
This version is available at https://doi.org/10.14279/depositonce-6925

Copyright applies. A non-exclusive, non-transferable and limited
right to use is granted. This document is intended solely for
personal, non-commercial use.

Terms of Use

©© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Eckhardt, J., Vogelsang, A., Femmer, H., Mager, P. (2016): Challenging Incompleteness of Performance
Requirements by Sentence Patterns. In: 2016 IEEE 24th International Requirements Engineering
Conference. IEEE. https://doi.org/10.1109/re.2016.24

Eckhardt, Jonas; Vogelsang, Andreas; Femmer, Henning; Mager, Philipp

Challenging incompleteness of
performance requirements by sentence
patterns

Accepted manuscript (Postprint)Conference paper |

Challenging Incompleteness of Performance

Requirements by Sentence Patterns

Jonas Eckhardt∗, Andreas Vogelsang†, Henning Femmer∗, Philipp Mager‡

∗ Technische Universität München, Germany

{eckharjo,femmer}@in.tum.de
† Technische Universität Berlin, DCAITI, Germany

andreas.vogelsang@tu-berlin.de
‡ phmager@gmail.com

Abstract—Performance requirements play an important role
in software development. They describe system behavior that
directly impacts the user experience. Specifying performance
requirements in a way that all necessary content is contained, i.e.,
the completeness of the individual requirements, is challenging,
yet project critical. Furthermore, it is still an open question,
what content is necessary to make a performance requirement
complete. To address this problem, we introduce a framework for
specifying performance requirements. This framework (i) consists
of a unified model derived from existing performance classifica-
tions, (ii) denotes completeness through a content model, and
(iii) is operationalized through sentence patterns. We evaluate
both the applicability of the framework as well as its ability
uncover incompleteness with performance requirements taken
from 11 industrial specifications. In our study, we were able
to specify 86% of the examined performance requirements by
means of our framework. Furthermore, we show that 68% of the
specified performance requirements are incomplete with respect
to our notion of completeness. We argue that our framework
provides an actionable definition of completeness for performance
requirements.

I. INTRODUCTION

One of the most important problems in requirements

engineering (RE) is incompleteness. In a survey with 58

requirements engineers from industry, Méndez and Wagner

revealed that incomplete requirements are not only named as

the most frequent problem in RE but also the most frequent

cause for project failure [1]. Incompleteness can be considered

on two levels: incomplete requirements specifications as a

whole or incomplete requirements, i.e., lack of details for

single requirements. In the following, we focus on the latter

problem. The problem of incompleteness concerns both func-

tional and non-functional requirements, such as performance

requirements1. But what makes a performance requirement

complete? Although classifications and definitions exist, it

still remains unclear which content a performance requirement

should contain.

To address this lack, we developed a framework for

performance requirements, consisting of a unified model

of performance requirements, a content model, a notion of

1In the remainder of this paper, with non-functional requirements (NFRs),
we refer to product-related NFRs, i.e., requirements that address quality
characteristics of the product or system and exclude process requirements.
These kinds of NFRs are also often called quality requirements (QRs) or
quality characteristics.

completeness, and an operationalization through sentence

patterns. First, to make the model widely applicable, we

based the unified model on broad classifications of non-

functional/quality requirements in literature [2]–[13], unifying

the different aspects of performance described in the individual

classifications. From this unified model, we derive a content

model including a notion of completeness for performance

requirements. To make our model applicable in practice, we

operationalize the content model through sentence patterns for

performance requirements.

To evaluate our framework, we applied it to 58 perfor-

mance requirements taken from 11 industrial specifications

and analyzed (i) the applicability and (ii) the ability to

uncover incompleteness. We were able to rephrase 86% of

the performance requirements. Moreover, we found that our

framework can be used to detect incompleteness in performance

requirements, revealing that 68% of the analyzed performance

requirements were incomplete.

In summary, we contribute: (i) a unified model of per-

formance requirements based on literature, (ii) a notion of

completeness for performance requirements, (iii) an opera-

tionalization for industry through sentence pattern, and (iv) an

evaluation of our framework with respect to its applicability

and ability to detect incompleteness in requirements.

The remainder of the paper is structured as follows: In

Sect. II, we present our research methodology. We introduce

our framework for performance requirements in Sect. III. Then,

we present the study design and results of our evaluation in

Sect. IV and discuss the implications in Sect. V. Finally, in

Sect. VI, we report on related work before we conclude our

work and discuss future research in Sect. VII.

II. RESEARCH METHODOLOGY

Fig. 1 shows an overview of our research approach: To create

a comprehensive model that covers different aspects of perfor-

mance requirements, we first analyze existing classifications of

non-functional or quality requirements (Step 1). In particular,

we collect all aspects that describe the capability of a product

to provide appropriate performance under stated conditions. We

explicitly focus on externally visible performance and exclude

internal performance (sometimes also called efficiency), which

describes the capability of a product to provide performance in

46

Case Study

Requirements
Specifications

Performance R1

Performance R2

Performance RN

...

Application of
the Framework

Framework for Performance Requirements

Literature Review Unified Model of
Performance
Requirements

Content Model for
Performance
Requirements

Sentence Pattern
for Performance
Requirements

Performance
Requirements

Applied Sentence
Pattern

1 2 3 4

8765

Fig. 1. Research Methodology.

relation to the use of internal resources. We unify the resulting

performance aspects in our unified model of performance

requirements (Step 2).

In Step 3 , we derive a content model of performance

requirements. In particular, this model contains content elements

and relations for each of the performance aspects in the unified

model. Furthermore, we add content elements that apply to

requirements in general (e.g., the scope of a requirement). For

each content element, we classify whether it is a mandatory or

optional content element. To achieve is, we follow the idea of

activity-based quality models [14] and consider development

activities that take performance requirements as input, such as

defining a performance test case. We identify necessary and im-

portant content elements that a performance requirement must

contain to complete these development activities efficiently and

effectively. We accordingly classify content elements, marking

crucial content elements as mandatory for completeness and

the contributing content elements as optional for completeness.

In Step 4 , we derive sentence patterns from the content

model to make the model applicable for practitioners. In

particular, for each of the content elements in the content

model, we derive a sentence fragment. Afterwards, we merge

these fragments into sentences.

To evaluate our framework, we perform a case study on

performance requirements taken from 11 industrial projects

from 5 companies (Steps 5 - 8). We analyze the applicability

of the framework by trying to rephrase the original requirements

based on the proposed sentence patterns. To assess the advan-

tages of our framework, we examine the resulting sentence

patterns and their relation to mandatory and optional content

elements. Through this analysis, we can evaluate the original

requirements with respect to our notion of completeness.

III. FRAMEWORK FOR SPECIFYING PERFORMANCE

REQUIREMENTS

In the following, we describe the created framework (step 2 -

4 in Fig. 1) and our notion of completeness of the framework

in detail.

A. Unified Model of Performance Requirements

Based on existing classifications of non-functional/quality re-

quirements [2]–[13], we analyzed different system performance

Performance

Time Behavior Throughput Capacity Cross-cutting

- Points in time
- Response time
- Reaction time
- Turnaround time
- Time intervals
- Latency
- Time constraints

- Rate of
 transactions
- Data volume per
 unit of time
- Reaction speed
- Processing
 speed
- Operating speed

- Maximum limits
- Concurrent
 users
- Communication
 bandwidth
- Size of database
 or storage

- Measurement
 location
- Measurement
 period
- Load
- Platform
- Scope of
 measurement
- Measurement
 assumption

Fig. 2. Unified Model of Performance Requirements with Performance Aspects.

aspects and built a unified model of performance requirements

(see Fig. 2). The unified model extends previous work [15] and

differentiates three types of performance requirements: Time

behavior requirements, Throughput requirements, and Capacity

requirements. Furthermore, it defines cross-cutting aspects,

which describe the context for performance requirements.

Time behavior: This type contains requirements that have a

fixed time constraint regarding points in time, response

time, processing time, reaction time, turnaround time,

time intervals like latency, and further time constraints. It

contains requirements such as “The 〈operation y〉 must

have an average response time of less than 〈x〉 seconds”.

Throughput: This type contains requirements that specify

relative constraints regarding rate of transactions, data

volumes per unit, reaction speed, processing speed, and

operating speed. It contains requirements such as “The sys-

tem must have a processing speed of 〈x〉 requests/second”.

Capacity: This type contains requirements that describe the

limits of the system w.r.t. the number of concurrent system

users, the communication bandwidth and the size of

database or storage. It contains requirements such as “The

system must support at least 〈x〉 concurrent users”.

Cross-cutting: In addition, literature lists performance aspects

that are applicable to all types of performance require-

ments. These aspects describe the context of a requirement

or their measurement. These aspects are:

• Measurement location, i.e., where should the measure-

ment take place? E.g., “The measurement shall take

place in Berlin, Germany”.

• Measurement period, i.e., at which time of day, month,

or year should the measurements be performed? E.g.,

“The measurement shall take place on weekdays between

9AM and 10AM”.

• Load, i.e., under which load should we measure the

performance aspect? E.g., “When under a maximal load

...”.

• Platform, i.e., on which platform should we measure?

E.g., “The measurement shall take place on an ARMv8

platform”.

• Scope of Measurement, i.e., what is included and what

is excluded in the measurement? E.g., “... included is

47

the browser render time and excluded is the network

time”.

• Measurement Assumption, i.e., are there further assump-

tions that constrain the measurement? E.g., “... We

assume that signal X is present”.

B. Content Model of Performance Requirements

In the next step, we created a content model of performance

requirements that captures the relevant content elements related

to the different performance aspects of the unified model of

performance requirements. The content model is shown in

Fig. 3.

The content model consists of three parts: Content elements

related to performance requirements in general (Part 1 in

Fig. 3), content elements related to the three individual types

of performance requirements (Part 2 in Fig. 3), and content

elements related to the cross-cutting aspects (Part 3 in Fig. 3).

In the following, we describe content elements of these three

parts in detail.

Content Elements Related to Performance Requirements:

A Requirement has a Modality, i.e., is it an Enhancement, an

Obligation, or an Exclusion. Next, a Performance Requirement

is a Requirement. A Performance Requirement possibly has a

Selection, i.e., is it valid for all cases or only for a subset of

all cases. A Performance Requirement has a Scope. The Scope

can be either the System, a Function, or a Component. Finally,

a Performance Requirement has a Quantifier. The Quantifier

describes whether the requirement specifies an Exact Value

(e.g., “the latency shall be 10ms”), a Mean or Median (e.g., “the

latency shall be on average 10ms”), or a Minimum or Maximum

value (e.g., “the latency shall be at maximum 10ms”).

Content Elements Related to Performance Requirements

Types: A Performance Requirement can be a Time Behav-

ior Requirement, a Throughput Requirement, or a Capacity

Requirement.

• Time Behavior Requirements: A Time Behavior Require-

ment describes a Time Property. A Time Property can be

Response Time, Processing Time, or Latency. Furthermore,

a Time Property may have Frame specifying a start and

an end Event (e.g., “the processing time between event

A and event B shall be less than 10ms”). Finally, a time

behavior requirement has a time quantification, which

quantifies a time value with a specific unit (e.g., “less

than 10 ms”).

• Throughput Requirements: A Throughput Requirement

describes a Throughput Property. A Throughput Property

can be Transaction Rate, Throughput, Reaction Speed,

Processing Speed, or Operating Speed. Finally, a Through-

put Requirement has a Throughput Quantification, which

quantifies a Change Value which specifies a Change Object

per Time Value (e.g., “less than 10 user per ms”).

• Capacity Requirements: A Capacity Requirement de-

scribes a Capacity Property. A Capacity Property can

be Support, Store, Receive, Process, or Sustain. Finally,

a Capacity Requirement has a Capacity Quantification,

which quantifies a Capacity Object with respect to a

Change Value (e.g., “less than 10 concurrent users per

1s”).

Content Elements Related to Cross-Cutting Aspects: A Per-

formance Requirement may contain (possibly many) auxiliary

conditions (cross-cutting aspects in the unified model). An

Auxiliary Condition may be a specific Load (e.g., “at maximal

load”), a specific Measurement Location (e.g., “in London”), a

specific Measurement Period (e.g., “between 12/20 and 12/24”),

a specific Platform (e.g., “on ARMv8”), a specific Scope

of Measurement specifying the Includes and Excludes (e.g.,

“included is the browser render time, but the network time is

excluded”), and Measurement Assumptions specifying further

assumptions for the measurement (e.g., “a specific signal is

assumed to be present”).

C. Notion of Completeness for Performance Requirements

Following the idea of an activity-based definition of quality

attributes (see [14], [16]), we created a notion of completeness

based on development activities that stakeholders conduct with

performance requirements. We identified necessary content

elements that a performance requirement must contain to

complete these development activities efficiently and effectively.

For example, the scope of a requirement is necessary for the

activity defining a performance test. In Fig. 3, we marked

the crucial content elements with a white background and

mandatory content elements with a gray background. This

results in 15 mandatory content items.

Given a performance requirement, we define the complete-

ness of the requirements with respect to the presence of

all mandatory content elements, i.e., we call a requirement

complete if all mandatory content elements are present in

the textual representation of the requirement. There are three

cases for the presence of mandatory content in the textual

representation of a requirement:

• The requirement does not contain the content. For example,

in case of a requirement stating “The delay between [event

A] and [event B] shall be short”, the content regarding

the quantifier is not contained.

• The requirement implicitly contains the content. With

implicit, we mean that the content is contained in the

requirement, but we need to interpret the requirement to

derive the content. For example, in case of a requirement

stating “The delay between [event A] and [event B] shall

typically be 10ms”. In this case, regarding the quantifier,

we can interpret “typically” as “median”.

• The requirement explicitly contains the content. With

explicit, we mean that the content is contained without

interpretation. For example, in case of a requirement

stating “The delay between [event A] and [event B] shall

have a median value of 10ms”. In this case, regarding the

quantifier, the content is explicitly contained.

We derive the following definitions for strong and weak

completeness and for incompleteness of performance require-

ments:

Definition (Strong Completeness of Performance Require-

ments). A performance requirement is strongly complete, if

48

2

Requirement

Performance
Requirement

Modality

Enhancement

Obligation

Exclusion

Selection

Scope
Function

Scope

System
Scope

System

Function

 *

1

Quantifier

Mean

Median

Maximum

Minimum

Time
Behavior

Throughput Capacity

Time Property

Response
Time

Processing
Time

Latency

Exact Value

Time Value

Unit

Quantification

=

< / <=

> / >=

start end

Time
Quantification

Throughput
Property

Transaction
Rate

Throughput

Reaction
Speed

Processing
Speed

Operating
Speed

Change Value

Change
Object

Capacity
Property

Support

Store

Receive

Process

Sustain

Capacity
Value

Capacity
Object

Component
Scope

Component

*

*

Throughput
Quantification

Capacity
Quantification

1 3

Load

Auxiliary
Condition

*

Measurement
Location

Measurement
Period

Platform

Scope of
Measurement

Includes*

Excludes*
Measurement
Assumption

0..1

0..1

 *

1

 *

1

 *

1 *

0..1

Content Element (optional)

Content Element (mandatory)

Is a

Has

Frame

Event

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..10..1

0..1

0..1

Fig. 3. The Content Model of Performance Requirements. It shows content elements of performance requirements and their relationships. Content elements
with a white background depict optional content and with a gray background depict mandatory content with respect to our notion of completeness.

all mandatory content elements (w.r.t the content model) are

explicitly contained in its textual representation.

Definition (Weak Completeness of Performance Requirements).

A performance requirement is weakly complete, if all manda-

tory content elements (w.r.t. the content model) are explicitly

or implicitly contained in its textual representation.

Definition (Incompleteness of Performance Requirements).

A performance requirement is incomplete, if at least one

mandatory content elements (w.r.t. the content model) is

missing in its textual representation.

This definition of completeness for performance requirements

can be used to detect incompleteness and thus to pinpoint to

requirements that are hard to comprehend, implement, and

test. For example, requirements of class incomplete are not

testable at all, requirements in class weakly complete need to be

interpreted by the developer and/or tester and therefore bear the

risk of misinterpretations, and requirements in class strongly

complete contain all content necessary to be implemented and

tested.

D. Performance Patterns

Based on the content model, we derived the sentence patterns

shown in Fig. 4. We split the sentence patterns based on the type

of performance requirement. Thus, Fig. 4a shows the sentence

patterns for time behavior requirements, Fig. 4b shows the

patterns for throughput requirements, and Fig. 4c shows the

patterns for capacity requirements.

In order to build a sentence, a requirements engineer must

first choose the performance requirement type, i.e., one of

Time Behavior, Throughput, or Capacity. Then, sentences

can be specified from left to right, while choosing one

of the sentence fragments and replacing the variables in

angle brackets. Sentence fragments in square brackets (e.g.,

[between event 〈A〉 and event 〈B〉] in Fig. 4a) are

optional. Then, cross-cutting aspects can be added by applying

the sentence patterns in Fig. 4d. Exemplary sentences are

The system must have a processing time

of < 10 ms between event “receiving a

request” and event “answering a request”,

when under a maximal load. Measurement

takes place on production hardware.

Included is browser render time.

or

The system must be able to process

a maximum of 10.000 requests per s.

Measurement takes place in Munich,

Bavaria. Excluded are external services.

IV. CASE STUDY

In order to evaluate our framework for performance require-

ments, we conducted a case study with industrial performance

requirements. In the following, we first describe the design of

the study and then report on the results.

49

must/shall

could/may

must not

have

a

a mean

a median

a maximal

a minimal

response time

processing time

latency

of

of <

of <=

of >

of >=

<x>

ms

s

min

h

[between event <A>
and event]

The system

The <operation>
[In <x>% of all cases]

[In case of <x>]
The <component>

(a) Sentence Patterns for Time Behavior Requirements

must/shall

could/may

must not

have

a

a mean

a median

a maximal

a minimal

reaction speed

processing speed

operating speed

of

of <

of <=

of >

of >=

<x>

ms

s

min

h

transaction rate

throughput
items

orders

requests

<data>

per

The system

The <operation>
[In <x>% of all cases]

[In case of <x>]
The <component>

(b) Sentence Patterns for Throughput Requirements

The system

The <operation>

must/shall

could/may

must not

be able to

support

store

receive

process

sustain

of

of <

of <=

of >

of >=

<x> ms

s

min

h

items

orders

requests

<data>

per

a value

a mean

a median

a maximum

a minimum

concurrent users

users/objects/rows

<data>
[In <x>% of all cases]

[In case of <x>]
The <component>

(c) Sentence Patterns for Capacity Requirements

When under

a

a mean

a median

a maximal

a minimal

load

Measurement takes
place [in/on/with]

<location>

night/day

America/Europe

<period>

Monday/Tuesday/...

<platform>

testing/production hardware

virtualization/native

Included/Excluded is/are

external services

3rd party libraries

browser render time

network time

It is assumed that <assumption>

(d) Sentence Patterns for Cross-cutting
Performance Concepts

Fig. 4. Sentence Patterns for Performance Requirements

A. Study Design

The goal of our study is to understand the applicability and

ability to detect incompleteness of our framework in the context

of natural language performance requirements from industrial

specifications.

1) Research Questions: To reach our goal, we formulate

the following research questions (RQs). In RQ1 and RQ2,

we analyze how well our framework matches performance

requirements in industry.

RQ1: To what degree can industrial performance requirements

be specified by means of our framework?

RQ2: Can our framework be used to detect incompleteness

in industrial performance requirements?

In RQ3 and RQ4, we analyze how well performance require-

ments in industry match with our framework.

RQ3: What type of performance requirements are used in

practice?

RQ4: What content is used in performance requirements in

practice?

2) Study Object: In a previous study [17], we analyzed

530 non-functional requirements extracted from 11 industrial

specifications from 5 different companies for different ap-

plication domains and of different sizes. In particular, we

classified each requirement according to its ISO/IEC 9126

quality characteristic (e.g., Efficiency–Time Behaviour) [5].

The study objects used to answer the research questions

constitute of these 11 industrial specifications. Thus, technically,

we performed a theory testing multi-case study. We collected

all those requirements that are classified as Efficiency–Time

Behaviour or Efficiency–Resource Utilization. This results in

58 performance requirements in total. We cannot give detailed

information about the individual performance requirements or

the projects. Yet, in Table I, we show exemplary (anonymized)

TABLE I
EXEMPLARY PERFORMANCE REQUIREMENTS

Spec. Requirement Domain

S2 The delay between [event 1] and [event 2]

shall be less than 1s.

ES (Railway)

S3 The [system] must ensure the following

average response times for specific use

cases under target load:

UC1 < 1min

UC2 < 2 min

...

Note: The timing has to be considered a

net time with respect to all the back-office

interfaces.

BIS (Automotive)

S6 The delay between receiving of [message]

and the update of [signal]

ES (Railway)

Start Event: [event]

Stop Event: [event]

Value < 1.5 sec

Notes It is assumed that the [signal] is

required by the message received. The value

indicated in this case includes additional

delay for the display of the information.

performance requirements as far as possible within the limits

of existing non-disclosure agreements.

3) Data Collection: To answer our research questions, we

applied the sentence patterns to each performance requirement

of our study object. If we were not able to apply the patterns due

to missing or too vague information, we marked the requirement

accordingly (e.g., the requirement “[...] No significant decrease

in performance is permitted”).

When applying a specific sentence fragment of a pattern,

for example, the quantifier (a | a mean | a median |
a maximal | a minimal), there are three cases:

• The requirement explicitly contains the content element.

In this case, we mark the resulting value as explicit. For

50

TABLE II
DATA COLLECTION: EXEMPLARY APPLICATION OF THE SENTENCE PATTERNS. EXPLICIT CONTENT IS MARKED BY SUBSCRIPT “E”, IMPLICIT CONTENT IS

MARKED BY SUBSCRIPT “I” AND MISSING CONTENT BY SUBSCRIPT “M”.

Original Requirement Applied Pattern Type Completeness

R1 The train door release command delivered by [compo-

nent B] to [component C] must not be delayed more

than 500ms by the [component D].

The component “D”e must note have

ae latencye of >e 500e mse between

event “train door release command

delivered by component B” and event

“train door release command received

by component C”i

Time Beh. Strongly Compl.

R2 The delay between door close detection and authoriza-

tion to depart shall be less than 500ms.

The systemi muste havee ae latencye
of <e 500e mse between event

“door close detection ” and event

“authorization to depart”i

Time Beh. Weakly Compl.

R3 Cycle of position reports: Value > 5s. Notes: This

performance defines the maximum rate for sending of

position reports.

The systemm mustm have ae transac

tion ratei of <i 1/5i position reporte
per se

Throughput Incomplete

R4 No significant decrease in performance is permitted

[...]

N/A N/A Incomplete

example, in case of a requirement stating “The delay

between [event A] and [event B] shall have a median

value of 10ms”, we set the quantifier to explicit Median.

• The requirement implicitly contains the content element.

In this case, we mark the resulting value as implicit. For

example, in case of a requirement stating “The delay

between [event A] and [event B] shall typically be 10ms”,

we set the quantifier to implicit Median.

• The requirement does not contain the content element.

In this case, we mark this sentence fragment as missing.

For example, in case of a requirement stating “The delay

between [event A] and [event B] shall be short”, we set

the quantifier to missing.

The procedure was performed by the first two authors in pair.

Table II shows examples of the resulting requirements; Explicit

content is marked by subscript “e”, implicit content is marked

by subscript “i” and missing content by subscript “m”.

4) Data Analysis Procedures: To answer RQ1, we analyzed

whether the sentence patterns can be applied for the given

performance requirements.

To answer RQ2, we analyzed to what degree the requirements

are strongly complete, weakly complete, or incomplete with

respect to our notion of completeness.

To answer RQ3, we analyzed the distribution of the require-

ments with respect to their performance requirement type.

To answer RQ4, we analyzed the mapping between the

original requirements and the content elements in our content

model. We perform this analysis for content elements that are

applicable for all performance requirements (like Scope) and

also for each of the individual performance requirement types.

B. Study Results

RQ1: Applicability of our Framework: In total, we could

apply the patterns to 50 of the 58 performance requirements.

We could not apply the patterns to 8 requirements, because of

missing or too vague information (see for example, requirement

R4 in Table II). Thus, in total, 86% of the requirements can

be expressed by means of our framework.

Quantitative results of RQ1:

86% of the performance requirements can be expressed

by means of our framework.

RQ2: Benefits of our Framework: In total, 18% of the 50

requirements are strongly complete, 32% are weakly complete

and 68% are incomplete.

Analyzing the distribution in more detail, the application

of the sentence patterns for the 50 sentences resulted in 396

sentence fragments. Fig. 5, shows a partially aggregated view

on the results for the mandatory content elements: Value

aggregates Time Value, Change Value, and Capacity Value.

Property aggregates Time Property, Throughput Property, and

Capacity Property. As shown in the figure, most requirements

(93%) specify the value explicitly. This is as one would expect

for performance requirements, as the value specifies the specific

time or resource bound for the requirement. In contrast to this,

the scope of only 48% of the requirements is explicitly stated in

the requirement, but can be interpreted for 48% and is missing

for 4% of the requirements. This might be no problem for

most requirements, but not explicitly stating the scope leaves

room for interpretation and bears the risk of misunderstanding

for which functions of a system a performance requirements

holds.

Quantitative results of RQ2:

18% of the 50 requirements are strongly complete and

32% are weakly complete. The remaining 68% are

incomplete with respect to our notion of completeness.2

RQ3: Performance Requirement Type: In total, 35 out of

the 50 performance requirements are of type Time Behavior

(70%), 13 of type Capacity (26%) and 2 of type Throughput

(4%).

2The percentages sum to more than 100%, as weakly complete requirements
include strongly complete requirements.

51

48% 48%

58% 42%

59% 22% 18%

59% 16% 24%

62% 31% 6%

93%

Scope

Modality

Quantifier

Property

Quantification

Value

0% 25% 50% 75% 100%

explicit implicit missing

Fig. 5. RQ2: Completeness of the original requirements w.r.t. the mandatory
content elements. Value aggregates Time Value, Change Value, and Capacity

Value. Property aggregates Time Property, Troughtput Property, and Capacity

Property.

Quantitative results of RQ3:

70% of the performance requirements concern Time

Behavior, 26% Capacity, and only 4% Throughput.

RQ4: Performance Content: Fig. 6 shows the results of

RQ4. In particular, Fig. 6a shows the distribution among the

concepts of all requirements, Fig. 6b shows the distribution

among time behavior requirements, and Fig. 6c shows the

distribution among capacity requirements. Note that we do not

detail the results for throughput requirements, since only 4%

of the requirements were of this type.

In contrast to the prevailing opinion that NFRs are cross-

functional, the scope of only 58% is the whole system, for 34%

it is a function and for 8% a component. For time behavior

requirements, the percentage of requirements having a function

as scope (49%) even rules out the percentage of requirements

having the system as scope (46%). In contrast to this, for

capacity requirements, 85% of the requirements specify the

system as scope and only 15% a component as scope. Therefore

one could argue that while capacity performance requirements

are mostly cross-functional, this is not necessary the case for

behavioral performance requirements.

Furthermore, it stands out that most requirements (98%) are

an obligation and only 2% an exclusion.

V. DISCUSSION

From the presented results, we conclude that our proposed

framework for specifying performance requirements is appli-

cable to performance requirements documented in practice.

Furthermore, we argue that our framework provides a helpful

and actionable definition of completeness for performance

requirements that can be used to detect incompleteness and

thus to pinpoint to requirements that are hard to comprehend,

implement, and test.

We draw these conclusions by connecting the major results of

our evaluating case study: We were able to apply our framework

to 86% of the requirements in a large set of natural language

performance requirements from practice. Our definition of

completeness is derived from 15 mandatory content elements.

Neglecting or implicitly stating one of these content elements

has a negative impact on subsequent development activities

(e.g., implementation or testing). With respect to our notion of

completeness, from the investigated requirements, only 18%

were complete (strongly complete), 32% contained mandatory

content elements only implicitly (weakly complete), and 68%

neglected at least one mandatory content element (incomplete).

We argue that requirements of class incomplete are not testable

at all, requirements in class weakly complete need to be

interpreted by the developer and/or tester and therefore bear the

risk of misinterpretations, and requirements in class strongly

complete contain all content necessary to be implemented and

tested.

Besides the assessment of completeness, we made some

unexpected observations that question some common views

onto performance requirements and NFRs in general. A

common point of view for NFRs is, for example, that NFRs

are cross-functional and consider the system as a whole. We

were surprised to see that in our study the scope of 42%

of the requirements that we examined was “component” or

“function” (see Fig. 6). This means that, at least in the analyzed

specifications, several requirements are actually framed by

functions or specific components and not always with respect

to the whole system. Especially for time behavior requirements,

a majority of the requirements were associated with a function.

However, for testing or verification, it might still be necessary

to consider the system as a whole.

A. Implications for Academia

We consider the (re)definition of individual quality attributes,

as we did with performance in this paper, based on their impact

to development activities as beneficial for operationalizations.

Activity-based quality models (e.g., [14], [16]) provide frame-

works to define and operationalize quality attributes such as

completeness. In our study, we derived a content model for

performance requirements based on the question which content

is necessary to perform specific activities. This approach leads

to quality assessments that can directly be related to activities.

It would be interesting to apply a similar approach to assess

the completeness of other classes of NFRs or other quality

attributes.

Our approach captures the content of a requirement as a

model. Building such models for industrial requirements allows

reasoning about several statements that are presumed to be

common knowledge about non-functional requirements. For

example, the assertion that NFRs are cross-functional and affect

the whole system is challenged by the fact that a reasonable

share of examined requirements regarded the scope “function”

or “component” instead of “system”.

B. Implications for Industry

Our results suggest that natural language performance

requirements in practice are, to a large extent, incomplete

with respect to our notion of completeness or at least need to

be interpreted to be implemented and tested. Our framework

is a step towards increasing the completeness of performance

requirements. The operationalization via requirement patterns

could be easily implemented in a requirements authoring or

52

Selection Selection (10%)

Scope

System (58%)

Component (8%)

Function (34%)

Modality
Obligation (98%)

Exclusion (2%)

Quantifier

Exact (42%)

Maximum (24%)

Mean (16%)

Median (12%)

Minimum (4%)

Missing (2%)

0 20 40 60 80 100

Aux. Cond.

Load (30%)

Includes (28%)

Measurement Ass. (14%)

Measurement Location (8%)

Measurement Period (6%)

Excludes (4%)

Platform (2%)

(a) Concepts of all requirements.

Property

Latency (40%)

Processing Time(26%)

Response Time (26%)

Interaction Time (6%)

Missing (2%)

Frame Frame (43%)

Selection Selection (9%)

Scope

System (46%)

Component (6%)

Function (49%)

Modality
Obligation (97%)

Exclusion (3%)

Quantifier

Exact (40%)

Maximum (20%)

Mean (20%)

Median (17%)

Minimum (0%)

Missing (3%)

0 20 40 60 80 100

Aux. Cond.

Load (43%)

Includes (40%)

Measurement Ass. (20%)

Measurement Location (0%)

Measurement Period (3%)

Excludes (6%)

Platform (3%)

(b) Concepts of time behavior requirements.

Property
Process (15%)

Support (85%)

Selection Selection (0%)

Scope

System (85%)

Component (15%)

Function (0%)

Modality
Obligation (100%)

Exclusion (0%)

Quantifier

Exact (38%)

Maximum (38%)

Mean (8%)

Median (0%)

Minimum (16%)

Missing (0%)

0 20 40 60 80 100

Aux. Cond.

Load (0%)

Includes (0%)

Measurement Ass. (0%)

Measurement Location (31%)

Measurement Period (15%)

Excludes (0%)

Platform (0%)

(c) Concepts of capacity requirements.

Fig. 6. RQ2: Distribution among the performance concepts. Concepts of throughput requirements are excluded as we only analyzed two.

management tool. Such a tool may provide instant feedback to

the requirements engineer about missing or optional content

elements. Furthermore, the tool might check the terms used in

a requirement with respect to an underlying domain model to

uncover terms, the reader must interpret because the term is

not part of the consolidated terminology.

An additional benefit of our framework is that it makes

content in natural language requirements explicit and traceable

through content elements. This allows connecting specific

content elements of requirements with specific content elements

in related artifacts such as test cases or components within

the implementation. Updates within requirements may then be

propagated directly to corresponding test cases for example,

making maintenance activities more efficient and effective.

C. Limitations and Threats

We assess the completeness of performance requirements by

mapping natural language requirements to a content model

that we derived from literature. An assessment whether a

requirement is complete or incomplete is therefore always

relative to the notion of completeness used. If the content

model that we used for this study itself is incomplete or

too strict, the results about the completeness of examined

requirements in practice would be misleading. A less strict

content model, that defines less mandatory content elements,

would result in more requirements that are considered complete.

From our point of view, a “good” definition of the content

model should be derived from the activities that need to be

performed based on the requirements (see [14]). We tried to

justify all mandatory content elements in our content model

by considering development activities that are not or hardly

possible without this content.

Furthermore, (strongly complete) sentences created by our

patterns still may be ambiguous and thus subject to interpreta-

tions. This may be the case as some sentence fragments, such

as the time property processing time, may have a different

meaning depending on the context. To mitigate this threat, we

suggest to assign a context specific meaning for those sentence

fragments and make this meaning explicit by means of for

example a glossary. The same holds for domain objects like

concurrent users.

53

A major threat to the internal validity is that our results and

conclusions strongly rely on the classification and translation

of requirements into patterns, which was performed by the

authors of this study. To mitigate biased classifications and

pattern translations, we performed the classification in a pair of

researchers. A third researcher afterwards reviewed the resulting

patterns and challenged the reliability of the classification. This

lead to two rounds of refinement of classification and patterns.

Another threat that might influence the results of our case

study is that we examined only requirements that we identified

as performance requirements in a former study [17]. With this

selection procedure, some relevant performance requirements

might have been missed or irrelevant ones might have been

included.

We base our evaluation on a set of 58 performance re-

quirements that we extracted from 11 industrial specifications

from 5 different companies for different application domains

and of different sizes with a total of 530 requirements. That

means that performance requirements were only one part of the

specification and accounted only for 11% of all requirements.

It is possible that there exist additional documents specifically

made for performance requirements, which may refine the

examined requirements for specific purposes such as testing.

Additionally, it might also be possible that companies have

special teams or departments for implementing or testing

performance requirements. It is possible that these teams just

take the general performance requirements from the examined

specifications as an input and translate them to requirements

that are more complete w.r.t. our notion of completeness. We are

not aware of such additional documents or teams in our cases.

There are few threats that affect the generalizability of our

results and conclusions: We have based our framework on 12

existing classifications that we identified during our literature

review, however, there may exist classifications with aspects

of performance that we have not yet considered. The set of

58 performance requirements that we used to evaluate our

approach may not be large enough to draw general conclusions

about the applicability.

VI. RELATED WORK

Incompleteness is one of the most important problems in

RE leading to failed projects. In an early study, Lutz [18]

reports incompleteness as a cause of computer-related accidents

and system failures. Furthermore, in a more recent study,

Méndez and Wagner [1] revealed in a survey with 58 industry

requirements engineers, that incomplete requirements are not

only named as the most frequent problem in RE, but also

considered the most frequent cause for project failure. Also

Ott [19] investigates defects in natural language requirements

specifications. Their results confirm quantitatively that the

most critical and important quality criteria in the investigated

specifications are consistency, completeness, and correctness.

Menzel et al. [20] report on a similar approach to ours; They

propose an objective, model-based approach for measuring the

completeness of functional requirements specifications. Their

approach contains an information model, which formalizes the

term completeness for a certain domain, a set of assignment

rules, which defines how textual requirement fragments can

be mapped to the information model, and a guideline, which

defines how to analyze a requirements specification based

on the information model. We use a similar approach, yet

for the domain of performance requirements: we define a

content model of performance requirements (similar to the

information model) based on literature, define requirement

patterns and apply the patterns to textual requirements (similar

to the assignment rules and the guideline).

There is plenty of work on requirement patterns in RE.

Franch et al. [21] present a metamodel for software requirement

patterns. Their approach focuses on requirement patterns as a

means for reuse in different application domains and is based on

the original idea of patterns by Alexander et al. [22]. In contrast

to this, the idea of our framework is to use sentence patterns

for the definition of content of performance requirements in

general, for the specification of performance requirements,

and to define and improve the completeness of performance

requirements.

Withall presents a comprehensive pattern catalogue for

natural language requirements including patterns for perfor-

mance requirements in his book [23]. The pattern catalogue

contains a large number of patterns for different types of

requirements. In contrast to their work, our framework focuses

on performance requirements and is derived step-by-step from

literature. Moreover, we provide a notion of completeness for

performance requirements and explicitly include the context (by

means of cross-cutting aspects) of performance requirements.

Filipovikj et al. conduct a case study on the applicability

of requirement patterns in the automotive domain [24]. They

conclude that the concept of patterns is likely to be generally

applicable for the automotive domain. In contrast to our

framework, they use patterns that are intended for the real-

time domain. They use Real Time Specification Pattern System

as defined by Konrad and Cheng [25] (based on the work

of Dwyer et al. [26]). These patterns use structured English

grammar and support the specification of real-time properties.

Stalhane and Wien [27] report on a case study where

requirement analysts use requirement patterns to describe

requirements in a structured way. Their results show that the

resulting requirements are readable for humans and analyzable

for their tool. Moreover, their tool improved the quality of

requirements by reducing ambiguities and inconsistent use of

terminology, removing redundant requirements, and improving

partial and unclear requirements. In contrast to their work,

we specifically focus on performance requirements, provide a

notion of completeness, and provide more detailed (and also

literature-based) sentence pattern.

Wohlrab et al. [28] present their experiences in combining

existing requirements elicitation and specification methods for

performance requirements. They successfully applied the so-

called PROPRE method to a large industrial project and report

on the lessons learnt. The PROPRE method is a comprehensive

method containing various models from feature modeling to

requirements templates. The method further contains require-

54

ment patterns, but on a rather abstract level. These patterns can

be used for structuring information in requirements. In contrast

to this, we present a step-by-step derivation and application of

sentence patterns for performance requirements.

VII. CONCLUSION & FUTURE WORK

In this paper, we proposed a framework for specifying

performance requirements. This framework consists of a

unified model for performance requirements, a content model

capturing relevant content elements, a notion of completeness

for performance requirements, and an operationalization of

the content model through sentence patterns. To evaluate

our framework, we conducted an empirical evaluation of our

approach with respect to its applicability and ability to detect

incompleteness. From the results of the study, we conclude

that the proposed framework is applicable to performance

requirements documented in practice. Furthermore, we argue

that our framework provides a helpful and actionable definition

of completeness for performance requirements that can be used

to detect incompleteness and thus to pinpoint to requirements

that are hard to comprehend, implement, and test.

We plan to apply this approach to other quality attributes.

In particular, we plan to derive a content model and a notion

of completeness for other quality attributes based on literature

and on the question which content is necessary to perform

specific activities. This would result in activity-based definitions

of quality factors, which are actionable and applicable by

practitioners.

So far, our framework provides an assessment of performance

requirements with respect to our notion of completeness.

Considering the constructive nature of sentence patterns, if

requirements are specified based on these sentence patterns,

they are complete by construction. We plan to reflect this notion

of completeness with the subjective assessment of practitioners

and discuss whether our notion provides useful feedback.

Furthermore, as requirements by means of our framework

explicitly state respective functions, events, and domain objects,

it would be interesting to analyze the transition to subsequent

development artifacts (e.g., the architecture).

ACKNOWLEDGEMENTS

We would like to thank Sebastian Eder, Maximilian Junker,

Jakob Mund, and Sabine Teufl for their helpful comments on

earlier versions of this work. This work was performed within

the project Q-Effekt; it was partially funded by the German

Federal Ministry of Education and Research (BMBF) under

grant no. 01IS15003 A-B. The authors assume responsibility

for the content.

REFERENCES

[1] D. Méndez Fernández and S. Wagner, “Naming the pain in requirements
engineering: Design of a global family of surveys and first results from
germany,” in 17th International Conference on Evaluation and Assessment

in Software Engineering (EASE), 2013.
[2] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in software

quality. Volume I. Concepts and definitions of software quality.” General
Electric Co, Tech. Rep. ADA049014, 1977.

[3] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation
of software quality,” in 2nd International Conference on Software

Engineering (ICSE), 1976.

[4] I. Sommerville, Software Engineering: 8th Edition. Pearson Education
Limited, 2007.

[5] International Organization for Standardization (ISO) and Interna-
tional Electrotechnical Commission (IEC), “ISO/IEC 9126-1: Software
Engineering-Product Quality-Part 1: Quality Model,” Geneva, Switzer-
land, 2001.

[6] ——, “ISO/IEC 25010: Systems and software engineering–Systems and
software Quality Requirements and Evaluation (SQuaRE)–System and
software quality models,” Geneva, Switzerland, 2011.

[7] K. Khosravi and Y.-G. Guéhéneuc, “A quality model for design patterns,”
University of Montreal, Tech. Rep., 2004.

[8] G. R. Dromey, “A model for software product quality,” IEEE Transactions

on Software Engineering, vol. 21, no. 2, 1995.

[9] S. Robertson and J. Robertson, Mastering the requirements process.
Addison-Wesley, Harlow, England, 1999.

[10] P. Botella, X. Burgués, J. Carvallo, X. Franch, G. Grau, J. Marco, and
C. Quer, “ISO/IEC 9126 in practice: what do we need to know,” in 1st

Software Measurement European Forum (SMEF), 2004.

[11] M. Glinz, “Rethinking the notion of non-functional requirements,” in
3rd World Congress for Software Quality (WCSQ), 2005.

[12] ——, “On non-functional requirements,” in 15th IEEE International

Requirements Engineering Conference (RE), 2007.

[13] B. Behkamal, M. Kahani, and M. K. Akbari, “Customizing ISO 9126
quality model for evaluation of B2B applications,” Information and

software technology, vol. 51, no. 3, 2009.

[14] H. Femmer, J. Mund, and D. Méndez Fernández, “It’s the activities,
stupid!: A new perspective on RE quality,” in 2nd International Workshop

on Requirements Engineering and Testing (RET), 2015.

[15] P. Mager, “Towards a Profound Understanding of Non-Functional
Requirements,” Master’s thesis, Technische Universität München, 2015.

[16] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J. Girard,
“An activity-based quality model for maintainability,” in 23rd IEEE

International Conference on Software Maintenance (ICSM), 2007.

[17] J. Eckhardt, A. Vogelsang, and D. Méndez Fernández, “Are non-functional
requirements really non-functional? An investigation of non-functional
requirements in practice,” in 38th International Conference on Software

Engineering (ICSE), 2016.

[18] R. R. Lutz, “Analyzing software requirements errors in safety-critical,
embedded systems,” in IEEE International Symposium on Requirements

Engineering (RE), 1993.

[19] D. Ott, “Defects in natural language requirement specifications at
Mercedes-Benz: An investigation using a combination of legacy data and
expert opinion,” in 22nd IEEE International Requirements Engineering

Conference (RE), 2012.

[20] I. Menzel, M. Mueller, A. Gross, and J. Doerr, “An experimental
comparison regarding the completeness of functional requirements
specifications,” in 18th IEEE International Requirements Engineering

Conference (RE), 2010.

[21] X. Franch, C. Palomares, C. Quer, S. Renault, and F. De Lazzer,
“A metamodel for software requirement patterns,” in Requirements

Engineering: Foundation for Software Quality. Springer, 2010.

[22] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern language: towns,

buildings, construction. Oxford University Press, 1977.

[23] S. Withall, Software Requirement Patterns, 1st ed. Redmond, WA, USA:
Microsoft Press, 2007.

[24] P. Filipovikj, M. Nyberg, and G. Rodriguez-Navas, “Reassessing the
pattern-based approach for formalizing requirements in the automotive do-
main,” in 22nd IEEE International Requirements Engineering Conference

(RE), 2014.

[25] S. Konrad and B. H. C. Cheng, “Real-time specification patterns,” in
27th International Conference on Software Engineering (ICSE), 2005.

[26] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property spec-
ifications for finite-state verification,” in 21st International Conference

on Software Engineering (ICSE), 1999.

[27] T. Stalhane and T. Wien, “The DODT tool applied to sub-sea software,”
in 22nd IEEE International Requirements Engineering Conference (RE),
2014.

[28] R. Wohlrab, T. de Gooijer, A. Koziolek, and S. Becker, “Experience
of pragmatically combining RE methods for performance requirements
in industry,” in 22nd IEEE International Requirements Engineering

Conference (RE), 2014.

55

