Ex vivo Charakterisierung von humanen Autoantigen-spezifischen CD4\(^+\) T-Zellen mit Fokus auf Multiple Sklerose

vorgelegt von

Diplom Hum.-Biol.
Stefanie Gamradt
geb. in Berlin

von der Fakultät III - Prozesswissenschaften
der Technischen Universität Berlin
zur Erlangung des akademischen Grades
Doctor rerum naturalium (Dr. rer. nat.)
genehmigte Dissertation

Promotionsausschuss
Vorsitzender: Prof. Dr. Peter Neubauer
Gutachter: Prof. Dr. Roland Lauster
Gutachter: Prof. Dr. Alexander Scheffold

Tag der wissenschaftlichen Aussprache: 4. Juli 2017

Berlin 2017
Für Roman
und meine Eltern
Inhaltsverzeichnis

Zusammenfassung .. VI
Abstract ... VIII

1 Einleitung ... 1

1.1 Grundzüge des Immunsystems .. 1

1.2 T-Lymphozyten .. 2
 1.2.1 Entwicklung und primäre Aktivierung .. 2
 1.2.2 CD4+ T-Zell Differenzierung ... 4

1.3 Toleranz und Autoimmunität .. 9
 1.3.1 Zentrale und periphere Toleranzmechanismen ... 9
 1.3.2 CD4+ T-Zellen und Autoimmunität ... 11

1.4 Diabetes Mellitus Typ I ... 13

1.5 Myasthenia gravis .. 14

1.6 Multiple Sklerose ... 15
 1.6.1 Mögliche Ursachen und Pathogenese .. 15
 1.6.2 Die Rolle von CD4+ T-Zellen .. 18
 1.6.3 Die Rolle von Myelin-spezifischen CD4+ T-Zellen .. 19

1.7 Methoden zur Detektion von Autoantigen-spezifischen CD4+ T-Zellen ... 21

2 Zielstellung .. 24

3 Material .. 25

 3.1 Patienten- und Kontrollproben ... 25

 3.2 Geräte .. 27

 3.3 Verbrauchsmaterial .. 28

 3.4 Chemikalien, Medien und Zusätze .. 29

 3.5 Zusammensetzung verwendeter Puffer und Medien .. 30
Inhaltsverzeichnis

3.5.1 Puffer .. 30
3.5.2 Medien .. 30
3.6 Kits .. 31
3.7 Antikörper ... 31
3.8 Antigene ... 33
3.9 Software ... 34

4 Methoden .. 35
4.1 Direkte *ex vivo* Charakterisierung von autoreaktiven CD4⁺ T-Zellen 35
 4.1.1 Isolierung von PBMCs mittels Dichtegradienten-Zentrifugation 36
 4.1.2 Oberflächenfärbung von CXCR3 und CCR6 ... 36
 4.1.3 Stimulation von PBMCs .. 37
 4.1.4 Magnetische Anreicherung von CD154⁺ und CD137⁺ T-Zellen 37
 4.1.5 Markierung der Zellen mit Fluorochrom-gekoppelten Antikörpern 38
 4.1.5.1 Oberflächenfärbung .. 38
 4.1.5.2 Intrazelluläre CD154 und Zytokinfärbung ... 39
 4.1.5.3 Intranukleäre FoxP3-Färbung .. 39
 4.1.6 Durchflusszytometrische Messung .. 40
 4.1.6.1 Gating-Strategie und Auswertung ... 41
 4.1.6.2 Boolesche Analyse ... 42
 4.1.7 *In vitro* Generierung von autoreaktiven T-Zell-Klonen und T-Zell-Linien 43
 4.1.7.1 Generierung von allogenen Feederzellen .. 44
 4.1.7.2 Anreicherung von CD154⁺ T-Zellen und Färbung von
 Oberflächenmolekülen ... 45
 4.1.7.3 FACS-Sortierung und *in vitro* Expansion .. 45
 4.1.7.4 Generierung von CD3-depletierten Antigen-präsentierenden Zellen 47
 4.1.7.5 Restimulation, Markierung mit Fluorochrom-gekoppelten Antikörpern und
 durchflusszytometrische Analyse .. 47
Inhaltsverzeichnis

4.2.5.1 Validierung der Spezifität ... 47
4.2.5.2 Untersuchung auf Kreuzreaktivität .. 49
4.2.5.3 Bestimmung der funktionellen Avidität ... 49

4.3 T-Zell-Rezeptor-Sequenzierung ... 50
4.3.1 Isolierung der genomischen DNA .. 50
4.3.2 Hochdurchsatz-Sequenzierung ... 51

4.4 Statistik und Berechnungen ... 51
4.4.1 Berechnung der Frequenzen von Antigen-spezifischen T-Zellen 51
4.4.2 Statistische Tests .. 51
4.4.3 Spearman-Korrelation .. 52

4.5 Angaben zu Kollaborationen ... 52

5 Ergebnisse ... 53
5.1 Implementierung und Validierung einer Methode zur direkten \textit{ex vivo} Detektion von Autoantigen-spezifischen CD4$^{+}$ T-Zellen 53
5.1.1 Anreicherung von autoreaktiven CD154$^{+}$ CD4$^{+}$ T-Zellen 53
5.1.2 Prävalenz von autoreaktiven T-Zellen in Gesunden 55
5.1.3 Generierung von Autoantigen-spezifischen T-Zell-Klonen 57
5.1.3.1 Klonierungseffizienzen ... 58
5.1.3.2 Validierung der Spezifität .. 58
5.1.4 Einfluss von \textit{in vitro} Expansion auf die Klonalität von Antigen-spezifischen T-Zell Populationen ... 60

5.2 Multiparameter-Charakterisierung von Autoantigen-spezifischen T-Zellen in gesunden Individuen ... 63
5.2.1 Untersuchung des Phänotyps und der Zytokinproduktion 63
5.2.2 Vergleich der Expression von CD45RO im autoreaktiven und im Gesamt-T-Zell-Repertoire ... 67
5.2.3 Bestimmung der funktionellen Avidität autoreaktiver T-Zell-Linien 69
5.2.4 Kreuzreakтивität mit mikrobiellen Antigenen ... 71
5.3 Charakterisierung von Myelin-reaktiven CD4⁺ T-Zellen in MS-Patienten 75
 5.3.1 Quantifizierung und Phänotypisierung ... 75
 5.3.1.1 Bestimmung der Frequenz .. 76
 5.3.1.2 Untersuchung des Phänotyps ... 77
 5.3.1.3 Korrelationen mit klinischen Parametern ... 78
 5.3.2 Funktionelle Charakterisierung .. 80
 5.3.2.1 Expression von inflammatorischen Zytokinen ... 81
 5.3.2.2 Expression von Chemokinrezeptoren .. 84
 5.3.2.3 Bestimmung der funktionellen Avidität Myelin-reaktiver T-Zell Klone .. 87
 5.3.3 Myelin-spezifische regulatorische T-Zellen .. 90

6 Diskussion ... 93
 6.1 Die Anreicherung von CD154⁺ T-Zellen ermöglicht eine spezifische und
detaillierte ex vivo Charakterisierung von autoreaktiven CD4⁺ T-Zellen 93
 6.2 Autoreaktive naive und Memory T-Zellen können in Gesunden detektiert
werden .. 95
 6.3 Keine Hinweise auf Autoantigen-induzierte Expansion von Memory T-Zellen 97
 6.4 Autoreaktive T-Zellen kreuzreagieren mit mikrobiellen Antigenen 98
 6.5 Gleiche Prävalenz von Myelin-reaktiven T-Zellen in Gesunden und
MS-Patienten ... 101
 6.6 Myelin-spezifische T-Zellen von MS-Patienten und Gesunden zeigen nur
geringe funktionelle Unterschiede ... 102
 6.7 Myelin-reaktive T-Zellen zeigen eine geringe Antigensensitivität 105
 6.8 Myelin-reaktive regulatorische T-Zellen lassen sich mit Hilfe des
Aktivierungsmarkers CD137 detektieren und charakterisieren 107
 6.9 Generelle statt Myelin-spezifische Verschiebung des Differenzierungs- und
Funktionsstatus von CD4⁺ T-Zellen ... 111
6.10 Limitationen, Schlussfolgerung und Ausblick ... 114
7 Literaturverzeichnis .. 118
8 Anhänge .. 141
I. Abbildungsverzeichnis ... 141
II. Tabellenverzeichnis .. 143
III. Abkürzungsverzeichnis ... 144
IV. Danksagung ... 147
V. Eidesstattliche Erklärung .. 148
VI. Lebenslauf .. 149
VII. Publikationsliste .. 151
Zusammenfassung

Im ersten Teil dieser Arbeit wurden autoreaktive CD4⁺ T-Zellen von gesunden Individuen bezüglich ihrer Frequenz, ihres Phänotyps und ihrer Funktion untersucht. Anschließend wurde der Fokus auf die vergleichende Analyse von T-Zellen mit Spezifität für das Myelin basische Protein (MBP), das Myelin-Oligodendrozyten Protein (MOG) und das Proteolipidprotein (PLP) aus MS-Patienten und passenden gesunden Kontrollen gelegt.

Abstract

Despite extensive research, it is unclear whether myelin reactive CD4+ T cells are key players in the pathogenesis of multiple sclerosis (MS). This is mainly due to the lack of an appropriate method for their direct identification. In this dissertation, a sensitive method was applied to detect and systematically characterize rare myelin reactive CD4+ T cells directly ex vivo in the peripheral blood of healthy control subjects and MS patients. The method is based on the magnetic enrichment of specifically activated CD154+ T cells in combination with multiparametric flow cytometry.

The first part of the dissertation focused on the analysis of the frequency, phenotype and function of auto-reactive CD4+ T cells in healthy individuals. Subsequently, the focus was set on the comparative analysis of T cells specific for myelin basic protein (MBP), myelin oligodendrocyte protein (MOG) and proteolipid protein (PLP) from MS patients and matched healthy control subjects.

CD4+ T cells with specificities for multiple sclerosis-, diabetes- and myasthenia gravis-associated antigens were detected in all healthy control subjects and are therefore part of a normal T cell repertoire. The frequency of myelin reactive T cells did not differ between MS patients and healthy control subjects. A distinct, but variable, quantity of autoantigen-specific T cells presented a memory phenotype (CD45RO+). Interestingly, the proportion of autoreactive memory T cells correlated with the proportion of memory T cells within the entire CD4+ T cell population in both cohorts. This association was also seen in neoantigen specific T cells. This observation does not support autoantigen induced clonal expansion of memory T cells and suggests an initial activation by a potential foreign antigen. In this regard, it was demonstrated that autoreactive T cells lines can cross-react with different randomly chosen microbial antigens, with memory-derived T cell lines predominantly reacting to viral antigens.
Autoantigen-specific memory T cells were able to produce inflammatory (TNF-α, IFN-γ, IL-17, GM-CSF) or B cell activating (IL-4, IL-21) cytokines. However, compared to the recall antigen Mannoprotein 65 (MP65) from *Candida albicans*, they revealed notably decreased antigen sensitivity. This indicates a restricted selection of autoreactive T cell clones with high affinity or, alternatively, a limited functional avidity maturation in the course of the immune response. In MS patients and healthy control subjects, only minimal functional differences within the myelin reactive memory T cells were found. A significantly increased proportion of memory T cells as well as CXCR3⁺/CCR6⁺ (Th1/Th17) cells in the myelin-specific repertoire in MS patients was also reflected in the total CD4⁺ T cell population. This finding is indicative of more general changes in the differentiation and functional state of CD4⁺ T cells in MS patients, rather than of an autoantigen-specific modulation.

In addition to myelin-specific conventional CD154⁺ T cells, autoreactive CD137⁺ regulatory T cells could be detected directly *ex vivo* in a small group of study subjects. This opens up new possibilities for the investigation of tolerance mechanisms at the antigen-specific level.

Conclusively, the *ex vivo* characterization of myelin specific T cells from the peripheral blood did not provide profound evidence of them being key players in MS. These results can in part explain the decreased efficacy of selective immune therapies in MS, which are mainly based on the immunopathological relevance of myelin specific CD4⁺ T cells in the animal model of MS (experimental autoimmune encephalomyelitis = EAE). The disease course in human is insufficiently presented in the EAE model. Therefore, the focus of research should more strongly be on finding relevant target antigens or alternative animal models and pathomechanisms in order to allow the development of new target-driven therapies. Future analyses should furthermore determine whether autoreactive T cells with low antigen sensitivity are able to contribute to the pathogenesis of autoimmune diseases.
1 Einleitung

1.1 Grundzüge des Immunsystems

Der Begriff Immunsystem bezeichnet die Gesamtheit aller Zellen, Gewebe, Organe und Moleküle eines Organismus, welche zur Abwehr von infektiösen Organismen wie Bakterien, Viren oder Parasiten beitragen. Zu den weiteren Funktionen gehört die Eliminierung von körpereigenen Zellen, welche überaltert oder neoplastisch entartet sind, sowie die Immunregulation. Das Immunsystem wird in die Mechanismen der angeborenen und der adaptiven Immunität unterteilt, bei welcher jeweils zellvermittelte und humorale (nicht-zellvermittelte) Prozesse zusammenwirken (Übersicht in [1]).

1.2 **T-Lymphozyten**

1.2.1 **Entwicklung und primäre Aktivierung**

Die beträchtliche Diversität des TCR-Repertoires, welche mit >10^{20} theoretischen und mindestens 2,5x10^7 tatsächlich ausgeprägten Spezifitäten beziffert wird [3], entsteht vor allem durch den Prozess der somatischen Rekombination. Dabei werden V-(variable), D-(diversity) und J-(joining) DNA-Segmente des α- und β-Genokus zufällig zusammengefügt, sodass TCRs mit einzigartigen Spezifitäten entstehen, welche die Erkennung und Bekämpfung des vielfältigen Spektrums an Pathogenen ermöglichen (Übersicht in [4]).

T-Zellen gelangen nach ihrer Reifung im Thymus als naive Zellen in die Peripherie. Dort zirkulieren sie durch das Blut und die Lymphgefäße zu den sekundären lymphatischen Organen (Lymphknoten, Milz und Mukosa-assoziiertes lymphatisches Gewebe). In den

Neben der passenden Peptid-MHC-Kombination (pMHC) benötigen T-Zellen zusätzliche kostimulatorische Signale, um aktiviert zu werden. Diese erhalten sie vorrangig durch die Interaktion der Oberflächenmoleküle CD28 auf der T-Zelle mit CD80/86 auf der APC. Aktivierte T-Zellen exprimieren transient das Molekül CD154 (CD40L) auf ihrer Oberfläche, welches durch Bindung an seinen Liganden CD40 die Funktion der APC reguliert. Zusätzlich erhalten T-Zellen Differenzierungssignale durch die APC (siehe 1.2.2). Aktivierte T-Zellen produzieren den Wachstumsfaktor Interleukin (IL)-2, welcher durch autokrine positive Rückkopplung über den IL-2-Rezeptor zu ihrer Proliferation führt.

1.2.2 CD4⁺ T-Zell Differenzierung

Abhängig von der Qualität und der Stärke des aktivierenden Signals sowie dem lokalen Zytokinmilieu differenzieren naive (Tₙ) CD4⁺ T-Zellen zu verschiedenen Effektor-T-Zell-Populationen (Zusammenfassung in Tab. 1). Diese Zellen übernehmen jeweils spezifische Effektor-Funktionen und können in entzündetes Gewebe migrieren (= Homing), wo sie weitere Immunzellen anlocken und aktivieren. Die unterschiedlichen CD4⁺ T-Zell-Subpopulationen sind durch die Expression spezifischer Transkriptionsfaktoren (TF) und -regulatoren, Zytokinen und Oberflächenmolekülen charakterisiert [7-9]. Daneben exprimieren sie verschiedene Chemokinrezeptoren, welche nach Interaktion mit ihren entsprechenden Liganden die Migration regulieren [10-12].

Memory T-Zellen exprimieren sie statt CD45RA die kürzere Isoform CD45RO. Während zentrale Memory T-Zellen (T_{CM}) CCR7 weiterhin exprimieren und eine limitierte Effektorfunktion sowie eine hohe Proliferationskapazität aufweisen, sind Effektor-Memory T-Zellen (T_{EM}) negativ für CCR7 und nehmen in peripheren Geweben schnell ihre Effektorfunktion auf. Terminale Effektor-Memory T-Zellen (T_{EMRA}), welche CD45RA reexprimieren, besitzen Eigenschaften von seneszenten Zellen und weisen eine geringe proliferative und funktionelle Kapazität auf [14].

Tab. 1: Charakteristika von CD4⁺ T-Zell-Subpopulationen. Modifiziert nach [8, 10, 14]

<table>
<thead>
<tr>
<th>Subtyp</th>
<th>Induzierende Zytokine</th>
<th>Transkriptionsfaktor</th>
<th>Charakteristische Zytokine</th>
<th>Phänotyp</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{N}</td>
<td>IL-2</td>
<td></td>
<td>CD45RA⁺, CCR7⁺</td>
<td>Vorläuferzellen</td>
<td></td>
</tr>
<tr>
<td>T_{CM}</td>
<td>IL-2, IL-21</td>
<td></td>
<td>CD45RO⁺, CCR7⁺</td>
<td>B-Zell-Hilfe, sekundäre Expansion</td>
<td></td>
</tr>
<tr>
<td>T_{EM}</td>
<td>TNF-α, IFN-γ, IL-4, IL-5, IL-17</td>
<td></td>
<td>CD45RO⁺, CCR7⁻</td>
<td>Schutz in Geweben, B-Zell-Hilfe</td>
<td></td>
</tr>
<tr>
<td>T_{EMRA}</td>
<td>TNF-α, IFN-γ</td>
<td></td>
<td>CD45RA⁺, CCR7⁻</td>
<td>terminal differenzierte Zellen</td>
<td></td>
</tr>
<tr>
<td>Th1</td>
<td>IL-12</td>
<td>T-bet IFN-γ, GM-CSF</td>
<td>CXCR3⁺, CCR5⁺</td>
<td>Schutz gegen intrazelluläre Pathogene</td>
<td></td>
</tr>
<tr>
<td>Th2</td>
<td>IL-4</td>
<td>GATA-3</td>
<td>IL-4, IL-5, IL-10, IL-13 CCR4⁺, CRTh2⁺</td>
<td>Schutz gegen extrazelluläre Parasiten</td>
<td></td>
</tr>
<tr>
<td>Th17</td>
<td>TGF-β, IL-6, IL-1β, IL-23</td>
<td>RORC2 IL-17, GM-CSF</td>
<td>CCR6⁺, CCR4⁺</td>
<td>Schutz gegen extrazelluläre Pilze und Bakterien</td>
<td></td>
</tr>
<tr>
<td>Tfh</td>
<td>IL-6, IL-21</td>
<td>Bcl-6</td>
<td>IL-21, IL-4 CXCR5⁺, ICOS⁺, PD-1⁺</td>
<td>B-Zell-Hilfe</td>
<td></td>
</tr>
<tr>
<td>nTreg</td>
<td>-</td>
<td>FoxP3</td>
<td>TGF-β CD25⁺, CD127⁻</td>
<td>(Selbst-)Toleranz</td>
<td></td>
</tr>
</tbody>
</table>

T_{N} naive T-Zellen; T_{CM} zentrale Memory T-Zellen; T_{EM} Effektor-Memory T-Zellen; T_{EMRA} terminale Effektor-Memory T-Zellen; Th1/2/17 T-Helfer-Zellen Typ 1/2/17; Tfh follikuläre T-Helfer-Zellen; nTreg natürliche regulatorische T-Zellen
Einleitung

Th1-Zellen

Th2-Zellen

Die Anwesenheit von IL-4 führt nach Aktivierung von naiven CD4⁺ T-Zellen zur Differenzierung von Th2-Zellen, welche hauptsächlich IL-4, IL-5, IL-10 und IL-13 produzieren (zusammengefasst in [18]). IL-4 induziert die Produktion von IgE durch B-Zellen, welches zur Eliminierung extrazellulärer Parasiten wie Helminthen (Würmern) beiträgt. Daneben spielt IgE eine wichtige Rolle im Zuge der Entwicklung von allergischen Reaktionen wie Asthma oder atopischer Dermatitis. Th2-Zellen werden durch den TF GATA-3 reguliert und tragen die Moleküle CCR4 und CRTH2 auf ihrer Oberfläche, wodurch sie in Gewebe mit allergischer Inflammation migrieren können [19].

Th17-Zellen

Eine Kombination aus den Zytokinen IL-6, TGF-β, IL-1β und IL-23 induziert die Entwicklung von Th17-Zellen nach Aktivierung naiver CD4⁺ T-Zellen, allerdings ist die Einflussstärke der einzelnen Faktoren im humanen System noch nicht vollständig geklärt (zusammengefasst in [8]). Th17-Zellen exprimieren den TF RORC2 (das humane Analog zu
Einleitung

RORγ-t in der Maus) und spielen eine wichtige Rolle bei der Bekämpfung von extrazellulären Pilzen und Bakterien. Die von Th17-Zellen exprimierten Chemokinrezeptoren CCR4 und CCR6 vermitteln ihre Migration in Haut und Schleimhäute [20]. Das charakteristische Zytokin der Th17-Zellen ist IL-17, jedoch ist insbesondere in der Maus die Expression von GM-CSF von einem Teil der Zellen beschrieben [21, 22].

Tfh-Zellen

Regulatorische T-Zellen

Regulatorische T-Zellen (Tregs) können Immunantworten der konventionellen CD4⁺ T-Zell-Populationen (Tcons) eindämmen oder unterdrücken und tragen zur peripheren Toleranz bei. Natürliche Tregs (nTregs oder tTregs) entstehen im Thymus nach mittel- bis
hochaffinen Interaktionen mit Selbst-Peptid-MHC-Komplexen (Abb. 2 und [26]). nTregs exprimieren den TF FoxP3 konstitutiv und tragen zudem CD25, die α-Untereinheit des hochaffinen IL-2-Receptors, auf ihrer Oberfläche [27]. Daneben exprimieren sie im Vergleich zu Tcons wenig bis keinen IL-7-Rezeptor (CD127) [28]. Mutationen im FoxP3-Lokus führen zur Dysfunktion oder zum kompletten Verlust von Tregs, was in der Folge schwere systemische Autoimmunität, Allergien und Inflammation hervorruft [29]. nTregs exprimieren unterschiedliche Chemokinrezeptoren, um lokale Inflammation direkt im Gewebe regulieren zu können [10]. Funktionell spielen dabei u.a. direkte Zell-Zell-Kontakte sowie die Ausschüttung von anti-inflammatorischen Zytokinen wie TGF-β eine Rolle [30].

Zusätzlich können Tregs in einer bestimmten Zytokinumgebung in der Peripherie oder in vitro aus T_N induziert werden (pTregs oder iTregs). Im Gegensatz zu nTregs zeigen vor allem iTregs eine sehr unstabile Expression von FoxP3 [31].

Funktionelle Plastizität

1.3 Toleranz und Autoimmunität

Zwischen “selbst” und "fremd" unterscheiden zu können, ist eine wesentliche und wichtige Eigenschaft des adaptiven Immunsystems. Trotz zahlreicher Mechanismen, die zur Toleranz von T-Zellen gegenüber körpereigenen Antigenen beitragen, kommt es manchmal zur Entstehung von organspezifischen oder systemischen Autoimmunerkrankungen.

1.3.1 Zentrale und periphere Toleranzmechanismen

Mittel- bis hochaffine TCR-pMHC-Interaktionen, welche zwischen den Signalstärken liegen, die positive und negative Selektion steuern, führen darüber hinaus zur Ausbildung von FoxP3+ nTregs [38]. Insgesamt verlassen nur etwa 2-4% der Thymozyten den Thymus als reife T-Zellen.

In der Peripherie werden autoreaktive T-Zellen im gesunden Organismus durch die Mechanismen der peripheren Toleranz unter Kontrolle gehalten [43]. Dazu gehört die induzierte funktionelle Inaktivierung (Anergie), beispielsweise durch fehlende kostimulatorische Signale, sowie die aktive Suppression durch Tregs. Wird das spezifische
Antigen nur in sehr geringer Dichte auf der Oberfläche von APCs oder von T-Zellen räumlich isoliert in einem sog. immunprivilegierten Gewebe oder Organ exprimiert, so bleibt die T-Zelle in einem inaktivierten Zustand (Ignoranz) [34].

1.3.2 CD4⁺ T-Zellen und Autoimmunität

Unter noch ungeklärten Bedingungen können normalerweise selbst-tolerante T-Zellen aktiviert werden und lokale Inflammation und Gewebeschädigung verursachen. Etwa 5-10% der Bevölkerung in Industrieländern ist von Autoimmunerkrankungen wie Diabetes mellitus Typ I (T1D), Rheumatoide Arthritis (RA) oder Multiple Sklerose (MS) betroffen [44]. Die Inzidenz ist in den letzten Jahrzehnten stetig angestiegen [45, 46]. Obwohl ein direkter Auslöser nicht bekannt ist, sprechen viele Daten für ein komplexes Zusammenspiel aus genetischen Faktoren, Umwelteinflüssen und Immundysregulation.

Dass CD4⁺ T-Zellen und insbesondere Autoantigen-spezifische T-Zellen eine Schlüsselrolle innerhalb der Pathogenese von Autoimmunerkrankungen spielen, konnte in verschiedenen Tiermodellen durch adoptive Transferexperimente demonstriert werden (siehe 1.6.2 und [47]). Im Menschen konnte die Relevanz von CD4⁺ T-Zellen, welche im betroffenen Gewebe zumeist angereichert sind, bisher nur indirekt bewiesen werden und ihre Zielantigene sind teilweise noch nicht abschließend identifiziert (siehe 1.4-1.6). Potentiell pathogene CD4⁺ T-Zell-Populationen sind intensiv charakterisiert worden. Vielfach wurde dabei eine Verringerung der Anzahl oder Einschränkungen der suppressiven Funktion von FoxP3⁺ Tregs beschrieben [48]. Da der größte Teil der FoxP3⁺ Tregs im Thymus selektiert wird und somit für Selbst-Spezifitäten angereichert ist, kann dies zu einem Bruch der Selbst-Toleranz und zur Aktivierung autoreaktiver Tcons führen.

Th1- und Th-17-Zellen werden mit der Pathogenese von Autoimmunerkrankungen in Verbindung gebracht (zusammengefasst in [49]). Ihre charakteristischen Zytokine IFN-γ und IL-17 führen u.a. zur Rekrutierung und Aktivierung von Immunzellen des angeborenen
Immunsystems, wie Makrophagen und neutrophilen Granulozyten. Weiterhin verstärken sie die Antigenpräsentation, die Funktion von B-Zellen und die Ausschüttung von weiteren inflammatorischen Mediatoren wie Prostaglandin E2 oder Matrix-Metalloproteinasen, welche zur Gewebeschädigung beitragen. Seit kurzem stehen darüber hinaus GM-CSF-produzierende T-Zellen im Fokus der Forschung, da dieser Faktor essentiell an der Entstehung der experimentellen autoimmunen Enzephalomyelitis (EAE), dem Tiermodell der Multiplen Sklerose, beteiligt ist und seine Überexpression in transgenen Mäusen eine spontane Erkrankung des zentralen Nervensystems (ZNS) auslösen kann [21, 22, 50]. Selbstspezifische CD4⁺ T-Zellen, welche eines oder mehrere dieser entzündungsfördernden Zytokine produzieren, konnten in Autoimmunpatienten detektiert werden (siehe 1.4-1.6.).

1.4 Diabetes Mellitus Typ I

Diabetes mellitus Typ I (T1D) ist eine chronische Autoimmunerkrankung, welche durch Insulinmangel und einem daraus resultierenden erhöhten Blutglukosespiegel gekennzeichnet ist [56]. T1D-Betroffene sind auf eine lebenslange exogene Insulingabe angewiesen [57]. In der westlichen Welt liegt die Prävalenz bei etwa 40 pro 100.000 Individuen, wobei ein ansteigender Trend zu verzeichnen ist [58]. Der Insulinmangel resultiert aus der Zerstörung von Insulin-produzierenden β-Zellen der Langerhans-Inseln des Pankreas, welche in 70-90% der Fälle autoimmun vermittelt und mit dem Vorkommen von spezifischen Autoantikörpern gegen Inselzell-Antigene, wie der 65 kDa Glutamat-Decarboxylase (GAD65), Insulin oder dem Zink-Transporter 8 (ZNT8), assoziiert ist [56]. Autoantikörper können bereits Jahre vor der Erkrankung im Serum gefunden werden und erscheinen sequentiell, allerdings entwickeln nicht alle Personen mit nachweisbaren Autoantikörperrn T1D [59, 60]. Obwohl die Autoantikörperproduktion durch B-Zellen momentan der beste Biomarker der Erkrankung ist, scheinen autoreaktive T-Zellen eine Hauptrolle bei der Zerstörung der β-Zellen zu spielen [61, 62].

Einleitung

1.6 Multiple Sklerose

Multiple Sklerose (MS) ist eine chronisch inflammatorische und neurodegenerative Erkrankung des ZNS [81]. Charakteristisch sind inflammatorische Zellinfiltrate, Demyelinisierung und im weiteren Verlauf ein irreversibler Verlust von Axonen, welcher einhergeht mit Hirnatrophie, einer zunehmenden neurologischen Dysfunktion und einem steigenden Grad an körperlichen und kognitiven Einschränkungen. Weltweit sind etwa 2,4 Millionen Menschen von MS betroffen. Das Durchschnittsalter bei Diagnosestellung liegt bei ungefähr 30 Jahren [82]. Frauen erkranken etwa zwei- bis dreimal so häufig wie Männer [81, 83].

MS kann in unterschiedlichen Varianten auftreten. Die schubförmig-remittierende Form (RRMS) ist die häufigste und kommt bei etwa 85% der Patienten vor. Charakteristisch sind Krankheitsschübe, die sich zwischenzeitlich komplett oder nur unvollständig zurückbilden [81]. Diese akuten Exazerbationen sind assoziiert mit dem Auftreten neuer Läsionen in der weißen Gehirnsubstanz, welche vorrangig durch eingewanderte Immunzellen und aktivierte Mikrogliazellen hervorgerufen werden und mit Hilfe der Magnetresonanztomographie (MRT) sichtbar gemacht werden können [84, 85]. Der RRMS-Subtyp geht in den meisten Fällen in eine sekundär-progressive Form über, die nun v.a. durch Hirnatrophie und Vergrößerung der Ventrikel sowie kontinuierlicher Verschlechterung neurologischer Funktionen gekennzeichnet ist. Ungefähr 10% der Erkrankten sind von der primär-progressiven Variante betroffen, die ohne Schübe und von Beginn an progredient verläuft [82, 84].

1.6.1 Mögliche Ursachen und Pathogenese

Die genaue Ursache von MS ist nicht bekannt. Epidemiologische und genetische Studien lassen jedoch auf ein Zusammenspiel aus erblich bedingten Faktoren und Umwelteinflüssen schließen, welche zur Immunpathologie der Erkrankung beitragen.
Genetische Prädisposition

Obwohl MS keine klassische Erbkrankheit ist, geben das vermehrte Auftreten in bestimmten Abstammungsgruppen sowie familiäre Häufungen der Erkrankung Hinweise auf eine genetische Komponente [86]. Die Konkordanzrate beträgt in eineigen Zwillingen etwa 25% und ist damit fünfmal höher als in zweieigenen Zwillingen [87]. Genomweite Assoziationsstudien (GWAS) konnten auf Grundlage der Analyse von natürlich vorkommenden genetischen Varianten, so genannten Einznukleotid-Polymorphismen (Single Nucleotide Polymorphisms, SNPs), mehr als 100 krankheitsassoziierte chromosomale Regionen identifizieren. Diese betreffen vorrangig Gene und Signalwege, welche die Immunfunktion und insbesondere die Differenzierung und Modulierung von CD4+ T-Zellen sowie ihre Effektorfunktion beeinflussen, wie das IL-2- und IL7-Rezeptor-α-Gen [88-92]. Neueste Untersuchungen in einer großen deutschen Kohorte fanden zudem Unterschiede in einem Gen, welches für die epigenetische Regulation der Gene durch DNA-Methylierung zuständig ist und somit eine Schnittstelle zwischen genetischen und Umweltfaktoren darstellt [91]. Den stärksten genetischen Einfluss auf das Erkrankungsrisiko vermitteln jedoch Varianten des HLA-II-Komplexes. Insbesondere der HLA-DR2-Haplotyp (HLA-DRB*1501-Allel) ist in der kaukasischen Bevölkerung mit dem Auftreten von MS assoziiert [34, 88].

Infektionen

Epidemiologische Studien konnten zeigen, dass der Entstehung von MS bzw. einem akuten Krankheitsschub oft eine virale oder bakterielle Infektion vorausgeht [93-95]. Die deutlichsten Hinweise für eine pathogenetische Relevanz konnten für das Epstein-Barr-Virus (EBV) gefunden werden. Das relative Risiko an MS zu erkranken ist bei Individuen nach symptomatischer EBV-Infektion (infektiöser Mononukleose) etwa doppelt so hoch wie bei Kontrollpersonen [96]. Da EBV-Infektionen in den frühen Lebensjahren nahezu symptomlos verlaufen, stellt eine späte Infektion im Jugend- und frühen Erwachsenenalter
Einleitung

somit einen relevanten Risikofaktor dar. Nahezu 100% aller MS-Patienten sind seropositiv für EBV-Antikörper im Vergleich zu 90-95% der erwachsenen Normalbevölkerung [97]. Das Risiko für die Entwicklung einer MS-Erkrankung ist bei jungen Erwachsenen mit der Höhe des Antikörpertiters gegen das Epstein-Barr Nuclear Antigen 1 (EBNA-1) im Serum assoziiert [98, 99]. EBNA-1-spezifische Antikörper konnten zudem in der Zerebrospinalflüssigkeit von MS-Patienten nachgewiesen werden.

Es existieren unterschiedliche Hypothesen dazu, auf welche Weise Infektionen zum Pathomechanismus von MS beitragen. Dazu gehört die bereits erwähnte Bystander Aktivierung oder die molekulare Mimikry Hypothese (siehe 1.3.2). Es wurde gezeigt, dass MS-Patienten im Vergleich zu gesunden Kontrollen eine verstärkte CD4⁺ T-Zell-Antwort gegen EBNA-1 ausbilden [100]. EBNA-1-spezifische T-Zellen konnten darüber hinaus mit Myelin-Antigenen kreuzreagieren und in der Folge proinflammatorische Zytokine produzieren [97]. Zusätzlich wurde demonstриert, dass CD8⁺ T-Zellen von MS-Patienten virusinfizierte Zellen schlechter kontrollieren können [101].

Weitere Umwelteinflüsse

Es ist bekannt, dass MS in den südlichen und nördlichen geographischen Breiten häufiger auftritt als in Regionen nahe des Äquators [87]. Hier wird ein Zusammenhang mit der verringerten UV-Licht-Exposition und dem daraus resultierenden niedrigem Vitamin-D-Spiegel bei Personen in äquatorfernen Gebieten vermutet. In einer prospektiven Studie konnte gezeigt werden, dass sich das Risiko, an MS zu erkranken, mit einem steigendem Vitamin-D-Spiegel im Serum verringert [102]. Weiterhin scheint Vitamin D die Schubrate und die Entwicklung der körperlichen Beeinträchtigung bei MS positiv zu beeinflussen [103, 104] und konnte im EAE-Modell die Entstehung der ZNS-Erkrankung oder ihre Progression verhindern [105, 106]. Untersuchungen zu funktionellen Mechanismen weisen deutlich auf einen direkten immunmodulierenden Effekt hin. Danach beeinflusst die biologisch aktive Form von Vitamin D die Entwicklung und Aktivität von APCs, erhöht die Anzahl an Th2-
Zellen, CD25⁺ Tregs und IL-10-Produzenten und supprimiert die Produktion des proinflammatorischen Zytokins IL-17 [107-109].

Einen weiteren Risikofaktor stellt das Rauchen dar. Raucher eranken bis zu 50% häufiger an MS als Nichtraucher, wobei die Menge und die Dauer des Zigarettenkonsums direkt mit dem Erkrankungsrisiko assoziiert ist [87]. Die zugrunde liegenden Mechanismen sind nicht eindeutig geklärt, diskutiert werden jedoch u.a. direkte immunmodulierende Effekte [110, 111], ein Einfluss auf die Integrität der Blut-Hirn-Schranke [112] sowie Effekte auf die Demyelinisierung [113, 114].

1.6.2 Die Rolle von CD4⁺ T-Zellen

Im EAE-Modell kann in empfindlichen Mäusen oder Ratten nach einer Immunisierung mit Myelin-Bestandteilen ein MS-ähnliches Krankheitsbild induziert werden. Die Übertragbarkeit der Erkrankung auf gesunde Tiere mittels adoptivem CD4⁺ T-Zell-Transfer war ein Meilenstein in der MS-Forschung und weist auf eine Schlüsselrolle von CD4⁺ T-Zellen in der Pathogenese von EAE hin [115].

Vieles deutet darauf hin, dass CD4⁺ T-Zellen auch bei MS von wichtiger Bedeutung sind. Im humanen System ist jedoch von deutlich komplexeren Mechanismen und einem Zusammenspiel unterschiedlicher Immunzellen und Subpopulationen auszugehen. CD4⁺ T-Zellen kommen in erhöhter Anzahl in Läsionen des ZNS und im Liquor vor, allerdings findet man auch weitere Immunzellen, wie B-Zellen und CD8⁺ T-Zellen. Makrophagen dominieren in den inflammatorischen Infiltraten [82, 116]. Weitere Evidenz liefert die Assoziation mit HLA-II Molekülen, welche das größte genetische Risiko für die Erkrankung darstellt (siehe 1.6.1). Da HLA-Moleküle zur Präsentation von prozessiertem Antigen beitragen (siehe 1.2.1), unterstützt dieser Zusammenhang die Hypothese, dass AntigenSpezifische Mechanismen bei MS eine Rolle spielen.
Fast alle Therapien, die aktuell bei MS eingesetzt werden, richten sich direkt oder indirekt gegen CD4⁺ Zellen. Dazu zählen immunmodulierende Medikamente mit pleiotropem Wirkprofil wie IFN-β, Glatirameracetat oder Dimethylfumarat [117]. Ein besonders effektives Medikament ist Natalizumab (Tysabri), ein monoklonaler Antikörper, welcher das Adhäsions-Molekül α4β1 (VLA-4; CD49d) auf Leukozyten bindet und blockiert und damit eine Migration von T-Zellen durch die Blut-Hirn-Schanke in das ZNS verhindert [118]. Jedoch ist zu bemerken, dass die genannten Therapien vorrangig während der frühen, schubförmigen Krankheitsphase wirksam sind und lediglich die Krankheitsprogression verlangsamen, aber nicht komplett aufhalten können [82]. Daneben konnte eine klinische Phase II Studie, welche unter Anwendung monoklonaler Antikörper auf die partielle Depletion von CD4⁺ T-Zellen abzielte, keine positiven Effekte auf den Krankheitsverlauf belegen [119].

Wie bei weiteren Autoimmunerkrankungen wurden bei MS-Patienten Defekte in den peripheren Toleranzmechanismen, insbesondere in Bezug auf die suppressive Funktion von CD4⁺CD25⁺ Tregs, mehrfach beschrieben [120, 121]. Normalerweise selbst-tolerante CD4⁺ T-Zellen könnten somit aktiviert werden und grundlegend zum Pathomechanismus der Erkrankung beitragen.

1.6.3 Die Rolle von Myelin-spezifischen CD4⁺ T-Zellen

Im Bestreben danach, relevante T-Zell Antigene zu identifizieren, fokussierten sich in den letzten Jahrzehnten zahlreiche Untersuchungen auf die Rolle von Myelin-reaktiven T-Zellen bei MS. Dies beruhte zum einen auf histologischen Analysen von frühen Läsionen, welche als Hauptmerkmal eine immunvermittelte Demyelinisierung unter Aussparung der Axone zeigten [123]. Zum anderen war es das EAE-Modell selbst, bei welchem eine aktive Immunisierung mit ZNS-Gewebe oder Myelin-Antigenen sowie der adoptive Transfer von Myelin-reaktiven CD4⁺ T-Zellen in unterschiedlichen Spezies das Potenzial besitzen, eine MS-ähnliche Erkrankung auszulösen [124, 125]. Dabei standen das Myelin basische Protein (MBP), das Myelin-Oligodendrozyten Protein (MOG) und das Proteolipidprotein (PLP) im Fokus. Es wurde zudem gezeigt, dass HLA-II-transgene Mäuse, welche zusätzlich den TCR eines humanen MBP-spezifischen CD4⁺ T-Zell-Klons exprimierten, eine spontane ZNS-Erkrankung entwickeln können [126]. Im EAE-Modell sind vor allem entzündungsfördernde Th1 und Th17-Zellen beteiligt [127].

Einleitung

Auch hier werden weitere Immunzellen rekrutiert [54]. Erst kürzlich wurde ein bisher unentdecktes funktionelles lymphatisches Drainagesystem im ZNS beschrieben, welches in direkter Verbindung zu den tiefen zervikalen Lymphknoten steht und somit als Eintrittspforte für ZNS-reactive T-Zellen dienen kann [130].

1.7 Methoden zur Detektion von Autoantigen-spezifischen CD4⁺ T-Zellen

Die bislang am häufigsten verwendeten Methoden zur Detektion von seltenen Autoantigen-spezifischen T-Zellen basieren auf funktionellen Analysen wie der Messung der Zellproliferation (z.B. durch ³H-Thymidin) oder der Zytokinproduktion (ELISA, ELISpot)

Tab. 2: Methoden zur Detektion von autoreaktiven CD4⁺ T-Zellen.

<table>
<thead>
<tr>
<th></th>
<th>populationsbasiert</th>
<th>einzelzellebasiert</th>
</tr>
</thead>
<tbody>
<tr>
<td>indirekt, in vitro Expansion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td>Zytokin-sekretion</td>
<td>ELISPOT</td>
</tr>
<tr>
<td>³H-Thymidin</td>
<td>Proliferation</td>
<td>CFSE</td>
</tr>
<tr>
<td></td>
<td>Zytokin-sekretion</td>
<td>Proliferation</td>
</tr>
<tr>
<td>direkt, einzelzellebasiert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in vitro Expansion</td>
<td>TCR-Bindung</td>
<td>CD154⁺/CD137⁺</td>
</tr>
<tr>
<td>ex vivo Analyse</td>
<td>Anreicherung</td>
<td>spezifische Aktivierung</td>
</tr>
</tbody>
</table>

Demgegenüber erlaubt die Tetramer-Technologie aufgrund der direkten Bindung des TCR durch multimerisierte MHC/Peptid-(pMHC)-Komplexe eine hochspezifische und aktivierungsunabhängige Detektion von Antigen-spezifischen T-Zellen (Übersicht in [144]). Allerdings ist hier die Kenntnis über das immunogene Peptid sowie das MHC-Restriktionselement eine wesentliche Voraussetzung. Technische Weiterentwicklungen

Zielstellung

2 Zielstellung

3 Material

3.1 Patienten- und Kontrollproben

Die Blutproben der gesunden Kontrollen (GK) wurden in Form von Buffy Coats vom DRK Blutspendedienst Dresden oder in Form von Leukozyten-Reduktionsfiltern vom Blutspendedienst der Charité bezogen. Für Vergleiche mit MS-Patienten wurden diese Proben nach Alter (± 3 Jahre) und Geschlecht entsprechend zugeordnet.

Die Studie wurde durch die Ethikkommission der Charité genehmigt (Ethikvotum EA1/250/13).
Tab. 3: Charakteristika der MS-Patienten

<table>
<thead>
<tr>
<th>Kürzel</th>
<th>Geschlecht</th>
<th>Alter (J)</th>
<th>Krankheitsdauer (M)</th>
<th>Natalizumab seit (M)</th>
<th>EDSS-Wert<sup>a)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>MS1</td>
<td>w</td>
<td>38</td>
<td>59</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>MS2</td>
<td>w</td>
<td>35</td>
<td>59</td>
<td>46</td>
<td>5</td>
</tr>
<tr>
<td>MS3</td>
<td>m</td>
<td>34</td>
<td>28</td>
<td>24</td>
<td>4,5</td>
</tr>
<tr>
<td>MS4</td>
<td>m</td>
<td>29</td>
<td>78</td>
<td>11</td>
<td>6,5</td>
</tr>
<tr>
<td>MS5</td>
<td>m</td>
<td>43</td>
<td>187</td>
<td>23</td>
<td>3,5</td>
</tr>
<tr>
<td>MS6</td>
<td>m</td>
<td>26</td>
<td>24</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>MS7</td>
<td>w</td>
<td>40</td>
<td>31</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>MS8</td>
<td>w</td>
<td>28</td>
<td>53</td>
<td>42</td>
<td>3,5</td>
</tr>
<tr>
<td>MS9</td>
<td>w</td>
<td>35</td>
<td>174</td>
<td>61</td>
<td>4,5</td>
</tr>
<tr>
<td>MS10</td>
<td>m</td>
<td>25</td>
<td>94</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>MS11</td>
<td>m</td>
<td>36</td>
<td>42</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>MS12</td>
<td>w</td>
<td>31</td>
<td>138</td>
<td>20</td>
<td>1,5</td>
</tr>
<tr>
<td>MS13</td>
<td>m</td>
<td>30</td>
<td>110</td>
<td>22</td>
<td>1,5</td>
</tr>
<tr>
<td>MS14</td>
<td>w</td>
<td>27</td>
<td>148</td>
<td>84</td>
<td>0</td>
</tr>
<tr>
<td>MS15</td>
<td>m</td>
<td>44</td>
<td>215</td>
<td>40</td>
<td>k.D.<sup>b)</sup></td>
</tr>
<tr>
<td>MS16</td>
<td>w</td>
<td>56</td>
<td>151</td>
<td>92</td>
<td>5</td>
</tr>
<tr>
<td>MS17</td>
<td>w</td>
<td>27</td>
<td>39</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>MS18</td>
<td>w</td>
<td>36</td>
<td>78</td>
<td>7</td>
<td>2,5</td>
</tr>
<tr>
<td>MS19</td>
<td>w</td>
<td>31</td>
<td>164</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>MS20</td>
<td>w</td>
<td>31</td>
<td>140</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>MS21</td>
<td>w</td>
<td>34</td>
<td>141</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>MS22</td>
<td>w</td>
<td>38</td>
<td>65</td>
<td>4</td>
<td>1,5</td>
</tr>
<tr>
<td>MS23</td>
<td>m</td>
<td>56</td>
<td>42</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>MS24<sup>c)</sup></td>
<td>w</td>
<td>25</td>
<td>k.D.<sup>b)</sup></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

^{a)} Die EDSS-Skala reicht von 0-10 Punkten und beschreibt den Grad der Behinderung eines Patienten unter Berücksichtigung verschiedener funktionaler Systeme des Körpers

^{b)} k. D. = keine Daten

^{c)} Patientin der Uniklinik Hamburg, Proben verwendet zur TCR-Sequenzierung im Rahmen einer Kooperation mit Prof. Stefan Gold, Charité Berlin
3.2 Geräte

<table>
<thead>
<tr>
<th>Gerätebezeichnung</th>
<th>Hersteller / Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestrahlungsgerät Gammacell 40 Exactor</td>
<td>Best Theratronics, Kanata, ON, Kanada</td>
</tr>
<tr>
<td>Brutschrank CB150</td>
<td>Binder, Tuttlingen, Deutschland</td>
</tr>
<tr>
<td>Durchflusszytometer MACSQuant</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>MACS Magnethalter</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>Mikroskop Leitz DM IL</td>
<td>Leica Microsystems, Wetzlar, Deutschland</td>
</tr>
<tr>
<td>Mikrotiter-Plattenschüttler Titramax 101</td>
<td>Heidolph, Schwabach, Deutschland</td>
</tr>
<tr>
<td>Multikanalpipette Finnpipette 50 / 300 µl</td>
<td>Thermo Fisher Scientific, Waltham, MA, USA</td>
</tr>
<tr>
<td>Nanodrop ND-1000</td>
<td>Thermo Fisher Scientific, Waltham, MA, USA</td>
</tr>
<tr>
<td>Pipetten 10 / 20 / 100 / 200 / 1000 µl</td>
<td>Gilson, Middleton, WI, USA</td>
</tr>
<tr>
<td>Pipettierhilfe accu-jet pro</td>
<td>Brand, Wertheim, Deutschland</td>
</tr>
<tr>
<td>Sterilbank BioWizard Silver SL-130</td>
<td>Kojair, Vilppula, Finnland</td>
</tr>
<tr>
<td>Vortex Genie 2</td>
<td>Scientific Industries, New York, NY, USA</td>
</tr>
<tr>
<td>Wasserbad Modell 1083</td>
<td>Gesellschaft für Labortechnik, Burgwedel, Deutschland</td>
</tr>
<tr>
<td>Zellseparator QuadroMACS und OctoMACS</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>Zellsorter BD Influx (FACS)</td>
<td>BD, Heidelberg, Deutschland</td>
</tr>
<tr>
<td>Zentrifuge 5424 R</td>
<td>Eppendorf, Hamburg, Deutschland</td>
</tr>
<tr>
<td>Zentrifuge Allegra X-15R</td>
<td>Beckman Coulter, Krefeld, Deutschland</td>
</tr>
</tbody>
</table>
3.3 Verbrauchsmaterial

<table>
<thead>
<tr>
<th>Materialbezeichnung</th>
<th>Hersteller / Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 ml Spritze mit Luer-Ansatz</td>
<td>BD, Heidelberg, Deutschland</td>
</tr>
<tr>
<td>384-Well-Zellkulturplatte</td>
<td>Costar Corning, New York, NY, USA</td>
</tr>
<tr>
<td>48-, 24-, 12-, 6-Well- Zellkulturplatten</td>
<td>Costar Corning, New York, NY, USA</td>
</tr>
<tr>
<td>96-Well-Zellkulturplatte Flachboden</td>
<td>Costar Corning, New York, NY, USA</td>
</tr>
<tr>
<td>96-Well-Zellkulturplatte Rundboden</td>
<td>Costar Corning, New York, NY, USA</td>
</tr>
<tr>
<td>Blutentnahmeröhrenchen Vacutainer, heparinisiert, 10 mL</td>
<td>BD Vacutainer Systems, Plymouth, UK</td>
</tr>
<tr>
<td>FACS-Röhrenchen 5 ml</td>
<td>Costar Corning, New York, NY, USA</td>
</tr>
<tr>
<td>Kryoröhrenchen 2 ml</td>
<td>Carl Roth, Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>MACS Cell-Separation Columns Typ LD und MS</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>Pipettenspitzen 10 / 200 / 1000 μl</td>
<td>Sarstedt, Nümbrecht, Deutschland</td>
</tr>
<tr>
<td>Reagenzreservoirs</td>
<td>Carl Roth, Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>Reaktionsgefäße 1,5 / 2 / 5 ml</td>
<td>Eppendorf, Hamburg, Deutschland</td>
</tr>
<tr>
<td>Röhren 15 ml und 50 ml</td>
<td>Sarstedt, Nümbrecht, Deutschland</td>
</tr>
<tr>
<td>Serologische Pipetten 5 / 10 / 25 / 50 ml</td>
<td>Costar Corning, New York, NY, USA</td>
</tr>
</tbody>
</table>
3.4 Chemikalien, Medien und Zusätze

Tab. 6: Chemikalien, Medien und Zusätze

<table>
<thead>
<tr>
<th>Name/Kürzel</th>
<th>Produktbezeichnung</th>
<th>Hersteller / Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB-Serum</td>
<td>Humanes AB-Serum</td>
<td>Lonza, Basel, Schweiz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sigma-Aldrich, Schnelldorf, Deutschland</td>
</tr>
<tr>
<td>Bref A</td>
<td>Brefeldin A</td>
<td>Sigma Aldrich, Schnelldorf, Deutschland</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovines Serumalbumin</td>
<td>Sigma Aldrich, Schnelldorf, Deutschland</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
<td>Sigma Aldrich, Schnelldorf, Deutschland</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraessigsäure</td>
<td>Sigma-Aldrich, Schnelldorf, Deutschland</td>
</tr>
<tr>
<td>EtOH 99,8%</td>
<td>Ethanol 99,8 %</td>
<td>Carl Roth, Karlsruhe, Deutschland</td>
</tr>
<tr>
<td>FcR-Block</td>
<td>FcR Blocking Reagent</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>Ficoll</td>
<td>Biocoll-Trennlösung</td>
<td>Biochrom, Berlin, Deutschland</td>
</tr>
<tr>
<td>IL-2</td>
<td>Proleukin (rekombinantes humanes IL-2)</td>
<td>Novartis, Basel, Schweiz</td>
</tr>
<tr>
<td>Inside Perm</td>
<td>10x Inside Perm</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>Lebend-Tot-Farbstoff (LD)</td>
<td>Viobility 405/520 Fixable Dye</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
<td>DRFZ, Berlin, Deutschland</td>
</tr>
<tr>
<td>Pen/Strep</td>
<td>Penicillin/Streptomycin</td>
<td>GIBCO, Life Technologies, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>PI</td>
<td>Propidiumiodid</td>
<td>Sigma Aldrich, Schnelldorf, Deutschland</td>
</tr>
</tbody>
</table>
Material

<table>
<thead>
<tr>
<th>Name/Kürzel</th>
<th>Produktbezeichnung</th>
<th>Hersteller / Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPMI -1640</td>
<td>RPMI 1640 Medium mit GlutaMAX™</td>
<td>GIBCO, Life Technologies, Darmstadt, Deutschland</td>
</tr>
<tr>
<td>TexMACS</td>
<td>TexMACS Medium</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>β-ME</td>
<td>β-Mercaptoethanol</td>
<td>Carl Roth, Karlsruhe, Deutschland</td>
</tr>
</tbody>
</table>

3.5 Zusammensetzung verwendeteter Puffer und Medien

3.5.1 Puffer

<table>
<thead>
<tr>
<th>Name/Kürzel</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS, pH 7,2</td>
<td>137 mM NaCl + 2,7 mM KCl + 1,5 mM KH2PO4 + 8 mM Na2HPO4 x 2 x H2O</td>
</tr>
<tr>
<td>PE-Puffer</td>
<td>2 mM EDTA in PBS</td>
</tr>
<tr>
<td>PEB-Puffer</td>
<td>2 mM EDTA + 0,2% BSA (w/v) in PBS</td>
</tr>
</tbody>
</table>

Alle Chemikalien zur Herstellung von PBS wurden über Sigma Aldrich, Schnelldorf, Deutschland bezogen.

3.5.2 Medien

<table>
<thead>
<tr>
<th>Name</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulationsmedium</td>
<td>RPMI-1640 + 5% humanes AB-Serum (v/v)</td>
</tr>
<tr>
<td>Expansionsmedium</td>
<td>TexMACS + 5-10% humanes AB-Serum (v/v) + 200 IU/ml IL-2 + 30 ng/ml α-CD3 (OKT-3) + β-ME + 100 U/ml Penicillin + 100 g/ml Streptomycin</td>
</tr>
<tr>
<td>Einfriermedium</td>
<td>70% TexMACS + 20% humanes AB-Serum (v/v) + 10% DMSO (v/v)</td>
</tr>
</tbody>
</table>
3.6 Kits

<table>
<thead>
<tr>
<th>Produktbezeichnung</th>
<th>Kit-Bestandteile</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD137 MicroBead Kit</td>
<td>CD137-PE, α-PE-MicroBeads</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD154 MicroBead Kit</td>
<td>CD154-Biotin, α-Biotin-MicroBeads</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>DNeasy Blood and Tissues Kit</td>
<td>Lyse-, Wasch-, Elutionspuffer, Säulen, Auffangröhrchen, Proteinase K</td>
<td>Qiagen, Hilden, Deutschland</td>
</tr>
<tr>
<td>FoxP3 Staining Buffer Set</td>
<td>Fix/Perm-Lösung, Perm-Puffer</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>Inside Stain Kit</td>
<td>Inside Fix / Inside Perm</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
</tbody>
</table>

3.7 Antikörper

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Klon</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCR4-APC a)</td>
<td>REA279</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CCR6-Brilliant-Violet 421</td>
<td>G034E3</td>
<td>BioLegend, San Diego, CA, USA</td>
</tr>
<tr>
<td>CCR7</td>
<td>FR 11-11E8</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD127 FITC</td>
<td>MB15-18C9</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD137-PE / VioBright FITC</td>
<td>4B4-1</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD14-VioGreen</td>
<td>TÜK4</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD154-VioBlue / FITC / PEVio770</td>
<td>5C8</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD20-VioGreen</td>
<td>LT20</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>Antikörper</td>
<td>Klon</td>
<td>Hersteller</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>CD25-Brilliant-Violet 421</td>
<td>BC96</td>
<td>BioLegend, San Diego, CA, USA</td>
</tr>
<tr>
<td>CD28 pure – functional grade</td>
<td>15E8</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD3 MicroBeads</td>
<td>-</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD3 pure – functional grade</td>
<td>OKT-3</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD40 pure – functional grade</td>
<td>HB14</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD45RA-VioBlue</td>
<td>T6D11</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD45RO-PerCP</td>
<td>UCHL1</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD45RO-PE-Vio770</td>
<td>UCHL1</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD4-APC-Vio770</td>
<td>Vit4</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD69-FITC</td>
<td>FN50</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CD8-VioGreen</td>
<td>BW135/80</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>CXCR3-PE-Vio770</td>
<td>REA232</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>FOXP3-PE</td>
<td>3G3</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>GM-CSF-APC</td>
<td>BVD2-21C11</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>Helios-FITC</td>
<td>22F6</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>IFN-γ-PerCP-Cy5.5</td>
<td>4S.B3</td>
<td>BioLegend, San Diego, CA, USA</td>
</tr>
<tr>
<td>IL-17A-FITC</td>
<td>CZ8-23G1</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>TNF-α-PE</td>
<td>cA2</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>α-Biotin PE</td>
<td>Bio3-18E7</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
</tbody>
</table>

a) Die ausgeschriebenen Bezeichnungen der Fluorochrome erscheinen aus Gründen der Übersichtlichkeit nur im Abkürzungsverzeichnis.

Wenn nicht anders angegeben, wurden die Antikörper in der vom Hersteller angegebenen Verdünnung eingesetzt.
3.8 Antigene

<table>
<thead>
<tr>
<th>Name/Kürzel</th>
<th>Produktbezeichnung</th>
<th>Hersteller / Bezugsquelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. fumigatus</td>
<td>Aspergillus fumigatus</td>
<td>ATCC, Manassas, VA, USA</td>
</tr>
<tr>
<td>AChR</td>
<td>Acetylcholinrezeptor</td>
<td>JPT Peptide Technologies, Berlin, Deutschland</td>
</tr>
<tr>
<td>BRLF-1</td>
<td>EBV Replication and Transcription Activator</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>C. albicans</td>
<td>Candida albicans</td>
<td>Greer Laboratories, Lenoir, NC, USA</td>
</tr>
<tr>
<td>CMV</td>
<td>Zytomegalie-Virus</td>
<td>Siemens Healthcare Diagnostics</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
<td>ATCC, Manassas, VA, USA</td>
</tr>
<tr>
<td>EBNA-1</td>
<td>Epstein–Barr Nuclear Antigen 1</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>GAD65</td>
<td>Glutamat-Dacarboxylase 65</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>HSV-1</td>
<td>Herpes-Simplex-Virus 1</td>
<td>antibodies-online, Aachen, Deutschland</td>
</tr>
<tr>
<td>KLH (Immucothel)</td>
<td>Keyhole Limpet Hemocyanin</td>
<td>biosyn Corporation, Carlsbad CA, USA</td>
</tr>
<tr>
<td>MBP</td>
<td>Myelin-Basisches-Protein</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>MOG</td>
<td>Myelin-Oligodendrozyten-Glykoprotein</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>PLP</td>
<td>Proteolipid-Protein</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
</tbody>
</table>
3.9 Software

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD FACS Sortware 1.2.0.142</td>
<td>BD, Heidelberg, Deutschland</td>
</tr>
<tr>
<td>FlowJo 7.6.5 und 10.2</td>
<td>Treestar, Ashland, OR, USA</td>
</tr>
<tr>
<td>GraphPad Prism 5, 6 und 7</td>
<td>GraphPad Software, LaJolla, CA, USA</td>
</tr>
<tr>
<td>MACSQuantify 2.6</td>
<td>Miltenyi Biotec, B. Gladbach, Deutschland</td>
</tr>
<tr>
<td>Microsoft Office 2010</td>
<td>Microsoft, Redmond, WA, USA</td>
</tr>
</tbody>
</table>
4 Methoden

4.1 Direkte ex vivo Charakterisierung von autoreaktiven CD4⁺ T-Zellen

4.1.1 Isolierung von PBMCs mittels Dichtegradienten-Zentrifugation

Die Isolierung der mononukleären Zellen des peripheren Blutes (peripheral blood mononuclear cells; PBMCs) wurde in der Sterilbank durchgeführt. Zellen aus Leukozytenreduktionsfiltern wurden zunächst mit Hilfe einer Spritze und PE-Puffer aus diesen herausgespült und in 50 ml-Röhrchen aufgefangen. Buffy Coats und Blutproben aus Vacutainer-Röhrchen wurden ebenfalls in 50 ml-Röhrchen überführt und gegebenenfalls durch Ausspülen mit PE-Puffer verdünnt bzw. auf 35 ml je Röhrchen aufgefüllt. Anschließend wurden je 35 ml des verdünnten Blutes vorsichtig auf 15 ml Ficoll™ geschichtet. Die Dichtegradienten-Zentrifugation erfolgte danach bei 450 x g und RT ohne Bremse für 30 min. Die PBMCs, welche sich in der Interphase befanden, wurden mit einer Pipette entnommen und in ein frisches 50 ml-Röhrchen überführt. Die Zellen wurden zweimal mit kaltem PBS gewaschen und dafür 15 min bei 300 x g und 4°C zentrifugiert, der zweite Waschschritt erfolgte bei 200 x g, um restliche Thrombozyten zu entfernen. Nach der Zellzahlbestimmung am MACSQuant unter Zugabe von Propidiumiodid zur Exklusion toter Zellen wurden die PBMCs in Stimulationsmedium (siehe Tab. 8) aufgenommen und je nach Zellzahl mit einer Konzentration von 2 x 10⁷/ ml und einer Dichte von 5 x 10⁶/ cm² in 6-, 12-, 24 oder 48-Well-Platten ausgesät. Die Zellen wurden über Nacht bei 37°C und 5% CO₂ inkubiert.

4.1.2 Oberflächenfärbung von CXCR3 und CCR6

Da die Chemokinrezeptoren CXCR3 und CCR6 bereits nach kurzer in vitro-Kultivierung herunterreguliert werden [155], wurden diese Moleküle direkt nach der Isolierung der PBMCs auf der Oberfläche der Zellen mit Hilfe Fluorochrom-gekoppelter Antikörper markiert. Dazu wurde die Antikörperfärbelösung (α-CXCR3 und α-CCR6 in PBS) zu den gewaschenen PBMCs hinzugefügt und für 30 min bei RT inkubiert. Danach wurden die Zellen mit PBS gewaschen und wie oben beschrieben in Medium aufgenommen und in Zellkulturplatten ausgesät.
4.1.3 Stimulation von PBMCs

Zur Etablierung der Methode und für die Analyse von autoreaktiven T-Zellen in Gesunden wurden PBMCs mit MOG, MBP, PLP, MP65, GAD65 oder EBNA-1 Peptid Pools (0,6 nmol/ml/Peptid), AChR Peptid Pool (1 µg/ml/Peptid) oder KLH (200 µg/ml) unter Zugabe von 1 µg/ml α-CD40 Antikörper stimuliert. PBMCs von MS-Patienten und Kontrollen wurden mit einer Kombination aus MOG, MBP und PLP stimuliert (=Myelin). Für jeden Spender wurde zusätzlich eine unstimulierte Probe mitgeführt. Die Stimulationszeit betrug 6 h für die Analyse der Chemokinrezeptor-Expression und 7 h unter Zugabe von 2 µg/ml Brefeldin A während der letzten 2 h für die Analyse intrazellulärer Zytokine und FoxP3. Ausschließlich spezifisch aktivierte T-Zellen exprimierten in dieser Zeit die Aktivierungsmarker CD154 (Tcons) und CD137 (Tregs) auf der Zelloberfläche.

4.1.4 Magnetische Anreicherung von CD154⁺ und CD137⁺ T-Zellen

Nach der Kurzzeitstimulation wurden die PBMCs aus den Zellkulturplatten in 5 ml Reaktionsgefäße (bis 2x10⁷ Zellen) oder 15 ml Röhrchen (2x10⁷ - 10⁸ Zellen) überführt. CD154⁺ bzw. CD137⁺ Zellen wurden in zwei Schritten indirekt magnetisch markiert. Nach einer Zentrifugation bei 300 x g und 4°C für 10 min erfolgte der erste Markierungsschritt mittels CD154-Biotin und/oder CD137-PE-Antikörpern (in PEB-Puffer), welche für 10 min bei 4°C inkubiert wurden. Anschließend wurden die Zellen für 10 min bei 300 x g und 4°C mit PEB-Puffer gewaschen. Im nächsten Schritt wurden die Zellen durch α-Biotin-MicroBeads oder α-PE-MicroBeads magnetisch markiert und für 15 min bei 4°C inkubiert. Nach einem erneuten Waschschritt wurden die Zellen in PEB-Puffer aufgenommen. 10-20 µl der Zellsuspension wurden für Kontrollfärbungen abgenommen (= Originalfraktion).

Die magnetisch-markierten Zellen wurden auf eine Zellseparationssäule (Typ MS) aufgetragen, welche zuvor mit PEB-Puffer äquilibriert und an einem starken Magneten
(OctoMACS) angebracht worden war. Die magnetisch markierten Zellen wurden dadurch in der Säule zurückgehalten, während sich unmarkierte Zellen im Durchfluss befanden. Es folgten zwei Waschschritte mit PBS bevor mit der Oberflächenfärbung direkt auf der Säule fortgefahren wurde.

4.1.5 Markierung der Zellen mit Fluorochrom-gekoppelten Antikörpern

4.1.5.1 Oberflächenfärbung

Um Oberflächenmoleküle auf den separierten Zellen mit Hilfe von Fluorochrom-gekoppelten Antikörpern zu markieren, wurde die zuvor hergestellte Antikörper-Färbelösung (Antikörper in PBS) direkt auf die Separationssäule aufgetragen und für 15 min bei RT inkubiert. Tab. 13 gibt Aufschluss über die unterschiedlichen Antikörperkombinationen (Panels), welche für die Analyse a) der Funktion und des Phänotyps, b) der Chemokinrezeptor-Expression, c) der Expression von FoxP3 sowie d) der Originalfraktion verwendet wurden. Die Färbung von CD154 auf der Zelloberfläche in Panel b) und d) erfolgte aufgrund der vorhergehenden magnetischen Markierung mittels Biotin-FITC-Antikörpern. Zur Lebend-Tot-Diskriminierung enthielt die Lösung einen Farbstoff (LD), welcher die spezifische Markierung toter Zellen erlaubt. Anschließend wurde die Säule zweimal mit PEB-Puffer gewaschen und die Zellen mit PEB-Puffer aus der Säule in ein 1,5 ml Reaktionsgefäß eluiert. Für die Untersuchung der Chemokinrezeptor-Expression wurden die Zellen nun für 5 min bei 300 x g und 4°C zentrifugiert und für die durchflusszytometrische Analyse in PEB aufgenommen.

Zusätzlich wurden die zuvor abgenommenen Zellen der Originalfraktion mit der Antikörper-Färbelösung versetzt (Tab. 13), für 15 min bei RT im Dunkeln inkubiert, mit PEB-Puffer gewaschen und in diesem für die durchflusszytometrische Analyse aufgenommen.
4.1.5.2 Intrazelluläre CD154 und Zytokinfärbung

Für die intrazelluläre Zytokinfärbung mussten die Zellen zuvor fixiert und permeabilisiert werden. Dazu wurden die Zellen nach der Oberflächenfärbung aus der Separationssäule eluiert, 1:1 mit Fixierlösung (Inside Fix) versetzt und für 15 min bei RT im Dunkeln inkubiert (Abb. 3). Im Anschluss wurde die Zellsuspension direkt auf eine zweite äquilibrierte Säule aufgetragen. Dies führte außerdem zu einer gesteigerten Reinheit der Zielzellen. Die Säule wurde zweimal mit PEB-Puffer und einmal mit der Permeabilisierungslösung (Inside Perm) gewaschen. Danach wurde die Antikörper-Färbelösung (Antikörper in Inside Perm, Tab. 13) aufgetragen und für 15 min bei RT inkubiert. Die Säule wurde noch einmal mit Inside Perm gewaschen bevor die Zellen in ein 1,5 ml Reaktionsgefäß eluiert wurden. Nach einem Zentrifugationsschritt für 5 min bei 300 x g und 4°C wurden die Zellen in PEB-Puffer für die durchflusszytometrische Analyse aufgenommen.

4.1.5.3 Intranukleäre FoxP3-Färbung

Die intranukleäre Färbung des Transkriptionsfaktor FoxP3 fand nicht auf der Separationssäule, sondern in einem 1,5 ml Reaktionsgefäß statt. Dazu wurde das FoxP3 Staining Buffer Set verwendet, welches eine Permeabilisierung des Zellkerns ermöglichte. Die Fix/Perm-Lösung sowie der Perm-Puffer wurden nach Beschreibung des Herstellers frisch vorbereitet und gekühlt verwendet. Nach der Oberflächenfärbung wurden die aus der Separationssäule eluierten Zellen für 5 min bei 300 x g und 4°C zentrifugiert, mit Fix/Perm-Lösung versetzt und für 30 min bei 4°C inkubiert. Nach einem Zentrifugationsschritt wurden die Zellen in Perm-Puffer aufgenommen und sofort erneut zentrifugiert. Anschließend wurde FcR-Blockierreagenz in Perm-Puffer hinzugefügt und für 5 min bei 4°C inkubiert. Danach wurden FoxP3- und Helios-Antikörper (Tab. 13) direkt hinzugegeben und für weitere 25 min inkubiert. Für die letzten 15 min der Inkubationszeit wurden
Methoden

schließlich CD154- und IFN-γ-Antikörper hinzugefügt. Die Zellen wurden mit Perm-Puffer gewaschen und in PEB-Puffer für die durchflusszytometrische Analyse aufgenommen.

Tab. 13: Antikörper-Panels für die *ex vivo* Analyse von CD154⁺ und CD137⁺ T-Zellen

<table>
<thead>
<tr>
<th>Fluorochrom</th>
<th>Funktion und Phänotyp (Tcons)</th>
<th>Chemokinrezeptoren (Tcons / Tregs)</th>
<th>FoxP3 (Tcons / Tregs)</th>
<th>Originalfraktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>VioGreen</td>
<td>CD8/CD14/CD20/LD</td>
<td>CD8/CD14/CD20/LD</td>
<td>CD8/CD14/CD20/LD</td>
<td>CD8/CD14/CD20/LD</td>
</tr>
<tr>
<td>VioBlue/BV421</td>
<td>CD154</td>
<td>CCR6</td>
<td>CD25</td>
<td>CCR6</td>
</tr>
<tr>
<td>FITC</td>
<td>GM-CSF</td>
<td>CD154</td>
<td>Helios</td>
<td>CD154</td>
</tr>
<tr>
<td>PE</td>
<td>TNF-α</td>
<td>CD137</td>
<td>CD137</td>
<td>CD137</td>
</tr>
<tr>
<td>PerCP (Cy5.5)</td>
<td>IFN-γ</td>
<td>CD45RO</td>
<td>IFN-γ</td>
<td>CD45RO</td>
</tr>
<tr>
<td>PEVio770</td>
<td>CD45RO</td>
<td>CXCR3</td>
<td>CD154</td>
<td>CXCR3</td>
</tr>
<tr>
<td>APC</td>
<td>IL-17</td>
<td>CCR4</td>
<td>FoxP3</td>
<td>CCR4</td>
</tr>
<tr>
<td>APCVio770</td>
<td>CD4</td>
<td>CD4</td>
<td>CD4</td>
<td>CD4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausführung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>verwendetes Fluorochrom siehe Tab. 10</td>
</tr>
<tr>
<td>b)</td>
<td>kursiv gedruckte Antikörper wurden für die intrazelluläre Färbung verwendet</td>
</tr>
<tr>
<td>c)</td>
<td>via CD154-Biotin/α-Biotin-FITC</td>
</tr>
<tr>
<td>d)</td>
<td>nur gefärbt mit der entsprechenden angereicherten Fraktion (Chemokinrezeptor-Panel)</td>
</tr>
</tbody>
</table>

4.1.6 Durchflusszytometrische Messung

4.1.6.1 Gating-Strategie und Auswertung

Die Auswertung der generierten durchflusszytometrischen Daten erfolgte mit der Software Flowjo. Die Analysestrategie ist in Abb. 4 am Beispiel der CD154⁺ Tcons dargestellt. Die Zielpopulationen wurden durch die Erstellung sequentieller Analysefenster („Gates“) definiert. Dabei wurden nacheinander Lymphozyten, Einzelzellen und CD4⁺ T-Zellen unter Ausschluss von toten Zellen und weiteren PBMCs (CD8⁺ T-Zellen, CD20⁺ B-Zellen, CD14⁺ Monozyten) markiert. Anschließend wurden CD154⁺ Zellen definiert, welche weiterhin auf die Expression des Memory-T-Zell-Markers CD45RO und die Expression von Chemokinrezeptoren (CXCR3, CCR6, CCR4; Abb. 4A) oder Zytokinen (TNF-α, IFN-γ, IL-17, GM-CSF; Abb. 4B) untersucht wurden. Die Chemokinrezeptor-Expression auf CD137⁺ T-Zellen wurde in entsprechender Weise analysiert (siehe Abb. 25; zeigt ebenfalls FoxP3-Färbung).

Für die weitere Auswertung wurde die Anzahl an unspezifisch aktivierten Hintergrund-
Zellen in der unstimulierten Probe jeweils vom Signal der stimulierten Probe abgezogen und
prozentuale Anteile erst danach berechnet.

Für die Berechnung der Frequenz von autoreaktiven T-Zellen (siehe 4.4.1) sowie für
Vergleiche des Memory-Phänotyps und der Chemokinrezeptor-Expression innerhalb der
CD154⁺ und der gesamten CD4⁺ T-Zellen wurden in der Originalfraktion zunächst PBMCs,
Einzelzellen und schließlich CD4⁺ T-Zellen unter Ausschluss von CD8⁺ T-Zellen, B-Zellen,
Monozyten und toten Zellen definiert (Abb. 5). Anschließend wurde der prozentuale Anteil
an CD45RO⁺ Zellen und die Expression der Chemokinrezeptoren CXCR3, CCR6 und CCR4
innerhalb der CD4⁺ T-Zellen untersucht.

Abb. 5: Gating-Strategie für die Analyse der Originalfraktion. Innerhalb der gemessenen
Probe wurden PBMCs von Zelldebris unterschieden sowie Einzelzellen und CD4⁺ T-Zellen unter
Ausschluss von toten und CD8⁺/14⁺/20⁺ Zellen definiert. Auf den CD4⁺ T-Zellen wurde weiterhin
die Expression von CD45RO und in einigen Experimenten die Expression der
Chemokinrezeptoren CXCR3, CCR6 und CCR4 untersucht. Angegeben ist jeweils der prozentuale
Anteil innerhalb des vorhergehenden Analysefensters.

4.1.6.2 Boolesche Analyse

Die Analyse der Ko-Expression kann sich für Kombinationen der hier untersuchten
Zytokine TNF-α, IFN-γ, IL-17 und GM-CSF durch sequentielles manuelles Gating sehr
komplex gestalten. Daher wurde der in der Software FlowJo enthaltene kombinatorische
Ansatz nach Boole gewählt, mit welchem auf der Basis der logischen Operatoren UND,
ODER und NICHT der Anteil an Zytokinproduzenten innerhalb der Autoantigen-
pezifischen Memory T-Zellen (CD154⁺/CD45RO⁺) für alle möglichen Kombination
automatisch berechnet werden konnte (Abb. 6). Auch hier wurde zunächst das Signal der unstimulierten Probe vom Signal der stimulierten Probe abgezogen bevor prozentuale Anteile berechnet wurden.

![Boolesche Gating-Strategie für die Analyse der Zytokinproduktion durch CD154⁺ T-Zellen](image)

Abb. 6: Boolesche Gating-Strategie für die Analyse der Zytokinproduktion durch CD154⁺ T-Zellen. Für die kombinatorische (boolesche) Analyse wurden innerhalb der CD154⁺/CD45RO⁺ T-Zellen totale TNF-α- (rot), IFN-γ- (gelb), IL-17- (blau) und GM-CSF-Produzenten (grün) markiert. Mit Hilfe boolescher Operatoren (Software FlowJo) konnte anschließend für alle Kombinationen dieser vier Zytokine der Anteil an Vierfach-, Dreifach-, Doppel-, Einzel-, und Nicht-Produzenten berechnet werden.

4.2 In vitro Generierung von autoreaktiven T-Zell-Klonen und T-Zell-Linien

Feederzellen wurden in einer Konzentration von 1-2x 10⁶ isoliert und wurden bestrahlt, um ein Auswachsen dieser Zellen in Kultur zu verhindern. Die gesunden Spendern verwendet, welche in einer Bestrahlungsanlage mit 30 gy (γ-Strahler) von Zytokinen unterstützten. Als Feederzellen wurden gemischte PBMCs von drei bis vier gesunden Spendern verwendet, welche als Wachstumsmatrix dienten und die Zellproliferation durch die Sekretion von Zytokinen unterstützt. TZL oder TZK wurden über 2-6 Wochen mit allogenen Feederzellen, IL-2 und OKT-3 expandiert bevor sie nach einer zweitägigen Ruhephase unter Zugabe von autologen APCs mit dem initialen Antigen, irrelevanten Kontrollantigenen oder potentiell kreuzreaktiven mikrobiellen Antigenen restimuliert wurden. Die Re-Expression von CD154 und TNF-α wurde durchflusszytometrisch analysiert. APCs = Antigen-präsentierende Zellen.

4.2.1 Generierung von allogenen Feederzellen

Für die in vitro Expansion von autoreaktiven TZK und TZL wurden sog. Feederzellen benötigt, welche als Wachstumsmatrix dienten und die Zellproliferation durch die Sekretion von Zytokinen unterstützten. Als Feederzellen wurden gemischte PBMCs von drei bis vier gesunden Spendern verwendet, welche in einer Bestrahlungsanlage mit 30 gy (γ-Strahler) bestrahlt wurden, um ein Auswachsen dieser Zellen in Kultur zu verhindern. Die Feederzellen wurden in einer Konzentration von 1-2x10⁶/ml mit Einfriermedium versetzt (siehe Tab. 8) und bis zur Verwendung bei -80°C gelagert. Für die Expansion von autoreaktiven TZK wurden die Zellen aufgetaut und 1x10⁵ Feederzellen/Well in 100 µl Expansionsmedium (siehe Tab. 8) in einer 96-Well-Zellkulturplatte (Rundboden) vorgelegt. Für die Expansion von autoreaktiven TZL wurden 2,5x10⁵ Feederzellen/Well in 250 µl Expansionsmedium in einer 48-Well-Zellkulturplatte vorgelegt.
4.2.2 Anreicherung von CD154⁺ T-Zellen und Färbung von Oberflächenmolekülen

1-2x10⁸ isolierte PBMCs wurden für 6 h mit den Autoantigenen MOG, MBP, PLP oder GAD65 oder mit dem Kontrollantigen MP65 (jeweils 0,6 nmol/ml/Peptid) unter Zugabe von 1 µg/ml α-CD40 stimuliert (siehe 4.1.3). Anschließend wurden aktivierte CD154⁺ T-Zellen magnetisch angereichert wie in 4.1.4 beschrieben. Die Markierung von Oberflächenmolekülen für die nachfolgenden FACS-Sortierung erfolgte auf der Separationssäule (siehe 4.1.5.1 und Tab. 14), wobei der bereits mit Biotin/α-Biotin-MicroBeads markierte Aktivierungsmarker CD154 mittels α-Biotin-PE gefärbt wurde. Die angereicherten und gefärbten Antigen-spezifischen T-Zellen wurden mit PEB-Puffer aus der Separationssäule in 5 ml FACS-Röhrchen eluiert.

Tab. 14: Antikörper-Panels für die in vitro Expansion

<table>
<thead>
<tr>
<th>Fluorochrom</th>
<th>FACS-Sortierung</th>
<th>Restimulation</th>
<th>Spezifität</th>
</tr>
</thead>
<tbody>
<tr>
<td>VioGreen</td>
<td>CD8/CD14/CD20/LD</td>
<td>CD14</td>
<td></td>
</tr>
<tr>
<td>VioBlue</td>
<td>CD45RA</td>
<td>CD154⁺</td>
<td></td>
</tr>
<tr>
<td>FITC</td>
<td>CD69</td>
<td>IL-17⁺</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>CD154</td>
<td>TNF-α</td>
<td></td>
</tr>
<tr>
<td>PerCP Cy5.5</td>
<td>-</td>
<td>IFN-γ⁺</td>
<td></td>
</tr>
<tr>
<td>PEVio770</td>
<td>CCR7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>APC</td>
<td>-</td>
<td>GM-CSF⁺</td>
<td></td>
</tr>
<tr>
<td>APCVio770</td>
<td>CD4</td>
<td>CD4</td>
<td></td>
</tr>
</tbody>
</table>

a) kursiv gedruckte Moleküle wurden intrazellulär angefärbt
b) nicht in allen Experimenten verwendet

4.2.3 FACS-Sortierung und in vitro Expansion

Da die magnetisch angereicherte Zellfraktion aufgrund der geringen Frequenz von CD154⁺ T-Zellen noch einen hohen Anteil an weiteren PBMCs enthielt, welche unspezifisch in der

Die Autoantigen-spezifischen TZL und TZK wurden nach Bedarf mit frischem Expansionsmedium (ohne Zugabe von α-CD3 (OKT-3)) versorgt und subkultiviert. TZK erhielten nach einer Woche in Kultur frische Feederzellen in 100 µl Expansionsmedium. Ab Tag 14 konnten expandierte Klone, welche deutlich am Farbumschlag des Mediums und am vergrößerten Zellpellet zu erkennen waren, in eine 96-Well-Zellkulturplatte mit Flachboden überführt werden. Die TZL und TZK wurden für 2-6 Wochen expandiert bis, je nach Experiment, eine Zellzahl von 1-5 x 10⁶ Zellen erreicht war.
4.2.4 Generierung von CD3-depletierten Antigen-präsentierenden Zellen

Zur Restimulation der expandierten autoreaktiven TZL und TZK wurden autologe Antigen-präsentierende Zellen (APCs) benötigt. Diese wurden aus PBMCs des gleichen Spenders durch die Depletion von CD3⁺ T-Zellen generiert. Dazu wurden 1-3x10⁸ PBMCs mit α-CD3-MicroBeads (in PE-Puffer) nach Herstellerangaben magnetisch markiert und in PE-Puffer auf eine aquilibrierte Depletionssäule (Typ LD), welche an einem starken Magneten angebracht war, aufgetragen. Die Säule wurde zweimal mit PE-Puffer gespült. Während die markierten Zellen auf der Säule zurückgehalten wurden, enthielt der Durchfluss die gewünschten CD3-depletierten APCs mit einer durchschnittlichen Reinheit von 98%. Die APCs wurden bis zu ihrer Verwendung entweder in Einfriermedium (1-2x10⁷/ml) bei -80°C gelagert oder frisch verwendet.

4.2.5 Restimulation, Markierung mit Fluorochrom-gekoppelten Antikörpern und durchflusszytometrische Analyse

Zwei Tage vor Restimulation der expandierten TZL und TZK wurde das Expansionsmedium, welches 200 IU/ml proliferationsförderndes IL-2 enthielt, entfernt und die Zellen wurden in Stimulationsmedium aufgenommen (Tab. 8). Somit kamen die T-Zellen in ein Ruhestadium, wodurch unspezifische Hintergrundaktivierung verhindert wurde. Am Tag der Restimulation wurden die Zellen einer TZL oder eines TZK gezählt. Je nach Zellzahl wurden 5x10⁴ - 1x10⁵ T-Zellen/Well in einem Verhältnis von 1:1 mit autologen APCs in 70 µl Stimulationsmedium in einer 384-Well-Zellkulturplatte zusammengesetzt. Anschließend wurden die Zellen wie im Folgenden beschrieben stimuliert und durchflusszytometrisch analysiert.

4.2.5.1 Validierung der Spezifität

Zur Validierung der Spezifität des CD154-Anreicherungsassays wurden MP65-, MOG- und GAD65-reaktive Memory TZK mit dem initialen Antigen sowie mit einem irrelevanten
Antigen unter Zugabe von 1 µg/ml CD28-Antikörpern stimuliert (Koncentrationsangaben siehe 4.1.3). Als Negativkontrolle wurde kein Antigen zu den Zellen gegeben. Die Zellen wurden für 7 h stimuliert, unter Zugabe von 2 µg/ml Brefeldin A während der letzten 4 h. Anschließend wurden Oberflächen- und intrazelluläre Moleküle (Tab. 14) direkt in der Zellkulturplatte nach dem modifizierten "Rapid Cytokine Inspector" Protokoll¹ (Miltenyi Biotec) gefärbt. Dazu wurden die Wells der Zellkulturplatte nach Ende der Stimulationszeit mit PEB-Puffer aufgefüllt und für 10 min bei 300 × g und 4°C zentrifugiert. Der Zellkulturüberstand wurde abgenommen und 20 µl Antikörperfärbelösung, welche sowohl die Oberflächen- als auch die intrazellulären Antikörper enthielt (Tab. 13), in jedes Well pipettiert. Nach einer Inkubationszeit von 10 min bei RT im Dunkeln wurden zur Fixierung der Zellen 15 µl Inside Fix/Well direkt hinzugegeben und für weitere 15 min inkubiert. Schließlich wurden die Zellen durch Hinzufügen von 7 µl 10x Inside Perm/Well permeabilisiert, sodass die intrazellulären Antikörper an ihre Zielstrukturen binden konnten. Nach einer Inkubationszeit von 10 min bei RT im Dunkeln wurden 40 µl PEB-Puffer hinzugegeben und die Zellkulturplatte bei 300 × g und RT für 10 min zentrifugiert. Der Überstand wurde entfernt und die Zellen in 60 µl PEB-Puffer/Well für die Analyse im Durchflusszytometer aufgenommen.

4.2.5.2 Untersuchung auf Kreuzreaktivität

Zur Untersuchung der Kreuzreaktivität wurden expandierte MP65-, MOG-, MBP-, PLP- und GAD65-reactive naive und Memory TZL mit verschiedenen mikrobiellen Antigenen unter Zugabe von 1 µg/ml CD28-Antikörper stimuliert. Folgende Antigene wurden verwendet: CMV Lysat (20 µg/ml), *A. fumigatus* Lysat (40 µg/ml), *C. albicans* Lysat (20 µg/ml), *E. coli* (40 µg/ml), BRLF-1 Peptid-Pool (0,6 nmol/ml), EBNA-1 Peptid-Pool (0,6 nmol/ml) und HSV-1 Lysat (20 µg/ml). Der experimentelle Ablauf glich dem in Abschnitt 4.2.5.1 beschriebenen.

4.2.5.3 Bestimmung der funktionellen Avidität

Zur Bestimmung der funktionellen Avidität wurden MP65- oder autoreaktive TZL (MOG, MBP, PLP, GAD65) oder TZK (MOG) mit einer absteigenden Menge des initialen Antigens stimuliert. Hierzu wurde eine Verdünnungsreihe mit PBS angesetzt, sodass die finalen Konzentrationen 3 nmol/ml - 6x10^-6 nmol/ml betrugen. Die Zellen wurden wie in 4.2.5.1 beschrieben stimuliert, mit Fluorochrom-gekoppelten Antikörpern markiert und im Durchflusszytometer analysiert.

4.3 T-Zell-Rezeptor-Sequenzierung

Für die Hochdurchsatz-Sequenzierung der T-Zell-Rezeptoren (TCRs) wurden EBNA-1 und Myelin-spezifische TZL wie in den Abschnitten 4.2.1-4.2.5.1 beschrieben und in Abb. 7 dargestellt aus PBMCs einer RRMS-Patientin (MS24) generiert. Nach der Expansion und Restimulation mit dem initialen Antigen wurden die Zellen jedoch nicht am Durchflusszytometer analysiert, sondern ein zweites Mal FACS-sortiert um reaktivierte (CD154⁺/TNF-α⁺) T-Zellen gezielt zu separieren. Etwa 2500 Myelin-spezifische und 1000 EBNA-1 spezifische T-Zellen sowie 5x10⁵ der ursprünglichen PBMCs wurden als Zellpellet in flüssigem Stickstoff schockgefroren und bis zur Weiterverwendung bei -80°C gelagert.

4.3.1 Isolierung der genomischen DNA

Die Isolation der totalen genomischen DNA (gDNA) erfolgte mit Hilfe des DNeasy Blood and Tissue Kits nach den Angaben des Herstellers Qiagen. Dazu wurden die Zellpellets aufgetaut, mit ATL-Puffer und Proteinase K versetzt und bis zur kompletten Zell-Lyse für 3h bei 56°C inkubiert. Die nachfolgenden Schritte wurden bei RT durchgeführt. Nach einer Zentrifugation bei 20.000 x g für 3 min wurde der Überstand mit AL-Puffer und Ethanol (99,8%) versetzt und zur Aufreinigung der gDNA auf eine Säule aufgetragen. Die Säule wurde für 1 min bei 6000 x g zentrifugiert und anschließend mit AW1-Puffer und AW2-Puffer gewaschen (Zentrifugation bei 6000 x g für 1 min bzw. bei 20.000 x g für 3 min). Schließlich wurde die Säule durch Zentrifugation bei 20.000 x g für 1 min getrocknet und die gDNA mit AE-Puffer durch Zentrifugation in ein neues Auffangröhrchen eluiert. Der DNA-Gehalt wurde im Nanodrop bestimmt und die gDNA wurde bis zur Weiterverwendung bei -20°C gelagert.
4.3.2 **Hochdurchsatz-Sequenzierung**

Die Sequenzierung der CDR3-Region der TCR β-Kette erfolgte unter Anwendung des ImmunoSeq™-Assays durch Adaptive Biotechnologies (Seattle, USA). Die extrahierte gDNA wurde dabei in einer Bias-kontrollierten Multiplex-PCR amplifiziert, gefolgt von einer Hochdurchsatz-Sequenzierung wie zuvor beschrieben [156-158].

4.4 **Statistik und Berechnungen**

4.4.1 **Berechnung der Frequenzen von Antigen-spezifischen T-Zellen**

4.4.2 **Statistische Tests**

Berechnung erfolgte mit der Software GraphPad Prism. Statistische Signifikanz wurde festgelegt auf p<0,05, *; p<0,01, **; p<0,001, ***.

4.4.3 **Spearman-Korrelation**

Zur Untersuchung eines statistischen Zusammenhanges zwischen zwei Merkmalen wurde die Spearman-Korrelation verwendet. Auch bei dieser Methode werden die Daten nach Rängen geordnet, sodass eine Normalverteilung der Daten und eine Varianzhomogenität nicht erforderlich ist. Der Korrelationskoefzient \(r \) umfasst dabei Werte von -1 bis +1 und zeigt Stärke und Richtung des statistischen Zusammenhanges an. Der \(p \)-Wert gibt an, ob sich \(r \), signifikant von 0 unterscheidet, wobei ein \(p \)-Wert < 0,05 als statistisch signifikant bezeichnet wurde.

4.5 **Angaben zu Kollaborationen**

Die Daten zu GAD65-reaktiven T-Zellen in gesunden Individuen (Frequenz, Zytokinproduktion, Phänotyp) sind zu einem Teil in Zusammenarbeit mit der von mir betreuten Masterstudentin Franziska Hahn entstanden und in ihrer Masterarbeit mit dem Titel: "Ex vivo Charakterisierung von Diabetes mellitus Typ I-assozierten Autoantigen-spezifischen CD4\(^+\) T-Zellen von gesunden Individuen" veröffentlicht (FU Berlin). Dies betrifft Ergebnisse aus Abschnitt 5.1.2, 5.1.3, 5.2.1 und 5.2.2.

Die Daten zur Prävalenz von KLH-reaktiven T-Zellen aus Abschnitt 5.1.2 wurden für sechs von neun Spendern von der Wissenschaftlerin Dr. Petra Bacher aus unserer Arbeitsgruppe generiert.

Die Daten zur TCR-Sequenzierung wurden im Rahmen einer Kooperation mit Prof. Stefan Gold, Leiter der AG Neuropsychiatrie der Klinik für Psychiatrie und Psychotherapie (Charité Berlin), generiert. Dabei erfolgte die Sequenzierung der von mir generierten Proben durch das Unternehmen Adaptive Biotechnologies in Seattle, WA, USA.
5 Ergebnisse

5.1 Implementierung und Validierung einer Methode zur direkten ex vivo Detektion von Autoantigen-spezifischen CD4+ T-Zellen

5.1.1 Anreicherung von autoreaktiven CD154+ CD4+ T-Zellen

Das kostimulatorische Molekül CD154 gehört zur TNF-Superfamilie und wird bereits 4-12 h nach Antigenkontakt transient auf der Oberfläche von aktivierten CD4+ T-Zellen exprimiert [143, 152, 153]. Seltene Antigen-spezifische CD154+ CD4+ T-Zellen (im Folgenden: CD154+ T-Zellen) können nach Aktivierung mit Hilfe eines magnetischen Anreicherungsschrittes mit hoher Spezifität und Sensitivität detektiert und ausführlich charakterisiert werden [151].

Um die Anwendbarkeit dieser Methode für quantitative phänotypische und funktionelle Untersuchungen von Autoantigenreaktiven T-Zellen zu bestätigen, wurden 1x10⁸ PBMCs mit dem MS-assoziierten Autoantigen Myelin-Oligodendrozyten Protein (MOG) sowie mit
Ergebnisse

![Diagramm](image)

Abb. 9: Anreicherung von CD154⁺ Autoantigen-spezifischen T-Zellen. Isolierte PBMCs wurden mit MP65 oder MOG für 7h stimuliert. CD154⁺ Zellen wurden magnetisch angereichert. Anschließend wurde die Expression von CD154 und TNF-α durchflusszytometrisch analysiert. Exemplarische Dot Plots eines gesunden Spenders sind dargestellt (Analysefenster auf CD4⁺ T-Zellen). Absolute Zellzahlen und Frequenzen (A) der CD154⁺ T-Zellen innerhalb der CD4⁺ T-Zellen von 3x10⁵ gemessenen PBMCs ohne Anreicherung bzw. (B) der CD154⁺ T-Zellen innerhalb der totalen eingesetzten CD4⁺ T-Zellen nach Anreicherung aus 1x10⁶ PBMCs sind gezeigt.

Ohne magnetische Anreicherung ist unter Beachtung des Detektionslimits der Durchflusszytometrie (etwa 0,01%) und der begrenzten Aufnahmegeschwindigkeit konventioneller Geräte (etwa 10⁶ Zellen in 8-10 min) eine weiterführende Analyse von CD154⁺ Autoantigen-spezifischen T-Zellen praktisch nicht möglich. Nach Aufnahme von 3x10⁵ PBMCs ohne Anreicherung konnten 4 Zellen Hintergrundsignal, 49 MP65-spezifische und 19 MOG-spezifische T-Zellen detektiert werden (Abb. 9A). Dies ergab einen
prozentualen Anteil von 0,046% MP65- bzw. von 0,018% MOG-spezifischen T-Zellen innerhalb der totalen CD4⁺ T-Zellen. Demgegenüber waren nach der Anreicherung von aktivierten CD154⁺ Zellen aus 1x10⁸ stimulierten PBMCs (40% CD4⁺ T-Zell-Anteil) deutliche CD154⁺ Populationen zu erkennen (MP65 ≈ 3000 Zellen, MOG ≈ 1000 Zellen), die anschließend quantitativ aussagekräftig auf weitere Parameter wie Phänotyp oder die Produktion von Zytokinen untersucht werden können (Abb. 9B). Der prozentuale Anteil innerhalb der totalen eingesetzten CD4⁺ T-Zellen betrug hier 0,008% für MP65- bzw. 0,003% für MOG-reaktive T-Zellen. Auch das Verhältnis von Signal zu Hintergrund wurde durch den Anreicherungsschritt verbessert, in diesem Beispiel für beide Antigene etwa um den Faktor 2, was zu exakteren und verlässlicheren Ergebnissen führt (siehe auch [151]).

Diese ersten Daten bestätigten die Anwendbarkeit der Anreicherung von aktivierten CD154⁺ Zellen nach Kurzzeitstimulation zur direkten ex vivo Analyse autoreaktiver T-Zellen.

5.1.2 Prävalenz von autoreaktiven T-Zellen in Gesunden

Um das Vorkommen von autoreaktiven CD4⁺ T-Zellen in gesunden Probanden zu untersuchen wurden 4x10⁷-1x10⁸ PBMCs mit den mit MS-assoziierten Myelin-Antigenen MOG, Myelin basisches Protein (MBP) und Proteolipidprotein (PLP) stimuliert. Weiterhin wurden die bekannten Haupt-Autoantigene der Muskelschwäche-Erkrankung Myasthenia gravis (MG), der Acetylcholinrezeptor (AChR), und Diabetes mellitus Typ I (T1D), die 65-kD-Isoform der Glutamat-Decarboxylase (GAD65), sowie das Kontrollantigen MP65 und das aus der Hämolymph der Schlitzschnecke gewonnene Neoantigen Keyhole Limpet
Hemocyanin (KLH) verwendet. Abb. 10A-C zeigen exemplarisch die absolute Anzahl an reaktiven Zellen nach Antigenstimulation von 4x10^7-1x10^8 PBMCs und nachfolgender Anreicherung aktivierter CD154⁺ T-Zellen. Aus diesen Zellzahlen wurde anschließend nach Abzug des Hintergrundsignals die Frequenz innerhalb der totalen eingesetzten CD4⁺ T-Zellen berechnet (Berechnung siehe 4.4.1). Das Detektionslimit wurde dabei auf 20 CD154⁺ T-Zellen

![Diagramm](image)

Abb. 10: Frequenzen von Autoantigen-spezifischen T-Zellen in gesunden Individuen.

4x10^7-1x10^8 PBMCs wurden mit MP65 (n=38), KLH (n=9) oder mit Krankheits-assoziierten Autoantigenen für (A) MS (MOG, MBP oder PLP; n=12-16), (B) Myasthenia gravis (AChR; n=12) und (C) Typ I Diabetes mellitus (GAD65; n=22) für 7 h stimuliert. CD154⁺ Zellen wurden magnetisch angereichert und durchflusszytometrisch analysiert (Analyseinheiten auf CD4⁺ T-Zellen). Dargestellt sind die absoluten Zellzahlen nach Anreicherung aus der jeweils unten rechts angegebenen Anzahl an PBMCs. (D) Zusammenfassende Darstellung der Frequenzen von CD154⁺ T-Zellen nach Anreicherung bezogen auf die absolute Anzahl an CD4⁺ Zellen vor Anreicherung und der (E) normalisierten Frequenzen unter Beachtung der Anzahl an Einzelpeptiden pro Peptid-Pool. Der Median und das Detektionslimit von 2x10^7 ist gekennzeichnet. Signifikanzwerte beziehen sich auf das Kontrollantigen MP65.
Ergebnisse

5.1.3 Generierung von Autoantigen-spezifischen T-Zell-Klonen

5.1.3.1 Klonierungseffizienzen

5.1.3.2 Validierung der Spezifität

Nach einer Expansionszeit von 4-6 Wochen wurden die TZK unter Zugabe von zuvor kryopräservierten autologen CD3-depletierten PBMCs zur Überprüfung der Spezifität mit dem initialen Antigen restimuliert. Als Kontrolle diente ein irrelevantes Antigen (MOG, PLP oder Insulin (Ins)).

Insgesamt konnte eine hohe Spezifität von CD154-sortierten Autoantigenreaktiven T-Zellen festgestellt werden (Abb. 11C). Diese betrug für MOG- und GAD65-reaktive Klone 73% bzw. 87% und für das Kontrollantigen MP65 sogar 96%.

5.1.4 Einfluss von *in vitro* Expansion auf die Klonalität von Antigen-spezifischen T-Zell Populationen

Hauptkontakt mit dem auf dem MHC-Molekül präsentierten Peptid her und ist einzigartig für jeden T-Zell-Klon (TZK). Die Frequenz einer spezifischen CDR3-Sequenz korreliert dabei mit der Häufigkeit des dazugehörigen TZK.

Tab. 15: Proben-Charakteristika zur TCR-Hochdurchsatz-Sequenzierung.

<table>
<thead>
<tr>
<th></th>
<th>Ex vivo PBMC</th>
<th>Myelin-spezifische TZL</th>
<th>EBNA-1-spezifische TZL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequenziert (Zellzahl)</td>
<td>5x10⁵</td>
<td>1,5x10⁵</td>
<td>1,5x10⁵</td>
</tr>
<tr>
<td>Klonalität<sup>a)</sup></td>
<td>0,0269</td>
<td>0,498</td>
<td>0,6448</td>
</tr>
<tr>
<td>Maximalfrequenz<sup>b)</sup> (%)</td>
<td>0,33</td>
<td>50,8</td>
<td>51,7</td>
</tr>
</tbody>
</table>

- a) 0-1, wobei 0 = absolute Gleichverteilung, d.h. alle Klone sind proportional gleich vertreten; 1 = absolute Ungleichverteilung, d.h. ein Klon dominiert die Population
- b) Frequenz des am häufigsten vorkommenden Klons

Mit Hilfe des ImmunoSEQ® Analyzers wurde anschließend nach Übereinstimmungen der Nukleotid-Sequenzen innerhalb der expandierten Zellen und innerhalb von frisch isolierten PBMCs gesucht, um spezifische T-Zell-Klone in der der ursprünglichen PBMC-Probe wiederzufinden. Der Anteil an überlappenden Sequenzen sowie deren Häufigkeit wurden analysiert und verglichen (Abb. 12). Tab. 15 fasst die Charakteristika der sequenzierten Proben zusammen.

Innerhalb der expandierten, Myelin-reaktiven T-Zellen konnten 231 produktive einzigartige Sequenzen, d.h. TZK, identifiziert werden (Abb. 12A). Von diesen TZK konnten 15 (6,5%) in den ursprünglich isolierten PBMCs wiedergefunden werden. Von insgesamt 256 unterschiedlichen EBNA-1-spezifischen TZK waren 24 (9,4%) in der Ausgangsprobe zu finden. Sechs Sequenzen (2,6% der Myelin-reaktiven TZK) stimmten sowohl innerhalb der Myelin-spezifischen als auch in der EBNA-1-spezifischen T-Zell-Population überein, wovon drei Sequenzen auch in der Ausgangsprobe vorhanden waren. Dies könnte ein Indiz für Kreuzreaktivität von autoreaktiven TZK mit mikrobiellen Antigenen sein (weiterführende Untersuchungen zur Kreuzreaktivität siehe 5.2.4).

Abb. 12B veranschaulicht die normalisierten Frequenzen aller Myelin- und EBNA-1-reaktiven T-Zell-Klone, welche in der Ursprungsprobe wiedерzufindenden waren, vor und nach *in vitro* Expansion. Man erkennt deutlich das stark unterschiedliche Wachstumsverhalten einzelner Klone innerhalb einer polyklonalen Population durch *in vitro* Kultivierung. Während die Frequenzen von Myelin- und EBNA-1-reaktiven T-Zell-Klonen innerhalb frisch isolierter PBMCs relativ homogen verteilt waren und sich um maximal eine Zehnerpotenz unterschieden, kam es nach 10 Tagen *in vitro* Kultivierung zu einer Expansion weniger Klone und einer relativen Abnahme der Frequenzen eines Großteils der Klone, was zu einer breiteren Streuung der Frequenzen führte. Interessanterweise expandierte jeweils derjenige Klon besonders stark, der auch *ex vivo* den größten Anteil ausmachte: Der Anteil des häufigsten Myelin- und EBNA-1-reaktiven Klons erhöhte sich von 12,5% auf 78,3% bzw. von 14,1% auf 64,5%. Die weitere Verteilung korrelierte jedoch nicht mit der Häufigkeit in der Ursprungsprobe. Sequenzen, welche in
allen drei Proben vorkamen, waren nach Expansion mit geringer Häufigkeit vertreten (0,009%-2%). Die Sequenzierung der ebenfalls in der Kultur vorhandenen bestrahlten, allogenen Feederzellen konnte ein Auswachsen dieser Zellen ausschließen.

Zusammenfassend demonstriert dieser Versuch deutlich, dass Ergebnisse, welche durch T-Zell-Expansionsstudien gewonnen wurden, immer kritisch beurteilt werden sollten und unterstreicht die wichtige Bedeutung eines verlässlichen Assays zur direkten Analyse von seltenen Antigen-spezifischen T-Zellen.

5.2 **Multiparameter-Charakterisierung von Autoantigen-spezifischen T-Zellen in gesunden Individuen**

5.2.1 **Untersuchung des Phänotyps und der Zytokinproduktion**

Zahlreiche tierexperimentelle Untersuchungen konnten eine entscheidende Rolle von Th1- und Th17-Zellen und ihren entzündungsfördernden Mediatoren bei autoimmune-vermittelten Erkrankungen wie EAE belegen [21, 22, 161]. Studien mit Autoimmunpatienten geben ebenfalls Hinweise auf eine verstärkte Aktivierung und Expansion dieser Zellen innerhalb der Pathogenese von MS, T1D und MG, sowohl auf globaler als auch auf Antigen-spezifischer Ebene [49, 68, 71, 137]. Da jedoch sehr wenig über das inflammatorische Zytokinprofil frisch isolierter autoreaktiver CD4⁺ T-Zellen in gesunden Individuen bekannt ist, wurde in der vorliegenden Arbeit die Expression von TNF-α, IFN-γ,

MP65-reaktive T-Zellen zeigten sowohl eine Th1- als auch eine Th17-spezifische Zytokin-Signatur (Abb. 13B). Neben einem hohen Anteil von TNF-α (Mittelwert 82%) produzierten im Mittel 13% aller Zellen IL-17, 37% GM-CSF und 13% IFN-γ. Im Vergleich zum Kontrollantigen produzierten Autoantigen-spezifische T-Zellen, auch aufgrund des zum Teil geringeren Memory Anteils, insgesamt weniger inflammatorische Zytokine und zeigten heterogene Expressionsmuster.
Ergebnisse

Abb. 13A und B: Legende und Fortführung auf der nächsten Seite.

Myelin-reaktive T-Zellen produzierten vorrangig TNF-α (im Mittel 50-54%), weniger IFN-γ und GM-CSF (im Mittel 7-12% bzw. 6-11%) und kaum IL-17 (im Mittel 1-2%). MBP-spezifische T-Zellen teilten sich dabei allerdings in zwei Gruppen mit geringer (4-6%) und hoher IFN-γ-Expression (28-34%) auf. Vergleichsweise wenig Zytokinproduzenten waren innerhalb der GAD65-spezifischen T-Zellen zu finden (im Mittel 31% TNF-α, 5% IFN-γ, 5% GM-CSF, 1% IL-17). Dagegen zeigten AChR-reaktive T-Zellen mit durchschnittlich
Ergebnisse

17% den höchsten Anteil an IFN-γ-Produzenten innerhalb aller getesteten Antigene. IL-17-Produzenten waren, bis auf einen Ausreißer, kaum zu detektieren (im Mittel 4%). Die TNF-α- und GM-CSF-Expression wurde für dieses Autoantigen nicht analysiert. Stattdessen konnte bei zwei Dritteln der gesunden Probanden eine Produktion von IL-4 ermittelt werden (1-8%, Mittelwert 2%). Das Zytokin IL-21, welches eine Schlüsselrolle in der Differenzierung von B-Zellen spielt und vorrangig von follikulären T-Helferzellen (Tfh) produziert wird [162], exprimierten 6-18% (Mittelwert 13%) der AChR-reaktiven T-Zellen.

Abb. 13: Funktionelle und phänotypische Charakterisierung von Autoantigen-spezifischen T-Zellen aus gesunden Individuen. 4x10^7-1x10^8 PBMCs wurden mit MP65 (n>18), KLH (n=3) oder Autoantigenen assoziiert mit MS (MOG, MBP, PLP; n=6-17), Diabetes mellitus Typ I (GAD65; n=22) oder Myasthenia gravis (AChR; n>4) für 7 h stimuliert. CD154^+ Zellen wurden magnetisch angereichert und durchflusszytometrisch auf Zytokinproduktion (TNF-α, IFN-γ, GM-CSF, IL-17; IL-4, IL-21) und Memory-Phänotyp (CD45RO) untersucht. (A-B) Repräsentative Dot Plots (Analysefenster auf CD4^+/CD154^+ T-Zellen). Zusammenfassend dargestellt ist der prozentuale Anteil an (C-D) Zytokinproduzenten bzw. (E) CD45RO^+ Memory-T-Zellen innerhalb der CD154^+ Zellen. Die Mittelwerte sind jeweils markiert.

5.2.2 Vergleich der Expression von CD45RO im autoreaktiven und im Gesamt-T-Zell-Repertoire

Mit zunehmendem Alter erhöht sich der Anteil von CD45RO⁺ Zellen innerhalb der CD4⁺ T-Zellen [163, 164]. Dies ist eine Folge der kontinuierlichen Auseinandersetzung des reifenden bzw. alternden Immunsystems mit neuen Antigenen, beispielsweise durch Impfungen, die Besiedlung mit Kommensalen oder den Kontakt zu Umweltantigenen und Pathogenen und einer damit verbundenen Differenzierung von naiven zu Memory T-Zellen. Mit diesem Parameter, der zusammen mit weiteren Faktoren das so genannte immunologische Alter bestimmt, wurde der Anteil an autoreaktiven Memory T-Zellen korreliert, um Hinweise auf ihren Ursprung in gesunden Individuen zu erhalten.

Für das Kontroll-Antigen MP65 zeigten diese Analysen keine statistisch signifikante Korrelation der Expression von CD45RO auf CD154⁺ und totalen CD4⁺ T-Zellen (rₛ = 0,27; p = 0,09) (Abb. 14A). Wie erwartet dominierte hier unabhängig vom Differenzierungsstatus der totalen CD4⁺ T-Zellen eine stark ausgeprägte MP65-spezifische Memory T-Zell-Antwort, vermutlich durch Selektion und Expansion weniger hochaffiner Klone. Dies ist typisch für Antigene, mit welchen das Immunsystem bereits früh und regelmäßig konfrontiert wurde. Im Gegensatz dazu korrelierte der Anteil an KLH-reaktiven Memory T-Zellen fast perfekt mit dem immunologischen Alter (rₛ > 0,99; p < 0,0001) (Abb. 14B).
Ergebnisse

Ein breiteres CD4⁺ Memory T-Zell-Repertoire mit steigendem Alter erhöht demnach die Wahrscheinlichkeit, dass ein neues Fremdantigen von kreuzreaktiven, vermutlich vorrangig niedrig affinen Memory T-Zellen erkannt wird. Ein ähnliches Bild ergab sich bei Betrachtung der Autoantigen-reaktiven Memory T-Zellen. Für die getesteten Myelin-Antigene ($r_s = 0.79; p < 0.0001$), GAD65 ($r_s = 0.72; p = 0.0001$) und AChR ($r_s = 0.76; p = 0.004$) korrelierte ihr Anteil ebenfalls deutlich mit der Expression von CD45RO innerhalb der totalen CD4⁺ Zellen. Diese Ergebnisse können darauf hindeuten, dass autoreaktive naive T-Zellen ähnlich wie Neoantigen-spezifische T-Zellen in gesunden Individuen in vivo ursprünglich durch ein anderes Antigen aktiviert wurden und nun als Memory-Zellen auf die Autoantigene lediglich kreuzreagieren. Somit liegt keine "klassische", durch spezifischen Antigenkontakt klonal expandierte Memory T-Zell-Population vor.
5.2.3 Bestimmung der funktionellen Avidität autoreaktiver T-Zell-Linien

Ergebnisse

Abb. 15: Funktionelle Avidität von Autoantigen-spezifischen naiven und Memory TZL.
1-2x10^8 PBMCs gesunder Individuen wurden mit MP65 (n=7) oder den Autoantigenen MOG (n>7), MBP (n=5), PLP (n>7) und GAD65 (n>6) für 6 h stimuliert. CD154^+ T-Zellen wurden magnetisch angereichert. Anschließend wurden CD154^+ /CD69^+ naive (CD45RA^+ / CCR7^+) und Memory (CD45RA^-) TZL FACS-sortiert. Nach 7-10 Tagen in vitro Expansion wurden die TZL mit absteigenden Konzentrationen des initialen Antigens restimuliert. (A) Die Reaktivität wurde durch Re-Expression von CD154 und TNF-α bestimmt und mit Hilfe von Dosis-Antwort-Kurven dargestellt, der Mittelwert ± SEM ist gekennzeichnet. (B) Daraus konnte die halbmaximale effektive Antigen-Konzentration (EC50) berechnet und aufgetragen werden. Der Median ist jeweils gekennzeichnet. Signifikanzen beziehen sich auf das Kontrollantigen MP65. TZL_N = aus naiven T-Zellen generierte Linien. TZL_M = aus Memory T-Zellen generierte Linien.

Abb. 15A zeigt zusammenfassende Dosis-Antwort-Kurven für alle generierten TZL_N und TZL_M. Der größte Anteil an reaktiven Zellen nach Restimulation wurde für MP65-spezifische TZL_M gemessen. Durchschnittlich 79,7% aller Zellen re-exprimierten CD154 und TNF-α, während autoreaktive TZL nur eine maximale Reaktivität von 47,4% erreichten.
Ergebnisse

(GAD65-spezifische TZL\(_M\)). Auffällig war darüber hinaus, dass MP65-reactive TZL\(_N\) auf jegliche Konzentration des Antigens schwächer reagierten als TZL\(_M\), während für die Autoantigene tendenziell das Gegenteil erkennbar war oder es kaum Unterschiede gab. Aus den Dosis-Antwort-Kurven ließ sich die halbmaximale effektive Antigen-Konzentration (EC50) berechnen und auftragen (Abb. 15B). Niedrige EC50-Werte definierten hierbei hohe funktionelle Avidität bzw. Antigensensitivität. Für alle generierten TZL\(_N\) deckten diese Werte eine breite Spanne von bis zu 4 log-Stufen ab. Zwischen dem Kontrollantigen MP65 (EC50\(_{\text{Med}}\) = 1,8x10\(^{-2}\) nmol/ml) und den Autoantigenen (EC50\(_{\text{Med}}\) = 1,1-6,9x10\(^{-2}\) nmol/ml) konnten dabei keine signifikanten Unterschiede gefunden werden. Im Gegensatz dazu wiesen Myelin- und GAD65-spezifische TZL\(_M\) (EC50\(_{\text{Med}}\) = 5,6-12,1x10\(^{-2}\) nmol/ml) eine signifikant geringere Antigensensitivität als MP65-reactive TZL\(_M\) (EC50\(_{\text{Med}}\) = 0,9x10\(^{-2}\) nmol/ml) auf. Insgesamt ließen sich autoreaktive TZL\(_M\) schlechter restimulieren und benötigten für eine halbmaximale Reaktion deutlich höhere Antigendosen als MP65-reactive TZL\(_M\). Dies deutet auf eine limitierte funktionelle Aviditätsreifung von autoreaktiven Memory T-Zellen und/oder eine eingeschränkte Selektion von hochaffinen TZK im Laufe der Immunantwort von Gesunden hin und unterstreicht gleichzeitig die Bedeutung der Bewahrung von Selbst-Toleranz nach mutmaßlicher kreuzreaktiver T-Zell-Aktivierung.

5.2.4 Kreuzreaktivität mit mikrobiellen Antigenen

Tab. 16: Kreuzreakтивität von Autoantigen-spezifischen TZL mit bakteriellen, viralen und Pilz-Antigenen.^{a)}

<table>
<thead>
<tr>
<th>TZL</th>
<th>C. albicans</th>
<th>A. fumigatus</th>
<th>E. coli</th>
<th>CMV</th>
<th>HSV-1</th>
<th>EBNA-1</th>
<th>BRLF-1</th>
<th>total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP65<sup>b)</sup></td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/7</td>
<td>0/2</td>
<td>0/3</td>
<td>0/3</td>
<td>0/0</td>
</tr>
<tr>
<td>MOG</td>
<td>0/2</td>
<td>1/2</td>
<td>0/2</td>
<td>0/7</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td>4,5</td>
</tr>
<tr>
<td>MBP</td>
<td>-</td>
<td>-</td>
<td>0/5</td>
<td>0/3</td>
<td>0/3</td>
<td>1/3</td>
<td></td>
<td>7,1</td>
</tr>
<tr>
<td>PLP</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/7</td>
<td>0/3</td>
<td>0/2</td>
<td>0/2</td>
<td>0/0</td>
</tr>
<tr>
<td>GAD65</td>
<td>0/2</td>
<td>0/2</td>
<td>1/2</td>
<td>0/6</td>
<td>0/2</td>
<td>-</td>
<td>-</td>
<td>7,1</td>
</tr>
<tr>
<td>total (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TZL</th>
<th>C. albicans</th>
<th>A. fumigatus</th>
<th>E. coli</th>
<th>CMV</th>
<th>HSV-1</th>
<th>EBNA-1</th>
<th>BRLF-1</th>
<th>total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP65<sup>b)</sup></td>
<td>0/2</td>
<td>0/2</td>
<td>1/2</td>
<td>0/7</td>
<td>0/5</td>
<td>0/2</td>
<td>0/2</td>
<td>5,0</td>
</tr>
<tr>
<td>MOG</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>1/8</td>
<td>0/6</td>
<td>0/3</td>
<td>0/3</td>
<td>3,8</td>
</tr>
<tr>
<td>MBP</td>
<td>-</td>
<td>-</td>
<td>1/5</td>
<td>0/5</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>7,1</td>
</tr>
<tr>
<td>PLP</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/8</td>
<td>1/6</td>
<td>0/2</td>
<td>0/2</td>
<td>4,2</td>
</tr>
<tr>
<td>GAD65</td>
<td>1/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/7</td>
<td>1/5</td>
<td>-</td>
<td>-</td>
<td>11,1</td>
</tr>
<tr>
<td>total (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,5</td>
</tr>
</tbody>
</table>

^{a)} dargestellt ist die Anzahl an reaktiven TZL innerhalb der entsprechenden Anzahl getesteter TZL von unterschiedlichen gesunden Personen; positive Reaktionen sind grau unterlegt.

^{b)} MP65 ist ein T-Zell-Zielantigen von C. albicans und daher reagieren alle MP65-reaktiven TZL auch auf C albicans-Stimulation, d.h. es liegt keine Kreuzreaktivität i.e.S. vor.

^{c)} nur autoreaktive TZL.
Autoreaktive TZL\textsubscript{N} reagierten auf Stimulation mit \textit{A. fumigatus} (MOG, 1 von 2), BRLF-1 (MBP, 1 von 3) oder \textit{E. coli} (GAD65, 1 von 2). Auch ein geringer Anteil an CD154+/TNF-\alpha+ T-Zellen wurde als positive Reaktion gewertet, wenn eine deutliche Population zu erkennen war und das Signal klar über der Hintergrundaktivierung lag. Autoreaktive TZL\textsubscript{M} kreuzreagierten v.a. mit viralen Antigenen des CMV (MOG, 1 von 8; MBP, 1 von 5) und HSV-1 (PLP, 1 von 6; GAD65, 1 von 5). Zusätzlich konnte eine GAD65-spezifische TZL auch durch Zugabe des \textit{C. albicans} Lysates aktiviert werden (1 von 2). Obwohl die TCR-Sequenzierungsdaten Hinweise auf Kreuzreakтивität zwischen Myelin-reaktiven und EBNA-1 reaktiven TZL gaben (siehe 5.1.4), reagierte in diesen Versuchen keine der getesteten TZL auf Restimulation mit EBNA-1. Unter Berücksichtigung aller getesteten Antigene lag der Anteil an kreuzreaktiven Autoantigen-spezifischen TZL\textsubscript{N} zwischen 0\% (PLP) und 7,1\% (MOG, GAD65) und für TZL\textsubscript{M} zwischen 3,8\% (MOG) und 11,1\% (GAD65).

5.3 Charakterisierung von Myelin-reaktiven CD4⁺ T-Zellen in MS-Patienten

5.3.1 Quantifizierung und Phänotypisierung

5.3.1.1 Bestimmung der Frequenz

Abb. 17: Frequenzen von Myelin-reaktiven CD4⁺ T-Zellen in MS-Patienten und Gesunden.
5.3.1.2 **Untersuchung des Phänotyps**

Im nächsten Schritt wurde die Expression von CD45RO durchflusszytometrisch analysiert um den Anteil an Memory-Zellen innerhalb der Myelin-reaktiven und der totalen CD4⁺ T-Zellen zu bestimmen.

Wie schon für die einzelnen Myelin-Antigene zu beobachten war (siehe 5.2.1), variierte der prozentuale Anteil an Myelin-spezifischen Memory T-Zellen in gesunden Individuen stark (21,6% - 85,9%, Mittelwert 43,0%), und dies war auch für die Proben von MS-Patienten ersichtlich (28,4 - 86,8%, Mittelwert 59,3%) (Abb. 18A). Insgesamt zeigten MS-Patienten jedoch eine signifikant erhöhte Expression von CD45RO innerhalb der CD154⁺ Fraktion ($p = 0,001$). Allerdings überwog in Patienten der Memory-Phänotyp bereits in den totalen CD4⁺ T-Zellen mit einem Mittelwert von 51,3% im Vergleich zu 40,3% bei Gesunden ($p = 0,03$; Abb. 18B). Im Hinblick auf das chronologische Alter weist dies auf einen verstärkten kumulativen Antigen-Kontakt über die Lebensdauer und/oder eine vorzeitige Alterung von CD4⁺ T-Zellen hin. Diese Ergebnisse stellten deshalb einen Antigen-spezifischen Effekt in Form von selektiver Expansion Myelin-reaktiver Memory T-Zellen in Frage.

Um dieser Vermutung weiter nachzugehen, wurden Korrelationsanalysen durchgeführt. Die phänotypischen Analysen autoreaktiver T-Zellen von gesunden Individuen hatten bereits gezeigt, dass die Expression von CD45RO innerhalb der Autoantigen-spezifischen und der gesamten CD4⁺ T-Zellen deutlich miteinander korrelierte (siehe 5.2.2). Passende gesunde Kontrollpersonen wurden nun den Proben der MS-Patienten zugeordnet. Die Ergebnisse bestätigten, dass auch in Patienten der Anteil an Myelin-reaktiven Memory T-Zellen mit dem globalen Differenzierungsstatus von CD4⁺ T-Zellen und somit einem Antigen-erfahrenen Immunsystem korrelierte ($r_s = 0,82; p < 0,0001$; Abb. 18C). Gleichzeitig konnte kein statistisch signifikanter Zusammenhang zwischen der Frequenz und dem Anteil an Myelin-spezifischen Memory-Zellen gefunden werden ($r_s = 0,39; p = 0,07$; Abb. 18D).
Ergebnisse

Abb. 18: Expression von CD45RO in Myelin-reaktiven und totalen CD4+ T-Zellen von MS-Patienten. 2x10^7-1x10^8 PBMCs von MS-Patienten (n=22) und passenden gesunden Kontrollen (GK; n = 25) wurden mit einer Kombination der Myelin-Antigene MOG, MBP und PLP für 7 h stimuliert. Nach der Anreicherung von CD154^+ T-Zellen wurde die Expression von CD45RO innerhalb der (A) Myelin-spezifischen, CD154^+ T-Zellen und (B) der totalen CD4^+ T-Zellen durchflusszytometrisch bestimmt. (C) Zur Analyse der Korrelation wurden diese Werte gegeneinander aufgetragen. (D) Zusätzlich wurde auch die Frequenz der Myelin-reaktiven CD154^+ T-Zellen mit dem Anteil an Memory-Zellen innerhalb der CD4^+ T-Zellen korreliert. Die Regressionsgerade wurde jeweils für jede Gruppe zu Darstellungszwecken ermittelt.

Eine klare Antigen-induzierte Expansion von Memory T-Zellen, wie sie am Beispiel des Recall-Antigens MP65 stattgefunden hatte (siehe 5.2.2) konnte demnach für Myelin-reaktive T-Zellen von MS-Patienten nicht nachgewiesen werden.

5.3.1.3 Korrelationen mit klinischen Parametern

unter Berücksichtigung verschiedener funktioneller Systeme des Körpers, die durch die Erkrankung beeinträchtigt sein können.

Die Korrelationsanalysen konnten keinen statistisch signifikanten Zusammenhang zwischen der Frequenz von Myelin-reaktiven CD4⁺ T-Zellen im peripheren Blut und der Dauer der Erkrankung, der Behandlungsdauer mit Natalizumab oder dem EDSS-Wert aufzeigen (Abb. 19A). Da es sich bei der vorliegenden Studie um eine Querschnittsanalyse handelte, ist für
Ergebnisse

die einzelnen Patienten jedoch nicht auszuschließen, dass sich die Reaktivität auf Myelin-Antigene während der Erkrankung verändert bzw. verstärkt (beschrieben bei [135, 171]). Weiterhin korrelierte der Anteil an CD154⁺ Memory T-Zellen weder mit der Erkrankungsdauer noch mit der Behandlungsdauer (Abb. 19B). Ein positiver Zusammenhang ließ sich aber mit dem EDSS-Wert herstellen (rₛ = 0,49; p = 0,02). Dies war allerdings auch für die totalen CD4⁺ Memory T-Zellen erkennbar (rₛ = 0,57; p = 0,007; Abb. 19C). Nachdem für den im letzten Abschnitt (5.3.1.2) beschriebenen linearen Zusammenhang von Myelin-reaktiven und totalen CD4⁺ Memory T-Zellen korrigiert worden war (partielle Korrelation), konnte kein signifikanter Antigen-spezifischer Effekt mehr gefunden werden (rₛ = 0,02; p = 0,60). Der EDSS-Wert korrelierte für das Patientenkollektiv nicht mit dem Alter oder der Krankheitsdauer (Abb. 19D und E). Darüber hinaus konnte ein Einfluss auf die Memory T-Zell-Frequenz durch längerfristige Natalizumab-Behandlung ausgeschlossen werden (Daten nicht gezeigt). Aus diesen Daten lässt sich schlussfolgern, dass der Grad der Behinderung mit dem generellen Differenzierungsstatus der CD4⁺ T-Zellen assoziiert ist.

5.3.2 Funktionelle Charakterisierung

5.3.2.1 Expression von inflammatorischen Zytokinen

Autoreaktiven Th1 und Th17-Zellen sowie ihren Effektor-Zytokinen wird im Tiermodell von MS eine essentielle Rolle zugeschrieben [161]. Demgegenüber existieren uneinheitliche Daten zur differentiellen Zytokinexpression von Myelin-reaktiven CD4\(^+\) T-Zellen bei MS-Patienten [137, 140]. In dieser Arbeit sollten deshalb inflammatorische Zytokinprofile erstmals direkt, ohne den Einfluss vorheriger \textit{in vitro} Expansion, für die Gesamtproteine untersucht werden.

\textbf{Abb. 20: Expression von inflammatorischen Zytokinen durch Myelin-reaktive T-Zellen in MS-Patienten.} 2x10\(^7\)-1x10\(^8\) PBMCs von MS-Patienten (n=13) und gesunden Kontrollen (GK; n=18) wurden mit Myelin-Antigenen (MOG, MBP, PLP) für 7 h stimuliert. CD154\(^+\) Zellen wurden angereichert und durchflusszytometrisch auf die Expression der Zytokine TNF-α, IFN-γ, IL-17 und GM-CSF untersucht. Aufgetragen wurde die Frequenz der Zytokin-Produzenten innerhalb der Myelin-reaktiven CD4\(^+\) Memory T-Zellen.

Zunächst wurde die Gesamtexpression der Zytokine TNF-α, IFN-γ, IL-17 und GM-CSF innerhalb der CD154\(^+\)/CD45RO\(^+\) T-Zellen nach Stimulation mit den Myelin-Antigenen mittels multiparametrischer Durchflusszytometrie bestimmt. Hierbei konnten keine signifikanten Unterschiede zwischen Patienten und entsprechenden Kontrollen gefunden werden, jedoch zeigte sich für TNF-α, IFN-γ und GM-CSF eine Tendenz in Richtung einer erhöhten Expression in MS-Patienten (Abb. 20). Die durchschnittliche TNF-α-Produktion von Myelin-reaktiven Memory T-Zellen betrug in Gesunden 47,4\% und in MS-Patienten 57,1\% (p = 0,1). Die mit dem Th1- bzw. Th17-Subtyp assoziierten Zytokine IFN-γ und IL-17 exprimierten im Mittel 14,7\% bzw. 2,4\% der Zellen von gesunden Kontrollen und 20,2\% bzw. 4,6\% der Zellen von Patienten (p = 0,07 bzw. p = 0,17). MS-Patienten erreichten dabei
Ergebnisse

Maximalwerte von 49,7% (IFN-γ) und 13,7% (IL-17). GM-CSF-Produzenten machten in MS-Patienten einen Anteil von bis zu 78,8% der Myelin-spezifischen T-Zellen aus (Mittelwert 28,3% bzw. 17,6% in Gesunden; \(p = 0,08 \)).

Im nächsten Schritt wurde mit Hilfe der Booleschen Methode (beschrieben in [172]) der Anteil an polyfunktionalen Zellen, welche zwei oder mehr inflammatorische Zytokine gleichzeitig exprimierten, innerhalb der CD154⁺ Memory T-Zellen bestimmt. Dabei konnten keine Hinweise auf eine gesteigerte Polyfunktionalität dieser Zellen bei MS-Patienten gefunden werden (durchschnittlich 29% vs. 34%; Abb. 21A und B). Weiterhin wurden keine Unterschiede im Hinblick auf den Gesamtanteil an Zytokin-Einzelproduzenten (im Mittel 39% vs. 33%) oder Nicht-Produzenten (im Mittel 32% vs. 33%) ermittelt. Die Einzelanalyse

\[r_{s} = 0,62 \]
\[p = 0,02 \]
\[r_{s} = 0,79 \]
\[p = 0,001 \]
Ergebnisse

Tab. 17: Boolesche Analyse der Zytokinexpression von Myelin-reaktiven CD4+ T-Zellen.

<table>
<thead>
<tr>
<th></th>
<th>TNF-α</th>
<th>IFN-γ</th>
<th>IL-17</th>
<th>GM-CSF</th>
<th>GK M(a)</th>
<th>SD(b)</th>
<th>MS M</th>
<th>SD</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicht-Produzenten</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>32,63</td>
<td>12,54</td>
<td>33,88</td>
<td>16,55</td>
<td>0,73</td>
</tr>
<tr>
<td>Einzel-Produzenten</td>
<td>x</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>35,95</td>
<td>12,25</td>
<td>29,91</td>
<td>6,58</td>
<td>0,06</td>
</tr>
<tr>
<td>– x – – – x</td>
<td>0,40</td>
<td>0,73</td>
<td>0,87</td>
<td>0,96</td>
<td>0,08</td>
<td>0,15</td>
<td>0,60</td>
<td>0,68</td>
<td>0,005</td>
</tr>
<tr>
<td>– – x x</td>
<td>2,46</td>
<td>4,72</td>
<td>2,02</td>
<td>3,87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,26</td>
</tr>
<tr>
<td>Doppel-Produzenten</td>
<td>x x</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2,86</td>
<td>2,61</td>
<td>5,72</td>
<td>2,77</td>
<td>0,03</td>
</tr>
<tr>
<td>x – x –</td>
<td>0,90</td>
<td>1,11</td>
<td>1,69</td>
<td>1,74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,18</td>
</tr>
<tr>
<td>x – – x x</td>
<td>12,51</td>
<td>6,86</td>
<td>11,46</td>
<td>11,47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,27</td>
</tr>
<tr>
<td>– x x x</td>
<td>0,02</td>
<td>0,07</td>
<td>0,01</td>
<td>0,04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>0,99</td>
</tr>
<tr>
<td>Dreifach-Produzenten</td>
<td>x x x</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,06</td>
<td>0,18</td>
<td>0,58</td>
<td>1,79</td>
<td>0,47</td>
</tr>
<tr>
<td>x x – x</td>
<td>11,01</td>
<td>13,50</td>
<td>12,66</td>
<td>10,83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,35</td>
</tr>
<tr>
<td>x – x x x</td>
<td>1,20</td>
<td>1,49</td>
<td>1,68</td>
<td>2,28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,48</td>
</tr>
<tr>
<td>– x x x x</td>
<td>0,02</td>
<td>0,07</td>
<td>0,01</td>
<td>0,04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>0,99</td>
</tr>
<tr>
<td>Vierfach-Produzenten</td>
<td>x x x x</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,20</td>
<td>0,31</td>
<td>0,46</td>
<td>0,58</td>
<td>0,27</td>
</tr>
</tbody>
</table>

a) M = Mittelwert
b) SD = Standardabweichung

die Tabelle zeigt die Ergebnisse der booleschen Analyse der Zytokinexpression von Myelin-reaktiven CD4+ T-Zellen. Die Ergebnisse lassen erkennen, dass der Anteil von TNF-α/IFN-γ-Doppelproduzenten in MS-Patienten signifikant erhöht ist (im Mittel 2,9% vs. 5,7%; p = 0,03) sowie der Anteil von IL-17-Einzelproduzenten (im Mittel 0,08% vs. 0,6%; p = 0,005; Abb. 21A und Tab. 17). Die Frequenz der TNF-α/IFN-γ-Doppelproduzenten korrelierte positiv mit dem EDSS-Wert (Abb. 21C). Für weitere
Kombinationen konnten keine relevanten Abweichungen zwischen den Gruppen und keine signifikanten Zusammenhänge mit klinischen Daten (EDSS-Wert, Krankheitsdauer und Dauer der Natalizumab-Behandlung) ermittelt werden. In der Gesamtheit machten neben den TNF-α-Einzelproduzenten in beiden Gruppen TNF-α/GM-CSF-Doppelproduzenten (12,5% vs. 11,5%) und TNF-α/IFN-γ/GM-CSF-Dreifachproduzenten (11,0% vs. 12,7%) den größten Anteil aus. Diese Daten verdeutlichen, dass sich die inflammatorischen Zytokinmuster von Myelin-spezifischen T-Zellen aus dem peripheren Blut von MS-Patienten und gesunden Kontrollen nur im geringen Maße voneinander unterscheiden.

5.3.2.2 Expression von Chemokinrezeptoren

Im ersten Schritt der Analyse wurde die Gesamtexpression der Chemokinrezeptoren bestimmt. Die Expression war streng mit dem Memory-Phänotyp assoziiert. Die Frequenz an CXCR3⁺ Zellen war innerhalb der totalen CD4⁺ Memory T-Zellen von MS-Patienten tendenziell (Mittelwert 38,1% vs. 44,4%; p = 0,06) und innerhalb der Myelin-reaktiven Memory T-Zellen signifikant (40,4% vs. 51,6%; p = 0,047) erhöht (Abb. 22A). Die Expression von CCR4 war dagegen in den totalen Memory T-Zellen vermindert (39,6% vs. 27,9%; p = 0,03) (Abb. 22B). Daraus ergab sich ein deutlich erhöhtes Verhältnis von CXCR3⁺ zu CCR4⁺ Zellen (p = 0,003; Abb. 22D). Dieser Unterschied konnte für Myelin-spezifische
Ergebnisse

Abb. 22: Gesamtexpression von Chemokinrezeptoren auf Myelin-spezifischen und totalen CD4⁺ Memory T-Zellen. Myelin-reaktive CD154⁺ T-Zellen von MS-Patienten (n=14) und gesunden Kontrollen (GK; n=15-17) wurden nach Stimulation mit einer Kombination aus MOG, MBP und PLP magnetisch angereichert. Autoreaktive und totale CD4⁺ Memory T-Zellen wurden anschließend durchflusszytometrisch auf die Expression der Chemokinrezeptoren (A) CXCR3, (B) CCR4 und (C) CCR6 untersucht. (D) Zusätzlich wurde das Verhältnis von CXCR3⁺ zu CCR4⁺ Zellen analysiert.

T-Zellen nicht nachgewiesen werden. Gesunde Kontrollen und MS-Patienten zeigten einen ähnlichen mittleren Anteil an CCR6⁺ Zellen in der CD4⁺ Gesamtpopulation (32,9% vs. 36,2%) sowie in der Antigen-spezifischen Fraktion (38,3% vs. 40,9%; Abb. 22C).

Die Mittelwerte betrugen 19,8% vs. 20,2% (Th1) bzw. 14,5% vs. 12,0% (Th17) für die gesamten CD4⁺ Memory T-Zellen (Abb. 23A) und 19,7% vs. 21,1% (Th1) bzw. 17,6% vs. 10,4% (Th17) für die Myelin-reaktiven Memory T-Zellen (Abb. 23B). Im Gegensatz dazu konnte ein deutlich erhöhter Anteil an Th1/Th17-Zellen innerhalb der totalen CD4⁺ Memory T-Zellen von Patienten gefunden werden (im Mittel 18,4% vs. 24,2%; \(p = 0,009 \)). Dieser Unterschied war auch in den Myelin-spezifischen T-Zellen nachzuweisen (im Mittel 20,7% vs. 30,5%; \(p = 0,02 \)), wobei der Anteil an Th1/Th17-Zellen in dieser Fraktion für alle getesteten Individuen deutlich mit dem Anteil in den totalen CD4⁺ Memory T-Zellen assoziiert war (Abb. 23C).

5.3.2.3 Bestimmung der funktionellen Avidität Myelin-reaktiver T-Zell Klone

Ergebnisse

Für die Gesamtheit der MP65-spezifischen TZK\textsubscript{M} war eine funktionelle Aviditätsreifung offensichtlich, da mehr als ein Drittel der Klone (6/16) EC50-Werte unter 0,1 pmol/ml aufwiesen, was zur besseren Vergleichbarkeit als Grenze für hohe Avidität definiert wurde. Diese Werte wurden aus extrapolierten Dosis-Wirkungs-Kurven berechnet, da selbst nach Zugabe der geringsten Antigen-Konzentration (0,06 pmol/ml) die Reaktivität der Zellen sehr hoch war (50\%-90\% CD154\(^{-}/\)TNF-\(\alpha^{-}\)) und der untere Schwellenwert nicht erreicht wurde (Abb. 24A). Der größere Teil der MP65-reaktiven TZK\textsubscript{M} zeigte eine intermediäre Antigensensitivität, welche EC50-Werte zwischen 0,1 nmol/ml und 0,1 pmol/ml (EC50\textsubscript{Med} = 2,2 pmol/ml) umfasste, während keine Klone mit geringer funktioneller Avidität (EC50 > 0,1 nmol/ml) identifiziert werden konnten. Im Gegensatz dazu schwankten die medianen EC50-Werte von MOG-spezifischen TZK von gesunden Individuen, unabhängig von ihrem Ursprung, zwischen intermediärer und niedriger funktioneller Avidität (EC50\textsubscript{Med} = 0,07-0,21 nmol/ml). Für gepaarte Daten einer gesunden Kontrolle konnten TZK\textsubscript{M} mit signifikant geringerer Antigensensitivität (EC50\textsubscript{Med} = 0,21 nmol/ml) im Vergleich zu TZK\textsubscript{N} (EC50\textsubscript{Med} = 0,09 nmol/ml; \(p = 0,02\)) nachgewiesen werden. Diese Beobachtung war bei TZK von MS-Patienten noch ausgeprägter: Während MOG-spezifische TZK\textsubscript{N} eine niedrige bis mittlere funktionelle Avidität aufwiesen (EC50\textsubscript{Med} = 0,07 nmol/ml) konnten mehr als 90\% der TZK\textsubscript{M} (48/50 bzw. 28/31) dem niedrigen Aviditätsbereich zugeordnet werden (EC50\textsubscript{Med} = 1,1-1,9 nmol/ml) und demonstrierten somit eine noch viel geringere Antigensensitivität (\(p < 0,001\)), welche sich von MP65-reaktiven hochaviden TZK\textsubscript{M} sogar um etwa fünf log-Stufen unterschied.

Diese Ergebnisse stützen die Erkenntnisse aus Abschnitt 5.2.3 und belegen nun auch auf monoklonaler Ebene, dass Myelin-reaktive Memory T-Zellen aus gesunden Spendern im Gegensatz zu Recall-Antigen-spezifischen Memory T-Zellen keine hohe funktionelle Avidität erlangt haben. Noch interessanter ist aber das Resultat, dass Myelin-reaktive Memory T-Zellen von MS-Patienten sogar noch höhere Antigenkonzentrationen benötigten.
um aktiviert zu werden. Dies stellt MOG als auslösendes Antigen und Faktor zur Aufrechterhaltung der hier beschriebenen Myelin-spezifischen Memory T-Zell-Antwort in Frage.

5.3.3 Myelin-spezifische regulatorische T-Zellen

CD137⁺ T-Zellen exprimierten einen hohen Anteil an FoxP3 und CD25 (Spannweite 52%-88%), wohingegen CD154⁺ T-Zellen negativ für beide Marker waren (Abb. 25B). Die Prävalenz von Myelin-spezifischen Tregs im peripheren Blut unterschied sich zwischen MS-Patienten und gesunden Personen nicht (Abb. 25D). Interessanterweise war die mediane Häufigkeit mit 40 (Spannweite 14 bis 506) bzw. 37 (Spannweite 6 bis 573) Myelin-reaktiven Tregs innerhalb von 10⁶ CD4⁺ Zellen mit der Frequenz von Tcons vergleichbar (5.3.1.1).

Abb. 25: Ex vivo Charakterisierung von Myelin-reaktiven Tregs. PBMCs von gesunden Kontrollen (GK; n=5-16) und MS-Patienten (n=11) wurden mit einer Kombination aus MOG, MBP und PLP stimuliert. (A) Exemplarische Dot Plots eines MS-Patienten zeigen die absolute Anzahl an aktiven CD4⁺ Zellen nach gleichzeitiger Anreicherung von CD154⁺ Tcons und CD137⁺ Tregs aus 5x10⁷ PBMCs. CD137⁺ T-Zellen wurden weiterhin auf die Expression von (B) FoxP3 und (C) der Chemokinrezeptoren CXCR3, CCR6 und CCR4 hin untersucht (exemplarische Dot Plots). (D) Die Frequenz, (E) der Phänotyp und (F) Subpopulationen von CD137⁺ Tregs, definiert durch die differentielle Chemokinrezeptor-Expression (siehe Abb. 23), wurden zwischen GK und MS-Patienten verglichen.
Des Weiteren wurde der Phänotyp und die Expression der Chemokinrezeptoren CXCR3, CCR6 und CCR4 von Myelin-reaktiven Tregs bestimmt. Im Mittel konnten 63% der CD137⁺ T-Zellen von MS-Patienten (Spannweite 17% - 86%) und 77% der CD137⁺ T-Zellen von Gesunden (Spannweite 41% - 95%) anhand der Expression von CD45RO als Memory-Zellen definiert werden (Abb. 25E). Dabei war der Anteil an Memory Tregs bei Patienten tendenziell vermindert ($p = 0,07$). Die Expression der Chemokinrezeptoren unterschied sich zwischen beiden Gruppen nicht, allerdings ließ die geringe Spenderzahl keine aussagekräftigen Vergleiche zu (Abb. 25F). Die häufigste Subpopulation waren CCR6⁺/CCR4⁺ Tregs (Th17-ähnlich), welche bis zu 69% der Myelin-spezifischen Tregs in Gesunden (Mittelwert 48%) und bis zu 82% in MS-Patienten (Mittelwert 37%) ausmachte.

Diese ersten Daten veranschaulichen das Potential der Anreicherung von CD137⁺ Zellen zur direkten Detektion und funktionellen Charakterisierung seltener Autoantigen-spezifischer Tregs im Rahmen verschiedener Autoimmunerkrankungen. Vorläufige Versuche mit PBMCs von Myasthenie-Patienten konnten ebenfalls vielversprechende Ergebnisse liefern.
6 Diskussion

6.1 Die Anreicherung von CD154⁺ T-Zellen ermöglicht eine spezifische und detaillierte *ex vivo* Charakterisierung von autoreaktiven CD4⁺ T-Zellen

Aufgrund ihrer Schlüsselrolle im Tiermodell der Multiplen Sklerose (MS) wird vermutet, dass T-Zellen mit Spezifität für Myelin-Antigene auch in der Pathogenese von MS eine entscheidende Rolle spielen. Bisherige Analysen führten jedoch, auch aufgrund der Verwendung unterschiedlicher Antigene (Einzelpolypeptide/Proteine/Peptid Pools), vielfach zu inkonsistenten Ergebnissen bezüglich ihrer (Vorläufer-)Frequenzen, ihres Phänotyps und ihrer funktionellen Kapazität. So wurden gleiche oder leicht erhöhte Frequenzen sowie die mögliche Relevanz unterschiedlicher (inflammatorischer) Subpopulationen im Vergleich zu gesunden Kontrollen beschrieben. Spezifische Immuntherapien, welche selektiv gegen Myelin-reactive CD4⁺ T-Zellen gerichtet waren, zeigten in klinischen Studien allerdings nur begrenzte Wirksamkeit (zusammengefasst in [127]).

Die im Folgenden detailliert besprochenen Ergebnisse dieser Arbeit können somit maßgeblich zum Verständnis der physiologischen Eigenschaften von autoreaktiven T-Zellen in gesunden Personen beitragen. Zudem konnte die Frequenz, der Differenzierungsstatus und die Funktion von Myelin-reaktiven T-Zellen aus MS-Patienten und passenden Kontrollpersonen erstmalig direkt ex vivo bestimmt werden, um die Hypothese bezüglich ihrer potentiellen Schlüsselrolle bei MS zu überprüfen. Dies ist insbesondere im Hinblick auf die (Weiter-)Entwicklung zielgerichteter Immuntherapien von zentraler Bedeutung.
6.2 Autoreaktive naive und Memory T-Zellen können in Gesunden detektiert werden

Diskussion

herausstellten [188]. Eine weitere Ursache könnte die Verwendung von Gesamtproteinen (Peptid Pools) für die Detektion CD154⁺ T-Zellen sein, wodurch das gesamte reaktive Repertoire, und nicht nur wenige selektierte Spezifitäten, erfasst werden konnte.

6.3 Keine Hinweise auf Autoantigen-induzierte Expansion von Memory T-Zellen

6.4 Autoreaktive T-Zellen kreuzreagieren mit mikrobiellen Antigenen

Diskussion

Narkolepsiefällen. Diese Erkrankung ist stark HLA-assoziiert und basiert auf einem Mangel des Neuropeptids Hypocretin, welches den Schlafrhythmus reguliert. De la Hérran-Arita et al. konnten daraufhin kreuzreaktive CD4⁺ T-Zellen identifizieren, welche gleichzeitig Hypocretin und ein homologes Virus-Epitop erkannten und zur Initiierung der Erkrankung führen könnten [198]. Ebenso lässt die starke Assoziation von MS mit einer symptomatischen EBV-Infektion und die nahezu 100%ige Serositivität für EBV-spezifische Antikörper in MS-Patienten auf einen infektiösen Hintergrund schließen [97].

Im Hinblick auf die intestinale Mikrobiota (Darmflora) geben einige Studien Hinweise darauf, dass diese eine essentielle Rolle für die Entwicklung und den Verlauf von Autoimmunerkrankungen spielt. Im Mausmodell ist eine normale Darmflora Voraussetzung für die Entstehung der spontanen EAE, denn keimfrei aufgezogene TCR-transgene Mäuse entwickeln keine Erkrankung [128]. Des Weiteren wurde gezeigt, dass der Beginn der Erkrankung mit einer erhöhten Darmpermeabilität, verbunden mit morphologischen Veränderungen und Inflammation, assoziiert ist [202]. Im humanen System wurde erst kürzlich eine veränderte Zusammensetzung der Darmflora in MS- und T1D-Patienten beschrieben [203, 204]. Interessanterweise konnten die Ergebnisse der vorliegenden Arbeit Kreuzreaktivität zwischen einer GAD65-reaktiven TZL und dem fakultativ pathogenen Darmbakterium *E. coli* aufzeigen. *E. coli* exprimiert ein ähnliches Enzym (GadA/B), welches eine gewisse Sequenzhomologie aufweist [205]. In diesem Kontext ist es wichtig herauszustellen, dass das Darm-Mikrobiom auch eine wichtige Rolle im Zuge der Toleranzinduktion und Homöostase von CD4⁺ T-Zellen spielt und Veränderungen der Zusammensetzung sowohl zu positiven als auch negativen Auswirkungen führen können [206]. Neben Antigen-spezifischen Mechanismen sind hierbei aber vor allem mikrobielle Metabolite, welche Frequenzen und Funktion von autoreaktiven T-Zellen beeinflussen können, relevant [207].
6.5 Gleiche Prävalenz von Myelin-reaktiven T-Zellen in Gesunden und MS-Patienten

6.6 **Myelin-spezifische T-Zellen von MS-Patienten und Gesunden zeigen nur geringe funktionelle Unterschiede**

INF-γ- bzw. IL-17-produzierende Th1-Zellen und Th17-Zellen spielen in der Pathogenese von EAE eine wichtige Rolle. Für die Induktion der ZNS-Entzündung sind im Mausmodell jedoch GM-CSF-produzierende T-Helferzellen essentiell [21, 22]. Auch bei MS sind inflammatorische T-Zell-Infiltrate im ZNS charakteristisch für die Erkrankung [215]. In der

6.7 Myelin-reaktive T-Zellen zeigen eine geringe Antigensensitivität

und ermittelten eine höhere funktionelle Avidität im naiven Repertoire im Vergleich zum Memory-Repertoire [231]. Dies deckt sich mit den in dieser Arbeit gemachten Beobachtungen. Im Kontrast dazu fanden Bielekova et al. nach Primärstimulation mit sehr niedriger Antigenkonzentration (1 µM) TZL mit höherer funktioneller Avidität in MS-Patienten [140]. Sie hatten erkannt, dass die Stimulation mit zu hohen Antigenmengen in vitro zu einer Expansion von T-Zellen mit vorrangig niedriger Avidität führt. Obwohl in der vorliegenden Arbeit eine noch geringere Antigenmenge eingesetzt wurde (0,6 µM), konnten mit Bezug zum Kontrollantigen keine hoch-aviden TZK im Vergleich zu TZK aus gesunden Individuen detektiert werden. Diese Unterschiede könnten methodisch bedingt sein, da die hier durchgeführte Analyse von TZK im Vergleich zur Analyse von polyklonalen TZL eine deutlich sensitivere Bestimmung auf monoklonaler Ebene zulässt.

Es kann nicht komplett ausgeschlossen werden, dass die Frequenz von Myelin-reaktiven T-Zellen mit hoher Antigensensitivität im peripheren Blut der Probanden so gering war, dass die Menge der generierten Klone zur Detektion nicht ausreichte oder dass sie zum Ort der Entzündung, d.h. ins Gehirn, migriert sein könnten. Für MBP-reaktive T-Zellen wurde im EAE-Modell jedoch demonstriert, dass sich die funktionelle Avidität dieser Zellen im Blut und im Gehirn während der akuten und chronischen Krankheitsphase nicht unterscheidet und dass hochaffine T-Zellen nicht selektiv im Gehirn angereichert werden [232].

6.8 Myelin-reaktive regulatorische T-Zellen lassen sich mit Hilfe des Aktivierungsmarkers CD137 detektieren und charakterisieren

Ein wichtiges Ziel in der Entwicklung von Immuntherapien ist die Erzeugung einer spezifischen Immuntoleranz durch selektive Inhibition pathogener T-Zellen ohne physiologische Reaktionen zu beeinflussen [43]. Dies könnte u.a. durch den Einsatz von Antigen-spezifischen Tregs erreicht werden, welche in der Lage sind, dauerhafte Toleranz zu induzieren [233]. Insbesondere im Hinblick auf Autoimmunerkrankungen wie Myasthenie oder Neuromyelitis Optica, bei welchen die krankheitsassoziierten Antigene eindeutig

Die tendenziell verminderte Expression von CD45RO und der damit erhöhte Anteil an naiven Myelin-reaktiven Tregs in MS-Patienten steht im Kontrast zu mehreren Studien, welche in der Treg-Gesamtpopulation einen erhöhten Anteil an CD45RO sowie weniger CD31+ und kürzlich aus dem Thymus emigrierte Zellen (recent thymic emigrants) beschrieben haben [180, 181]. Naive Tregs exprimieren weniger FoxP3 und zeigen eine geringere Suppression in in vitro Versuchen [179]. Weitere Untersuchungen könnten hier ansetzen und die FoxP3-Expression sowie die spezifische suppressive Kapazität von Myelin-reaktiven Tregs in einer größeren Studienkohorte überprüfen.

So exprimieren *A. fumigatus*-spezifische Tregs vorrangig CCR4, CCR5, CCR6 und CXCR6, welche den Eintritt in die Lunge ermöglichen. *A. fumigatus*-reaktive Tcons zeigen hingegen deutliche Unterschiede in der Chemokinrezeptorexpression [183].

Da in den Versuchen mit Peptid-Pools stimuliert wurde, sind einzelne Spezifitäten und die klonale Zusammensetzung der Treg- und Tcon-Populationen unbekannt und könnten in weiteren Versuchen z.B. mittels TCR-Sequenzierung untersucht werden. Im Modell der MOG-induzierten EAE konnte nur eine geringfügige Überlappung des TCR Repertoires von (polyklonalen) Tregs und Tcons beobachtet werden [241]. In MS-Patienten wurde demgegenüber ein vermindertes Tregs TCR Repertoire beschrieben [181], was zu einer Suppressions-„Lücke“ und der Entstehung der Erkrankung führen könnte.

In zukünftigen Versuchen sollte die Spezifität der autoreaktiven CD137⁺ Tregs, wie auch schon für die CD154⁺ Tcons beschrieben (siehe 5.1.3.2), überprüft werden. Daneben eignet sich die hier angewendete Methode für durchflusszytometrische Zytokin- und Aviditätsbestimmungen, welche hilfreiche Rückschlüsse auf die Funktion autoreaktiver Tregs geben könnten. Im Tiermodell wurde demonstriert, dass FoxP3⁺ Tregs durchaus funktionelle Plastizität zeigen und unter bestimmten Umständen und abhängig von der Mikroumgebung inflammatorische Zytokine wie IL-17 und IFN-γ produzieren können [242-244]. Ein höherer Anteil an CXCR3⁺ IFN-γ-produzierenden Tregs mit vermindert suppressiver Kapazität wurde in unbehandelten RRMS-Patienten beschrieben [244]. Darüber hinaus scheint die funktionelle Avidität von spezifischen Tregs eine große Bedeutung für ihren protektiven Effekt zu haben, wie im MOG-induzierten EAE-Modell herausgestellt wurde [245].
6.9 Generelle statt Myelin-spezifische Verschiebung des Differenzierungs- und Funktionsstatus von CD4⁺ T-Zellen

Die in dieser Arbeit beschriebenen phänotypischen Analysen haben gezeigt, dass MS-Patienten im Vergleich zu gesunden Kontrollen gleichen Alters und Geschlechts einen erhöhten Anteil an totalen CD4⁺ Memory T-Zellen aufwiesen. Dieser Differenzierungsstatus bestimmt zusammen mit der Telomer-Länge und der Thymus-Aktivität, welche durch die Quantifizierung von T-cell receptor excision circles (TRECs) ermittelt werden kann, das immunologische Alter [246]. Bei RRMS-Patienten scheint ein verfrühter Zellalterungsprozess stattzufinden, wie verschiedene Arbeitsgruppen ebenfalls belegen konnten: Bereits in jungen Betroffenen konnte eine Memory-T-Zell-Frequenz beobachtet werden, welche nicht dem chronologischen Alter entsprach [247]. Auch die Anzahl an TRECs ist in MS Betroffenen vermindert, was auf eine vorzeitige Thymusinvolution und eine veränderte T-Zell-Homöostase hindeutet [248, 249]. Als Ursachen für diese beschleunigte immunologische Alterung werden chronische Antigenstimulation durch bestimmte Viren oder eine durch Lymphopenie verursachte übermäßige kompensatorische homöostatische Proliferation diskutiert [250]. Da das Risiko für die Entwicklung einer Autoimmunerkrankung, wie z.B. Rheumatoide Arthritis, normalerweise mit zunehmendem Alter ansteigt [250], könnten diese Veränderungen ein Grund dafür sein, dass sich MS oft schon im Alter von 20-40 Jahren manifestiert.

Ein erhöhter Anteil an Memory-Zellen zeigte sich in MS-Patienten außerdem im Myelinreaktiven Repertoire, wobei dieser, genau wie bei Gesunden, mit dem Gesamt-Differenzierungsstatus assoziiert war und daher auf keine Myelin-induzierte klonale Expansion hinwies. Dieser Zusammenhang könnte auch die Ursache dafür sein, dass manche Arbeitsgruppen Myelin-reaktive T-Zellen vorrangig im Memory-Repertoire von MS-Patienten vorhanden [251], während andere wiederum eine Dominanz des naiven Repertoires beschrieben haben [231].

Erkrankung systemisch expandiert sind, wobei eine Behandlung mit Natalizumab diesen Effekt verstärkte [218].

6.10 Limitationen, Schlussfolgerung und Ausblick

Es ist nicht auszuschließen, dass pathogene T-Zellen andere als die untersuchten klassischen Myelin-Antigene als Zielstruktur erkennen. Tatsächlich wurden neben weiteren Myelin-bestandteilen wie dem Myelin-assoziierten Glykoprotein (MAG) oder der 2',3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) zusätzliche potenziell relevante Antigene wie das Chlorid-Kanal-Protein Anoctamin 2 (ANO2), S-Arrestin oder Alpha-Crystallin beschrieben [260, 261]. Zudem können proteomische Ansätze auf Basis von Hochdurchsatz-Screenings für Antigenspezifitäten, welche gleichzeitig die physiologische Konformation und die posttranslationale Modifikation von Antigenen berücksichtigen, die Chance erhöhen, neue Zielantigene zu identifizieren [54].

Diskussion

eine *ex vivo* Analyse unabdingbar, welche jedoch durch die geringe Frequenz der Zellen erschwert wird. Die Bestimmung der funktionellen Avidität von Memory TZK spezifisch für weitere Selbst- und Neoantigene könnte zudem Hinweise darauf geben, ob die Aviditätsreifung von ursprünglich Fremdantigen-aktivierten T-Zellen generell durch Selbst-Antigen-Expression und -Erkennung limitiert ist, wie im transgenen Mausmodell für CD8⁺ T-Zellen beschrieben wurde [262].

Obwohl die Analyse von Myelin-reaktiven CD137⁺ Tregs nur in einer kleinen Probandengruppe realisiert werden konnte, eröffnet diese Methode neue Möglichkeiten für die Erforschung von Toleranzmechanismen auf Antigen-spezifischer Ebene. Die direkte Untersuchung von autoreaktiven Tregs und ihr Vergleich mit Tcons kann, v.a. in Verbindung mit Aviditätsbestimmungen und weiteren Technologien wie der TCR-Sequenzierung, grundlegend zum Verständnis ihrer Funktion und Regulationsmechanismen beitragen und neue Ansätze für immunmodulierende Therapieoptionen schaffen.
7 Literaturverzeichnis

144. J. D. Altman, M. M. Davis. 2016. MHC-Peptide Tetramers to Visualize Antigen-Specific T Cells. Current protocols in immunology / edited by John E. Coligan ... [et al.], 115: 17 3 1-17 3 44.

8 Anhänge

I. Abbildungsverzeichnis

Abb. 1: Schematische Darstellung der Interaktion einer APC und einer CD4⁺ T-Zelle........3
Abb. 2: Das Affinitätsmodell der T-Zell-Selektion im Thymus...10
Abb. 3: Schematischer Versuchsablauf zur direkten ex vivo Charakterisierung von autoreaktiven T-Zellen...35
Abb. 4: Gating-Strategie für die ex vivo Analyse von autoreaktiven CD154⁺ T-Zellen.........41
Abb. 5: Gating-Strategie für die Analyse der Originalfraktion...42
Abb. 6: Boolesche Gating-Strategie für die Analyse der Zytokinproduktion durch CD154⁺ T-Zellen...43
Abb. 7: Schematischer Versuchsablauf zur in vitro Generierung von autoreaktiven T-Zell-Klonen und -Linien...44
Abb. 8: Analysestrategie für die FACS-Sortierung von autoreaktiven T-Zellen...............46
Abb. 9: Anreicherung von CD154⁺ Autoantigen-spezifischen T-Zellen............................54
Abb. 10: Frequenzen von Autoantigen-spezifischen T-Zellen in gesunden Individuen......56
Abb. 11: Spezifität von Autoantigen-reaktiven T-Zell Klonen..59
Abb. 12: TCR-Repertoire von Myelin- und EBNA-1-spezifischen T-Zellen nach in vitro Expansion...62
Abb. 13: Funktionelle und phänotypische Charakterisierung von Autoantigen-spezifischen T-Zellen aus gesunden Individuen..66
Abb. 14: Korrelation der Expression von CD45RO in autoreaktiven CD154⁺ und totalen CD4⁺ T-Zellen...68
Abb. 15: Funktionelle Avidität von Autoantigen-spezifischen naiven und Memory TZL...70
Abb. 16: Kreuzreaktivität von Autoantigen-spezifischen TZL mit bakteriellen, viralen und Pilz-Antigenen..72
Abb. 17: Frequenzen von Myelin-reaktiven CD4⁺ T-Zellen in MS-Patienten und Gesunden ... 76

Abb. 18: Expression von CD45RO in Myelin-reaktiven und totalen CD4⁺ T-Zellen von MS-Patienten ... 78

Abb. 19: Zusammenhang von Frequenz und Phänotyp Myelin-reaktiver T-Zellen mit klinischen Parametern .. 79

Abb. 20: Expression von inflammatorischen Zytokinen durch Myelin-reaktive T-Zellen in MS-Patienten .. 81

Abb. 21: Untersuchung der Zytokinproduktion von Myelin-spezifischen T-Zellen mittels Boolescher Methode .. 82

Abb. 22: Gesamtexpression von Chemokinrezeptoren auf Myelin-spezifischen und totalen CD4⁺ Memory T-Zellen .. 85

Abb. 23: Charakterisierung von Myelin-reaktiven CD4⁺ T-Zell-Subpopulationen anhand der Chemokinrezeptor-Expression 86

Abb. 24: Funktionelle Avidität von Myelin-reaktiven T-Zell-Klonen in MS-Patienten ... 88

Abb. 25: Ex vivo Charakterisierung von Myelin-reaktiven Tregs ... 91
II. Tabellenverzeichnis

Tab. 1: Charakteristika von CD4⁺ T-Zell-Subpopulationen .. 5
Tab. 2: Methoden zur Detektion von autoreaktiven CD4⁺ T-Zellen .. 22
Tab. 3: Charakteristika der MS-Patienten ... 26
Tab. 4: Geräte .. 27
Tab. 5: Verbrauchsmaterial ... 28
Tab. 6: Chemikalien, Medien und Zusätze ... 29
Tab. 7: Zusammensetzung Puffer .. 30
Tab. 8: Zusammensetzung Medien ... 30
Tab. 9: Kits .. 31
Tab. 10: Antikörper ... 31
Tab. 11: Antigene ... 33
Tab. 12: Software ... 34
Tab. 13: Antikörper-Panels für die \textit{ex vivo} Analyse von CD154⁺ und CD137⁺ T-Zellen ... 40
Tab. 14: Antikörper-Panels für die \textit{in vitro} Expansion ... 45
Tab. 15: Proben-Charakteristika zur TCR-Hochdurchsatz-Sequenzierung 61
Tab. 16: Kreuzreaktivität von Autoantigen-spezifischen TZL mit bakteriellen, viralen und Pilz-Antigenen ... 73
Tab. 17: Boolesche Analyse der Zytokinexpression von Myelin-reaktiven CD4⁺ T-Zellen... 83
III. Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>negativ</td>
</tr>
<tr>
<td>+</td>
<td>positiv</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>APC</td>
<td>Allophycocyanin</td>
</tr>
<tr>
<td>APC</td>
<td>Antigenpräsentierende Zelle</td>
</tr>
<tr>
<td>APL</td>
<td>Altered Peptide Ligand</td>
</tr>
<tr>
<td>CCL</td>
<td>CC-Motiv-Ligand</td>
</tr>
<tr>
<td>CCR</td>
<td>CC-Motiv-Chemokinrezepor</td>
</tr>
<tr>
<td>CD</td>
<td>Cluster of Differentiation</td>
</tr>
<tr>
<td>cTEC</td>
<td>kortikale Thymus-Epithelzelle</td>
</tr>
<tr>
<td>CXCR</td>
<td>CXC-Motiv-Chemokinrezepor</td>
</tr>
<tr>
<td>Cy5.5</td>
<td>Cyanin 5.5</td>
</tr>
<tr>
<td>DRFZ</td>
<td>Deutsches Rheumaforschungszentrum</td>
</tr>
<tr>
<td>EAE</td>
<td>Experimentelle autoimmune Enzephalomyelitis</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluoreszenz-aktivierte Zellsortierung</td>
</tr>
<tr>
<td>Fc</td>
<td>Fragment crystallisable</td>
</tr>
<tr>
<td>FcR</td>
<td>Fc-Rezeptor</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluoresceinisothiocyanat</td>
</tr>
<tr>
<td>FSC</td>
<td>Vorwärtsstreulicht</td>
</tr>
<tr>
<td>GATA3</td>
<td>GATA Binding Protein 3</td>
</tr>
<tr>
<td>gDNA</td>
<td>genomische Desoxiribonukleinsäure</td>
</tr>
<tr>
<td>GK</td>
<td>Gesunde Kontrolle</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>gy</td>
<td>Gray</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HLA</td>
<td>Humanes Leukozytenantigen</td>
</tr>
<tr>
<td>i.e.S.</td>
<td>im eigentlichen Sinne</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>J</td>
<td>Jahr</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>LD</td>
<td>Lebend-Tot-Farbstoff</td>
</tr>
<tr>
<td>M</td>
<td>Monat</td>
</tr>
<tr>
<td>MACS</td>
<td>Magnetische Zellsortierung</td>
</tr>
<tr>
<td>Med</td>
<td>Median</td>
</tr>
<tr>
<td>MHC</td>
<td>Major Histocompatibility Complex</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>MS</td>
<td>Multiple Sklerose</td>
</tr>
<tr>
<td>mTEC</td>
<td>medulläre Thymus-Epithelzelle</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral Blood Mononuclear Cells</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PerCP</td>
<td>Peridinin-Chlorophyll-Protein-Komplex</td>
</tr>
<tr>
<td>pMHC</td>
<td>Peptid-MHC</td>
</tr>
<tr>
<td>RORγ-t</td>
<td>Retinoic Acid Receptor Related Orphan Receptor γ</td>
</tr>
<tr>
<td>RRMS</td>
<td>schübförmig-remittierende MS</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Ausdruck</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>SSC</td>
<td>Seitwärtssstreulicht</td>
</tr>
<tr>
<td>T1D</td>
<td>Diabetes mellitus Typ I</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>Tbet</td>
<td>T-box expressed in T cells</td>
</tr>
<tr>
<td>Tcon</td>
<td>konventionelle T-Zelle</td>
</tr>
<tr>
<td>TCR</td>
<td>T-Zell-Rezeptor</td>
</tr>
<tr>
<td>TF</td>
<td>Transkriptionsfaktor</td>
</tr>
<tr>
<td>Th1/2/17-Zellen</td>
<td>T-Helfer-Zellen Typ 1/2/17</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumornekrosefaktor</td>
</tr>
<tr>
<td>Treg</td>
<td>regulatorische T-Zelle</td>
</tr>
<tr>
<td>TZKM</td>
<td>Memory T-Zell-Klon</td>
</tr>
<tr>
<td>TZKN</td>
<td>naiver T-Zell-Klon</td>
</tr>
<tr>
<td>TZLM</td>
<td>Memory T-Zell-Linie</td>
</tr>
<tr>
<td>TZLN</td>
<td>naive T-Zell-Linie</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
<tr>
<td>ZNS</td>
<td>zentrales Nervensystem</td>
</tr>
<tr>
<td>α</td>
<td>Anti-</td>
</tr>
</tbody>
</table>
IV. Danksagung

Ich möchte an dieser Stelle allen Personen danken, die zum Gelingen dieser Arbeit beigetragen haben und die mich in der Zeit ihrer Erstellung begleitet haben.

An erster Stelle bedanke ich mich bei Roland Lauster für seine Bereitschaft, diese Arbeit zu betreuen und für seine freundliche Unterstützung im Rahmen des Promotionsverfahrens.

Alex Scheffold gilt mein herzlicher Dank für die Überlassung des hochinteressanten Promotionsthemas, seine kontinuierlichen Anregungen und hilfreichen Diskussionen. Auch für die mühevolle Arbeit des Korrekturlesens möchte ich mich bedanken.

Meinen Kollegen der Rheumaforschungslabore der Charité und des DRFZ danke ich vielmals für die freundliche Atmosphäre und große Hilfsbereitschaft. Dies gilt im Besonderen für Timo Gaber und Jeannine Günther.

Ich danke Stefan Gold und meinen Kollegen Aline Tänzer, Helge Hasselmann und Sabrina Golde für die zahlreichen konstruktiven Ratschläge und den motivierendem Zuspruch während der intensiven Schreibphase meiner Promotion.

Mein herzlichster Dank gilt auch meinen fleißigen Korrekturlesern Helge, Aline und Timo. Carolin Oelsner danke ich vielmals für ihre professionelle Hilfe bei der Illustrierung.

V. Eidesstattliche Erklärung

Berlin, im Mai 2017 ___________________________
VI. Lebenslauf

Persönliche Angaben

NUR IN PRINTVERSION VERFÜGBAR

Schulische und universitäre Laufbahn

NUR IN PRINTVERSION VERFÜGBAR

Praktische Erfahrungen während des Studiums

NUR IN PRINTVERSION VERFÜGBAR

Berufliche Erfahrungen

NUR IN PRINTVERSION VERFÜGBAR
Preise/Auszeichnungen

NUR IN PRINTVERSION VERFÜGBAR

Weitere Tätigkeiten

NUR IN PRINTVERSION VERFÜGBAR

Berlin, im Mai 2017

VII. Publikationsliste
