
This version is available at https://doi.org/10.14279/depositonce-8717

© © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Terms of Use

Accepted for 27th IEEE International Requirements Engineering Conference, http://re19.ajou.ac.kr/.

Pudlitz, F.; Brokhausen, F.; Vogelsang, A. (2019): Extraction of System States from Natural Language
Requirements. 27th IEEE International Requirements Engineering Conference (RE'19).

Florian Pudlitz, Florian Brokhausen, Andreas Vogelsang

Extraction of System States from Natural
Language Requirements

Accepted manuscript (Postprint)Conference paper |

Extraction of System States from Natural Language
Requirements

Florian Pudlitz
Technische Universität Berlin, Germany

florian.pudlitz@tu-berlin.de

Florian Brokhausen
Technische Universität Berlin, Germany

florian.brokhausen@tu-berlin.de

Andreas Vogelsang
Technische Universität Berlin, Germany

andreas.vogelsang@tu-berlin.de

Abstract—In recent years, simulations have proven to be an
important means to verify the behavior of complex software
systems. The different states of a system are monitored in the sim-
ulations and are compared against the requirements specification.
So far, system states in natural language requirements cannot be
automatically linked to signals from the simulation. However,
the manual mapping between requirements and simulation is
a time-consuming task. Named-entity Recognition is a sub-task
from the field of automated information retrieval and is used to
classify parts of natural language texts into categories. In this
paper, we use a self-trained Named-entity Recognition model with
Bidirectional LSTMs and CNNs to extract states from require-
ments specifications. We present an almost entirely automated
approach and an iterative semi-automated approach to train our
model. The automated and iterative approach are compared and
discussed with respect to the usual manual extraction. We show
that the manual extraction of states in 2,000 requirements takes
nine hours. Our automated approach achieves an F1-score of
0.51 with 15 minutes of manual work and the iterative approach
achieves an F1-score of 0.62 with 100 minutes of work.

Index Terms—Natural Language Requirements, Named-entity
Recognition, System States, State Extraction

I. INTRODUCTION

Explicit documentation and modeling of system states have
several advantages for discussing and analyzing requirements. A
number of existing requirement specification techniques address
the specification of system states (e.g., State Charts [1]) or
reference system states (e.g., as conditions in Use Cases [2]).
System states also play a vital role in the verification of system
behavior against their requirements. Verification methods such
as system tests or simulation often refer to states that are
mentioned in the requirements. During requirements verifica-
tion, a requirements engineer monitors system states while the
system is executed. In other approaches, models of system
states are used as monitors that continuously check a desirable
configuration of system states at runtime [3].

However, in many industrial contexts, requirements are
expressed in natural language [4], [5] and system states are
not explicitly mentioned. Therefore, requirements engineers
who aim at monitoring system states during system executions
may profit from tools that suggest or point to potential system
states in written requirements. Especially in the automotive
domain, the development of vehicle functions is state based.
Therefore, states are implicitly included in vehicle specifications
and extraction is a particular challenge. Such tools may use
linguistic rules to extract state candidates (as, for example, the

approach in [6]) or learn to identify system states based on
annotations in other requirements documents (e.g., by training a
Named-entity Recognition model). The performance of learning
approaches, however, strongly depends on the amount and
quality of labeled data from which the approach can learn.

In this paper, we introduce and compare a semi-automated
and an almost entirely automated approach for ML-based
Named-entity Recognition to automatically extract system state
candidates from natural language requirements. Our focus is on
the analysis of requirements from the automotive domain. The
two approaches differ in the amount of manual work that needs
to be invested by the engineer. Both approaches result in a list
of identified system states, which can be used to annotate the set
of requirements which these states originate from. In addition,
the two approaches provide a trained Named-entity Recognition
model that can be used to automatically detect state candidates
in new, unseen requirements. In an experimental setting, we
compare both approaches with each other in terms of manual
work necessary and achieved performance in comparison to
an entirely manual state identification. The hypothesis to
be examined with this experimental setup is the benefit of
automation to reduce otherwise time-consuming manual work.
The two approaches shall examine the benefits of scaling
the user interaction for the task of identifying system states.
Presumably, the semi-automated approach yields better results
over the almost entirely automated one, since more expert
knowledge is incorporated into the state extraction by having
frequent user feedback.

Our results show that, in comparison to the manual labeling
process, the approach with minimal manual labor achieves a
performance of 0.51 in terms of F1 with only 3% of manual
effort. The alternative approach achieves a performance of
0.62 in terms of F1 with 18.5% of manual effort, verifying
the aforementioned hypothesis.

In contrast to existing approaches that use linguistic rules,
like [6], [7] and [8], the presented approaches do not require
a specific structure or style in which requirements need to
be written. We conclude that automated machine-learning
approaches can be applied with a reasonable amount of effort
and have the potential to be used for automatic identification
of system states that may be used in requirements analysis and
verification.

This paper is structured as follows: In the next section we
give more background information. Section III summarizes

the related work. Our approach is described in more detail in
Section IV. The evaluation is described in detail in Section V.
Finally, we summarize the work in section VI.

II. BACKGROUND

The complexity of software has increased steadily in recent
years. Application areas such as autonomous driving, smart
factories, or digitized medical technology are increasing the
expectations for reliable software. Systematic verification of
software functions is therefore essential. The complexity of
software also increases the complexity of test management.
In recent years, simulations that model the behavior of the
software have become an important tool in test management.
Simulation scenarios can represent complex situations and
support prototyping without high hardware costs. A special
challenge is the linking of natural language requirements to
the test scenarios of the simulations in which the requirements
are to be verified. Without this link, a reliable verification is
not possible.

For the evaluation of complex simulation runs, system states
must be detected and evaluated in a targeted manner. These
system states are inherent to the natural language requirements
and therefore must be identified. The work in [10] shows the
importance of system states for creating mode models.

In [11], a method is presented which, among other things,
marks states in requirements. In a subsequent step, these
states are connected to specific signals of the simulation. The
engineer needs a lot of time to manually extract the states. The
presented approaches for extraction are primarily manual and
time-consuming.

A. Modes

The IEEE standard 29148 for software requirements specifi-
cations (SRS) denotes: “Some systems behave quite differently
depending on the mode of operation. For example, a control
system may have different sets of features depending on its
mode: training, normal, or emergency” [12]. The authors
propose structuring options depending on the modes to better
specify the behavior of the software. In natural language
requirements, the idea of specific states helps to clearly define
the behavior of the software. The sum of all states formulated
within a requirement specification can be described as a mode
model [10]. It does not matter whether they are explicitly
or implicitly included in the requirements. Requirements
that are described on the basis of modes are presented in
many papers [13]–[16]. The different understanding and the
different use of modes in requirement documents can influence
the quality. Especially in [17], it becomes clear that modes
are a possible source of misunderstanding and ambiguity in
requirement documents. In [10], a mode, i.e. system state, is
defined as follows:

A mode is a specific state that describes a sys-
tem’s state of operation. We describe a mode
by a name and a set of mode values (e.g.,
Operation = {Off,Starting,Running})

L1: Scope-Level

L2: Type-Level

L3: Condition-Level

L4: Causality-Level

System Environment

Value{L1} State{L1} Event{L1} Time

{L3}-Trigger
{L3}-Pre-Condition

{L3}-Action

Le
ve

l o
f

D
et

ai
l

Value{L1}-Condition
State{L1} -Condition
Event{L1} -Condition
Time -Condition

Fig. 1: Overview of Multilevel Markup Language

In their work, they describe different approaches to the
detection of these modes. The extraction of modes is a
special challenge due to inconsistent naming, implicit use, and
differing understanding. The presented extraction possibilities
are elicitation by interviews with domain experts, elicitation by
feature dependency analysis, and elicitation by requirements
inspection. All methods are manual, very time consuming, and
hardly possible in the standard development process. Automated
detection of system states supports the creation of mode models
and improves the understanding as well as the development
process.

B. Multilevel Markup Language

The work of [11] describes a multilevel markup language
to extract information from natural language requirements.
An engineer can annotate text phrases to be observed in a
simulation. The annotations can be made at different levels,
which depend on one another in a hierarchical manner. Each
of the levels signifies a different level of detail on which the
requirements can be annotated. Fig. 1 shows the different kinds
of annotations and the associated levels.

On level one, text phrases or single words are only distin-
guished between the two categories System and Environment.
On level two it is additionally possible to distinguish between
state, event, value, or time information. Based on this, condi-
tions can be created on level three, which are monitored and
verified in the simulation. For this, level two annotations are
linked to specific state values via a comparison operator. The
most complex way to extract information is to create causal
relationships at level four. The described approach is based on
fully manual annotations made by an engineer. Depending on
the time and effort invested by the user, the annotations can
be arbitrarily complex.

An automation of level two annotations, which contains
states, offers significant benefits to the engineer. It supports the
annotation process on level two and upwards. The automated
detection of system states is a special challenge. These are
rarely associated with numbers or signal names in natural
language requirements. This makes an automated identification
approach especially challenging. States are defined in the work
as follows:

Describing objects with multiple possible, but exclu-
sive states (e.g., door - open/closed).

In complex requirements specifications with more than a
thousand single requirements, manual extraction is tedious
and time-consuming for the engineer. The manual process is
facilitated by the described method but still requires automated
support.

III. RELATED WORK

A. Requirements Engineering and Machine Learning

The fact that requirements specifications are mostly written
in natural language poses challenges to their refinement due
to the inherent complexity of natural language. Therefore,
the adaption of natural language processing techniques with
machine learning algorithms for requirements engineering is
subject to intensive research.

In [18], the authors present a framework facilitated by
Artificial Intelligence to support the entire requirements engi-
neering process, from elicitation through quality assurance to
the continuous refinement. They apply techniques for natural
language processing, ontology reasoning, and deduction.

Another popular field of research is the classification of
requirements. A common discrimination is done between
functional and non-functional requirements, as reported in
[19], and [20]. In [21], the authors present an approach
using Convolutional Neural Networks to differentiate between
requirements and additional information, which is incorporated
in requirements specifications.

B. Requirements and Simulation

Software testing with simulation-support differs between
application domains. In recent years, the use of simulations
has increased in many areas. Simulations virtually represent
the real world with a certain level of detail [22]. They facilitate
the virtual testing of all requirements with comparably low
hardware costs, since many different test cases can be covered.
The verification of requirements with test cases is the subject of
intensive research. In [23], the authors show that the research
mainly deals with the formalization of requirements in order
to subsequently process them automatically. However, linking
natural language requirements to simulation runs to assure
their verification is not yet in focus. In [24], the authors
discuss how requirements of software systems are explored
using simulations, but there is no alignment.

Simulations are growing rapidly, especially in the automotive
industry. Automated approaches that process natural language
requirements with a focus on information for simulations are
therefore particularly important.

C. Term Extraction with NER for NL Requirements

The concept of Named-entity Recognition is the detection
of certain categories in a text. These categories need to be
predefined. Since the CoNLL2003 (Conference on Natural
Language Learning) shared task on language independent
Named-entity Recognition, there have been many implemen-
tations of this method with machine learning algorithms.

Conventionally, as predefined in the CoNLL2003 task, entities
to be detected are people, organizations, locations and the like.
As presented in [25], recent advances towards NER achieve
very promising results on the CoNLL2003 task and show
significant performance improvements as reported in [26], [27]
and [28].

The author in [29] presents an application of NER to the
requirements domain. The author aims at automatically creating
message sequence charts and automata. Since term consistency
is very important, they extract relevant terms like messages
with an NER approach. The work in [7] attempts the automated
extraction of state machines from natural language requirements.
Their extraction of relevant states, however, is done manually.
In [8], the authors present an automated transition from use
cases to state machines. Their extraction of states is done by
explicitly following a set of transformation rules.

The authors in [30] use a NER-like algorithm to automate
glossary term extraction for requirements documents.

A particular challenge for the use of NER algorithms is
the selection of training data. Bootstrapping approaches were
originally used as a method of extracting terms through the
recognition of patterns [31]–[33]. In [34] and [35], bootstrap-
ping algorithms are used to automatically label unlabeled
data. This data is then used for an NER. The inaccuracy of
the bootstrapper, however, reduces the quality of the NER
algorithm. In our approach, we involve the user in the training
process with minimal time to significantly improve the quality
of the NER results. The authors in [36] are concerned about the
adaptability of this method to a specific domain. The application
of this 2-step approach to the biomedical-domain is presented
in [37].

IV. APPROACH

In this paper, we present two approaches for the extraction
of systems states, with differing degrees of automation and user
interaction. Fig. 2 and Fig. 3 schematically visualize the semi-
automated and the almost automated approach, respectively.
As starting point for either approach, a small set of seed states
is needed. This set is created by manually scanning a small,
random subset of the requirements for contained states. The
result is then used as a seed for further processing.

The first approach is almost entirely automated and requires
minimal user interaction. For readability reasons, the approach
will be referred to as automated for the remainder of this
paper. The mentioned list of seed states is used to initialize
a bootstrapper. This bootstrapper then detects more states in
the training data. The resulting list of states is reviewed by
the user, deleting all phrases which do not conform to the
state definition. The conditioned set of states is then used to
produce a training set for the Named-entity Recognition model.
All samples in the training set which contain one or more
of the states are extracted and assigned to the corresponding
labels. This labeled training set therefore consists solely of
requirements which contain states and their assigned correct
labels per word, signifying if it is a state or not. This data is
then used to train the NER model once.

Fig. 2: Schematic overview of the semi-automated approach

The second approach iteratively incorporates the user into
the training process. At first, the training data is split into
several parts. With the seed states as mentioned before, the
relevant samples from the first training subset are extracted
and used for the training of the NER model. The trained model
is then applied to detect states in the second subset of the
training data. The detected states are presented to the user for
revision. The reduced, reworked list of detected states is then
used to produce a labeled training set of the combination of
the first and second subsets of the training data. This procedure
is repeated until the number of subsets is exhausted.

A. Definition of States

System states describe the changeable behavior of a system.
Depending on the point of view, domain, or system, these
states may be defined differently. The definition of a state
may further depend on its specific usage. With the focus on
software and the distinction between run-time and compile-
time, the question arises what parts of a system can change and
when. Parameters, features, and design decisions are changeable
before each run but remain constant at run-time. In our work,
we define states in the context of the automotive industry.
Especially the increasing amount of software in the vehicles and
the consequential increase in the complexity of requirements
documents makes a manual detection of states very difficult.
We formally define a State as a tuple:

State := (Namex → Valuexy)

Accordingly, a state is always assigned to a specific value,
which must be explicitly stated in the requirements. The sole
occurrence of the name is therefore not sufficient to fulfill
the defined requirement of a state. However, if at some point
in the requirements specification, a state name is associated
with specific values, every occurrence of this state name
in the specification is recognized and labeled as such. The
corresponding values always describe definitive characteristics
and exhibit no continuous progression. They describe changes
that are observable in the test process. In our context, the
definition includes both software and vehicle states. Table I
lists two exemplary requirements including states and non-
states, along with a short explanation.

TABLE I: Examples of the definition of states

Requirement Tuple State

The button starts

Name1 = engine

and stops the engine.

Value1 ,1 = starts Yes
Value1 ,2 = stops

Name2 = button No, concrete
Value2 ,1 = {} values are missing

At speeds above
Name3 = speed No, continuous

150 mph, the system
Value3 ,1 = {} progression

will be turned off.
Name4 = system

Yes
Value4 ,1 = turned off

The examples exhibit two states (engine, system) with
corresponding values. Conversely, the terms button and speed
are not identified as states since they do not conform to the
definition. If a specific state is not consistently used, and
synonyms for it exist, these are regarded as unique, independent
states as well. If there were more requirements in a document
in addition to the two examples, every occurrence of the
terms engine and system would be marked as a state as
well, regardless if corresponding values are mentioned in the
respective requirement or not.

Our definition differs from the one in [10] and [11]. While
we also expect a specific value mapped to each name to be
identified as a state, we do not incorporate this value into our
state definition. Further, we define all occurrences of once
identified state names in the requirements as states. In [10],
only the explicit combination of name and value is considered.
Therefore, in [10], the state engine in a different requirements,
without explicitly mentioned values, would not be identified
as a state. The work in [11] does not consider values in their
definition of level two (see II-B) as well. The decision whether
a term is considered a state is entirely subjective to the engineer.
In comparison, our definition is stricter, since we do require
assignable values for a state to be identified as such. However,
the approach in [11] can benefit from the one presented in this
paper.

B. Data Preprocessing

The requirements data provided by an automotive industry
partner are preprocessed to remove redundancies and improve
the overall data quality.

Before the data cleaning process, the requirements are split
into their constituent sentences. By using the sentences as
samples, the number of samples is increased from 10 377
requirements to 14 000 sentences. During this process, all
sentences consisting of only two words or less are deleted. This
amounts to 251 deleted sentences. Additionally, the sentences
are tokenized by simply splitting at every white space.

The data further exhibits some peculiarities which are han-
dled in the preprocessing. There are multiple symbolical special
characters used throughout the requirements like percentage
signs or ampersands. These are replaced with either a special

Fig. 3: Schematic overview of the almost automated approach

TABLE II: Quantities of removed symbols and elements

Symbol Occurrences Element Occurrences

Arrow 34 Reference 549
Forward slash 2062 Mail addresse 6
Ampersand 112 Identifier 715
Percentage 762 Enum start 820
Hyperlink 24 Enum item 3356
Number 6595

token or a sensible wording to simplify downstream processing
and not lose semantic information when removing remaining
special characters later. Furthermore, there are some frequently
occurring elements, e.g., mail addresses, which are replaced
by special tokens as well. Other common elements in the
requirements domain include references to other documents
or chapters as well as special system-specific identifiers for
signals or the like. The data further exhibits many enumerations.
These are tagged with a special start token and another in front
of every element of the enumeration. Additionally, all numbers
are removed from the data and replaced with a special token.
Table II shows the replaced symbols and elements together
with the number of replacements made in the dataset. After this
processing, all remaining 33 138 special characters are removed
from the data to avoid encoding issues in later processing.

The preprocessed data is subsequently used to train the
word embedding vectors via the word2vec approach by [38]. To
restrict the variance of the data, only words occurring more than
two times in the dataset are incorporated into the vocabulary.
This amounts to 5455 words in the vocabulary. The embedding
size is set to 50 since [28] reports the best results with this
setting and, additionally, the vocabulary size of the data used
in this work is comparably small. The embedding vectors
are trained on the entire dataset. Furthermore, a character
embedding is produced. All 32 unique character are included
into the set. The character embedding values are initialized
according to a random uniform distribution as suggested by [28]
and are not pretrained. The embedding size is set to 25.

C. Bootstrapping Algorithm

For many applications that incorporate model training, a
large number of training samples is necessary for adequate
performance. For special applications like the one in this paper,

training data has to be generated first. This process can be
automated with bootstrapping algorithms. With bootstrapping,
a large training set can be assembled with a small set of starting
samples. The resulting labeled data can be used as input for
further processing. This paper describes two ways to automate
the detection of states. For our automated approach, new states
are systematically detected in the data.

The presented approach in [39] extracts entries by learning
patterns in texts. In our approach, we apply the presented
algorithm to requirements from the automotive context. We
use the algorithm to automatically detect states using patterns.
The resulting list of states is used as input for the following
Named-entity Recognition. The starting point, i.e. seed, is
a small selection of states extracted by manually analyzing
randomly selected requirements. For the detection of states in
all requirements with the bootstrapping algorithm, the extraction
of these seed states is the only manual step. Afterward,
the algorithm cycles through the following three steps in a
completely automated way:
Labeling data and creating patterns: With the selected
entries, all requirements samples are labeled. Each matching
requirement is examined to recognize patterns. To recognize a
pattern, the context around the tagged word is examined in a
window of two to four words before and after the target word,
for example: the status of the X or the signal describing the
X; where X is the examined state candidate.
Scoring Patterns: The recognized patterns are scored. The top
scoring ones are incorporated into the set of learned patterns.
Learning entities: With the newly learned patterns, new
candidates are identified in the texts and are then evaluated. A
scorer ranks the candidates and adds the best to the list.

These three steps are repeated iteratively and new entries
and patterns are recognized in each step. The algorithm either
terminates when no new patterns are detected or after a specified
number of iterations. In our application, the bootstrapping
approach automatically detects states in the requirements data
without time-consuming user interaction. The engineer just has
to create a small seed as a starting point. In order to significantly
increase the quality of the data, we integrate a domain expert
who assesses the detected states of the bootstrapper once.
The exact assessment procedure is explained more detailed in
Section IV-E.

D. Named-entity Recognition Model

The Named-entity Recognition model used in this work
is implemented according to the one presented in [28]. The
general architecture is displayed in Fig. 4.

They incorporate both word and character embeddings
into the representation of the input. The word embedding
is pre-trained according to the skip-gram model as presented
by [38]. Since the automotive requirements domain has a
specialized set of terms and phrases, the embedding is trained
on the requirements themselves. Additionally, the embedding
is adapted during the training of the NER model.

The character embedding is initialized with random vectors
for each character and is only adapted during the NER
model training. To reduce the multiple character embeddings
belonging to a word, a Convolutional Neural Network (CNN)
is used. For this, every word is either padded or truncated to a
fixed number of characters, so that the input to the network has
a consistent size. With a convolutional and a pooling layer, this
matrix of character embeddings is reduced to a single vector
corresponding to the words character composition.

The two input embeddings are then concatenated for each
word to produce a sequence of word vectors for each input
requirement.

The actual Named-entity Recognition model is implemented
with a Bidirectional LSTM (BiLSTM). This network layer
processes the input sequence in a forward and backward fashion.
This computation incorporates the sequential nature of the
sentences and accounts for the inherent semantic connections
between the words. Additionally, due to forward and backward
processing, the connections between words are accounted for
with respect to the preceding and subsequent context [40]. The
forward and backward computations then each produce a new
sequence of the same length as the input. For forward and
backward processing this output sequence is then fed to a
linear fully-connected layer to produce a tuple per word in the
input sequence, representing the corresponding category of the
word. In this application, this output is a tuple since the model
only needs to differentiate between states and non-states. In
order to produce labels between 0 and 1, a softmax is applied
to the tuples of the sequence. Lastly, the two forward and
backward processed label tuples are combined by averaging
their respective values. This last layer deviates from the model
presented in [28] since for the application in this work, it
produced better results. With this last computation, both the
forward and backward processing of the input are weighted the
same and combined to produce an output between 0 and 1. The
individual outcomes of the forward and backward computation
are not analyzed.

The output of the network is a tuple, where the first element
corresponds to the word being a state and the second value to
it not being a state. A model predicting just one value, where
a 1 signifies the state-label and a 0 the opposite, performed
significantly worse.

In conclusion, our model differs from the one in [28]
mainly with respect to the final layer. Additionally, we do

Fig. 4: Layer structure of the Named-entity Recognition model

not incorporate meta-information about words and characters
into our embeddings, as the authors proposed.

E. User Interaction

In our paper, we show two approaches aim to support states
extraction. The different possibilities for generating the training
data require a different time investment of the user. The effort
and quality of the models are then compared to purely manual
extraction.

Our automated approach requires the least time. During the
training process, the user has to revise the suggested list of
the bootstrapping algorithm. The user assesses the individual
entries as to whether they meet the definition in Section IV-A.
Terms that are not states are deleted from the list, while actual
states remain in the list unchanged. Since only the name of
the state appears at this point, domain knowledge is required
to assess whether different system states exist. This minimal
effort is required only once during the entire training process.
After training the NER model with the revised states of the
bootstrapper, states can be recognized in new data without
additional time investment.

Our presented semi-automated approach starts with a small
set of requirements and extracted candidates. The user now
has to revise the candidate list exactly as in the first approach.
Entries that do not correspond to the definition are deleted,
actual states remain in the list unchanged. Then, a new partition
of data is labeled according to the revised states. The NER is
retrained and applied to another new set of data. The output
is again a list of state candidates. The cycle starts again. The

user is involved here in every cycle. The user’s invested time
decreases with each cycle as the NER model steadily improves.
In our evaluation, we show the qualitative influence of the
invested time.

F. Limitations

In our approach, we involve the user as little as possible
to significantly improve the quality of our training. In both
training methods, the user has a strong influence on the final
result. Our focus lies on requirements documents from the
automotive sector and requires domain knowledge to reliably
candidate quality. This introduces the risk that a poorly trained
model may not be very satisfactory in practical use. We see
three potential weak spots:

• Incorrect assessment: The review of the proposed can-
didates is subjective to the reviewer and may be affected
by different views on the system. We provide a clear
definition of states, yet it is possible that states are
identified differently depending on the user.

• Insufficient domain knowledge: Since states of a system
are partly dependent on the implementation, understanding
of the system is necessary to properly handle the candidate
list.

• Systematic, accidental error: The user who is involved
in the training process can make mistakes due to fatigue
or inattention. Therefore, it is possible that states are
erroneously deleted and vice versa.

To avoid human error, we recommend involving several
people in the training process.

Another limitation of the presented approaches are the
inherent inconsistencies within requirements documents. If
there are synonymously used terms for states within the
documents, these are not necessarily detected. The approaches
do not have the capability to automatically connect synonyms
which are used to describe a state. Instead, each synonym for
a state is regarded as its own individual state.

V. EVALUATION

A. Strategy

In order to properly test and evaluate the two approaches as
presented in Section IV, the following strategy is pursued.

The extraction of seed states is done on 50 randomly selected
requirements. This manual extraction yielded eleven seed states.
This scope was chosen to keep the initial work put into the
two approaches as minimal as possible, while still yielding
sufficient input for a proper execution.

The preprocessed 14 000 samples in the dataset are randomly
shuffled under the assumption, that the requirements specifi-
cation which the sample originated from does not affect the
subsequent processing. The model should be able to handle
the training and inference tasks regardless of samples’ origin.
Additionally, all specifications are from the automotive domain
which further supports the independency claim.

The training, validation and test split are conducted as
follows. With the assumptions mentioned above, the shuffled
data can be split in any manner to produce a viable subset.

TABLE III: Parameter setting of the NER model

Parameter Value Parameter Value

LSTM size 275 Optimizer Adam
LSTM dropout 0.68 Epochs 50
Maximum sentence length 50 Batch size 5
Maximum word length 15 Learning rate 0.002
Detection threshold 0.3

2000 of the randomly shuffled samples are split off to serve
as test data to evaluate model performance. For the automated
approach, the remaining 12 000 samples are used to train
the NER model. During training, 10% of the data serve as
validation data. For the semi-automated approach, the 12 000
samples are randomly split into 10 disjoint subsets to enable the
execution of training iterations. Within each training iteration,
the trailing 10% of data are used as validation data.

The test data is additionally annotated to serve as the gold
standard, which all models are evaluated with. Hence, all states
included in the 2000 samples need to be identified. In order to
achieve this, four experts from the automotive sector analyze
the data. The data is disjointly split between the reviewers. After
each expert extracted the relevant states from the respective
subset, the resulting list is cross-validated. For this, every expert
reviews the state list of another one. In this second round, the
expert is only allowed to remove states from the list; no new
states are introduced. Therefore, the resulting gold standard
list only contains states which two of the experts agree upon.

The list of gold standard states facilitates the labeling of the
test data according to the NER model output, assigning each
occurrence of a states the respective correct label. The manual
extraction of states yields 222 unique states in the test set. Of
the 2000 samples in the test set, 1228 samples actually contain
a state.

B. Model Implementation

The Named-entity Recognition model has several hyperpa-
rameters, displayed in Table III. These are kept constant over
the course of the training iterations as well as for the automated
approach.

The number of epochs is to be interpreted as the maximum
number of epochs. During training, the model is augmented
with early stopping, which means that the training is terminated
if the validation loss has not improved over the course of the
last 5 epochs. The learning rate is determined empirically.
Except of the batch size, the remaining parameters are set
according to the configuration in [28]. The batch size is chosen
to be smaller than suggested, since there are fewer training
samples as in comparable datasets - especially during early
iterations.

The parameters for maximum sentence and word lengths
are determined to incorporate as much information as possible
while still supporting reasonable computation. To determine a
sensible limit, the histograms of sample and word lengths in
Fig. 5 are analyzed. By cutting longer samples in accordance
with the specified maximum length, 93.94% of the data is
used. The maximum word length restricts the number of

(a)

(b)

Fig. 5: Histograms of the number of characters per word (a)
and number of words per sample (b)

characters being incorporated by the character encoding CNN.
The specified value accounts for 99.48% of all characters in
the data.

Lastly, the detection threshold defines the limit, above which
the model output is interpreted as signifying a state. The value
is set empirically by observing precision and recall performance
on the test set for alternating values.

C. Dataset Specifics

Our approach focuses on the extraction of system states.
Section II discusses the importance of these states in the
automotive sector. Our data for both the training and test
sets are provided by a large German automotive group. The
company differentiates between component specifications and
system specifications. The component specification describes
individual small vehicle components such as sensors or motors,
each of which covers a specific functionality. In system
specifications, several components are combined into a larger,
cross-component vehicle function. A special characteristic of
automotive requirements is the accumulation of signal and
function names. A typical requirement with signal names is,
for example: “When the component BSM receives the signal
BSM_Stat_Req, the system state changes to ON”. These are
not consistently used and are, therefore, particularly difficult
to process automatically.

For our approach, we included both types of specifications.
All requirements are written in the English language. The
requirements were created manually by requirements experts
of the company. The requirements are written in prose form
and without restrictions, patterns or templates. Therefore, it
depends on the writer whether British or American English
spelling is used, which is why both cases occur in our data.
Despite the review process of the experts, some syntactical
and spelling errors are still observed in the data.

Fig. 6: Detected states per iteration

D. Results

The results follow the strategy presented in Section V-A.
Fig. 6 shows the number of detected states for each subset

of data as well as the ratio of rejected and accepted states. In
the first iteration, only the eleven seed states are displayed,
since the first subset of the data on its own only serves as
training data. As the model is trained with increasing numbers
of training samples over the course of the iterations, the number
of predicted states decreases. After the third iteration, however,
this number stagnates and fluctuates around values slightly
above 100. Nevertheless, the amount of correct states with
regard to the entire set of predictions steadily increases. At
every iteration, the model is able to identify more new, valid
states within the data.

This correlates reasonably with the training set sizes dis-
played in Fig. 7. At each iteration, the theoretically available
training data increases by 1200 samples as a new subset is
included. Fig. 7 also shows the share of data actually containing
the accepted states of the iteration, which actually serves as
training data. The ratio of training data to available data stays
relatively constant, except for the first iteration. There, only
the 11 seed states serve as input to extract relevant samples.
Therefore, only about 10% of the data that actually do contain
these states is used for training. For iteration two through seven,
the training samples account for about 37% of the data. In the
last three iterations this ratio increases to around 43%.

The semi-automated approach is further validated on the
gold standard. After each iteration, the model is applied to the
test data and the results are compared to the gold standard.
Fig. 8 shows the precision, recall and F1 metrics, which are
calculated in two different ways. Fig. 8a reports the metrics
based on how many of the actual labels in all of the samples the
model predicted correctly. The reported scores are the average
scores of all samples in the test set. This accounts for multiple
occurrences of states in the data, since the model should be
able to identify a state in every sentence it occurs reliably.
Additionally, this metric also incorporates partial matches of
states. If a state is constituted of multiple words, the output

Fig. 7: Training samples per iteration

of the model is also relevant if it only labels some of the
constituent words correctly.

The graph shows that the model has two distinct phases of
improvement, one in the beginning and one in towards the
last iterations. The achieved precision of 0.88 signifies the
confidence of the model, meaning that words labeled as states
are most likely correctly labeled so. The recall on the other
hand accounts for the share of correctly labeled states with
respect to all actually correct labels. With a recall of 0.48, the
model predicts about half of the state labels in the dataset.

The second performance evaluation is displayed in Fig. 8b.
Here, the metrics regard the actual states that the model detects,
compared to the gold list of actual states in the test set. The
precision almost continuously improves over the course of
the iterations, while the recall stagnates and only improves
by a small amount. This evaluation shows the same pattern
as the previous one. The precision achieves a final value of
0.77, again signifying the models confidence in the predicted
states. Put into perspective, this means that three quarters of
the predicted states are correct. However, the recall examines
a weaker performance once again, with a final value of 0.28.
Therefore, the model detects just above a quarter of the states
contained in the test set.

The automated approach has the same database as the semi-
automated one. The bootstrapper receives the eleven seed states
as an input to detect more states in the 12 000 training samples.
After 20 iterations, the algorithms finds a total of 200 states.
After manual revision, 73 states are identified as valid and
serve as input to the NER model training. When extracting
the relevant samples based on these states, 4472 of the 12 000
samples remain in the training set.

The automated approach does not perform as well as the
semi-automated approach. Table IV gives an overview of
the achieved scores for both approaches. When comparing
the two approaches based on the metrics measured on the
label prediction, as explained above, the automated approach
performs slightly worse. The performance deviates circa
0.1 from the semi-automated one for all metrics. Therefore,

(a) Labels.

(b) States.

Fig. 8: Performance of the semi-automated approach on the
test data

TABLE IV: Best performance metrics for both approaches

Metric Automated Semi-automated

Precision 0.77 0.88
Labels Recall 0.38 0.48

F1 0.51 0.62

Precision 0.44 0.77
States Recall 0.30 0.28

F1 0.36 0.41

when considering the ability of the approach to label words
correctly in a given document, the automated approach exhibits
comparable capabilities to the semi-automated one.

The second part of Table IV describes the performance on
the actually detected states, as mentioned above. Regarding the
precision, the automated approach shows significant deviations
from the semi-automated one. The model trained with the
automated approach is not as confident in the predictions.
The recall on the other hand, is even slightly better. With the
automated approach, about a third of all states in the test set
are detected.

E. Threats to validity

The evaluation shows the comparison of our two approaches
to (semi-)automatically extract states from natural language
requirements. The evaluation results are subjective to some
critical influences. In the following, we want to address three
identified threats to the validity of our evaluation and our efforts
to minimize those influences.

All results refer to the identified states of the gold standard,
which poses a threat to construct validity. Since there is no
public data of states from requirements specifications, a gold
standard had to be created manually. This process is error
prone and directly affects the evaluation results. To reduce the
possible misjudgments of an individual expert, four experts

were involved. The gold standard was created in two processing
steps, one for the extraction of states and one for the review
of the identified candidates. Section V-A describes the exact
distribution of the data in more detail.

The chosen hyper-parameters of our approach also influence
the results and are therefore an internal treat to validity. The
chosen parameters are based on state-of-the-art research. An
investigation of the results with respect to the parameter space
was not conducted, as we did not focus on parameter opti-
mization in this paper. In the future, a parameter optimization
specific to the problem and the available data could further
improve the results.

An additional external threat is the involvement of the user in
our approach. While this involvement does improve the results
for the semi-automated approach, it also directly influences
the evaluation. Especially the elicitation of seed states has
a significant impact on the performance of both approaches.
As described in Section V-A, user interaction is purposely
limited. To further minimize this influence, two experts were
involved in all necessary user interactions for the evaluation.
The experts discussed the decisions taking into account the
necessary domain knowledge.

F. Discussion

Both presented approaches incorporate the user into the
training process. The shared starting point is a seed of 11
states. These were extracted by reading 50 randomly sampled
requirements. In our evaluation this elicitation takes 17 minutes.
In practice, it is conceivable that engineers with domain
knowledge create this seed without having to read a set of
requirements. In this case, the effort is negligible.

In the evaluation, we show results of both approaches, each
with a different time investment of the user. The least time
is needed in the automated approach. The user has to read
and assess the proposed candidates of the bootstrapper. In our
evaluation, it takes 15 minutes to scan the list and sort out
all terms that do not signify states. All further steps are fully
automated. Applied to the gold standard, a precision of 0.77 and
a recall of 0.38 are achieved. In contrast, the semi-automated
approach achieves a precision of 0.88 and a recall of 0.48.
Here the user is involved more in the training process. In each
iteration, the candidates have to be revised. In our scenario, the
user spent a total of 100 minutes for the revision of states in
10 iterations. At this point, it is important to mention that the
training process only takes place once and the created model
can be applied repeatedly to extract states in new data. Until
now, there is only manual extraction to compare our approaches
against. For reading 2000 requirements and detecting the states,
our group of experts needs nine hours. On the one hand, with
manual extraction, it is sure to have identified a large majority
of states, if not all. On the other hand, a new set of 2000
requirements will require another nine hours of work, whereas
our trained model can extract states in new data in an instant.

When comparing the two approaches with regard to the
detected states, some significant differences can be observed.
The automatic approach is set up according to the state-of-

the-art when it comes to information extraction [32], [41],
[42]. This approach examines a high number of false positives.
Some of these candidates do seem reasonable to be identified
as states, but are out of scope for a simulation of the system.
These include the names and IDs of other systems or also static
properties of the system like the Automotive Safety Integrity
Level (ASIL) [43], which has defined state values and could
therefore be characterized as a state. However, there also are a
lot of futile candidates like simple verbs as well.

The semi automated approach is more refined and produces
about 88% less false positives, some of which are sensibly
characterized but, as stated before, are out of scope. This im-
proved precision is reasonable since the engineer continuously
refines the predictions of the model to improve the quality of
training data.

As described in Section II, there are several application
possibilities for our approach. The proposed states can greatly
assist the creation of mode models or the manual annotation
of conditions in requirements specifications.

When using the multilevel markup language, high precision
is prioritized over recall. Therefore, it is important that
recognized states are correct. Our approach can pre-annotate
states, and in the best case as tested, 88% of states are
annotated correctly. A central aspect of the markup language
is the freedom of the user to make manual annotations. The
engineer can decide which of the pre-annotated states are to
be observed in the simulation. It is also possible to use pre-
annotated specifications without additional user interaction.

Fig. 8b shows that the precision improves as the number
of iterations increases. The multilevel markup language is a
great way to get more data about states. This information could
further improve our approach and be used for further training.
By combining the markup language with our approach, the
proposals improve over time without explicit time investment
for the training process.

VI. CONCLUSION

Detecting software conditions is especially important for
simulation and testing. As starting point for every system,
natural language requirements are used - especially in the
automotive industry. Extraction of such states from natural
language requirements is a challenge for large complex software
systems. We present two approaches to automated state extrac-
tion. With minimal time investment in the training process, the
extraction process is greatly improved. Our evaluation shows
the advantage of little time investment in the training process
on the results of the automated extraction. With 100 minutes of
user interaction, states can be extracted with a precision of 0.88.
Experts from requirements management would need about nine
hours for the manual extraction in 2000 requirements.

The test processes can be carried out faster and the automated
comparison with natural language requirements is facilitated.

In the future, innovative software features may be the focus
of research to better cope with the high complexity of today’s
software. Our results show that with some user effort, the state
extraction can be significantly supportive for the user.

REFERENCES

[1] D. Harel, “Statecharts: a visual formalism for complex systems,” Science
of Computer Programming, vol. 8, no. 3, 1987.

[2] A. Cockburn, Writing Effective Use Cases. Addison-Wesley Professional,
2001.

[3] G. Blair, N. Bencomo, and R. B. France, “Models@ run.time,” Computer,
vol. 42, no. 10, pp. 22–27, 2009.

[4] L. Mich, F. Mariangela, and I. Pierluigi, “Market research for require-
ments analysis using linguistic tools,” Requirements Engineering, vol. 9,
no. 1, 2004.

[5] M. Kassab, C. Neill, and P. Laplante, “State of practice in requirements
engineering: contemporary data,” Innovations in Systems and Software
Engineering, vol. 10, no. 4, pp. 235–241, 2014. [Online]. Available:
https://doi.org/10.1007/s11334-014-0232-4

[6] L. Kof and B. Penzenstadler, “From requirements to models: Feedback
generation as a result of formalization,” in Advanced Information Systems
Engineering, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, vol. 6741.

[7] B. Walter, J. Martin, J. Schmidt, H. Dettki, and S. Rudolph, “Exe-
cutable state machines derived from structured textual requirements -
connecting requirements and formal system design,” in 7th International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD), 2019, pp. 195–202.

[8] T. Yue, S. Ali, and L. Briand, “Automated transition from use cases
to UML state machines to support state-based testing,” in Modelling
Foundations and Applications, R. B. France, J. M. Kuester, B. Bordbar,
and R. F. Paige, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 115–131.

[9] P. Rook, “Controlling software projects,” Software Engineering Journal,
vol. 1, no. 1, pp. 7–16, 1986.

[10] A. Vogelsang, H. Femmer, and C. Winkler, “Systematic elicitation of
mode models for multifunctional systems,” in 23rd IEEE International
Requirements Engineering Conference (RE), 2015.

[11] F. Pudlitz, A. Vogelsang, and F. Brokhausen, “A lightweight multilevel
markup language for connecting software requirements and simulations,”
in Requirements Engineering: Foundation for Software Quality, E. Knauss
and M. Goedicke, Eds. Cham: Springer International Publishing, 2019,
pp. 151–166.

[12] IEEE, “Systems and software engineering – life cycle processes –
requirements engineering,” ISO/IEC/IEEE 29148:2011(E), 2011.

[13] M. Broy, “Multifunctional software systems: Structured modeling and
specification of functional requirements,” Science of Computer Program-
ming, vol. 75, no. 12, pp. 1193–1214, 2010.

[14] D. Dietrich and J. M. Atlee, “A mode-based pattern for feature
requirements, and a generic feature interface,” in 2013 21st IEEE
International Requirements Engineering Conference (RE), 2013, pp.
82–91.

[15] C. Heitmeyer, J. Kirby, and B. Labaw, “The scr method for formally
specifying, verifying, and validating requirements: Tool support,” in Pro-
ceedings of the 19th International Conference on Software Engineering,
ser. ICSE ’97. New York, NY, USA: ACM, 1997, pp. 610–611.

[16] P. Shaker, J. M. Atlee, and S. Wang, “A feature-oriented requirements
modelling language,” in 2012 20th IEEE International Requirements
Engineering Conference (RE), 2012, pp. 151–160.

[17] A. Vogelsang, H. Femmer, and C. Winkler, “Take care of your modes! an
investigation of defects in automotive requirements,” in 22nd International
Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ), M. Daneva and O. Pastor, Eds. Springer,
2016, pp. 161–167.

[18] S. J. Körner, M. Landhäußer, and W. F. Tichy, “Transferring research into
the real world: How to improve re with ai in the automotive industry,”
in 2014 IEEE 1st International Workshop on Artificial Intelligence for
Requirements Engineering (AIRE). IEEE, 2014, pp. 13–18.

[19] A. Casamayor, D. Godoy, and M. Campo, “Identification of non-
functional requirements in textual specifications: A semi-supervised
learning approach,” Information and Software Technology, vol. 52, no. 4,
pp. 436–445, 2010.

[20] A. Dekhtyar and V. Fong, “Re data challenge: Requirements identification
with word2vec and tensorflow,” in 2017 IEEE 25th International
Requirements Engineering Conference (RE). IEEE, 2017, pp. 484–
489.

[21] J. Winkler and A. Vogelsang, “Automatic classification of requirements
based on convolutional neural networks,” in 2016 IEEE 24th International
Requirements Engineering Conference Workshops (REW). IEEE, 2016,
pp. 39–45.

[22] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, Discrete-Event
System Simulation. Prentice Hall, 2000.

[23] Z. A. Barmi, A. H. Ebrahimi, and R. Feldt, “Alignment of requirements
specification and testing: A systematic mapping study,” in IEEE Inter-
national Conference on Software Testing, Verification and Validation
Workshops, 2011.

[24] A. Gregoriades, M. Pampaka, and A. Sutcliffe, “Simulation-based
requirements discovery for smart driver assistive technologies,” in 2014
IEEE 22nd International Requirements Engineering Conference (RE),
2014, pp. 317–318.

[25] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep
learning based natural language processing,” 2017.

[26] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” 2017.

[27] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” arXiv:1603.01360,
2016.

[28] J. P. Chiu and E. Nichols, “Named entity recognition with
bidirectional lstm-cnns,” Transactions of the Association for
Computational Linguistics, vol. 4, pp. 357–370, 2016. [Online].
Available: https://transacl.org/ojs/index.php/tacl/article/view/792

[29] L. Kof, “Requirements analysis: concept extraction and translation of
textual specifications to executable models,” in International Conference
on Application of Natural Language to Information Systems. Springer,
2009, pp. 79–90.

[30] A. Dwarakanath, R. R. Ramnani, and S. Sengupta, “Automatic extraction
of glossary terms from natural language requirements,” in 2013 21st
IEEE International Requirements Engineering Conference (RE). IEEE,
2013, pp. 314–319.

[31] M. A. Hearst, “Automatic acquisition of hyponyms from large text
corpora,” in Proceedings of the 14th Conference on Computational
Linguistics - Volume 2, ser. COLING ’92. Stroudsburg, PA, USA:
Association for Computational Linguistics, 1992, pp. 539–545. [Online].
Available: https://doi.org/10.3115/992133.992154

[32] E. Riloff, “Automatically generating extraction patterns from
untagged text,” in Proceedings of the Thirteenth National
Conference on Artificial Intelligence - Volume 2, ser. AAAI’96.
AAAI Press, 1996, pp. 1044–1049. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1864519.1864542

[33] M. Thelen and E. Riloff, “A bootstrapping method for learning semantic
lexicons using extraction pattern contexts,” in Proceedings of the ACL-02
Conference on Empirical Methods in Natural Language Processing
- Volume 10, ser. EMNLP ’02. Stroudsburg, PA, USA: Association
for Computational Linguistics, 2002, pp. 214–221. [Online]. Available:
https://doi.org/10.3115/1118693.1118721

[34] Z. Kozareva, “Bootstrapping named entity recognition with automatically
generated gazetteer lists,” in Proceedings of the Eleventh Conference of
the European Chapter of the Association for Computational Linguistics:
Student Research Workshop, ser. EACL ’06. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2006, pp. 15–21.

[35] J. Teixeira, L. Sarmento, and E. Oliveira, “A bootstrapping approach for
training a ner with conditional random fields,” in Progress in Artificial
Intelligence, L. Antunes and H. S. Pinto, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 664–678.

[36] D. Wu, W. S. Lee, N. Ye, and H. L. Chieu, “Domain adaptive
bootstrapping for named entity recognition,” in Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing:
Volume 3 - Volume 3, ser. EMNLP ’09. Stroudsburg, PA, USA:
Association for Computational Linguistics, 2009, pp. 1523–1532.

[37] A. Vlachos and C. Gasperin, “Bootstrapping and evaluating named
entity recognition in the biomedical domain,” in Proceedings of the HLT-
NAACL BioNLP Workshop on Linking Natural Language and Biology, ser.
LNLBioNLP ’06. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2006, pp. 138–145.

[38] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in Advances in neural information processing systems, 2013, pp. 3111–
3119.

[39] S. Gupta and C. D. Manning, “Improved pattern learning for bootstrapped
entity extraction,” in Computational Natural Language Learning (CoNLL),
2014.

[40] A. Graves, A. rahman Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” IEEE International Conference on
Acoustics, Speech and Signal Processing, 2013.

[41] E. Riloff, J. Wiebe, and T. Wilson, “Learning subjective nouns
using extraction pattern bootstrapping,” in Proceedings of the Seventh

Conference on Natural Language Learning at HLT-NAACL 2003 -
Volume 4, ser. CONLL ’03. Stroudsburg, PA, USA: Association
for Computational Linguistics, 2003, pp. 25–32. [Online]. Available:
https://doi.org/10.3115/1119176.1119180

[42] A. Maedche, G. Neumann, and S. Staab, “Bootstrapping an ontology-
based information extraction system,” 2002.

[43] ISO/DIS 26262 Road vehicles – Functional safety, ISO/DIS Draft
International Standard Std., 2018.

