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Abstract

A systematic description of the interaction between two systems is presented within
the framework of thermodynamics of discrete systems. We distinguish between two
situations: a contact between an equilibrium system and a non-equilibrium one, and
a contact between two non-equilibrium systems. In the second case the state space
includes replacement quantities, which reduce the situation to a contact between an
equilibrium system and a non-equilibrium one. Interacting discrete systems form a
composite (compound) system which is also a discrete one. Thus a compound system
can be described as if it were composed of two subsystems, or by ignoring this fact,
as a plain single discrete system, whose composition of sub-systems is not taken into
consideration. These descriptions cause di¤erent degrees of accuracy which are ex-
pressed by excess quantities. Such an excess quantity vanishes if the discrete system
is really not composed of subsystems. Aim of this paper is to calculate the excess
quantities of power and energy exchange and to derive the excess entropy in the spe-
cial case of an endoreversible compound system.

1. Introduction

There are two di¤erent descriptions of thermodynamic systems: the field formulation
and the description as a discrete (or lumped) system. The field formulation or contin-
uum thermodynamics deals with balance equations [1–4], which model together with
the constitutive equations (equations of state) and the initial and boundary condi-
tions the process going on in the system.

Brought to you by | Technische Universität Berlin
Authenticated

Download Date | 4/17/19 5:33 PM



After having inserted the constitutive equations into the balance equations, we obtain
a system of partial di¤erential equations whose analytical solutions can be calculated
only in su‰ciently simple cases. In numerous practical applications, these continuous
models are replaced by approximations usually obtained by means of finite di¤eren-
ces or finite elements. Calculations are carried out after having chosen an appropri-
ate algorithm with respect to the problems of stability and convergence. Conse-
quently, for practical reasons it seems to be more convenient to have a direct
description of the coupled thermodynamic behaviour of a finite number of interact-
ing elements or cells. The introduction of the concept of discrete systems [5] gives a
simple and e¤ective method to describe thermodynamics and interactions of elements
in non-equilibrium. But here we encounter the analogous di‰culties which appear in
classical thermodynamics, as noted by Truesdell and Bharatha [6], ‘‘the formal struc-
ture of classical thermodynamics describes the e¤ects of changes undergone by some
single body. While it allows these e¤ects for one body to be compared with corre-
sponding e¤ects for another body, it does not represent the e¤ects associated with
two bodies simultaneously or in any way conjointly.’’ The interactions between a dis-
crete system and its equilibrium environment is well known [7], but the general inter-
action between two discrete non-equilibrium systems has not been investigated up to
now and is shortly discussed here.

To describe the interaction between two discrete systems, we note that interacting
systems always form a composite system. It is clear that the thermodynamic descrip-
tion of a composite system should be consistent with that of its interacting subsys-
tems. Also clear is that the accuracy of description depends on the information one
has of the discrete system: if a compound system is described as being non-composite,
the accuracy of description is lower than taking its composition into account. The
thermodynamic consistency of these two di¤erent descriptions is achieved by intro-
ducing excess quantities which vanish if the discrete system is non-composite.

The paper is organized in the following way: In Section 2 the main features of ther-
modynamics of discrete systems are remembered. Replacement quantities, intro-
duced in Section 3, are necessary for the description of a non-equilibrium system in
a non-equilibrium environment. Further, we have to consider the interaction between
two systems which are coupled to each other and therefore are forming a composite
system. The di¤erent descriptions of discrete systems with respect to their composi-
tion are investigated in Section 4. The thermodynamic consistency between these de-
scriptions is achieved by introducing excess quantities of energy, entropy, and power
and energy exchanges. Main conclusions are given in the summary.

2. Equilibrium/non-equilibrium contacts

2.1. Contact quantities

By definition, a discrete (or lumped) system is a region G a R3 in space separated by
a contact surface F from its environment G � [7]. The interaction between G and G �

can be described by exchange quantities. We call G a Schottky system [8], if the inter-
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action with its environment consists of heat exchange _QQ, of power exchange _WW , and
of mass exchange described by time rates of numbers of moles _nne of the di¤erent spe-
cies (Fig. 1).

The exchange quantities _QQ; _WW , and _nne determine intensive non-equilibrium contact
quantities, namely the contact temperature Y, the dynamic pressure p1, and the dy-

namic chemical potentials m by di¤erent defining inequalities [7]. These inequalities
and their corresponding constraints are:

1

Y
� 1

T �

� �
_QQðY;T �ÞC 1

Y
� 1

T �

� �
_QQb 0; ð _VV ¼ 0; _nne ¼ 0Þ; ð1Þ

ðp� p�Þ _VVðp; p�ÞC ðp� p�Þ _VV b 0; ð _QQ ¼ 0; _nne ¼ 0Þ; ð2Þ

ðm� � mÞ � _nneðm; m�ÞC ðm� � mÞ � _nne
b 0; ð _QQ ¼ 0; _VV ¼ 0Þ: ð3Þ

Here V is the volume of the discrete system G, T � is the thermostatic temperature of
the equilibrium environment G �, p� its equilibrium pressure, and m� its equilibrium
chemical potentials.

The contact temperature is the dynamical analogue to the thermostatic temperature
[9, 10]. It is a quantity belonging to the whole contact surface: hence its name is
contact temperature. When changing the contact surface, the contact temperature
changes, too, in general. The interpretation of the contact temperature is as follows:
From Eq. (1) it is evident, that the heat exchange _QQ and the bracket always have the
same sign [11]. We now presuppose that there exists exactly one equilibrium envi-
ronment for each arbitrary state of a discrete system for which the net heat exchange
between them vanishes. Consequently, the defining inequality (1) determines the con-
tact temperature Y of the system as that thermostatic temperature T � of the system’s
environment for which this net heat exchange vanishes and no power and material
exchanges occur. The same interpretation holds true for the dynamical pressure p

and the dynamical chemical potentials m with respect to the net rate of the volume

Figure 1 General structure of Schottky systems.

1As a special simple example for demonstration.
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and to the net rate of each mole number due to external material exchange. Accord-
ing to the defining inequalities (1) to (3) there exists an equilibrium environment for
which the net heat exchange, the net power exchange, and the net external material
exchange for each component between G and G � vanish. In this case, the intensive
variables T �; p�; m� of this environment define the values of the non-equilibrium con-
tact quantities Y; p; m of the system in consideration.

In all cases the constraints mentioned in the brackets in Eqs. (1) to (3) have to be
taken into consideration for each defining inequality. These defining inequalities are
operational definitions of the contact quantities based on measuring rules which are
expressed by the constraints mentioned in Eqs. (1–3). The contact quantities Y; p,
and m themselves are of course independent of these constraints and of the special
values of T �; p�, and m�. Only for measuring them do the constraints have to
be taken into consideration. Consequently, Y; p, and m are generally defined for
Schottky systems.

Contact quantities satisfy constitutive equations

_QQ ¼ F
1

Y
� 1

T �

� �
; ð _VV ¼ 0; _nne ¼ 0Þ; ð4Þ

_VV ¼ Gðp� p�Þ; ð _QQ ¼ 0; _nne ¼ 0Þ; ð5Þ

_nne ¼ Hðm� � mÞ; ð _QQ ¼ 0; _VV ¼ 0Þ: ð6Þ

According to Eqs. (1–3) and their presupposed continuity the constitutive functions
F ;G, and H have the property

yF ðyÞb 0; Fð0Þ ¼ 0; ð7Þ

yGðyÞb 0; Gð0Þ ¼ 0; ð8Þ

y �HðyÞb 0; Hð0Þ ¼ 0: ð9Þ

Beyond these properties we additionally demand the strict monotony of F ;G, and H

y > yþ ) FðyÞ > FðyþÞ and GðyÞ > GðyþÞ; ð10Þ

y > yþ ) HðyÞ > HðyþÞ: ð11Þ

The non-equilibrium state space of a discrete system in a rest frame can be chosen as
follows [3]:

Z ¼ fV ; n;U ;Y; x;T �; p�; m�g: ð12Þ

Here U is the internal energy of the system, and x are other variables in connection
to irreversible processes going on in the system. Up to now it has not been necessary

240 W. Muschik and A. Berezovski

J. Non-Equilib. Thermodyn. � 2004 �Vol. 29 �No. 3

Brought to you by | Technische Universität Berlin
Authenticated

Download Date | 4/17/19 5:33 PM



to specify these variables. The dynamic pressure and the dynamical chemical poten-
tials, and according to Eqs. (4) and (5) G and H, are constitutive equations on Z (see
section 4.2, Eq. (65)). Thus, the complete description of the non-equilibrium state of
a discrete system includes its contact quantities and the intensive variables of the en-
vironment as parameters which satisfy a Gibbs-Duhem equation; that means, one of
the m� can be expressed by the other ones and by T � and p�.

2.2. Partial contact quantities

The contact surface F between the system and its environment can be arbitrarily
divided into parts Fþ

i and F�
j (Fig. 2) defined by the following properties [12, 13]:

Fþ ¼ 6
i

Fþ
i ; Fþ

i BFþ
k ¼ u; iA k; ð13Þ

F� ¼ 6
j

F�
j ; F�

j BF�
k ¼ u; jA k; ð14Þ

F ¼ Fþ AF�; Fþ BF� ¼ u: ð15Þ

The denotion of the partial surfaces is determined by the signs of the heat exchanges:
_QQG
i are the heat exchanges through FG

i .

Fþ
i : _QQþ

i b 0; _QQþ :¼
X
i

_QQþ
i b 0; ð16Þ

F�
j : _QQ�

j < 0; _QQ� :¼
X
j

_QQ�
j < 0; _QQþ þ _QQ� ¼ _QQ: ð17Þ

We now consider a special state of G which we call partial equilibrium with respect to

p and m. This partial equilibrium of G is defined by

FG
k : pk ¼ p�; m ¼ m�; for all k: ð18Þ

Figure 2 Division of the contact surface.
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The partial equilibrium with respect to p and m means that there are no net power
and net material exchanges through each of the partial surfaces FG

k according to
Eqs. (2) and (3). Only heat exchanges occur. Consequently, the heat exchanges sat-
isfy the inequalities which belong to the partial contact surfaces according to Eq. (1):

Fþ
i : _QQþ

i

1

Yþ
i

� 1

T �

� �
b 0; ðpi ¼ p�; mi ¼ m�Þ; ð19Þ

F�
j : _QQ�

j

1

Y�
j

� 1

T �

 !
b 0; ðpj ¼ p�; mj ¼ m�Þ: ð20Þ

By summing up these inequalities and taking into consideration Eqs. (16) and (17) we
obtain by applying the mean value theorem to the sums

Fþ:
X
i

_QQþ
i

Yþ
i

�
_QQþ

T � b 0 ! _QQþ 1

Yþ � 1

T �

� �
b 0; ð21Þ

F�:
X
j

_QQ�
j

Y�
j

�
_QQ�

T � b 0 ! _QQ� 1

Y� � 1

T �

� �
b 0: ð22Þ

These inequalities are valid for arbitrary T �, especially also for

T � ¼ Y;! _QQþ þ _QQ� ¼ 0; ð23Þ

which follows from Eq. (1). Hence Eqs. (21) and (22) result in

Fþ: _QQþ 1

Yþ � 1

Y

� �
b 0 ! Yþ

aY; ð24Þ

F�: _QQþ 1

Y
� 1

Y�

� �
b 0 ! YaY�: ð25Þ

Therefore, we obtain for the partial equilibrium with respect to p and m

Yþ
aYaY�; ðpi ¼ p�; mi ¼ m�; for all iÞ: ð26Þ

Because Y;Yþ and Y� are independent of the intensive variables of G � and of pi and
m�, the inequalities (26) are valid in general. This means, that the contact tempera-
ture Y of F is always in between the contact temperatures Yþ and Y� of the partial
contact surfaces Fþ and F�.

From Eqs. (24) and (25) we obtain by Eqs. (16) and (17)

_QQþ

Yþ b
_QQþ

Y
;

_QQ�

Y� b
_QQ�

Y
: ð27Þ
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Summing up both the inequalities we obtain by use of Eqs. (21), (22), and (1)

X
k

_QQk

Yk

b
_QQ

Y
b

_QQ

T � : ð28Þ

Starting out with a partial equilibrium with respect to Y and m, we obtain from Eq.
(2) by the same reasoning as before the generally valid inequalities analogously to
Eq. (28):

X
k

pk _VVk b p _VV b p� _VV : ð29Þ

Finally, starting out with a partial equilibrium with respect to Y and p we obtain
from Eq. (3)

X
k

mk � _nne
k am � _nne

a m� � _nne: ð30Þ

As to Eq. (4), the partial heat exchanges _QQþ and _QQ� satisfy constitutive equations
which depend on the special partial contact surfaces FG and on T �

_QQG ¼ FG
1

YG� 1

T �

� �
; ð31Þ

FþðxÞ ¼ 0; if xa 0; F�ðxÞ ¼ 0; if xb 0; ð32Þ

xFGðxÞb 0; FGðxÞ is strictly monotone; if not zero: ð33Þ

According to Eqs. (5) and (6) there are constitutive equations of the rates of partial
volumina and mole numbers analogous to Eq. (31).

The main consequence of this section is that partial contact quantities can be associ-
ated with corresponding partial parts of the contact surface. The defined contact
quantities provide the complete thermodynamic description of non-equilibrium states
of discrete systems in an equilibrium environment [3]. However, in the case of inter-
acting non-equilibrium systems, we need some more concepts.

3. Interacting non-equilibrium systems

3.1. Replacement quantities

We now consider interacting non-equilibrium systems, a situation which di¤ers from
the previous one by a non-equilibrium environment instead of an equilibrium one.
The first idea one may have is to replace the thermostatic temperature of the equilib-
rium environment by the contact temperature of the non-equilibrium environment.
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But in this case it can be shown that the sign of the di¤erence of the contact temper-
atures of the system and its environment does not determine the sign of the heat
exchange [12]. That means the heat exchange between these two non-equilibrium sys-
tems may not vanish if the contact temperatures of both systems are equal. There-
fore, we replace the non-equilibrium environment by that equilibrium one which
causes the same net heat exchange as in the original situation. This replacement is
possible due to the monotony properties (10) and (11). We call the thermostatic tem-
perature of the replaced equilibrium environment the replacement temperature of the
original system’s non-equilibrium environment, if the net heat exchange between the
system and both environments is identical.

Because the replacement introduces equilibrium environments instead of non-
equilibrium ones, the defining inequalities (1–3) are also valid for the replacement
quantities: replacement temperature Q�, replacement pressure p�, and replacement

chemical potentials n� of the system’s non-equilibrium environment,

_QQ
1

Y
� 1

Q�

� �
b 0; ð _VV ¼ 0; _nne ¼ 0Þ; ð34Þ

_VVðp� p�Þb 0; ð _QQ ¼ 0; _nne ¼ 0Þ; ð35Þ

_nne � ðn� � mÞb 0; ð _QQ ¼ 0; _VV ¼ 0Þ: ð36Þ

Here by definition the exchange quantities _QQ; _VV , and _nne are the same as in the non-
equilibrium situation in which two non-equilibrium systems are in contact with each
other.

The di¤erence between the inequalities (1) and (34) is as follows: In (1) T � and _QQ are
given and Y is determined by the zero of _QQ, whereas in (34) _QQ and Y are given and
Q� is determined by these quantities. The same is true for the two other inequalities
(2) and (3), (35) and (36). Up to this di¤erent interpretation the inequalities (1–3) and
(35–36) are formally identical.

Because of the equilibrium concept of replacement quantities, also the constitutive
functions F ;G, and H in (4–6) are valid for the replacement quantities:

_QQ ¼ F
1

Y
� 1

Q�

� �
; ð _VV ¼ 0; _nne ¼ 0Þ; ð37Þ

_VV ¼ Gðp� p�Þ; ð _QQ ¼ 0; _nne ¼ 0Þ; ð38Þ

_nne ¼ Hðn� � mÞ; ð _QQ ¼ 0; _VV ¼ 0Þ: ð39Þ

The state space of a discrete system in a non-equilibrium environment should be
changed with respect to (12) as

Z ¼ fV ; n;U ;Y; x; Q�; p�; n�g: ð40Þ
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Thus in the framework of thermodynamics of discrete systems, we can define all the
thermodynamic quantities which are necessary for the complete description of a dis-
crete non-equilibrium system in a non-equilibrium environment.

3.2. Composite systems

Two discrete systems 1 and 2 interacting with each other form a composite system

1A 2, sometimes also called compound system (Fig. 3). It is clear that the phenom-
enological thermodynamic description of the composite system (by an external ob-
server not knowing that it is composite) contains less information than that of the
two subsystems themselves forming the compound system. We denote this fact as
compound deficiency. This means that quantities belonging to the composite system
di¤er from those belonging to the sum of both the subsystems forming the composite
system. The di¤erence between these quantities is denoted as an excess quantity. In
Section 4 the concepts of compound deficiency and excess quantities are worked out
in more detail.

3.2.1. The subsystems Suppose that the considered composite system 1A 2 is com-
posed of two subsystems 1 and 2 which are in interaction with each other and with
the environment (marked by �) which is the same for both (Fig. 3). As usual for
Schottky systems, the interaction consists of heat-, power-, and mass-exchange.
Here especially the power-exchange is chosen as a volume work for simplification.
In general, the subsystems are in non-equilibrium, whereas the environment is pre-
supposed to be in equilibrium because of its reservoir properties.

To describe the exchanges we have to introduce three contact surfaces, one between
the subsystems 1 and 2, called F and two other ones between each of the two sub-
systems and the environment, denoted by F1 and F2 (see Fig. 3). For the three con-
tact surfaces we introduce four partial contact temperatures belonging to the subsys-
tems 1 and 2 [13], YF

1 ;YF
2 ;YF1 , and YF2 . The meaning of these contact temperatures

is clear: YK
j is the partial contact temperature belonging to the contact surface K,

and j marks the subsystem, if necessary. The defining inequalities for these contact
temperatures are

Figure 3 Systems 1 and 2 as parts of a composite system 1A 2.
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_QQ1

1

YF1
� 1

T �

� �
b 0; ð41Þ

_QQ2

1

YF2
� 1

T �

� �
b 0; ð42Þ

whereas we obtain according to Eq. (34) the following inequalities for the internal
contact surface F:

_QQ1�2

1

YF
1

� 1

Q2

 !
b 0; ð43Þ

_QQ2�1

1

YF
2

� 1

Q1

 !
b 0: ð44Þ

According to Eq. (34), Q1 and Q2 are the replacement temperatures belonging to the
non-equilibrium subsystems 1 and 2.

Because the contact surface between both the subsystems is an inert one, that means,
heat and mass are not absorbed or emitted by this partition2, we have (hj are the mo-
lar enthalpies of the j-th subsystem)

_QQ1�2 þ h1 � _nne
1�2 ¼ � _QQ2�1 � h2 � _nne

2�1; ð45Þ

and

_nne
1�2 ¼ � _nne

2�1: ð46Þ

Hence, Eq. (44) results in

½� _QQ1�2 � ðh1 � h2Þ � _nne
1�2�

1

YF
2

� 1

Q1

 !
b 0: ð47Þ

Because this inequality is valid for arbitrary _nne
1�2, especially also for _nne

1�2 ¼ 0, and
_QQ1�2;Y

F
2 , and Q1 are independent of _nne

1�2, we obtain from Eqs. (43) and (47)

sign
1

YF
1

� 1

Q2

 !
¼ �sign

1

YF
2

� 1

Q1

 !
: ð48Þ

The entropy production generated by the heat exchange between the subsystems of
the compound system 1A 2 is the left-hand side of Eq. (43), or equivalently that of
Eq. (44), because the contact surface F between them is inert. Therefore, the left-
hand sides of Eqs. (43) and (44) are equal and Eq. (48) results in

2For more details on open systems see [14].
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1

YF
1

� 1

Q2
¼ 1

Q1
� 1

YF
2

: ð49Þ

By this equation the mean value of the reciprocal replacement temperatures is deter-
mined by that of the reciprocal contact temperatures

1

tF
:¼ 1

2

1

YF
1

þ 1

YF
2

 !
¼ 1

2

1

Q1
þ 1

Q2

� �
: ð50Þ

This relation shows that the replacement temperatures of two non-equilibrium sys-
tems being in thermal contact with each other are dependent on each other in con-
trast to the independent contact temperatures. If one of the contacting subsystems
(say 2) is in equilibrium with the environment, we obtain from Eq. (50)

YF
2 ¼ Q2 ¼ T � ! Q1 ¼ YF

1 : ð51Þ

3.2.2. The composite system In this section we describe the composite system 1A 2,
as if it would not be composed of the two subsytems 1 and 2. This description is of
course a more coarse one than that of the two single subsystems in interaction.

As already mentioned, the subsystems of the composite system have two contact sur-
faces with respect to the environment, F1 and F2, to which the two contact temper-
atures YF1 and YF2 belong (see Fig. 3). The contact surface of the composite system
is F1 AF2 to which the contact temperature Y belongs. Without restricting general-
ity, we presuppose that

YF1 aYF2 ð52Þ

is valid, because this inequality only depends on the numbering of the subsystems. In
this case the inequalities (26) and (28) become

YF1 aYaYF2 ; ð53Þ

X2

k¼1

_QQFk

YFk
b

_QQ

Y
b

_QQ

T � ;
_QQ ¼ _QQF1 þ _QQF2 ; ð54Þ

and we obtain from the inequalities (29) and (30)

X2

k¼1

pFk _VVFk b p _VV b p� _VV ; _VV ¼ _VVF1 þ _VVF2 ;3 ð55Þ

X2

k¼1

mFk � _nneFk am � _nne
a m� � _nne; _nne ¼ _nneF1 þ _nneF2 : ð56Þ

3The rates of the partial volumina _VVFk can be defined properly by using Reynolds transport
theorem [4].
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Now we have defined both kinds of contact quantities: those for the composite sys-
tem itself and those for its subsystems. The inequalities (54–56) characterize what
we define as compound deficiency. This means that a more detailed description by
the subsystems yields di¤erent results than a coarse description of the composite
system.

4. Compound deficiency

4.1. The inequalities

We now consider the compound deficiency of the di¤erent descriptions of the com-
posite system and its subsystems (Fig. 3).

The power exchange between the two subsystems and the environment is

_WW :¼ _WW1 þ _WW2 ¼ �
X2

k¼1

pFk _VVFk ; ð57Þ

whereas the power exchange between the composite systems and the environment is,
by taking Eq. (55) into account,

_WWCS :¼ �p _VV b _WW : ð58Þ

The energy exchange due to mass exchange between the two subsystems and the en-
vironment follows from Eq. (56)

_MM :¼ _MM1 þ _MM2 ¼
X2

k¼1

mFk � _nneFk : ð59Þ

The corresponding energy exchange due to mass exchange between the compound
system and the environment is

_MMCS :¼ m � _nne
b _MM: ð60Þ

The last inequality follows from Eq. (56). In section 4.3 we investigate how these
compound deficiency inequalities transform to other thermodynamical quantities.

4.2. Energy and entropy

The first law of the composite system and its environment is

_UU ¼ _QQ� p _VV þ h � _nne; _UU � ¼ _QQ� � p� _VV � þ h� � _nne�: ð61Þ
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The composite system is separated from its environment by an inert partition which is
characterized by the following properties [see Eqs. (45), (46)]

_QQþ h � _nne ¼ � _QQ� � h� � _nne�; ð62Þ

_nn� ¼ _nne� ¼ � _nne; _VV ¼ � _VV �; ð _nn ¼ _nne þ _nn i; _nn i� C 0Þ ð63Þ

(The superscript e denotes external exchange, whereas i marks the change by chemi-
cal reactions.)

Therefore (61)2 yields

_UU � ¼ � _QQ� p� _VV � � h � _nne: ð64Þ

The reduced heat exchange _QQ=Y in Eq. (54) is connected to the entropy rate of a dis-
crete non-equilibrium system [7]

_SS ¼ 1

Y
_UU þ p _VV � m � _nn

� �
þ a _YYþ b � _xx: ð65Þ

Here _xx is the time rate of the variables in the state space (12) characterizing irrevers-
ible processes. An example for such variables are the chemical reaction speeds. In
this case, the b are the a‰nities of the chemical reactions.

The relation (65) represents a non-equilibrium extension of Gibbs fundamental equa-
tion which for the equilibrium environment is as follows:

_SS � ¼ 1

T �
_UU � þ p� _VV � � m� � _nn�� �

: ð66Þ

The rates _YY and _xx describe non-equilibrium. The non-equilibrium entropy is a func-
tion SðU ;V ; n;Y; xÞ on the state space [7]. The equilibrium entropy S �ðU �;V �; n�Þ
depends on the equilibrium variables of the environment.

Introducing Eqs. (61)1 and (64) into Eqs. (65) and (66) we obtain

_SS ¼ 1

Y
_QQþ h � _nne � m � _nn

� �
þ a _YYþ b � _xx; ð67Þ

_SS � ¼ 1

T � ð� _QQ� h � _nne þ m� � _nneÞ: ð68Þ

By the molar entropies

Ys :¼ h� m; T �s� :¼ h� � m�; ð69Þ

Eqs. (67) and (68) result in

Discrete systems in non-equilibrium 249

J. Non-Equilib. Thermodyn. � 2004 �Vol. 29 � No. 3

Brought to you by | Technische Universität Berlin
Authenticated

Download Date | 4/17/19 5:33 PM



_SS ¼ 1

Y
ð _QQþYs � _nne � m � _nn iÞ � a _YYþ b � _xx; ð70Þ

_SS � ¼ 1

T � ð� _QQ�Ys � _nne þ ðm� � mÞ � _nneÞ: ð71Þ

Presupposing additivity of entropies we obtain for the entropy rate of the isolated to-
tal system

_SStot ¼ _SS þ _SS � ¼ 1

Y
� 1

T �

� �
ð _QQþYs � _nneÞ

þ 1

T � ðm
� � mÞ � _nne � m

Y
� _nn i þ a _YYþ b � _xxb 0: ð72Þ

Here the inequality is caused by the second law valid for isolated systems for which
entropy rate and entropy production are identical.

If there is no heat and mass exchange between the system and its environment, (72)
results in the entropy production of the system under consideration

� m

Y
� _nn i þ a _YYþ b � _xxb 0: ð73Þ

Because this entropy production is independent of the intensive variables of the equi-
librium environment, from Eq. (72) the following inequality results:

1

Y
� 1

T �

� �
ð _QQþYs � _nneÞ þ 1

T � ðm
� � mÞ � _nne

b 0: ð74Þ

If _nne ¼ 0, we obtain Eq. (1), if T � ¼ Y, Eq. (3) follows. Thus, the defining inequal-
ities are rediscovered.

For discussing compound deficiency in more detail we consider a special example in
the next section.

4.3. Example: An endoreversible system

In the sequel we consider an endoreversible system which by definition consists of
subsystems being in di¤erent equilibria [15]. Because these equilibria are di¤erent,
irreversible processes take place between the subsystems. The use of endoreversible
systems represents an analogue for discrete systems of the often accepted hypothesis
of local equilibrium of classical irreversible thermodynamics [16–22]. Using it, points
of the non-equilibrium state space are associated with points of equilibrium subspace
by means of a projection. Thus, we suppose that a non-equilibrium state of each dis-
crete system is associated with an equilibrium state of the accompanying reversible
process.

250 W. Muschik and A. Berezovski

J. Non-Equilib. Thermodyn. � 2004 �Vol. 29 �No. 3

Brought to you by | Technische Universität Berlin
Authenticated

Download Date | 4/17/19 5:33 PM



In an endoreversible system all contact quantities of the subsystems are identified
with equilibrium bulk values

YFj ¼ YF
j ¼ Qj ¼: Tj; j ¼ 1; 2: ð75Þ

For local equilibrium Eq. (50) is satisfied tritely.

In case of an endoreversible system, the state space is much smaller than that in non-
equilibrium (12) [3]:

Zeq ¼ fV ; n;Tg: ð76Þ

For the two subsystems in consideration, the local accompanying states are

Z
eq
j ¼ fVj; nj;Tjg; T1 AT2; V1 AV2; n1 A n2: ð77Þ

According to Eq. (77), the entropies of the equilibrium subsystems 1 and 2 are (Fig. 3):

_SS1 ¼ 1

T1

_QQ1 þ s1 � _nne
1 þ

_QQ1�2

T1
þ s1 � _nne

1�2; ð78Þ

_SS2 ¼ 1

T2

_QQ2 þ s2 � _nne
2 þ

_QQ2�1

T2
þ s2 � _nne

2�1: ð79Þ

Because the partition between the two subsystems is an inert one, we obtain, accord-
ing to Eqs. (45) and (46), for the heat exchanges of both the subsystems:

_QQ1�2 þ h1 � _nne
1�2 ¼ � _QQ2�1 � h2 � _nne

2�1 _nne
2�1 ¼ � _nne

1�2: ð80Þ

Inserting Eq. (80) into Eq. (79) yields

_SS :¼ _SS1 þ _SS2 ¼
_QQ1

T1
þ

_QQ2

T2
þ s1 � _nne

1 þ s2 � _nne
2

þ 1

T1
� 1

T2

� �
_QQ1�2 þ ðs1 � s2Þ � _nne

1�2 þ
1

T2
ðh2 � h1Þ � _nne

1�2: ð81Þ

The composite system 1A 2 is an endoreversible non-equilibrium system whose en-
tropy rate is, according to Eq. (70),

_SSCS :¼ 1

Y
_QQþ s � _nne: ð82Þ

For the internal energy we obtain, according to Eq. (61),

_UU1 ¼ _QQ1 � p1
_VV1 þ h1 � _nne

1 þ _QQ1�2 � p1
_VV1�2 þ h1 � _nne

1�2; ð83Þ
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_UU2 ¼ _QQ2 � p2
_VV2 þ h2 � _nne

2 þ _QQ2�1 � p2
_VV2�1 þ h2 � _nne

2�1: ð84Þ

Presupposing the additivity of partial energies yields, if Eq. (80) is taken into
account,

_UU :¼ _UU1 þ _UU2

¼ _QQ1 þ _QQ2 � p1
_VV1 � p2

_VV2 þ h1 � _nne
1 þ h2 � _nne

2 � ðp1 � p2Þ _VV1�2: ð85Þ

For the endoreversible non-equilibrium composite system we obtain from Eq. (61):

_UUCS ¼ _QQ� p _VV þ h � _nne: ð86Þ

A comparison of entropies (82) and energies (86) of the composite system with those
of the subsystems (81) and (85) shows that they are di¤erent:

_SSCS A _SS; _UUCS A _UU : ð87Þ

This fact is what we denoted by compound deficiency. Also the inequalities (58) and
(60) are caused by compound deficiency. The di¤erences between the quantities be-
longing to the composite system and those belonging to the subsystems are discussed
in the next section.

4.4. Excess quantities

4.4.1. Excess power exchange, excess mass exchange To describe compound defi-
ciency in more detail we introduce excess quantities. If we denote a special quantity
by k, the corresponding excess quantity kEX is defined by

X
k

kk þkEX :¼ kCS: ð88Þ

We now discuss some of these excess quantities.

From Eq. (55) we obtain the excess power exchange

_WWEX ¼ �p _VV þ p1
_VV1 þ p2

_VV2 b 0: ð89Þ

If the discrete system in consideration is non-composed, that means, if p1 ¼ p2 ¼ p is
valid, we obtain _WWEX ¼ 0.

The excess energy exchange due to mass exchange is, according to Eq. (56),

_MMEX ¼ m � _nne � m1 � _nne
1 þ m2 � _nne

2 b 0: ð90Þ

If the discrete system in consideration is non-composed, that means, if m1 ¼ m2 ¼ m is
valid, we obtain _MMEX ¼ 0.
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4.4.2. Excess energy According to Eq. (88) the rate of the excess energy is, using
Eqs. (86) and (85),

_UUEX :¼ _UUCS � _UU1 � _UU2 ¼ _QQ� p _VV þ h � _nne

� _QQ1 � _QQ2 þ p1
_VV1 þ p2

_VV2 � h1 � _nne
1 � h2 � _nne

2 þ ðp1 � p2Þ _VV1�2: ð91Þ

Taking Eqs. (17)3 and (89) into account we obtain:

_UUEX ¼ _WWEX þ ðh� h1Þ � _nne
1 þ ðh� h2Þ � _nne

2 þ ðp1 � p2Þ _VV1�2: ð92Þ

If the discrete system under consideration is non-composed, that means, if h1 ¼
h2 ¼ h and p1 ¼ p2 are valid, we obtain _UUEX ¼ 0.

4.4.3. Excess entropy According to Eq. (88), the rate of the excess entropy is, using
Eqs. (82) and (81),

_SSEX :¼ _SSCS � _SS1 � _SS2 ¼ 1

Y
_QQþ s � _nne �

_QQ1

T1
�

_QQ2

T2

� s1 � _nne
1 � s2 � _nne

2 �
1

T1
� 1

T2

� �
_QQ1�2

� ðs1 � s2Þ � _nne
1�2 �

1

T2
ðh2 � h1Þ � _nne

1�2: ð93Þ

Using Eqs. (69) we obtain after a short calculation:

_SSEX ¼ 1

Y
� 1

T1

� �
_QQ1 þ

1

Y
� 1

T2

� �
_QQ2

þ ðs� s1Þ � _nne
1 þ ðs� s2Þ � _nne

2

� 1

T1
� 1

T2

� �
ð _QQ1�2 þ h1 � _nne

1�2Þ �
m2

T2
� m1

T1

� �
� _nne

1�2: ð94Þ

If the discrete system in consideration is non-composed, that means, if T1 ¼ T2 ¼ Y,
s1 ¼ s2 ¼ s and m1 ¼ m2 are valid, we obtain _SSEX ¼ 0.

5. Summary

A discrete system may be composed of subsystems interacting with each other or
may be non-composed. Therefore, the description of the discrete system under con-
sideration depends on the information one has about the system. Clear is that both
the descriptions are di¤erent, because di¤erent levels of information result in di¤er-
ent contact quantities between the considered discrete system and its equilibrium
environment. So, e.g., the contact temperatures depend on the description: if the
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discrete system is considered as being non-composed, the contact temperature is
that of the whole contact surface between the discrete system and its environment.
If the discrete systems is described as a composite system, the contact temperatures
of the partial contact surfaces between the subsystems of the composite system and
the environment play a role.

The di¤erence of these descriptions is a general feature in thermodynamics of discrete
systems which we characterize by the concept of compound deficiency. Starting out
with the additivity of partial exchange quantities, the compound deficiency results in
di¤erent net exchange quantities and di¤erent energies and entropies depending on
the description of the considered discrete system as being composed or not. The ther-
modynamic consistency between the di¤erent descriptions is achieved by introducing
excess quantities.

As it is shortly discussed, the concept of compound deficiency can be extended to the
contact of two discrete non-equilibrium systems by introducing replacement quanti-
ties instead of contact quantities.

The excess quantities of energy, entropy, and power and the energy exchanges are
calculated and discussed for an endoreversible compound system.
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