Review

NAD(H)-coupled hydrogen cycling – structure–function relationships of bidirectional [NiFe] hydrogenases

M. Horch a, L. Lauterbach b, O. Lenz b, P. Hildebrandt a, I. Zebger a,*

a Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
b Humboldt-Universität zu Berlin, Institut für Biologie/Mikrobiologie, Chausseestraße 117, 10115 Berlin, Germany

A R T I C L E I N F O

Article history:
Received 31 August 2011
Revised 5 October 2011
Accepted 6 October 2011
Available online 2 November 2011

Edited by Miguel Teixeira and Ricardo O. Louro

Keywords:
Biocatalysis
Hydrogenase
Spectroscopy
Oxygen tolerance
NADH regeneration
Biofuel

A B S T R A C T

Hydrogenases catalyze the activation or production of molecular hydrogen. Due to their potential importance for future biotechnological applications, these enzymes have been in the focus of intense research for the past decades. Bidirectional [NiFe] hydrogenases are of particular interest as they couple the reversible cleavage of hydrogen to the redox conversion of NAD(H). In this account, we review the current state of knowledge about mechanistic aspects and structural determinants of these complex multi-cofactor enzymes. Special emphasis is laid on the oxygen-tolerant NAD(H)-linked bidirectional [NiFe] hydrogenase from Ralstonia eutropha.

© 2011 Federation of European Biochemical Societies. Published by Elsevier B.V.

Open access under CC BY-NC-ND license.

1. Introduction

In all living systems, energy conversion involves the oxidation of primary electron donors. In this context, hydrogenases [1], as versatile ancient metalloproteins, enable the microbial cell to utilize dihydrogen as an energy source by catalyzing its reversible cleavage into protons and electrons: \(H_2 \rightarrow 2H^+ + 2e^- \). Via this reaction, these enzymes can also provide reducing equivalents for biosynthesis and contribute to the disposal of excess electrons by hydrogen evolution [2]. Furthermore, regulatory hydrogenases are able to adjust these processes to the respective environmental conditions via transcriptional regulation of genes encoding for energy-transforming hydrogenases [3,4].

Due to their potential applicability in biotechnological processes, hydrogenases have been extensively studied. Envisaged applications are mainly related to bio-energetic approaches, i.e., energy conversion in enzymatic fuel cells or biohydrogen production [5]. In addition, hydrogenases are promising model systems to investigate electron transfer processes in complex multi-cofactor enzymes and might also serve as “blueprints” for hydrogen activating, biomimetic compounds.

For several decades, spectroscopic studies have contributed essentially to the understanding of hydrogenases by providing insights into cofactor composition, electronic, structural, and redox properties of these enzymes. In the following, we will give an overview on the present state of research on bidirectional [NiFe] hydrogenases that couple reversible hydrogen conversion to the evolution and consumption of NADH. Here, emphasis will be placed on spectroscopic studies to elucidate structure–function relationships. Previous and recent insights are reviewed and discussed in conjunction with open questions and challenges for future research.

2. [NiFe] Hydrogenases: an overview

With regard to the metal content of the active site, hydrogenases can be classified into three phylogenetically unrelated groups [2]: [FeFe] hydrogenases with two Fe atoms at the catalytic center [6], [Fe] hydrogenases that harbor an Fe-guanilylpyridinol cofactor [7], and [NiFe] hydrogenases, where hydrogen conversion takes place at a heterobimetallic active site containing Ni and Fe [8,9]. Apart from [Fe] hydrogenases, all of these enzymes comprise additional Fe–S clusters for electron transfer to or from the active site.

2.1. General structural properties

[NiFe] hydrogenases are composed of at least two different sub-units (Fig. 1A and B): a large one, which contains the deeply buried
active site, and a small one, harboring at least one [4Fe–4S] cluster close to the active site (proximal cluster). The large and small subunit exhibit sequence homology to the Nqo4 and Nqo6 subunit of NADH:ubiquinone oxidoreductase (Complex I), respectively (Fig. 1C) [11]. In oxygen sensitive "standard" [NiFe] hydrogenases, which cannot be entirely excluded (see text). "2Fe" and "4Fe" refer to [2Fe–2S] and [4Fe–4S] clusters, respectively. "?Fe" is most likely a [4Fe–4S] cluster, although a [3Fe–4S] cluster in certain bidirectional hydrogenases is redox active during activation and catalysis, the Fe remains in the Fe(II) low-spin configuration due to these strong-field inorganic ligands. It is generally accepted that hydrogen cycling involves an additional ligation site bridging the two metals [14]. Hydrophobic cavities for hydrogen diffusion between the active site and the protein surface as well as putative proton transfer pathways have been also described for "standard" [NiFe] hydrogenases [15,16].

2.2. Redox states of the [NiFe] center and the catalytic cycle

Applying infrared (IR) spectroscopy, various active and inactive redox states of the catalytic center from "standard" [NiFe] hydrogenases have been identified by the characteristic stretching vibrations of the three inorganic ligands (Fig. 3) [17,18]. All of these species primarily differ with respect to the redox state of the Ni and the chemical nature of the exchangeable ligand "X" in the bridging position between the two metals (Figs. 2 and 3). Electron paramagnetic resonance (EPR) spectroscopy, on the other hand, selectively monitors paramagnetic species of all cofactors. In the oxidized state, two species with different activation kinetics have been identified, both revealing EPR signals characteristic for Ni(III): The so-called "ready" Nir-B state that is proven to carry a hydroxo ligand in the bridging position between the two metals [19,20] can easily be (re-)activated in the presence of hydrogen. In contrast, reductive activation of the "unready" Ni-A species takes hours [21]. This property has been tentatively related to the presence of a (hydro)peroxo species in the bridging position or thioloxygenation at the active site cysteines [20,22]. One-electron reduction of Ni-A and Ni-B yields the corresponding EPR-silent Ni(II) species Ni-A and Ni-B, respectively. Both forms are also catalytically inactive, as they supposedly still carry the respective oxygen species of Ni-A and Ni-B. Two sub-species of the Ni-S state have been identified and suggested to differ with respect to the protonation state [17,23–25]. A loosely bound water molecule might be rapidly released from the protonated sub-form, resulting in the catalytically active Ni-S state with a vacant coordination position between the two metals. Further one-electron reduction of this state yields the paramagnetic Ni(III) species Ni-C, which is considered to be the central intermediate of hydrogen cycling in "standard" [NiFe] hydrogenases. This view is based on experimental and theoretical studies, revealing a hydride as the additional bridging ligand in this species [18,26]. The fully reduced Ni-S state, which is formed by one-electron reduction of Ni-C, presumably also contains a hydride in the bridging position [25,27]. This EPR-silent Ni(II) species, commonly assigned to another step of the catalytic cycle, reveals up to three sub-forms, which might differ with respect to the conformation, protonation or spin state of the...
Irrespective of the exact reaction mechanism, the reversible lowed by an oxidative addition mechanism during turnover recently suggests an initial heterolytic cleavage of hydrogen folmediate states involved. An alternative catalytic cycle proposed the detailed mechanism as well as the type and number of intertwo metals while one of the terminal cysteinyl thiolates acts as a of hydrogen, where the hydride is reversibly bound between the [NiFe] hydrogenases. Most of them propose a heterolytic cleavage [31–33].

Essential redox states and interconversions of the active site of “standard” [NiFe] hydrogenases and NAD(H)-linked bidirectional [NiFe] hydrogenases from R. eutropha H16 and Synechocystis sp. PCC6803.[24,25,88,89] “Unready” and “ready” inactive states are shown in red and orange, respectively, while catalytically active species are depicted in green. Ni-I is represented in blue as the involvement of this species in the catalytic cycle is under debate [18,24]. The (proposed) chemical nature of the bridging ligand at the active site is indicated in parentheses for each individual redox species. EPR detected states are marked with an asterisk. For bidirectional hydrogenases, dashed boxes indicate redox states that have been detected in R. eutropha, but so far not in Synechocystis sp. For the enzyme from the latter organism, an intermediate species has been observed by IR spectroscopy, which could be tentatively assigned to the Ni-C state. So far, this redox state could not be enriched for EPR studies. Therefore, its identity still has to be proven [89]. For the sake of clarity, redox states of the enzyme from R. eutropha that were detected under non-native conditions [90] are not included in the present scheme.

Different models have been suggested for the catalytic cycle of [NiFe] hydrogenases. Most of them propose a heterolytic cleavage of hydrogen, where the hydride is reversibly bound between the two metals while one of the terminal cysteinyl thiolates acts as a proton acceptor [32]. However, there is still no consensus about the detailed mechanism as well as the type and number of intermediate states involved. An alternative catalytic cycle proposed recently suggests an initial heterolytic cleavage of hydrogen followed by an oxidative addition mechanism during turnover [31]. Irrespective of the exact reaction mechanism, the reversible formation of a H₂ σ-bond complex has been suggested as an essential initial event for hydrogen activation at transition metal sites [34].

3. Bidirectional hydrogenases: versatile players in biological hydrogen conversion

[NiFe] hydrogenases can be further divided into five groups, which differ in subunit assembly, cofactor composition, redox partners and cellular location [2,35]. Although all of these enzymes are involved in hydrogen cycling, their physiological functions may vary considerably. In particular, (group 3) bidirectional hydrogenases, which are capable of catalyzing both hydrogen activation and evolution under physiological conditions, are able to bind (and convert) additional soluble substrates like coenzyme F₄₂₀ [36,37] or NAD(P)/H [38–40]. While most of these enzymes are found in Archaea, we will focus on bacterial NAD(H)-linked bidirectional hydrogenases [38]. NADP(H)-linked hydrogenases from hyperthermophilic Archaea [39–44] are not in the scope of this review as they differ substantially in terms of subunit arrangement and cofactor composition.

3.1. Modular structure and catalytic activities

In multimeric NAD(H)-linked [NiFe] hydrogenases, the large and small subunit are referred to as HoxH and HoxY, respectively. This HoxHY hydrogenase moiety is associated with an additional NADH:acceptor oxidoreductase (diaphorase) module, which couples the reversible cleavage of hydrogen to the oxidoreduction of NAD(H) [Fig. 1B]. The catalytic reaction with NADP(H) yields much lower H₂ evolution and consumption rates, indicating that NAD(H) is indeed the preferred, native substrate of bidirectional [NiFe] hydrogenases [45]. This argumentation is also supported by the fact that the involved nucleotide binding site appears to repel the phosphate group of NADP(H) [46]. The diaphorase moiety consists of at least two subunits, HoxF and HoxU, which exhibit pronounced sequence similarity to the peripheral part of the respiratory Complex I as well as certain formate dehydrogenases and [FeFe] hydrogenases [46–52]. NAD(H)-linked hydrogenases can be further divided in two classes, which differ in subunit and cofactor composition as well as their specific physiological function. In “cyanobacterial type” bidirectional hydrogenases [50,51,53–55], which have also been reported for purple sulphur bacteria [56,57], the diaphorase moiety is associated with an additional HoxE subunit [50], which might be involved in membrane interactions [54,56] or the electronic coupling between the hydrogenase and diaphorase active sites [45]. This subunit is absent in a second group of bidirectional hydrogenases from aerobic bacteria, including those from the actinobacterium Rhodococcus opacus MR11 [58,59] and the β-proteobacterium Rabstonia eutropha H16 [38]. The bidirectional hydrogenase from the latter organism comprises an additional diaphorase-associated HoxI₂ dimer, which contains a putative nucleotide binding site similar to that of cAMP receptors [60]. In line with this observation, HoxI₂ has been reported to act as an alternative electron entry site for reductive activation through an NADPH binding site [60].

3.2. Physiological functions and applications in biotechnology

In cyanobacteria, bidirectional hydrogenases are mainly involved in the disposal of excess electrons derived from
fermentation and photosynthesis [61–63], resulting in hydrogen evolution. A general role in the substitution of missing subunits of respiratory Complex I appears rather unlikely, as the absence of a functional bidirectional hydrogenase has been reported to be not essential for cyanobacterial cell growth [53–55,64–66]. Bidirectional hydrogenases from aerobic bacteria, on the other hand, differ in their catalytic bias as they rather catalyze hydrogen splitting, i.a. to supply reducing equivalents (NADH) to Complex I, thereby establishing a proton motive force. By transhydrogenases, NADH is also converted to NADPH, which can be used for carbon fixation during autotrophic growth [67]. Furthermore, these enzymes also function as an electron valve by catalyzing hydrogen evolution in case of over-reducing conditions, i.e., an excess of NADH in the cytoplasm [68,69]. While aerobic bidirecional hydrogenases are strictly located in the cytoplasm [38,59] both a cytoplasmic localization [70] and a weak association with the cytoplasmic [71] or thylakoid [72] membrane has been suggested for cyanobacterial hydrogenases.

NAD(H)-linked bidirectional hydrogenases are of particular interest for biotechnological applications as they are suited for light driven hydrogen production in vivo [73] and the regeneration of reduced purine nucleotides in biocatalytic processes [74–79]. Such applications are particularly promising as some of these enzymes are oxygen tolerant [38,58,80–82], in contrast to most other hydrogenases.

4. Structure–function relationships in bidirectional hydrogenases

NAD(H)-linked bidirectional hydrogenases are complex multi-cofactor enzymes. Regarding subunit composition and cofactor content, these enzymes differ considerably from other hydrogenases, including “standard” [NiFe] hydrogenases (Fig. 1A and B). Unfortunately, there is no crystal structure available for a bidirectional hydrogenase so far, such that structural information about these enzymes has to rely on spectroscopic studies and comparison with related enzymes. Three major types of redox active cofactors are present in this class of enzymes: a [NiFe] active site, several Fe–S clusters, and one or two non-covalently bound flavins (see Table 1). Interestingly, [4Fe–4S] clusters of bidirectional hydrogenases exhibit lower midpoint potentials (about −450 mV) compared to those in “standard” [NiFe] hydrogenases (about −340 mV) [83–87]. In line with this finding, reduction (re-)activation of bidirectional hydrogenases requires low-potential electrons from NAD(P)H [60,80,88,89] and, thus, a lower switch-on potential E_{on} is observed [90,91]. Within the evolutionary context, these observations can be explained by the fact that bidirectional hydrogenases interact with the low-potential NAD(H) pool while “standard” [NiFe] hydrogenases are rather linked to the higher-potential quinone pool of the respiratory chain in vivo [38,60,92].

4.1. The hydrogen converting active site

Also in bidirectional [NiFe] hydrogenases, hydrogen conversion takes place at a conserved [NiFe] center, which is located in the HoxH subunit of the hydrogenase sub-complex HoxHY. In contrast to other [NiFe] hydrogenases, however, no or only sub-stoichiometric amounts of paramagnetic Ni(III) species have been detected in most EPR studies on purified bidirectional hydrogenases [80,84,89,93–96]. This observation was taken as an indication for a different catalytic cycle where Ni remains in the diamagnetic Ni(II) state [96]. Alternatively, magnetic coupling between the Ni site and a second nearby paramagnetic center might prevent the detection of paramagnetic Ni(III) species under most conditions [93]. The enrichment of certain paramagnetic species might also be hampered for thermodynamic or kinetic reasons in this type of enzyme. However, for the bidirectional hydrogenase from R. eutropha, a quantitative EPR detection of the paramagnetic Ni(III) state has been reported for a narrow potential range [83], indicating that monitoring of Ni(III) species in bidirectional hydrogenases might be strongly dependent on the adjustment of adequate experimental conditions [88], as also observed for Hydrogenase I from the archaeon Pyrococcus furiosus [97].

Table 1	Subunit composition and cofactor content of NAD(H)-linked bidirectional [NiFe] hydrogenases in comparison to the homologous parts of Complex I.			
Bidirectional hydrogenase	**Complex I homologue**	**Comment**	**References**	
HoxY	[4Fe–4S]	[4Fe–4S] (N2)	–	Corresponds to the proximal cluster in “standard” [NiFe] hydrogenases [10,11,46,49–51,53,57,98,99]
–	FMN-a	–	–	Reported only for R. eutropha SH, flavodoxin-like binding fold conserved in all [NiFe] hydrogenases and Complex I, has been proposed to occur in Complex I as well
HoxU	[4Fe–4S]	[4Fe–4S] (N5)	–	3Cys-1His-coordinated [4Fe4S] cluster in Complex I, might be a 3Cys-coordinated [3Fe4S] cluster in some bidirectional hydrogenases, corresponds to the proximal cluster of [FeFe] hydrogenase
–	[4Fe–4S]	–	–	Corresponds to the mediatal cluster of [FeFe] hydrogenase, part of a 2[4Fe–4S] motif, not in Nqo3 of Complex I (binding motif conserved) and HoxU from R. eutropha/R. opacus
HoxF	[4Fe–4S]	[4Fe–4S] (N3)	–	Corresponds to the distal cluster in [FeFe] hydrogenase, part of a 2[4Fe–4S] motif
–	FMN-b	FMN	–	Binding motif conserved in [FeFe] hydrogenase from C. pasteurianum [10,46,51,53,57]
HoxE	[2Fe–2S]	[2Fe–2S] (N1a)	–	Binding motif conserved in [FeFe] hydrogenase from D. fructosovorans, HoxE missing in R. eutropha and R. opacus as well as Hox2 from Thiocapsa roseopersicina [50,57,104,125]
Hox –	–	–	–	Reported only for R. eutropha SH, homology to cAMP receptors [60,69]
Active sites of a few bidirectional hydrogenases have also been characterized by IR spectroscopy: At least four different redox states have been identified for the bidirectional hydrogenase from the cyanobacterium Synechocystis sp. PCC6803 (Fig. 3). An oxidized and a reduced species appeared to be EPR-silent (vide supra), while two transitional states were just observed during re-oxidation of the enzyme. Therefore, no EPR-data are available for the latter two, one of which might correspond to the Ni-s-C state of standard [NiFe] hydrogenases [89]. All of these different redox states exhibit one CO and two CN stretching bands in the IR spectrum, indicating a standard set of inorganic ligands at the active site. Moreover, most of these species display ligand stretching frequencies comparable to other [NiFe] hydrogenases, which suggests a similar (electronic) structure of the active site. However, the “fully” reduced state exhibits an unusually high CO stretching frequency in this enzyme (vide infra). Preliminary IR data from the HoxHY hydrogenase subcomplex of the cyanobacterial type bidirectional hydrogenase from *Allochromatium vinosum* revealed a mixture of states, with some of them resembling those of the hydrogenase from *Synechocystis* sp. [57]. For the bidirectional hydrogenase from *R. eutropha* EPR and IR properties of the active site have been discussed controversially and will be presented in more detail in Section 5.

Interestingly, (spectro-)electrochemical studies on bidirectional hydrogenases from *R. eutropha* and *Synechocystis* sp. indicate that the formation of the respective highest oxidized state might be dependent on the presence of oxygen [91,96]. This suggests that these redox species could possibly contain a bridging ligand other than O2-, as this chemical species can also be derived anaerobically from water. Alternatively, the formation of the fully oxidized state might be kinetically unfavorable by electrochemical means, as observed for Ni–B formation in certain “standard” [NiFe] hydrogenases [17,25]. For the above mentioned bidirectional enzymes, protein film voltammetry and IR spectroscopy also revealed the occurrence of one or two additional oxidized states, which might, however, be related to non-native species that possibly arise from changes in the quaternary structure of the enzyme, e.g., the absence of the diaphorase moiety [90,91].

4.2. Iron sulphur clusters

By sequence analysis, the presence of up to eight Fe–S clusters has been predicted for NAD(H)-linked bidirectional hydrogenases [46,49–51,53,57,98,99] (Table 1). For all characterized enzymes, at least one [2Fe–2S] and one [4Fe–4S] cluster have been detected by EPR spectroscopy [80,83,84,93,96]. Sub-stoichiometric signals reminiscent of [3Fe–4S] clusters were also observed in these studies, but largely ascribed to oxidative damage or higher oxidation states of low potential [4Fe–4S] clusters. This interpretation is in agreement with the absence of [3Fe–4S] clusters in Complex I and [FeFe] hydrogenases [6,10]. Nonetheless, experimental insights indicate that functional [3Fe–4S] clusters may appear in certain bidirectional hydrogenases [94].

For the hydrogenase sub-complex HoxHY, sequence analysis indicates the presence of a single proximal [4Fe–4S] cluster in the HoxY subunit of bidirectional hydrogenases [46,49–51,53,57,98,99]. This binding motif is conserved among all [NiFe] hydrogenases and the Nqo6 subunit of Complex I (cluster N2) [11]. In fact, EPR, UV/vis, Mössbauer, and/or XAS studies on the separate HoxHY moieties from *R. eutropha* [90], *R. opacus* [93,94], and *A. vinosum* [57] indicate the presence of a [4Fe–4S] cluster in this sub-complex. For the sake of completeness, it should be mentioned that early studies claimed a location in the large HoxH subunit for this cubane cluster [94,100,101]. However, this appears unlikely as no conserved Fe–S cluster binding motif is present in HoxH of [NiFe] hydrogenases and the homologous Nqo4 subunit of Complex I [11]. The absence of the medial [3Fe–4S] and the distal [4Fe–4S] cluster, present in “standard” [NiFe] hydrogenases, can be explained by the fact that the small subunit (HoxY) is truncated at the C-terminus of the polypeptide chain in bidirectional hydrogenases [11,51,98]. This indicates that the electronic coupling with the diaphorase moiety is presumably accomplished by the single [4Fe–4S] cluster while missing parts of HoxY might be functionally substituted by HoxU. The [NiFe] site in HoxH and the [4Fe–4S] cluster in HoxY appear to represent the minimum set of cofactors necessary for hydrogen conversion in [NiFe] hydrogenases [57,90,93].

Interestingly, the HoxY-linked [4Fe–4S] cluster appeared to be EPR-silent, but was detected by XAS in a study on the separate HoxHY moiety of the bidirectional hydrogenase from *R. eutropha* [90], possibly indicating a magnetic coupling of this cofactor with another paramagnetic site. Studies on the separate hydrogenase modules from *R. opacus* [93,94] and *R. eutropha* [90] also revealed that this “proximal” cluster is particularly sensitive towards oxidation, as shown by irreversible conversion to a [3Fe–4S] and a [4Fe–N5–N0] cluster, respectively. This effect, however, might be at least partly related to the lack of the stabilizing diaphorase moiety. A structural rearrangement of the hydrogenase sub-complex in the absence of the diaphorase moiety is also indicated by the detection of two conformers of this “proximal” [4Fe–4S] cluster in HoxHY from *R. opacus* [94]. Only one of these conformers was also detected in the native tetrameric enzyme HoxHYF/U, while the second was reported to be a less active structural variant.

For the diaphorase module, a precise characterization of the individual Fe–S clusters is more intricate for three major reasons. First of all, this moiety contains a large number of potential binding sites for Fe–S clusters, which complicates their respective quantification and assignment. Secondly, spectroscopic studies on the separate diaphorase moiety of a bidirectional hydrogenase have only been published for the enzyme from *R. opacus* [93,94] and, thus, most assumptions on Fe–S cluster location and function are deduced from sequence analysis and comparison with the homologous subunits of respiratory Complex I (Fig. 1B and C). Finally, the content of both proposed and detected Fe–S clusters is different in cyanobacterial and aerobic bidirectional hydrogenases, which might be related to their different physiological roles.

For bidirectional hydrogenases from aerobic bacteria, the presence of Fe–S clusters in the diaphorase module was derived from EPR and Mössbauer studies [80,83,84,93,94,96], revealing one [2Fe–2S] and two [4Fe–4S] clusters. Based on investigations of the separate HoxF/U moiety from *R. opacus* [94], an additional, seemingly native [3Fe–4S] cluster has been reported for this particular enzyme. Interestingly, stoichiometric signals of this [3Fe–4S] cluster have only been observed in the isolated HoxF/U module, while the native *R. opacus* enzyme exhibits a broad *g* = 1.95 signal instead. This feature might be related to magnetic coupling of the [3Fe–4S] cluster with a nearby paramagnetic species such as the Ni atom of the active site or other so far undetected metal ions [94]. In conclusion, the presence of a [3Fe–4S] cluster cannot be completely ruled out for certain bidirectional hydrogenases, in particular, since minor amounts of a comparable broadened feature at *g* = ~1.92 have also been observed for the bidirectional [NiFe] hydrogenase from *R. eutropha* at 12 K [84]. Interestingly, a possible role in oxygen radical scavenging has been proposed for the medial [3Fe–4S] cluster of “standard” [NiFe] hydrogenases [48]. Considering superoxide production by bidirectional hydrogenases [52,102,103], a putative [3Fe–4S] cluster could have a similar function in this type of enzymes.

For cyanobacterial bidirectional hydrogenases, no studies on separate diaphorase modules are available so far. Investigations of entire enzymes revealed the presence of [2Fe–2S] and [4Fe–4S] clusters, both with a stoichiometry of ~1 spin per molecule [89,95]. As the presence of a [4Fe–4S] cluster has been confirmed...
for the hydrogenase sub-complex, only signals of a [2Fe–2S] cluster can be unambiguously assigned to the diaphorase moiety. This is in sharp contrast to the prediction of up to seven Fe–S clusters for the diaphorase moiety of these enzymes (vide infra) [51,53].

Apart from experimental investigations, further valuable information on possible locations and functions of Fe–S clusters of the diaphorase moiety can be deduced from comparison with subunits from Complex I and other similar enzymes (Fig. 1B and C, Table 1). A conserved binding site for a single [2Fe–2S] cluster is observed in HoxE of cyanobacterial type bidirectional hydrogenases and the homologous Nqo2 and HndA subunits of Complex I and the Desulfovibrio fructosovorans [FeFe] hydrogenase, respectively [50,57,104]. Since the presence of this cluster (N1a) has been proven for Nqo2 [10], its occurrence in HoxE is anticipated, as well. In bidirectional hydrogenases, a specific role in electron transfer interactions with membrane components or the hydrogenase module has been suggested for this binuclear Fe–S center [45,56]. No Fe–S cluster binding motifs are present in the additional Hoxl subunits of the bidirectional hydrogenase from R. eutropha [69].

HoxF can be described as a fusion protein from homologues of Nqo1 and Nqo2 of Complex I [46]. Furthermore, this subunit is homologous to the HndA gene product of the NADP-reducing [FeFe] hydrogenase from D. fructosovorans [104]. Apart from binding sites for FMN and NADH, this subunit harbors a [4Fe–4S] cluster binding motif, which corresponds to cluster N3 of Complex I [10,46,51,53,57]. In cyanobacterial bidirectional hydrogenases, the presence of an additional ferredoxin-like [2Fe–2S] cluster is indicated by a further binding site in HoxF [50,57]. In Complex I, cluster N1a has been suggested to act as an electron storage, thereby minimizing the production of reactive oxygen species [10]. Thus, binuclear Fe–S clusters in HoxE and/or HoxF might carry out similar functions in certain bidirectional hydrogenases. However, these [2Fe–2S] clusters are absent in oxygen tolerant bidirec- tional hydrogenases from aerobic bacteria, suggesting different oxygen protection strategies in these latter enzymes.

HoxU has a sequence similar to the N-terminal part of Nqo3 from Complex I as well as [FeFe] hydrogenases [46–49,53,57,104,105]. These conserved sequence stretches contain another ferredoxin-like binding motif for a [2Fe–2S] cluster, which corresponds to N1b of Complex I [53,57]. In addition, a ferredoxin-type [2Fe–4S] motif is found in HoxU of cyanobacterial bidirectional hydrogenases [53,57], in [FeFe] hydrogenases [6104,105], and Complex I [10]. While both of these cubane clusters have been detected in the Clostridium pasteurianum [FeFe] hydrogenase [6], only one [4Fe–4S] cluster is present in the homologous binding fold of Complex I (cluster N4) [10]. In bidirectional hydrogenases from aerobic bacteria, only four out of the eight cysteine residues of this sequence motif are conserved in HoxU, indicating the presence of a single [4Fe–4S] cluster [57,69]. Furthermore, HoxU contains another sequence motif consisting of one histidine and three cysteine residues [53,57]. This conserved fold suggests the binding of another cubane cluster, as observed in Complex I (N5) and [FeFe] hydrogenases [6,10]. Alternatively, the cysteine residues of this sequence motif might coordinate a [3Fe–4S] cluster as reported in a combined EPR and Mössbauer study on the R. opacus hydrogenase [94]. According to this assumption, the number of experimentally detected and predicted Fe–S clusters would coincide in aerobic bidirectional hydrogenases, and trinuclear and tetranclear Fe–S clusters in HoxU could possibly substitute those missing in HoxY, thereby preserving a standard-like electron relay (vide supra).

Apart from the detailed characterization of the individual clusters, two general questions arise from previous studies on Fe–S cofactors in bidirectional hydrogenases. The first one refers to the discrepancy between the number of potential binding motifs and EPR-detected Fe–S clusters, especially in cyanobacterial hydroge-
The soluble hydrogenase from *R. eutropha* and the [NiFe] site as well as the easy release of the FMN compound is a unique feature of the bidirectional hydrogenase (SH) [69]. In principle, there are two major reasons for this enzyme first before discussing several objections and contradictions: the special interest of this particular bidirectional enzyme. First of all, *R. eutropha* is a facultative chemolithoautotroph which is able to grow in the presence of oxygen by using H₂ and CO₂ as the sole electron and carbon source, respectively [67]. As a consequence, all three hydrogenases purified from this organism are able to catalyze hydrogen conversion in the presence of oxygen, which is in contrast to most other hydrogenases [69,92]. For the RH, this property has been ascribed to a narrowed gas channel, which limits oxygen access to the active site [15,115]. In the MBH, an unusual proximal Fe–S cluster has been recently reported to prevent the formation of the inactive Ni₆P₆-A state by supplying electrons at high potentials [116]. In case of the SH, a modified active site has been previously suggested to play a role in its oxygen tolerance, however, this has been recently disproven (vide infra) [80–82,88]. Its tolerance towards oxygen renders the SH an outstanding biocatalyst for potential biotechnological applications, in particular, since this enzyme preferentially catalyzes the production of NADH rather than its oxidation. Therefore, the SH is particularly suited for the in situ regeneration of NADH in coupled enzymatic reactions [74,76–79]. Moreover, this enzyme has been extensively studied for more than three decades and, as a consequence, it represents the best characterized bidirectional hydrogenase and an established model system for this type of enzymes.

Like other bidirectional hydrogenases, the SH consists of the hydrogenase (HoxHY) and diaphorase (HoxFU) moieties, expanded by the aforementioned HoxI₂ homodimer [60]. The putative content, localization and function of Fe–S clusters and flavin compounds, including the unprecedented FMN-α in HoxY [114], have already been discussed for this enzyme (vide supra). In the following paragraphs, we will mainly focus on the unusual spectroscopic properties of the [NiFe] active site and its putative structural and functional peculiarities.

5.1. The active site of the soluble hydrogenase: the previous model and its shortcomings

As mentioned above, spectroscopic and structural features of the SH have been discussed controversially for more than a decade. Thus, we will present the previous structural and functional model for this enzyme first before discussing several objections and contradictory results from recent in situ studies (Section 5.2).

In standard [NiFe] hydrogenases, the Fe(CO)(CN)₂ moiety of the active site gives rise to three distinct infrared absorptions, which correspond to the carbonyl stretching vibration ν(CO) and the symmetric and antisymmetric stretching modes νₛ(CN) and νₐs(CN) of the two vibrationally coupled cyanide ligands [12,13]. Due to the ν-acceptor and σ-donor capabilities of the CO and CN⁻ ligands, the frequencies of these vibrations are sensitive towards changes in the structure and redox state of the active site [9,12,117,118]. In contrast to standard [NiFe] hydrogenases, the IR spectrum of the as-isolated, oxidized SH exhibits one CO and four instead of two CN absorptions. Based on this observation and a chemical cyanide determination, the presence of two additional cyanide ligands was suggested for the active site of this enzyme (Fig. 4A) [80,81], which is, however, in sharp contrast to recent studies (vide infra) [88,90]. The frequencies of the CO and three of the four CN stretching modes were found to be insensitive towards redox state changes of the enzyme [80,81,96]. Consequently, these bands were assigned to a Fe(CO)(CN)₃ moiety, which does not undergo redox-dependent changes [80]. Only one of the CN stretching modes, detected at 2098 cm⁻¹ for the oxidized enzyme, was reported to shift towards lower wavenumbers under reducing conditions. As a consequence, it was argued that the CN⁻ ligand reflected by this absorption was not coordinated to the same metal atom as the CO ligand, but rather bound to Ni (Fig. 4A) [80]. Since this 2098 cm⁻¹ band was absent in the spectrum of SH puri-
fied from a ΔhypX deletion mutant, the HypX protein was claimed to be responsible for the incorporation of the proposed Ni-bound cyanide [82]. Furthermore, the presence and intensity of the 2098 cm\(^{-1}\) band was reported to correlate with the catalytic activity of the SH under aerobic conditions and, thus, the putative Ni-bound cyanide was suggested to play a major role in the oxygen tolerance of this enzyme by shielding the active site from oxygen [80–82]. In contrast to other [NiFe] hydrogenases, Ni-edge XAS investigations of the SH indicated the presence of a six-coordinate Ni atom, including hard ligand atoms like C, O, or N, especially in the fully oxidized state of the enzyme [108,119–121]. These observations were ascribed to sulfoxygenation at the terminal cysteinyl donors and a Ni-bound cyanide ligand (Fig. 4A). Furthermore, Ni-coordination by N/O atoms from water, amino side chains or amide groups of the protein backbone was proposed on the basis of these data.

As also observed for other bidirectional hydrogenases, no major contributions from paramagnetic Ni-species could be detected in most of the previous EPR studies on the SH [80,81,84,96]. As a consequence, the Ni atom has been suggested to remain unchanged in the Ni(II) state throughout the catalytic cycle [96,119]. Hydrogen cleavage was proposed to take place at a terminal coordination site of the Ni atom as the Fe atom was thought to be six-coordinate and, therefore, incapable of binding a bridging hydride. As the stretching frequencies of the putative Fe(CO)(CN)\(_2\) moiety did not change under various conditions, all variations of the IR spectrum have been ascribed to a Ni-bound cyanide, reflecting changes in the number and type of Ni-coordinated ligands [80,81,96,119]. Based on these interpretations, the following model has been suggested for the catalytic cycle and the reductive activation of the SH active site [96,119]: In the oxidized state, the aerobically isolated SH exhibits one CO stretching at 1956 cm\(^{-1}\) and four CN stretchings at about 2098, 2090, 2080, and 2070 cm\(^{-1}\) (Fig. 4A). Under oxidizing conditions, an almost pure (EPR-silent) “Ni(II)-B-like” state of the enzyme is represented by one CO and two CN stretching bands in the second derivative of the IR spectrum (trace c), indicating a standard set of inorganic ligands at the active site. The cartoon shows the present model for the active site structure of the native soluble hydrogenase in the Ni(II)-C state.

Fig. 4. Previous (A) and present (B) model for the active site structure of the soluble hydrogenase from R.eutropha. (A) Previous model derived from spectroscopic studies on the isolated enzyme [96] with the corresponding IR spectrum and the proposed structure of the fully oxidized enzyme displayed as a cartoon. For details, see text. (B) Summarized results from in vivo and in situ spectroscopic studies on the soluble hydrogenase from R. eutropha [88]. In living cells, about 60% of the enzyme resides in the paramagnetic Ni(II)-C state (trace a), which can be converted to more oxidized or reduced EPR-silent Ni(II) species. In agreement with the reducing conditions within the cytoplasm, the second derivative of the IR spectrum from the same sample exhibits a mixture of “standard-like” reduced states with a predominant contribution from Ni(II)-C (trace b). Under reducing conditions, an almost pure (EPR-silent) “Ni(II)-B-like” state of the enzyme is represented by one CO and two CN stretching bands in the second derivative of the IR spectrum (trace c), indicating a standard set of inorganic ligands at the active site.
The studies described above provided a seemingly self-consistent model for the structure and catalytic mechanism of the SH active site. Nonetheless, there were ambiguities and open questions, which motivated further detailed investigations of this enzyme. First, the coordination of two additional cyanide ligands to the [NiFe] center would lead to a highly tense structure. In fact, preliminary quantum chemical calculations of model compounds for the proposed active site failed since the complex dissociated during geometry optimization. Second, the disappearance of the ν(CN) = 2098 cm⁻¹ band after incubation of the SH with sub-stoichiometric amounts of NAD(P)H has been assigned to a red shift (Δν = −8 cm⁻¹) of this absorption band [81]. This should lead to a defined absorbance increase at 2090 cm⁻¹, however, the experimental IR spectra exhibit relative intensity changes in the entire 2100–2050 cm⁻¹ region, which indicates that the observed spectral changes are not related to a single ligand or exclusive changes at the Ni-atom. In addition, the terminal Ni-bound hydride ligand proposed for the fully reduced state of the enzyme should give rise to a well-defined ν(Ni–H) vibrational absorption in the spectral region between 2250 and 1700 cm⁻¹ [122], as also predicted by spectra calculations on a [NiFe] site model compound. However, no experimental evidence has been reported for this feature to date. Furthermore, IR studies on enzyme preparations enriched with 15N by 50% were not conclusive [81]. This kind of experiment leads to three sets of ν(CN) bands reflecting enzyme populations with different degrees of 15N labeling [13]. Molecules without 15N labeled cyanide ligands show the usual ν(CN) band pattern, while a complete labeling of all cyanide ligands shifts the entire ν(CN) signature towards lower wavenumbers. A third set of bands reflects 2^n−2 populations where only a part of the n cyanide ligands is labeled with 15N. An active site with four cyanide ligands should give rise to 14 of these latter populations, which would, as a consequence, dominate the IR spectrum. Even if the Ni-bound cyanide was unaffected by partial 15N labeling for metabolic reasons [81], still six of these populations should arise from the three Fe-bound cyanides. However, like in standard [NiFe] hydrogenases, only two medium strong bands arose from partial 15N labeling, which is in contrast to the assumption of additional cyanide ligands at the SH active site. In addition, the model’s assumption of a redox-inactive Ni(II) state during reduction and catalysis is in conflict with the detection of the paramagnetic Ni₃-C state for SH incubated with an excess of NADH [83]. These observations have been later ascribed to a loss of the additional cyanide ligands, which was suggested to render the active site an oxygen sensitive standard [NiFe] center [96,119]. However, NADH is a substrate of the SH, which can also be present in large amounts under in vivo conditions (vide infra). Furthermore, cyanide is known to be among the most tightly bound inorganic ligands, which is unlikely to easily (and selectively) dissociate from the deeply buried active site under mild reducing conditions. These objections are in line with the finding that excess NADH leads to a completely reversible reduction of the bidirectional hydrogenase from Synechocystis sp. [89]. A particularly puzzling implication of the previous model is the redox inactivity of both Ni and Fe, questioning the functional role of the complex [NiFe] site. Additional concerns refer to the proposed terminal hydride binding at the Ni site. This scenario would imply that hydride conversion does not take place cis or trans to a carbonyl ligand, which is in contrast to all other known hydrogenases. In this context, it should be mentioned that a cis or (preferentially) trans oriented ligand with both electron donating and withdrawing capabilities (like CO) is assumed to be essential for the reversible binding and cleavage of H₂, respectively [34]. Finally, the proposed involvement of the Ni-bound cyanide in the oxygen tolerance of the SH [96] is not convincing, since this ligand would only shield the bridging site between the two metals. However, a blocking of the bridging position by additional cyanide ligands would not sterically shield the terminal coordination site on the Ni, where hydrogen cycling was proposed to take place (Fig. 4A).

5.2. New insights from in vivo and in situ spectroscopy

Due to the shortcomings of the model discussed in the preceding section, the SH from *R. eutropha* has been recently reinvestigated in a combined approach using IR and EPR spectroscopy [88]. In contrast to former spectroscopic investigations on purified SH, this study has been performed on whole cells of an *R. eutropha* H16 wild type derivative that expresses no hydrogenases other than the SH. Thus, the enzyme could be characterized within its native cytoplasmic environment. Under in vivo conditions, i.e., within living cells, it was shown that the SH mainly exists in the paramagnetic Ni₃-C state, which is in agreement with its coupling to the cellular pool of reductants (Fig. 4B, trace a). As monitored by EPR spectroscopy, this Ni(III) species disappears under more reducing or oxidizing conditions, indicating a redox active Ni-atom in the native enzyme. In addition to the prevalent Ni₃-C state, complementary IR studies revealed a mixture of further redox states, as also observed in “standard” [NiFe] hydrogenases (Figs. 3 and 4B, trace b). These findings demonstrate that the SH active site contains a standard set of inorganic ligands, i.e., one CO and two CN⁻. This conclusion has been further proven by the IR spectrum of a nearly pure EPR-silent oxidized state, exhibiting only one CO and two CN⁻ stretching modes, which resemble the IR signature of the Ni₃-B state in “standard” [NiFe] hydrogenases (Fig. 4B, trace c). Thus, the active site structure of the native SH is much more similar to standard [NiFe] hydrogenases and the previous model involving an unusual ligation pattern of the [NiFe] center can be discarded (Fig. 4B, cartoon).

In a more general sense, these studies indicate that a representative characterization of complex biological systems is strongly dependent on the preservation or recreation of native conditions. For the SH, quantitative amounts of the Ni₃-C state have only been observed within the cytoplasm of living cells [88] or, mimicking these reducing conditions, by adding excess amounts of NADH [83]. In agreement with previous suggestions [93,97], this finding indicates that a detection of paramagnetic Ni(III) species in bidirectional hydrogenases requires the careful selection of appropriate experimental conditions. Apart from these general insights, the above in situ studies have revealed a further reduced species of the SH, termed Ni₄-SR2 (Fig. 3), which was also observed in the bidirectional hydrogenase from *Synechocystis* sp. [88,89]. Compared to Ni₃-SR states observed in standard [NiFe] hydrogenases, this species exhibits an unusually high CO stretching frequency at 1958 cm⁻¹. Hence, this state could be a low potential Ni(III) species similar to Ni₃-SR (ν(CO) = 1962 cm⁻¹ in *R. eutropha*) or the putative Ni₄-X state of the oxidative addition mechanism, proposed recently for hydrogen cycling in [NiFe] hydrogenases [31]. This so far undetected Ni₄-X state has been described as an intermediate Ni(III) species with two hydride ligands at the active site, one in the bridging position between the two metals (like in Ni₃-C and Ni₃-SR) and one bound terminally to the sixth coordination site of the Ni atom. Such a species might exhibit spectral similarities to the detected Ni₄-SR2 state. However, preliminary calculations of IR spectra of a [NiFe] model compound suggest that the terminal hydride of Ni₄-X should give rise to a well defined ν(Ni–H) band in the 2000–1900 cm⁻¹ region and a particularly low CO stretching frequency. In addition, such a Ni(III) species

3 For the enzyme from *Synechocystis* sp., this species has been previously assigned to the Ni₃-SR state [89].

4 M. Horch. Unpublished results.
should also display a prominent EPR signal, which has not been observed in the experiment. Therefore, Ni$_2$SR2 may rather be a Ni(II) species where the ligand at the bridging site exerts a strong trans influence on the opposite CO ligand. This effect should weaken the Fe–CO and strengthen the C=O bond, thereby selectively increasing the frequency of the CO stretching mode, as observed for Ni$_2$SR2. Possible candidates for such a scenario may be a H$_2$ σ-bond complex or related species facing the bridging site. In fact, a similar effect was also observed in the Ni$_2$C state of “standard” [NiFe] hydrides, where the bridging hydride acts as a strong σ-donor to the CO ligand such that ν(CO) is indeed considerably increased [27].

6. Outlook: challenges for future research

Over the last three decades, spectroscopic and biochemical studies have provided considerable insights into functional aspects and structural determinants in NAD(H)-linked bidirectional hydrides. Despite notable scientific advances, however, there are still numerous questions to address in order to gain a comprehensive understanding of this type of enzymes. In particular, little is known about the function and interaction of the individual Fe-S clusters, especially in the diaphorase moiety. Another, closely related question arises from the finding of stoichiometric amounts of paramagnetic species of the active site and certain Fe-S clusters are difficult to detect. This observation may be related to unusual redox properties and pronounced magnetic interactions of the various cofactors. In terms of future applications, special attention has to be paid to the investigation of oxygen-tolerance mechanisms in certain bidirecional [NiFe] hydrides like the SH and E. eutrophic. In this context, the supply of low-potential electrons from the oxidation of NAD(P)H appears to play a major role in preserving catalytic activity under aerobic conditions in vivo. However, despite considerable efforts and promising insights, the structural and mechanistic basis for this property has still to be resolved.

References

