
This version is available at https://doi.org/10.14279/depositonce-6926

Copyright applies. A non-exclusive, non-transferable and limited
right to use is granted. This document is intended solely for
personal, non-commercial use.

Terms of Use

This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer
Science (10027). The final authenticated version is available online at: https://doi.
org/10.1007/978-3-319-49094-6_3.

Eckhardt, J., Vogelsang, A., Méndez Fernández, D. (2016): On the Distinction of Functional and Quality
Requirements in Practice. In: Product-Focused Software Process Improvement (pp. 31–47). Cham:
Springer.
https://doi.org/10.1007/978-3-319-49094-6_3

Eckhardt, Jonas; Vogelsang, Andreas; Méndez Fernández, Daniel

On the distinction of functional and quality
requirements in practice

Accepted manuscript (Postprint)Conference paper |

On the Distinction of Functional and Quality

Requirements in Practice

1 Technical University of Munich, Munich, Germany
{eckharjo,mendezfe}@in.tum.de

2 Technische Universität Berlin, Berlin, Germany
andreas.vogelsang@tu-berlin.de

Abstract. Requirements are often divided into functional requirements
(FRs) and quality requirements (QRs). However, we still have little
knowledge about to which extent this distinction makes sense from a
practical perspective. In this paper, we report on a survey we conducted
with 103 practitioners to explore whether and, if so, why they handle
requirements labeled as FRs differently from those labeled as QRs. We
additionally asked for consequences of this distinction w.r.t. the devel-
opment process. Our results indicate that the development process for
requirements of the two classes strongly differs (e.g., in testing). We
identified a number of reasons why practitioners do (or do not) distin-
guish between QRs and FRs in their documentation and we analyzed
both problems and benefits that arise from that. We found, for instance,
that many reasons are based on expectations rather than on evidence.
Those expectations are, in fact, not reflected in specific negative or pos-
itive consequences per se. It therefore seems more important that the
decision whether to make an explicit distinction or not should be made
consciously such that people are also aware of the risks that this distinc-
tion bears so that they may take appropriate countermeasures.

Keywords: Quality requirements · Functional requirements · Survey

1 Introduction

In literature (e.g., [9,13–15,18]), requirements are often categorized in functional
requirements (FRs), quality requirements (QRs), and constraints. FRs are char-
acterized as “things the product must do” contrasting QRs as “qualities the
product must have” and constraints as “organizational or technological require-
ment”. Although this categorization is common sense to some degree, there are
still debates about the precision of the categories (e.g., [7]). There are other aca-
demic groups that suggest to rather distinguish between behavior (e.g., response
times) and representation (e.g., programming languages) [3].

In a previously conducted study [6], we analyzed 11 requirements specifi-
cations from industrial environments with a particular focus on requirements
labeled as “quality”. We found out that (i) there is a distinction between QRs

31

and FRs in the documentations, and that (ii) many requirements labeled as
QR actually describe system behavior and, thus, could also be labeled as FR.
However, our previous investigation focused on analyzing artifacts after the fact
and we still have little knowledge about what difference it makes in a develop-
ment process if a requirement is labeled as FR or as QR and what the resulting
consequences are. In response to this question, we conducted a survey with 103
practitioners which we report in this paper.

In particular, we contribute: (i) a quantification of company practices regard-
ing the style of documenting functional and quality requirements, (ii) a list of
reasons why practitioner do or do not document FRs and QRs separately, (iii)
a list of consequences for the two styles of documentation that helps engineers
to make conscious decisions.

2 Research Objective

The goal of this study is to understand whether practitioners consider product-
related requirements labeled as FR differently from those labeled as QR. We
are further interested in the reasons for this distinction and the resulting conse-
quences for the development process. We derive the following research questions:

RQ1: Do practitioners handle FRs and QRs differently? In this RQ,
we want to analyze whether QRs are documented in practice, whether there
is a distinction in the documentation, and whether this distinction makes a
difference in the development process. To this end, we formulate the following
sub-RQs:

RQ1.1 Do practitioners differentiate between QRs and FRs in the
documentation? We want to know whether the accepted categorization
of product-related requirements as FRs or QRs is reflected in the style of
documentation as used in practice.

RQ1.2 To what extent do development activities for QRs differ from
activities for FRs? A possible consequence of a requirement categoriza-
tion is that different categories of requirements are handle differently in
the development process. We want to investigate whether this is the case
in practice and how this is influenced by the style of documentation.

RQ2: What are reasons for distinguishing or not distinguishing
between QRs and FRs in the documentation? While categorizations
only provide definitions, we are interested in the underlying reasons that lead
practitioners to distinguish or not distinguish between QRs and FRs in the
documentation.

RQ3: What are positive and negative consequences of distinguishing
or not distinguishing QRs and FRs in the documentation? A deci-
sion for or against a separate documentation may have positive or negative
consequences that practitioners should be aware of.

32

3 Research Methodology

Our goal was to reach out to a broad spectrum of practitioners and capture their
perceptions of their own project environments. To this end, we used (online)
survey research as our main vehicle. We intentionally designed the survey such
that respondents required as little effort as possible to complete it; we kept
the number of questions at a minimum, the instrument was self-contained and
it included all relevant information. We further limited the response types to
numerical, Likert-scale, and short free form answers as suggested by Kitchenham
and Pfleeger [10]. As a validation of our instrument and its alignment with the
audience, we piloted the survey with three practitioners, who completed the
survey and afterwards participated in an interview, where questions and answers
where checked for misunderstandings.

3.1 Subject Selection

We deliberately targeted practitioners who work with requirements. This
includes practitioners who write requirements (e.g., requirements engineers)
but also practitioners whose work is based on requirements (e.g., developers or
testers), and also practitioners who manage projects or requirements. Our survey
was further conducted anonymously. Since we were not able to exactly control
who is answering the survey, it was especially important to follow Kitchenham
and Pfleeger’s [10] advice on the need to understand whether the respondents
had enough knowledge to answer the questions in an appropriate manner. For
this, we excluded data from respondents who answered that they do not use
requirements specifications at all, or respondents who stated that they did not
know how requirements are handled in their company. We finally offered respon-
dents the chance to leave an email address if they were interested in the results
of the survey.

3.2 Data Collection and Instrument

We started our data collection on February 4th, 2016 and closed the survey on
February 22nd, 2016. For inviting practitioners to participate, we did not select a
specific closed group of practitioners but, instead, contacted as many practition-
ers as possible via the authors’ personal contacts from previous collaborations,
via public mailing lists such as RE-online, and via social networks. In the follow-
ing, we introduce the main elements of our instrument used. The full instrument
can be taken from our online material1.

Demographics: We collected a set of demographic data from the respondents
to interpret and triangulate the data with respect to different contexts of the
respondents. The demographic data included the role of the participant, the
experience, the company’s size, the typical project size, the geographical distri-
bution of project members, the paradigm of their applied development process

1 http://www4.in.tum.de/∼eckharjo/SurveyResults.zip.

33

All

Not documenting

QRs
Documenting QRs

No distinctionDistinction btw.

QRs and FRs

Fig. 1. Categorization of respondents by their style of documenting QRs.

(on a scale from agile to plan-driven), the industrial sector, the type of developed
systems, and the role of the requirements specification within the company. To
better understand the participant’s focus and project context, we additionally
asked respondents for the importance of different types of QRs in their projects.
The respondents were asked to assess the importance of quality factors2 taken
from ISO/IEC 25010 [8] for their typical projects on a 5-point Likert scale.

Practices of Handling QRs: As a first step towards comparing different prac-
tices for handling QRs, we asked the respondents how strongly development
activities differ between QRs and FRs in the phases requirements engineering,
architecture/design, implementation, and testing. As a follow up, we provided a
free form text field and asked the respondents to explain the differences in detail.

We were especially interested in the question whether it makes a difference
for the development process if project participants distinguish between QRs and
FRs and how this distinction is documented. Therefore, we asked the respon-
dents two conditional questions. First, we asked whether QRs are explicitly doc-
umented in their projects. If this was the case, we asked whether the respondents
explicitly distinguish between QRs and FRs in the documentation, i.e. whether
they are labeled differently (e.g., some requirements are labeled as performance
or maintainability) or documented in different sections (e.g., special sections for
performance or maintainability). The answers to these questions categorize the
responses into three groups (see also Fig. 1).

Problems/Benefits of Current Practices: Given the categorization into the
three groups, we asked our respondents for specific reasons why they do or do
not distinguish between QRs and FRs. Additionally, we asked for benefits and
problems that arise from the way they consider QRs (i.e., not documenting QRs,
mixing QRs and FRs in the documentation, or distinguishing between QRs and
FRs in the documentation). For these questions, we provided free form text fields
to be filled out by the respondents.

3.3 Data Analysis

Our data analysis constitutes a mix of descriptive statistics and qualitative text
analysis. To answer RQ1, we analyzed in particular the answers that the respon-

2 These were functional suitability, performance/efficiency, compatibility, usability,
reliability, security, maintainability, and portability.

34

dents provided for the following survey questions: (i) Are QRs documented in
your typical projects, (ii) In the documentation (e.g., in a requirements specifica-
tion), do you distinguish between QRs and FRs, (iii) Considering the following
phases, how much do the activities for handling QRs differ from those for FRs,
and (iv) Considering your work, for what activities does it make a difference if
you consider an QRs vs. an FR. For RQ1.1 and RQ1.2 we analyzed the results of
the first, second, and third question, respectively. As the answers for the fourth
question are open, we analyzed the answers in detail to provide more insights in
the activities and the differences.

To answer RQ2 and RQ3, we analyzed the data our respondents provided for
the following survey questions: (i) Are there specific reasons why you do (or do
not) distinguish between QRs and FRs in the documentation, (ii) Do you experi-
ence negative consequences in your current work that result from distinguishing
(not distinguishing) between QRs and FRs in the documentation, and (iii) Do
you experience positive consequences in your current work that result from distin-
guishing (not distinguishing) between QRs and FRs in the documentation. The
answers to the questions are free text answers. To analyze the results, we coded
the provided answers in pairs of researchers to assemble a conceptual model of
reasons and consequences for distinguishing between QRs and FRs in practice.
The qualitative coding technique was chosen as recommended by (Straussian)
Grounded Theory [16], but differs in that the central categories were previously
defined following our research questions. To visualize our results from the text
analysis, we used cause-effect diagrams (also known as Ishikawa diagrams).

4 Study Results

4.1 Sample Characterization

In total, 283 people clicked on the link to our survey, 172 started the survey
(61 %), and 109 completed it (39 %). From these 109 respondents, we excluded 6
as they matched our exclusion criteria. The respondents seem quite experienced
as 93 % stated that they have more than 3 years of experience with require-
ments, 5 % one to three years, and only 2 % with less than a year. Furthermore,
a majority of the respondents work in large companies: 57 % work in companies
with more than 2000 employees, 25 % in companies with 250–2000 employees,
and 17 % in companies with less than 250 employees. However, typical projects
of the respondents showed a variety of small to large projects: 24 % stated that
in a usual project in their company up to 10 people are involved, 46 % that
11–50 people are involved, 24 % that more than 50 people are involved, and
6 % did not know. Most of the respondents (59 %) answered that their team
is distributed over multiple locations in more than one country, 23 % that the
team is distributed over multiple locations but in one country, and 17 % that
all team members are in one location. The employed process paradigm is bal-
anced between agile and plan-driven: 41 % of the respondents answered that
their development process is rather agile, 21 % that it is rather plan-driven, 37 %
that it is mixed, and 1 % did not know. The type of systems the respondents

35

develop is quite balanced (except for consumer software): 24 % develop embed-
ded systems, 37 % business information systems, 5 % consumer software, and
34 % hybrid systems. Most of the respondents use requirements specifications
for in-house development (57 %), 23 % create them and an external company is
responsible for the development, and 19 % are subcontractors using requirements
specifications (e.g., as basis for development or testing).

4.2 RQ1: Handling of QRs in Practice

RQ1.1: Do practitioners differentiate between QRs and FRs in the
documentation? 88 % of the respondents answered that they document QRs
in their projects, while 12 % answered that they do not document QRs at all.
We contextualized this distribution w.r.t. the process paradigm the respondents
use in their projects. Figure 2a shows that all respondents with a plan-driven
process document QRs, while in agile processes only 77 % document QRs.

0%

25%

50%

75%

100%

Agile Mixed Plan-driven

Document QRs No QRs

(a) Do you document QRs?

0%

25%

50%

75%

100%

Agile Mixed Plan-driven

Distinction No distinction

(b) Do you distinguish btw. QR & FR?

Fig. 2. Relation between process paradigm and the style of documenting QRs.

From the respondents who document QRs (91 in total), 85 % answered that
they distinguish between QRs and FRs in the documentation and 15 % answered
that they do not. We also contextualized this distribution w.r.t. the process
paradigm. Figure 2b shows that a higher percentage of the respondents in agile
processes distinguish between QRs and FRs compared with respondents in plan-
driven processes. As a second contextualization, we analyzed the importance
of quality factors w.r.t. the style of documentation. Figure 3 shows how the
respondents ranked the importance of different quality factors for their daily
work on a five point Likert scale. Reliability and Performance/Efficiency, for
example, stand out as they are considered more important by participants who
do not distinguish between QRs and FRs.

RQ1.2: To what extent do development activities for QRs differ from
activities for FRs? Figure 4 shows how the respondents ranked the difference in
the phases requirements engineering, architecture/design, implementation, and
testing on a three point Likert scale. As a contextualization, we analyzed whether

36

Distinction No distinction

Funct. Suit.

Perf./Eff.

Compatibility

Usability

Reliability

Security

Maintainability

Portability

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Very Important Important Moder. Important Slightly Important Not Important Don't Know

53% 35%6%

47% 38% 13%

40% 48% 12%

39% 43% 16%

30% 40% 23%

23% 39% 29% 8%

22% 32% 34% 9%

9% 19% 32% 27% 10%

57% 29% 7%7%

57% 29% 14%

64% 14% 14% 7%
64% 29% 7%

36% 29% 29% 7%
29% 21% 36% 14%

36% 36% 14% 14%

21% 7% 14% 21% 36%

Fig. 3. Relation btw. importance of quality attributes and style of documentation.

there is a difference in how respondents rank the difference in the development
phases w.r.t. whether they do or do not distinguish between QRs and FRs. The
figure shows that the phase architecture/design was reported to differ stronger
by respondents who distinguish between QRs and FRs.

Distinction No distinction

RE

Arch/Design
Impl

Testing

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Differs strongly Differs slightly Does not differ at all Don't Know

52% 31%12%
48% 31% 8%13%

27% 43% 13% 17%
23% 47% 26%

57% 21%21%

21% 43% 21% 14%

36% 43% 14%7%
14% 36% 43% 7%

Fig. 4. Relation between process differences and style of documentation.

To further detail this response, Table 1 shows exemplary statements that
respondents gave explaining the differences in the development activities.
According to the answers, there is a different maturity of the processes for treat-
ing FRs vs. QRs (see Statement A). Furthermore, when it comes to project
planning, FRs are planned in detail but QRs are considered in an unplanned
way and only documented on a high-level (see Statement B). In testing, there
are approaches for deriving test cases from FRs but none for deriving them from
QRs (see Statement C). Moreover, different stakeholders are involved in testing
QRs vs. FRs (see Statement D). In architecture and design, QRs need to be
considered early in the project as they have a high impact on the architecture.
In contrast to this, it is sufficient to consider FRs at an abstract level in early
stages (see Statement E). In the implementation, QRs need to be monitored
continuously, whereas FRs can be implemented successively (see Statement F).
In requirements engineering, FRs are more fixed than QRs as QRs can be nego-
tiated with the customer while FRs usually cannot (see Statement G).

37

4.3 RQ2: Reasons for Distinguishing QRs and FRs

Figures 5 and 6 show the cause-effect diagrams for the reasons for and conse-
quences of (not) distinguishing between QRs and FRs in practice. On the left-
hand side of the diagrams, the mentioned reasons for distinguishing (Fig. 5) or
not distinguishing (Fig. 6) between QRs and FRs are indicated. On the right-
hand side of the diagrams, the mentioned consequences of the decision are shown.
The upper part contains the positive consequences while the lower part contains
the negative consequences. The different entries of the diagrams (e.g., QRs have
different nature in Fig. 5) correspond to codes that we identified in the data and
their number of occurrences. Furthermore, we structured the codes in categories
that are represented by the arcs in the diagram.

Reasons for Distinguishing QRs and FRs: The left-hand side of Fig. 5
shows the resulting reasons for distinguishing between QRs and FRs. In total,
49 out of the 77 respondents (64 %) that distinguish between QRs and FRs pro-
vided an answer to this open question. We identified 24 codes in the answers
for this question. For clarity, we only show codes that occurred at least twice in

Table 1. Exemplary answers about differences in the development process.

Phase Answer

A. General “[QRs] are usually treated less transparent: not clearly documented, not
explicitly tested, but somehow considered in RE, design and coding as
common sense background, e.g., in terms of [QRs] considering IT
security, performance or reliability.”

B. General “FRs are documented and planned in high detail [...] Working on
[QRs] are often unplanned activities and only high level documented.”

C. Test “Test cases for FR[s] can quite easily [be] derived from functional
models or textual requirements [... but there is no] method for deriving
test cases from [QRs].”

D. Test “Test planning, preparation and execution for [QRs] are handled by
different stakeholders ([QRs] are [. . .] strongly architecture related) and
personnel (performance and load tests are performed by specialists
usually not part of the project team).”

E. Arch. “[QRs] are often architectural drivers and therefore have to be
evaluated and considered very early in the project when defining the
architecture. Whereas in an early stage of the project a more abstract
view on the functional requirements is sufficient.”

F. Impl. “[QRs] require continuous monitoring, as achievements (e.g.,
performance) may degrade during implementation.”

G. RE “[In contrast to FRs,] [QRs] can be negotiated, if they are technically
not reachable.”

38

F
ig

.
5
.
R

ea
so

n
s

fo
r

a
n
d

co
n
se

q
u
en

ce
s

o
f
d
is

ti
n
g
u
is

h
in

g
b
et

w
ee

n
Q

R
s

a
n
d

F
R

s
(C

o
n
d
en

se
d

v
er

si
o
n

co
n
ta

in
in

g
co

d
es

th
a
t

o
cc

u
rr

ed
a
t

le
a
st

tw
ic

e.
T

h
e

co
m

p
re

h
en

si
v
e

d
ia

g
ra

m
co

n
ta

in
in

g
a
ll

co
d
es

is
av

a
il
a
b
le

a
t

h
tt

p
:/

/
w

w
w

4
.i
n
.t

u
m

.d
e/

∼
ec

k
h
a
rj

o
/
D

is
ti

n
ct

io
n
F
is

h
b
o
n
e.

p
d
f)

.
T

h
e

le
ft

-h
a
n
d

si
d
e

sh
ow

s
th

e
m

en
ti

o
n
ed

re
a
so

n
s

a
n
d

th
e

ri
g
h
t-

h
a
n
d

si
d
e

th
e

m
en

ti
o
n
ed

co
n
se

q
u
en

ce
s.

T
h
e

u
p
p
er

p
a
rt

o
f
th

e
ri

g
h
t-

h
a
n
d

si
d
e

co
n
ta

in
s

th
e

p
o
si

ti
v
e

co
n
se

q
u
en

ce
s

w
h
il
e

th
e

lo
w

er
p
a
rt

co
n
ta

in
s

th
e

n
eg

a
ti

v
e

co
n
se

q
u
en

ce
s.

39

F
ig

.
6
.
R

ea
so

n
s

fo
r

a
n
d

co
n
se

q
u
en

ce
s

o
f
n
o
t

d
is

ti
n
g
u
is

h
in

g
b
et

w
ee

n
Q

R
s

a
n
d

F
R

s.
T

h
e

le
ft

-h
a
n
d

si
d
e

sh
ow

s
th

e
m

en
ti

o
n
ed

re
a
so

n
s

a
n
d

th
e

ri
g
h
t-

h
a
n
d

si
d
e

th
e

m
en

ti
o
n
ed

co
n
se

q
u
en

ce
s.

T
h
e

u
p
p
er

p
a
rt

o
f
th

e
ri

g
h
t-

h
a
n
d

si
d
e

co
n
ta

in
s

th
e

p
o
si

ti
v
e

co
n
se

q
u
en

ce
s

w
h
il
e

th
e

lo
w

er
p
a
rt

co
n
ta

in
s

th
e

n
eg

a
ti

v
e

co
n
se

q
u
en

ce
s.

40

Fig. 5.3 Reasons that we coded as QRs have different nature, Company Practice,
and QRs are cross-functional occur frequently in the category General & Project
Organization. Furthermore, in the category Design & Implementation the rea-
son Influence the architecture and in the category Validation & Verification the
reason QRs require different verification methods also occur often.

Reasons for Not Distinguishing QRs and FRs: The left-hand side of Fig. 6
shows the mentioned reasons for not distinguishing between QRs and FRs. In
total, 7 out of the 14 respondents (50 %) who do not distinguish between QRs
and FRs provided an answer to this open question. We identified 8 codes in the
answers for this question. Figure 5 shows all identified codes, which all occurred
only once in the data (except for There is no difference).

4.4 RQ3: Benefits and Problems

Benefits and Problems of Distinguishing QRs and FRs: The right-hand
side of Fig. 5 shows the consequences of distinguishing between QRs and FRs.
The upper part shows the positive consequences while the lower part shows neg-
ative consequences. In total, 45 out of the 77 respondents (58 %) that distinguish
between QRs and FRs provided answers to the open question about positive con-
sequences. Regarding negative consequences, 16 out of the 77 respondents (21 %)
provided answers. We identified 35 codes in the answers for positive consequences
and 13 in the answers for negative consequences. As shown in the diagram, the
code that we identified most in the mentioned benefits is Find information in one
place in the category General & Project Organization. In this category, there are
also other benefits that occurred frequently (e.g., structuredness of the process,
completeness of the requirements, separation of concerns, and increasing the
awareness of QRs). We coded the benefit Increased awareness of QRs also three
times in the category implementation. For validation and verification, the most
frequent benefits are Focused Tests and Explicit QRs Tests. The code that we
identified most in the mentioned problems is Traceability becomes expensive. Fur-
ther problems that were mentioned are that QRs are neglected or forgotten, that
the distinction between QRs and FRs is unclear and that the distinction results
in a weak user acceptance. Moreover, in the category Validation & Verification,
the problem Missing testability was mentioned.

Benefits and Problems of Not Distinguishing QRs and FRs: The right-
hand side of Fig. 6 shows the consequences of not distinguishing between QRs
and FRs. The upper part shows the positive consequences while the lower part
shows negative consequences. In total, 9 out of the 14 respondents (64 %) that
distinguish between QRs and FRs provided answers to the open question about
positive consequences. Regarding negative consequences, 5 out of the 14 respon-
dents (36 %) provided answers. We identified 7 codes in the answers for positive
consequences and 6 in the answers for negative consequences.

3 The complete diagram including all codes is available at http://www4.in.tum.de/
∼eckharjo/DistinctionFishbone.pdf.

41

5 Discussion

From the results presented in the previous section, we conclude that practition-
ers are split into two groups; one advocating a distinction between QRs and
FRs and one advising against it. Interestingly, the respondents stated contrary
reasons as arguments for or against a distinction (e.g., “Both are requirements”
vs. “We distinguish them because they are different”). Similarly, we found the
same benefits stated by respondents of both parties: “If you distinguish, then
QRs are considered better” vs. “As soon as QRs are treated equally to FRs it is a
clear win-win situation such that QRs get the same attention.” Additionally, our
results indicate that it is not clear to practitioners what the difference between
both classes of requirements actually is, even though they stated reasons, ben-
efits, and problems of a distinction: “Most people have problems to distinguish
between them, so they mix” or “[Not distinguishing] avoids unnecessary con-
fusion at the requirements authors’ side. Adding the distinction QR/FR would
require additional training, QS, etc. without adding value to the projects”. Some
respondents see this as a reasons why they do not distinguish between them:
“[. . .]There is just no real guideline how to do it”.

The most prevalent reasons for distinguishing between QRs and FRs are in
line with those that are often found in literature (e.g., QRs have a different nature
and are cross-functional, influence on architecture, require different verification
methods). However, we cannot underpin any of those reasons with negative con-
sequences in the cases where QRs and FRs were not distinguished. Therefore,
we conclude that there seems to be confusion about this topic in practice and
handling QRs seems to be driven by expectations rather than by evidence.

In the following, we will detail and discuss some conflicting or even contra-
dictory statements. We believe that these are topics that need to be investigated
further in the future, or, in case of a clear scientific position about a topic, we
need to invest more into the dissemination of the results into practice.

QR Testing – A Double-edged Sword: One of the top reasons mentioned
for distinguishing QRs and FRs was the need for different verification methods
(especially w.r.t. testing). Figure 4 also shows that testing is the activity that
differs most for QRs and FRs. When considering consequences of distinguishing
between QRs and FRs in testing, we found both positive and negative. While
some respondents said that a distinction leads to more focused and specialized
tests for specific QRs, some also stated that a distinction leads to the fact that
some QRs are not tested at all. For example, “Performance tests are recognized
as [a] key success factor by project managers” vs. “Main issue is how to handle
the [QR] tests before product release”. On the other hand, respondents who do
not distinguish between QRs and FRs also reported positive and negative con-
sequences regarding testing: “[. . .]the mapping [of FRs to QRs] should ensure
that this testing also covers [QRs]” vs. “[When not distinguishing,] corresponding
V&V suffers”. We conclude from this that distinguishing QRs and FRs supports
the awareness for specialized tests of important QRs but, simultaneously, bears
the risk of neglecting tests for less important QRs.

42

Company Practice – Never Change a Running Game: Another com-
monly stated reason for distinguishing between QRs and FRs is that this is
common practice in the company or that this is required by customers. However,
these reasons were almost never questioned or justified. For example, “[. . .]Our
specification template prescribes a structuring w.r.t. [QRs] and FRs” or “[we dis-
tinguish] as requested by the customer”. Additionally, the respondents did not
mention any positive or negative consequences that result from complying with
customer constraints. We consider this as a sign of inadvertent handling of this
topic. It would be interesting to ask customers to explicitly state reasons why
they request a distinction of QRs and FRs.

QRs – Drivers for the Architecture: Several respondents stated that the
architecture of a system is specifically influenced by QRs. For example, “[QRs]
are often architectural drivers and therefore have to be evaluated and considered
very early in the project when defining the architecture”. This was often used as
an argument to distinguish between QRs and FRs: “The separation allows archi-
tects to get a quick (and in-depth) understanding of the QRs without needing to
know all the functional requirements”. FRs, on the contrary, were considered to
be more local and do not need to be fixed at the beginning of the project: “[It
is] easier to find[. . .]special FRs for developing a single use case” or “[. . .]in
an early stage of the project a more abstract view on the functional require-
ments is sufficient”. Surprisingly, some respondents stated that it has a positive
impact for the implementation when QRs and FRs are not strictly distinguished:
“[QRs] and FRs are handled as features. They are not separated, which avoids
the redesigns e.g., due to performance problems” and “[When not distinguish-
ing,] we have much more freedom during the implementation iterations[. . .]to
find solutions that fit the customers’ expectations and the possibilities that come
with the architecture and technology we use”.

Awareness Matters: It seems that an increased awareness for QRs was con-
sidered as one of the most prominent benefits. Both parties claimed this as a
benefit of distinguishing respectively not distinguishing between QRs and FRs:
“[Distinction] ensures that [QRs] are also in the focus” vs. “[Not distinguishing]
helps keeping the team aware that the device does not only need to have certain
features, but that these features also need to work e.g., at a high temperature”.
It seems that awareness can be increased with both strategies. The crucial point
seems to be that there is a clear and explicit relation between FRs and QRs,
which leads to the following observation.

Tracing – The Good, the Bad, and the Ugly: One trade-off that we found
in the data is an inherent challenge that does not seem to be resolved in practice.
Some respondents stated that a distinction between QRs and FRs is beneficial
because it keeps associated information in one place and, thus, supports differ-
ent viewpoints on the requirements: “People who are particularly concerned with
QRs, such as architects and performance testers, find relevant information in
one place” and “As most [QRs] apply across components, they are more eas-
ily retrieved in a separate specification”. However, this benefit also comes with

43

clear disadvantages considering tracing and the risk of forgetting requirements:
“Consistent documentation of relationships between FRs and [QRs] is difficult”
and “The development team needs to be fully aware about all sources for require-
ments. Ostrich strategy causes a high yield of trouble”. Respondents who do
not distinguish reported on benefits regarding the cohesiveness of their spec-
ifications: “Some documents benefit from this, as they turn more cohesive” or
“[. . .]the feature is really ready if installed and not only 80%”.

6 Limitations and Threats to Validity

We now discuss the threats to validity and mitigation measures we applied.

Participant Selection: One limitation in the study is the missing lack of con-
trol over the respondents given that we distributed the survey invitation over
various networks. Apart from an unknown response rate, this means that we
cannot control how representative the responses are. We removed those respon-
dents from the population that stated that they do not deal with requirements.
Also, although the introductory texts explicitly stated that the survey is aimed
at addressing practitioners perspective, we cannot guarantee that all the views
taken really result from practitioners.

Survey Research: Further threats to the validity result from the nature of
survey research. We cannot control on which basis the respondents provide their
answers, the respondents might be biased, and there exists the possibility that
they have misinterpreted some of the questions or even the concept of QR/NFR.
We reduced the first threat by asking questions to characterize the context of the
respondents. We cannot mitigate the second threat, but reduced it by conducting
the survey anonymously. We minimized the third threat by conducting a pilot
phase in which we tested the instrument used and the data analysis techniques
applied.

Subjectivity of Coding: A further major threat to validity, however, arises
from the data analysis, i.e., the coding process, because coding is a creative
task. Subjective views of the coders, such as experiences and expectations, might
have influenced the way we coded the free text statements. A threat arises from
the fact that we cannot validate our results with the respondents given the
anonymous nature of our survey. We minimized this threat by coding in pairs
(researcher triangulation).

Representativeness of the Codes: Finally, one limitation stems from the
result set itself and its expressiveness. Our focus was to collect and code practi-
tioners experiences on how they consider QRs. We quantified the results to get
an overview of whether certain codes dominate others. However, a potentially
high frequency of codes does still not allow for conclusions on the criticality of
those codes. In particular, the fact that we got more answers about reason for
and consequences of a distinction between QRs and FR than for no distinction
might have distorted our interpretation of the results.

44

7 Related Work

The literature on categorizations of requirements is very extensive. Major con-
tributions address categorizing non-functional requirements (e.g., [5,7,13]), of
which most rely on quality (definition) models (a detailed discussion can be
found in [6]). Pohl [13], for instance, discusses the misleading use of the term
“non-functional” and argues to use “quality requirements” for product-related
NFRs that are not constraints. Glinz [7] performs a comprehensive review on
the existing definitions of NFRs, analyzes problems with these definitions, and
proposes a definition on his own. Mairiza et al. [11] perform a literature review
on QRs, investigating the notion of QRs in the software engineering literature
to increase the understanding of this complex and multifaceted phenomenon.
They found 114 different QR classes. Contributions such as those have fostered
valuable discussions on the fuzzy terminology used and the concepts applied, but
they did not focus on the implications of these categorizations on development
processes in practice.

Chung and Nixon [4] investigate how practitioners handle QRs. They argue
that QRs are often retrofitted in the development process or pursued in parallel
with, but separately from, functional design and that an ad hoc development
process often makes it hard to detect defects early. They perform three experi-
mental studies on how well a given framework [12] can be used to systematically
deal with QRs. Svensson et al. [17] perform an interview study on how QRs are
used in practice. Based on their interviews, they found that there is no QR-
specific elicitation, documentation, and analysis, that QRs are often not quan-
tified and, thus, difficult to test, and that there is only an implicit management
of QRs with little or no consequence analysis. Furthermore, they found that at
the project level, QRs are not taken into consideration during product planning
(and are thereby not included as hard requirements in the projects) and they
conclude that the realization of QRs is a reactive rather than proactive effort.

Borg et al. [2] analyze via interviews how QRs are handled in two Swedish
software development organizations. They found that QRs are difficult to elicit
because of a focus on FRs, they are often described vaguely, are often not suffi-
ciently considered and prioritized, and they are sometimes even ignored. Further-
more, they state that most types of QRs are difficult to test properly due to their
nature, and when expressed in non-measurable terms, testing is time-consuming
or even impossible. Ameller et al. [1] perform an empirical study based on inter-
views around the question How do software architects deal with QRs in practice?
They found that QRs were often not documented, and even when documented,
the documentation was not always precise and usually became desynchronized.

In all of the investigations, FRs and QRs are treated separately, and the
investigations take an observational perspective on how practitioners deal with
QRs in that context. The goal of our study is to analyze whether practitioners
handle FRs and QRs differently, which reasons motivate the way they consider
QRs, and what consequences this has on the development process.

45

8 Conclusions

In this paper, we reported on a survey conducted with 103 practitioners to
explore whether and, if so, why they handle requirements labeled as “functional”
differently from those labeled as “quality” as well as to disclose resulting con-
sequences for the development process. Our results indicate that practitioners
document QRs and most of them do make an explicit distinction between QRs
and FRs in the documentation. Furthermore, our data suggests that the devel-
opment process strongly differs depending on a distinction between QRs and
FRs, especially in interconnected activities such as testing. The rationale of
practitioners is that QRs are different to FRs, i.e. they are of different nature,
are cross-functional, strongly influence the architecture, and require different
verification methods. In our previous study [6], we found, however, that many
requirements labeled as “quality” might as well be categorized as “functional”
and prior to the study presented here, we had the simple speculation that if a
blurry distinction determines how the following development activities are per-
formed, we should find problems that arise because the activities do not really
fit the corresponding requirements. Still, our results indicate that the question
whether to make a distinction or not is without a direct linkage to negative or
positive consequences per se. Therefore, we argue that the decision whether to
make an explicit distinction should be made consciously such that people are
aware of the risks that this distinction bears so that they may take countermea-
sures.

Acknowledgements. We would like to thank M. Broy, K. Beckers, J. Mund, S.
Smith-Eckhardt, and M. Glinz for their helpful comments and suggestions.

References

1. Ameller, D., Ayala, C., Cabot, J., Franch, X.: How do software architects consider
non-functional requirements: an exploratory study. In: 20th IEEE International
Requirements Engineering Conference (RE) (2012)

2. Borg, A., Yong, A., Carlshamre, P., Sandahl, K.: The bad conscience of require-
ments engineering: an investigation in real-world treatment of non-functional
requirements. In: 3rd Conference on Software Engineering Research and Practice
in Sweden (SERPS) (2003)

3. Broy, M.: Rethinking nonfunctional software requirements: a novel approach cat-
egorizing system and software requirements. In: Software Technology: 10 Years of
Innovation in IEEE Computer. John Wiley & Sons (2016)

4. Chung, L., Nixon, B.A.: Dealing with non-functional requirements: three experi-
mental studies of a process-oriented approach. In: 17th International Conference
on Software Engineering (ICSE) (1995)

5. Chung, L., do Prado Leite, J.C.S.: On non-functional requirements in software
engineering. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Con-
ceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 363–379.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02463-4 19

46

6. Eckhardt, J., Vogelsang, A., Méndez Fernández, D.: Are non-functional require-
ments really non-functional? An investigation of non-functional requirements in
practice. In: 38th International Conference on Software Engineering (ICSE) (2016)

7. Glinz, M.: On non-functional requirements. In: 15th IEEE International Require-
ments Engineering Conference (RE) (2007)

8. ISO/IEC: Systems and software quality requirements and evaluation (SQuaRE).
ISO/IEC 25010, Geneva, Switzerland (2011)

9. ISO/IEC/IEEE: Systems and software engineering – Life cycle processes – Require-
ments engineering. ISO/IEC/IEEE 29148:2011(E), Geneva, Switzerland (2011)

10. Kitchenham, B.A., Pfleeger, S.L.: Personal opinion surveys. In: Guide to Advanced
Empirical Software Engineering. Springer, London (2008)

11. Mairiza, D., Zowghi, D., Nurmuliani, N.: An investigation into the notion of non-
functional requirements. In: 25th ACM Symposium on Applied Computing (2010)

12. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional
requirements: a process-oriented approach. Trans. Softw. Eng. 18, 483–497 (1992)

13. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques.
Springer, Heidelberg (2010)

14. Robertson, S., Robertson, J.: Mastering the Requirements Process: Getting
Requirements Right. Addison-Wesley (2012)

15. Sommerville, I., Kotonya, G.: Requirements Engineering: Processes and Tech-
niques. John Wiley & Sons Inc., Hoboken (1998)

16. Stol, K., Raph, P., Fitzgerald, B.: Grounded theory in software engineering
research: a critical review and guidelines. In: 38th International Conference on
Software Engineering (ICSE) (2016)

17. Berntsson Svensson, R., Gorschek, T., Regnell, B.: Quality requirements in prac-
tice: an interview study in requirements engineering for embedded systems. In:
Glinz, M., Heymans, P. (eds.) REFSQ 2009. LNCS, vol. 5512, pp. 218–232.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02050-6 19

18. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
5th IEEE International Symposium on Requirements Engineering (2001)

47

