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Feedback control of inertial microfluidics using
axial control forces†

Christopher Prohm* and Holger Stark

Inertial microfluidics is a promising tool for many lab-on-a-chip applications. Particles in channel flows

with Reynolds numbers above one undergo cross-streamline migration to a discrete set of equilibrium

positions in square and rectangular channel cross sections. This effect has been used extensively for particle

sorting and the analysis of particle properties. Using the lattice Boltzmann method, we determined the

equilibrium positions in square and rectangular cross sections and classify their types of stability for different

Reynolds numbers, particle sizes, and channel aspect ratios. Our findings thereby help to designmicrofluidic

channels for particle sorting. Furthermore, we demonstrated how an axial control force, which slows

down the particles and shifts the stable equilibrium position towards the channel center. Ultimately, the

particles then stay on the centerline for forces exceeding the threshold value. This effect is sensitive to the

particle size and channel Reynolds number and therefore suggests an efficient method for particle separation.

In combination with a hysteretic feedback scheme, we can even increase the particle throughput.
1. Introduction

In recent years, a number of devices using fluid inertia in
microfluidic setups have been proposed for applications such
as particle steering and sorting or for the whole range of flow
cytometric tasks in biomedical applications. They include cell
counting, cell sorting, and mechanical phenotyping.1–4 These
devices rely on cross-streamline migration of solute particles
subjected to fluid flow where fluid inertia cannot be neglected
as is commonly done in microfluidics. In this article we have
demonstrated how control forces along the channel axis influ-
ence inertial cross-streamline migration and how feedback
control using axial forces enhances particle throughput.

Segré and Silberberg, who investigated colloidal particles
in circular channels, were the first to attribute cross-streamline
migration to fluid inertia.5 They observed that flowing particles
gathered on a circular annulus about halfway between
the channel center and the wall. This effect is connected to an
inertial lift force in the radial direction. It becomes zero right
on the annulus which marks degenerate stable equilibrium
positions in the circular cross section. For microfluidic appli-
cations, channels with a rectangular cross section are used
since they can be fabricatedmore easily. The reduced symmetry
qualitatively changes the lift force profile and only a discrete
set of equilibrium positions remain.6 In square channels,
they are typically found halfway between the channel center and
the centers of the channel walls.7 In numerical studies, migra-
tion to positions on the diagonals are also observed.8,9 In rect-
angular channels, the number of equilibrium positions is
further reduced to two when the aspect ratio strongly deviates
from one.1,10 The particles all gather in front of the long channel
walls. The exact equilibrium positions are of special importance,
as they ultimately determine how devices function based on
inertial microfluidics.1–3

Inertial lift forces that drive particles away from the chan-
nel center are caused by the non-zero curvature or the para-
bolic shape of the Poiseuille flow profile.6,11 Only close to the
channel walls, wall-induced lift forces push particles towards
the center. In channels with a rectangular cross section, the
curvature of the flow profile is strongly modified. Along the
short main axis, the flow profile remains approximately para-
bolic, while along the long main axis it almost assumes the
shape of a plug flow with strongly reduced curvature in the
center when the cross section is strongly elongated.12 The
large difference in curvature along the two main axes
modifies the lift force profiles in both directions.6 We will
investigate them in more detail in this article.

The method of matched asymptotic expansion allows an
analytic treatment of inertia-induced migration and calcula-
tion of the lift force profiles.13,14 As the method requires the
particle radius to be much smaller than the channel diame-
ter, it is hardly applicable to microfluidic particle flow, where
this assumption is often violated. Here, numerical approaches
provide further insight. Previous studies in three dimensions
ip, 2014, 14, 2115–2123 | 2115
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Fig. 1 A schematic of the microfluidic channel (a) and the xz plane at
y = 0 (b). Further explanations are given in the main text. It is sufficient
to only determine the inertial lift force flift in the red quadrant due to
the symmetry of the rectangular cross section.
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have used the lattice Boltzmann method,9 the finite element
method,6 ormulti-particle collision dynamics.15

Using additional control methods such as optical lattices16

or optimal control17 can increase the efficiency of microfluidic
devices. In an attractive experiment, Kim and Yoo demonstrated
a method to focus particles to the channel center.18 They
applied an electric field along the channel axis to slow down
the particles relative to the external Poiseuille flow, which
induces a Saffmann force towards the channel center.19 The
experiments were performed at Reynolds number Re ≈ 0.05.
We will take up this idea and study, at moderate Reynolds
numbers, how the inertial lift force profile changes under an
axial control force.

A more sophisticated method to operate a system is feed-
back control where the control action depends on the current
state. It is widely used in engineering and everyday life.20 In
microfluidic systems, optical tweezers combined with feed-
back control provide a strategy to measure microscopic forces
in polymers andmolecularmotors.21–23 In lab-on-a-chip devices,
several strategies are suggested for sorting particles. They all
monitor particle flow directly and use the recorded signal to
implement feedback-controlled optical manipulation.24–26 We
will apply a simple form of feedback control to keep the parti-
cles in the channel center.

In this paper, we use the lattice Boltzmann method to
investigate several aspects of inertial microfluidics. We study
in detail the equilibrium particle positions in microfluidic
channels with square and rectangular cross sections and cat-
egorize their types of stability. In particular, we show how,
for channels with sufficiently elongated cross sections, colloi-
dal particles are constrained to move in a plane. We also
show how the inertial lift force profile is manipulated by
applying an axial control force such that the stable equilib-
rium position gradually moves to the channel center. The
effect strongly depends on the particle size and therefore can
be applied for particle sorting. Finally, using the axial force,
we implement hysteretic feedback control to keep the particle
close to the channel center and demonstrate how this enhances
particle throughput compared to the case of constant forcing.
In the conclusions, we refer to the experiments of Kim and
Yoo18 as potential experimental approaches to realize the axial
feedback control.

The article is organized as follows: in sect. 2, we introduce
themicrofluidic geometry, explain details of the lattice Boltzmann
implementation, and shortly introduce Langevin dynamics
simulations; our results on equilibrium positions and lift-
force profiles in square and rectangular channels are reported
in sect. 3; we demonstrate the influence of axial control forces
on the lift force profile in sect. 4; we combine it with feedback
control in sect. 5; and we finish with the conclusions in sect. 6.

2 Methods

In this section, we first introduce the microfluidic system.
We then shortly discuss the lattice Boltzmann method and
refer to the details in the appendix. We introduce the procedure
2116 | Lab Chip, 2014, 14, 2115–2123
used to determine the inertial lift forces, and finally the
Langevin dynamics for our feedback-control scheme.

2.1 Microfluidic system

We investigated a microfluidic channel with a rectangular
cross section of height 2h, width 2w, and length L as illus-
trated in Fig. 1. We chose the coordinate system such that
the z axis coincides with the channel axis and the x and y axes
define the horizontal and vertical directions in the cross sec-
tion, respectively. The channel center corresponds to x = y = 0.
The channel was filled by a Newtonian fluid with density ρ

and kinematic viscosity ν and a pressure driven Poiseuille flow
was applied.12 The maximum flow velocity u0 at the channel
center determines the Reynolds number Re = 2wu0/ν. The
implementation of the Poiseuille flow within the lattice
Boltzmannmethod will be discussed in the next section.

Inside the channel, we placed a neutrally buoyant colloid
with radius a. It follows the streamlines of the applied
Poiseuille flow with an axial velocity vz close the external
Poiseuille flow velocity. Due to the fluid inertia the colloidal
particle experiences a lateral lift force flift, which leads to
cross-streamline migration. In sects. 4 and 5, we also applied
an additional axial control force fctl to the colloidal particle.
We used periodic boundary conditions along the axial direc-
tion and a channel length L = 20a to ensure that the periodic
colloidal images do not interact with each other and thereby
do not influence our results.

2.2 The lattice Boltzmann method

We used the lattice Boltzmann method (LBM) to solve the
Navier–Stokes equations of a Newtonian fluid.27,28 LBM employs
an ensemble of point particles that perform alternating steps of
free streaming and collisions. The particles are constrained to
move on a cubic lattice with a lattice spacing Δx. This restricts

the particle velocities to a discrete set of vectors
�ci such that

after each streaming step with duration Δt the new particle
positions again lie on the lattice. In LBM, one describes the
This journal is © The Royal Society of Chemistry 2014
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number of particles at lattice point �x with velocity
�ci by the

distribution function f x ti ( )�
 . The first two moments of this

distribution function give the hydrodynamic variables: number

density ( ) ( )� �x t f x ti
i

   and velocity
� � � �u x t c f x ti i

i
( ) ,   1 .

Further details of our implementation are found in sect. S1 of
the ESI.†

We implemented the pressure driven Poiseuille flow by

imposing a constant body force
�g on the fluid such that the

fluid velocity
� �u x t( ) used to calculate the equilibrium distri-

bution fi
eq (see ESI†) is replaced by29

� � �u u g   (1)

We confirmed as shown in Fig. 2 that this procedure does
indeed reproduce the analytically known Poiseuille flow profile.

We placed a colloid in the Poiseuille flow and studied its

position �r , velocity �v , and angular velocity �
 . We com-

bined the colloid to the fluid using the Inamuro Immersed
Boundary (IB) method30 with “five iterations”. For reference,
we presented a short summary of our implementation in
sect. S2 of the ESI.†

We used the palabos LB code31 to implement the LB algo-
rithm. We modified the immersed boundary (IB) algorithm
to correctly account for the periodic boundary conditions
along the channel axis and implemented the colloid dynam-
ics according to eqn (S9) in the ESI.†

Along the channel width, we used a total of 101 lattice
sites including the boundaries. We implemented a cubic sim-
ulation grid and chose the number of lattice sites in the
other two directions accordingly. We chose the maximum
flow velocity in the channel such that the Mach number sat-
isfies Ma = umax/cs ≤ 0.1. Finally, we adjusted the kinematic
viscosity by the relaxation time τ and thereby fixed the
desired Reynolds number Re = umaxw/v. When τ > 1, we
readjusted the Mach number such that τ = 1, as it has been
shown that the accuracy of the combined LBM-IB methods
greatly decreases for relaxation times larger than one.32,33
This journal is © The Royal Society of Chemistry 2014

Fig. 2 Velocity profiles of the Poiseuille flow in the rectangular
channel plotted at x = 0 along the y axis (the long cross sectional axis)
for different aspect ratios w/h. The solid lines show the analytical form
of the profiles,12 while the symbols show results of the LB simulations.
2.3 Determining inertial lift forces

To determine inertial lift forces from LB simulations, we
constrained the colloid to a fixed lateral position by simply
disregarding any colloid motion in the cross-sectional plane.
However, we did not impose any constraints on the axial and
rotational motions.

To speed up our simulations, we initialized the system
with the analytical solution of the rectangular Poiseuille flow
and gave the colloid an initial axial velocity vz = 0.8u0, where
u0 is the flow velocity at the channel center. Going through
transient dynamics, the system relaxes rapidly into a unique
steady state within the first 1000 time steps. We continued the
time-evolution up to the vortex diffusion time T = 0.5w2/v and
determined the inertial lift force by averaging the colloidal force

fluid
�
F from eqn (S7) in the ESI† over the last 2000 time steps

of the simulations. We demonstrated in previous studies15,17

that this procedure does indeed reproduce correct lift-force
profiles.

2.4 Langevin dynamics simulations

As demonstrated below, axial control forces influence the
inertial lift-force profiles which we determined in the LB sim-
ulations. We then used these profiles in Langevin dynamics
simulations of the colloidal motion to investigate the poten-
tial benefit of feedback control using axial control forces.

We restricted ourselves to channels with an aspect ratio
w/h = 1/3, which ensures that the colloidal dynamics essen-
tially takes place in the xz plane as discussed in sect. 3.2. As
we will discuss in sect. 4, the inertial lift force flift and the
axial velocity vz depend on the applied axial control force fctl.
We also included thermal noise to exploit the stability of the
fix points of the colloidal motion under feedback control. Fol-
lowing our work in ref. 17, we only included thermal noise
along the lateral direction, as the axial velocities are much
larger than the lateral ones. Then, the Langevin equations of
motion in the lateral and axial directions are given by

 
d
d lift ctlt
x f x f t   ( ) ( ) (2)

d
d ctlt
z v x fz  ( ) (3)

where the white noise force has zero mean, 〈η(t)〉 = 0, and its
variance obeys the fluctuation–dissipation theorem, 〈η(t)η(t′)〉 =
2kBTξδ(t − t′). We solved the Langevin equations using the con-
ventional Euler scheme.34 The parameters were chosen for a
channel with width 2w = 20 μmand at temperature T = 300 K.

3. Inertial lift forces for different
channel geometries

In channels with circular cross sections, inertial lift forces
drive colloids to a circular annulus with a radius of about
Lab Chip, 2014, 14, 2115–2123 | 2117
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half the channel radius. The axial symmetry is reduced in chan-
nels with square or rectangular cross sections and instead of an
annulus, particles accumulate at a discrete set of stable equi-
librium positions.7 In addition, the system also shows unstable
equilibrium positions, where the lift force also vanishes but
particles migrate away from them upon a small disturbance.

In the following two sections, we will investigate the loca-
tion and the stability of the equilibrium positions for different
particle sizes, Reynolds numbers, and channel geometries.
We will discuss in detail how we can tailor colloidal motion
by varying the aspect ratio of the channel cross section. Due
to symmetry, we can restrict our discussion to the upper right
quadrant shown in Fig. 1. In Fig. 3, we show the forces acting
on a particle with radius a/w = 0.4 and the resulting trajecto-
ries at Reynolds number Re = 10 for different channel cross
sections. We will discuss the relevant features first for a chan-
nel with square cross sections and then for general rectangu-
lar cross sections.
3.1 Square channels

In a channel with a square cross section and at Reynolds
number Re = 10, a particle with radius a/w = 0.4 experiences
2118 | Lab Chip, 2014, 14, 2115–2123

Fig. 3 Inertial lift forces (black arrows) of a colloidal particle with
radius a/w = 0.4 in a pressure driven flow at Re = 10. The forces are
plotted in the upper right quadrant of the microchannel cross section
for aspect ratios w/h = 1 (a), w/h = 1/2 (b) and w/h = 1/3 (c). The gray
lines indicate the trajectories of the colloidal particle as it experiences
the lift forces. Lift forces larger than 0.35ρν2 are not shown, as their
positions are indicated by squares. Also indicated are the stable and
unstable equilibrium positions. With “saddle” we denote the
equilibrium positions unstable only along one direction.
the inertial force profile shown in Fig. 3(a). The gray lines
indicate possible trajectories followed by the particles, which
are free to migrate. Stable and unstable equilibrium positions
are also indicated. We observed that the migration roughly
occurs in two steps. From the channel center and the chan-
nel walls, strong radial forces drive the particle onto an
almost circular annulus at about r ≈ 0.4w. Since the forces
are strong, migration occurs very rapidly. Then, the particle
slowly migrates along the annulus to its equilibrium position
here situated on the diagonal direction.

Together with the channel center there are in total nine
equilibrium positions or fix points in the channel cross sec-
tion. Four of them are indicated in Fig. 3(a). The channel
center is always unstable and the particle migrates away from
it. There are four fix points along the diagonal axes and four
along the main axes (x, y directions) of the channel cross
section. We plotted their distances from the center versus
the colloid radius for several Re as shown in Fig. 4 and also
indicated their stability. The fix points along the diagonals are
always positioned further away from the channel center as
there is more space for the particle. Consistent with the previ-
ous results,6,9,15 we observed how both types of equilibrium
positions move closer towards the channel center with increas-
ing particle size and decreasing Reynolds number. Most impor-
tantly, small particles at high Reynolds numbers have their
stable equilibrium positions on the main axes, while larger
particles at lower Reynolds number move to the equilibrium
positions on the diagonals. This is a new result compared to
previous treatments.6,8,9

In the literature, equilibrium positions in square channels
have been reported along the main axes,6 along the diagonals
for large deformable drops8 or on both axes.9 In contrast to
ref. 9 we observed that the particles move either to the diago-
nal equilibrium positions or to the fix points on the main
axes but the equilibrium positions are never stable at the
same time as illustrated in Fig. 4. It has been demonstrated
in spiral channels with a trapezoidal cross section3 that such
This journal is © The Royal Society of Chemistry 2014

Fig. 4 Equilibrium positions deq (distance from the center) in a square
channel are plotted versus the colloid radius for different Re.
Equilibrium positions exist along the main axis in the x, y directions
(solid lines) and along the diagonal (dashed line). Closed circles indicate
stable equilibrium positions, whereas open circles are unstable.

http://dx.doi.org/10.1039/c4lc00145a
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a sudden change in stability can be used to efficiently sort
particles by size. We noted that while the particle size is fixed by
the specific system under investigation, the Reynolds number
remains a free parameter and can be used to tune the stability
of the equilibrium positions. Stable equilibrium positions on
the diagonals were not observed in the experiments and finite
element simulations performed by Di Carlo et al.6 While we
are not aware of any obvious reason how to resolve this discrep-
ancy, we have noted that for channel aspect ratios different
from unity a subtle change from stable diagonal equilibrium
positions towards axial positions occurs as discussed in the
next section. Furthermore, diagonal positions are only stable
for sufficiently large particles.
Fig. 5 Lift force fy along the y-direction at x = 0 is plotted versus the
y position of Re = 10 and a/w = 0.4. The different colors correspond to
different aspect ratiosw/h.

Fig. 6 Equilibrium positions along the y axis are plotted versus the
channel aspect ratio w/h of Re = 10 and colloid radius a/w = 0.4.
The equilibrium positions are categorized as stable, saddle, and
unstable, using also their stability with respect to the x direction. The
blue insets show typical equilibrium positions in the channel cross
section for w/h < 1 (left) and for w/h > 1.33 (right).
3.2 Rectangular channels

In the experiments, channels typically with rectangular cross
sections were used since the number of stable equilibrium
positions reduces to two situated on the short main axis.6 We
observed the same behavior in the force profiles in Fig. 3 for
large colloids, while for channels with a square cross section
a particle migrates to its stable position on the diagonal
[Fig. 3(a)], this fix point vanishes with a decreasing aspect
ratio w/h and the stable equilibrium position switches to the
short main axis along the x direction [Fig. 3(b)]. Further
decreasing the aspect ratio w/h, the saddle fix point on the
y axis vanishes completely and moves to the center at x = y = 0,
where it keeps its stability along the y axis [Fig. 3(c)]. This has
an important consequence (already exploited by us17) that the
colloid is constrained to the xz plane at y = 0 and its dynamics
becomes two-dimensional. In contrast, in Fig. 3(b), a particle
starting close to the centerline moves out of the y = 0 plane on
its way to the stable equilibrium position at x ≈ 0.4. This is
consistent with the simulations performed by Gossett et al.,35

where a similar behavior was observed. We will now elaborate
in more detail on these observations.

We first plotted the lift force along the y axis, i.e., at x = 0 for
several aspect ratios w/h as shown in Fig. 5. Due to symmetry,
the lift force always points along the y direction. For the qua-
dratic cross section, w/h = 1, zero lift forces indicate the unsta-
ble fix point in the center (x = y = 0) and the saddle fix point
at y ≈ 0.42, which is unstable in the x direction. As the chan-
nel cross section elongates along the y direction with decreas-
ing w/h, the lift force driving the particle away from the
channel center becomes weaker and the saddle fix point shifts
towards the channel wall. Below the width w ≈ 0.45h, the lift
force close to the center becomes negative and the unstable
fix point at y = 0 splits into a saddle fix point (now stable in
the y direction) and an additional unstable fix point. While
we did not show this situation in Fig. 3, it qualitatively looks
the same as in the complete force profile in Fig. 9(a) for
smaller colloids. This is the onset, where the channel center
becomes stable against motion along the y axis and the col-
loid is constrained to the xz plane at y = 0. Further decreas-
ing the aspect ratio w/h, the unstable and saddle fix points at
y ≠ 0 merge and vanish completely. Only the saddle fix point
This journal is © The Royal Society of Chemistry 2014
at x = y = 0 remains as illustrated in Fig. 3(c). Finally, we
noted that at w/h ≈ 0.75 the stable equilibrium position in
the channel cross section switches from the diagonal to the
x axis, which is not observed in Fig. 5.

We summarized the situation in the bifurcation diagram
in Fig. 6, where we have plotted the equilibrium positions on
the y axis versus the aspect ratio w/h. At sufficiently small w/h
only the saddle fix point at y = 0 exists [Fig. 3(c)]. With
increasing w/h, subcritical pitchfork bifurcation occurs. A
second fix point appears which splits into the saddle and
unstable fix points [Fig. 9(a)]. The latter ultimately merges
with the fix point at y = 0 which becomes unstable [Fig. 3(b)].
This resulting situation is illustrated in the left inset for the
whole cross section and with the stable fix point on the
x axis. The stable fix point moves to the diagonal at w/h≥ 0.75.
The regime of the subcritical pitchfork bifurcation is much
more pronounced for smaller particles as illustrated in the
Lab Chip, 2014, 14, 2115–2123 | 2119
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Fig. 8 Aspect ratio w/h2D at which the center becomes a saddle fix
point and the particles move in the center plane. w/h2D is plotted
versus Re for different particle sizes. The symbols are data points from
the simulations.
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inset of Fig. 7 of a colloid radius a/w = 0.2. The lift force
profiles in this regime (see Fig. 7) even show that the subcrit-
ical transition to a single saddle fix point does not occur for
small aspect ratios. This might be due to the fact that below
w/h = 0.4 the flow profiles close to the wall are the same.
Looking back to Fig. 6, at w/h > 1 (now the short main axis
points along the y direction), the saddle fix point at non-
zero yeq first remains. It becomes stable at an aspect ratio
w/h ≈ 1.33 when the fix point on the diagonal vanishes. The
situation is sketched in the right inset.

The basic features of the inertial lift force can be explained
by considering the unperturbed flow field. In particular, the
lift force depends on the curvature of the flow field.6,11 Along
the long channel axis (y direction), we observed the flow veloc-
ity shown in Fig. 2. As the channel height h increases, the flow
profile in the center flattens considerably and the curvature
strongly increases. The differences in the flow profiles of
w/h = 1 and 0.75 are small, which corresponds to the modest
decrease in the strength of the lift force shown in Fig. 5. At
w/h = 0.5 the pronounced flattening of the flow profile sets in
which marks the occurrence of the subcritical bifurcation
and the strong changes in the lift force profiles shown in
Fig. 5. Finally, we observed that the strength of the lift force
in the x-direction also becomes weaker with decreasing
aspect ratio w/h but the overall characteristics of the profile
(two fix points) remain the same. Especially for aspect ratios
w/h ≤ 0.5, the lift force the in the x-direction does hardly
change.

For many microfluidic applications, such as cytometry36

or particle separation,2 it is advantageous to ensure that parti-
cles are constrained to move in a plane so that they can easily
be monitored in the focal plane of a microscope. Here we
observed that as soon as the center position becomes a saddle
2120 | Lab Chip, 2014, 14, 2115–2123

Fig. 7 Lift force fy along the y direction at x = 0 is plotted versus the
y position of Re = 10 and a/w = 0.2. The different colors correspond to
different aspect ratios w/h. The inset shows the equilibrium positions
along the y axis plotted versus the channel aspect ratio w/h. The
equilibrium positions are categorized as stable, saddle, and unstable,
using also their stability with respect to the x direction.
point, particles will not leave the center plane any more since
they always experience a force driving them back towards the
plane. In Fig. 8, we plotted the necessary aspect ratio to con-
strain particles to the center plane. It becomes smaller with
decreasing particle size and Reynolds number. For the parti-
cle sizes investigated here it is sufficient to choose w/h < 0.4 to
ensure that the system is effectively two-dimensional. In the
experiments, it was observed that with increasing Reynolds
number some particles left the center plane,36 which we can-
not explain by our results. In Fig. 2a of ref. 36 particles are in
close distance to each other. We therefore suspect that hydro-
dynamic interactions between particles, which are not included
in our simulations, could be relevant for this effect.

4. Axial control of lift forces

In their experiments, Kim and Yoo applied an axial electric
field which slows down particles relative to the Poiseuille
flow.18 As a result, particles are pushed towards the center-
line. The observed migration can be rationalized with the
Saffman force which is an inherent inertial force.19 It acts
perpendicular to a shear flow when particles are slowed down
or sped up relative to the fluid flow. In their experiments,
Kim and Yoo considered the flow with channel Reynolds
numbers Re ≈ 0.05 well below unity. Our idea is to apply this
concept to moderate Re and manipulate the inertial lift force
using the additional Saffman force. We will show that with
the help of an axial control force, we can modify the inertial
lift force profile such that we can steer a particle to almost
any desired position on the x axis.

For a particle of radius a = 0.2w we observed without axial
control the cross sectional force profile shown in Fig. 9(a).
As discussed in the previous section we observed that a parti-
cle is pushed towards the y = 0 plane where it remains con-
fined. When we applied an additional axial control force of
fctl = 2.5ρν2, the force profile changed drastically [Fig. 9(b)].
In particular, the stable equilibrium position at x/w ≈ 0.46
vanishes and the particle is focussed to the channel center
regardless of its initial position.
This journal is © The Royal Society of Chemistry 2014
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Fig. 11 Equilibrium position xeq is plotted versus axial control force fctl
for different particle radii a/w. The inset shows the minimum control
force f0ctl needed to focus a particle to the channel center that is
plotted versus Re for different particle sizes.

Fig. 9 Lift force profile of a/w = 0.2, Re = 10, w/h = 1/3 without the
axial control (a) and with axial control force fctl = 2.5ρν2 (b).
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We considered in the following a channel of aspect
ratio w/h = 1/3 to ensure that the particle is confined to the
y = 0 plane and focused on the lift force along the x direction.
In Fig. 10 we plotted the inertial lift force profiles of several
axial control forces fctl. For zero control force (green curve),
the typical lift force profile occurs with the unstable equilib-
rium position at the center and the stable position half way
between the channel center and the wall. When we applied
the axial control force in the flow direction so that the parti-
cle is sped up relative to the flow (negative fctl), the lift force
increases and the stable equilibrium position is pushed fur-
ther towards the channel wall. The stable position moves
closer to the center when we slowed down the particle with a
positive control force fctl acting against the flow. The addi-
tional Saffman force decreases the lift force. Ultimately both
This journal is © The Royal Society of Chemistry 2014

Fig. 10 Inertial lift force is plotted versus location x for different axial
control forces fctl of Re = 10 and a/w = 0.2.
fix points merge and the particle position at the center is sta-
bilized when the inertial force profile becomes completely
negative. We also studied the change in the lift force of the
fixed position x and found that it is nearly linear in the
applied control forces. In Fig. 10 we already observe that
the variation of the inertia lift force with the axial control
force is the strongest close to the wall.

In Fig. 11 we plotted the stable equilibrium position
xeq versus fctl of different particle sizes. Starting from its
uncontrolled value, the equilibrium position continuously
shifts to zero as the control force increases. A negative control
force moves xeq towards the wall. In general, we observed that
larger particles require larger control forces in order to move
the equilibrium position. To analyze this effect further, we
investigated the minimum control force f 0ctl needed to steer a
particle towards the channel center for different Reynolds
numbers and particle sizes in the inset of Fig. 11. We observed
that f 0ctl strongly increases both with particle size and
Reynolds number. When fitted to the power law, we obtained
f 0ctl ∝ Re1.02(a/w)2.60. This indicates that we can easily exploit
an axial control force for particle sorting by size. For example,
consider two particle types with sizes a/w = 0.2 and a/w = 0.3.
While the small particle is well focussed to the channel cen-
ter with a control force fctl = 3ρv2, the larger particle only
changes its equilibrium position by about 10 %.

5. Feedback control

We have seen already in the previous section that a constant
axial control force allows the manipulation and sorting of
particles of different types. In the following, we will demon-
strate how a simple feedback scheme adds additional control
to the system and, in particular, increases particle throughput.
We will present results where we simulated particle motion
using the Langevin dynamics described in sect. 4.

We used a hysteretic control feedback scheme, which
switches from no control to constant control depending on
Lab Chip, 2014, 14, 2115–2123 | 2121
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Fig. 13 Mean particle velocity 〈v〉 in units of the maximum Poiseuille
flow speed u0 plotted versus target width b. Different control forces f0
within the hysteretic feedback control scheme are used. vmax is the
particle speed on the centerline and veq is the velocity at the equilibrium
position when no control acts.
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the lateral particle position with the goal of keeping the parti-
cle close to the channel center. In concrete, we chose a target
interval [−b, b] for the x position of the particle. We switched
the axial control force to a constant value f0 when the particle
is outside the target interval. The modified lift force profile
drives the particle back to the channel center, and we
switched off the control force until the particle leaves the tar-
get interval again. We show the resulting hysteretic control
cycle of fctl in Fig. 12(a), which either acts in the positive or
negative x direction. The applied control force changes not
only the lift force profile but also the particle velocity along
the channel axis as we demonstrate in Fig. 12(b). When the
control is active, the particle slowed down compared to the
uncontrolled motion.

Fig. 12(c) shows an example of a particle trajectory under
the feedback scheme. The particle starts outside the target
interval [−b, b] and the lift force modified by the axial control
force pulls it towards the channel centerline. As the particle
reaches the centerline, the control is switched off and the
particle is free to evolve. Since the centerline is an unstable
fix point, the particle can leave the target interval and the
control is activated again.

Performing feedback control instead of using a perma-
nently applied control force has the advantage that the effect
of control is reduced. In particular, feedback control gives an
improved particle throughput while keeping the particle close
to the centerline. In Fig. 13 we showed the mean particle
speed (in units of the maximal flow speed u0) as a function
of the target width b for several control forces f0. For the
uncontrolled motion, vmax is the particle speed on the center-
line and νeq is the velocity at the equilibrium position. When
the target interval contains the equilibrium position at x = 0.46,
feedback control is not active. The particle stays at the equi-
librium position and moves with νeq. However, for smaller
target widths feedback control sets in. We observed a mean
particle velocity which is almost independent of the target
2122 | Lab Chip, 2014, 14, 2115–2123

Fig. 12 (a) Schematic of the feedback control scheme. The axial
control force f0 is switched on when the particle leaves the target
interval [−b, b| and switched off once the particle reaches the
centerline at x = 0. (b) Particle velocity in the target interval without
and with control. (c) Example of a particle trajectory. The residence
time on the centerline is determined by thermal fluctuations.
width and the applied control force f0. Only at b = 0, which
means a permanently applied control force where the particle
always stays in the center, does the mean velocity decrease.
So, the particle throughput is the highest when feedback con-
trol is active.

6. Conclusion

Inertial microfluidics has proven to be particularly useful in
applications such as particle steering and sorting which are
important tasks in biomedical applications. In this paper, we
provided further theoretical insights into inertial microfluidics
using lattice Boltzmann simulations. We put special emphasis
on controlling the particle motion either by designing the
channel geometry or by applying an additional control force.

We first investigated the equilibrium positions in square
and rectangular channels using lift force profiles and catego-
rized them into stable, saddle, and unstable fix points. In
square channels, the stable fix points either sit on the diago-
nals or the main axis of the cross section. This depends on
particle size and Reynolds number and thereby offers the
possibility to sort particles of different sizes. For rectangular
channels we illustrated bifurcation scenarios of fix points sit-
uated on the long main axis. In particular, we showed that
for sufficiently elongated channel cross section particles are
pushed into a plane. Their dynamics becomes two-dimensional
which simplifies the monitoring; and thereby control of parti-
cle motion in experiments.

We then demonstrated how an additional axial control
force allows tuning of the stable equilibrium position, which
moves towards the center with increasing force. Ultimately
the stable position stays on the centerline when the force
exceeds a threshold value which we identified for different
particle sizes and Reynolds numbers. The strong dependence
on these parameters allows separation of particles by size.
Finally, we proposed a hysteretic feedback scheme using the
axial control force to enhance particle throughput compared
to the case when the control force is constantly applied.
This journal is © The Royal Society of Chemistry 2014
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The axial control force can be implemented by applying an
external electric field along the channel axis which induces an
electrophoretic force acting on the particle as demonstrated
by Kim and Yoo.18 Since the electric field can easily be tuned,
the method introduced in this article to manipulate the lift
force profile should be realizable in experiments, as well as
to explore the proposed hysteretic feedback scheme.

We plan to extend our work to investigate the collective
colloidal dynamics induced by the hydrodynamic interactions
between particles. Here, the additional axial order such as
particle trains develops.37,38 Furthermore, it will be challeng-
ing to generalize our control methods to particle suspen-
sions. The theoretical insights developed in this paper and
future work on the collective dynamics will help to generate
novel ideas for devices in biomedical applications based on
inertial microfluidics.

Acknowledgements

We acknowledge support from the Deutsche
Forschungsgemeinschaft in the framework of the Collaborative
Research Center SFB 910.

References

1 S. C. Hur, A. J. Mach and D. Di Carlo, Biomicrofluidics, 2011,

5, 022206.

2 A. J. Mach and D. Di Carlo, Biotechnol. Bioeng., 2010, 107,

302–311.

3 G. Guan, L. Wu, A. A. Bhagat, Z. Li, P. C. Chen, S. Chao,

C. J. Ong and J. Han, Sci. Rep., 2013, 3, 1475.

4 J. S. Dudani, D. R. Gossett, T. Henry and D. Di Carlo,

Lab Chip, 2013, 13, 3728–3734.

5 G. Segré and A. Silberberg, Nature, 1961, 189, 209–210.

6 D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone and
M. Toner, Phys. Rev. Lett., 2009, 102, 094503.
7 D. Di Carlo, Lab Chip, 2009, 9, 3038–3046.

8 Y. Kataoka and T. Inamuro, Philos. Trans. R. Soc., A, 2011,
369, 2528–2536.
9 B. Chun and A. J. C. Ladd, Phys. Fluids, 2006, 18, 031704.
10 J. Zhou and I. Papautsky, Lab Chip, 2013, 1121–1132.

11 J. P. Matas, J. F. Morris and E. Guazzelli, Oil Gas Sci. Technol.,
2004, 59, 59–70.
12 H. Bruus, Theoretical microfluidics, OxfordUniversity Press, 2007.

13 E. S. Asmolov, J. Fluid Mech., 1999, 381, 63–87.
This journal is © The Royal Society of Chemistry 2014
14 B. P. Ho and L. G. Leal, J. Fluid Mech., 1974, 65, 365–400.

15 C. Prohm,M. Gierlak andH. Stark, Eur. Phys. J. E, 2012, 35, 1–10.

16 M. MacDonald, G. Spalding and K. Dholakia, Nature, 2003,
426, 421–424.
17 C. Prohm, F. Tröltzsch andH. Stark, Eur. Phys. J. E, 2013, 36, 1–13.

18 W. Y. Kim and J. Y. Yoo, Lab Chip, 2009, 9, 1043–1045.

19 P. G. Saffman, J. Fluid Mech., 1965, 22, 384–400.

20 K. Aström and R. Murray, Feedback Systems: An Introduction
for Scientists and Engineers, Princeton University Press, 2010.
21 A. Jonáš and P. Zemánek, Electrophoresis, 2008, 29, 4813–4851.

22 G. J. Wuite, S. B. Smith, M. Young, D. Keller and C. Bustamante,
Nature, 2000, 404, 103–106.
23 M. D. Wang, H. Yin, R. Landick, J. Gelles and S. M. Block,
Biophys. J., 1997, 72, 1335–1346.
24 R. W. Applegate Jr, D. N. Schafer, W. Amir, J. Squier,
T. Vestad, J. Oakey and D. W. Marr, J. Opt. A: Pure Appl. Opt.,
2007, 9, S122.

25 X. Wang, S. Chen, M. Kong, Z. Wang, K. D. Costa, R. A. Li

and D. Sun, Lab Chip, 2011, 11, 3656–3662.

26 M. S. Munson, J. M. Spotts, A. Niemistö, J. Selinummi,

J. G. Kralj, M. L. Salit and A. Ozinsky, Lab Chip, 2010, 10,
2402–2410.

27 B. Dünweg and A. J. Ladd, Advances in Polymer Science,

Springer, Berlin Heidelberg, 2008, pp. 1–78.

28 C. K. Aidun and J. R. Clausen, Annu. Rev. Fluid Mech., 2010,

42, 439–472.

29 X. Shan and H. Chen, Phys. Rev. E: Stat. Phys., Plasmas,

Fluids, Relat. Interdiscip. Top., 1993, 47, 1815–1819.

30 T. Inamuro, Fluid Dynam. Res., 2012, 44, 024001.

31 The Palabos project, 2013, http://www.palabos.org.

32 G. Le and J. Zhang, Phys. Rev. E: Stat., Nonlinear, Soft Matter
Phys., 2009, 79, 026701.
33 T. Krüger, F. Varnik and D. Raabe, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2009, 79, 046704.
34 P. Kloeden and E. Platen, Numerical Solution of Stochastic
Differential Equations, Springer, 2011.
35 D. R. Gossett, H. T. K. Tse, J. S. Dudani, K. Goda, T. A. Woods,
S. W. Graves and D. Di Carlo, Small, 2012, 8, 2757–2764.
36 S. C. Hur, H. T. K. Tse and D. Di Carlo, Lab Chip, 2010, 10,
274–280.
37 W. Lee, H. Amini, H. A. Stone and D. Di Carlo, Proc. Natl.
Acad. Sci. U. S. A., 2010, 107, 22413–22418.
38 K. J. Humphry, P. M. Kulkarni, D. A. Weitz, J. F. Morris and
H. A. Stone, Phys. Fluids, 2010, 22, 081703.
Lab Chip, 2014, 14, 2115–2123 | 2123

http://dx.doi.org/10.1039/c4lc00145a

