfe von TRNSYS erstellten Vorhersagen. Abgesehen von erhöhten Wärmeverlusten im ersten Betriebsjahr, die auf die einmalige Erwärmung des Erdreichs zurückzuführen sind, kann die Vorhersage für den Betrieb der solaren Komponenten als befriedigend angesehen werden [176]. Die erzielten Energieeinsparungen blieben jedoch deutlich hinter den Erwartungen zurück, da die konventionellen Komponenten nicht erwartungsgemäß funktionierten. Dies wirkte sich auf erhöhte Netztemperaturen aus, was zu erhöhten Speichertemperaturen und somit zu geringeren Systemwirkungsgraden führte (siehe Abb. 7.5 und Abb. 7.6).
Abbildung 7.5: Netztemperaturen in Hamburg - Vergleich Messung und TRNSYS-Simulation [176]

Abbildung 7.6: Speichertemperaturen in Hamburg - Vergleich Messung und TRNSYS-Simulation [176]
Für das Abweichen von Simulation und realem Betrieb werden vor allem folgende vier Gründe genannt [177, 178]:

- Wärmeübertragereigenschaften
 Die eingebauten Wärmeübertrager entsprachen nicht immer den Auslegungsdaten. Dadurch wurde sowohl das Beladen des Speichers durch die Kollektoren als auch die Wärmeeinspeisung in das Netz behindert.

- Einregulierung der Heizkreise
 Die stärkste Fehlerursache ist eine fehlerhafte Einregulierung der Heizkreise in den Häusern. Intensive Betreuung der Handwerker bei der Inbetriebnahme ist notwendig, um die für die Solaranlage essentiellen niedrigen Rücklauftemperaturen zu erreichen.

- Speicherladestrażsysteme

- Regulierung des Kessels

Abbildung 7.7: Messung des thermischen Verhaltens eines Speicherladesystems in Friedrichshafen [177]

7.2 Das solar-, geothermische Nahwärmesystem GeSotherm S

7.2.1 Geothermische Energiequellen

Die Nutzungsvarianten der Erdwärme sind zahlreich. Systeme können danach unterschie-
den werden, ob die Erde primär als Energiespeicher oder als Energielieferant dient, ob Wärmepumpen oder Solarenergie eingesetzt werden, ob oberflächennahe oder tiefere Erdschichten genutzt werden und, ob es sich um geschlossene oder offene Systeme handelt. Bei den in Abb. 7.1(a) bis Abb. 7.1(c) dargestellten solarunterstützten Systemen können sowohl Aquifere (offen) als auch Erdsonden (geschlossen) eingesetzt werden. Die Bandbreite reicht auch von den besprochenen Speichern bis zu Systemen, bei denen die Solaranlage nur dazu dient ein Auskühlen des Erdreichs durch die Wärmepumpennutzung zu verhindern [150]. Unter rein geothermischen Energiequellen wird im Allgemeinen zwischen zwei sehr unterschiedlichen Nutzungsarten differenziert:

Oberflächennahe Erwärmennutzung

Tiefe geothermische Energiequellen

Wärmegewinnung genutzt. Eine Ausweitung der Erdwärmenutzung auf heiße trockene Ge-
steinsschichten (Hot-Dry-Rock-Verfahren) verspricht ein großes technisches Potential, ist
aber noch in der Erprobungsphase.
Die Ausbeutung heißer Aquifere führt aber die gleichen Probleme, zum Teil in verstärktem
Maße mit sich, wie deren Nutzung als Speicher:

- Der Wärmeträger, die Sole ist äußerst korrosiv, die Anlage muß daher aus hochwer-
tigen Materialien gefertigt werden. Die Lösungs- und Reaktionsprozesse können zu
Ablagerungen und Schlammembildung im System führen, was einen hohen apparativen
Aufwand zur Filterung und Aufbereitung des Wassers über Tage notwendig macht.
- Das Vorhandensein und die Qualität des zu nutzenden Aquifers sind ausschlaggebend
für den Erfolg eines offenen Geothermiesystems. Selbst mit aufwendigen Mitteln sind
ohne Probebohrung keine genauen Vorhersagen darüber möglich. Das Bohrrisiko, die
vorhergesagten Schichten überhaupt nicht oder in ungenügender Qualität (z.B. ze-
mentierter Porenraum) vorzufinden, bleibt bei einer solchen Anlage immer bestehen.
- Die Kosten sind vom Volumen des Aquifers relativ unabhängig. Wegen des großen
Investitionsaufwands können diese Anlagen nur bei größerem Bedarf installiert wer-
den.

7.2.2 Die geothermische Tiefensonde

Funktionsprinzip und Einsatzmöglichkeiten

Die Tiefensonde, auch als Erdsonde oder Erdwärmetauscher bezeichnet, zählt zu den sonst
oberflächennah genutzten, geschlossenen Systemen, ist aber für den Einsatz in Tiefen von
mehreren tausend Metern vorgesehen. Sie besteht aus einem Doppelrohr, dessen Außen-
und Innenrohr am unteren und oberen Ende hydraulisch miteinander verbunden sind. Im
wärmeleitenden Außenrohr fließt gereinigtes Wasser als Medium nach unten und erwärmt
sich durch den thermischen Kontakt mit dem Erdreich. Das warme Wasser strömt dann
im isolierten Innenrohr wieder nach oben, gibt die aufgenommene Wärme dort in einem
Wärmeübertrager ab und fließt wieder nach unten.
Bisher wird diese Technologie nur sehr begrenzt eingesetzt. In Prenzlau ist ein Nahwärme-
netz mit einer ca. 3000 m langen Sonde und einer elektrischen Wärmepumpe seit 1994
erfolgreich in Betrieb. Die Leistung dieser Sonde beträgt ca. 300...400 kW. In der Schweiz
kommen Tiefensonden bei der Nutzung von bereits vorhandenen Bohrlochern zum Einsatz.
Diese Sonden sind nicht vollkommen zur Umgebung abgedichtet und erreichen mit Längen
von ca. 900 m bis 2700 m Leistungen von 90...134 kW [180]. Aufgrund der hohen Investi-
tionskosten ist diese Form der Erdwärmenutzung nur für Großverbraucher oder für Netz-
betreiber möglich. Zugleich können aber wegen der geringen Wärmeleitung des Erdreichs
nur geringere Leistung und niedrigere Temperaturen als bei offenen Systemen erreicht wer-
den, sodaß die Tiefensonde immer mit einer Wärmepumpe gekoppelt werden muß. Diesen
Nachteilen stehen das fehlende Bohrrisiko und die niedrigen Betriebskosten gegenüber. Da
weder das Grundwasser genutzt, noch das oberflächennahe Erdreich nennenswert erwärmt wird, ist der genehmigungsrechtliche Aufwand gering und eine innerstädtische Nutzung möglich. Dies und die geeignete Leistungsgröße für kleinere Netze, die häufiger als große Netze errichtet werden, verbessern die Einsatzmöglichkeiten der Tiefensonde. Da es sich um eine neue Technologie handelt, für die bisher nur Einzelberechnungen angestellt wurden, aber kein Modul in einer Simulationsumgebung existierte, werden im Folgenden die Grundlagen und Struktur des in SMILE implementierten Modells[181] vorgestellt.

Grundlagen und Grenzen des Tiefensondenmodells

Die grundlegende Beziehung zur Bestimmung des Temperaturfeldes im Erdreich bei reiner Wärmeleitung ergibt sich aus der Verknüpfung des Fourierschen Wärmeleitungsansatzes mit einer Energiebilanz zu

\[\rho \cdot c_v \cdot \frac{\partial T}{\partial t} = -\text{div}(\lambda \cdot \text{grad}T). \] (7.1)

Diese Gleichung ist analytisch nur für Spezialfälle geschlossen zu lösen. Da derzeit in SMILE keine partiellen Differentialgleichungen zur Verfügung stehen, wird das Erdreich in einzelne Volumenelemente (Segmente) aufgeteilt und die Gleichung in eine Form für endliche Volumina überführt. Dreidimensionale hochauflösende numerische Modelle erbringen sicherlich die genauesten Ergebnisse, benötigen aber sehr hohe Rechenzeiten. Da das Erdreich vertikal geschichtet ist und horizontale Veränderungen der Eigenschaften meist gering und nicht bekannt sind, wurde ein zweidimensionales Zylindermodell gewählt (siehe Abb. 7.8).

Für die Temperaturen der einzelnen Volumenelemente ergibt sich:

\[\frac{\partial T[i,k]}{\partial t} = \frac{\sum Q[i,k]}{V[i,k] \cdot \rho[i,k] \cdot c[i,k]} . \] (7.2)

Die Summe der Wärmeströme beinhaltet radiale und axiale in positiver und negativer Richtung. Diese berechnen sich aus dem Produkt der Wärmelitäten und der Temperaturdifferenz zu den jeweiligen Nachbarelementen. Die Wärmelitäten \((L = \lambda A/l)\) wiederum

Die wichtigsten Einschränkungen des Modells beruhen auf der zweidimensionalen Zylinder darstellung:

- Es wird nur Wärmeleitung berechnet. Stoffgebundener Wärmeeintrag, wie Grundwasserströmungen oder Konvektion werden nicht berücksichtigt. Grundwasserleiter erstrecken sich aber nur über einige Meter, die Sonde hingegen über mehrere Kilometer. Auch Konvektion tritt nur in einzelnen Erdschichten, die verglichen mit der
Abbildung 7.9: Darstellung des möglichen Diskretisierungsfehlers. T1, T2: Temperaturen zweier benachbarter Elemente mit unterschiedlicher Wärmekapazität [181]

Abbildung 7.10: Aufbau des Tiefensondenmodells

Sondenlänge i. A. einen kleinen Durchmesser haben, auf.

- Die Homogenität und Isotropie innerhalb der einzelnen Gesteinsschichten stellen starke Vereinfachung dar. Die Stoffwerte werden stark durch Einschlüsse, variierenden Wasser- oder Luftgehalt, sowie Kristallausrichtung beeinflußt [183, 184]. Selten stehen jedoch derartige Informationen über den Untergrund zur Verfügung, was sich auch in der Ungenauigkeit der in das Modell eingehenden Meßdaten niederschlägt(s. Kap.3).

Implementation des Modells

Bei der Implementation der oben beschriebenen Funktionalitäten erwiesen sich die Strukturierungsmöglichkeiten von SMILE als vorteilhaft für eine schnelle Programmierung, Überprüfung und Verwendung. Das Rohr- und das Erdreichmodell wurden getrennt entwickelt und zu einem Modell der Tiefensonde vereint (aggregiert) s. Abb. 7.10.

Dadurch konnte, wie in Kap. 3 beschrieben, erst die Funktionstüchtigkeit der einzel-
Abbildung 7.11: Struktur des Erdreichmodells

Abbildung 7.12: Aufbau des Erdsondenmodells aus Einzelmodellen

Um die Möglichkeit für weitere Spezialisierung des Modells offen zu halten können auch Modelle aus mehreren miteinander verknüpften Instanzen dieser Klassen aufgebaut werden. Als Randbedingungen erhalten die Elemente, die an einer Grenze zu einem anderen Zylinder liegen, die Temperaturen und Leitwerte (vom Rand bis bis zum Elementzentrum) der jeweiligen Nachbarelemente. Mit Hilfe dieser Verknüpfungen wird dasselbe Gleichungssystem aufgebaut, wie es ein einzelnes, feiner diskretisiertes Zylindermodell aufweisen würde.

Auch das Rohr wird aus mehreren Instanzen einer Modellklasse zusammengesetzt, wo-
bei Massenströmen und Temperaturen der Einzelmodelle verknüpft werden. Der Aufbau des Gesamtmodells ist in Abb. 7.12 dargestellt. Neben den Erdreich- \texttt{EarthCylRadAxExt} und den Rohrklassen (\texttt{DoubleTubeDynExt}) werden noch spezielle Klassen für das Rohrende (\texttt{DoubleTubeEndExt}) und zum Anschluß an andere Komponenten mit fest definierter Fließrichtung (\texttt{DoubleTubeHeadExt}), sowie eine Komponente zur automatischen Diskretisierung \texttt{AutoRaDisc} eingebunden.

7.2.3 Simulation des GeSotherm S-Systems

Grundlage für die Konfiguration und Berechnung eines solar unterstützten Nahwärmenetzes mit Nutzung einer geothermischen Tiefensonde als Energiequelle und Energiespeicher waren die in Tabelle 7.3 zusammengefaßten Ausschreibungsanforderungen für ein geplantes Wärmeversorgungssystem[139].

<table>
<thead>
<tr>
<th>Wärmbedarf:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizung</td>
<td>5739 MWh/a</td>
</tr>
<tr>
<td>Warmwasser</td>
<td>2029 MWh/a</td>
</tr>
<tr>
<td>Anschlußleistung</td>
<td>4.1 MW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auslegungsparameter:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiefensonde</td>
<td>3000 m</td>
</tr>
<tr>
<td>Wärmepumpe</td>
<td>ca. 1.3 MW</td>
</tr>
<tr>
<td>Solarkollektoren</td>
<td>5500 m²</td>
</tr>
<tr>
<td>Pufferspeicher</td>
<td>200 m³</td>
</tr>
<tr>
<td>Heizkessel</td>
<td>2 * 2.0 MW</td>
</tr>
<tr>
<td>Heiznetz</td>
<td>70/40 °C</td>
</tr>
</tbody>
</table>

Tabelle 7.3: Rahmenbedingungen für das Versorgungssystem

Mit den in Kap.3 beschriebenen Komponenten und einem vereinfachten Tiefensondenmodell, das akzeptable Rechenzeiten und zufriedenstellende Genauigkeit ermöglichte, wurde die in Abb. 7.13 dargestellte Anlage modelliert. Die geologischen Daten wurden einem Gutachten für den Standort Potsdam [185] entnommen. Der Heizwärmebedarf wird außentemperaturabhängig und der Warmwasserbedarf mit einem vereinfachten Tagesprofil vorgegeben.

Kriterien zum Be- und Entladen der Sonde als auch die Möglichkeit untersucht den Kollektorertrag durch Auskühlen des Kollektorrücklaufs und Vorwärmen des Sondeneintritts im Wärmetauscher WT 1 zu erhöhen. Die Beladung des Pufferspeichers durch die Wärmepumpe muß rechtzeitig beendet werden, damit einerseits die Kollektoren auf Grund eines bereits beladenen Speichers nicht stagnieren aber andererseits auch der Spitzenkessel nicht wegen zu geringer Speichertemperaturen anspringt. Am geeignetsten erwies sich daher eine Steuerung der Wärmepumpe, die sowohl die mittlere Speichertemperatur als auch die Kollektortemperatur berücksichtigt.

7.2.4 Ergebnisse

Speicherfähigkeit

Abbildung 7.14: Temperaturverläufe um die Sonde in 2500 m Tiefe nach unterschiedlichen Betriebsphasen

mit 95° warmen Wasser und einem Massenstrom von 3 kg/s beladen und die gesteiger-
te Leistungsfähigkeit bei der anschließenden Extraktion bestimmt wurde. Abb. 7.15 zeigt
das Sondenverhalten bei kontinuierlichem Betrieb im Vergleich zu ein- bis dreimonatiger
Einspeicherung.

An den Flächenverhältnissen ist deutlich zu erkennen, daß die eingespeicherte Ener-
gie nur zu einem geringen Teil anschließend extrahiert werden kann. Für eine differenzierte
quantitative Analyse müssen aber nicht nur die eingespeicherte und die entnommene Ener-
gie betrachtet werden, sondern auch das Verhalten bei Extraktionspausen ohne Einspei-
erung. In diesen Pausen regeneriert sich die Erdreichtemperatur, da von außen zufließende
Wärme den Temperaturtrichter, der sich um die Sonde gebildet hat, abflacht. Abb. 7.14
zeigt die Temperaturen, die sich in 2500 m Tiefe um die Sonde nach unterschiedlichen
Betriebsphasen einstellen.

Um den Anteil der Regeneration an der erhöhten Förderung zu bestimmen, wurden den
in Abb. 7.15 dargestellten entsprechende Simulationen ohne Einspeicherung durchgeführt.
In Tab. 7.4 sind die Ergebnisse aller Simulationen für das dritte Betriebsjahr dargestellt.
Aus drei simulierten Sondenleistungen, einer mit kontinuierlicher Förderung \dot{Q}_{Kont}, einer
mit Regenerationspausen \dot{Q}_{Pause} und einer mit Phasen der Einspeicherung \dot{Q}_{Speich} läßt
sich ein Verschiebungswirkungsgrad η_V und ein Speicherwirkungsgrad η_S definieren. Als
Verschiebungswirkungsgrad wird das Verhältnis von Mehroperation in den Extraktions-
phasen zum Förderverzicht in den Regenerationsphasen bezeichnet. Der Förderverzicht
wird aus dem Integral der kontinuierlich geförderten Leistung über den Regenerations-
zeitraum R (der Simulation mit Regenerationspausen) bestimmt und die Mehroperation

161
Abbildung 7.15: Sondenleistung im kontinuierlichen Betrieb, bei ein-, zwei- und dreimonatiger Einspeicherung von 95° warmen Wasser (3kg/s) und anschließend gesteigerter Extraktion

ergibt sich aus der Differenz der Integrale mit und ohne Pause über den restlichen Zeitraum des Jahres, den Extraktionszeitraum E. Der Speicherwirkungsgrad ergibt sich aus der Mehrförderung in den Extraktionsphasen abzüglich der allein durch die Regenerationsverursachten Mehrförderung im Verhältnis zum Betrag der eingespeicherten Energie. Der Gesamtwirkungsgrad η_G ergibt sich aus dem Verhältnis der gesamten Mehrförderung im Extraktionszeitraum zur Summe aus eingespeicherter Energie und Förderverzicht im Regenerationszeitraum

$\eta_V = \frac{\int_E (\dot{Q}_{Pause} - \dot{Q}_{Kont}) \, dt}{\int_R \dot{Q}_{Kont} \, dt}$ \hspace{1cm} (7.3)

$\eta_S = \frac{\int_E (\dot{Q}_{Speich} - \dot{Q}_{Pause}) \, dt}{\int_R |\dot{Q}_{Speich}| \, dt}$ \hspace{1cm} (7.4)

$\eta_G = \frac{\int_E (\dot{Q}_{Speich} - \dot{Q}_{Kont}) \, dt}{\int_R |\dot{Q}_{Speich}| + \dot{Q}_{Kont} \, dt}$ \hspace{1cm} (7.5)

Eine saisonale Speicherung in der Tiefensonde erscheint auf Grund des geringen Speicherwirkungsgrades nicht sinnvoll. Auch eine gezielte langfristige Unterbrechung der Förderung ermöglicht nur bedingt eine Mehrförderung zu späteren Zeiten.
<table>
<thead>
<tr>
<th></th>
<th>einmonatige Einspeicherung</th>
<th>zweimonatige Einspeicherung</th>
<th>dreimonatige Einspeicherung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verschiebungswirkungsgrad η_V:</td>
<td>0,32%</td>
<td>0,27%</td>
<td>0,23%</td>
</tr>
<tr>
<td>Speicherwirkungsgrad η_S:</td>
<td>0,26%</td>
<td>0,21%</td>
<td>0,18%</td>
</tr>
<tr>
<td>Gesamtwirkungsgrad η_G:</td>
<td>0,29%</td>
<td>0,24%</td>
<td>0,20%</td>
</tr>
</tbody>
</table>

Tabelle 7.4: Wirkungsgrade der Speicherförderung

Gesamtergebnisse

Für die in Kap. 7.2.3 beschriebene Anlage wurden die Beiträge der einzelnen Komponenten zur Deckung des Gesamtbedarf bestimmt. Der Jahresenergiebedarf von 7768 MWh/a wird zu 12% vom Solarsystem, zu 35% von der Tiefensonde, zu 38% von der Wärmpumpe und zu 15% vom Gaskessel gedeckt. Die über den Wärmetauscher WT 1 in die Tiefensonde eingespeicherte Solarenergie tritt in dieser Bilanz nicht auf, trägt aber zum Ertrag der Sonde bei. Da die Simulation nur die thermischen Aspekte des Systems beinhaltet, wurde der Pumpstromverbrauch aus den Summen der Betriebsstunden abgeschätzt. Von den 211 MWh/a elektrischem Gesamtverbrauch werden über die Hälfte für das Nahwärmenetz, ca. ein Drittel für das Solarsystem und der Rest für die Tiefensonde benötigt. Im Winter ist die Wärmennachfrage wesentlich größer als die Leistung von Sonde und Wärmpumpe. Die Tiefensonde ist daher durchgehend in Betrieb. Das Solarsystem kann auf Grund der geringen Einstrahlung nur einen kleinen Beitrag leisten, sodaß die restliche Nachfrage vom Kessel gedeckt wird. Im Sommer hingegen ist der Bedarf auf die Warmwasserbereitung beschränkt, der größtenteils vom Solarsystem gedeckt werden kann. Um den Pufferspeicher für die Solaranlage frei zu halten, ist die Sonde im gesamten Juli und August außer Betrieb. Reicht an trüben Tagen die Solarenergie nicht aus, wird durch den Kessel nachgeheizt, während überschüssige Solarenergie bei vollkommen beladenem Pufferspeicher in die Sonde eingespeist wird. In den Übergangszeiten kommt es zu häufigem Wechsel der Betriebszustände: Man kann sowohl ein Umschalten von einer rein solaren Versorgung zu alleinigem Betrieb der Wärmpumpe beobachten, als auch Zustände bei denen alle drei Energiequellen genutzt werden (s. Abb. 7.16). Verschiedene Regelungseinstellungen wurden untersucht, um den regenerativen Anteil an der Wärmeversorgung zu maximieren. Wie Abb. 7.16 zeigt, kommt es aber noch zu häufigem Takten von Kessel und Wärmpumpe, das für einen realen Betrieb durch eine weitere Optimierung der Regelung vermieden werden sollte.

In Abb. 7.16 läßt sich das Zusammenspiel der einzelnen Komponenten in diesem multivalenten System gut erkennen. Am 8.4 wird auf Grund des Absinkens des Bedarfs und des Ansteigen des solaren Energieeintrags morgens zuerst der Kessel und gegen mittag auch die Wärmpumpe abgeschaltet. Dies wiederholt sich am 9.4, doch wegen des gesunkenen Bedarfs ist der Pufferspeicher mittags voll beladen und es wird auf Einspeicherung in die Tiefensonde umgeschaltet, was bei Wiederinbetriebnahme der Sonde am Abend zu erhöhter Sondenleistung führt. Um den Wirkungsgrad dieser kurzfristigen Speichervorgänge zu bestimmen, wurde die gleiche Simulation ohne die Möglichkeit der Einspeicherung durch-
Abbildung 7.16: Bedarf und Leistung von Kessel, Sonde, Wärmepumpe und Kollektorfeld von 8. bis 10. April
geführt. Die direkt genutzte Solarenergie fällt ohne Einspeicherung geringfügig größer aus, aber die Sondenleistung geht deutlich zurück. Aus den in Tab. 7.5 aufgelisteten Jahresenergiebeiträgen der beiden Simulationen ergibt sich ein Wirkungsgrad von über 90% für die kurzfristige Speicherung wie sie in der Simulation der Gesamtanlage auftritt. Dieser unterscheidet sich also deutlich von dem saisonalen Speicherwirkungsgrad, der mit der Sonde alleine bestimmt wurde.

<table>
<thead>
<tr>
<th>eingespeicherte</th>
<th>direkt genutzte</th>
<th>geförderte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solarenergie</td>
<td>Solarenergie</td>
<td>Sonnenenergie</td>
</tr>
<tr>
<td>Basisversion mit Einspeicherung:</td>
<td>998 MWh/a</td>
<td>2836 MWh/a</td>
</tr>
<tr>
<td>Basisversion ohne Einspeicherung:</td>
<td>193 MWh/a</td>
<td>995 MWh/a</td>
</tr>
</tbody>
</table>

Tabelle 7.5: Jahresenergiebeiträge von Sonde und Solarsystem mit und ohne Speicherung

Sensitivität

Neben den Regelungsstrategien wurden auch die Dimensionierungen der einzelnen Anlagkomponenten variiert. Während die Größe der Pufferspeicher über weite Bereiche kein sensitiver Parameter ist, haben eine Veränderung der Länge der Tiefensonde, der Größe des Kollektorfeldes oder der Leistung der Wärmepumpe die in Tab 7.6 dargestellten Auswirkungen auf die einzelnen Jahresenergiebeiträge.

<table>
<thead>
<tr>
<th>Kollektor</th>
<th>Tiefensonde</th>
<th>Wärme-</th>
<th>Kessel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basisversion:</td>
<td>12%</td>
<td>35%</td>
<td>38%</td>
</tr>
<tr>
<td>Wärmepumpe 325 kW:</td>
<td>12%</td>
<td>25%</td>
<td>36%</td>
</tr>
<tr>
<td>Kollektor 4000 m^2:</td>
<td>10%</td>
<td>36%</td>
<td>38%</td>
</tr>
<tr>
<td>Kollektor 3000 m^2, Sonde 3500 m:</td>
<td>10%</td>
<td>36%</td>
<td>38%</td>
</tr>
</tbody>
</table>

Tabelle 7.6: Jahresenergiebeiträge für unterschiedliche Dimensionierungen von Sonde, Wärmepumpe und Kollektorfläche

Da eine saisonale Speicherung in der Sonde nicht möglich ist, bewirkt eine Reduzierung der Kollektorfläche auf 4000m^2 gegenüber der Basisvariante nur einen geringfügigen Rückgang der regenerativen Deckungsrate. Das Leistungsvermögen der Wärmepumpe hingegen hat beträchtlichen Einfluß auf den Jahresertrag der Tiefensonde. Die notwendige Kühlleistung ist daher höher anzusetzen als die für den statischen Betrieb benötigte Dauerleistung.
Eine Verlängerung der Sonde hat ebenfalls starken Einfluß auf den Energieertrag, allerdings auch auf die Investitionen, da die Bohrkosten mit zunehmender Tiefe stark ansteigen.

Mit der Simulation eines Systems mit kleinerer Wärmepumpe wurden die Auswirkungen der langfristigen Auskühlung auf die Sondeleistung untersucht. Verringerte sich die regenerative Deckungsrate im zweiten Jahr noch um 1,3%, so betrug die Abnahme im neunten Jahr nur mehr weniger als 0,1%. Zur Berücksichtigung dieses Degradationsprozesses sollte daher bei der Bewertung des Simulationsergebnisses des ersten Jahres ein Abschlag von 3% erfolgen.

7.2.5 Wirtschaftlichkeitsbetrachtung

Energiekosten

In Anlehnung an die VDI 2067 wurden von der Firma Harpen EKT GmbH, die für Berlin / Biesdorf ein Angebot für eine Nahwärmeerzeugung mit GeSotherm S eingereicht hat, die Wärmeerzeugungskosten für alle untersuchten Varianten bestimmt [139]. Die Investitionskosten wurden mit Hilfe von Angeboten, Ausschreibungsergebnissen und Literaturangaben bestimmt und für die verbrauchs- und betriebsgebundenen Kosten wurde auf Erfahrungen von Harpen EKT zurückgegriffen. In Tab. 7.7 sind die ungefähren Investitionen für die Subsysteme und in Tab. 7.8 die resultierenden Wärmepreise für die verschiedenen Varianten aufgelistet (exakte Wärmepreiskalkulationen befinden sich im Anhang A).

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Kostensumme (TDM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiefensonde:</td>
<td>3.000</td>
</tr>
<tr>
<td>Wärmepumpe:</td>
<td>1.500</td>
</tr>
<tr>
<td>Solarsystem:</td>
<td>3.200</td>
</tr>
<tr>
<td>Kessel, Netz, Planung:</td>
<td>3.800</td>
</tr>
<tr>
<td>Gesamt:</td>
<td>11.500</td>
</tr>
</tbody>
</table>

Tabelle 7.7: Abgeschätzte Investitionen für die Subsysteme (Basisversion) in TDM

Die dargestellten Wärmepreise gelten für die momentanen Kosten eines Pilotprojektes ohne Förderung. Das Kostendegressionspotential durch Systemoptimierung, Skalenerträge und technische Innovationen, insbesondere für die Bohrkosten wurde, abgeschätzt und ein mittelfristig erreichbarer Wärmemischpreis von 144 DM/MWh kalkuliert.

7.2.6 Kostenoptimale Auslegung für eine erforderliche Deckungsrate

Der im vorhergehenden Kapitel berechnete Wärmepreis liegt noch deutlich über Der Preisspanne konventioneller Systeme. Einerseits kann der Preis durch Verkleinern einzelner Komponenten reduziert werden, andererseits wird ein derartiges System zumindest in naher Zukunft nur mit Förderung realisiert werden. Eine Förderung ist jedoch meist an das Erreichen einer bestimmten regenerativen Deckungsrate gebunden. Als weiteres Anwendungs-
beispiel für die numerische Optimierung dient daher die Auslegung eines Nahwärmesystems unter der Nebenbedingung einer einzuhal tenden regenerativen Deckungsrate. Als Zielfunktion wird der in der Wirtschaftlichkeitskom ponente (s. Kap. 3.1.3) berechnete Mischwärme- preis minimiert unter der Bedingung, daß maximal 60% des gesamten Bedarfs konventionell gedeckt werden. Als Optimierungsparameter können die Größe des Kollektorfeldes, das Volumen des Pufferspeichers und die Leistung der Wärmepumpe variiert werden. Ausgehend von der vorgestellten Basisvariante wurde das Modell vereinfacht, um Rechenzeiten zu erzielen, die eine Optimierung gestatten. Dazu wurde die Diskretisierung des Erdreichs und der Sonde vergrößert und die Regelung vereinfacht. Der dadurch bedingte Fehler bleibt jedoch deutlich unter 5%. Das wiederum vereinfachte Sondenmodell repräsentiert keine eigene Klasse, sondern ist nur eine mit anderen Parametern (Anzahl und Größe der Schichten sowie deren Stoffwerte) initialisierte Instanz der gleichen Klasse wie sie zur bloßen Simulation der Anlage verwendet wurde. Dennoch läßt sich für die unterschiedlichen Untersuchungen die in Abb. 7.17 dargestellte zweckorientierte Modellhierarchie aufstellen.

Da, bedingt durch die Übertragung des in Abb. 4.2 dargestellten Optimierers in die aktuelle SMILE -Version, im Moment nur Randwerte und keine anderen Nebenbedingungen formuliert werden können, wurde in das Modell ein sprunghaftes Ansteigen des Wärmepreises bei einem Gasverbrauch von mehr als 60% eines konventionellen Systems implementiert. Abb. 7.18 zeigt die Veränderung der einzelnen Komponenten während der Minimierung des Wärmepreises.

Tabelle 7.8: Deckungsraten und Wärmepreise für verschiedene Anlagendimensionierungen

<table>
<thead>
<tr>
<th>Variante</th>
<th>langjährige regenerative Deckungsrate</th>
<th>regenerative Wärmekosten DM/MWh</th>
<th>Wärmemischkosten DM/MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basisversion:</td>
<td>44 %</td>
<td>215</td>
<td>187</td>
</tr>
<tr>
<td>Nur Erdgas:</td>
<td>0 %</td>
<td>-</td>
<td>110</td>
</tr>
<tr>
<td>Nur Erdgas doppelter Erdgasp.:</td>
<td>0 %</td>
<td>-</td>
<td>162</td>
</tr>
<tr>
<td>Basis, doppelter Erdgasp.:</td>
<td>44 %</td>
<td>215</td>
<td>217</td>
</tr>
<tr>
<td>Wärmepumpe 325 kW:</td>
<td>34 %</td>
<td>260</td>
<td>184</td>
</tr>
<tr>
<td>Wärmepumpe 485 kW:</td>
<td>43 %</td>
<td>232</td>
<td>186</td>
</tr>
<tr>
<td>keine Sonde und Wärmepumpe:</td>
<td>17 %</td>
<td>274</td>
<td>150</td>
</tr>
<tr>
<td>ohne Kollektor:</td>
<td>41 %</td>
<td>136</td>
<td>143</td>
</tr>
<tr>
<td>Kollektor 4000 m²:</td>
<td>45 %</td>
<td>204</td>
<td>178</td>
</tr>
<tr>
<td>Kollektor 3000 m², Sonde 3500 m:</td>
<td>46 %</td>
<td>201</td>
<td>178</td>
</tr>
</tbody>
</table>
Abbildung 7.17: Zweckorientierte Modellhierarchie für das Tiefensondenmodell

In Abb. 7.18(c) ist die deutliche Reduzierung der Kollektorfläche, die auch eine Verkleinerung des Speichers (Abb. 7.18(b)) nach sich zieht, zu sehen. Dadurch wird der Wärme- preis gesenkt, wie die Entwicklung der Zielfunktion in Abb. 7.18(d) zeigt. Sowohl die minimal notwendige Kollektorfläche als auch die Nennleistung der Wärmepumpe werden durch diese Nebenbedingung bestimmt. Deren optimales Verhältnis ist durch zwei Effekte bedingt: Einerseits ist eine weitere Steigerung der Wärmepumpenleistung und Reduzierung des Solarsystems nicht mehr möglich, da mit der festgelegten Tiefensonde nur ein bestimmtes Wärmereservoir zur Verfügung steht. Der Massenstrom durch die Sonde ist an die Wärmepumpenleistung gekoppelt. Daher sinkt bei zu großen Wärmepumpen automatisch deren Eintrittstemperatur und damit ihre Leistungszahl. Andererseits wird, um die Nebenbedingung einzuhalten, bei zu kleinen Wärmepumpen das kostenintensivere Solarsystem vergrößert, bevor die Leistung der Sonde ausgeschöpft ist. Nicht berücksichtigt bei dieser Dimensionierung ist, daß gasbetriebene Wärmepumpen nur mit wenigen Nennleistungen erhältlich sind und deshalb nicht immer das optimale System umgesetzt werden kann. Doch liefert die Optimierung eine Zielvorstellung für die Auslegung solcher Systeme.
Abbildung 7.18: Entwicklung der Komponentendimensionierung bei der Minimierung des Wärmepreises unter der Nebenbedingung eines maximalen Gasverbrauchs
Kapitel 8
Zusammenfassung und Ausblick

dieser Betriebs- und Dimensionierungsparameter bestimmt.

Die größten solarthermischen Anlagen für solarangetützte Nahwärmesysteme benötigen einen zentralen saisonalen Speicher. Da durch dessen hohe Kosten die Wärmepreise deutlich steigen, wird durch Simulationen untersucht, wie weit ein rein passiver Speicher durch eine geothermische Tiefensonde ersetzt werden kann, die nicht nur Energie speichern kann, sondern vor allem der aktiven Erdwärmenutzung dient. Obwohl der Speicherwirkungsgrad der Sonde bei saisonalem Betrieb gering ist, kann bei geeigneter Dimensionierung ein System errichtet werden, in dem sich die solar- und die geothermische Komponente ergänzen. Um diese geeignete Dimensionierung für eine gewünschte regenerative Deckungsrate zu bestimmen, wird mit Hilfe des Optimierers der erzielbare Wärmepreis minimiert und so SMILE als Auslegungswerkzeug genutzt.

Trotz der Leistungsfähigkeit von SMILE, die an den gezeigten Beispielen demonstriert wird, bestehen noch Defizite, die gefüllt, und Verbesserungsmöglichkeiten, die ausgenutzt
werden müssen, damit sich der Anwenderkreis weiter verbreitet und das Potential von Smile als Basis für einen kontinuierlichen Modellaufbau und Wissensaustausch genutzt werden kann. Für den langfristigen wissenschaftlichen Nutzer uninteressant, aber für die Außenwirkung und Verbreitung von großer Bedeutung ist die Schaffung einer graphischen Benutzeroberfläche, mit der bestehende Komponenten verschaltet und Ergebnisse visualisiert werden können. Der für die folgende Smile -Version 1.1 vorgesehene Wechsel der Experimentssprache zur Scriptsprache Python mit ihren Schnittstellen zu graphischen Bibliotheken schafft dafür ideale Voraussetzungen.

Literaturverzeichnis

Forschung im Ingenieurwesen 62/12 Düsseldorf 1996.

Prentice Hall Software Series, New Jersey, 1994

Reading(USA), 1986.

[16] Meyer, B.: *Objekt-Oriented Software Construction*

[19] Cellier, F.: *Continuous System Modeling*

www.rational.com/uml.

[22] Thiel, M.: *Simulation eines industriellen Wohnbaus und dessen solarunterstützter Fernwärmeversorgung*

[23] Nytsch, C., Bartsch, G.: *Anwendung der Simulationsumgebung Smile zur Abbildung des zonalen und interzonalen Luftwechsels in Gebäuden*

[31] Fachinformationszentrum Karlsruhe(Hrsg.): *Testreferenzjahre – Meteologische Grundlagen für die technische Simulation von heiz- und raumlufttechnischen Anlagen* BINE Informationsdienst Bonn, Nr.1, Oktober 1991

[34] Ernst, T. Klein-Robbenhaar C., Nordwig, A., Schrag, T.: *Entwicklungs hybrider Systeme mit Smile*, Informatik in Forschung und Entwicklung, n.n. erschienen

[52] Holland, J.H.: *Genetic Algorithms and the Optimal Allocation of Trials*

[53] Rechenberg, I.: *Evolutionsstrategie '94*

[54] Lutz, S.: *Entwurf und Implementierung eines Optimierungswerkzeugs für eine Simulationsumgebung*

Code erhältlich unter andre@irs.umd.edu 1996.

[56] Nelder, J., Meat, R.: *A Simplex method for function minimization*

[57] Box, M.: *A new method of constrained optimization and a comparison with other methods*

[70] Schwanz, G.: *Erläuterungen zum Objekt Nahwärmeversorgung Wohngebiet Christian-Speck-Straße in Blankenhain*

[71] UFE-Solar GmbH: *Planungsunterlagen für die Solaranlage in einem Altenheim Leipzig*

[72] Reimann, P.: *Betriebserfahrung und Planungsvorschläge für mittelgroß solarthermische Brauchwasseranlagen*

[73] Croy, R., Peuser, A.: *Vergleich unterschiedlicher Nachheizsysteme für Solaranlagen*

[74] Gatzka, B.: *Auslegung und Dimensionierung großer Solaranlagen*

[76] Peuser, F., Croy, R.: *Erfahrungen mit Solaranlagen zur Warmwasserbereitung, 2. Auflage*

Programmbegleitung, Abschlussbericht zur 1. Projektphase (01.07.1993-30.06.1997),
BMBF-Forschungsvorhaben 0329601A, Febr. 1998

[80] Schwenk, Chr., Mack, M., Schreitmuller, K.: Große Solaranlagen - auf dem Weg in
die Wirtschaftlichkeit

DVGW-Legionellen Regelwerke

Warmwassersysteme
gwf-Gas/Erdgas, 139, 1998.

[83] Freitag T., Göring J., Schirmer U.: Erfahrungen beim Betrieb der Solaranlage zur
Brauchwassererwärmung im Gewerblichen Schulzentrum für Technik in Zschopau,

[84] Uecker M., Vajen K., Ratka A.: Dimensionierung von Plattenwärmeübertragern in
thermischen Solar Systemen

[85] Baebr H.D., Stephan K.: Wärme- und Stoffübertragung, Kapitel 3.7.4, Springer-Verlag,
Berlin/Heidelberg, 1994

[86] SWEP Wärmetauscher AG: SWEP-Auslegungsprogramm für gelötete Kompaktwärme-
tauscher, Version 97.11 und Preisliste September 1997 für gelötete Kompaktwärme-
tauscher mit Anhang

[87] Vajen, K.: Systemuntersuchungen und Modellierung solar unterstützter Warmwasser-
bereitstellungssysteme in Freibädern
Dissertation Philippus-Universität Marburg 1996.

[88] Uecker, M.: Große solarintegrierte Wärmeversorgungsanlagen Marburg-Wehrda - Mo-
dellierung und Bewertung der Wärmeübertrager
Diplomarbeit Philippus-Universität Marburg, 1996.

[90] Brandt G.: Stromsparende Heizungsumwälzpumpen - Seminar-Dokumentation, Hrsg.:
IMPULS-Programm Hessen, Darmstadt, 1998

[91] Flüglister E., Sigg R.: Umwälzpumpen, erschienen in: Strom rationell nutzen - Umfas-
sendes Grundlagenwissen und praktischer Leitfaden zur rationellen Verwendung von
Elektrizität, Hrsg.: Schweizer Bundesamt für Konjunkturfragen (Impulsprogramm),
Zürich: Verlag der Fachvereine, 1992

181
Feist, W.: *Der Bau von kostengünstigen Passivhäusern der 2. Generation*

Voss, K.: *Solarenergie bei der Sanierung von Gebäuden*

Verordnung über einen energiesparenden Wärmeschutz von Gebäuden 1995

Knorr-Siedow, T.: *Situation und Perspektive von Großsiedlungen*
Umwelttechnische Sanierung von Plattenbausiedlungen, Europäische Akademie für städtische Umwelt, Berlin 1996.

Beyer, J.: *Laufende Berliner Projekte zur Energieeinsparung im Gebäudebereich*

ASSMANN BERATEN UND PLANEN GmbH: *Nachträgliche Verbesserungen des Witterungs- und Wärmeschutzes von industriell errichteten Wohngebäuden auf dem Gebiet der ehemaligen DDR, Grundlagenstudie zur energiegerechten Bauschadenssanierung industriell errichteter Wohngebäude*

Tagungsband des Statusseminars: Energetische Verbesserung der Bausubstanz Leipzig 1996
BEO, Forschungszentrum Jülich, 1996.
Tagungsband des Statusseminars: Energetische Verbesserung der Bausubstanz Berlin 1997
BEO, Forschungszentrum Jülich, 1996.

Riedel, M., Bentscheff, S.: Automatisierung der Raumtemperaturregelung und Heizkostenverteilung sowie Komponenten ihrer Weiterentwicklung

Knabe, G.: Optimierung von Einrohrheizungsanlagen mit Heizkostenverteilung

Zöllner, G., Bindler, J. E.: Grundsatzuntersuchung für Heizkostenverteiler nach dem Verdunstungsprinzip zur oberen meßtechnischen Temperatur-Einsatzgrenze und zur Anwendbarkeit in Einrohrheizungsanlagen

Brachetti, H. E.: Technische und wirtschaftliche Fragen beim Einsatz von Wohnungsanschlußstationen mit Trinkwassererwärmung

Richter, W.: Modernisierung von Lüftungsanlagen

Knabe, G.: Optimierung von Einrohrheizungsanlagen mit Heizkostenverteilung sowie flankierenden Raumluftprozessen im industriellen Wohnungsbau der neuen Bundesländer

Rouvel, L.: Forschungsprojekt SANIREV - Sanierung von RLT-Anlagen mit hohen Energieverbräuchen

Witten, G.: Demonstrationsvorhaben zur Modernisierung von Wohngebäuden

183

hrsg. von Schramek, E.
Oldenbourg Verlag, München 1992.

Sonnenergie und Wärmetechnik, Bielefeld 1/94

Beton 12/96 München 1996.

Schweitzer Ingenieur und Architekt 3/97, Zürich 1997

Forschungsbericht des BMFT, FK:032924A, 1994

[123] ASSMANN BERATEN UND PLANEN GmbH: Transparente Wärmedämmung an Wohngebäuden der Köpenicker Wohnungsgesellschaft mbH

Anhang A

A.1 Schaltskizzen

Magdeburg
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Architektur des SMILE-Systems</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Objektkonfiguration des Lösers [6]</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Vererbungsprinzip</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>UML-Notation für Vererbung und Aggregierung</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Aggregierungsprinzip</td>
<td>24</td>
</tr>
<tr>
<td>3.1</td>
<td>Aufteilung der Komponentenbibliothek in Sachgebiete</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Aufteilung der Luftkollektormodelle in einzelne Komponenten</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>Aufbau eines Gebäudes aus Zonen und einer Zone aus einzelnen Elementen</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>Vererbungsstruktur der Wandkomponenten</td>
<td>33</td>
</tr>
<tr>
<td>3.5</td>
<td>Objektorientierte Strukturierung der Speicherkomponenten</td>
<td>35</td>
</tr>
<tr>
<td>3.6</td>
<td>Enthalpie- und Wärmeströme um eine Speicherschicht</td>
<td>36</td>
</tr>
<tr>
<td>3.7</td>
<td>Objektorientierte Strukturierung am Beispiel einer Solaranlage</td>
<td>39</td>
</tr>
<tr>
<td>3.8</td>
<td>Vergleich der Kollektorausstrittstemperaturen bei einer Durchflußrate von 50 kg/m²s für verschiedene Knotenanzahlen und T_{out} bzw. T_{mean} als Kennlinientemperatur (Gesamt)</td>
<td>41</td>
</tr>
<tr>
<td>3.9</td>
<td>Vergleich der Kollektorausstrittstemperaturen für eine Durchflußrate von 20 kg/m²s für verschiedene Knotenanzahlen und T_{out} bzw. T_{mean} als Kennlinientemperatur (Ausschnitt)</td>
<td>41</td>
</tr>
<tr>
<td>3.10</td>
<td>Verzögerung eines Temperatursignals im Doppelrohr (siehe Abb. 7.10)</td>
<td>42</td>
</tr>
<tr>
<td>3.11</td>
<td>Vergleich der radialen Temperaturausbreitung im Erdreich zwischen SMILE und dem Programm TFELD</td>
<td>42</td>
</tr>
<tr>
<td>3.12</td>
<td>Vergleich der simulierten mit der gemessenen Sonnenausstrittstemperatur (Eintrittstemperatur aus der Messung in die Simulation übernommen)</td>
<td>43</td>
</tr>
<tr>
<td>3.13</td>
<td>Abweichungen gegenüber der Messung bei fortschreitender Anlagensimulation</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Zielfunktionsgebirge für ein 2-parametriges Problem</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Objektorientiertes Framework zur Anbindung von Optimierungsverfahren an SMILE [40]</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Simplexverfahren im zweidimensionalen Raum</td>
<td>59</td>
</tr>
</tbody>
</table>
4.4 Lokales Minimum bei der Optimierung eines Speichervolumens [66] 62
4.5 Vergleich verschiedener Optimierungsverfahren für eine Solaranlage mit den optimierten Parametern $V_{speicher}, \alpha_{Kollektor}, \dot{m}_{Beladung}$ und einer einfachen ökonomischen Zielfunktion [40] 63
4.6 Allgemeines Modell eines künstlichen Neurons [66] 65
4.7 Vergleich der Abweichungen $\delta_{m}(\dot{G}_{g,tilt}, \dot{G}_{g,tilt,red})$ und $\delta_{\sigma}(\dot{G}_{g,tilt}, \dot{G}_{g,tilt,red})$ für $\lambda = 1$ und $\lambda = 4$ [66] 68
4.8 Vergleich der Datenstrukturen für $n = 25$ und $\lambda = 4$ [66] 69
4.9 Abweichungen der verschiedenen Parameteroptima vom ursprünglichen Optimum [66] 70
4.10 Entwicklung der Abweichungen der Parameteroptima während der Optimierungsrechnung [66] 71
4.11 Entwicklung der Abweichungen der Parameteroptima mit steigender Simulationszeit für das Compet-Verfahren [66] 72
4.12 Entwicklung der Abweichungen der Parameteroptima mit steigender Simulationszeit für das Mittelwert-Verfahren [66] 72
5.1 Unterschied zwischen Zweispeicher- und Pufferspeicheranlagen 76
5.2 Systemnutzungsgrad und Wärmepreis in Abhängigkeit von der Deckungsrate für eine Beispielanlage (Berlin, 4000 l Tagesverbrauch) [74] 77
5.3 Parallele und serielle Einbindung der Nachheizung im Pufferkreis 78
5.4 Pufferspeicheranlage nach dem Durchlauf- und Speicherladekonzept 80
5.5 Vergleich der gemessenen und der simulierten Speichertemperaturen in Berlin/Hellersdorf [22] 82
5.6 Vereinfachtes Schaltschema der Solaranlage der Universität Magdeburg [21] 83
5.7 Vergleich der simulierten und der gemessenen Speichertemperaturen in Magdeburg 83
5.8 Entladeleistungen und Pufferspeichertemperaturen für das Durchlauf- und das Speicherladesystem 85
5.9 Stationäres Leistungskennfeld des Beladewärmeübertragers mit p/p_{ref} als Kurvenparameter nach [84]. 89
5.10 Vererbungshierarchie der Wärmeübertragermodule 90
5.11 Abhängigkeit des Wärmeübergangskoeffizienten für den Bautyp SWEP,B57 von der Temperatur 92
5.12 Abhängigkeit des Wärmeübergangskoeffizienten für den Bautyp SWEP,B57 von der Strömungsgeschwindigkeit 92
5.13 Ertragskennfeld Beladewärmeübertrager mit p/p_{ref} als Kurvenparameter [29] 93
5.14 Veränderungen der Temperaturspreizung (zwischen oberster und unterster Temperatur) im Speicher durch den Belademassenstrom 94
5.15 Kostenkennfeld für den Beladewärmeübertrager mit solaren Zusatzwärme- kosten in Pf/kWh als Kurvenparameter [29] 95
5.16 Kostenennfeld Beladewärmetübertrager mit solarem Wärmepreis in Pf/kWh als Kurvenparameter [29] ... 96
5.17 Unterschiedliche Kostenoptimierung für Durchlauf- und Speicherladeanlagen .. 96
5.18 Entwicklung der Parameter und der Zielfunktion Wärmepreis mit fortschreitender Optimierung .. 98

6.1 Schema von Ein- und Zweirohrheizungen .. 106
6.2 Energieeinsparungen bei der Modernisierung [106] .. 108
6.3 Aufteilung des Hellersdorfer Plattenbaus in Zonen 110
6.4 Struktur des Hellersdorfer Gesamtmodells .. 110
6.5 Simulierte Hellersdorfer Heizwärmebräuche im Vergleich zum gemessenen [22] .. 111
6.6 Jahreszeitlicher Verlauf der Wärmegewinne des Gebäudes [22] 112
6.7 Aufteilung der Wärmeverluste vor und nach der Sanierung [22] 113
6.8 Schema der Friedländer Heizungs- und Brauchwasseranlage 117
6.9 Friedländer Anlage als System von Strömungswiderständen 119
6.10 SMILE-Struktur des Gesamtmodells .. 119
6.11 Schaltstruktur des Systems .. 123
6.12 Monatliche Wärmeverluste des Gebäudes .. 126
6.13 Anteile der einzelnen Wärmequellen während der Heizperiode 127
6.14 Anteile an Raumheizung .. 128
6.15 Ventilatorenergie .. 129
6.16 Verschiedene Verschaltungsvarianten der Luftheizung 130
6.17 Kopplung des Wand- und des Kollektormodells zum Fassadenkollektor für Detailuntersuchungen des Wärmetransportes in der Fassade 132
6.18 Temperaturverläufe am 6. März in der Südfassade .. 133
6.19 Angepasste Modellgenauigkeit bei der Plattenbausanierung 135
6.20 Logisches Schaltbild für die Kollektorregelung ... 135
6.21 Minimierung des Primärenergieaufwands ... 136
6.22 Veränderung der Regelungsparameter während der Optimierung 137
6.23 Solare Beiträge zur Deckung des Heizungs- und Brauchwasserbedarfs 137

7.1 Prinzipskizzen verschiedener solarer Nahwärmesysteme 142
7.2 Konzepte für die Langzeitwärmespeicherung [181] .. 147
7.3 Speicherkosten von verschiedenen projektierten und ausgeführten Langzeit-Wärmespeichern [153] ... 148
7.4 Haus- und Solarübergabestation beim Dreileiternetz [169] 148
7.5 Netztemperaturen in Hamburg - Vergleich Messung und TRNSYS-Simulation [176] .. 150
7.6 Speichertemperaturen in Hamburg - Vergleich Messung und TRNSYS-Simulation [176] .. 150
7.7 Messung des thermischen Verhaltens eines Speicherladesystems in Friedrichshafen [177] 152
7.8 Diskretisiertes Zylindermodell .. 156
7.9 Darstellung des möglichen Diskretisierungsfehlers. T1, T2: Temperaturen zweier benachbarter Elemente mit unterschiedlicher Wärmekapazität [181] 157
7.10 Aufbau des Tiefensondenmodells 157
7.11 Struktur des Erdreichmodells .. 158
7.12 Aufbau des Erdsondenmodells aus Einzelmodellen 158
7.13 Schaltbild des GeSothermS-Systems 160
7.14 Temperaturverläufe um die Sonde in 2500m Tiefe nach unterschiedlichen Betriebsphasen ... 161
7.15 Sondenleistung im kontinuierlichen Betrieb, bei ein-, zwei- und dreimonatiger Einspeicherung von 95° warmen Wasser (3kg/s) und anschließend gesteigerter Extraktion ... 162
7.16 Bedarf und Leistung von Kessel, Sonde, Wärmepumpe und Kollektorfeld vom 8. bis 10. April ... 164
7.17 Zweckorientierte Modellhierarchie für das Tiefensondenmodell ... 168
7.18 Entwicklung der Komponentendimensionierung bei der Minimierung des Wärmepreises unter der Nebenbedingung eines maximalen Gasverbrauchs . 169
Tabellenverzeichnis

3.1	Belegung der Schnittstellen in Stoffkreisläufen	31
5.1	Vor- und Nachteile der Entladestrategien	80
5.2	Nutzungsgrade und Deckungsraten für verschiedene Regelungsstrategien der Hellersdorfer Anlage (Nr. 5 nur simuliert, Nr. 1 - 4 auch gemessen.)	82
5.3	Parameter für stationäres Leistungskennfeld.	88
5.4	Richtwerte für die Auslegung der Wärmeübertrager.	97
6.1	Maximale Wärmedurchgangskoeffizienten nach der WSVO 95	102
6.2	Klassifizierung der Typenbauten nach [100]	104
6.3	Wärmedurchgangskoeffizienten der Hellersdorfer Gebäudehülle vor und nach der Sanierung	108
6.4	Berechneter Jahresheizwärmebedarf mit unterschiedlichen Methoden bzw. Randbedingungen	112
6.5	Wärmedurchgangskoeffizienten vor und nach der Sanierung in Friedland	116
6.6	Anlagenparameter	118
6.7	Regelgrößen der Heizkomponenten	122
6.8	Ein- und Ausschaltbedingungen der Betriebszustände	124
6.9	Kontinuierlich geregelte Größen	125
6.10	Wirkungsgrade des Solarsystems	128
6.11	Geplante Kosten der Sanierung in TDM	138
7.1	Vor- und Nachteile von Nahwärmesystemen gegenüber Einzellösungen	141
7.2	Kosten verschiedener Kollektorfelder in Nahwärmesystemen, netto, inkl. Montage und Verrohrung, nach [153]	144
7.3	Rahmenbedingungen für das Versorgungssystem	159
7.4	Wirkungsgrade der Speicherförderung	163
7.5	Jahresenergiebeiträge von Sonde und Solarsystem mit und ohne Speicherung	165
7.6	Jahresenergiebeiträge für unterschiedliche Dimensionierungen von Sonde, Wärmepumpe und Kollektorfläche	165
7.7	Abgeschätzte Investitionen für die Subsysteme (Basisversion)in TDM	166
7.8	Deckungsraten und Wärmepreise für verschiedene Anlagendimensionierungen	167
Zeichenerklärung

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Beschreibung</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fläche</td>
<td>m²</td>
</tr>
<tr>
<td>a</td>
<td>Aktivierungsfunktion</td>
<td>-</td>
</tr>
<tr>
<td>a</td>
<td>spezifische Wärmetauscherfläche</td>
<td>-</td>
</tr>
<tr>
<td>c</td>
<td>Gewinnerneuron</td>
<td>-</td>
</tr>
<tr>
<td>c, c_p</td>
<td>spezifische Wärmekapazität</td>
<td>J/(kg·K)</td>
</tr>
<tr>
<td>C</td>
<td>Wärmekapazität</td>
<td>J/K</td>
</tr>
<tr>
<td>d</td>
<td>geometrischer Durchmesser</td>
<td>m</td>
</tr>
<tr>
<td>d</td>
<td>Abstand zu Nachbarneuronen</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td>Absorberwirkungsgradfaktor</td>
<td>-</td>
</tr>
<tr>
<td>f_{sol}</td>
<td>Deckungsrate</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>Strahlung</td>
<td>W/m²</td>
</tr>
<tr>
<td>\dot{G}_{diff}</td>
<td>diffuse Solarstrahlung</td>
<td>W/m²</td>
</tr>
<tr>
<td>\dot{G}_{dir}</td>
<td>direkte Solarstrahlung</td>
<td>W/m²</td>
</tr>
<tr>
<td>$\dot{G}_{g,tilt}$</td>
<td>Globalstrahlung auf geneigte Fläche</td>
<td>W/m²</td>
</tr>
<tr>
<td>h</td>
<td>Distanzfunktion</td>
<td>-</td>
</tr>
<tr>
<td>k</td>
<td>Wärmedurchgangskoeffizient</td>
<td>W/(m²·K)</td>
</tr>
<tr>
<td>K</td>
<td>Kosten</td>
<td>DM</td>
</tr>
<tr>
<td>L</td>
<td>Wärmeleitwert</td>
<td>W/K</td>
</tr>
<tr>
<td>\mathcal{L}</td>
<td>Lagrangeform</td>
<td>-</td>
</tr>
<tr>
<td>LW</td>
<td>Luftwechsel</td>
<td>$rac{1}{h}$</td>
</tr>
<tr>
<td>l</td>
<td>Länge</td>
<td>m</td>
</tr>
<tr>
<td>m</td>
<td>Masse</td>
<td>kg</td>
</tr>
<tr>
<td>\dot{m}</td>
<td>Massenstrom</td>
<td>kg/s</td>
</tr>
<tr>
<td>P</td>
<td>Leistung</td>
<td>W</td>
</tr>
<tr>
<td>P</td>
<td>Preis</td>
<td>DM/MWh</td>
</tr>
<tr>
<td>p</td>
<td>spezif. Leistung (auf Kollektorfläche bezogen)</td>
<td>W/m²</td>
</tr>
<tr>
<td>p</td>
<td>absoluter Druck</td>
<td>Pa</td>
</tr>
<tr>
<td>Q</td>
<td>Wärmemenge</td>
<td>kWh</td>
</tr>
<tr>
<td>\dot{Q}</td>
<td>Wärmestrom</td>
<td>W</td>
</tr>
<tr>
<td>\dot{q}</td>
<td>spezifischer Wärmestrom</td>
<td>W/m²</td>
</tr>
<tr>
<td>q</td>
<td>Selektionsdruck</td>
<td>-</td>
</tr>
<tr>
<td>Zeichen</td>
<td>Beschreibung</td>
<td>Einheit</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>(r)</td>
<td>Massenstromverhältnis</td>
<td>-</td>
</tr>
<tr>
<td>(T)</td>
<td>Temperatur</td>
<td>K</td>
</tr>
<tr>
<td>(V)</td>
<td>Volumen</td>
<td>(m^3)</td>
</tr>
<tr>
<td>(\dot{V})</td>
<td>Volumenstrom</td>
<td>(m^3/s)</td>
</tr>
<tr>
<td>(v)</td>
<td>Geschwindigkeit</td>
<td>m/s</td>
</tr>
<tr>
<td>(w)</td>
<td>Verbindungsstärke bzw. Gewicht</td>
<td>-</td>
</tr>
<tr>
<td>(W)</td>
<td>Gewichtsvektor</td>
<td>-</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Wärmeübergangskoeffizient</td>
<td>(W/(m^2\cdot K))</td>
</tr>
<tr>
<td>(\delta_{mt})</td>
<td>Abweichung des Mittelwertes</td>
<td>-</td>
</tr>
<tr>
<td>(\delta_{\sigma})</td>
<td>Abweichung der Standartabweichung</td>
<td>-</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Lernrate</td>
<td>-</td>
</tr>
<tr>
<td>(\eta_{kol})</td>
<td>Kollektorwirkungsgrad</td>
<td>-</td>
</tr>
<tr>
<td>(\eta_G)</td>
<td>Gesamtwirkungsgrad</td>
<td>-</td>
</tr>
<tr>
<td>(\eta_S)</td>
<td>Speicherwirkungsgrad</td>
<td>-</td>
</tr>
<tr>
<td>(\eta_{sys})</td>
<td>Systemwirkungsgrad</td>
<td>-</td>
</tr>
<tr>
<td>(\eta_V)</td>
<td>Verschiebungswirkungsgrad</td>
<td>-</td>
</tr>
<tr>
<td>(\vartheta)</td>
<td>Reizschwelle bzw. Schwellwert</td>
<td>-</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Tagesanzahl einer Periode</td>
<td>-</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>spezifische Wärmeübergangskoeffizient</td>
<td>(W/(m\cdot K))</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Anzahl der Bereiche</td>
<td>-</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Übertragungsfunktion</td>
<td>-</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Standardabweichung</td>
<td>-</td>
</tr>
<tr>
<td>(\mathcal{D})</td>
<td>Definitionsbereich</td>
<td>-</td>
</tr>
<tr>
<td>(\mathcal{G})</td>
<td>Lösungsbereich</td>
<td>-</td>
</tr>
<tr>
<td>(\mathcal{R})</td>
<td>Menge der reellen Zahlen</td>
<td>-</td>
</tr>
</tbody>
</table>