
This version is available at https://doi.org/10.14279/depositonce-7061

© © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Terms of Use

Lucas, J., Lal, S., & Juurlink, B. (2018). Optimal DC/AC data bus inversion coding. In 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE.
https://doi.org/10.23919/date.2018.8342169

Lucas, J., Lal, S., & Juurlink, B.

Optimal DC/AC Data Bus Inversion Coding

Accepted manuscript (Postprint)Conference paper |

Optimal DC/AC Data Bus Inversion Coding
Jan Lucas, Sohan Lal, Ben Juurlink

Embedded Systems Architecture
TU Berlin

Berlin, Germany
{j.lucas,sohan.lal,b.juurlink}@tu-berlin.de

Abstract—GDDR5 and DDR4 memories use data bus inversion
(DBI) coding to reduce termination power and decrease the
number of output transitions. Two main strategies exist for
encoding data using DBI: DBI DC minimizes the number of
outputs transmitting a zero, while DBI AC minimizes the number
of signal transitions. We show that neither of these strategies is
optimal and reduction of interface power of up to 6% can be
achieved by taking both the number of zeros and the number
of signal transitions into account when encoding the data. We
then demonstrate that a hardware implementation of optimal
DBI coding is feasible, results in a reduction of system power
and requires only an insignificant additional die area.

Index Terms—Data bus inversion, DDR4, GDDR5, power
consumption, termination power

I. INTRODUCTION

Up to 50% of the power used by the memory is con-
sumed by the external interconnect [1]. GDDR4/5/5X [2]–
[4] as well as DDR4 [5] memories use a pseudo open
drain (POD) electrical interface [6]. While the previously
used SSTL interfaces terminate to a voltage at 0.5VDDQ, the
POD interface is terminated to VDDQ. In a terminated SSTL
interface, DC current is always flowing, transmitting a zero
or a one just changes the path of the current flow. In the
POD interface, also illustrated in Fig.1, DC current through the
termination resistors is only flowing when transmitting a zero,
while transmitting a one does not cause DC current through
the termination. Memory using POD signalling reduces the
termination current by employing data bus inversion (DBI) [7].
For every 8 DQ (data) lines, a ninth DBI line is added.
Transmitting a zero on this line signals that the 8 DQs lines
contain an inverted data byte, while a one on the DBI wire
indicates transmission of the non-inverted byte. The simplest
DBI scheme is called DBI DC and simply counts the number
of zeros in each byte and transmits the byte in its non-inverted
form, if it contains 4 or fewer zeros. If the byte contains
5 or more zeros, the byte will be inverted. A byte with 5
zeros, will contain 3 zeros after inversion, however, the DBI
bit will contain an additional zero indicating the inversion.
This scheme guarantees that never more than 4 zeros per byte
are transmitted.

In addition to the interface energy consumed by DC ter-
mination current, transitions from zero to one or one to zero
consume dynamic power by charging and discharging of load

This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 688759
(Project LPGPU2).

0

1

VDDQ

Driver Receiver

Fig. 1. Pseudo open drain (POD) interface

capacities. The importance of the load capacities can also be
seen in the design of the POD output driver: A regular open
drain output would rely solely on the resistor to VDDQ to
generate high output state, but the pseudo open drain output
actively drives the output to high to provide a faster recharging
of the load and thus also a faster signal transitions than what
could be achieved by the termination pull-up alone. Instead of
reducing the number of transmitted zeros, the DBI signalling
can also be used to reduce the number of signal transitions.
In the DBI AC scheme, each transmitted byte is inverted, if
the inversion reduces the number of signal transitions.

In this paper, we present a novel DBI encoding scheme. It
finds a minimum energy DBI encoding of a burst, if given the
ratio between the energy for transmitting a zero and the energy
per transition. The paper is organized as follows: We first
provide an overview of related work, then we introduce our
optimal encoding algorithm and a simplified variant. Then in
Section IV we explain how power was modelled and explain a
hardware design that is able to perform the new DBI encoding
at the required data rates. In the next section, we present our
experimental results and finally we conclude our paper.

II. RELATED WORK

Hollis [8] described the DBI DC and DBI AC schemes
and recognized that both the number of transmitted zeros and
the number of signal transitions are important for the power
consumption of the memory interface. The slight increase
of the signal transitions in DBI DC and the slight increase
of transmitted zeros in DBI AC was also described in the
same paper. Hollis proposes to combine DBI AC and DC by
switching between DBI DC and DBI AC encoding modes. The
proposed DBI ACDC scheme encodes the first byte of a group

Start End

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

10001110 10000110 10010110 11101001 01111101 10110111 01010111 11000100

01110001 01111001 01101001 00010110 10000010 01001000 10101000 00111011

8

10

6

13

12

5

5

12

13

6

10

5

8

13

5

8

13

10

6

7

12

11

6

9

12

9

9

10

9

8

DC: 26 AC: 42 DC: 27 AC: 28 DC: 28 AC: 24

DC: 29 AC: 23 DC: 43 AC: 22

Fig. 2. Optimal DBI encoding as a shortest path problem

of bytes using DBI DC and then encodes the remaining bytes
using DBI AC. We found that this scheme indeed provides a
slight improvement compared to pure DBI AC. However, the
encoding proposed in this paper outperforms the DBI ACDC
scheme. In this paper we assume that all lines transmitted ones
prior to transmitting the evaluated burst. Due to this boundary
condition DBI AC performs identical to DBI ACDC.

Chang et al. [9] propose schemes that aim to reduce both
zeros and transitions per burst. However, instead of finding the
minimal energy encoding for each burst, they propose heuristic
schemes that find good but not necessary optimal encodings.

In a patent Hollis [10] proposes a technique to target both
signal transition and zeros. This technique uses additional sig-
nal lines and requires a different and more complex decoding
process than regular DBI schemes.

Ihm et al. propose an analog circuit for DBI DC en-
coding [11]. Analog implementation could also reduce the
overhead of the technique proposed in this paper and DBI
encoding seems to be well suited for analog implementation
as rare inaccurate encoding decision are unlikely to causes
application errors.

Stan and Burleson [12] provide theoretical background on
DBI encoding, however, they only consider the reduction of
signal transition and do not consider the reduction of zeros.

Narayanan et al. [13] describe additional coding schemes
that can reduce the number of signal transitions beyond DBI,
but require an even higher number of lines and more complex
encoding and decoding.

Kim et al. describe DBI DC in GDDR4 and show how it
reduces simultaneous switching output noise [14].

III. OPTIMAL ENCODING

To reduce the power consumption, every burst should be
transmitted using as little energy as possible. Each burst of 8
bytes can be encoded using 28 different DBI patterns. A naive
algorithm would search through all possible encoding options

and pick the cheapest one. But the cheapest encoding option
can be found much more efficiently as we can reformulate the
problem as a shortest path problem on a directed graph with
nonnegative weights. This is illustrated in Fig. 2. The topology
of the graph only depends on burst length. Two nodes exist for
each byte, one node represents the transmission of the byte in
its non-inverted representation, while the other node represents
the inverted transmission of this byte. The cost of transmitting
each byte depends only on the previous byte as well as the
byte itself. Only two different previous bytes can exist, either
the previous byte was inverted or not. The weight of the edges
represents the cost of encoding each byte based on the previous
byte. The shortest path from the start to the end node is the
encoding with the minimum total energy. Three factors control
the weights of the edges: The data that should be transmitted
and the coefficients α and β. The α coefficient configures the
cost of each signal transition, while the β coefficient sets the
cost of each transmitted zero bit. As the shortest path does
not change by a uniform scaling of the edge weights, we can
freely scale the coefficients as long as the ratio α

β does not
change. This allows us to use small integer coefficients without
a significant loss of encoding efficiency. Our top example
shows the shortest path and edge weights for α = β = 1.
This choice of α and β in the example implies that the energy
cost of transmitting a zero is identical to the energy cost of
a transition. If we vary the coefficients without changing the
data, we find 5 other pareto optimal encoding options. The
DBI DC algorithm finds an encoding with 26 zeros, but 42
transitions. The DBI AC algorithm finds the encoding with
22 transitions but 43 zeros. But neither of these two previous
algorithms are able to identify the three encodings with a more
balanced trade-off between zeros and transitions. If we assume
α = β = 1, then the optimal encoding has energy cost of
28+ 24 = 52, while DBI DC choose an encoding with a cost
of 26+ 42 = 68 and DBI AC selects an encoding with a cost
of 43 + 22 = 65.

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 0 0.2 0.4 0.6 0.8 1

 0 0.2 0.4 0.6 0.8 1

E
n
e
rg

y
 p

e
r

B
u
rs

t

AC cost

DC cost

OPT
AC
DC

RAW

Fig. 3. Energy per Burst using different DBI schemes

We simulated the different DBI encoding schemes on 10000
random bursts. We varied the cost α per signal transition from
0 to 1 and set the cost β = 1 − α. The result is shown in
Fig. 3. DBI DC behaves identical to optimal DBI (DBI OPT)
encoding when the AC cost is 0. This is no surprise as DBI
OPT with α = 0 and β = 1 is identical to DBI DC. DBI DC
works almost as well as the optimum encoding until the AC
cost reaches 0.15. Similar results can be seen for DBI AC.
As expected DBI AC performs identical to DBI OPT when
the DC cost is 0 and the performance stays close until the
DC cost reaches 0.15. Both DBI AC and DBI DC perform
worse than unencoded (RAW) data, when used together with
high DC cost or AC cost, respectively. DBI AC encoding is
cheaper than DBI DC encoding starting from α = 0.56. The
biggest advantage of optimal DBI encoding is also offered
at this point, where the average cost per burst is 2 points or
6.75% lower than with DBI AC or DBI DC. The shaded area
in Fig. 3 shows the advantage of DBI OPT encoding compared
to the best conventional encoding scheme (DBI DC or AC).

One problem with DBI OPT encoding is the accuracy
required for the coefficients. However, as we already saw
with DBI AC and DBI DC, the coefficients do not need
to be very accurate to still enable almost perfect encoding
results. We fixed α = β = 1 and named this encoding
scheme DBI OPT (Fixed). Fig. 4 shows the results. The
shaded area indicates the small reduction of performance due
to the fixed coefficient. The encoding with fixed coefficients
performs better than previous scheme from an AC cost of 0.23
to 0.79. The maximum energy reduction from this encoding
is nearly identical at 6.58%.

IV. EXPERIMENTAL SETUP

A. Power Model

We estimated the energy consumption based on a model
derived from the CACTI-IO model presented by Jouppi et
al [1], [15]. We unified all load capacities into a single load
capacity and reformulated the equations from power to energy
per activity.

 26

 27

 28

 29

 30

 31

 0 0.2 0.4 0.6 0.8 1

 0 0.2 0.4 0.6 0.8 1

E
n
e
rg

y
 p

e
r

B
u
rs

t

AC cost

DC cost

OPT
AC
DC

OPT (Fixed)

Fig. 4. Energy per Burst for different DBI schemes, shaded area shows loss
of efficiency from fixed coefficients

Ezero is the energy consumed by transmitting a single zero.

Ezero =
V 2
DDQ

Rpullup +Rpulldown

1

f
(1)

Etransition is the energy consumed by a single transition
from zero to one or one to zero.

Etransition =
1

2
VDDQVswingcload (2)

Vswing is the signal swing, it is calculated from the out-
put resitance of the pulldown driver (Rpulldown) and on-die
termination resistor. (Rpullup)

Vswing = VDDQ
Rpullup

Rpullup +Rpulldown
(3)

The total interface energy per burst is calculated as follows:

Eburst = nzerosEzero + ntransitionsEtransition (4)

cload is the total load capacity. We tested a wide range of
values from 1 pF to 8 pF total load. It should be the sum
of the effective capacities of the driver in the CPU or GPU,
the capacities of the memory devices added to the DQ lines,
the capacity of the transmission line connecting memory and
CPU/GPU. If a system uses DIMM or similar sockets the extra
load of those should also be considered. Amirkhany et al. state
a 1.3 pF load for an GDDR5 output driver [16]. CACTI-IO
assumes 2 pF for an DDR4 output driver and 1 pF per memory
device [1]. Vuong lists a maximum capacity of 1.3 pF for
DDR4 [17]. IBIS files from Micron also list similar values
per DDR4 input. DIMM sockets and the PCB trace can add a
few additional pF.

B. Hardware

To validate that the proposed DBI encoding can be done
at the required data rates and add only a small overhead to
a CPU or GPU using this scheme, we developed a hardware

Byte(0)

DBI(0)

Byte(1)

DBI(1)

Byte(2)

DBI(2)

Byte(3)

DBI(3)

Byte(4)

DBI(4)

Byte(5)

DBI(5)

Byte(6)

DBI(6)

Byte(7)

DBI(7)

0

∞

>

FF

or

Byte(−1)

0 1 0 1 0 1 0 1 0 1 0 1 0 1

0
1

c
o
s
t
in
v
(i
)

c
o
s
t
in
v
(i

+
1
)

0
1

c
o
s
t(
i
+

1
)

c
o
s
t(
i)

POPCNT POPCNT

Byte(i− 1) ⊕ Byte(i) Byte(i)

·α α · (9− x) β · (8− x) β · (x+1)

ac cost0 ac cost1 dc cost0 dc cost1

+

ac cost0

dc cost0

cost(i)

+

ac cost1

dc cost0

cost inv(i)

+

ac cost1

dc cost1

cost(i)

+

ac cost0

dc cost1

cost inv(i)

>

>
m0

m1

m1

m0

m0 m1

Fig. 5. Hardware architecture of improved DBI encoder

TABLE I
SYNTHESIS RESULTS (32NM)

Scheme Area
(µm2)

Static Power (µW) Dynamic Power
(µW)

Burst Rate (GHz) Total (µW) Energy per Burst
(pJ)

DBI DC 275 105 111 1.5 216 0.14
DBI AC 578 170 250 1.5 420 0.28
DBI OPT (Fixed Coeff.) 3807 257 2233 1.5 2490 1.66
DBI OPT (3-Bit Coeff.) 16584 5200 3600 0.5 8800 17.6

cost(i)

cost inv(i)

cost(i + 1)

cost inv(i + 1)

ac cost0+

dc cost0

ac cost0+

dc cost1

ac cost1+

dc cost0

ac cost1+

dc cost1

Fig. 6. Mapping of shortest path search to signals

implementation. Our proposed hardware architecture is shown
in Fig. 5. Each byte of the burst is processed by one processing
block. Each block receives two minimum costs: cost(i) is
minimum cost of transmitting bytes 0 to i-1 with the last
byte transmitted in non-inverted encoding, while cost inv(i)
is minimum cost of transmitting those bytes with the last
byte inverted. If we consider the problem as a shortest path
problem, cost(i) is the cost of the shortest path from the
start to the node of the ith byte and cost inv(i) is the cost
of the shortest path to corresponding inverted node. Each of
the processing blocks receives the byte itself as well as the
exclusive-or of this byte and the previous byte. Within each

processing block, two population count units (POPCNT) count
the number of set bits in each of the two inputs on the top.
dc cost0 is the cost of transmitting the current byte without
inversion, i.e., the number of zero bits multiplied with the cost
β of each zero. dc cost1 is the DC cost of transmitting the
current byte inverted. In this case the extra zero transmitted
on the DBI signal also needs to be considered, which results
in the +1 term. Two options also exist for number of signal
transitions: Either both the previous byte and the current byte
are transmitted in the same way (ac cost0) or the DBI bit
changed between the two bytes (ac cost1). Now the cost of
four different encoding options can be calculated (from the
top to the bottom): 1. Previous byte was not inverted, current
byte also not inverted. 2. Previous byte was inverted, current
byte is not inverted. 3. Previous byte was not inverted, current
byte is inverted. 4. Previous byte is inverted, current byte also
inverted.

The relationship to the graph is also shown in Fig. 6. To
calculate the cost of reaching a node via one edge, we need
to consider the cost of the edge as well as the minimum cost
of reaching the source node of the edge. Two edges lead to
each node and we compare their cost and store which of the
edges provided the cheapest path. The cheapest path is then
forwarded to the next block.

At the last block, we compare which of the two end nodes
provides the shortest overall path. This path is backtracked to
find the DBI pattern using the muxes below the blocks. This is
the same technique that is also used in the Dijkstra’s algorithm
to reconstruct the shortest path.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 5 10 15 20

N
o
rm

a
liz

e
d
 E

n
e
rg

y

Data Rate [Gbps]

DC
AC

OPT
OPT (Fixed)

Fig. 7. Interface energy per burst normalized to unencoded transmission for various DBI encoding schemes

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 0 5 10 15 20

N
o
rm

a
liz

e
d
 E

n
e
rg

y

Data Rate [Gbps]

1 pF
2 pF
3 pF

4 pF
6 pF
8 pF

Fig. 8. Energy per burst using optimized encoding, including encoding energy, normalized to best of DBI DC or AC

We described our designs in VHDL and synthesized the
designs using Synopsys Design Compiler Ultra K-2015.06-
SP4 together with the Synopsys 32nm generic libraries in order
to estimate the required die area, power and throughput. We
synthesized two variants of our proposed design: One design
used configurable 3-bit coefficients for α and β, while the
other design fixes α = β = 1. The fixed coefficients remove
multipliers from the design and reduce the bit width of the data
path. We added 8 pipeline stages to the output of our design
and used the retime option of the synthesis tool to move the
registers to an appropriate location. Current GDDR5X uses up
to 12 Gbps data rate per pin. Our design encodes 8 bytes per
clock cycle, thus a clock frequency of 1.5 GHz is required
to meet the required throughput using a single encoding
unit. Whether this design adds additional latency, depends
on the design of the memory controller, often it should be
possible to perform the encoding in parallel with other memory

controller tasks. If extra latency is added, this can still be
acceptable for GPUs: GPUs already have memory subsystems
with hundreds of cycles of latency and their performance is
relatively insensitive to additional latency [18].

V. RESULTS

Table I shows the results of our synthesis. DBI DC, DBI
AC and DBI OPT with fixed coefficients could meet the 1.5
GHz timing, equivalent to a data rate of 12 Gbps. DBI OPT
with 3-Bit configurable coefficients was significantly slower
and could only run at 500 MHz (equivalent to 4 Gbps). It also
required 4.5x more area than the design with fixed coefficients
and used 10.6x more energy per encoded burst than the design
with fixed coefficients. Due to the lower frequency, 3 units
are required to reach the same throughput, increasing the area
requirements even further.

Fig. 7 displays the interface energy per burst normalized to
the cost of transmitting the data without any DBI encoding
using POD135 (used by GDDR5X) and 3 pF load. However,
results for DDR4 with POD12 are almost identical. DBI DC
performs better than DBI OPT (Fixed) until 3.8 Gbps. DBI AC
would require a significantly higher frequency than 20 Gbps
to perform better than this scheme. The maximum gain from
this optimized encoding can be found around 14 Gbps.

The previous Fig. 7 does not include the energy required
for encoding. If we also consider the energy for encoding,
the picture changes. DBI OPT encoding with configurable
coefficients encodes the data only slightly better than the
fixed coefficient version, however, it uses significantly more
energy for encoding each burst. For this reason it always
consumes more power than the DBI DC and DBI AC schemes.
However, further optimization of the hardware might change
this. We used a relatively old 32nm process node for estimating
the power consumption and an optimized implementation
in a more recent process could provide a significant power
reduction, that could make configurable coefficients beneficial.

Fig. 8 shows the energy per burst for DBI OPT with fixed
coefficients normalized to the best conventional DBI encoding.
Higher capacitive load reduces the frequency where the highest
reduction of energy is achieved. At 3 to 8 pF load, the energy is
reduced between 5-6% at the operating points with the highest
gains.

VI. CONCLUSIONS

A novel DBI encoding scheme was presented, it reduces the
link power consumption by up to 6%. It has been shown that
the problem of finding an DBI encoding with the smallest
link energy is equivalent to finding the shortest path in a
graph. We presented a hardware design that performs the
encoding at the required data rates using an insignificant
extra area and energy. Additional optimization to reduce the
hardware overhead including partially analog implementation
are possible. A design with fixed coefficients provides a
very good trade-off between the energy required for encoding
and the saved link energy. It can be used without changing
existing DDR4, GDDR5 and GDDR5X memories to reduce
the interface energy during writes and could be integrated into
future memories to also reduce read interface energy.

REFERENCES

[1] N. P. Jouppi, A. B. Kahng, N. Muralimanohar, and V. Srinivas, “CACTI-
IO: CACTI with off-chip power-area-timing models,” IEEE Transactions
on VLSI Systems, 2015.

[2] JEDEC Standard, “Graphics Double Data Rate (GDDR4) SGRAM
Standard,” SDRAM3.11.5.8, May, 2006.

[3] ——, “Graphics Double Data Rate (GDDR5) SGRAM Standard,”
JESD212C, February, 2016.

[4] ——, “Graphics Double Data Rate (GDDR5X) SGRAM Standard,”
JESD232A, August, 2016.

[5] ——, “DDR4 SDRAM Standard,” JESD79-4B, June, 2017.
[6] JEDEC Standard , “POD15 - 1.5 V PSEUDO OPEN DRAIN I/O,”

JESD8-20A, 2009.
[7] S. J. Bae, Y. S. Sohn, K. I. Park, K. H. Kim, D. H. Chung, J. G.

Kim, S. H. Kim et al., “A 60nm 6Gb/s/pin GDDR5 graphics DRAM
with multifaceted clocking and ISI/SSN-reduction techniques,” in IEEE
ISSCC Digest of Technical Papers, 2008.

[8] T. M. Hollis, “Data bus inversion in high-speed memory applications,”
IEEE Transactions on Circuits and Systems II: Express Briefs, 2009.

[9] N. Chang, K. Kim, and J. Cho, “Bus encoding for low-power high-
performance memory systems,” in Design Automation Conference
(DAC). ACM, 2000.

[10] T. M. Hollis, “Devices and methods for facilitating data inversion to
limit both instantaneous current and signal transitions,” 2016, US Patent
9,270,417.

[11] J. D. Ihm, S. J. Bae, K. I. Park, H. Y. Song, W. J. Lee, H. J. Kim,
K. H. Kim et al., “An 80nm 4Gb/s/pin 32b 512Mb GDDR4 graphics
DRAM with low-power and low-noise data-bus inversion,” in IEEE
ISSCC Digest of Technical Papers, 2007.

[12] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-power I/O,”
IEEE Transactions on VLSI systems, 1995.

[13] U. Narayanan, K.-S. Chung, and T. Kim, “Enhanced bus invert encod-
ings for low-power,” in IEEE International Symposium on Circuits and
Systems (ISCAS), 2002.

[14] J.-H. Kim, W. Kim, D. Oh, R. Schmitt, J. Feng, C. Yuan, L. Luo, and
J. Wilson, “Performance impact of simultaneous switching output noise
on graphic memory systems,” in Electrical Performance of Electronic
Packaging. IEEE, 2007.

[15] N. P. Jouppi, A. B. Kahng, N. Muralimanohar, and V. Srinivas, CACTI-
IO Technical Report. Department of Computer Science and Engineer-
ing, University of California, San Diego, 2012.

[16] A. Amirkhany, J. Wei, N. K. Mishra, J. Shen, W. T. Beyene, C. Chen,
T. Chin, D. Dressler, C. Huang, V. P. Gadde et al., “A 12.8-Gb/s/link
tri-modal single-ended memory interface,” IEEE Journal of Solid-State
Circuits, 2012.

[17] H. Vuong, “Mobile memory technology roadmap,” in JEDEC’s Mobile
Forum, 2013.

[18] M. Andersch, J. Lucas, M. Álvarez Mesa, and B. Juurlink, “On latency in
GPU throughput microarchitectures,” in IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS), 2015.

