Synthesis of a cyclopentadienyl(imino)stannylene and its direct conversion into halo(imino) stannlenes†

Tatsumi Ochiaia and Shigeyoshi Inoue*b

The reaction of stannocene Cp2Sn with iminolithium LiNPr (NIPr = bis(2,6-diisopropylphenyl)imidazolin-2-iminato) afforded the dimeric cyclopentadienyl(imino)stannylene ([η5-Cp]SnNIPr)2 (1). Compound 1 exhibits unexpected reactivity towards haloalkanes. The high-yield conversion of 1 into chlorostannylene [ClSnNIPr]2 (2) and bromostannylene [BrSnNIPr]2 (3) were accomplished by treatment with dichloromethane or 1,2-dibromoethane, respectively, through a Cp-substitution reaction.

Low-valent and low-coordinate group 14 compounds have been of great interest in main group chemistry and much attention has been paid to this compound class over the last several decades. Since the first monomeric dianimostannylene [Sn(N(SiMe3)2)] I was published in 1974 (Fig. 1),1 numerous compounds with a divalent tin center have been reported.2 At the same time, the chemistry of stannocenes that are tin(II) analogues of metallocenes, has been intensively studied by the group of Jutzi, and others.2 It is noteworthy that Cp2Sn converted into cyclopentadienylchlorostannylene [CpSnCl] by disproportionation of stannocene with SnCl4.3 Chlorostannylene can be used as a starting material for a novel low-valent organotin compounds. Although transition metal complexes with cyclopentadienyl ligand(s) are the most studied organometallic compound class, the field of low-valent half sandwich Sn(II) species has not been fully developed so far.5 For example, Wright and co-workers reported the synthesis and isolation of the Cp-substituted stannylene dimer ([η5-Cp]SnNC(NMe)2)3) II (Cp = C5H5) by the direct substitution of Cp2Sn with LiNC(NMe)2 (Fig. 1).5h Furthermore, Power and co-workers reported the Cp-substituted arylstannylene III by C–H activation of cycloalkene with distannylene (Fig. 1).5h Due to the π-electron donating nature of Cp ligand, Cp-substituted stannlenes possess an electron rich tin(II) center that may show unique reactivity towards organic molecules. Yet, remarkably little is known about the reactivity of Cp-substituted tin derivatives. The Cp ligand in II could be replaced with lithiated 1,3-dithianes as nucleophiles.6 Development of a novel method for the facile access to halogenated stannlenes from a Cp-substituted stannylene would be of great importance because they could be suitable precursors for novel functionalized tin(II) compounds through nucleophilic substitutions.

It has been shown that imidazolin-2-imino ligands, namely N-heterocyclic imines (NHIs), can be employed as ligands for a variety of transition-metal complexes.7 Also, by the use of this ligand system, a number of fascinating main group element complexes8 (boron,9 aluminium,10 silicon,11 germanium,12 tin,13 and phosphorus14) have been reported. For instance, our group recently developed a straightforward method for synthesizing Ge(II) complexes and Sn(II) cations IV (Fig. 1). Furthermore, this ligand can also be implemented for the isolation of new triflate-coordinate bis(germylliumyldiene) V (Fig. 1).12c Ascribed to a combination of a strong electron-donating effect and

Fig. 1 Selected tin(II) compounds I–III (top) and metallyliumyldienes IV and V (bottom).

"RSC Advances"

Cite this: RSC Adv., 2017, 7, 801

Received 2nd December 2016
Accepted 8th December 2016
DOI: 10.1039/c6ra27697k
www.rsc.org/advances
a delocalization of a positive charge. Herein we describe the synthesis and structure of the Cp-substituted iminostannylene 1 as well as its unusual reactivity toward haloalkanes.

The reaction of Cp₂Sn with one equivalent of LiNIPr (NIPr = bis(2,6-diisopropylphenyl)imidazolin-2-iminato) in THF affords the dimeric cyclopentadienyl(imino)stannylene [[η⁵-Cp]SnNIPr]₂ (Scheme 1). The formation of 1 was confirmed by multinuclear NMR spectroscopy, high resolution mass spectrometry and single-crystal X-ray diffraction data (Fig. 2).

The molecular structure of 1 consists of a nearly centrosymmetric dimer arrangement with a nearly planar Sn₂N₂ core (the sum of internal tetragonal angles = 358.2°) protected by two bulky IPr groups. The imino groups bridge the two Sn centers almost symmetrically in the Sn₂N₂ ring (Sn(1)–N(1) 2.227(7) Å, Sn(1)–N(4) 2.220(7) Å, Sn(2)–N(1) 2.193(7) Å, Sn(2)–N(1) 2.222(7) Å), which defines the presence of strong N → Sn interaction. These values are slightly elongated in comparison to the corresponding values of azido- (av. 2.186(3) Å), and chlorostannylene (av. 2.198(5) Å) analogues,¹⁻⁶ probably owing to the more sterically crowded environment on the Sn atoms in 1. Unlike other imino-substituted tin(n) dimers ([XSnNIPr]₂), X = N₃, Cl),¹⁻⁷ the terminal η⁵-Cp ligands have a cis orientation with respect to the Sn₂N₂ ring for 1. The C–N distances in the imidazoline fragment (1.287(12), 1.297(12) Å) are typical for a carbon–nitrogen double bond.¹⁵⁻¹⁶

The asymmetric coordination mode of Cp ligands found in the solid structure of 1 is not reflected by the solution-state ^1H NMR measurements, where a single resonance for the Cp ring is observed at 5.66 ppm. This data clearly shows that 1 exhibits fluxional behaviour of a Cp ligand in a solution. In sharp contrast to II, compound 1 does not exist in equilibrium between the cis and trans Cp isomers in the solution. The ^119Sn NMR spectrum displays a singlet at −232 ppm. This resonance is low field shifted compared to that of stannocene (δ = −2199 ppm),¹⁷ but is high field shifted than that of the stannylene III (δ = 94 ppm)¹⁷ probably due to the dimeric form of 1.

To take a closer look at the overall electronic nature of 1, DFT calculations for 1 were carried out using the B3LYP theory level with the def2-SVP basis set. The optimized structure closely reproduced the experimentally observed structure of 1. The frontier molecular orbitals of 1 show that the HOMO corresponds to the Sn lone-pair electrons, while the LUMO is the τ*-orbital of the Dip groups in the imidazoline ligands (Fig. S13). The reactivity of bis(amino)stannylene [Sn(N(SiMe₃)₂)]₂ towards halogenated substrates has been thoroughly investigated by Lappert and co-workers.¹⁷ The oxidative addition of 1 with haloalkanes was found to proceed via an electron transfer reaction between the stannylene and the substrate, followed by abstraction of the halide to leave the tin and alkyl radicals, which act as the propagating species in a radical chain reaction.¹⁷ In sharp contrast, the study of half-sandwich stannyles has been limited so far. This motivated us to explore the reactivity of 1 bearing both Cp as well as imino ligand.

The stannylene 1 readily reacts with CH₂Cl₂ or BrCH₂CH₂Br, producing the halogenated compounds [ClSnNIPr]₂ and [BrSnNIPr]₂, respectively (Scheme 2). This reaction is thought to be the substitution of Cp ligand by halide of the substrate. While the aren elimination at the tin(n) center of stannylene instigated by hydrogen or ammonia was investigated both experimentally and theoretically,¹⁸ the observed reaction is a rare example of a direct transformation of metalloynes to halometallylenes using haloalkanes.¹⁹ This is in sharp contrast to that of [Sn(N(SiMe₃)₂)]₁, which undergoes oxidative addition.¹⁷ The identity of the chlorostannylene dimer 2 was
confirmed by comparison of the NMR spectra to literature data.14 The bromostannylene 3 has been characterized by high-resolution mass spectrum, NMR spectroscopy and X-ray structure analysis. The 119Sn NMR spectrum of 3 exhibits a singlet resonance at -88 ppm, which is low-field shifted by the chloride analogue 2 (-125 ppm) owing to the lower electronegativity of Br than Cl. The X-ray single-crystal structure of 3 revealed a four-membered Sn$_2$N$_2$ ring with two additional terminal bromine atoms. The bromine and tin atoms in 3 are disordered and only one component is shown in Fig. 3. The internal ring angle at the tin is 77.53(12)$^\circ$, and that at nitrogen average 102.47(11)$^\circ$. The average Sn–N bond length ($2.173(3)$ Å) is shorter than those in 1 ($2.216(7)$ Å) and 2 ($2.198(5)$ Å). Akin to 2, the halide moieties of 3 adopt a trans configuration with respect to the Sn$_2$N$_2$ ring after substitution of the Cp ligands. The Sn–Br bond in 3 is oriented nearly perpendicular to both Sn–N bonds, with Br1–Sn1–N1 and Br1–Sn1–N2 bond angles of 89.65(8)$^\circ$ and 86.93(7)$^\circ$, respectively, which are comparable to those in 2 (average 87.72(15)$^\circ$).

The relative energy calculations for the cis/trans isomers of [(η^1-Cp)SnNIPr]$_2$, 1 and [ClSnNIPr]$_2$, 2 were carried out. The cis isomer of 1 is thermodynamically more stable than the trans isomer by 1.2 kcal mol$^{-1}$ calculated at the B3LYP/def2-SVP level of theory. In contrast, the calculation shows that trans-[ClSnNIPr]$_2$ is more stable compared to cis-[ClSnNIPr]$_2$, in 2 by 6.2 kcal mol$^{-1}$. Although energy differences for these isomers were not large, this theoretical study is consistent with the experimental observations, demonstrating that the cis/trans conformation of the dimeric iminostannylennes deeply depends on the steric factors of the substituents.

Conclusions

In summary, we report the synthesis and characterization of a Cp-substituted iminostannylene 1. In addition, we have shown its reactivity toward haloalkanes, resulting in the C–E (E = Cl, Br) bond cleavage reaction as well as substitution reaction of the Cp group by the halides. This methathesis reaction afforded the dimeric organotin(ii) halides 2 and 3 in high yield. We are currently investigating other small molecules activation such as O$_2$, CO, and N$_2$O by using dimeric tin(ii) compounds 1–3 and preparing novel four-membered stannylenes by nucleophic addition or halide abstraction reaction of halogen-substituted stannylenes 2 and 3.

Acknowledgements

We are exceptionally grateful to the Alexander von Humboldt Foundation (Sofja Kovalevskaja Program) and the WACKER Chemie AG for financial support. This work was supported by the German Research Foundation (DFG) and the Technische Universität München within the Open Access Publishing Funding Programme. We thank Dr Elisabeth Irran for reviewing the X-ray diffraction data. Parts of this paper have been published in the PhD Thesis of Tatsumi Ochiai.20

Notes and references

5 (a) D. Stalke, M. A. Paver and D. S. Wright, Angew. Chem., Int. Ed. Engl., 1993, 32, 428; (b) M. A. Paver, C. A. Russell,

