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Abstract 

Cell morphology is not only influenced by the cell cycle, the aging or individual properties, but also by 

environmental impacts such as those occurring on a large-scale. Cell morphology can be a suitable 

parameter for in situ measurements as it changes dynamically and is often related to cell physiology. 

In order to be able to identify relationships between cell physiology and morphology, statistically 

representative amounts of data have to be measured. It should be considered that the behaviour of 

cells is not only dynamic, but also very sensitive to environmental changes. Therefore, off line 

measurements may not be suitable for detecting small changes in the morphological properties. 

Sampling and sample preparation would conceal this, apart from an often insufficient number of data 

or an unreasonable amount of time and effort.  

Among the techniques that are able to capture the morphological characteristics of cells in real-time, 

automated imaging technologies are promising, because they provide additional information about 

cellular structures, shape and cell aggregation beyond size. Photo-optical in situ microscopy (ISM) and 

three-dimensional holographic microscopy (DHM) were used in this study to measure the 

morphological dynamics in eukaryotic cultures on a single-cell basis, using heterotrophic algae and 

yeast as examples.  

The intracellular concentration of the polyunsaturated fatty acid docosahexaenoic acid (DHA) in the 

heterotrophic algae Cryptecodinium cohnii was monitored. A second order correlation between the 

DHA content as measured off line chromatographically and the prediction using the average Sauter 

diameter was found. A different media composition did not only influence the cell size, but also the 

circularity and phase homogeneity of the algae cells. Consequently, different chloride ion substitutes 

were tested with respect to the cell growth and lipid accumulation in C. cohnii. 

Multi-compartment reactors were used to investigate the influence of gradients, as they occur in a 

large-scale, on the morphological heterogeneity in Saccharomyces cerevisiae cultures. Contrary to 

expectations, the sterol synthesis was positively influenced by oscillatory oxygen availability 

(ergosterol ester concentrations increased by 75 %), although microbial growth was decreased (the 

biomass concentration was reduced by 20 %).  

Budding of yeast was monitored in batch cultivation using ISM. A narrow size distribution was 

measured during the growth phase while the population homogeneity increased. If glucose was 

depleted, the percentage of non-budding cells remained almost constant due to a significant reduction 

in growth activity. The ratio of budding and total cells was successfully applied to differentiate between 

the different growth stages. 



Zusammenfassung  

4   

The methods proved to be suitable for monitoring morphological properties over a relevant 

concentration range. Faster particle identification, including overlapping particles, and further 

investigations to better understand the relations between the shape and state of a cell will allow the 

technology to be used to control a variety of bioprocesses. 

Zusammenfassung 

Die Zellmorphologie wird nicht nur durch den Zellzyklus, die Alterungs- oder individuelle Eigenschaften 

beeinflusst, sondern auch durch Umweltbelastungen, wie sie z.B. im großen Maßstab auftreten. Die 

Zellmorphologie kann ein geeignete Parameter für eine in situ Messung sein, da sie sich dynamisch 

verändert und dabei oft mit der Zellphysiologie zusammenhängt. Um Beziehungen zwischen der 

Zellphysiologie und Morphologie identifizieren zu können, müssen statistisch repräsentative 

Datenmengen gemessen werden. Zu Berücksichtigen ist, dass das Verhalten der Zellen dabei nicht nur 

extrem dynamisch ist, sondern auch sehr sensibel gegenüber Umweltveränderungen. Daher können 

off line Messungen ungeeignet sein, kleinere Änderungen in den morphologischen Eigenschaften zu 

detektieren. Die Probenahme und in der Regel die Probenvorbereitung würde diese überdecken, 

abgesehen von einer oft nicht ausreichenden Anzahl von Daten oder eines nicht vertretbaren 

Aufwandes.  

Unter den Techniken, die in der Lage sind, morphologische Merkmale von Zellen zeitnah zu erfassen, 

sind automatisierte Bildgebungstechnologien vielversprechend, da sie über die Größe hinaus weitere 

Informationen über zelluläre Strukturen, Form und Zellaggregation liefern. Die photo-optische in situ 

Mikroskopie (ISM) und die drei-dimensionale holographische Mikroskopie (DHM) wurden in dieser 

Studie zur Messung der morphologischen Dynamik in eukaryontischen Kulturen auf Einzelzellbasis 

eingesetzt, die exemplarisch an heterotrophen Algen und  Hefe untersucht wurde.  

Die intrazelluläre Konzentration der mehrfach ungesättigten Fettsäure Docosahexaensäure (DHA) in 

der heterotrophen Alge Cryptecodinium cohnii wurde überwacht. Eine Korrelation zweiter Ordnung 

zwischen dem DHA-Gehalt, wie er off line chromatographisch gemessen wurde, und der Vorhersage 

unter Verwendung des Durchschnitts des Sauter-Durchmessers konnte gefunden werden. Eine 

unterschiedliche Medienzusammensetzung beeinflusste nicht nur die Zellgröße, sondern auch die 

Zirkularität und Phasenhomogenität der Algenzellen. Folglich wurden verschiedene 

Chloridionenersatzstoffe hinsichtlich des Zellwachstums und der Lipidakkumulation in C. cohnii 

getestet. 

Mehrkompartimenten-Reaktoren wurden eingesetzt, um den Einfluss von Gradienten, wie sie im 

großen Maßstab auftreten, auf die morphologische Heterogenität innerhalb von Saccharomyces 

cerevisiae Kulturen zu untersuchen. Insbesondere wurden die Auswirkungen von 
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Sauerstofflimitierungen auf die Zellheterogenität untersucht. Entgegen den Erwartungen wurde die 

Sterolsynthese durch die oszillatorische Sauerstoffverfügbarkeit positiv beeinflusst (die 

Ergosterolesterkonzentrationen stiegen um 75 %), obwohl sich das mikrobielle Wachstum 

verlangsamte (die Biomassekonzentration war um 20 % erniedrigt).  

Darüber hinaus wurde die Knospung der Hefe mit Hilfe der ISM auf Einzelzellebene in 

Batchkultivierungen überwacht. Die Größenverteilung wurde während der Wachstumsphase enger, so 

dass die Populationshomogenität zunahm. War die Glukose verbraucht, blieb der Prozentsatz der 

Nicht-knospenden Zellen aufgrund einer stark verminderten Wachstumsaktivität nahezu konstant. 

Anhand des Anteils knospender Zellen  konnte zwischen den verschiedenen Kultivierungsstadien 

unterschieden werden. 

Die gezeigten Methoden erwiesen sich als geeignet zur Überwachung morphologischer Eigenschaften 

über einen relevanten Konzentrationsbereich hinweg. Eine schnellere Partikelidentifizierung, auch von 

überlappenden Partikeln, und weitere Untersuchungen zu einem besseren Verständnis der 

Zusammenhänge zwischen Form und Zustand einer Zelle wird den Einsatz der Technologie zur 

Kontrolle einer Vielzahl an Bioprozessen erlauben. 
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1. Introduction  

1.1. Background 

The structure, composition and intracellular metabolite concentrations of a cultivation is usually 

assumed to be synchronized in industrial bioprocesses. As consequence, a control of macroscopic 

variables would be sufficient to achieve optimal yields. However, in bioprocesses, as well as in nature, 

each cell has certain different features, populations are not homogeneous (Delvigne and Goffin, 2014). 

Therefore, the assumption of a homogeneous culture may lead to wrong conclusions. Nevertheless, 

the feasibility to measure heterogeneity in industrial bioprocesses is limited until now. The 

understanding and consideration of this cell variability can have a huge impact on the process yields 

and quality of products. Cell heterogeneity can be used to predict the suitability of cultivation 

conditions and strain engineering. 

Despite of the huge impact on the process performance, the physiology of cultures is usually still 

observed by off line measurements, with all draw-backs of long response times, a high degree of 

manual preparation or automated instrumentation. Moreover, off line analysis include biases due to 

manual preparation. For example, the gold standard for viability assessment is counting colony forming 

units or staining a sample with a viability dye (Davey, 2011). Usually, an accurate single-cell based 

analysis becomes difficult under such conditions. Nevertheless, such viability tests is of huge 

importance for beer and wine production, as well as for dairy starter cultures (e.g. for lactic acid 

bacteria). The viability directly decides on the product quality, but also on the process efficiency and 

the ability to cope with different stress factors, which are intrinsic to the process.  

Changes in cell physiology can interrelate with the cell morphology. The morphology of cells is altered 

by means of environmental stress (Albertin, et al., 2011; Timoumi, et al., 2017), as e.g. in large-scale 

production due to gradient formation, or in general under nutrient starvation and high shear stress. 

Since the cell status might be related to the cell morphology, process analytical tools for monitoring it 

on a single-cell basis need to be explored. 
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1.2. Thesis outline 

This thesis consists of a Literature Research section, which is divided in three chapters: 

Chapter 1 (Environmental conditions in industrial-scale bioprocesses) provides a general overview on 

the environmental conditions, with which the cells have to cope in industrial-scale bioprocesses. In the 

first part the most widely used cultivation modes and technical limitations due to scale-up are 

described. The second part provides a short review of scale-down approaches used until now to 

reproduce those conditions in lab-scale. Finally, the industrial relevance of C. cohnii and S. cerevisiae is 

discussed. 

Chapter 2 (Morphology and physiology, a tight relationship) points out the phenotypic variability in 

microbial cultures and its relation to morphological cell dynamics. The population heterogeneity, which 

result from the single-cell specific response to the cultivation conditions, but also from cell cycle events 

will be discussed. A section pointing out the relevance of single-cell information is included.  

Chapter 3 (Analysis of the single-cell morphological heterogeneity) provides a short overview on 

experimental single-cell morphological analysis, making a differentiation between imaging and non-

imaging techniques, and evaluates it’s in situ applicability.  

Additionally, three publications resulting from the work executed during this thesis are enclosed: 

Publication 1 (Single-cell-based monitoring of fatty acid accumulation in Crypthecodinium cohnii with 

three-dimensional holographic and in situ microscopy).  

The single-cell size distribution was tracked for bioreactor cultivations, as well as for testing various 

medium compositions in terms of growth and lipid accumulation. Morphological heterogeneity was 

monitored with a photo-optical sensor and holographic microscopy. The accumulation of the lipid 

product could be quantitatively detected based on the cell size distribution. It was concluded that the 

diameter, circularity and phase-homogeneity of the microalgae Cryptecodinium cohnii changed 

depending on the process stage or media composition. 

Publication 2 (Sterol synthesis and cell size distribution under oscillatory growth conditions in 

Saccharomyces cerevisiae scale-down cultivations) 

In order to mimic large-scale oscillating conditions in lab-scale, two scale-down systems were used. 

The cell response to those conditions on the metabolite accumulation of the main carbon and sterol 

biosynthesis in the yeast Saccharomyces cerevisiae was investigated. Alterations in the metabolic 

activity, especially concerning synthesis rates and intracellular regulation mechanisms within the sterol 

metabolism, were measured. The size distribution from the holographic microscopy measurements 

revealed that the cell size distribution changed concomitantly. 
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Publication 3 (Real-time monitoring of the budding index in Saccharomyces cerevisiae batch 

cultivations with in situ microscopy) 

Maturation of the yeast Saccharomyces cerevisiae became trackable in situ on a single-cell level. Based 

on the relation of budding and non-budding cells, a distinction between growth stages and cultivation 

conditions was feasible. Moreover, the single-cell distribution of several morphological parameters 

such as the cell size and aspect ratio provided information on the population heterogeneity and the 

cell activity. 

Finally, a Summarizing discussion is highlighting the importance and applicability of the achievements 

accomplished during this thesis. Future challenges and perspectives are highlighted in the Outlook 

section. 

1.3. Publications included in the thesis 

Post-print version used in thesis: 

1) Chapter 4.1 (p. 48-65) 

Marbà-Ardébol, A.-M.; Emmerich, J.; Neubauer, P. and Junne, S. (2017). Single-cell-based 

monitoring of fatty acid accumulation in Crypthecodinium cohnii with three-dimensional 

holographic and in situ microscopy. Process Biochemistry 52, 223-232.  

https://doi.org/10.1016/j.procbio.2016.11.003 

 

2) Chapter 4.2 (p. 66-82) 

Marbà‐Ardébol, A. M.; Bockisch, A.; Neubauer, P. and Junne, S. (2017). Sterol synthesis and cell 

size distribution under oscillatory growth conditions in Saccharomyces cerevisiae scale‐down 

cultivations. Yeast 35, 213-223.  

https://doi.org/10.1002/yea.3281 

 

3) Chapter 4.3 (p. 83-99) 

Marbà-Ardébol, A.-M.; Emmerich, J.; Neubauer, P. and Junne, S. (2018). Real-time monitoring 

of the budding index in Saccharomyces cerevisiae batch cultivations with in situ microscopy. 

Microbial Cell Factories, 17, 73.   

https://doi.org/10.1186/s12934-018-0922-y 

 

In all publications listed here, I was responsible for the conception and realization of the experimental 

work, the interpretation of the results and the main part of the writing. 

https://doi.org/10.1016/j.procbio.2016.11.003
https://doi.org/10.1002/yea.3281
https://doi.org/10.1186/s12934-018-0922-y
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1.4. Other publications 

The 4 years PhD project resulted in other publications, which have not been included in this thesis. 

Some of them are in strict relation with the topic of this work and some others are the result of other 

collaborations: 

1) Marbà-Ardébol, A. M.; Turon, X.; Neubauer, P. and Junne, S. (2016). Application of flow 

cytometry analysis to elucidate the impact of scale-down conditions in Escherichia coli 

cultivations P. Gil Salvador 2013 Award in Bioengineering category.(November 22, 2013 in the 

Annual General Assembly of the AIQS). Afinidad. 73 (573), 7-15. 

 

2) Junne, S.; Marbà-Ardébol, A. M. and Neubauer, P. (2016). Neue Applikationsfelder für Single-

use-Bioreaktoren. BIOspektrum. 22 (1), 96-99. 

DOI: 10.1007/s12268-016-0660-9. 

 

3) Lorenz, E., Runge, D., Marbà-Ardébol, A. M., Schmacht, M., Stahl, U. and Senz, M. (2017). 

Systematic development of a two-stage fed-batch process for lipid accumulation in 

Rhodotorula glutinis. Journal of biotechnology 246, 4-15.  

DOI: 10.1016/j.jbiotec.2017.02.010. 

 

4) Marbà‐Ardébol, A. M., Emmerich, J., Neubauer, P. and Junne, S. (2017). In situ microscopy for 

real-time determination of single-cell size distribution and activity in microbial cultures. 13. 

Dresdner Sensor-Symposium 201 Vol. P2. Prozessmesstechnik 222 - 225 (Hotel Elbflorenz, 

Dresden).  

DOI: 10.5162/13dss2017/P2.10. 

 

5) Marba-Ardebol, A. M., Emmerich, J., Muthig, M., Neubauer, P and Junne, S. (2018). In situ 

microscopy for real-time determination of single-cell morphology in bioprocesses. Journal of 

Visualized Experiments, submitted.  
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1.5. List of abbreviations 

ANN  artificial neural network 

C. cohnii  Cryptecodinium cohnii 

DCW  dry cell weight 

d32  Sauter mean diameter 

dF  Feret diameter 

DHA   docosahexaenoic acid 

DHM  digital holographic microscopy 

DO  dissolved oxygen 

E. coli  Escherichia coli 

FCM  flow cytometry 

ISM  in situ microscopy 

ratio C/N ratio carbon/nitrogen 

PFR  plug flow reactor 

S. cerevisiae Saccharomyces cerevisiae 

STR  stirred tank reactor 

two-CR  two-compartment reactor 

three-CR three-compartment reactor 
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2. Literature research 

2.1. Environmental conditions in industrial-scale bioprocesses  

Nowadays, the competition in bioprocesses is growing due to the raise of biosimilars and the expiration 

of patents, as well as due to an increment in the demand of industrial bioproducts (enzymes and small 

molecules), of bioenergy, and of chemoenzymatic processes, which have to be competitive against 

existing chemical processes. Meanwhile productivity and quality-by-design aspects need to be 

improved and controlled, development times need to be kept short and costs need to be reduced 

(Konstantinov and Cooney, 2015).  

Cultivation conditions in the lab-scale are often far away from large-scale operation. Consequently, 

lower yields are often detected for both, biomass and growth-associated products, when scaling-up. 

Therefore, large-scale constraints should be already considered in the early process development 

steps (Noorman and Heijnen, 2017). This means to recreate in the lab-scale the cultivation conditions 

cells will encounter during production, by considering e.g. the feed stock and the chosen operation 

mode that will be applied in the production scale (Figure 1), as well as the intrinsic technical limitations 

of the large-scale, while analyzing how the cell phenotype is accordingly influenced.  

 

Figure 1. Points from the large-scale conditions to be considered in lab-scale studies. 

In order to be competitive, processes should be robust against variations. A critical issue, which has 

to be considered, is the inherent variability of raw materials (Losen et al. 2004; Unthan et al. 2014, 

Kasprow, Lange et al. 1998), since mostly complex media is applied (cane or beet molasses, starch 

hydrolysates of maize, cassava, wheat and raw sugars). Its composition is usually not well defined and 

there is a large batch-to-batch variation depending on quality and availability (regional, seasonal, price 

or regulations), which become even more crucial for bulk production with the envisaged concept of a 

bio-based economy. This variability can affect both, the upstream and the downstream operations. 
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Besides, processes need to be flexible in terms of productivity, since the demand forecast is changing 

rapidly or is even falsely predicted. Consequently, a better understanding and control of the process 

is needed. Therefore, in the following chapters first, the intrinsic conditions and limitations of widely 

applied operation modes are presented (2.1.1). This decision will determine the boundary conditions 

of the process. Secondly, the limitations of the transport phenomena and their consequences are 

discussed (Error! Reference source not found.). Then, scale-up and scale-down accomplishments, 

hallenges and limitations are described (2.1.3). Finally, the industrial relevance of C. cohnii and S. 

cerevisiae is presented, as they were exemplarily investigated during the practical part of the present 

research work (2.1.4). 

2.1.1. Cultivation modes 

With the exception of continuous processes like wastewater treatment or bioenergy production, the 

majority of bioprocesses nowadays are operated as a batch or fed-batch (Neubauer and Junne, 2016). 

Although batch mode is considered flexible when low volumes of different products need to be 

produced, it is also characterized by a lack of control in the cell growth. During a batch process, 

eventually followed by a fed-batch process, cells are passing different growth phases where problems 

associated with catabolic regulation, oxygen limitation and heat generation may appear. These 

changes are more drastic during batch growth and can lead to various physiological states. However, 

batch-mode is applied for the production of beverages, probiotics and antibiotics.  

Many commercial bioprocesses are operated in fed-batch mode under substrate limitation. As high 

volumetric yields of a product can only be reached by high cell densities, the substrate feed must be 

highly concentrated. In a substrate limited fed-batch the cell growth rate is a function of the feed rate 

and a quasi-steady state is achieved during a certain period of time. By controlling the growth rate or 

rather the feed rate, the reproducibility of the process can be improved (Jenzsch, et al., 2006). 

Moreover, a controlled feed can also avoid oxygen limitation and by-product accumulation and 

guarantees aerobic growth even at high cell densities. Another advantage of this operation mode 

against batch mode is the possibility to change the cultivation conditions to trigger the cells to another 

phase, for example by changing the feed composition, by temperature shift or addition of an inducer 

in recombinant bioprocesses. In this way, the process performance can be optimized by maximizing 

the cell concentration before the product of interest is produced decoupled from growth.  

Continuous processes can increase the yield and reduce the volume (Croughan, et al., 2015). For the 

production of primary metabolites, which are associated to the growth of the organism (organic acids, 

amino acids), continuous bioprocessing usually is superior. This is also the case for unstable products 

(e.g. certain enzymes and blood coagulation factors), since the residence time inside the reactor needs 

to be short (Ozturk, 2014). Due to the steady state, the process can be controlled comparably easily by 
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the speed of the feed pump, i.e. the residence time. Unproductive turnaround times can be reduced 

(e.g. cleaning and sterilization), hence the productivity increased. Therefore, continuous processing or 

at least repeated batch and fed-batch procedures during upstream is an interesting opportunity for 

future bioprocesses. 

Moreover, if the product of interest can be excreted into the supernatant, biomass retention can 

increase the productivity due to the possibility of cultivation during long period of times at high cell 

densities (Sieck, et al., 2017). This continuous mode of operation, called perfusion, consist of 

continuous harvesting of supernatant and concomitant supply of fresh medium, while cells are 

retained in the bioreactor.  

Nevertheless, there are some drawbacks, as the risk of infection (Desai, 2015) or spontaneous 

mutation of the microorganisms (Barrick and Lenski, 2013), which make continuous modes less 

attractive to an application with low tolerance of risk and high regulation procedures (Reay, et al., 

2013). Moreover, down-stream costs may increase when the titer is diluted due to the constant 

harvesting. Regarding process development, it is easier to transfer a batch process into the large-scale 

than a fed-batch or a continuous process, which requires improved monitoring and control.  

For all cases, monitoring is necessary to document repeatability as quality control and ensure a 

proper operation regime, according the required regulatory boundaries like e.g. set by the U.S. Food 

and Drug Administration (FDA) (Rathore, et al., 2015).  

2.1.2. Scale-up related challenges 

The first drawback that faces scale-up is the limitation in the power of mixing and consequently the 

limitations in mass transport. Due to their non-linearity performance, transport phenomena are 

difficult to scale up in a bioprocess. Mixing times in the lab-scale are lower than 5 seconds, but increase 

at least by an order of magnitude in industrial-scale bioreactors (Hewitt and Nebe‐Von‐Caron, 2001). 

Mixing times in the range of several minutes were detected in bioreactors running at a scale of 120 and 

150 m3 (Junker, 2004; Namdev, et al., 1992). Therefore, several related growth parameters like 

substrate, O2, CO2, or side metabolites, but also physical parameters like temperature or pH are not 

evenly distributed.  

Although the sensor technology is constantly improving, published literature of gradients 

measurements in the large-scale is rare. Only recently, the investigation of the spatial gradients in the 

liquid phase of a biogas plant has been published (Kielhorn, et al., 2015). A reason could be that 

bioreactors in the production scale have hardly changed with the time, so the feasibility of applying 

new technologies may be difficult. Regulations and costs restrictions may have become more relevant 

with the time as well. Therefore, gradient formation and other scale-related stresses are often not 
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considered, as the sensitivity of the physiological state of the organisms to these stresses remain to be 

investigated. Nevertheless, recent reviews are pointing out the importance to perform a proper 

analysis of the physiological state under large-scale environmental conditions (Neubauer and Junne, 

2016). 

The most important spatial and temporal heterogeneities and the physiological cell response to them 

will be discussed in detail below.  

2.1.2.1. Substrate gradients 

Substrate gradients appear in high cell density fed-batch cultivations, since the power input is 

restricted. If cells cope with a substrate concentration above a critical value, an overflow metabolism 

can occur (30 mg L-1 of glucose is reported for S. cerevisiae and E. coli), which implies by-product 

formation due to the Crabtree effect (yeast) or due to the redirection of acetyl CoA from the Krebs 

cycle (bacteria) (Hewitt and Nienow, 2007). In contrast, when cells suffer from glucose starvation, they 

have to shift to an alternative carbon source (ethanol, lactate or acetate among others). A shift from 

one carbon source to another results into reduced growth. 

Glucose gradients were measured by sampling at three different stirred tank bioreactor heights in a 

fed-batch mode, either with a working volume of 9 m3 (Bylund, et al., 1998), 22 m3 (Enfors, et al., 2001), 

or 30 m3 (Larsson, et al., 1996). These studies showed that gradient formation directly depend on the 

mixing characteristics at the feeding position. Even a 400 times higher glucose concentration than the 

average could be encountered when this position was not well-mixed, e.g. when feed addition was at 

the top. Moreover, cells are exposed to two types of substrate gradients in the large-scale bioreactor. 

They are exposed to rapidly fluctuating high substrate concentrations when they circulate in the 

feeding zone, whereas cells circulating between all zones in the liquid phase cope with a decrease of 

substrate concentration with the distance to the feed point. It is important to note that although 

multiple feeding points at well-mixed zones were considered, usually any addition in the bioreactor is 

dosed from one single spot (Larsson, et al., 1996), due to concerns about contamination, pipe blockage 

or mechanical stability. Despite of the fact that the optimal position of any feed addition is near the 

impeller, where the maximal specific energy dissipation rate is encountered, surface addition is often 

applied in large-scale. Consequently, substrate is almost depleted in the middle and bottom parts of 

the reactor (Neubauer and Junne, 2016). The assumed substrate concentration and dissolved oxygen 

in large-scale fermenters with feed addition from the top and at the bottom are depicted in Figure 2. 
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Figure 2. Suggested distribution of substrate and dissolved oxygen (DO) concentration in large-scale bioreactors 

during a nutrient-limited fed-batch process 

2.1.2.2. Oxygen gradients 

Close to the feeding zone, the high substrate consumption rate leads to a volumetric oxygen demand 

of the culture that exceeds the oxygen transfer rate to the liquid phase. This is often the limiting-rate 

in aerobic processes due to the low solubility of oxygen in the medium (Garcia-Ochoa and Gomez, 

2009). Gas solubility in liquids is always low and a function of temperature, pressure, concentration 

and type of salts dissolved in it. Under the absence of oxygen, some organisms can perform anaerobic 

respiration when an alternative electron acceptor is present, as for example during the use of nitrate 

by some bacteria (E. coli or C. glutamicum). Otherwise, many organisms can grow without using the 

electron transport chain, e.g. yeast. However, this anaerobic growth is associated with a low energy 

yield compared with that observed at completely oxidative processes (Rodrigues, et al., 2006).  

In contrast, e.g. in the lag-phase, high oxygen concentration can lead to oxidative stress. The 

accumulation of intracellular reactive oxygen species can damage lipids, proteins and nucleic acids. 

Effects on lipids include a decrease in membrane fluidity, specific ion permeability or activity of 

membrane receptors. Damages on proteins compromise their structure, and therefore their 

functionality (Guan, et al., 2017). 

Dissolved oxygen (DO) gradients were measured with a movable sensor in an industrial Streptomyces 

cultivation with a working volume of 112 m3 (Manfredini, et al., 1983). Although in this study a high 

viscosity was encountered due to the filamentous morphology of Streptomyces (250 -500 mPas), 

gradients were not only measured in viscous culture broth. An uneven distribution of oxygen was also 
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measured by Oosterhuis et al. in a cultivation volume of 19 m3, where the viscosity was only 1.5 mPas 

(Oosterhuis, 1984).  

2.1.2.3. Other gradients 

So far, the majority of studies focused on effects of dissolved oxygen and substrate concentration. 

However, dissolved carbon dioxide (dCO2) and pH gradients may also be critical scale-up factors. The 

dCO2 concentration can be elevated close to the feed point due to the high consumption rate of 

carbohydrates in aerobic cultivations. However, not only microorganisms can change the composition 

of the media and hence the gas solubility, the hydrostatic pressure in large bioreactors caused through 

the height of the reactor becomes also critical for gas solubility. Thus, elevated regions of dCO2 can be 

identified in the lower parts of them. Moreover, high concentrations of dCO2 may cause acidification 

of the media.  

Baez et al studied the effect of dCO2 constant exposure and oscillating dCO2 conditions in a two-CR 

(STR-STR), under different mean circulation times. The time of exposure to high dCO2 concentrations 

came out to be critical, since the lowest circulation time (50 s), as present in large-scale bioreactors, 

had little effect on growth and recombinant protein production of E. coli cultures (Baez, et al., 2011). 

However, a permanent exposure to high dCO2 trigger the acid stress response of the cells. 

Additional gradients result from the dosification of the acid/base addition for pH control. As pointed 

out above, any feed is bound to the flow regime in the region of addition. Moreover, pH control is 

based on one point measurements, and it is pulse-wise dosed. A lower number of studies dealing with 

pH fluctuations have been published in comparison to substrate and oxygen gradients. However, they 

have been showing performance losses, thus it may be an underestimated parameter. Oscillating 

exposure of cells to high pH zones led to a negative effect on the viability and cell growth on E. coli fed-

batch cultivations (Onyeaka, et al., 2003). C. glutamicum was more sensitive to pH fluctuations than to 

oscillating oxygen availability (Limberg, et al., 2017).  

2.1.2.4. Heat transfer 

The height to diameter of microbial bioreactors is usually in a range of 3-5. Large-scale volumes are in 

between 100–200 m3 (Wittmann, et al., 2016), but they can increase up to 500 m3 like some beer 

fermenters (Nienow, et al., 2011) or lysine production (Eggeling and Bott, 2015). Heat exchange 

surface may sometimes become the limiting factor rather than the oxygen transfer in high-cell 

density processes (Hewitt and Nienow, 2007). When scaling-up heat release scales with the volume of 

the reactor, whereas the relation between surface area to volume is dramatically reduced, and thus 

the cooling capacity. The installation of cooling coils or cooling baffles can improve the heat exchange. 

In contrast, the limited heating rate can be beneficial for the cells, when increasing the temperature in 
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order to shift to a production phase. Low heating rates reduce negative effects associated with the 

heat shock stress response as showed in Caspeta el al. The production of a recombinant protein using 

a thermo-inducible expression system showed a correlation between by-products accumulation and 

heating rate. The highest productivity was achieved with the lowest heating rate, which means to 

mimic the heating conditions encountered in the large-scale by induction (Caspeta, et al., 2009). 

2.1.3. Scale-up/scale-down 

Although some successful examples in scaling-up can be found, there is no standard criteria ensuring 

success. Some recommendations are listed (Junker, 2004; Takors, 2012) by taking into account physical 

similarities between scales. Mainly three scales can be differentiated when scaling, namely the lab-

scale for elementary studies, the pilot plant for the process optimization, and the production scale. 

Besides, there is the micro-scale, which can be used for high-throughput investigations. 

Mostly used parameters in scaling-up are the geometry of the vessel (height to diameter ratio), the 

agitator tip speed, the volumetric power input (P/V), the oxygen mass transfer rate (KLa), and the 

Reynolds number (Neubauer and Junne, 2016). All of them are physical properties that affect mass and 

heat transfer. These parameters cannot be scaled in the same way due to technical and economic 

restrictions. Besides, it is important to know the interaction between each of them, and that these 

relations use to change with the scale. 

The energetic expenses increase drastically when increasing the scale. Typical scale-up volumes are in 

a range from 10 L in lab to 1 m³ in pilot scale, followed by 10 to 500 m³ in the production scale. A 10-

fold increase in the reactor size reduces the specific power input about two-thirds (Bailey and Ollis, 

1977). Consequently, the criteria of constant mixing time can hardly ever be applied for scaling-up, 

since it is greater of what is economically or technically feasible. It is therefore inevitable that the 

mixing time increases with the scale. Mixing times are normally experimentally measured (Nielsen, et 

al., 2003), but they also can be approximated through correlations (Oosterhuis, 1984). 

In order to consider large-scale conditions to develop or optimize bioprocesses, scale-down 

simulators can be used. They mean to mimic the industrial-scale conditions in order to study the 

consequence of gradient formation in the lab or pilot-scale, empirically or through mathematical 

models. This subject was discussed in depth in some recent reviews (Delvigne, et al., 2017; Neubauer 

and Junne, 2016). The strategy of scale-down approaches is based on the comparison between a 

reference culture in a well-mixed reactor, where homogeneous conditions are assumed, with another 

one, where cells cope with oscillatory conditions, as it occurs at large-scale. Meanwhile the reference 

system usually is a STR, different approaches can be applied for mimicking the oscillations (Neubauer 

and Junne, 2016), which can be cyclic or stochastic.  
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Although it is demonstrated that scale-down systems are reliable for studying large-scale conditions 

(some examples are presented below), their application is not yet a standard step in bioprocess 

optimization and development, there exists no standardization. This may be due to the empirical 

design associated to them and the assumptions made to conduct such scale-down studies. As 

previously noted, there is a lack of industrial-scale data, which makes it complicated to proof the 

validity of the various approaches. A huge variability of the conditions in the large-scale along with 

confidential issues have let to this scenario as well. Different scale-down set-ups, each of them 

mimicking different gradients distributions, have been applied and compared with one another 

(Table 1). 

Table 1. Overview of published studies comparing the effect of different scale-down set-ups. 

Cultivation mode 

Scale-down comparison 

Organism Observations Reference 

 

Fed-batch mode 

1) STR with fluctuating 

aeration 

2) Two-STR (one STR 

with oxygen limitation 

and one without). 

G. oxydans 

 

- different gluconic acid production 
curves between 1) and 2) 

 

(Oosterhuis, et 

al., 1985) 

S. cerevisiae 

 

- same biomass yield 

- metabolic imbalance in 1) 

(accumulation of some metabolites 

e.g. acetic acid) 
 

Sweere, et al., 

1988 

 

Batch followed by fed-

batch mode 

Sugar concentration and 

dissolved oxygen 

oscillations. 

1) STR 

2) STR-PFR 

E. coli 

- almost the same biomass yield 

- stronger stringent response in 2) 

- higher cell segregation in 2) 

Delvigne, et al., 

2009 

 

Fed-batch mode 

Sugar concentration and 

dissolved oxygen 

oscillations. 

1) STR-PFR 
2) STR-PFR-PFR 

C. glutamicum 

 

- similar biomass yield 

- similar lysine yield 
 

Lemoine, et al., 

2015 

E. coli 

 

- different biomass yield 

- lower viability in 2)  
 

Marba-Ardebol, 

et al., 2016 

 

Batch mode 

1) Two-STR 

2) STR-PFR 

C. glutamicum 
-- similar growth reduction 

- similar lysine yield 

Limberg, et al., 

2016 
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Cyclic oscillations can be achieved by applying pulse feed of some growth related parameters (aeration, 

substrate) in a one compartment reactor e.g. continually changing oxygen concentration in the inlet 

gas flow (Sweere, et al., 1988b) or based on ON/OFF DO-feed control (Delvigne, et al., 2009). Pulse 

feed experiments are used for studying metabolic shifts of physiological parameters under some 

disturbance that appears in large-scale.  

Stochastic extracellular fluctuations can be achieved by the compartmentation of the reactor, where 

not only spatial, but also temporal gradients are created, as it occurs in large-scale. Usually, one STR is 

simulating a zone with rather ideal conditions, whereas in another compartment/s cells are undergoing 

the limitation or excess of one or more growth related parameters. 

When using a two-CR that consists of two STRs, the residence time distribution of the cells in both 

compartments is broad and not defined, and probably a lot of cells are exceeding the time coping with 

stressful conditions. If cells should cope with spatial and temporal defined gradients one of the STR 

compartments can be changed to a plug flow reactor (PFR), in which the mixing regime can be 

characterized through the Bodenstein number (George, et al., 1993). This non-dimensional number is 

a function of the residence time and the aeration rate, which ensures a plug flow regime. The formation 

of the desired gradients should be defined with large-scale measurements, or with predicted values, 

which originate from Computational Fluid Dynamics (CFD) studies (Bylund, et al., 1999). PFRs can be 

equipped with static mixers to provide efficient mixing of gas and liquid, while the plug flow regime is 

maintained (Neubauer and Junne, 2010). Besides, the possibility to install sample and sensor ports 

along the PFR module allows the measurement of gradients and metabolites after defined residence 

times (Junne, et al., 2011). Up to now, multiple compartments (mostly two) are the most applied set-

ups, mainly to mimic DO and substrate gradients of fed-batch cultivations, but also pH fluctuations 

(Amanullah, et al., 2001).  

On the basis that all scale-down systems are a simplification of the real gradient concentration profile, 

the reduction of the large-scale conditions to only two zones neglect some extreme limitations 

presented in this scale. Therefore, a third compartment has been added, which extends the variability 

of areas that can be simulated. Considering e.g. the homogeneous zone (STR compartment with 

aeration) with the feed zone (PFR-compartment with feeding) as before, the third compartment can 

be added to mimic a zone with strong starvation far away from it (a second PFR without feeding) 

(Lemoine, et al., 2015; Marba-Ardebol, et al., 2016), where substrate limitation and oxygen depletion 

could be encountered. The cells circulate stochastically between the three compartments.  
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The potential of scale-down to observe the behaviour of the large-scale process has been proven for 

various microbial cultivations, e.g. when achieving the same biomass yield as in the large-scale (Xu, et 

al., 1999). However, if cells are shear sensitive like cell culture or algae cells, the peristaltic pumps used 

in multi-compartment reactor systems can already influence the process performance (Nienow, et al., 

2013). Therefore, control runs must be performed to separate the cells response from each effect 

(Brunner, et al., 2017), e.g. pH fluctuations from shear stress. 

The application of stressful conditions, however, can have both, positive and negative effects, a case-

dependent study is always necessary. It was demonstrated that large-scale conditions can have a 

positive effect on the process. The gassing power of yeast in a dough (quality parameter of Baker’s 

yeast) was increased for sweet doughs in both scale-down experiments and production bubble column 

reactor (215 m3) in comparison to lab-scale homogeneous conditions (George, et al., 1998), despite 

the lower yield obtained. This did not only result into the study of productivities, but also of cells quality 

and/or viability. Flow cytometry (FCM) measurements showed that gradients encountered in the large-

scale can provide higher viability than the homogeneous conditions of the lab-scale to some cultures, 

although the occurred losses in biomass. Scale-down systems and production scale viabilities were in 

agreement to each other (Enfors, et al., 2001; Hewitt and Nebe‐Von‐Caron, 2001). Results from 

Delvigne et al point in the same direction. FCM was applied for the study of a transcriptional reporter 

gene based on the green fluorescent protein (GFP) on a single-cell basis. E. coli general stress response 

under scale-down conditions (excess, limitation and starvation of glucose and exhaustion of oxygen) 

was monitored using a prpoS::gfp fusion. A significant drop of the GFP content was observed for the 

heterogeneous conditions (Delvigne, et al., 2009). This reduction was associated with a segregation in 

the population heterogeneity. S. cerevisiae reporter strains have been also applied for investigating 

the cell robustness against freeze-thaw stress and growth on ethanol in a continuous two-STR scale-

down cultivation. Sugar concentration and dissolved oxygen oscillations were encountered. One strain 

reporter was related to growth, whereas the other was related to ethanol growth. FCM measurements 

evaluating freeze-thaw stress reveal that the membranes of cells growing with higher dilution rate 

appear to be more robust towards freeze–thaw stress, in comparison to cells growing at lower dilution 

rate. In terms of ethanol consumption, cells cultivated in one-compartment reactor showed no growth 

on ethanol, whereas 64 % higher fluorescence was detected in compartment reactor cultivations. The 

population heterogeneity increased as well (Heins, et al., 2015). The response of reporter genes in 

combination with scale-down experiments with PFR compartments, as described for several bacterial 

processes, remain to be investigated for yeast cultivations. 

Computational approaches provided a higher resolution of the large-scale system (Larsson, et al., 

1996), when combining kinetic data of the organisms (relevant metabolic reactions) with the 

description of fluid dynamics (mixing times, mass transfer and flow regime). An Euler-Lagrange 
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approach was used for the description of an individual cell behavior, as a result of the interaction with 

spatial and temporal bioreactor heterogeneities. This approach was applied for the simulation of a 

900 L process at fed-batch mode when cultivating S. cerevisiae (Lapin, et al., 2004) and E. coli (Lapin, 

et al., 2006). Recent studies have enabled an even higher resolution by monitoring the lifetime of 

millions of cells in parallel (Haringa, et al., 2017). Population balance models can be coupled to CFD 

models for the investigation of population segregation, as a response to the environmental conditions. 

Additionally, the transfer of physiological conditions, if possible with single-cell based measurements, 

shall be conducted to prove the reliability of the scale-down approach for a representative simulation 

of the large-scale. 

Nevertheless, losses of process performance during scale-up are still a reality. George et al. observed 

a decrease of the biomass yield of a yeast process of about 7% when a 10 L fed-batch cultivation was 

compared with the industrial-scale of 210 m3 (George, et al., 1998). Bylund et al. observed that the 

biomass yield was decreased by 20% when scaling up an Escherichia coli cultivation from 3 L to 9 m3 

(Bylund, et al., 1998). This shows the relevance of scale-down studies for an economically feasible 

bioprocess development, if the losses can be considered in an early stage, and eventually reduced 

through strain and process optimization. 

2.1.4. Industrial relevance 

2.1.4.1. Heterotrophic algae C. cohnii 

Heterotrophic marine organisms, such as Crypthecodinium and Schizochytrium, have been used to 

produce n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) in commercial quantities, namely 

docosahexaenoic acid (DHA). While Schizochytrium produces relatively high amounts of ω-6 

docosapentaenoic acid (DPA), other PUFAs beside DHA represent less than 1% in C. cohnii (Sijtsma and 

De Swaaf, 2004). DHA benefits on human health are ranging from an essential role in the growth and 

functional maintenance of the brain and retina in infants and adults, to a reduction of cardiovascular 

disorders. For a review, see, for example (Matos, et al., 2017), in which also functional food products 

from microbial algae are described.  

Fatty acids that are constituted of more than 18 carbon atoms should be obtained from the food, since 

it is hardly possible to synthesize these in the human body. Although sea fish is the major source of 

long-chain PUFAs in human nutrition, the natural source are microalgae, which are consumed by the 

fish (Mendes, et al., 2009). Nowadays, and despite of healthy, economic and environmental drawbacks, 

the source of DHA for human consumption is fish oil. Since small fish is caught from the sea to provide 

fish oil, it is not sustainable and leads to the problem that the nutrition of larger fish is withdrawn from 

the sea, e.g. to feed fish in aquacultures. Therefore, the cultivation of heterotrophic algae could be a 
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sustainable solution. Besides, residual microalgal biomass could be utilized to produce biogas, bio-

ethanol or bio-fertilizer. 

The expected market potential for DHA is estimated to exceed USD 300 million (Kothari, et al., 2017). 

Recently, Veramaris, a joint venture between DSM (Heerlen, Netherlands) and Evonik Industries AG 

(Essen, Germany) will produce EPA and DHA from heterotrophic marine algae for animal nutrition, 

mainly in aquaculture like salmon production (Tocher, 2018). An investment volume of USD 200 million 

demonstrates the economic relevance of the process (DSM, 2017). However, several challenges have 

to be overcome for a large-scale process. E.g. the risk of contamination should be minimized, since 

cells grow in rich media. The supply of sufficient oxygen at moderate shear-forces is also crucial like 

the monitoring of the intracellular product accumulation, which is performed through sophisticated 

gas chromatographic analysis.  

2.1.4.2. Budding yeast S. cerevisiae 

Saccharomyces cerevisiae, also known as baker's yeast, is one of the yeast species most commonly 

used in industrial biotechnology. The eukaryotic microorganism is characterized by its high rate of 

division and its easy cultivation. As its name is indicating, this yeast has been generally used for the 

baking process. S. cerevisiae is a facultative anaerobic microorganisms, which allow its application for 

the production of alcoholic beverages such as wine, beer and cider.  

S. cerevisiae is also recognized by the US Food and Drug Administration (FDA) as a GRAS organism and 

nowadays widely used for the production of recombinant proteins, enzymes and vitamins. For an 

extensive review, see (Demain and Martens, 2017). The availability of its entire genome sequence 

enables the genetic modification of the model organism. An advantage over prokaryotes as a 

production strain is the secretion of the products into the medium, which greatly facilitates a later 

purification. In addition, S. cerevisiae has various posttranslational modifications that are essential for 

the correct folding of enzymes and other proteins due to the eukaryotic expression system. Therefore, 

S. cerevisiae carries out proper folding of many human proteins. Insulin and insulin analogs are the 

main biopharmaceuticals produced by yeast (Baeshen, et al., 2014), and the global insulin market is 

expected to grow to more than USD 32 billion by 2018 (Nielsen, 2013). 

In addition, the yeast S. cerevisiae has a high ergosterol-phospholipid ratio of 3.3 mol mol-1 in its cell 

membrane (Zinser, et al., 1993). Besides ergosterol, other intermediates of the post-squalene pathway 

have many applications in the cosmetic and pharmaceutical industry or as nutritional supplements 

(Demain and Martens, 2017). Synthetic biology allowed the successful reconstitution of the 

biosynthesis pathway for hydrocortisone in S. cerevisiae by the expression of 8 exogenous proteins and 

the deletions of 4 yeast genes. The ergosterol pathway was redirected to produce the cholesterol 
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substitute campesterol that was transformed into hydrocortisone by the classical mammalian 

pathway. Hydrocortisone can be extracted from the culture broth as the predominant steroid 

(Szczebara, et al., 2003). 

However, although the engineering of an expression system and scale-up can be successful, the 

process can fail as well. In 2013, the precursor to artemisinin, which is the most effective drug against 

malaria, was produced with an engineered S. cerevisiae strain. They claim its commercialization at a 

fair and sustainable price, as it was part of a consortium with ”The Bill and Melinda Gates foundation”. 

However, this drug met market resistance. The increment of the agricultural artemisinin source 

production, which was until the biotechnological process appeared the only source of artemisinin, led 

to an excess supply and the prices sank. In addition the improvements in diagnosing malaria before 

administer medicine are reducing the demand as well (Nature News, 23 February 2016). 

Another large area of application for S. cerevisiae is the production of bioethanol. Approximately 100 

billion liters of ethanol are produced per year from sugar cane and corn starch. S. cerevisiae can reach 

18 % of ethanol concentrations in the fermentation broth (Lin, et al., 2013). However, S. cerevisiae 

cope with several stress factors during the production of biofuels, hence engineered strains have been 

applied for improving productivity. E.g. the possibility to metabolize C5 sugars increases the yield when 

using lignocellulosic biomass as raw materials. Thermotolerant strains allow process temperatures (ca. 

40 °C) that are less cooling demand and better for the hydrolysis of the feedstocks. Alcohol toxicity can 

limits bioethanol titer and productivity, as well as compromise cell viability. Therefore, tolerance 

against alcohol has been improved as well (genetically or by changing process conditions e.g. pH of the 

fermentation) (Demain and Martens, 2017).  
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2.2. Morphology and physiology, a tight relationship 

The only factor that determines the yield of a process is the physiological state of cells (Fernandes, et 

al., 2011), which is often related to the morphological state, so there is a relationship between form 

and function. As presented in chapter 2.1., process parameters and physical properties are not 

straightforward transferable across the different scales. Morphological features may be more 

applicable as scale-up and process performance evaluation criteria, since microorganisms are either 

the final product or the biocatalyst of the process.  

Morphology is easier to study and analyze in comparison to physiological, metabolic or genetic 

features, and it can be measured both in lab-scale scale and in large-scale. From the very beginning, 

the morphology of the cells has been analyzed, like Emil Hansen did with brewing yeast (Rank, et al., 

1988). He separated the cells considering their morphology and showed that different pure cultures 

provide unique and reproducible industrial fermentations. Another example is 

Penicillium chrysogenum, in which the pellet size distribution decides about the productivity of 

penicillin. Free filaments increase the viscosity and lead to insufficient oxygen mass transfer (Bellgardt, 

1998). 

The term of morphology can include several parameters such as colony morphology, microscopic 

appearance of the cells (shape, structure, form or chain formation), flocculation profiles and formation 

of agglomerates. However, one of the most used attributes is the cell size. The mean cell size of one 

species typically differ very little. There is evidence that cells are able to monitor and control their 

size (Bisova and Zachleder, 2014; Taheri-Araghi, et al., 2015; Turner, et al., 2012) in order to keep a 

certain degree of size homeostasis (Cook and Tyers, 2007). Moreover, in unicellular organisms like 

algae, yeast or bacteria the ratio of surface to the volume can play an important role for the adaptation 

to environmental conditions, like nutrient availability (Brauer, et al., 2008). Most of these organisms 

increase their size only by two or even less during their cell cycle.  

The cell size is directly related to the internal biosynthesis. Not only is the size of the organelles often 

proportional to the cell size (nucleus, mitochondria, vacuole…), but also most of the proteins and 

mRNAs increase accordingly (Figure 3). The organism’s metabolism and heat production are closely 

related to the body mass, as well as with the surface area and rate of heat loss. Therefore, there is a 

tight relationship between the cell’s metabolism and their shape (Chan and Marshall, 2010). In 

contrast, the amount of DNA is not proportional to the cell size (Figure 3).  
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Figure 3. Molecular components that increase in dependence of the cell size. Adapted from (Schmoller and 

Skotheim, 2015)  

Cell morphology can be influenced by cell cycle (2.2.1), cultivation conditions (2.2.2) or cell aging. 

The linkage between morphology and production performance should be investigated, in order to 

allow a better way of process monitoring, development and optimization (Gao, et al., 2014). 

Nevertheless, in bioprocesses, as well as in nature, a dynamic diversification is present (Delvigne and 

Goffin, 2014). The overall productivity of the process depends on the phenotypic distribution (2.2.3) 

(Lindmeyer, et al., 2015). 

2.2.1. Cell cycle 

Due to the great importance of size in cellular processes, many cells control it by connecting growth 

with cell-cycle events and division. Although there have been efforts in order to elucidate the 

mechanisms of such a control for different types of unicellular organisms, they have remained elusive 

(Schmoller and Skotheim, 2015). Investigations came out with different models for cell cycle control, 

mainly “timers” and “sizers”.  

A proposed cell cycle control system is that cells stay at each cycle phase for a specific amount of time 

(“timers” models). However, this model cannot explain some physiologic events, as e.g. when cells 

grow at a rate proportional to their volume (Turner, et al., 2012).  

Cells actively monitor their size and regulate the cell cycle taking into account some critical size 

checkpoints (“sizer models”). A critical size or a critical size per DNA content is required for advancing 

through the cell cycle at DNA replication initiation or division. One of the most recognized prokaryotic 

cell cycle theories is the Cooper-Helmstetter model (Willis and Huang, 2017). This theory can be 

considered as a “sizer”, since it relates the DNA replication (initiation) with a certain constant ratio of 

cell mass to DNA replication complexes. Cells need to “sense” their size, if they are actively controlling 

it (Turner, et al., 2012). As pointed out before, most macromolecules accumulate in proportion to cell 
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size, but some do not. One of the proposed sensing mechanisms is the utilization of cycle inhibitor 

proteins that do not increase proportionally to the cell size, so they generate size-dependent 

concentrations (Schmoller and Skotheim, 2015). This control was shown through the analysis of the 

cell cycle of budding yeast cells (Figure 4).  

 

Figure 4. Budding yeast cell cycle: it is usually divided in 4 phases, G1, S, G2 and M. The M phase of the cycle 

corresponds to mitosis. This phase is followed by the G1 phase, which corresponds to the interval between 

mitosis and initiation of DNA replication. During G1, the cell is metabolically active and continuously grows but 

does not replicate its DNA. G1 is followed by S phase, during which DNA replication takes place. The completion 

of DNA synthesis is followed by the G2 phase, during which cell growth continues and proteins are synthesized 

in preparation for mitosis. 

The proportion of the cell cycle activator Cln3, which scales with size, and the cell cycle inhibitor Whi5, 

which does not, results in cell size control. Cln3 is maintained constant during G1, whereas Whi5 is 

diluted. However, this alone cannot explain that smaller cells at birth grow proportionally more than 

larger cells in the subsequent division cycle, since they need to achieve a size threshold for exit from 

the G1 phase (Di Talia, et al., 2007). An additional mechanism was found: larger cells are born with 

lower Whi5 concentrations, since larger and smaller cells are born with nearly the same number of 

Whi5 molecules. The expression of this protein is mainly during S/G2/M phases, therefore its synthesis 

is mainly independent from cell size. However, certain diversity is existing, since this inhibitor-dilution 

model is stochastic. Irregularities in these processes affect fitness and function (Schmoller and 

Skotheim, 2015). Moreover, different regulation between mother and daughter cells exists. A certain 

cell size is required to proceed to budding. However, small mother cells can proceed more rapidly 
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through the G1 phase in comparison to daughter cells of similar size. Moreover, the time spent in the 

G1 phase decreases with the number of cell cycles a mother cell has undertaken. 

Although cell size is controlled by regulating division in response to growth, this will depend lastly on 

the environmental conditions. Despite of the fact that remarkable differences can be encountered 

between cell cycles of bacteria and budding yeast, a positive correlation between cell size and nutrient 

availability exists for both. On rich media cells grow quickly and divide at a larger size, whereas cells 

grow slowly and divide at smaller size under poor conditions (Willis and Huang, 2017). However, not 

all cells of a culture respond equally to the environment. The viability of each cell is affected differently 

after an environmental stress depending on the cell cycle phase, and on the age of cells (Carlquist, et 

al., 2012). Under certain stressful conditions, cells can become quiescent. This is seen as an advantage 

in some cases, in order to preserve the cell integrity. A typical example can be found in the brewing 

industry, where some cells enter in a quiescent G0 phase under ethanol stress. These cells are not 

contributing to the ethanol production, but they can be reactivated in a following cultivation (Carbó, 

et al., 2015).  

If different and defined cell shape patterns can be differentiated during the cell cycle, the classification 

in categories of these patterns and the posterior quantification of its occurrence along the time can 

provide information about the cell growth activity and cell vitality (Saldi, et al., 2014). E.g. the 

proportion of cells that are in the maturation state at a time in budding yeast cultivations (budding 

index, BI), provides information about the growth vitality (Brauer, et al., 2008; Porro, et al., 2009). 

Besides, the product synthesis is usually a function of the cell cycle phases, which is normally blocked 

for DNA replication and the cell division (Müller, et al., 2010) and hence the accumulation or secretion 

rates of microbial products too. This is the case of the polar lipids in C. cohnii algae cells, which increase 

stepwise mainly in the growth phases (G1 and G2) (Kwok and Wong, 2005). On the other side, the non-

growing morphological states use to contribute to product synthesis of secondary metabolites (Lange, 

et al., 2017).  

The morphology is not only influenced by the cell cycle, but also the cultivation conditions, or in fact 

the lifeline of each cell along the reactor make the morphology a dynamic and unique property of 

each cell. 
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2.2.2.  Influence of environmental conditions on the cell morphology 

Although usually stressful conditions are associated with negative effects, they may be controllable 

and in some cases even favorable for bioprocesses. Only unusual conditions are exceeding the ability 

of the cells to react. As already mentioned in this work, there is a relation between physiological and 

morphological cell status. Further is the relation of physiologic states to certain process performances, 

through the elucidation of their effect on the cell morphology. Figure 5 is showing environmental stress 

conditions cells may suffer during cultivation conditions, which may have an effect on their 

morphology.  

 

Figure 5. Environmental stress conditions cells may suffer during cultivation conditions can affect their cell 

morphology. Adapted from (Lemoine, et al., 2017). 

Cells size can change dramatically as a function of extracellular conditions. For example, unwanted 

carbon starvation or adaptation to the stationary phase can be observed in gram-negative bacterial 

cells, since the reductive cell division increases the surface/volume ratio and therefore cells become 

smaller (Chung et al., 2006) and rounder (Navarro Llorens, et al., 2010). The cell response to the media 

composition and toxicity, in terms of morphology and cell cycle, were also studied with algae cells. Cell 

cycle arrest, formation of multicellular aggregates or changes in the cell size and shape were some of 

the responses (Khona, et al., 2016; Machado and Soares, 2014; Marbà-Ardébol, et al., 2017).  

One study evaluated the same strain under different abiotic backgrounds by considering its 

morphological profile. Different aeration rates, substrate concentrations and repitching regimes (re-
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use of the yeast cells for the inoculation of several consecutive batches) among other parameters were 

applied (Bühligen, et al., 2014). It was found that the replicative age of the cells (the number of bud 

scars) was correlated with the size of the cells in the three different processes investigated. Moreover, 

a significant correlation between the cell size and the gravity (total amount of dissolved solids in water) 

was detected. In a similar way, an optimization strategy based on the maximum population size in 

food-processing yeast strains (carrying capacity) was proposed (Albertin, et al., 2011), since a 

correlation with the maximum CO2 production was found. This approach could be used for baking, 

brewing, and wine making. 

Cell aging is also associated with morphological changes such as increment of the cell size, cell surface 

wrinkling, decrease in cell turgor and bud scar number, among others. Those parameters have been 

detected through bright field, fluorescence or confocal microscopy. The aging of cells can be observed 

with the cession of the net increment of cell concentration, at the same time that the cells enhance 

the accumulation of storage compounds (Maskell, et al., 2003); or with a replicative scale, which 

represents the number of times a cell has divided itself.  

Gradients encountered in the large-scale can led to alterations in cell physiology, which is the result 

of the different micro-environments the cells are exposed to and the different adaptation responses. 

Some parts of the reactor provide optimal conditions, while others have limitation and/or excess of 

growth related parameters. Latter can generate undesired cell states, which will reduce the efficiency 

of the process. While offering a suboptimal performance, those cells are consuming nutrients, which 

even may lead to the overall failure of the process (Rosano and Ceccarelli, 2014). The analysis of the 

statistical relevance between morphological and physiological changes under different fermentation 

conditions, but also time-dependent morphological features can improve the estimation of the 

physiological responses to different environments and its impact along the time (Ohnuki, et al., 2014). 

In bioprocesses cultivation conditions are modulated in order to control the behavior of the cells 

through exposing them to a determined environment. Examples of widely used process cultivation 

conditions that influence the cell morphology are listed below. 

2.2.2.1. Growth disruption for intracellular product accumulation 

Intracellular accumulation of side products is one of the most established responses of a wide range of 

microorganisms (filamentous fungi, microalgae, yeast or bacteria cells), when cell growth is disturbed 

(e.g. by the limitation of a primary nutrient or temperature shift). This adaptation is in detriment of cell 

proliferation, but they can still assimilate the carbon source (Vitova, et al., 2015; Zhu, et al., 2016). 

Under such circumstances, cells change their shape and size. Eukaryotic organisms tend to accumulate 

lipids, also called single-cell oils (SCOs). Some examples are the oleaginous yeast Yarrowia lipolytica 
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(Xie, et al., 2015) or Rhodotorula glutinis (Lorenz, et al., 2017). Oleaginous organisms can accumulate 

lipids beyond 20% in relation to their dry body mass, primarily as triacylglycerols and fatty acids. 

Usually, a highly optimized carbon-to-nitrogen (C:N) ratio is applied in order to increase lipid 

accumulation.  

Nowadays, microbial SCOs have gained attention for the sustainable production of biodiesel (Jin, et al., 

2015) from lignocellulose conversion, low-value bio-waste and/or wastewater, as well as for the 

production of other added value products like pigments (e.g. b-carotene or torulene) or 

polyunsaturated fatty acids (Qin, et al., 2017). Therefore other limitation like phosphorous or sulfur 

have been recently applied due to difficulty in reducing nitrogen content of certain substrates. In 

contrast, in prokaryotes, although some species can accumulate neutral lipids, Polyhydroxyalkanoates 

(PHA) are the most common storage compounds. The bacteria Ralstonia Eutropha can accumulate up 

to 79% of this biopolymer in its dry cell weight (Budde, et al., 2011).  

2.2.2.2. Mechanical stress 

Mechanical stress can be used to control the morphology of some cells types, like fungi (Serrano-

Carreón, et al., 2015), or to increase the photosynthetic activity and growth in microalgae cultivations. 

Each specie, as a function of the cell concentration, has a different mixing optimum depending on the 

sensitivity of the cell membrane and other morphological structures like the flagellum (Leupold, et al., 

2013). Moreover, some cells are shear-sensitive to mechanical agitation as usually performed in a 

stirred tank reactor, and hence other reactor concepts are more appropriated in order to avoid losses 

(Hillig, et al., 2014b). Smaller cells tend to be more robust against agitation (Overbeck et al., 2015), 

although the presence of filaments and agglomerates can increase the sensitivity against shear forces. 

In general, the disruption of cells due to mechanical stress leads to higher lysis rates, foam formation 

and a decrease of the product yield, subpopulations can occur.  

2.2.3. Single-cell heterogeneity. Morphological variability in microbial cultures 

Cell heterogeneity can be considered regarding different phenotypic subpopulations within a culture, 

or as regards of the variability between each single-cell in an isogenic culture. Cell heterogeneity is 

regulated stochastically mainly through intracellular biochemical reactions, which depend on some 

low biochemical reactant concentrations, such as promoters (intrinsic noise). Moreover, the uneven 

availability of some biomolecules, due to cell division or environmental factors such as extracellular 

fluctuations, implies an extrinsic noise, which contributes also to the variability within a culture 

(Binder, et al., 2017; Lemoine, et al., 2017; Silva-Rocha and de Lorenzo, 2010). 

Mutations usually do not have a large influence on the product synthesis, otherwise the new mutant 

must have a higher growth rate than the original organism, or longer times for growing than the 
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timescales of batch and fed-batch cultivations (Ryall, et al., 2012). However, it can be different when 

working with genetically modified organisms, since there is the possibility that the mutation disbands 

or that the plasmids get lost (loose of the engineered capacity), allowing the wild type to appear again. 

The wild type has the advantage to be less energy demanding, and therefore can threat the productive 

organism (Müller, et al., 2010).  

Cell cycle is based on unbalanced events like an uneven cell division, variation in gene copy numbers 

or epigenetic modifications, which contribute to a variation in the metabolite and protein 

concentration, hence generating low and high performing variants. For example, different resistance 

again antibiotics between genetically identical bacteria has been detected (Geiler-Samerotte, et al., 

2013). Regarding cell size, cells undergo always an asymmetric division. This is clearly accepted when 

the division occurs e.g. by a bud mechanism. However, it is also occurring through a binary fission, 

where a variation is encountered, and therefore the capacities of the cell may be affected.  

Cell aging has also to be considered, since the descendants may differ from their ancestors. 

Consequently, the capacities of the cells can be altered in the aged population distribution (Delvigne 

and Goffin, 2014). The generation time increases with the age, since the reproduction abilities 

decrease. Various senescence factors are not present any more, while growth rates and metabolic 

efficiency are going down as well. Age factors can be transferred to the daughter cell depending on the 

age of the mother, either by generating an aged daughter or the mother can keep them. An asymmetric 

distribution of the damage ensures a certain population of the cells to be “damage-free”, which results 

in a higher growth rate and therefore contribute to the viability and vitality of the culture. This is the 

case of the budding yeast cell S. cerevisiae, where the aging factors, such as carbonylated proteins 

caused due to oxidative stress, remain in the ageing mother cell (Shcheprova, et al., 2008). This 

fragmentation between daughter cells and different ages of mother cells is a necessity for re-using 

yeast cells for several batches (repitching) in brewery. Old cells have a higher flocculation potential, 

ferment more efficiently and at a higher rate compared to younger mother cells or daughter cells. 

However, they have low viability and may flocculate too early and have a reduced generation time, but 

if only daughter cells are present, the lag-phase can be prolonged too much and this can affect the 

flavor. On the other side, older cells can recover faster from a stress than daughter cells. Therefore, it 

is important to have a certain amount of old cells in the yeast slurries, since the last part of the 

fermentation with nutrient depletion and high ethanol contents is very stressful for the cells. The 

optimum cell age distribution could be classified through cell size measurements in yeast slurries for 

the repitching (Powell, et al., 2003). 

Due to the productivity losses observed when scaling-up, population heterogeneity in bioprocesses 

has to be avoided (Martins and Locke, 2015). Studies based on the different productivity of 
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subpopulations showed that the variation between them can be significant, since any improvement on 

the overall productivity may be limited by low performance subpopulations (Xiao, et al., 2016). 

However, in contrast to what was expected, the reduction of the population heterogeneity does not 

has to imply an improvement in productivity. Continuous and synchronized cultures succeeded in the 

reduction of the cell variability, but failed in improving the productivity. Moreover, the synchronization 

cannot be maintained permanently. Concerning this, the cells can switch from a producing state to a 

non-producing state and vice-versa (Delvigne and Goffin, 2014).  

In connection to the environmental conditions of large-scale bioprocess, other mechanisms have been 

proposed, in which cell heterogeneity enables the persistence of a culture under fluctuating 

environments. Delvigne et al. studies already pointed out that the stringent response of bacteria cells 

against oscillating conditions is based on a cell population segregation (Delvigne, et al., 2009). Other 

authors recently showed the relation between different levels of substrate limitation and substrate 

shifts, with phenotypic heterogeneity in metabolism. This heterogeneity allows cells to cope with 

substrate fluctuations (Schreiber, et al., 2016). Ackermann et al observed that slowly growing cells have 

a higher chance of surviving sudden exposure to antibiotics (Ackermann, 2015). Despite of these 

results, population heterogeneity in industrial-scale is not yet considered very often.  

Consequently, in order to detect and quantify the heterogeneity of a population in industrial 

bioprocesses, process analytical tools on a single-cell basis are needed. These must provide sufficient 

data in short time, so that a representative and statistically valid sample is obtained. 
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2.3. Analysis of the single-cell morphological heterogeneity 

The process analytical technology (PAT) initiative (Food and Administration, 2004) has driven the 

implementation of reliable tools suited for analyzing and controlling the critical process parameters 

(CPPs) and the performance quality attributes (CQAs). They can give feedback on the process state and 

reduce the risk of failure (Gomes, et al., 2015). Therefore, they should be considered for the whole 

process and development. Consequently, the final product variability can be managed in order to meet 

the specifications demands, while reducing costs associated with wasted materials and time. 

Usually, physical (stirred speed, weight of the vessels…) and chemical properties (analysis of the liquid 

and gas phase of the bioreactor) are in the spotlight (Sonnleitner, 2012), whereas the solid phase (cells) 

is normally not monitored, but sampling is used (Beutel and Henkel, 2011).  

Common analytical tools beyond a few for traditionally measured parameters are still off line and/or 

at line techniques. However, the behavior of cells are extremely dynamic and sensible to 

environmental changes, e.g. during sampling. Therefore, off line measurements can be inaccurate. In 

situ measurements, which are performed directly in the culture broth, provide more reliable results, 

because a large number of cells are analyzed simultaneously. Alternatively, on line measurements can 

be conducted through a bypass, in which a representative sample of the culture is withdrawn from the 

reactor and analyzed aside, but close to the reactor. However, when a bypass is applied, the sample 

may be modified through staining or lose its sterility; accordingly, the sample should be discarded. 

Besides, even if this is not happening, attention should be paid to cell stress such as oxygen depletion, 

temperature or shear forces along the bypass, as well as to the heterogeneity of the bulk culture in 

comparison to the measured sample, which may query the results of the measurement (Vojinović, et 

al., 2006). 

In situ sensors must not have interferences due to the media (complex and water-based), gas bubbles 

or to stirring speed changes. Sterilization processes must not compromise the performance of the 

sensor e.g. by not altering previous saved calibrations. Moreover, they should be long-term stable and 

cover the whole variability of the process (for example dilutions procedures are not any longer 

possible). 

From the different experimental methods capable to assess the single-cell heterogeneity, until now, 

the physical characterization through microscopy is the only one that can be applied in situ in the 

reactor cultivation (Camisard, et al., 2002; Wiedemann, et al., 2011a); whereas for studying the gene 

expression, protein analysis or metabolite analysis sampling (off line) or a bypass system is needed 

(González-Cabaleiro, et al., 2017; Zhang, et al., 2015). A differentiation regarding the measurement 

location of the sensors is done in Table 2. 
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Table 2. Sensor measurement regarding its possibility to be coupled to the bioprocess and its sample preparation. 

  Sampling Sample preparation  

in situ 

None. 
Measurement directly in 
the culture broth in the 

bioreactor. 

None 

in line/at line/bypass  

Automatic sampling. 
Recirculation loop or 

disposal of the sample 
after measurement. 

Quick.  
Dilutions and/or staining 

possible. 

off line 
Manual sampling. 
Posterior analysis. 

Laborious and time 
consuming. 

 

Data generation and transfer can be continuously or discontinuously processed, but more important 

is that the measurement time is shorter than the process dynamics (Sonnleitner, 2012). Only then, 

real-time measurements are capable for process control. When the upstream process is monitored in 

real-time, consequently the down-stream process can be adapted (Warikoo, et al., 2012). In situ 

sensors use to have shorter delay times, since sampling and subsequent preparation is avoided.  

Single-cell based monitoring is not frequently applied yet (Fernandes, et al., 2011) due to the lack of 

suitable tools. Consequently, the information behind the origin of population inhomogeneities and the 

appearance of subpopulations is not considered.  

As pointed out in the previous chapter (2.2), the morphological assessment of cells can be 

advantageous compared with engineering parameters due to the close relation with the cell 

physiology. Further, statistical information about population heterogeneity is detected, when 

morphology is measured on a single-cell level. Several other parameters might be correlated with 

morphological features at a time (Table 3).  

Table 3. Morphological parameters that can be assessed through microscopic analysis. 

Parameter 

Cell size 
Cell shape (max. length and width, 
circularity, perimeter) 

Mobility 

Aggregates 

Color 

Contaminations 

Occurrence, amount of other particles 

Cell organelles, lipid droplets 
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Morphological parameters can be obtained through a vast array of techniques (Table 4). Some of them 

are briefly explained below. It is important to pay attention to the techniques that allow a 

quantification rather than a quality assessment, like imaging techniques through digital image analysis. 

In order to avoid qualitative interpretations, the morphology of the cells should be described through 

quantifiable parameters e.g. the perimeter, the circularity or the ratio in between the max. Feret 

diameter and the min. Feret diameter. The differentiation between budding and not budding yeast 

cells could be also obtained through the derivative of the curvature along the periphery (Nguyen, et 

al., 2017).  

Table 4. Classification of single-cell analysis tools based on its in situ applicability. 

Non-imaging techniques Analytical Method Measuring principle 

Off line or at line  

 Coulter counter 
Electrical current exclusion, change in resistance 

due to volume displacement. 

 Microchannel resonators 
Buoyant mass. It is dependent on the amount of 

biomass in the cell. 

Flow cytometry Light scattering and/or fluorescence. 

In situ Laserlight backreflection Chord length distribution 

Imaging techniques     

Off line or at line 

Fluorescent microscopy Fluorescence 

Imaging flow cytometry Light scattering, imaging and/or fluorescence 

Phase contrast microscopy Separate the illuminating background light from the 
specimen scattered light. 

Digital Holographic microscopy Hologram (phase and intensity) 

In situ Photo-optical microscopy Imaging 

 

2.3.1. Non-imaging techniques 

2.3.1.1. Off line or at line techniques 

Coulter counter 

The principle of measurement of the coulter counter is the electrical current exclusion. When a single 

cell passes through a defined size aperture, a voltage pulse occurs, which is proportional to the cell 

volume, since there is a volume displacement of the conductive liquid where the cell is suspended in. 

Therefore, the cell diameter is calculated from the cell volume and not the other way around. 

Moreover, this technology supports high speed analysis (thousand cells per second) by flowing the cells 

through a microfluidic channel (Xu, et al., 2016), working as an impedance FCM (Bryan, et al., 2012), 

which can be applied in line with a recirculation loop. However, as it occurs usually at FCM 
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measurements, the dilution of the cell concentration and the flow rate should assure that only one cell 

at a time passes through the signal light beam, otherwise artifacts are created. The cells need to be 

suspended in a specific ionic environment to be analyzed, where environmental changes may affect 

the physical properties of cells. 

The coulter counter provides a cell size distribution and a cell count. Due to its principle of 

measurement, it can be applied to a large range of cell sizes (including bacteria, yeast and cell culture), 

but it does not allow to discriminate between cells except by size, hence budding cells or aggregates 

are also depicted as single particles (Tibayrenc, et al., 2010). 

Microchannel resonators  

The measurement principle of this technique is based on the Buoyant Mass of the cell. The system 

consists of a cantilever sensor suspended in a vacuum cavity that resonates at a frequency proportional 

to its total mass. A microfluidic channel is embedded in this cantilever. When a cell transits the 

microchannel, a certain amount of fluid is displaced and the resonance changes in relation to the 

difference in between the densities of the cell and the fluid, as well as to the volume of the cell (Lewis, 

et al., 2014). From this measurement the mass and the size (equivalent sphere) of the cells can be 

calculated, as well as the cell count.  

The main source of error of the measurement is the variation of the resonance depending on the 

position of the cell in the cantilever tip. However, the heterogeneity of a cell culture is higher than this 

source of variability. 

The measurement of the cell mass can be performed on the femtogram scale, allowing the 

determination of the growth rate even within different cell cycle phases for bacteria, yeast or 

mammalian cells (Godin, et al., 2010). Nevertheless, it is not providing real time measurements, since 

less than 1,500 cells per hour are measured (Bryan, et al., 2010). 

Flow cytometry 

Flow cytometry is a combination of fluidics, optics and electronics systems. The single-cell 

measurement is possible because the sample is injected into the laminar flow of the sheath fluid with 

a slightly higher pressure. Consequently, the hydrodynamic pressure constrain the sample and thereby 

only one cell passes the laser light at a time. As pointed out before for the Coulter counter,  a 

compromise between concentration of the sample and the speed of analysis has to be found, (Shapiro, 

2003). Light scattering and/or fluorescence are captured, filtered spectrally, and converted into 

electrical signals through photodetectors.  
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The cells are characterized based on their light scatter properties, the relative size distribution is 

associated to the forward scatter measurements, while the side-scatters are used to give information 

about the granularity/complexity of the cell. If exogenous dyes are used, viability, vitality, respiration 

capacity or intracellular product accumulation can be determined, as well as when the cells express 

reporter genes based on the synthesis of a fluorescent protein associated to certain cell responses. The 

whole spectra of microorganism cells sizes can be covered with this technique: cell lines, algae (Hillig, 

et al., 2013), yeast (Back, et al., 2016) or bacteria (Marba-Ardebol, et al., 2016).  

The main advantage of this method is the amount of events that are measured per sample point (106), 

and the multiple parameters that can be obtained at a time, although one must always take into 

account that values are relative and not absolute. Even though calibration beads of different sizes are 

available (Mittag and Tárnok, 2009), they have not yet been successfully applied for quantifying 

microorganism, but for bigger cells like cell culture.  

Over the last few years, a lot of studies about FCM have been published. However, more 

standardization and optimization is necessary, if results should be comparable. To do so, stain 

concentration, incubation time and temperature, fixation procedures and controls need to be taken 

into account. These parameters will depend on the organism and cultivation conditions (media matrix), 

but also on the instrument. The mechanism behind each dye should be in focus in order to obtain 

systematic conclusions (Buysschaert, et al., 2016). 

FCM analysis can be performed off line after the fixation of cells; at line by washing, diluting and 

staining the cells; or in line, when sampling, staining, measurement and data analysis steps are 

automatized (Besmer, et al., 2014; Brognaux, et al., 2013a; Hammes, et al., 2012). Despite of this 

automation, some minutes are necessary from the time a sample is taken, until the results are 

provided. 

This technology has been applied to assess cell growth, intracellular product accumulation, metabolic 

activity, scale-down effects, optimize pre-culture conditions (Bouix and Ghorbal, 2015) or detect 

contaminations. 

2.3.1.2. In situ techniques 

Laserlight backreflection 

This technique measures the laser light, which is reflected backwards when hitting a particle. A distance 

to the probe is defined, where a circular path is scanned. When the light interferes a particle, only the 

light, which is reflected directly backwards is measured. The intensity of the reflected light, measured 

by the duration of this event, is a measure of the cord length. The single-cell size distribution is not 

directly measured, but the size and shape of the particles are related to the chord length distribution. 
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This technology allows high throughput measurements, since the pulsed laser beam can detect 

thousands of particles within a second and it can be directly coupled to the reactor and sterilized.  

The laser wavelength and energy must be adjusted depending on the microorganism size and shape. 

Cell concentrations measurements can be accomplished, since only particles in the focal plane are 

counted, while defocused particles are suppressed. Flocculation studies (Ge, et al., 2005; Xue, et al., 

2010) and scale-down studies have been investigated by correlating off line and at line results such as 

cell viability or agglomeration (Brognaux, et al., 2013b; Lemoine, et al., 2015).  

2.3.2. Imaging techniques  

Imaging techniques can be generalized by splitting the work-flow into three steps: image acquisition, 

particle-identification and data-analysis. The acquired image requires usually a data preparation step 

before feature extraction, which includes preprocessing or filtering to reduce the noise, followed by a 

determination and segmentation of the particles of interest (Kan, 2017). After that, machine learning 

algorithms in combination with the image annotation of specialists can be applied. In this way, the 

analysis can be standardized at the same time that the user can act on the results to improve them 

(Sommer and Gerlich, 2013).  

2.3.2.1. Off line or at line techniques 

Fluorescent microscopy  

Fluorescence sensors have been applied to several platforms to monitor proteins, RNA or DNA, but 

also cellular properties such as the membrane potential, cell cycle or redox state. However, the major 

limitation of fluorophores is its specificity and the cell membrane permeability (Specht, et al., 2017). 

These challenges can be avoided when using fluorescent proteins, which can be expressed e.g. at 

different cycle phases (Leitao, 2017) or due to some stress responses (Di Talia, et al., 2009). This 

technology has been applied for high throughput and screening investigations (Torres, et al., 2016). 

Although the spectral overlap is limiting the recognition of several parameters at once, the 

combination of imaging and fluorescent dyes offers the possibility to obtain hundreds of parameters 

in parallel (Okada, et al., 2014). 

Fluorescence microscopy is useful to study cellular dynamics, if the fluorescence signal is related to 

reporters or proteins. The time-lapse fluorescence microscopy allows to gain a video sequence, which 

shows the cellular dynamics and motions in real-time (Di Talia, et al., 2007; Hansen, et al., 2015). 

Imaging cytometry 

Imaging flow cytometry (IFC) is going one step beyond conventional FCM. Gating decisions can be 

performed under consideration of informative and quantitative sample characteristics provided by cell 
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images, such as the cell size, shape, distribution or location of labeled biomolecules within cells (Han, 

et al., 2016), which results in a multi-parametric analysis of high-volume cell populations. 

The major limitation of IFC is the time required for acquiring, storing and processing a massive number 

of cell images with a real-time data analysis. Nevertheless, when supervised machine learning models 

are applied, features can be extracted from the bright field and the typically ignored dark field. Studies 

have evaluated mammalian cells both fixed and live, as well as fixed yeast cells without staining (Blasi, 

et al., 2016).  

Digital holographic microscopy 

A laser or LED, which provides coherent (monochromatic) light, is split inside an interferometer into a 

reference and an object beam. The object changes the light, whereas the reference beam remains 

unaffected. Both beams interfere and the charge-coupled device (CCD) records the optical phase and 

amplitude (intensity) digitally as a hologram (Figure 6).  

 

Figure 6. Principle of a digital holographic microscope in Mach Zehnder interferometer configuration (adopted 

from Robert Spann Master Thesis). 

The phase depends on the refractive index ratio of the object to the surrounding material and the 

thickness of the sample. The intensity depends on the absorption and light scattering. The cellular size, 

volume and phase homogeneity among other parameters can be determined through this information.  

This method has been applied for assessing the harvesting process of adherent cells in real-time (Viazzi, 

et al., 2015); but also in cells suspensions, where diluted samples were measured ex situ (Marbà-

Ardébol, et al., 2017). Moreover, the possibility to connect the technology as a bypass through a flow 

cell is already feasible (Mathuis and Jooris, 2013). The necessity of sampling or of a bypass system can 

be turned to an advantage. It offers the possibility to dilute for an accurate measurement for high cell 

densities, when an in situ measurement may be limited.  
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In contrast to traditional optical microscopy, the third dimension can be obtained by the evaluation of 

the phase and the amplitude signals. If the refraction index of the cell is unknown, as it occurs with 

cells containing organelles with varying refractive index, only relative volumes can be measured, since 

the thickness and refractive index cannot be decoupled (Shaked, et al., 2011). However, Rappaz et al 

correlate the phase of the fission yeast Schizosaccharomyces pombe to its dry mass and cell area. 

Therefore, the state of fission can be calculated through DHM measurements (Rappaz, et al., 2009).  

Sometimes the time scale can be recorded as well, and hence trajectories of cells become trackable as 

long as they remain in the field of view. The mobility of the cells can be associated to different growth 

status (Lewis, et al., 2006). 

Cell culture, algae and yeast cells have been investigated. However, in order to assess smaller cells like 

bacteria, labeling or a software adaptation is normally necessary to enhance the resolution of the cells, 

since they are weak-scattering particles (Nadeau, et al., 2016). 

2.3.2.2. In situ (photo-optical sensors) 

Photo-optical in situ measurements are conducted by coupling a photo-optical probe to an automated 

image analysis. Several challenges appear when measuring directly in the culture broth, since several 

phases are present: liquid (media), solid (cells) and air bubbles in aerated systems, or even fat, as it is 

sometimes used as a carbon source. Other disturbances can be undissolved particles from the media, 

antifoam or foam formation. Moreover, high cell densities can lead to overlapping events. Therefore, 

mechanical sampling or a bypass system were used at the beginning for avoiding disturbances, at the 

same time that cells become sharper when they are not in movement. However, these mechanisms 

may influence the cell performance, while the system maintenance is increased (Havlik, et al., 2013b).  

Efforts to develop in situ microscopes (Bluma, et al., 2010; Suhr and Herkommer, 2015) resulted in 

prototypes without mechanical sampling, where the sampling volume is defined by the focus of the 

microscope, which favors sterility and reduces maintenance. (Vojinović, et al., 2006). Firstly, they were 

applied for the visualization of animal cells and their viability determination (Wiedemann, et al., 

2011a). Afterwards, even yeast cell concentration and osmotic stress responses could be detected in-

situ (Camisard, et al., 2002). Only recently, the biomass concentration of high cell densities of yeast 

(biomass concentration of Pichia pastoris up to a concentration of nearly 80 g L-1 with an standard 

deviation below 12%) (Marquard, et al., 2016), and bacteria (biomass concentration of Escherichia coli 

up to a concentration of 70 g L-1 with an standard deviation of 8%) (Marquard, et al., 2017) could be 

measured. However, no single-cell analysis was feasible yet at those cell concentrations. The 

determination of the dried biomass concentration was not predicted through cell count, it was 

achieved based on a gray scale intensity measurement of the images. 
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3. Research hypotheses, scope of work and research goals 

The work presented in this thesis relies on the following key hypotheses: 

The application of three-dimensional digital holographic microscopy and photo-optical in situ 

microscopy can provide statistical relevant information of morphological features from captures of the 

heterotrophic algae C. cohnii and the budding yeast S. cerevisiae on a single-cell basis. A representative 

sample of the population can be measured with a relevant observation frequency, compared with the 

dynamics of the organism (e.g. cell cycle, growth rate and production rate). 

Recent advances in automated imaging technologies allow measurements of single-cell 

morphological parameters providing further information beyond the size about cellular 

structures and shape. A representative sample of the population should be measurable during 

the whole cultivation. Only then the characterization of the interdependencies between 

physiological responses and morphology becomes possible.  

Metabolic information during the cultivation of the heterotrophic microalgae C. cohnii can be assessed 

through the quantification of single-cell morphological features. Conditions can be distinguished into 

those, in which growth (at a low C/N ratio), and those in which DHA production (at a high C/N ratio) is 

favored. The intracellular lipid accumulation in the heterotrophic microalgae C. cohnii can be predicted.  

There is a tight relationship between a cell’s metabolism and its shape: many cells control their 

shape/size by connecting growth with cell-cycle events and division. The cell size is directly 

related to the internal biosynthesis. Hence a quantification of the cell morphology can help in 

the prediction of the whole cell population response as their physiological status can be 

indirectly determined.  

Environmental conditions in industrial-scale bioprocesses can significantly influence cellular 

heterogeneity. Namely oxygen oscillating conditions, as they occur in aerated large-scale nutrient-

limited fed-batch cultivations, significantly influences the morphological heterogeneity among a 

population of the yeast S. cerevisiae.  

Since oxygen is a cofactor in several reaction steps within sterol metabolism, changes in oxygen 

availability can have an influence on the sterol regulation. Deficiencies in sterol formation can 

occur, which lead to a decreased growth rate. They might influence the morphological 

population heterogeneity as well, since cell stress responses to the same adversity can be 

different (stochastically regulated). This heterogeneity can have an influence on the process 

performance and yield, e.g. on the budding, the growth rate, and side metabolite 

accumulation. 
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Morphological changes can be used to follow the growth status for the budding yeast S. cerevisiae 

during a batch cultivation. The growth rate can be predicted. 

The morphology of the cells is altered by their own growth in response to cultivation 

conditions. A distinction between the typical growth stages of a batch cultivation can be made 

based on the cell size and shape distribution. 

Generally, this study is focused on the assessment of industrially relevant bioprocess, by addressing 

the single-cell based morphological monitoring, ideally in situ and in real time. This information is 

compared with off line information, which is usually the golden standard. 

Mainly two tools, a photo-optical in situ microscopy (ISM) probe and three-dimensional digital 

holographic microscopy (DHM) were used for the on line and at line observation of the state of cells 

during cultivation. The ISM (Sopat GmbH, Berlin, Germany) was formerly used for particle size 

measurements of droplets, gas bubbles and solid chemical particles. The present study used this ISM 

for the first time for cell recognition. The DHM (Ovizio Imaging Systems NV/SA, Brussels, Belgium) was 

used to gain data of morphological features beyond the cell size, e.g. circularity and cell surface. The 

imaging, particle-identification and/or data-analysis of both techniques had to be adjusted in 

dependence to the organism of interest. 

The main research goal was to proof that by applying single-cell process analytical tools at line or 

directly in situ, reliable and statistical morphological data, which can be related to cell physiology and 

process conditions, can be obtained. The process performance can be evaluated within a time that is 

relevant in comparison to cellular dynamics. This was exemplarily investigated in microalgae and yeast 

cultivations (see graphical abstract Figure 7). 
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Figure 7. Graphical abstract to summarize the main experimental approach as described in this thesis. 
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4. Experiments 

4.1. Single-cell-based monitoring of fatty acid accumulation in Crypthecodinium 

cohnii with three-dimensional holographic and in situ microscopy 

Anna-Maria Marbà-Ardébol, Jörn Emmerich, Peter Neubauer, Stefan Junne 

Abstract  

To date, on line monitoring in bioprocesses is restricted to conventional parameters. Presently, 

advances in microscopy allow the monitoring of single-cell size distributions in a bypass or in situ. These 

data provide information regarding population heterogeneity, substrate conversion, or product 

synthesis as these parameters are related to the size of the cells. In this study, changes in the single-

cell size distribution of the heterotrophic microalgae Crypthecodinium cohnii were tracked with 

holographic microscopy and a photo-optical microscopy probe, which is applicable in situ. This algae 

produces the polyunsaturated fatty acid docosahexaenoic acid (DHA). On the basis of the cell size and 

broadness of the size distribution, the applied methods enabled to distinguish between cells in the 

growth and production phase. Under conditions of low growth and high fatty acid accumulation, the 

cell size kept concomitantly changing. The correlation between cell size measurements and the 

intracellular DHA content was confirmed by regression analysis. The phase heterogeneity, which was 

measured by holographic microscopy, changed simultaneously with the DHA synthesis. The amount of 

information obtained by both digital holographic and in situ microscopy is similar to that obtained by 

flow cytometry but with reduced effort for a real-time analysis. 

Keywords: in situ microscopy, holographic microscopy, lipid accumulation, heterotrophic algae, 

polyunsaturated fatty acids 
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1. Introduction 

The present study evaluates the suitability of two techniques, namely three-dimensional digital 

holographic microscopy (DHM) (Viazzi, et al., 2015) and photo-optical in situ microscopy (ISM) (Maass, 

et al., 2012), for monitoring lipid accumulation in heterotrophic algae without using traditional staining 

methods or chromatographic analysis. ISM can be used in situ for real-time monitoring. In contrast to 

many previous reports of on line microscopy in bioprocesses, the microscopes used in this study are 

commercially available and thus relevant for broader application beyond research. 

The cell size of the heterotrophic microalgae Crypthecodinium cohnii increases concomitantly with the 

intracellular content of the polyunsaturated fatty acid docosahexaenoic acid (DHA) (Hillig, et al., 

2014b). The traditional method of measuring fatty acid content in a cell by gas chromatography is time 

consuming, and it only represents an average value of the entire sample. In contrast, single-cell-based 

analyses such as flow cytometry (FCM) provide more information but also require a large amount of 

sample preparation time if staining is necessary. Automated FCM can reduce this time of operation, 

but the method is still required to be conducted at line to enable automated sampling, dilution and 

staining (Delvigne and Goffin, 2014). Moreover, the time of operation could also affect the physiology 

or viability of sensitive cell types. This can be circumvented with the expression of fluorescent 

compounds inside the cell; however, genetic modification will be required. Another technique that can 

be applied to rapidly detect changes in the cell size is microscopy coupled with automated, software-

based cell detection. Photo-optical measurements in situ or in a bypass have been described in several 

reports (Belini, et al., 2013; Bluma, et al., 2010). Some approaches included the use of a stop-flow 

device to capture the sample before a picture is taken, thus minimizing the flow of the cell suspension. 

However, the involvement of micromechanical parts directly confronted with media components and 

cell suspension may cause problems. Other approaches allow to capture the cell suspension directly, 

e.g. by applying immersion lenses; thus, further optical adjustment during the measurement is not 

necessary (Suhr and Herkommer, 2015). Microscopy tools are applied for determinations beyond 

biomass concentration (Bonk, et al., 2011; Camisard, et al., 2002; Guez, et al., 2004; Wiedemann, et 

al., 2011b). The morphological features of a cell can allow to draw a conclusion about its physiological 

state (Baicu, et al., 2015). The application of in situ microscopy in a phototrophic culture of the 

microalgae Chlamydomonas reinhardtii was described earlier (Havlik, et al., 2013a). The same 

algorithms that are applied for off line measurements are usually applicable for in situ measurements, 

although some adaptations may be required. However, the accurate detection of morphological 

features of undiluted samples at cell densities typically achieved in bioreactor cultivations remains a 

challenging task. The advantages of a high measurement frequency and the possibility of obtaining a 

tool for process control when applied in situ have to be compared with the disadvantages of a higher 

background signal and a concomitant loss of accuracy. 
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Therefore, this study evaluates the monitoring of lipid accumulation in heterotrophic algae in real-time 

by DHM and ISM without the use of traditional staining methods. DHM uses the absorption of red light 

from an LED at the edges of particles in comparison to a reference beam that passes through the 

sample towards a photo-detector to determine the cellular size, volume and phase homogeneity 

among other parameters. This method is applied for diluted samples ex situ. Recent developments 

enable the user to connect the holographic microscope to a flow cell in such a way that a bypass 

measurement becomes feasible. ISM as applied in this study consists of a single-rod sensor probe that 

allows the capture of images within a known focus area in a measurement gap using a high-resolution 

CCD sensor. Cells continuously pass through this gap because of the movement of the liquid phase and 

are illuminated with a white flash light. 

In our study, various phases of the DHA production process are monitored during lab-scale reactor 

cultivations with the single-use bioreactor CELL-tainer©. In addition, the effect of different media on 

growth and lipid accumulation is described. If applied successfully, novel process analytical tools are 

available for parallel and automated process development and for process control in the case of in situ 

applicability. DHM and ISM could provide suitable information on intracellular DHA accumulation in 

lipid droplets based on single-cell size distribution in real-time. 

2. Materials and methods 

2.1. Media preparation and pre-cultivation 

C. cohnii culture CCMP 316 was obtained from the Provasoli-Guillard National Center for Marine Algae 

and Microbiota, ME. Pre-cultures were prepared using a previously published method (De Swaaf, et 

al., 2003).  

2.2. Bioreactor cultivations 

Cells were cultivated in the single-use rocking-motion bioreactor CELL-tainer® CT 20 (Cell tainer 

Biotech, the Netherlands) for 7.5 days. The media composition and cultivation procedure have been 

described previously (Hillig, 2014). To operate the CELL-tainer at 1 L working volume, expansion 

channels (Cell tainer Biotech) were used throughout the cultivation to fully cover the electrodes with 

a sufficient amount of liquid during rocking. In total, 100 mL of pre-culture was used for inoculation. 

The bioreactor process was started in a batch mode followed by a non-limited fed-batch mode in which 

the glucose concentration (main carbon source) was maintained between 10 and 25 g L−1. The 

temperature was maintained at 25 °C. The pH was automatically maintained at 6.0 with 1 M HCl and 1 

M NaOH. The dissolved oxygen (DO) levels were maintained by regulating the rotational speed to avoid 

values below 20% of dis-solved oxygen saturation. In the production phase, sodium acetate was added, 

and the feed operation was changed to a pH-auxostat mode controlled by acetic acid as described 
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elsewhere (De Swaaf, et al., 2003). The addition of sodium acetate induced the expression of the 

enzymes required for the assimilation of acetic acid, which are not active in cells grown with glucose. 

Previous studies have proven that acetic acid is a suitable additive to enhance DHA synthesis in C. cohnii 

(Hillig, 2014). The liquid volume increased by approximately 1.8 L during the entire fed-batch phase. 

2.3. Shake flask cultivation 

Shake flask cultivations were conducted in TubeSpin® Bioreactor 600 flasks (TPP Techno Plastic 

Products, Switzerland) following the procedure and media composition described elsewhere (Hillig, et 

al., 2014a). Briefly, a working volume of 100 mL was used, and the agitation was set to 230 rpm at an 

amplitude of 25 mm. The temperature was maintained at 25°C. The cultivation was stopped after 72 h 

in the batch cultivation mode. 

2.4. Screening experiments 

To screen for the reduction of the chloride content of the marine media, chloride ions were (partly) 

substituted by other salts corresponding to a molar equivalent (see table 1). Each experiment was 

performed in duplicates. Shake flask cultivations were conducted as described above. 

Table 1. Substitution of NaCl in shale flask experiments. 

NaCl Substitute Mol-eq. [mol L-1] Concentration [g L-1] 

None (control) 0.34 20.00 

NaNO3 0.17 14.45 

NaH2PO4 0.17 20.40 

K2S2O8 0.17 45.00 

 

2.5. Microscopy 

For monitoring the single-cell size distribution (Fig. S1), the three-dimensional digital holographic 

microscope oLine-OT40GA (Ovizio, Belgium) and photo-optical probe SOPAT MM 1 (SOPAT,Germany) 

were used. Cell size distributions were measured either directly in the culture broth (SOPAT) or on a 

microscope slide (Ovizio). Because the photo-optical sensor was not mounted directly onto the shake 

flasks or the bag of the single-use bioreactor owing to limited space and the lack of sensor ports, 

sampleswere obtained and directly filled in 50-mL plastic tubes. The in situ microscope was dipped into 

the cell suspension. By moving the plastic tube up and down, circulation of the fluid through the 

measurement gap was achieved. In case of DHM, the cell suspension was diluted to an optical density 

of OD492 = 12 and captured on a microscope slide. Table 2 provides an overview of the main 

characteristics of the microscopes. Several settings such as size boundaries and the applied algorithms 
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were adjusted for automated algal cell detection with DHM and ISM. Parameters for the detection of 

algal cells are summarized in table 3. 

Table 2. Overview of the main characteristics of the applied microscopes 

Parameter SOPAT MM 1 oLine-OT40GA 

Field Depth 2.32 µm 1.5 µm 

Camera 
2750 x 2200 CCD with 

19fps 
2456 x 2058 CCD 

with 15 fps 

Interface GigE Vision - 

Magnification 

10 x with an adaptive 
TV-lense with a 

magnification factor of 
1.6 

x 63 

Numeric 
aperture 

0.1 0.7 

Illumination 
Transmission, Xenon 

flash lamp, 2.6 J, pulse 
duration 8µs 

Transmission, 
Monochromatic LED 

at 630 nm 

Measuring Gap 200µm not applicable 

Probe length 270mm not applicable 

Probe diameter 24.5mm not applicable 

Software 
Version 

SOPAT v1R.002.0053 OsOne-4.3 

 

Table 3. Parameters for the detection of algae cells in the OsOne software version 4.3 (Ovizio) and SOPAT 

detection software (SOPAT), recipe file: insitu1lim1k.pss. 

Parameter SOPAT OsOne 

Background - 2.15 

Median cell size (d50) [µm] 18 32 

Background detection algorithm - Phase variance 

Cell detection algorithm v1R Algo Local maximum 

Apply refocus yes yes 

Detect invalid areas yes yes 

Cell minimum size [µm] 8.4 9 

Cell maximum size [µm] 23.5 - 

Remove image defects adjusted 9 

Split neighbor cells adjusted 6 

Invalid area- sensitivity - 4 

 

The Sauter mean diameter (d32), which was measured for both techniques, is computed directly from 

the surface of the cell in the two-dimensional image. It is assumed that the cell is a perfect sphere, and 

its diameter is equivalent to the diameter of a circle that has the same area as the cell in the two-
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dimensional image. The circularity detected by DHM represents the ratio of the cellular area to the 

square perimeter. The ratio describes the circularity of a cell (1 = exactly circular shape; 0 = no circular 

shape). The phase homogeneity represents a measure of the spatial closeness of the image of a 

particle’s surface. Values range between 0 and 1, and the maximum value is achieved when the co-

occurrence matrix is diagonal. The optical volume is a function of the (unknown) refractive index of the 

sample and the physical volume. 

Cell detection was performed by a software and inspected visually for accurate detection. Whenever 

cells overlaid each other, they were restricted from being detected. On average, 10 captures were 

obtained by DHM and 100 by ISM. The slide (cell suspension) was moved between the captures of the 

holographic microscope (photo-optical probe) to assure the replacement of cells in the image field 

after each capture. 

2.6. Off line analysis 

2.6.1. Cell growth 

Cell growth was quantified throughout the cultivation by measuring optical density, dry cell weight 

(DCW) and cell count. Optical density was measured in plastic cuvettes at a wavelength of 492 nm with 

a spectrophotometer (Ultraspec 3000, GE Healthcare, CT). For DCW analysis, 2 mL of culture were 

centrifuged for 10 min in pre-weighed 2-mL Eppendorf tubes at 21,500 x g, washed with 2 mL of 20 g 

L-1 
 NaCl solution and centrifuged again under the same conditions. The Eppendorf tubes were then 

stored in a drying oven (75 °C) for at least 48 h and weighed for DCW determination. Cell counting was 

performed with a Thoma chamber using a conventional transmission light microscope at a 

magnification factor of 400. 

2.6.2. Cell staining and flow cytometry 

FCM measurements were performed with the MACSQuant® Analyzer (Miltenyi Biotec, Germany). The 

excitation wavelength was set to 488 nm. The obtained data were evaluated using the software FlowJo 

V10 (TreeStar, OR). Two fluorescent dyes were used separately (no double staining): bis-(1,3-

dibutylbarbituricacid) trimethine-oxonol [BOX or DiBAC4 (3)] and Nile red (both from Sigma, Germany). 

Filters were applied as follows: a bandpass-filter 488/10 for forward scatter (FSC)/side scatter (SSC), 

525/50 for BOX and a long-pass filter 655-–730 for Nile red-stained cells as described elsewhere  (Hillig, 

et al., 2014b). Briefly, cultivation samples were diluted with phosphate buffer (21.9 gL-1 NaCl, 0.35 gL-

1KCl, 1.24 gL-1 KH2PO4, 0.176 gL-1 Na2HPO4.2H2O) and measured immediately. Cells were stained with a 

working concentration of BOX 5 μg mL-1 for 10 min in the dark. Nile red staining was performed 

according to a previously published protocol (de la Jara, et al., 2003). 



Experiments | Single-cell-based monitoring of fatty acid accumulation in Crypthecodinium cohnii with 
three-dimensional holographic and in situ microscopy  

54   

2.6.3. Quantification of carbohydrates and fatty acids 

DHA measurement was conducted and analysed with a gas phase chromatograph equipped with a 

flame ionization detector (GC-FID) as published previously (Hillig, et al., 2014a). Samples were analysed 

using a capillary column, Varian WCOT fused silica, 25m x 0.25 mm ID, film thickness = 0.12 µm, CP-Sil 

5 CB (Varian, Germany). Briefly, conditions were as follows: temperature was maintained at 150 °C for 

2 min and then increased at a rate of 15 °C min−1
 to 250 °C. After 37 min, the column was heated to a 

final temperature of 280 °C at a rate of 5 °C min−1
 and was maintained for 7 min. The injector and 

detector temperatures were set to 290 °C and 300 °C, respectively. The injection volume was 0.3 μL, 

and the sample was injected in the splitless mode. Nonadecanoic acid was used as the internal 

standard. 

2.7. Calculations 

The volumetric substrate uptake rate (Rs) was calculated using the difference in the supernatant 

substrate concentration within a time interval. Glucose concentration was measured by an enzymatic 

assay (r-biopharm, Germany) according to the manufacturer’s instructions. The dilution induced with 

the feed rate was considered (eq. (1)). 

𝑅𝑠 =
∆𝑐𝑆

∆𝑡
+

𝐹

𝑉𝑙
(𝑐𝑆0

− 𝑐𝑆𝑚) (1) 

The volumetric DHA production rate was calculated as the concentration difference within a time 

interval (eq. (2)).  

𝑅𝑝 =
∆𝑐𝑃

∆𝑡
+

𝐹

𝑉𝑙
   (2) 

3. Results and Discussion 

3.1. Two-stage fed-batch cultivation 

Fig. 1 shows the cultivation parameters of the 1-L two-stage fed-batch cultivations of the heterotrophic 

marine microalgae C. cohnii in the rocking-motion single-use bioreactor CELL-tainer. Conditions for 

optimal growth were maintained for 3.3 days before starting the production phase when the C/N ratio 

decreased below approximately 20 (Feng and Johns, 1991). A clear differentiation can be seen between 

these two phases in which the cell concentration first increased and thereafter remained almost 

constant in the production phase (Hillig, et al., 2014b). DHA production ceased after 6.3 days when the 

intracellular concentration was 10% (w/w), which are rather typical values in a wildtype strain 

(Ratledge and Wynn, 2002). 

Investigations have been previously performed to enhance the lipid production by adjusting the 

cultivation conditions such as the ratio of nitrate, tryptone and yeast extract or simply the C/N ratio 
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(Feng and Johns, 1991; Wen, et al., 2002). However, optimization always relied on off line analyses that 

are obtained after the experiment is completed (e.g. the determination of lipid compounds in the cell); 

there is a need for sampling, sample pre-treatment and quantification of concentrations in real-time. 

The possibility of rapidly monitoring at line or even in situ provides the opportunity to measure values 

in real-time during the experiment. 

Figure 1. Non-limited heterotrophic 

1 L fed-batch cultivations of C. cohnii 

in the single-use bioreactor CELL-

tainer. A: Cell concentration ( ) 

and curve fit (straight line), cell dry 

weight ( ); B: volumetric ( ) and 

intracellular DHA content ( ); C: 

specific growth rate µ (straight line), 

volumetric substrate uptake Rs 

(dashed line) and specific product 

formation qP (dotted line); D: pH-

value as measured on line (straight 

line) and off line ( ); E: dissolved 

oxygen saturation (straight line) and 

rocking rate (dashed line). 

 

 

 

 

In this study, the quantification of intracellular DHA content is of great interest as it is the main product 

of the process. This should be feasible by the determination of the cell size. Studies using the marine 

algae Schizochytrium limacinum SR21 investigated the effect of accumulating DHA in the cell body 

weight, which increased almost thrice during the course of cultivation (Chi, et al., 2009). In this case, 

the cell volume increases by a factor of about three as well. Lipid droplet accumulation in the 

oleaginous yeast Waltomyces lipofer was observed qualitatively off line by measuring cell diameter by 

a flow particle image analysis (FPIA) and FCM using Nile red staining (Raschke and Knorr, 2009). The 

diameter and fluorescence increased simultaneously, and lipid droplet accumulation was observed 

with the images provided by FPIA. 
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Thus, different measurement techniques were applied to observe whether any correlation exists 

between morphological features and DHA accumulation in C. cohnii. Fig. 2 shows the DHA content 

during the course of the fed-batch bioreactor cultivations as directly determined by GC-FID, FSC and 

SSC light signals and signals obtained from Nile red- and BOX-stained cells in FCM. Nile red is a selective 

fluorescent stain for intracellular lipids; their concentrations correlate well with the staining intensity 

(Fig. 2C). The effectiveness of this methodology for the measurement of neutral lipids was previously 

demonstrated in the algae Chlorella vulgaris where the correlation coefficient of determination 

between gravimetric and spectrofluorimetric measurements was R2=0.99 (Huang, et al., 2009). 

Nevertheless, this methodology implies times for sampling, staining and analysis. If staining methods 

should be avoided, FSC and SSC light signals might be suitable. The signals should correlate with the 

DHA content if the cell size is affected by it. It could be demonstrated that FSC light signals indeed 

correspond to the cell size, as observed in a microalgae screening where a cell sorting was performed 

using the two-dimensional distribution of algal cells at red fluorescence (chlorophyll-based auto-

fluorescence) against FSC (corresponding to the cell size) (Thi, et al., 2011). In the present study, 

however, no obvious correlation between the FSC light signal (Fig. 2B) and the intracellular DHA 

content (Fig. 2A) was observed. This result might be due to a concomitant influence of the lipid droplet 

content and other cellular compounds on the FSC light signal. The SSC was affected when the DHA 

content increased; thus, the granularity of the cells changed. In contrast, the intensity of Nile red 

staining correlated well with the DHA content (Fig. 2C) as previously shown using C. cohnii cultures 

when FCM results were compared with GC-FID measurements (Cooksey, et al., 1987; de la Jara, et al., 

2003). BOX staining yielded similar tendencies as Nile red staining because BOX is a lipophilic dye that 

binds to positively charged proteins or unspecifically to hydrophobic regions such as lipid matrices. In 

both cases, a relationship is observed during the production phase. In general, parallel-operated 

bioreactors can be coupled with FCM; thus, this method can be used for a large number of samples 

(Zimmermann, et al., 2016). An analysis time of several minutes is adequate for most applications in 

bioprocess optimization and even in screening experiments. Staining as applied in this study required 

approximately 2 min if cell washing is not performed or automated, e.g. by using plates equipped with 

filters within a liquid handling station. The costs of FCM are approximately twice as high as those for 

the microscopic methods if only the cost to buy a functional device was considered. If costs of staining 

and the limited laser life time are considered, operational costs of FCM are certainly much higher than 

those for microscopy. Moreover, staining might be affected by a change in environmental conditions 

such as pH, ion content and side product formation, which can vary because of different growth 

conditions in parallel experiments. Optical methods for cell size detection might be advantageous if 

there was no interference of media and cells during auto-detection. Fig. 2A shows the evolution of the 

average single-cell size as quantified by DHM and ISM. As detected by both methods, the cell size 
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decreased from approximately 21.5 to 17 μm at the beginning of the fed-batch phase. The reduction 

in cell size with its growth is most likely linked to maturation. In the following production phase, the 

cell size increases again to approximately 19 μm. As detected by DHM, the average cell size declines 

again after 6 days of cultivation in the very late production phase. 

Figure 2. Development of different 

measurement signals in heterotrophic 1 

L fed-batch cultivations with C. cohnii in 

relation to the intracellular DHA content. 

A: Size detection (as d32) obtained with 

the DHM ( ) and ISM ( ), and 

intracellular DHA content ( ); B: 

normalized FSC signal ( ) and 

normalized SSC signal ( ) as obtained 

with FCM; C: normalized Nile-red ( ) 

and BOX signal (X). 

 

 

The cell size distribution for selected time points is shown in Fig. 3A: after the fed-batch is started (a, 

straight line), after the growth phase is terminated (b, dotted line), in the middle of the production 

phase (c, dashed line) and at the end of the production phase (d, dashed and dotted line). The 

cumulative particle quantity distribution (Q0) indicates a wider distribution of the particle size 

(indicated by a smaller slope of Q0, that is the frequency distribution q0) at time-point a (maximum 

frequency distribution q0 = 0.10). Cells are in an adaptation state, as they were exposed to a greater 

substrate availability. This situation changed at the end of the growth phase. The d32 of cells decreased, 

and the distribution became much more narrow (time-point b, maximum frequency distribution q0 = 

0.15) as a longer period of similar maturation rates was achieved. This usually leads to a narrow 

distribution within a cell population. During the production phase, the single-cell size increased due to 

DHA accumulation (Fig. 3A, time-points c and d, maximum frequency distributions q0 = 0.13 and 0.12, 

respectively). If the cell size distribution as measured by ISM is compared with the results of FCM (Fig. 

4), the broader distribution at the beginning of the fed-batch cultivation becomes obvious: with the 

SSC light signal, two populations are visible, of which the larger fraction consists of larger cells. This is 

also observed with the ISM signal, where a threshold diameter of 19 μm can be assumed to 

discriminate the two populations. The shift in size in the population between the late growth and late 

production phase (time-points b and d) can be seen clearly with the ISM and SSC light signals (Fig. 4B 
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and C). The populations as depicted in the dot plots seem to be quite homogeneous. In summary, the 

information provided by ISM is in conformity with that by the FCM studies. 

Similar trends of Q0 were obtained by DHM (Fig. 3 B). However, the average d32 differs between both 

methods: for time-point a by 0.4 μm, for time-point b by 0.6 μm, for time-point c by 0.7 μm and for 

time-point d by 1.2 μm. The difference between the absolute values of the average d32 as obtained by 

both microscopy techniques may be partly due to the different detection algorithms used and number 

of cells analysed (sample sizes). This will be further discussed in the statistical evaluation section. As 

measured by both techniques, the degree of population homogeneity was only slightly reduced during 

the production phase compared with that at the end of the growth phase. 

 

Figure 3. Cumulative single-cell size distribution as measured in heterotrophic 1 L fed-batch cultivations with C. 

cohnii with the ISM (A) and the DHM (B), cumulative cell circularity (C) and phase homogeneity (D) as measured 

with the DHM. Values of samples from four time-points of 1 day (straight line), 2.9 days (dotted), 5.2 days 

(dashed) and 7.3 days (dashed and dotted) are depicted. 
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Figure 4. Single-cell frequency distribution as measured in heterotrophic 1 L fed-batch cultivations of C. cohnii 

with the ISM (top row) and forward side scatter (FSC) and side scattered light (SSC) signals obtained with FCM 

(bottom line). Values of samples from three time-points of 1 day (A), 2.9 days (B), and 7.3 days (C) are depicted. 

DHM provided additional information such as the circularity and phase homogeneity. The circularity is 

negatively affected by lipid droplet accumulation (Fig. 3C). Formation of lipid droplets leads to 

deformation of the cell wall because they are not distributed evenly inside the cell. The circularity is 

also decreased during growth compared to that of the cells at the onset of the fed-batch phase as likely 

maturation also leads to cell deformation. Therefore, the circularity itself can be used as a parameter 

to identify phases of rather high metabolic activity. Phase homogeneity is distinctly lower when cells 

accumulate DHA (time-point c in Fig. 3 D), which is in contrast to the time-point when DHA production 

ceased (time-point d in Fig. 3 D). The degree of phase homogeneity seems to be a good indicator for a 

high DHA synthesis period because lipid droplets are not evenly distributed inside the cell. If they were 

evenly distributed, they will occupy the cell volume, and maximum lipid accumulation is achieved.  

One major advantage of DHM is the assumption of the optical height of the cells. While the size of 

spherical cells increases, their ‘thickness’ also increases. Three-dimensional images of the cells show 

the increase in diameter and optical height. The optical height is greater at the onset of the fed-batch 

phase (time-point a, Fig. 5A) and at the end of the production phase (time-point d, Fig. 5 D) than that 

between the two phases (Fig. 5B and C). It is the greatest in comparison to the cell diameter at time-

point d. Moreover, the optical height as measured inside the cell is very diverse at this time-point. Lipid 

droplet formation exposes different optical features at the edges of the droplets. 

 



Experiments | Single-cell-based monitoring of fatty acid accumulation in Crypthecodinium cohnii with 
three-dimensional holographic and in situ microscopy  

60   

Figure 5. Optical volume of C. cohnii cells 

as measured in samples of heterotrophic 1 

L fed-batch cultivations with the DHM. 

Time-points of 1 day (A), 2.9 days (B), 5.2 

days (C) and 7.3 days (D) are depicted. 

 

 

 

 

 

The actual correlation between the average single-cell size and DHA content was finally quantified 

using a regression analysis. A linear regression resulted in coefficients (R) of 0.835 (Nile red), 0.825 

(BOX), 0.791 (SSC) andn0.632 (DHM). A maximum coefficient (R) of 0.983 (Fig. 6) was obtained using 

the data obtained from ISM and a second-order equation: 

𝐷𝐻𝐴𝑝𝑟𝑒𝑑 = −1459.5 + 157.5 ∗ 𝐷𝐶 − 4.2 𝐷𝐶
2 (3) 

 

Figure 6. Second order correlation between DHA content measured off line (GC-FID) and predicted based on the 

average of the Sauter mean diameter (d32) as detected on line with ISM and cross-calibration. Values used for 

calibration ( ) and for prediction ( ). 

Eq. (3) represents a nonlinear correlation as the change in the cell size is related not only to the DHA 

formation but also to the cellular protein content. The cellular protein content most likely decreases if 

a high DHA content is obtained, thus decelerating the increase in the cell size until a maximal size and 

consequently the maximal capacity of DHA storage is achieved. However, this should be a reproducible 

effect. The accuracy of the prediction increases with an increase in DHA content. This underlines the 
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relationship between DHA accumulation (lipid droplet formation) and the increase in the cell size. The 

lower the DHA content (the smaller the cells), the weaker is the dependence between the cell size and 

the DHA content. Thus, cells with high and low DHA content can be clearly separated. 

 

3.2. Screening experiments 

Among the two common grades of stainless steel typically used in bioprocesses, 304-stainless steel is 

susceptible to corrosion if the chloride level exceeds 300 ppm (0.3 g L−1) and 316-stainless steel is 

susceptible to corrosion if the chloride level exceeds 1000 ppm (1 g L−1). Other grades of stainless steel 

that exhibit a higher resistance to chloride corrosion are usually not used because of high investment 

costs and a lack of approval for food processes and sterilization procedures. Therefore, to avoid 

corrosion problems, a reduction of the chloride ion content in media is useful for the industrial 

application of marine processes. As an example, in this study, different chloride ion substitutes were 

tested with respect to the cell growth and lipid accumulation in C. cohnii. Investigations included the 

analysis of the single-cell size distribution within the culture by ISM. Data were compared with off line 

analysis results. Fig. 7A shows that the concentration of Cl− ions affects the growth and DHA 

accumulation. At least a 2.5-fold higher cell concentration was obtained in the presence of sufficient 

NaCl (4.106 cells mL−1) after 72 h of cultivation; cell titres were similar to those reported previously 

(Hillig, et al., 2013). DHA concentration was three-fold higher using Cl− ions than that using Cl− ion 

substitutes. In the case of K2S2O8 addition, no DHA was detected and almost no growth was observed; 

the number of cells increased only by 5% in 3 days, in contrast to 48% or 40% if NaNO3 or NaH2PO4, 

respectively, were used or even 90% in the control culture. Almost no glucose was present in the 

control cultivation (with NaCl) after 72 h, whereas only 7 g L−1 and 1 g L−1 of glucose was consumed 

with NaNO3 and NaH2PO4 supplementation, respectively. Barely any consumption was observed with 

K2S2O8 addition. Osmotic effects and different growth rates may have led to a large variation in the 

obtained cell size. The different cell sizes also resulted in a larger deviation between the values of the 

DCW concentration and cell counts. Larger cells were obtained when NaNO3, NaH2PO4 and K2S2O8 were 

added (Fig. 7 B). The maximum difference in comparison to the control culture was detected when 

NaH2PO4 was added. The d32 reached 19.5 (±0.1) μm compared to 14.6 (±0.1) μm in the control culture. 
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Figure 7. Cell concentration (grey columns) and dry cell weight concentration (black columns) obtained after 72 

h in shake flask cultivations of C. cohnii when NaCl or replacements of it were applied. Numbers above columns 

indicate the intracellular DHA content (A). Cumulative single-cell size distribution as measured with ISM with 

different media compositions, containing either NaCl ( , ) or NaNO3 ( , ), NaH2PO4 ( , ) or K2S2O8 ( ,

) (B). 

 

Figure 8. Cumulative single-cell size distribution (A), cumulative phase homogeneity (B), cumulative cell 

circularity (C) in shake flask cultivations of C. cohnii with different media compositions, containing either NaCl (

) or NaNO3 ( ) or NaH2PO4 ( ), as measured with DHM. 

The addition of NaNO3 and K2S2O8 also resulted in a higher d32 of 18.7 (±0.1) and 17.0 (±0.3) μm, 

respectively, than that obtained in the control. When K2S2O8 was added, a broader distribution was 

obtained, possibly because of severely unfavourable growth conditions. The higher cell diameter most 

likely reflects a cell state similar to that at the onset of the fed-batch cultivations in the bioreactor (Fig. 

3 A, time-point a). This state is represented by a high substrate availability and very slow or no 

maturation. In contrast, the cell size distribution as measured in the control culture reflects a state 

similar to that at the end of the growth phase of the fed-batch cultivations (Fig. 3A, time-point b). The 

distribution is comparably narrow, and the cells are significantly smaller. A positive skewness can be 

observed in this control culture that mainly consists of cells that had matured throughout the 

cultivation and did not accumulate high amounts of DHA. A negative skewness on NaNO3 or NaH2PO4 

addition seems to be related to a retarded growth (Fig. S4). The diameters of the cells were also 

determined by DHM. Although similar trends were obtained in comparison to ISM, like those seen in 
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the measurements of samples from the bioreactor cultivation, the absolute values differed between 

both the methods. Interestingly, cells of the control culture had a higher phase homogeneity probably 

because of growth retardation and a lower circularity (Fig. 8B and C). This is in conformity with the 

observations in the bioreactor cultivation: a higher degree of homogeneity achieved after growth 

retardation, and a lower degree of circularity indicated a higher content of lipid droplets. Both assumed 

correlations seem to fit for the shake-flask experiments in which the control culture exhibited a higher 

growth and lipid accumulation inside the cells. 

In summary, if the cell size distribution distinguished between the conditions in which growth (at a low 

C/N ratio) and DHA production (at a high C/N ratio) is favoured, the growth state of cells and DHA 

productivity can be determined. Population heterogeneity is usually increased in environmental 

conditions that cause cell stress such as oscillatory conditions. As observed at the onset of the fed-

batch phase compared with later time points, growth under favourable conditions decreases the 

heterogeneity in the cell size distribution. Thus, it can be assumed that a narrow distribution is 

favourable for a good growth and production performance of the culture. 

3.3. Statistical relevance 

Differences in the cell sizes measured in screening experiments and throughout the course of the 

bioreactor cultivations are significant because the deviance between two replicates is much lower 

(usually 0.1–0.2 μm) than those obtained between experiments, i.e. a few μm (Figs. 2 and 7). 

Moreover, the technical error is 0.4 μm, as obtained from triplicate measurements of the same sample 

and three different image sets with at least 1000 recognized cells. This number of cells (events) is of 

statistical relevance and thus representative of the population from which they were extracted under 

the consideration of an infinite or unknown population. This assumption can be made when the 

population is larger than 100,000 cells, which was the case for all experiments (106 cells mL−1 in 100 mL 

in the shake-flask experiments and 107 cells mL−1 in 1-L bioreactor cultivations). The variability (σ), 

which can be obtained from previous data; accuracy, which is the amplitude of the confidence interval 

(1− α); and the admitted error (e) are the factors that affect the determination of the sample size. The 

maximal deviance in the cell size between measurements of the same sample was considered to be 

less than 0.4 μm, the desired accuracy was considered to be 0.02 μm and the admitted error was 

considered to be 5% or lower (z1−α/2 = 1.96). Then, the number of cells that should be analysed (n) was 

determined to be 945 (Eq. (4)). 

𝑛 = (
𝜎 𝑧1−𝛼/2

𝑒
)

2
   (4) 

This number of events can be easily achieved by ISM. In contrast, when DHM is used, the number of 

cells is restricted to the number of analysed slides and practical handling issues. Nevertheless, the 
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maximal deviance of the holographic microscopy is in the range of 0.1 μm; thus, the accuracy is 

increased (up to 0.005 μm) if the same sample size was applied. When the same restriction that the 

maximal error should not exceed 5% is maintained, the necessary cell counts are 59. This allows a 

practical application of DHM, although it not operated in a bypass. However, the results of the 

bioreactor cultivation indicated that DHM is more suitable to monitor a higher number of cells because 

the media, the change in optical features of cells and other factors may affect the accuracy. Thus, at 

line or in situ application is favourable as replacement of established methods. Both DHM and ISM can 

be operated so that a sufficient number of cells can be detected within a reasonable time. 

4. Conclusions 

In general, there is a need for rapid detection methods, particularly for parallel and automated state-

of-the-art process optimization (Neubauer, et al., 2013); otherwise, the bottleneck of time is shifted 

away from the cultivation itself to the analysis. Usually, the bioreactor variables that are monitored on 

line and/or controlled are physical and chemical parameters rather than physiological ones. This study 

describes two commercially available novel tools for a faster and in situ monitoring of the cell size 

distribution. They were successfully used to monitor population heterogeneity and, indirectly, fatty 

acid accumulation in heterotrophic algae. The cell status can be distinctly differentiated using the cell 

size and broadness of the size distribution under growth conditions. Under conditions of fatty acid 

accumulation (high C/N ratio), the cell size kept concomitantly changing. The phase heterogeneity as 

measured by DHM changed simultaneously with the DHA synthesis. The amount of information 

obtained by DHM is similar to that by FCM but with much lesser effort. Advantages such as a high 

measurement frequency and the possibility of obtaining a tool for process control when applied in situ 

have to be compared with the disadvantages such as a loss of accuracy and higher detection limit with 

respect to the size of structures. Therefore, the application of any method must be oriented towards 

the final purpose and acceptable minimal data quality. Both microscopy methods, DHM and ISM, are 

suitable alternatives to other well-established off line methods. As traditional microscopic techniques 

are not sufficient to achieve the same valuable information, further developments for commercially 

available bypass or in situ monitoring tools are required for application in cultivations with smaller 

cells, e.g. yeast or bacteria. 
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trimethine-oxonol, NR: Nile-Red, ID: inner diameter, DF: film thickness, Rs : substrate uptake rate in a 
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concentration, csm: average substrate concentration in a time interval, Vl: average working volume in a 

time interval, Δt: time interval, F: feed rate, Rp: production rate , Δcp: difference of the product 

concentration in a time interval, C/N ratio: ratio in between carbon and nitrogen concentration, FPIA: 

flow particle image analysis, GC-FID: gas phase chromatograph equipped with a flame ionization 

detector, R2: correlation coefficient of determination, FSC: forward side scatter, SSC: side scattered 

light, DHApred: DHA predicted with a non-linear correlation, Dc: cell diameter measured with the photo-

optical microscopy probe, DCW: dry cell weight, σ: variability, e: admitted error, 1-α: amplitude of the 
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4.2. Sterol synthesis and cell size distribution under oscillatory growth conditions 

in Saccharomyces cerevisiae scale-down cultivations 

Anna-Maria Marbà-Ardébol, Anika Bockisch, Peter Neubauer, Stefan Junne 

Abstract 

Physiological responses of yeast to oscillatory environments as they appear in the liquid phase in large-

scale bioreactors have been the subject of past studies. So far, however, the impact on the sterol 

content and intracellular regulation remains to be investigated. Since oxygen is a cofactor in several 

reaction steps within sterol metabolism, changes in oxygen availability, as occurs in production-scale 

aerated bioreactors, might have an influence on the regulation and incorporation of free sterols into 

the cell lipid layer. Therefore, sterol and fatty acid synthesis in two- and three-compartment scale-

down Saccharomyces cerevisiae cultivation were studied and compared with typical values obtained 

in homogeneous lab-scale cultivations. While cells were exposed to oscillating substrate and oxygen 

availability in the scale-down cultivations, growth was reduced and accumulation of carboxylic acids 

was increased. Sterol synthesis was elevated to ergosterol at the same time. The higher fluxes led to 

increased concentrations of esterified sterols. The cells thus seem to utilize the increased availability 

of precursors to fill their sterol reservoirs; however, this seems to be limited in the three-compartment 

reactor cultivation due to a prolonged exposure to oxygen limitation. Besides, a larger heterogeneity 

within the single-cell size distribution was observed under oscillatory growth conditions with three-

dimensional holographic microscopy. Hence the impact of gradients is also observable at the 

morphological level. The consideration of such a single-cell-based analysis provides useful information 

about the homogeneity of responses among the population. 

 

Keywords: oxygen limitation, S. cerevisiae, scale-down, single-cell size distribution, squalene, sterols 
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1. Introduction 

Sterols are essential compounds of yeasts. They become strictly sterol auxotrophic under anaerobic 

conditions (Daum, et al., 1998; Klug and Daum, 2014). The sterol content has an influence on the 

fluidity and permeability of the cell membrane, and thus on the transport through the membrane. The 

first intermediate of the sterol pathway, squalene, is a triterpene, which is converted to lanosterol. 

Squalene itself is synthesized from acetoacetyl-CoA. This synthesis is active under both aerobic and 

oxygen-limiting conditions. Nevertheless, several further reactions require oxygen in the post-

squalene metabolism. It was shown that the production of ergosterol decreased strongly under 

anaerobic conditions in the continuous absence of oxygen, while squalene accumulated (Jahnke and 

Klein, 1983), if ergosterol concentrations themselves were low (Garaiova, et al., 2014). Under these 

conditions, growth is not only reduced but ceases. When such an anaerobic culture is suddenly aerated, 

growth starts again and squalene is further converted to sterols (Maczek, et al., 2006). In order to 

maintain sterol homeostasis, cells are able to esterify free sterols. This step does not require any 

oxygen. Cells are also able to downregulate the sterol biosynthesis or acetylate the sterols in order to 

secrete excess amounts of them into the media (Ploier, et al., 2014). 

A relation between sterol regulation and growth was published earlier (Arnezeder and Hampel, 1990). 

Interestingly, a recent study proved that the de novo sterol biosynthesis is essential for cell 

polarization, and therefore for the initiation of growth (Makushok, et al., 2016). Sterols are partially 

synthesized in the cell wall, transferred to the cell surface and allocated to cell poles. Growth 

retardation and a loss of cell polarizability were observed when the conversion of squalene to 

lanosterol was blocked with ketoconazole. If zymosterol synthesis itself was blocked by repression of 

the ERG24 gene, which encodes a sterol C-14 reductase, cells were not viable unless sterols were added 

extracellularly (Daum, et al., 1998; Klug and Daum, 2014). 

Inhomogeneities of dissolved oxygen and substrate concentrations appear in the liquid phase of large-

scale nutrient-limited fed-batch bioprocesses at high cell densities (Neubauer and Junne, 2010). The 

specific oxygen uptake rate (qO2) depends on the consumption rate of carbohydrates in aerobic 

cultivations. Thus, cells cope with oxygen limitation or even depletion close to the feed zone. The high 

substrate consumption rate leads to a volumetric oxygen demand of the culture that exceeds the 

oxygen transfer to the liquid phase in this zone. While cells are changing in between these zones due 

to the turbulent flow, they experience oscillating environmental conditions between high and low 

substrate and oxygen availability. 

In order to investigate the consequences of these heterogeneities on cell physiology, multi-

compartment scale-down reactor systems have been applied to mimic such gradients at the lab-scale 

(Heins, et al., 2015; Neubauer and Junne, 2010; Takors, 2012). Such scale-down reactors are based on 
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the principle that a certain portion of cells is exposed to oscillating (partially random) fluctuations. 

These will reproduce the flow conditions encountered at a large-scale, in which the stirred tank reactor 

simulates the bulk zone, in which oxygen and substrate availability is sufficient.  

Previously, scale-down experiments with baker's yeast have been performed and compared to an 

industrial cultivation of a 215 m3
 scaled bubble column reactor (George, et al., 1998). A similar growth 

reduction and gassing behaviour in doughs were observed as if the culture was grown at a production 

scale. Current attempts on scale-down approaches foster the consideration of theoretical 

computational fluid dynamics studies for the experimental design. Several scenarios were simulated 

based on the appearance of the Crabtree effect in yeast (Haringa, et al., 2017) so that scalability 

becomes feasible. 

In contrast to previous studies, not only a two-, but also a three-compartment reactor (two-CR and 

three-CR) was applied as a scale-down system in this study. These reactors consist of one typical stirred 

tank reactor coupled to one or two plug flow reactors, which were applied to mimic both the feed zone 

with substrate excess and a zone with strong starvation far away from it (Junne, et al., 2011; Marba-

Ardebol, et al., 2016). It has been shown that a three-CR most likely reflects better the situation in a 

large-scale process (Lemoine, et al., 2015). Bacterial scale-down studies proved that the scale-down 

set-up has a significant impact on the cellular response. Additionally, big changes are seen if complex 

media are used rather than mineral salt media (Lemoine, et al., 2016). Thus complex media were used 

throughout this study in order to match production conditions closely. 

The present study aims to investigate the impacts of oscillating substrate and oxygen supply on sterol 

and fatty acid synthesis in yeast, as it occurs in large-scale fed-batch bioreactor cultivations. Potential 

reasons for the observable growth reduction are discussed. Since cell morphology in yeast is often 

coupled to the growth state e.g. (Lencastre Fernandes, et al., 2013), the single-cell size distribution was 

monitored to investigate the heterogeneity of the population. Various methods have been used to 

measure the cell size in yeast (Turner, et al., 2012). In this study, size based population heterogeneity 

was quantified with three-dimensional digital holographic microscopy (DHM). 
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2. Materials and Methods 

2.1. Yeast strain 

The yeast strain Saccharomyces cerevisiae AH22 (MATa leu2-3 leu2-12 its4-519 can1) (Maczek, et al., 

2006) was used throughout all cultivations. 

2.2. Media and cultivation conditions 

Cells were grown in buffered YPD medium, which consists of yeast extract, peptone and dextrose, as 

described previously (Maczek et al., 2006). A glucose concentration of 2% (w/w) was applied in pre-

cultures and batch phases of all bioreactor cultivations. Pre-cultures were grown aerobically in Ultra 

Yield™ flasks (Thomson Instrument Co., USA) at 25°C and 250 rpm. 1% (v/v) of antifoam 204 (Sigma, 

Germany) was added prior to cultivation. 

5 mL of antifoam 204 (Sigma, Germany) was also added to each bioreactor cultivation. The 

temperature was set to 27 °C, the aeration rate to 0.5 vvm and the stirrer speed to 500 rpm. After a 

lag-phase of approx. 4 h, the aeration rate was increased to 0.7 vvm and the stirrer speed to 650 rpm. 

In order to ensure aerobic conditions in the stirred tank reactor (STR) compartment of the scale-down 

bioreactor or in the single-CR, the stirrer speed was changed to 800 rpm when an OD600 of 30 was 

reached. Bioreactor cultivations were inoculated with 2% v/v of pre-culture, so that an initial OD600 of 

0.2 was obtained. The process started as batch mode in the STR compartment or the single-CR until an 

OD600 of 24 was reached (after ~20 h), followed by a substrate-limited fed-batch mode. The pH-value 

was adjusted to pH=5.5 and controlled automatically by the addition of 30% (v/v) NaOH during the fed-

batch phase. Prior to feed start, plug flow reactor (PFR) modules were connected to the STR in case of 

scale-down cultivations. The glucose feed (YPD medium with a content of 40% (w/w) of glucose) was 

added exponentially at a specific growth rate (µ) of 0.12 h-1 according to eq. (1).  

𝐹 (𝑡) = 0.00318  𝑉𝐹  𝑒0.12𝑡   (1) 

where VF is the working volume and t the fed-batch cultivation time. 

The feed was added to the top gas phase of the STR for the single-CR cultivation or at the bottom of 

one PFR module at scale-down cultivations, denoted as PFR-F in the following. The PFR module without 

feed addition is denoted as PFR-S. Bioreactor cultivations were performed in biological duplicates. 

Unless otherwise stated, all data were obtained from samples taken from the STR compartment.  

2.3. Cultivation systems 

A Techfors-S stirred tank bioreactor (Infors, Switzerland) equipped with three Rushton turbines was 

used for the single-compartment reactor (single-CR) cultivations. The initial liquid volume was 10 litres 
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and decreased merely during the feed phase, while sampling for sterol analysis required more volume 

than that gained during feed addition. The STR was connected to one or two PFR modules at the scale-

down cultivations. The PFR units consisted of four static mixer modules and five evenly distributed 

sampling ports. The liquid volume of each PFR module was 1.8 litres (including the transfer from the 

STR to the PFR (0.15 litres) and backwards (0.45 litres)). A detailed description of the two-CR system 

and residence times at a current flow rate of 1.78 ml min−1
 has been published previously (Junne, et 

al., 2011). The setup of the three-CR has also been described (Lemoine, et al., 2015; Marba-Ardebol, 

et al., 2016). Briefly, in the two-CR system two parts of the spatial segregation of the large-scale 

bioreactors are represented: (i) a bulk zone, in which the substrate concentration is limited, but not 

the dissolved oxygen (STR compartment); and (ii) a zone of high substrate availability but oxygen 

limitation (PFR-F). In a second PFR without feed addition (PFR-S), a third zone is simulated, in which 

the availability of both, substrate and oxygen is very low. These gradients are represented 

schematically in Figure 1. 

 

Figure 1. Distribution of substrate and dissolved oxygen concentrations as expected in an industrial scale 

nutrient-limited fed-batch cultivation, when the feed is added at the bottom part of the liquid phase. Next to it, 

the different reactors set-ups used in this study with the gradients that each one simulate: A (single-CR), B (two-

CR) and C (three-CR).  



Experiments | Sterol synthesis and cell size distribution under oscillatory growth conditions in 
Saccharomyces cerevisiae scale-down cultivations 

  71 

2.4. Analysis  

2.4.1. Cell growth and metabolites determination 

Cell growth was quantified throughout the cultivation by measurement of the optical density at a 

wavelength of 600 nm with a spectrophotometer (Ultraspec 3000, GE Healthcare, CT, USA). For the 

analysis of the dry cell weight, 2 mL of culture were centrifuged for 10 min at 4 °C and 21,500 x g in 

previously weighted 2 mL Eppendorf tubes, then washed with 2 mL of 0.9 g L-1 NaCl solution and 

centrifuged again under the same conditions. Then the Eppendorf tubes were stored in a drying oven 

(75 °C) for at least 48 h and weighted.  

Samples for extracellular metabolite determination were filtered through a membrane filter with a 

pore size of 0.8 µm (Carl Roth, Karlsruhe, Germany) directly at the sampling port of the STR bioreactor. 

The supernatant was transferred to 1.5 mL Eppendorf tubes and immediately stored at -80 °C. 

Organic acids were quantified with an Agilent 1200 system, which was equipped with a refractive index 

detector and a HyperRez XP Carbohydrate H+
 column (300 × 7.7 mm, 8 µm; Fisher Scientific, Schwerte, 

Germany). A 5 mM H2SO4 solution as eluent was applied at a flow rate of 0.5 mL min-1
 and a column 

temperature of 15 °C.  

2.4.2. Lipid analysis 

Sterol analysis was performed as it was described previously (Maczek, et al., 2006). All samples 

contained 70 mg of dry biomass. Cell membranes were disrupted with thermal treatment followed by 

saponification after base as well as methanol and pyrogallol addition for quantification of the total 

sterol content. If the non-esterified fraction of sterols was determined, cells were broken through 

mechanical treatment with glass beads. The content of esterified sterols was determined by the 

difference of the content of free (non-esterified sterols) and total sterols. Quantification of sterols was 

conducted by gas chromatography with flame ionization detector (GC-FID). Samples were analysed 

with a CP-Sil 5 CB capillary column with dimensions 25 m × 0.25 mm and a film thickness of 0.12 µm 

(Varian, Germany). Briefly, conditions were as follows: 150 °C was maintained for 2 min before heating 

at a rate of 15 °C min-1 to a temperature of 250 °C. After 37 min, the column was heated to a final 

temperature of 290 °C at a rate of 5 °C min-1, which was maintained for 7 min. The injector and detector 

temperatures were set to 290 °C and 300 °C, respectively. Samples were analysed in splitless mode 

using an autosampler AOC-20i. The injection volume was 0.5 µl. Cholesterol was used as internal 

standard (Sigma, Germany). The sterol composition was determined on the basis of retention times of 

known sterol standards: cholesterol, ergosterol, lanosterol, squalene (Sigma, Germany), and 

zymosterol (Avanti Polar Lipids, AL), respectively. Quantification of sterols was performed by the 

integration of peak areas with the software package GC solution, version 2.2 (Shimadzu, Germany). 



Experiments | Sterol synthesis and cell size distribution under oscillatory growth conditions in 
Saccharomyces cerevisiae scale-down cultivations  

72   

Fatty acid concentration measurements were conducted in a GC-FID and analysed as published 

previously for docosahexaenoic acid quantification (Hillig, et al., 2014a). Samples were analysed with 

the same capillary column as for sterols. Conditions were as follows: 150 °C was maintained for 2 min 

before heating at a rate of 15 °C min-1 to a temperature of 250 °C. After 37 min, the column was heated 

to a final temperature of 280 °C at a rate of 5 °C min-1, which was maintained for 7 min. The injector 

and detector temperatures were set to 290 °C and 300 °C, respectively. The injection volume was 0.3 µl 

and was performed in splitless mode. Nonadecanoic acid (Sigma, Germany) was used as internal 

standard. The fatty acid composition was determined on the basis of retention times of known mixed 

fatty acid methyl ester (FAME) standard solutions (GLC-10, GLC-50 and GLC-100, Sigma, Germany). 

Quantification was conducted based on peak area integration with the software package GC solution, 

version 2.2 (Shimadzu, Germany). 

2.4.3. Single-cell size distribution 

The three-dimensional digital holographic microscope oLine-OT40GA (Ovizio, Belgium) was used to 

monitor the single-cell size distribution. Samples were diluted to an OD600 of 2 and measured on a 

microscope slide. Several images were acquired in order to obtain at least 200 cells at each time point 

(Marbà-Ardébol, et al., 2017). This number is representative if the maximal deviance of the cell size 

measurements (σ), the desired accuracy (1-α) and the admitted error (e) are considered. The average 

technical error was 0.05 µm (0.02 µm in the best case and 0.12 µm in the worst case), as obtained from 

triplicate measurements of the same sample with 200 cells. The desired accuracy was chosen as 0.005 

µm and the admitted error should not exceed 5% (z1-α/2 = 1.96). Then, the minimum amount of cells 

that needed to be analysed according to eq. (2) is 123: 

𝑛 = (
𝜎 𝑧1−𝛼

2⁄

𝑒
)

2

   (2) 

However, since the media and the change of optical features can affect the accuracy, a higher number 

of cells was monitored.  

The variance of the single-cell size distribution (σ2) was calculated according to eq. (3) in order to 

evaluate quantitatively the population heterogeneity: 

𝜎2 =  ∑ 𝑑2 𝑝(𝑑) − (∑ 𝑑 𝑝(𝑑))2   (3) 

where d is the cell diameter and p(d) is the frequency of the cell diameter in a distribution. 

Several settings such as size boundaries and the applied algorithms were adjusted for automated yeast 

cell detection. Parameters of this detection are summarized in Table 1. 
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Table 1. Parameters for the detection of yeast cells in the OsOne software version 4.3 (Ovizio). 

Parameter OsOne 

Background 2.67609  

Median cell size (d50) [µm] 9.00363  

Background detection algorithm Phase variance 

Cell detection algorithm Local maximum 

Apply refocus yes 

Detect invalid areas yes 

Cell minimum size [µm] 50 

Cell maximum size [µm] 10 

Remove image defects 9 

Split neighbor cells 6 

Invalid area- sensitivity 4 

 

2.5. Further determination of process parameters 

The specific substrate uptake rate (qs) was calculated within a time interval as described in eq. (4). 

Glucose was measured with an enzymatic assay (r-biopharm, Germany) according to the 

manufacturer’s instructions: 

𝑞𝑠 =
[

∆𝑐𝑆
∆𝑡

+
𝐹

𝑉𝑙
(𝑐𝑆0−𝑐𝑆𝑚)]

𝑋
    (4) 

where cS is the difference in substrate concentration in a time interval, t is the time interval, F is the 

feed rate, cS0 is the feed substrate concentration, cSm is the average substrate concentration in a time 

interval and X is the average of the biomass concentration in a time interval. 

The specific oxygen uptake rate (qO2) and the specific carbon dioxide production rate (qCO2) were 

calculated based on equations (5) and (6). The volumetric parameters (QO2 and QCO2) were divided by 

the cell dry weight concentration to obtain the specific ones (qO2 and qCO2). The respiratory coefficient 

(RQ) was determined by the division of eq. (6) through eq. (5): 

𝑄𝑂2
=

𝑉𝐺
∝

𝑉𝐹22.4
[𝑌𝑂2

∝ −
1−𝑌𝑂2

∝ −𝑌𝐶𝑂2
∝

1−𝑌𝑂2
𝜔 −𝑌𝐶𝑂2

𝜔  𝑌𝑂2

𝜔 ]   (5) 

 

  𝑄𝐶𝑂2
=

𝑉𝐺
∝

𝑉𝐹22.4
[𝑌𝐶𝑂2

𝜔 1−𝑌𝑂2
∝ −𝑌𝐶𝑂2

∝

1−𝑌𝑂2
𝜔 −𝑌𝐶𝑂2

𝜔 − 𝑌𝐶𝑂2

𝛼 ]   (6) 

where V∝G is the volumetric gas flow rate, VF is working volume, Y∝O2 is the molar fraction of oxygen at 

the entrance of the gas phase, Y∝
CO2 is the molar fraction of carbon dioxide at the entrance of the gas 

phase. Yω
CO2 is the molar fraction of oxygen in the exhaust gas and Yω

CO2 is the molar fraction of carbon 

dioxide in the exhaust gas. 
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3. Results and discussion  

3.1. Growth and main carbon metabolism 

Two scale-down reactor systems have been applied to mimic different substrate and oxygen gradient 

scenarios. Results were compared to homogenous conditions in the single-CR system. The dissolved 

oxygen tension (DO) remained above 40% for all cultivations in the STR compartment. Oxygen 

limitation was observed in the PFR modules of scale-down cultivations 3 h after the feed started at the 

PFR-F in the two-CR and three-CR, and 4 h after the feed started at the PFR-S in the three-CR (Fig. 2A 

and B). The glucose gradients created in the PFR-F were in a range from 1 g L-1 at the first port of the 

feeding module to 0.6 g L-1 at the last port (fifth port), whereas gradients were in a lower range from 

0.2 to 0.1 g L-1  in the PFR-S (Fig. 2C). A direct influence of oscillatory oxygen availability was observed 

at growth, which was reduced after oxygen availability became limited in the PFR modules (Fig. 3A). A 

reduction of growth was also observed in a S. cerevisiae cultivation in a two-STR system, which was 

operated in continuous mode at a dilution rate of 0.2 h-1, and in which the time of exposure to oxygen 

limitation was increased steadily (Sweere, et al., 1988a).  

The substrate uptake rate (qs) was in the same range as already observed for S. cerevisiae cultures 

under substrate-limited steady-state conditions at a growth rate of µ= 0.1 h-1 (Van Urk, et al., 1989). 

Oxygen limitation in the PFR-F module occurred at the same time at which qs rather increased (Fig. 3B). 

The increment of qs is probably related to the well-known Pasteur effect, as described, for example, in 

(Sarris and Papanikolaou, 2016; Sonnleitner and Kappeli, 1986). The increase in qs is similar to what 

was observed in other scale-down studies conducted with E. coli (Neubauer, et al., 1995; Sandoval-

Basurto, et al., 2005). In the latter study, qs increased with the residence time of cells in a non-aerated 

PFR until cells were not able to cope with the increasing gradients. S. cerevisiae cells seem to be robust 

against oxygen limitation, since their uptake capacity was even undisturbed in the three-CR system, in 

which the time of exposure to oxygen limitation was doubled (in comparison with the two-CR).  

The oscillating environment supported the synthesis of lactate and other carboxylic acids (Fig. 4). A 

reassimilation of these intermediates in the stirred tank compartment was not observed. The 

accumulation of these metabolites follows the same tendency in both scale-down systems, except that 

acetate accumulation started 2 h earlier in the three-CR. 
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Figure 2. (Left) DO concentrations in the PFR modules 

of the two-CR and three-CR during fed-batch 

cultivations. (A) DO concentration measured at port 1 

(straight line) and port 5(dashed line) of the PFR-F of 

the two-CR, which correspond to residence time 26 s 

and 62 s, (B) DO concentration measured at port 

1(straight line) and port 5 (dashed line) of the PFR-F 

and port 1 (dotted line) and port 5 (dashed line) of the 

PFR-S of the three-CR, corresponding to the same 

residence time as the PFR ports of the two-CR. (C) 

Glucose gradients along the PFR-F and PFR-S at two 

time points: 10 h ( ) and 12 h after feed started (

) of the three-CR. Samples where measured along the 

PFR in 5 points corresponding to the residence time: 

τport1= 26 s, τport2=35 s, τport3=45 s, τport4=56 s, τport5=62 s 

 

 

 

 

 

Figure 3. (Right) (A) Dry cell weight concentration 

and (B) specific substrate uptake rate of the single-

CR ( ), two-CR ( ) and three-CR ) fed-batch 

cultivations. 
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No accumulation of TCA intermediates or of 

ethanol was observed in any of the cultivations. 

The oxygen consumption and the carbon 

dioxide production rates (qO2 and qCO2, 

respectively) remained more or less constant 

during the first 5 h of the fed-batch phase in the 

scale-down cultivations. RQ started to increase 

after 6 h due to the fermentative co-

metabolism under oxygen limitation (Fig. 5). 

The increase in RQ is most likely due to 

depletion of some amino acid sources in the 

media in the single-CR cultivation after 9 h. A 

depletion of valine, leucine, isoleucine, 

phenylalanine and histidine was detected by 

high-performance liquid chromatography at 

this time (data not shown).  

Figure 4. Extracellular concentrations of (A) pyruvate, (B) lactate and (C) acetate of the single-CR ( ), two-CR (

) and three-CR ( ) fed-batch cultivations. 

3.2. Sterol synthesis 

In contrast to expectations, sterol formation was not influenced negatively but positively by oscillating 

conditions. While almost no difference was seen in the free sterol concentrations (see Supporting 

information), the esterified form of the end product ergosterol was increased by 75% (Fig. 6F). The 

accumulation of esterified intermediates initiated a higher flux through the sterol pathway under scale-

down cultivation conditions. Only the squalene accumulation indicated potential limitations to achieve 

higher fluxes towards ergosterol, if more oxygen would have been available. An increase in the portion 

of the esterified fraction of sterols was observed. The conversion of free sterols to the corresponding 

esterified forms does not require any oxygen, and thus will not be affected by oscillatory oxygen 

availability anyway. 
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Zymosterol is the first intermediate within the sterol 

pathway that maintains growth rates of yeasts and 

accumulates after a sudden shift to aeration (Maczek, et 

al., 2006). The esterified form of zymosterol was doubled 

in the two-CR cultivation in comparison to the control in 

the present study. The concentration of the zymosterol 

ester was still increased by 50% in the three-CR 

cultivation in comparison to the control (Fig. 6C). 

Zymosterol already enables the cells to cover most of the 

functionality they would have if sufficient amounts of 

ergosterol were present, as other studies described (Klug 

and Daum, 2014). Nevertheless, from 12 mol of oxygen 

that are required until ergosterol is formed, the major 

portion of oxygen (10 mol) is required to form 

zymosterol (the exact requirement for oxygen might be 

higher as several conversions have not yet been fully 

examined). 

 
 

 

Figure 5. qO2 (a), qCO2 (b) and RQ(c) in THE STR module of the reference and scale-down cultivations: single-CR (

), two-CR ( ) and three-CR ( ). 

 

Although a similar accumulation of ergosterol ester was seen in scale-down cultivations after 10 h, 

accumulation started earlier in the two-CR (Fig. 6F). Probably, the higher oxygen availability promoted 

a higher carbon flux through the post-squalene pathway in comparison to the three-CR, in which a 10-

fold accumulation of squalene was observable in comparison to the control. While ergosterol ester is 

the first one to be accumulated in the two-CR, zymosterol ester is the first one in the three-CR.  
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Figure 6. Course of (A) Squalene and esterified sterols 

concentrations: (B) Lanosterol, (C) Zymosterol, (D) 

Episterol, (E) Fecosterol, (F) Ergosterol of the single-CR (

), two-CR ( ) and three-CR ( ) fed-batch cultivations. 

The concentration of enzymes that catalyse 

esterification, Are1p and Are2p, are underlying 

mechanisms which regulate the sterol content itself. 

Arthington-Skaggs et al. (1996) described that Are1p 

is present at higher concentration if sterol pre-cursors 

accumulated in the cell. A reduced ergosterol 

concentration led to a higher concentration of both 

Are1p and Are2p. The two enzymes are not 

influenced by the ergosterol concentration itself (no 

product inhibition). Moreover, studies have shown 

that an enhanced capacity to esterify sterols, in this 

case by the overexpression of ARE2, which is localized 

directly at sterol-rich microdomains (Gulati, et al., 

2015), can enrich the sterol content in yeast 

(Polakowski, et al., 1999). In the study of (Rintala, et 

al., 2009), the concentration of enzymes of ergosterol 

biosynthesis including Are1p, was high anaerobic 

conditions in comparison to various degrees of 

oxygen availability. Although, in the case of oxygen 

depletion, yeast does not benefit from this 

upregulation, it is certainly an advantage in situations 

in which small amounts of oxygen are available. It was 

observed that pulses of dissolved oxygen increased 

yeast survival under an otherwise anaerobic 

environment (Rosenfeld, et al., 2003).  
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The authors proposed that this accelerated de novo sterol synthesis increased the fermentation yield. 

Thus it might be that the oscillating conditions trigger this response. In combination with precursor 

accumulation, higher fluxes occur whenever sufficient oxygen as cofactor is available. 

Sterols are esterified with fatty acids. Unsaturated fatty acids, like C16:1 and C18:1, represent about 

80% of the fatty acids under homogeneous cultivation conditions (Figure 7C, D). This is in good 

accordance with previous studies (Tehlivets, et al., 2007). They serve predominantly as precursors in 

sterol ester formation (Athenstaedt, et al., 1999), while the saturated fatty acids are usually used in 

smaller amounts (Mullner and Daum, 2004). Nevertheless, under oscillating conditions, the percentage 

of unsaturated fatty acids went down to 74% in the two-CR and to 70% in the three-CR in comparison 

to the control. This is mainly due to an increase in saturated fatty acids (Figure 7A, B). It is unlikely that 

this change has an influence on the esterification of sterols. 

 

Figure 7. Course of the fatty acids concentrations: (A) C16:00 (palmitic acid), (B) C18:00 (stearic acid), (C) C16:1 

(palmitoleic acid), (D) C18:1 (oleic acid) of the single-CR ( ), two-CR ( ) and three-CR ( ) fed-batch 

cultivations. 

Fermentable sugars are converted to pyruvate in the mitochondrion and by the cytosolic pyruvate–

acetaldehyde–acetate pathway (Beopoulos, et al., 2011); thus a bottleneck in the further synthesis 

towards TCA leads to acetyl-CoA accumulation in parallel with elevated pyruvate and acetate 

concentrations inside the cell. Since acetyl-CoA is a precursor of the long-chain fatty acid synthesis 

itself, an accumulation of acetyl-CoA increases their synthesis. 
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3.3. Single-cell size distribution 

It was investigated whether oscillating cultivations conditions have an impact on the cell population 

homogeneity. Therefore, the cell size was determined with DHM (Fig. 8 and Table 2). Results showed 

that growth and the single-cell size distribution remained similar within 3 h after feed start among all 

experiments (µ = 0.16 ± 0.032 h-1). During this time cells were not yet exposed to oxygen limitation in 

the PFR compartments. Subsequently, cells were exposed to strong oxygen limitation (no dissolved O2 

detectable in the liquid phase along the PFR compartments). Growth rate was higher under 

homogeneous conditions (µ = 0.15 ± 0.041 h-1) in comparison to scale-down conditions (µ=0.10 ± 0.017 

h-1). Nevertheless, no relevant changes were seen in the cell size distribution. Hence there is only a 

weak impact of cell growth on the population heterogeneity, if any. In the following, cell growth 

became similar after 7 h of feeding among all cultivations (µ = 0.05 ± 0.005 h-1). Nevertheless, 

heterogeneity developed differently in the reactors. It was strongly increased in the three-CR 

cultivations, which was observable at the increment of the variance between 7 and 10 h (Table 2); 

however, the mean value of the cell diameter remained unchanged. Only a maximum change of 0.4 

µm among all cultivations conditions was determined. The change within the same cultivation did not 

exceed 0.1 µm.  

Table 2. Variance of the single-cell size frequency distribution for the time points showed at Figure 8. 

Time [h] Variance [µm2] 
 

single-CR two-CR three-CR 

3 0.93 1.12 0.89 
7 1.26 1.11 1.09 

10 0.97 1.05 1.87 

12 1.03 1.13 1.70 

 
The time at which a noticeable increase in population heterogeneity occurred was the same time at 

which an accumulation of several metabolites, including several sterols, was detected in the three-CR. 

Population heterogeneity may be due to unsynchronized cell cycle phases (Müller, et al., 2010; Turner, 

et al., 2012). Hence the impact of oscillating conditions is likely uneven, probably based on the 

individual cell age. A prolonged maturation state will also lead to a higher proportion of large cells. A 

population with larger cells was observed in both scale-down cultivations in comparison to the control. 

Pereira and co-authors described qualitatively an increase in cell size in high-gravity cultivations when 

sterols were accumulated (between a two-and fivefold increase during cultivation). The authors 

proposed that the industrial strain is able to channel a higher fraction of the limited amount of available 

oxygen at the beginning of the fermentation for the synthesis of essential lipids (Pereira, et al., 2011). 

Other studies showed a relation between cell heterogeneity and growth status. In the study of 

(Lencastre Fernandes, et al., 2013), flow cytometry was used to measure the total protein content and 
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DNA during batch cultivation with S. cerevisiae. During growth on glucose (μ = 0.41 ± 0.001 h−1), a 

unimodal distribution was observed, while a bimodal distribution was obtained after a diauxic shift 

with ethanol as carbon source (μ = 0.10 ± 0.02 h−1).  

 

Figure 8. Single-cell frequency distribution as measured with the DHM for the single-CR ( ), two-CR ( ) and 

three-CR ( ) cultivations, for the times 3 hours, 7 hours, 10 hours and 12 of the fed-batch cultivation. Column A 

shows single-CR and two-CR together, meanwhile column B shows single-CR and three-CR together. 
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Another flow cytometry study was performed in order to gain information about the population 

heterogeneity in a scale-down reactor set-up of two connected stirred tank reactors in a continuous 

cultivation mode. One reactor represented conditions existing near the feed addition on a large-scale, 

while the other reactor represented conditions in the bulk of the liquid phase. When the culture was 

exposed to a low dilution rate of μ = 0.05 h−1 and a circulation rate of 0.1 litre h−1, a high degree of 

homogeneity was achieved in comparison to a dilution rate of 0.2 h−1 and a circulation rate of 0.3 litre 

h−1. Hence a faster exchange between compartments at higher growth supported cell heterogeneity 

(Heins, et al., 2015). 

4. Conclusions 

An oscillating oxygen availability, as present in industrial-scale nutrient-limited fed-batch cultivations, 

has in contrast to continuous oxygen depletion in anaerobic fermentations, no negative influence on 

sterol availability. It becomes obvious that the mechanism used to maintain sterol homeostasis was 

raising sterol esterification in all scale-down cultivations. Specific esterified sterol concentrations kept 

increasing throughout the observation period. A higher degree of heterogeneity during the scale-down 

experiments was observable with analyses of the single-cell size distribution; however, it was not 

directly related to growth reduction but rather to the presence of a zone of strong substrate limitation. 

Deficiencies that might occur in cells led to larger cell particles, likely due to disturbed maturation. In 

order to investigate this further, in situ single-cell-based analysis methods will be applied in future 

experiments.  

The described approach is able to reflect large-scale effects and provides insight into the response 

within the sterol metabolism under oscillatory conditions. Although yeast is robust enough to maintain 

free sterol levels under oscillatory conditions, cell growth changed severely. The detailed regulation 

mechanisms behind this phenomenon remain to be investigated. Results of this study are significant 

for processes, in which the product is based on sterol precursors or affects sterol synthesis, as for 

applications in the food and pharmaceutical industry (Du, et al., 2016; Garaiova, et al., 2014). 

SUPPORTING INFORMATION 

Additional Supporting Information may be found online in the supporting information tab for this 

article. 

.
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4.3. Real-time monitoring of the budding index in Saccharomyces cerevisiae batch 

cultivations with in situ microscopy 

Anna-Maria Marbà-Ardébol, Jörn Emmerich, Michael Muthig, Peter Neubauer, Stefan Junne 

Abstract 

Background 

The morphology of yeast cells changes during budding, depending on the growth rate and cultivation 

conditions. A photo-optical microscope was adapted and used to observe such morphological changes 

of individual cells directly in the cell suspension. In order to obtain statistically representative samples 

of the population without the influence of sampling, in situ microscopy (ISM) was applied in the 

different phases of a Saccharomyces cerevisiae batch cultivation. The real-time measurement was 

performed by coupling a photo-optical probe to an automated image analysis based on a neural 

network approach. 

Results 

Automatic cell recognition and classification of budding and non-budding cells was conducted 

successfully. Deviations between automated and manual counting were considerably low. A 

differentiation of growth activity across all process stages of a batch cultivation in complex media 

became feasible. An increased homogeneity among the population during the growth phase was well 

observable. At growth retardation, the portion of smaller cells increased due to a reduced bud 

formation. The maturation state of the cells was monitored by determining the budding index as a 

ratio between the number of cells, which were detected with buds and the total number of cells. A 

linear correlation between the budding index as monitored with ISM and the growth rate was found. 

Conclusion 

It is shown that ISM is a meaningful analytical tool, as the budding index can provide valuable 

information about the growth activity of a yeast cell, e.g. in seed breeding or during any other 

cultivation process. The determination of the single-cell size and shape distributions provided 

information on the morphological heterogeneity among the populations. The ability to track changes 

in cell morphology directly on line enables new perspectives for monitoring and control, both in process 

development and on a production scale. 

Key words: in situ microscopy, Saccharomyces cerevisiae, image detection, budding index, monitoring, 

cell size, morphology, growth activity. 
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1. Introduction 

The morphology of single cells is traditionally measured with microscopy. Due to a certain relationship 

between form and function, the growth state of cells, and even the production performance can be 

investigated on the basis of cell size and other morphological features. As such features are determined 

off line or at line, they cannot be measured in real-time for the purpose of process monitoring. 

Among the mostly applied methods to determine the growth activity is plating on solid media followed 

by incubation for several hours up to several days, or cell staining (Davey, 2011). Microscopy is usually 

not connected to automated sampling, the achievement of a sufficient number of cells is time-

consuming. Consequently, neither a representative sample is obtained, since only a few cells are 

counted at certain specific time points, nor the heterogeneity of the cell population is considered. If 

conventional microscopy is coupled to a sampling tube and flow cell, the sample is either affected by 

the conditions in the sample tube or the device has to be located very close to the reactor. This is often 

not applicable in daily laboratory practice. 

Among automated methods for the characterization of a yeast population, flow cytometry (FCM) or 

cell counting is often applied. The morphological heterogeneity in a population can be measured as 

well with these methods. Moreover, FCM can provide further information beyond morphological 

features at the same time, e.g. total protein and DNA content measurements (Lencastre Fernandes, et 

al., 2013). FCM was successfully applied to brewing yeast for the determination of the physiological 

state during propagation (Novak, et al., 2007), and for the quantification of the vitality of cells before 

fermentation (Lodolo and Cantrell, 2007). Partial least squares regression models were created using 

data from fluorescent propidium iodide staining microscopy and Coulter counter cell size distributions 

when cells were exposed to different stresses (temperature shift, acetate or furfural addition) 

(Tibayrenc, et al., 2010). Such methods are usually used for quality assessment, but have not become 

widely applied tools for process monitoring. 

Other authors have used imaging microscopy (Coelho, et al., 2004; Tibayrenc, et al., 2010) or image 

cytometry of shake flask cultures (Laverty, et al., 2013; Saldi, et al., 2014) for assessing the morphology 

of yeast cells. The acquisition of the images is conducted off line, but the particle recognition is usually 

automated. The cells are assumed to be elliptical, then the equivalent major and minor axes are 

determined. Further parameters such as cell size or volume are derived from this information. Image 

cytometry is a combination of image microscopy and the observation of light scattering data from cells 

that have been stained in order to directly assess viability. These methods are less time-consuming and 

avoid some of the typical errors of completely manual procedures, but certainly not all (Thomson, et 

al., 2015). Sampling (automatic or manual) and staining is still required, when fluorescent markers 

cannot be applied, e.g. whenever targeted genetically modification is not possible.  
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If the morphology can be correlated with certain features of a culture, the single-cell size distribution 

can be used to investigate these without any further cell treatment. For example, morphological 

heterogeneity is affected by the age of cells and the status of the cell cycle (Müller, et al., 2010). Due 

to asymmetric division (Turner, et al., 2012), budding of yeast cells can increase the morphological 

heterogeneity of a population. The usual variation of the composition and quality of complex media 

compounds (Kirdar, et al., 2010) alters growth activity and population heterogeneity from batch to 

batch as well (Kasprow, et al., 1998; Van Nierop, et al., 2006). Cultivation conditions influence this 

heterogeneity, since individual cells can react differently to them, e.g. at substrate limitation or during 

the accumulation of secondary metabolites. Single-cell monitoring, which generates statistically valid 

data, can therefore provide appropriate information on the status of a culture and contributes to 

improved process and quality control. 

The present study aims to achieve a further development stage by monitoring the maturation state of 

the budding yeast Saccharomyces cerevisiae with in situ microscopy (ISM) on a single-cell level. In the 

case of the budding yeast, the proportion of cells that are in the maturation state at a time 

(represented with the budding index, BI), can provide information about the growth vitality (Brauer, et 

al., 2008; Porro, et al., 2009).  

An evolved version of a photo-optical probe, which was formerly applied in cultures of larger microbial 

cells like the heterotrophic microalgae Cryptecodinium cohnii (Marbà-Ardébol, et al., 2017), was used 

in yeast batch bioreactor cultivations for the first time. Automated image recognition was applied to 

differentiate between budding and non-budding cells on the basis of machine learning algorithms, and 

a correlation analysis was conducted in order to prove that data of ISM reflected well data of growth 

measurements throughout all process stages. 

2. Materials and Methods 

Yeast strain 

The yeast strain Saccharomyces cerevisiae AH22 (MATa leu2-3 leu2-12 its4-519 can1) (Maczek, et al., 

2006) was used for all experiments. 

Cultivation conditions  

Cells were grown in buffered YPD medium at a pH-value of 5.5. The medium contained 2 % of glucose, 

1 % of yeast extract, 2 % of peptone, 1.4 % of KH2PO4, 0.1 % NH4Cl (all w/w) as described previously 

(Maczek, et al., 2006). This complex medium was chosen rather than mineral salt medium in order to 

achieve conditions closer to industrial application. 
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Pre-cultures were grown aerobically in Ultra Yield™ Flasks (Thomson Instrument Company, VA, USA) 

at 25 °C and 250 rpm with 1 % (v/v) of antifoam 204 (Sigma-Aldrich, Germany). Batch cultivations were 

conducted in a Biostat® B plus stirred tank bioreactor (Sartorius AG, Germany). The temperature was 

set to 27 °C, the aeration rate to 1 vvm, and the stirrer speed to 400 rpm, respectively. 

Cell growth was determined with the optical density at a wavelength of 600 nm (OD600) with a 

spectrophotometer (Ultraspec 3000, GE Healthcare, CT). Batch cultivations were inoculated so that the 

initial OD600 reached 0.3. The pre-culture was in the early log phase (OD600=4) at the time of inoculation. 

Baffled 250 mL shake flasks with non-invasive pH and DO sensors were used to record pre-culture 

conditions (PreSens-Precision Sensing, Germany). Alternatively, cell growth can be determined 

through the dry cell weight (DCW). 2 mL of culture were centrifuged for 10 min at 4°C and 21,500 × g 

in previously weighted 2 mL Eppendorf tubes, then washed with 2 mL of 0.9 g L−1 NaCl solution and 

centrifuged again under the same conditions as before. Then, the Eppendorf tubes were stored in a 

drying oven (75°C) for 48 h and weighted. 

The biological reproducibility of the three bioreactor cultivations was quantified with the standard 

deviation (σ) obtained between the values of the curve fit and of each experiment.  

Off line analysis 

Every hour, a sample was taken for the measurement of cell growth and the quantification of 

extracellular metabolites. Cell growth was determined with the OD600 as described in the previous 

section. Samples for extracellular metabolite determination were filtered through a membrane filter 

with a pore size of 0.8 µm (Carl Roth, Germany). The supernatant was transferred to 1.5 mL Eppendorf 

tubes and immediately stored at -80 °C. 

Organic acids were quantified with an Agilent 1200 system, which was equipped with a refractive index 

detector and a HyperRez XP Carbohydrate H+
 column (Fisher Scientific, Germany) as previously 

described (Marbà‐Ardébol, et al., 2017).  

In situ microscopy 

Cells were monitored in situ with the photo-optical probe SOPAT MM-Ho (SOPAT, Germany), which 

was installed directly in the bioreactor and dipped into the cell suspension. Another probe with 

stronger magnification, the SOPAT MM 2.1, was used through a bypass. The bypass was connected 2 

hours after inoculation.  

Table 1 provides an overview of the main characteristics of both microscopic probes, Fig. 1 provides a 

schematic view of the devices. Both sensors used the same light sources, but different optics and 

camera systems. The illumination is achieved by transmission, therefore the light source is located at 
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the opposite side of the camera (Panckow, et al., 2017). The light passes an adjustable distance 

(measuring gap) through the cell suspension. A short distance leads to the effect that light with a higher 

energy density re-enters the optical unit on the opposite side. More important is the decrease of 

obscuration due to overlapped cells within the measuring gap, especially at a high cell concentration. 

This results in images of higher contrast and an improved differentiation between objects and the 

background. 

Table 1. Overview of the main characteristics of the MM-Ho and MM 2.1 probes. 

Parameter MM-Ho MM 2.1 

Field Depth [µm] 2.32  1  

Camera 
2750 × 2200 CCD  

with 19fps, 1” 
2048 × 2048 CMOS 

with 26fps, 1” 

Conversion factor [µm pix-1] 0.166  0.087  

Interface GigE Vision GigE Vision 

Magnification 26.6 × 40 × 

Numeric aperture 0.1 0.55 

Illumination 
Transmission, Xenon 

flash lamp, 2.6 J, pulse 
duration 8µs 

Transmission, Xenon 
flash lamp, 2.6 J, pulse 

duration 8µs 

Measuring Gap [µm] 40  50  

Probe length [mm] 270  266  

Probe diameter [mm] 24.5  50.0  

Software Version SOPAT v1R.002.0053 SOPAT v1R.003.0092 
 

Fig. 1. Sketch of the ISM devices: the probe MM-Ho was installed directly in the bioreactor, whereas the probe 

MM 2.1 was used in a bypass. The culture broth circulation is marked with arrows in each picture. 
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Table 2 summarizes parameters of the image acquisition. As a result of the different optical 

configurations between the probes MM-Ho and MM 2.1, a number of settings were adjusted. Due to 

the different light transmission characteristics of the optics, the exposure time of the light needed to 

be increased by a factor of 10 for measurements with the MM 2.1 probe. The rate of captures were 

increased in parallel to a reduced field of view in order to obtain a sufficient amount of cells that were 

captured at each time point. 

Table 2. Parameters of the image acquisition of the MM-Ho and MM 2.1 probe. 

Acquisition parameter MM-Ho MM 2.1 

Image acquisition rate [min] each 3 each 5  

Exposure time [µs] 15  150  

Stroboscope intensity [%] 5 5-12 

Frames per trigger [-] 150 200 
 

Automated cell identification 

An artificial neural network (ANN) was trained for automated cell recognition. The first step was the 

annotation of the objects of interest, which were divided in two classes, budding and non-budding 

(including daughter) cells. As soon as a cell had a visible bud attached to the mother cell, it was 

considered as a budding cell. This large variability of automated recognizable particle sizes within the 

class of budding cells was feasible due to a flexible boundary detection. This was enabled through 

training the machine learning algorithm with annotated samples that covered the entire variability of 

the cell culture. Various examples of budding and non-budding cells are shown in Fig. 2.  

Agglomerates, and cells that were partly or completely out of focus were classified as background. 

 

Fig. 2. Classification of cells: non-budding (G1) states are depicted in front of a green background, budding cells 

(S, G2 and M) are depicted in front of a red background. Examples of overlapping cells that were excluded from 

the identification are shown in the blue ellipse. 
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The annotated images served as training data for the ANN as previously described by Ronneberger et. 

al. (Ronneberger, et al., 2015). Afterwards, in order to exclude the falsely identified events, the 

detected and categorized objects, which were obtained from the ANN, were classified again. A normal 

Bayes classifier was trained with the labeled particles, from which a feature vector was created. This 

vector was a function of the area, convex area, eccentricity, equivalent diameter, perimeter and 

solidity. 

Examples of the particle identification and classification are shown in the supplements (Additional file 

1: Figure S1). The portion of false positive (particles erroneously detected as cells) and false negative 

(cells that were not recognized as such) was approx. 5 % of the sum of correctly recognized and false 

negative counts as determined by manual annotation for the captures of the probe MM-Ho (Additional 

file 1: Table S1) and slightly higher for captures of the probe MM 2.1 (Additional file 1: Table S2). The 

budding index (BI) was automatically calculated based on the classification of budding and non-

budding cells. 

Reliability of the automatic cell identification. 

In order to proof the reliability of the cell detection, a manual counting of budding and non-budding 

cells was performed with captures of the two probes. The automated cell detection has a lower 

standard deviation than the manual detection, both recognition methods yield similar results (Fig. 3.a 

and 3.b). The correlation between the BI derived from data of automated and manual cell detection 

was R = 0.98 for the MM-Ho probe (Fig. 3.c) and R =0.99 for the MM 2.1 probe (Fig. 3.d). In case a 

sample was measured three times, a coefficient of variation of less than 0.15 % was achieved. The 

divergence in the BI of captures from the probes MM-Ho and MM 2.1 is seen in both manual and 

automated cell detection. This divergence might be due to differences of the pre-culture (biological 

divergence), but also due to the differences in the bypass unit (technical divergence). Due to the setup 

of the bypass, it is considered to be unlikely that yeast cells are affected in such a short time of 60 s at 

the given concentration. The impact is lower than at off line microscopy anyway, which is the only 

reliable reference method. Therefore, any influence would be hardly detectable, if it is less than at the 

sample treatment for off line measurements. In any case, the same dynamics of metabolic 

concentrations and morphologic cell features were observed. 

A certain portion of budding cells are identified as non-budding cells, if (i) either the bud is hidden by 

its mother cell (optical shadow), or (ii) if the bud is situated directly in front of it. This percentage can 

be approximated under consideration of the portion of the surface area of the mother cell, in which a 

daughter cell (bud) is completely hidden (Ahd). Finally, the relation between the total surface (Sm) and 

the Ahd multiplied by two will provide the probability of false positive detections in non-budding cells 

(XFnb). If XFnb is derived as explained in the supplementary materials (Additional file 1: Figure S2), a 
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maximum of 4 % of all cells will be classified as non-budding, although they should actually be classified 

as budding cells. An even distribution of cells towards the optical plane is assumed. 

However, it is likely that cells are oriented towards the direction of flow. In this case, the bud will likely 

be located in orthogonal direction towards the optical plane. Thus, the proportion of buds in the optical 

shadow or directly in front of the mother cell is lower than assumed under a normal distribution of the 

buds. Since the error is systemic and similar across all cultivations and also occurs with the usual off 

line light microscopy, it is considered to be negligible for the further discussion. 

Fig. 3. Comparison between the budding indices obtained with ISM (black bars) and with manual counting (gray 

bars) with the respective standard deviations for the probe MM-Ho (a) and the probe MM 2.1 (b). The standard 

deviation of the manual counting was obtained from two mean values from a sample size of between 100 and 

200 cells. The standard deviation of the automated cell detection is calculated as difference from a fit (spline 

function) with the values of single time points. Linear correlation between the manual and automatic recognition 

for the probe MM Ho (c) and the probe MM 2.1 (d).  

Sample size and sample concentration 

In order to ensure that a representative sample of the cell population was measured, a sensitivity 

analysis from each cell class (budding and non-budding) was performed, as both classes had a different 

grade of heterogeneity (data not shown). A certain heterogeneity is obtained, because budding 

particles vary in size due to the ongoing budding process. A higher heterogeneity requires more data 
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for training. It was taken care that the number of cells that are identified at each time point exceeded 

the required number to gain a reproducible value of the mean cell Feret diameter and the Dv90 (the 

cell size, which encounters 90 % of the detected cell sizes), as described elsewhere (Marba-Ardebol, et 

al., 2018a).  

Morphological parameters 

The morphological parameters that were obtained from the ISM were cell Feret diameter (dF) and the 

aspect ratio (AR). A certain dF of a particle is calculated as the difference between the maximum and 

the minimum length of the particle projection on a unit vector with a certain rotation. The minimum, 

maximum and mean dF are estimated by rotating the unit vector from 0° to 180° by 16 steps. Then, the 

smallest, largest and mean diameters are determined according to ISO norms. The aspect ratio is 

obtained by dividing the minimum through the maximum dF.  

In order to reduce the influence of outliers, the median of the minimum, maximum or mean dF of all 

cells is shown in the manuscript. Moreover, the interquartile range (IQR), which is the difference 

between the 75th percentile, also denoted as third quartile (Q3), and the 25th percentile, also denoted 

as first quartile (Q1), is provided to indicate the variability around the median. 

3. Results 

In situ monitoring of the budding index  

Three glucose-limited aerobic batch cultivations of S. cerevisiae were conducted. In addition to the 

standard off line sampling for the investigation of cell proliferation and the metabolite concentration 

profile (Fig. 4.a and b), ISM was used to obtain information on the growth vitality of yeast cells. Two 

cultivations were monitored with the probe MM-Ho, and one with the probe MM 2.1.  

The increment of the cell concentration over time of either OD600= 6.2 or 2.8 g L-1 of DCW exceeded 

the threshold value for a suitable cell identification due to numerous overlapping objects. For an in situ 

application, however, the probe must cover a common concentration range. In order to achieve this 

objective, two parameters were tested for their robustness: (i) the modification of the focus plane, and 

(ii) the stroboscope intensity. The first one influenced the sharpness of the separation of a cell from 

the background, which has an influence on the determination of the cell size. It must therefore remain 

constant during an application. However, it has been demonstrated that adjusting the stroboscope 

intensity did not affect the results. Although captures were gained at different stroboscope intensities, 

neither the BI nor the cell size of budding and non-budding cells were affected (Fig. 5). A further 

development to automate the adjustment of the stroboscope intensity to the increase of the cell 

concentration is in progress.  
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Fig. 4. Performance of S. cerevisiae batch cultivations: (a) OD600 of cultures monitored with the probe MM-Ho 

and MM 2.1 and the respective glucose concentration, as well as in (b) ethanol and lactate concentrations. The 

standard deviation between experimental points and curve fits (spline function) are 0.46 (OD600), 1.2 g L-1 

(glucose), 0.3 g L-1 (ethanol), and 0.2 g L-1 (lactic acid concentrations). (c) Budding index as determined with the 

probe MM-Ho and MM 2.1, and the respective growth rate. Experimental data is represented with dots, curve 

fits with straight lines. 
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Fig. 5. Yeast cells of the stationary phase measured with six different stroboscope intensities. The median of the 

mean dF of budding and non-budding cells, and the budding index is depicted. 

Monitoring with the MM 2.1 probe (with a higher magnification) was performed with an adjusted 

stroboscope intensity. In parallel to the increasing cell concentration, the intensity was increased from 

5 % to 12 % after 9 hours. This allowed a proper cell detection throughout the entire process. 

All cultures performed similarly in terms of growth, production and consumption rates as well as cell 

morphology (Fig. 4). The two cultivations, in which monitoring was conducted directly in line in the cell 

suspension, were almost uniform, and a third cultivation, in which ISM was applied in a bypass, showed 

only minor deviations from the previous experiments (values of the standard deviation are listed in the 

legend of Fig. 4). 

The patterns were typical for aerobic cultivations with yeast. By using a pre-culture that was inoculated 

during its early exponential phase, a growth rate of 0.3 h-1 after one hour of bioreactor cultivation was 

achieved, followed by an exponential growth phase, in which a maximum rate of 0.42 h-1 was reached 

(Fig. 4.c). 

In each of the growth phases, a different BI was obtained. The BI increased to a maximum of 80 % in 

the first hour after inoculation. Afterwards, a reduction in the BI was observed, which can be attributed 

to mitosis, as the proportion of daughter cells from freshly saturated cells increases.  
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As soon as the culture entered the exponential phase, the BI began to decline due to an accelerated 

proportion of mature daughter cells. It decreased linearly at a rate of -4.4 ± 0.13 % h-1 up to about 9 

hours after inoculation. The trend in the BI decreased to 22 % when the glucose concentration was 

close to limitation (measured with the probe MM 2.1). After the shift to ethanol consumption, the 

proportion of budding cells decreased, while maturation slowed down and only a few cells entered the 

S-phase. While the development of the BI is uniform among the different probes, which were applied, 

the absolute value differs. This is most likely due to an improved recognition of cells, which belong to 

the class of small non-budding cells due to improved optics of probe MM 2.1. This can be seen in Fig. 

7.  

The BI is well correlated with the growth activity of cells, as demonstrated by a cross-calibration 

correlation analysis (provided in the supplementary material). This correlation applies to more or less 

all growth stages with a coefficient of determination of R = 0.99 (Additional file 1: Figure S3). 

A maximum DCW of 5 g L-1 was achieved during batch experiments. No more than 12 % of the light 

capacity of the stroboscope was used. Therefore, there is a potential to monitor higher concentrated 

cell suspensions. A concentration range of 3 gL-1 to 65 g L-1 was tested by adjusting the stroboscope 

light intensity. Then, the images were processed as follows: first, a Laplace filter was applied to the 

original image. Then, the output was normalized with the average image brightness at the adjusted 

stroboscope intensities. Afterwards, the predicted concentration was calculated with the most suitable 

feature combination for the best fit of true concentrations. The correlation between the measured 

DCW and the predicted DCW was R = 0.97 (Fig. 6). Nevertheless, in order to achieve reliable results of 

the BI at higher cell densities, a further annotation and training of the ANN is suggested. 

 

Fig. 6. Linear correlation between the DCW as measured off line, and the DCW as predicted with ISM. Depicted 

are the values used for calibration and prediction. 
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Growth dynamics and population heterogeneity 

The heterogeneity of the population can be studied using the morphological parameters determined 

by the ISM. The sample was divided into two populations, budding and non-budding cells. This resulted 

in a bimodal distribution. Fig. 7 shows the unicellular size distribution in relation to the max. dF of some 

selected time points during the batch cultivations. The distribution was wider in the early stage of the 

exponential phase (3 h). The portion of small cells increased after 9 h of cultivation, when cells reached 

the post-diauxic phase, while the distribution between small and large cells remained rather constant 

between 3 and 7 h of cultivation. There existed a similar size distribution over a certain time period, 

when the change of substrate availability, byproduct formation and other changing factors do not have 

an impact on growth and vitality. 

 

Fig. 7. Single-cell size frequency distribution of the max. dF for cells classified as budding (red) and non-budding 

(green) measured with the probe MM-Ho (a) or MM 2.1 (b). 

The size development during a cultivation is shown in Fig. 8. Since the daughter cell is always smaller 

than its mother cell, the difference of the minimum and maximum dF of budding cells provides 

information about the bud size. The mother cell usually remains almost invariably large during the 

budding phase, the dF of mother cells is rather a value between the minimum dF of budding cells and 

the maximum dF of the non-budding cell fraction. The maximum dF of the non-budding cells remains 

almost constant during the growth phase, while the minimum cell size of budding cells decreases in 

parallel to a decreasing growth rate. The cell size is affected by many parameters, among them are 
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internal metabolite and ion concentrations, lipid, protein and RNA contents. These are steadily 

changing while growth decelerates. The appearance of smaller budding cells might thus be an early 

indicator for growth retardation. The heterogeneity in the lag phase is greater than in the post-diauxic 

phase, as a broader cell-to-cell variation is probably due to the stress response after transfer and 

inoculation than during glucose starvation, in which cells likely respond in a similar manor. The 

homogeneity of budding cells increased during cultivation (Additional file 1: Figure S4).

 

Fig. 8. Variation of morphological parameters. Values in the left column were obtained with the MM-Ho probe, 

values at the right column with the MM 2.1 probe. (a) and (b) Evolution of the median of the max. dF and the min. 

dF . (c) and (d) Variation of the interquartile range (IQR) of the median of the max. dF and the min. dF. (e) and (f) 

Evolution of the aspect ratio (AR) for budding cells, that is the ratio between the median of the min. dF and the 

median of the max. dF. 
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The AR of the non-budding cells remained almost constant (~0.9), since these cells are preserved as 

almost perfect spheres. From the moment on when the cells entered the exponential phase, the AR of 

budding cells probably decreased due to an increase in cell size during the maturation phase under 

elevated growth (Soifer and Barkai, 2014). When diauxic growth occurred, the AR increased due to a 

reduced bud size due to the retardation of bud growth. It seems that the cell cycle stagnated at the 

same time, while the BI changed only slightly. All other morphological parameters remained constant, 

so that hardly any cell entered the S-phase.  Multi-budding yeast cells were hardly observable among 

all cultivations and therefore neglected during cell recognition. 

4. Discussion 

Many efforts have been made to develop in situ microscopes for the application in bioprocessing 

(Belini, et al., 2013; Suhr and Herkommer, 2015). Initially, probes (Type III XTF, Sartorius and Hannover 

Univ.) required mechanical sampling, or a bypass measurement (Havlik, et al., 2013b). Previous studies 

used ISM without mechanical sampling techniques for the determination of the biomass concentration 

and the cells’ volume. The cell concentration was examined with a further developed version of ISM 

type XTF. The biomass concentration of the yeast Pichia pastoris was monitored up to a concentration 

of almost 80 g L-1 with a standard deviation of less than 12 % (Marquard, et al., 2016) (in the same 

concentration range as shown in the present paper, 65 ± 4 g L-1). The cell size variation, which was 

influenced by osmotic stress responses, was assessed (Camisard, et al., 2002). Cell identification was 

conducted with template matching and the resembling of circles. Aggregates were ignored like in our 

study. The volume of cells (38-30 µm3 during the batch phase) indicate that the detection was 

restricted to non-budding cells.  

In order to distinguish between budding and non-budding cells as performed in this study, it was 

assumed that the cell projection is an ellipse and the relationship between the major axis and minor 

axis can be used to classify the maturation state (the aspect ratio, as shown in the Results section, or 

vice versa, the elongation). Thus, it yields an approximation of the BI (Coelho, et al., 2004). Therefore, 

the AR or elongation value need to be set to discriminate both maturation states. Consequently, 

budding cells may be considered as non-budding cells at the beginning of the S-phase. However, the 

value selected by Coelho, et al. (extension=1.5) correlates well with the data presented in this study.  

ISM was not affected negatively by agitation as long as the power input was sufficient to generate a 

certain flow through the measurement gap. Then the image acquisition frame rate was adjusted in 

order to guarantee that cells from a previous frame will not appear in the following frame. Captures 

including bubbles were ignored for further image analysis. Undissolved particles of complex media are 

not influencing cell detection since the ANN approach will recognize those particles as background. 

This was applied in this study as complex media with yeast extract and peptone was used. However, 
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threshold concentrations will exist, which does not allow for a precise measurement anymore, but this 

depends on many factors and has to be evaluated in each specific case. One benefit of any automated 

cell detection method is the consideration of a large number of cells within a short time. The minimum 

sample size, which is required to obtain a representative cell size distribution (n) of a population (N), 

can be determined with eq. 1. This approximation is based on the assumption that N is much larger 

than n, and that n is normally distributed (Kauermann and Kuechenhoff, 2010). The desired accuracy 

(e) was set to 5% of the variance of the max. dF of budding and non-budding yeast. The admitted error 

was assumed to be α = 5% among the number of annotated cells n. A Gaussian distribution of the cell 

size of each class (z1-α/2=1.96) was considered. The amount of cells that needed to be identified from 

each class at each sample point under the assumptions described above is shown in table 3. 

𝑛 = (
𝜎 𝑧1−𝛼/2

𝑒
)

2
 (1) 

The recognized amount of cells exceeded these cell numbers at all analyses.  

Table 3. Sample size to obtain representative data of a population with the probes MM-Ho and MM 2.1.  

 MM-Ho MM 2.1 

 Non-budding Budding Non-budding Budding 

Variability (σ) 0.55 0.89 0.52 0.95 

Accuracy (1-α) 0.05 0.06 0.04 0.07 

Sample size (n) 502 768 633 794 
 

The processing of captures lasted about 16 s with the probe MM-Ho. Hence, the estimated total 

process time for a sample point with 150 images was approx. 40 min. The higher magnification reduced 

the time of image post-processing with the probe MM 2.1. Only 2.5 s were required to process an 

image, in total approx. 8 min for a sample point of 200 captures. Consequently, the method is assumed 

to be suitable for real-time monitoring and control of a bioprocess. 

In order to validate automatic image recognition, the study by Rupes et al. observed a systematic error 

(Rupes, 2002), as the deviation between manual and automatic detection increased when large 

quantities of buds were analyzed. No systematic error was observed in the present study. Although 

the divergence between manual and automatic detection at some points in time is up to 14 %, it 

remained under 8 % on average (Additional file 1: Tables S1and S2). 

Population heterogeneity can make a difference in the performance of a culture. Therefore, monitoring 

of the heterogeneity is crucial as it can influence the robustness and productivity of a bioprocess 

(Delvigne and Goffin, 2014). A certain cell size have to be reached for the initiation of budding and DNA 

replication (Porro, et al., 2009). The same critical cell size applies to all daughter cells, while in parent 

cells it increases with age. The heterogeneity of budding cells was reduced during the growth phase, 
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while it was higher in the lag phase. As recent studies have shown, bet-hedging mechanisms may be 

the reason for prolonged delay periods due to the formation of subpopulations with different 

phenotypes when cells cope with environmental stress, as it occurs after inoculation (Rosenthal, et al., 

2017).  

The determination of yeast quality was often determined by the viability and vitality of cells. However, 

vitality is not clearly defined and can be seen as a continuum of cell activity, from very active to very 

inactive cells, which is unacceptable for cultivation (Lodolo and Cantrell, 2007). Real-time monitoring 

of growth activity on a single-cell basis is achieved with ISM, so that it does not rely on an average 

value, but provides the possibility for a continuous observability of the process. Until now only animal 

cells structure, as detected with ISM, were related to cell viability (Wiedemann, et al., 2011a). The 

proper detection of smaller cells like many bacteria remains still a challenge and clearly limits currently 

ISM for the application in such bioprocesses. Although some studies have investigated the cell 

concentration of bacteria like Escherichia coli (Marquard, et al., 2017), the determination of the dried 

biomass concentration was only recently performed on the basis of a grayscale intensity measurement 

of captures. Single-cell analysis as described for cell line cultivation, algae or yeast has not been 

conducted yet for bacteria. Further experiments are required to investigate the limits of application at 

high cell densities at various complex media compositions. 

5. Conclusions 

ISM was applied successfully to monitor growth and budding activity in yeast batch cultures. In addition 

to growth information, the heterogeneity among the population of budding yeast cells can be 

quantified as well. The measurement can be performed directly in the reactor during the cultivation 

period by means of a photo-optical sensor in conjunction with an automated image analysis. Although 

other techniques can also provide data about cell size distributions, imaging microscopy gain data 

about the shape and any potential structural segregation of individual cells. In addition, the use of 

accelerated image recognition for process control is conceivable. In order to further improve 

applicability to differentiate cell structures, e.g. at intracellular product accumulation, the application 

of a higher resolution and the consideration of overlapping cells are currently under development. 

List of abbreviations 

artificial neural network (ANN), aspect ratio (AR), budding index (BI), cell Feret diameter (dF), dissolved 

oxygen (DO), dry cell weight (DCW), flow cytometry (FCM), in situ microscopy (ISM), interquartile range 

(IQR).  

Additional Supporting Information may be found online in the supporting information tab for this 

article. 
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5. Summarizing discussion  

So far, mainly chemical and physical properties of the medium, like the pH-value and the dissolved 

oxygen concentration are monitored in bioprocesses. Consequently, neither the physiology of the cells 

nor the heterogeneity are considered. Moreover, the uneven spatial distribution in large-scale 

bioreactors, which is caused mainly due to a limited power input, can affect the performance of the 

process, as scale-down studies have shown. The aging of the cells and the cell cycle phases are a source 

of heterogeneity as well (Müller, et al., 2010). Alterations of raw material quality (Kirdar, et al., 2010) 

also affect the batch to batch reproducibility (Kasprow, et al., 1998). 

The morphology of cells can be a suitable parameter to assess the growth state for different cultivation 

conditions, as the size and shape changes accordingly (Tibayrenc, et al., 2010). Consequently, there is 

a relationship between form and function in microbial processes (Gao, et al., 2014; Gonzalez, et al., 

2008): the physiological state is related with the morphological state.  

Until recently, there existed a limitation to rapidly assess cell morphological data due to a lack of 

suitable measurement technology. The application of movable parts, the required sterilizability, 

stability, maintenance and the short response time for image detection represented huge challenges 

(Beutel and Henkel, 2011). The time needed for processing a statistically reliable amount of data was 

exceeding the time of cell dynamics in microbial cultivations (cell cycle, growth rate and production 

rate), hence many microscopy technologies were not suitable for real-time applications, especially not 

in situ.  

The present work contributed to resolve some of the challenges towards a fast and reliable microscopic 

measurement of eukaryotic single cells. At line and in situ measurements were conducted with (i) 3-D 

holographic interferometric microscopy (DHM) and (ii) photo-optical in situ microscopy (ISM). Relevant 

industrial processes, namely the budding yeast S. cerevisiae during batch cultivations and scale-down 

experiments, as well as the two-stage cultivation for DHA production with the heterotrophic algae C. 

cohnii were investigated.  

A sufficient resolution is the key for a successful cell identification for both microscopic techniques, 

since it is affecting the sharpness of the delimitation of the cell with the background, and hence the 

cell recognition and cell size estimation (Marba-Ardebol, et al., 2018a). Finding an appropriate focus 

plane is not trivial and it depends on the object itself and on the matrix. Additionally, it depends on the 

preview (intensity picture or hologram for DHM and the bright field for ISM) and the time of light 

exposure, which influences the subjective impression of a correct focus plane. In contrast to ISM, DHM 

offers the possibility to refocus off line. Although refocusing is not an option for ISM, the image can be 

pre-processed for improving its quality before any particle identification (e.g. particles that are 
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appearing repeatedly in several images can be deleted by the application of filters or the brightness of 

the images can be normalized).  

The cell diameter of algae cells was computed directly from the surface of each cell. Both techniques 

(ISM and DHM) used the approximation of the Sauter mean diameter (d32). It was assumed that the 

cell is a perfect sphere, and its diameter was equivalent to the diameter of a circle that has the same 

area as the cell. The Sauter mean diameter, which was measured at different growth states, differ by 

4% on average and by 8% at maximum between ISM and DHM measurements. The single-cell size 

distribution dynamics obtained with both techniques were in agreement to each other (Marbà-

Ardébol, et al., 2017).  

Budding yeast cells represent a bigger challenge for automated image detection, as cells during 

budding are not of a spherical shape. So far, budding cell sizes have been calculated assuming that all 

cells were a perfect sphere or at best an ellipsoid in captures of ISM measurements. If the first option 

was applied, no differentiation between the maturation state of the cells could be made (Camisard, et 

al., 2002). If it was assumed that the cell is an ellipse, the ratio between the major and the minor axis 

was used to classify the maturation state (Coelho, et al., 2004). 

The present study achieved a further development stage. The differentiation between budding and 

non-budding cells was feasible, because of the flexible boundary detection enabled through machine 

learning algorithms, in particular through the training of an artificial neural network (ANN). A neural 

network is a type of machine learning algorithm based on pattern recognition. This approach has 

reduced the time needed for processing a statistically reliable amount of data, which was the major 

limitation until now for the applicability of imaging systems in real-time applications. 

The yeast cells maturation state became trackable through the BI determination, as a ratio between 

cells with buds and the total amount of cells (Marba-Ardebol, et al., 2018b). However, annotation 

procedure for training the ANN is time consuming, if accurate results should be obtained (Marba-

Ardebol, et al., 2018a). Otherwise, a simplified annotation can consist in labelling cells into different 

classes, without tracing their edges. This can reduce the time and man power to be invested, when 

obtaining the ratio between classes is already a valuable process parameter (as it is the BI) and not the 

size evolution of the cells. 

In contrast, DHM cell recognition algorithm was not able to detect budding cells as such (Figure 8), but 

rather only the mother cell was detected. DHM cell size was approximated through the Sauter mean 

diameter, as it has been explained above, whereas ISM approximated the cell size by the Feret 

diameter (dF). A certain dF of a particle is calculated with the particle projection on a unit vector with a 

certain rotation (0° to 180° by 16 steps) according to ISO norms. Therefore, if results of DHM and ISM 
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should be comparable, the diameter distribution of DHM would be equivalent to the distribution of 

the maximum diameter of the non-budding cells plus the minimum diameter of the budding cells. The 

ranges of the single-cell size distributions were: DHM 3 to 8 µm (mean value was 5.3 ± 0.1 μm) and ISM 

for max. dF, n-b and min. dF, b 2.5 to 6.5 µm (mean value was 4.1 ± 0.1 µm). 

 

Figure 8. Microscopic pictures of S. cerevisiae cell detection as obtained with DHM (A) and ISM (B). 

Both microscopic techniques allowed the measurement of a representative sample of the cell 

population. No sampling was needed for ISM measurements. They were performed directly in the 

suspension, or through a bypass line. Although the possibility of measuring through a bypass is also 

feasible for DHM measurements, sampling was needed for the approach as used in the experiments. 

Favorable and unfavorable growth and DHA production conditions were identified in 

Crypthecodinium cohnii cultivations. Size, circularity and phase homogeneity were affected depending 

on the C/N ratio, but also due to the effect of different media on growth and lipid accumulation. The 

intracellular accumulation of DHA was predicted non-invasively and in real-time by means of DHM 

and ISM (Marbà-Ardébol, et al., 2017). A correlation between the DHA content measured off line (using 

gas phase chromatograph equipped with a flame ionization detector) and predicted using the average 

d32 as detected on line by ISM through cross-calibration was found. Former studies detected already 

the connection between cell size and DHA accumulation. A relation between cell biomass 

concentration and cell density indicated that cell size almost tripled during the course of fermentation 

when the marine algae Schizochytrium limacinum produced DHA (Chi, et al., 2009). 

The influence of gradients, as they appear in large-scale, on the morphological heterogeneity of yeast 

cultures was investigated (Marbà‐Ardébol, et al., 2017). Large-scale cultivation conditions, which were 

mimicked in a three-CR scale-down system (with an exposure to oxygen limitation for about 2 min) 

increased the degree of cell heterogeneity, which was revealed by means of the single-cell size 

distribution. Yeast cells were robust enough to maintain free sterol concentrations under scale-down 

cultivation conditions, but their morphological variability increased under severe exposure to oxygen 
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limitation (three-CR). This was probably because not all cells could trigger the enzymatic response 

necessary for obtaining higher fluxes whenever sufficient oxygen as cofactor was available. Population 

heterogeneity studies have been performed also for a scale-down reactor set-up consisting of two 

interconnected stirred tank reactors, operated in continuous cultivation mode. A reporter strain of S. 

cerevisiae showed that growth on ethanol increased the population heterogeneity as well (Heins, et 

al., 2015). 

The increment of the morphological heterogeneity in the three-CR was not directly related to a growth 

reduction, but rather to the presence of a zone of strong substrate limitation. If the exposure to oxygen 

limitation was reduced to about 1 min in a two-CR scale-down reactor, the homogeneity of the cell size 

was comparable to cultivations in homogeneous conditions. Surprisingly, sterol formation was not 

influenced negatively but positively by oscillating conditions. The post-squalene pathway was altered 

in both scale-down systems (two-CR and three-CR). The mechanism used to maintain free sterol 

homeostasis was raising the sterol esterification. Higher fluxes led to increased concentrations of all 

esterified sterols. The esterified form of the end product ergosterol increased the most (75% in 

comparison to homogeneous conditions). Under more severe oxygen limitation, as it occurred in the 

three-CR system, even an accumulation of the precursor squalene was observed (a 10-fold 

accumulation in comparison to homogeneous conditions). Therefore, ergosterol or squalene 

production can be enhanced when cells cope with oscillating oxygen limitation. A positive effect of the 

large-scale conditions with baker’s yeast was already presented by George et al. when the quality of 

the cells (gassing power of the yeast in a dough) was better than from homogeneous lab-scale 

experiments (George, et al., 1998). Nevertheless, the final biomass concentration was lower when cells 

cope with gradients in both studies. 

Morphological changes appeared in dependence of the growth status for the budding yeast S. 

cerevisiae during a batch cultivation. The maturation state of the cells was monitored in situ for the 

first time (either directly in line or in a bypass system) and was used to evaluate the metabolic activity 

of the cells. The BI was well correlated with the cell growth rate. The determination of the single-cell 

size and shape distributions provided information about the morphological population heterogeneity 

as well. 

This study proofs that both the DHM and the photo-optical ISM are well-suited process analytical tools 

to assess population status in eukaryotic cell cultivations. The evaluation of the subpopulations 

phenotype dynamics (through the single-cell morphological analysis) allows the estimation of the 

macroscopic cell population response. The photo-optical sensor, when applied in situ, and the DHM 

applied as a bypass can be suitable for process monitoring, if the time response remains shorter than 

the cells’ dynamics. 



Outlook   

104   

6. Outlook 

Challenges and limitations of the in situ microscopy in industrial bioprocesses 

The application of single-cell analysis in industry can help to identify unsuitable cultivation conditions 

regarding cell response. So far, it was demonstrated that phenotypic heterogeneity can increase the 

population fitness or survival rates upon environmental changes, whereas it also can reduce the overall 

productivity due to low performance subpopulations. However, the measurement of heterogeneity 

has not yet been used technically for optimizing microbial cultivations. In order to do so, acquisition of 

reliable data with heterogenic information in the large-scale production is required; and the relation 

of these signals with the cell physiology and the environmental conditions has to be investigated.  

Until now, in order to avoid limitations of growth-coupled processes, which are dependent on the 

metabolic pathway chosen, two-stage cultivations have been applied mostly to increase productivity. 

Although its effectiveness was demonstrated, the second stage of the process is usually induced when 

sufficient biomass is produced, independently from the physiology of the cells. Nevertheless, if process 

environmental conditions and/or growth status along the first phase influence cell morphology, the 

shift from the growth phase to the production phase could be monitored on an individual cell basis. 

E.g. when taking into account the homogeneity of the culture, and a culture with similar production 

rates could be obtained. As it is shown in the present study, the heterogeneity of the culture can 

increase with prolonged exposure to oscillating oxygen limitation. Consequently, the shift to the 

second stage could be initiated before the segregation of the population is not any longer tolerable. 

Engineered cells, which are able to cope with stress conditions of large-scale bioreactors are an option 

to reach higher yields and productivities, and therefore dynamic metabolic control (DMC) should be 

highlighted (Brockman and Prather, 2015). Cells operating by DMC should be able to redistribute 

metabolic fluxes through controllable gene expression or protein activity in response to an internal or 

external signal. When using this regulation in large-scale cultivations, cells could be able to readjust 

their metabolic fluxes according to the oscillating environmental conditions coped within the reactor 

space. Cells should sense and respond in order not to compromise the cell integrity e.g. by deciding 

when it is the right time to be productive, and hence avoiding a critical accumulation of undesired side 

products. These adaptations should be conducted in a pre-defined manner and they should have fast 

response times and be reversible. However, this approach is challenging since it requires an 

understanding of cell fluxes dynamics. In this case, the membrane integrity has a fundamental role for 

the tolerance against by-products accumulations, limitations or excess of some metabolites. In order 

to achieve these goals, there is a necessity for better and more inexpensive methods for high-

throughput screening. ISM could be the appropriated tool for monitoring cell membrane integrity in 



  Outlook 

105 
 

microfluidic systems undergoing these screenings. More information could be gained with fluorescent 

biosensors, if the engineered cells response is connected with fluorescent markers, as already used for 

heterogeneity inspection in FCM studies. For this purpose a further adaptation of ISM in terms of light 

source and detectors is needed. 

As already shown in this work, process optimization and development can be assisted by scale-down 

systems. However, approaches that truly reflect cells interactions with cultivation conditions are 

challenging, since often only engineering parameters are taken into account. Moreover, engineering 

parameters in industrial bioreactors are usually measurements at a single position. This can be crucial 

if gradient formation appears, since this one sensor spot is eventually not located in representative 

conditions. In order to investigate gradients, multi-position sensors have been applied. The application 

of such systems is very limited until now, due to sterility concerns and regulations. Cell-based 

measurement methods, especially if they rely on the morphological state of a cell, are rather 

independent of their location, since changes of these parameters usually exceed mixing and residence 

times. Thus, gradient formation does not disturb the measurements. The feasibility to apply the same 

technology (ISM) from the lab-scale to the production scale will facilitate its success. Moreover, optical 

methods can avoid false interpretations and technical bias, which is sometimes difficult to detect when 

measuring other indirect variables. E.g. when measuring the backscattering laser light, only the cell size 

distribution is obtained, and the user have to interpret its shape.  

Morphological information might be used also for synthetic biology approaches. The successful 

implementation of models, depends not only on the models used, but also on the measurement 

technology. The possibility to monitor changes in morphology directly on line enables to link 

morphological changes with –omics levels and feed models with real-time data and gain new 

parameters for monitoring and control.  

The generation of data in real-time allows a better way of process monitoring, development and 

optimization. Nevertheless, there is a challenge in processing and interpreting the vast amount of data 

also in real time of the images acquired. The interpretation can be simplified by multiparametric data 

analysis, where not only imaging data will be encountered in 2 or 3-D, but also fluorescence or color 

information, and the time scale. 

Despite the recent progresses, ISM has still some limitations that should be addressed. Beyond the 

industrial applications showed in the present study, other relevant industrial processes, where the 

morphology is affected along the cultivation time, can be a future application of the ISM (Lemoine, et 

al., 2017). Cell agglomeration in bacteria, chain elongation of lactic acid bacteria or clumping of 

filaments of Streptomyces have shown to be related to the process cultivation conditions applied, such 
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as oxygen and substrate limitation in large-scale bioreactors, or pH-gradients due to growth. In this 

study, only eukaryotic cells have been considered, but a lot of industrial relevant microorganisms are 

smaller prokaryotic organisms, or have a more complex morphological structure. Nevertheless, there 

is still a limitation in image resolution, which might be circumvented with respective hardware and 

software developments. An insufficient resolution also can be an obstacle in industrial-scale 

bioreactors with high cell densities cultivations, which can lead to overlapping events that can difficult 

or even prevent the cell recognition. Overlapping events are still under investigation, and so far 

overlapping cells cannot yet be differentiated with technologies here applied. 

Since all microscopy analysis steps (image acquisition, particle identification and data analysis) need to 

be adapted to the organism of study, the application of ISM for the detection of a contamination, e.g. 

in cell culture, has to consider the size and shape of the contaminant, which can vary a lot from the 

resident cell line (e.g. bacteria). The focus is adjusted regarding the cell size of the organism of interest. 

Therefore, there is the possibility that other cells stay out of focus and remain invisible for particle 

identification. The cell recognition algorithm is based on a training set. Consequently, the learning 

machine has to have learnt, which events represent a contamination. Otherwise, the foreign cells may 

be focused, but they will be identified as background. 

Although many challenges remain for practical applications, ISM has proven to be a reliable tool for 

relevant and interesting cases, in which no alternative monitoring methods can provide the same 

information in such a short time and low effort for sample preparation.  



  Conclusions 

107 
 

7. Conclusions 

 Relevant statistical information from morphological features of the heterotrophic algae C. 

cohnii was obtained by the application of three-dimensional digital holographic microcopy and 

photo-optical in situ microscopy. Comparable measurements regarding the single-cell size 

distribution dynamics, as well as absolute sizes were obtained with both techniques. 

 Relevant statistical information from morphological features of budding yeast S. cerevisiae on 

a single-cell basis was obtained by the application of three-dimensional digital holographic 

microscopy and photo-optical in situ microscopy.  

 On the basis of the measurement of morphological parameters (size, circularity and phase 

homogeneity), it could be concluded whether the growth was favored or the DHA production 

was favored in C. cohnii cultivations. 

 The intracellular accumulation of DHA could be predicted non-invasively and in real-time by 

single-cell size distribution measurements. 

 Budding yeast cells were robust enough to maintain free sterol homeostasis under scale-down 

cultivation conditions. 

 Sterol synthesis of the budding yeast was positively affected by oscillatory oxygen availability. 

The esterified form of the end product ergosterol increased by 75% under scale-down 

conditions in comparison to homogeneous conditions. 

 Microbial growth slowed down in scale-down conditions and side-product formation occurred. 

After 12 hours under fed-batch scale-down conditions the final biomass was reduced by 20% 

in comparison to homogeneous conditions. 

 Cell size and population heterogeneity were changed under oscillatory cultivation conditions. 

Morphological variability increased under severe exposure to oxygen limitation. 

 The growth status of yeast cultivations could be distinguished with in situ microscopy during a 

glucose limited fed-batch cultivation.  

 Maturation of yeast became trackable through the budding index (BI), ratio between cells with 

buds and total cells. The BI was well correlated with the cell growth rate (R2=0.99). 
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