
This version is available at https://doi.org/10.14279/depositonce-8722

© © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Terms of Use

Accepted for 27th IEEE International Requirements Engineering Conference, http://re19.ajou.ac.kr/.

Winkler, Jonas Paul; Grönberg, Jannis; Vogelsang, Andreas (2019): Predicting How to Test Requirements:
An Automated Approach. 27th IEEE International Requirements Engineering Conference (RE'19).

Jonas Paul Winkler, Jannis Grönberg, Andreas Vogelsang

Predicting How to Test Requirements: An
Automated Approach

Accepted manuscript (Postprint)Conference paper |

Predicting How to Test Requirements:
An Automated Approach

Jonas Winkler, Jannis Grönberg, Andreas Vogelsang
Technische Universität Berlin, Germany

{jonas.winkler, andreas.vogelsang}@tu-berlin.de, jannis.r.groenberg@campus.tu-berlin.de

Abstract—[Context] An important task in requirements engi-
neering is to identify and determine how to verify a requirement
(e.g., by manual review, testing, or simulation; also called potential
verification method). This information is required to effectively
create test cases and verification plans for requirements. [Ob-
jective] In this paper, we propose an automatic approach to
classify natural language requirements with respect to their
potential verification methods (PVM). [Method] Our approach
uses a convolutional neural network architecture to implement
a multiclass and multilabel classifier that assigns probabilities
to a predefined set of six possible verification methods, which
we derived from an industrial guideline. Additionally, we im-
plemented a backtracing approach to analyze and visualize the
reasons for the network’s decisions. [Results] In a 10-fold cross
validation on a set of about 27,000 industrial requirements, our
approach achieved a macro averaged F1 score of 0.79 across all
labels. For the classification into test or non-test, the approach
achieves an even higher F1 score of 0.94. [Conclusions] The results
show that our approach might help to increase the quality of
requirements specifications with respect to the PVM attribute and
guide engineers in effectively deriving test cases and verification
plans.

Index Terms—Requirements Engineering, Requirements Vali-
dation, Test Engineering, Machine Learning, Natural Language
Processing, Neural Networks

I. INTRODUCTION

Verifiability is a quality characteristic for requirements that
is mentioned in many normative quality standards such as
ISO 29148 [1]. The IREB glossary defines verifiability (of
requirements) as “The degree to which the fulfillment of a
requirement by an implemented system can be checked, e.g.,
by defining acceptance test cases, measurements or inspection
procedures.” [2]. The standards argue that a requirement should
be verifiable because it is pointless to specify requirements for
which it is impossible to detect whether they are implemented
correctly.

The first step towards assessing the verifiability of a
requirement is to identify a potential verification method for
a requirement. There are many viable methods to verify a
requirement ranging from ad-hoc manual inspections over
(automated) tests to formal analysis and process audits. The
selection of a verification method has an effect on the
verifiability of a requirement because verification methods have
diverging demands on how requirements must be formulated
in order to be verified. In addition, the selected potential
verification methods may influence how the requirements are
processed in the existing development process (cf. [3]).

One of our industry partners has therefore introduced an
explicit requirements attribute called Potential Verification
Method (PVM) that specifies in which ways a requirement
must be verified. This attribute is the basis for several reporting
activities and also a subject in reviews. Setting values for this
attribute is a manual, time-consuming, and error-prone task.
From our experience with requirements specifications of our
industry partner, the PVM attribute is often set incorrectly or
even neglected.

In this paper, we propose an automatic approach to classify
natural language requirements with respect to their potential
verification methods. The approach can be used to recommend
PVMs for unlabeled requirements or to check labeled require-
ments for potential errors. Our method uses a convolutional
neural network architecture to implement a multilabel and
multiclass classifier that assigns probabilities to a predefined
set of six possible PVM values derived from the guideline of
our industry partner. We trained and validated the classifier on
a set of about 27,000 requirements from our industry partner.
In a 10-fold cross validation, we achieved F1 scores between
0.65 and 0.97 for the different labels. According to our industry
partner, it would be ideal to precisely predict all six labels.
However, being able to discriminate between requirements
that should be tested and requirements that should be verified
by other means would also be very helpful. For this specific
distinction, we evaluated a binary classifier, resulting in an F1
score of 0.94.

To support requirements engineers in using our approach,
we implemented a backtracing algorithm [4] that visualizes the
reasons for the network’s decisions on individual samples.

We conclude that our automated approach helps to increase
the quality of requirements by detecting misclassified PVM
attributes or automatically generating classification proposals
for unlabeled requirements. Additionally, the analysis of the
trained model provides insights into how requirements with
specific verification methods are typically formulated. This
resembles a new view on syntactic characteristics of verifiable
requirements.

The remainder of the paper is structured as follows. Sec-
tion II introduces the potential verification method attribute
and describes its possible values. A quick introduction on
convolutional neural networks is given in Section III. In
Section IV, we elaborate on how we use neural networks
to classify requirements regarding the PVM attribute. The
evaluation using standard measures such as recall and precision

is provided in Section V. Section VI discusses the results. That
section also provides insights into how the classifier works and
what its limitations are. Section VII points out related work.
Section VIII concludes.

II. THE POTENTIAL VERIFICATION METHOD ATTRIBUTE AS
USED BY OUR INDUSTRY PARTNER

One of our industry partners from the automotive domain
decided to explicitly document the potential verification method
for all requirements as a requirements attribute. A requirements
engineer annotates requirements with a list of methods that
he or she thinks can be used to verify the requirement. To
assemble this list, the requirements engineer can choose from a
set of six values that are listed in the following. The provided
example requirements are taken from our dataset.

• Review. Manual inspection of development artifacts by
experts (including code, engineering drawings, architec-
tures). Example: Exception handling may be turned on or
off by setting a parameter.

• Simulation/Analysis. Calculation of system properties by
computational methods executed on development artifacts
(including simulation, code analysis). Example: The relay
control output shall be controlled within the operating
voltage range specified in the input/output table.

• Formal Verification. Verification of system properties by
means of mathematical methods. Example: Consistency
between type A memory and type B memory has to be
ensured.

• Process audit. Verification of process requirements by
means of a process assessment. Example: The contractor
shall provide a project manager for this project who co-
ordinates and supervises the various processes regarding
the contractor.

• Test. Verification of system properties by using the
implemented system with the goal to verify all system
properties. Example: The signal of the button must be sent
from the roof control unit to the component via the CAN
bus.

• Production control. Verification of system properties by
assessing the production process. Example: The weight of
the component shall not exceed 1 kg.

A requirements engineer can select more than one value
from the list, which means that multiple verification methods
are possible for a single given requirement. Specifying more
than one verification method implies that a requirement may
be verified using different methods. However, only one method
is used to verify each requirement. The method that is actually
employed is selected later in the requirements engineering
process.

The company’s requirements specification guideline states:
“The purpose of the PVM attribute is to indicate relevant
requirements for the test specification. The attribute defines
potential verification methods.” The guideline also contains
a hint stating that the values within the PVM attribute are
only recommendations. The actually performed verification
activities may differ from the PVM values.

The PVM attribute is subject to manual review of the
requirements specification. The reviewers check whether the
specified PVM values fit the specified requirement. Furthermore,
the reviewers must assure that the PVM attribute is set for
all safety relevant requirements. For requirements that are not
safety relevant, setting the PVM attribute is not mandatory
but highly recommended. In early stages of the requirements
engineering process, a PVM attribute with multiple values may
indicate that the requirement is not yet specific enough and
contains several aspects that are verified by different verification
methods.

The specified values of the PVM attribute have an influence
on several reporting activities. For example, the company’s
traceability report contains information about requirements
and related test cases. However, this is only reported for
requirements where the PVM attribute contains the value Test.
When test case specifications are derived from requirements, a
test engineer usually starts by filtering the requirements with
respect to the PVM attribute.

III. CONVOLUTIONAL NEURAL NETWORKS FOR NLP

Predicting the proposed PVM attribute of requirements
within requirements specifications is a multiclass-multilabel
classification problem because each element may have multiple
labels from a set of predefined classes. Within the natural
language processing community, many popular techniques exist
to solve such a problem, including Naive Bayes [5] and support
vector machines [6]. Although these techniques have limitations,
such as ignoring word order, they proved to be good enough for
classification tasks such as sentiment analysis [7] or authorship
attribution [8].

Convolutional neural networks (CNN) are a variation of
classic feed-forward neural networks. CNNs are widely used
within the image recognition community [9] but gained
attention in natural language processing as well [10], [11].
These networks have several advantages compared to other
classification techniques. They keep word order intact to be
used for finding patterns, whereas other approaches often use
Bag of Words techniques and information about word order is
lost. Furthermore, due to the use of word embeddings, they
are able to detect patterns even if words vary slightly.

The organization and functionality of CNNs as applied in
this paper is illustrated in Fig. 1 and will be described briefly
in the following section. CNNs for text classification in general
are described in detail by Zhang and Wallace [12].

The first step is to transform an input sentence into a vector
representation (1). This is called word embedding. We use
word2vec [13] for this step. Word2vec maps a single word to
a vector v ∈ Rn, where n is called the embedding size. One
remarkable property of word2vec is that the vector distance of
two given words is small if these two words are used in similar
contexts whereas it is large if the words are not related at all.
Sentences are transformed into a matrix m ∈ Rn,l, where l is
the number of words in the sentence.

The first layer in the network applies a set of filters (2) to
the sentence matrix m. Each filter is a matrix f ∈ Rn,o of

(1)

word embedding

(2)

convolution

(3)

1-max-pooling

(4)

concatenation

(5)

fully connected

layer

emb

len

emb

flen

fnum

cnumfsnum

input

sentence

Fig. 1: Convolutional neural network architecture (simplified) as proposed by [12]

trainable parameters, where n is the embedding size and o is
the length of that particular filter. Number and sizes of the
filters are hyper parameters and as such manually defined prior
to training. In Fig. 1, two filters of length 3 and two filters of
length 2 are illustrated. Filters are applied to a sentence matrix
by moving them as a sliding window over the sentence matrix,
producing a single value at each position using an activation
function such as a rectifier or sigmoid function (2). This step
is called convolution. Each filter learns to recognize a specific
word pattern (e.g., a filter of size 2 might learn to recognize
the pattern “function must”).

All values produced by a filter are reduced to a single
value by applying 1-max-pooling (3). The max-pooled values
indicate whether the pattern learned by a filter is present
within a sentence. All resulting values are concatenated and
form a feature vector (4). This vector is connected to the
output layer using a standard fully connected layer and an
appropriate set of trainable parameters (5). The fully connected
layer is used to associate certain patterns with an output
class. The sigmoid function is applied to each output to create

probabilities between 0 and 1 for each class. Whenever this
probability is above a predefined threshold (usually 0.5), the
label corresponding to the output is assigned to the input
example.

IV. APPROACH

To build a classifier that is able to assign potential verifica-
tion methods to a requirement, we followed the Knowledge
Discovery in Databases (KDD) process presented in [14]. The
process consists of nine steps that help creating reasonable
knowledge from raw data using data mining techniques, while
pointing out what risks to be aware of.

1) Developing an understanding of the application do-
main. We thoroughly analyzed how the potential verifica-
tion method is used at our industry partner (see Section II).

2) Selecting and creating a dataset on which discovery
will be performed. The analysis helped us to create a
dataset that reflects our understanding of the domain. This
will be discussed in Section IV-A.

3) Preprocessing and cleansing. We applied a few prepro-
cessing steps in order to minimize error sensitivity. This
will also be discussed in Section IV-A.

4) Data transformation. We used the word2vec [13] word
embedding technique. This transforms the data into
word vectors usable by neural networks. Word2vec word
embeddings retain the context as well as the relationships
between words.

5) Choosing the appropriate data mining task. Choosing
one or more potential verification methods for a require-
ment is a multiclass and multilabel classification task.

6) Choosing the data mining algorithm. We used CNNs
as they are straightforward to train and easy to explain by
using back tracing approaches [4]. Another key reason is
that CNNs perform very well on related tasks [15], [11].

7) Employing the data mining algorithm. Details on how
to build and train the classifier will be presented in
Section IV-B.

8) Evaluation. We evaluated the results with standard met-
rics such as precision and recall. This is described in
Section V.

9) Using the discovered knowledge. This will be discussed
in Section VI. Possible applications and benefits are
specifically discussed in Section VI-B.

A. Creating the Dataset

To build our dataset, we collected a large number of require-
ments specification documents available at our industry partner,
containing many real-world requirements. The requirements
specifications were available in multiple languages, some in
English and some in German. We focused on the language
in which the majority of the specifications were written in
(German). Furthermore, the requirements originated from two
types of requirements specifications:

• System requirements specifications contain requirements
that are used for the development of a vehicle system
(e.g., airbag system).

• Component requirements specifications contain require-
ments that are used for the development of individual
components (e.g., control units, sensors, actuators, etc).

Documents of both types usually include default require-
ments. Default requirements are predefined in specification
templates and define requirements independent of any specific
component or system, such as legal and process requirements.

We wanted to recreate the real usage of the PVM attribute
as accurately as possible. In order to do so, we selected re-
quirements specifications regardless of the number of elements
with PVM attributes or the PVM values they held. Moreover,
we did not exclude default requirements but included only one
instance of each in the dataset.

We excluded all requirements that did not contain any of
the six previously presented PVM values (e.g., requirements
that were marked as “to be done” and requirements on which
no PVM had been specified at all). In addition, we excluded
requirements that contained only one word or contained only

TABLE I: Dataset for multilabel/multiclass classification task

PVM value
Number of reqs

with label Ratio

Review 3,483 12.91%
Simulation/Analysis 646 2.40%
Formal verification 832 3.09%
Process audit 788 2.92%
Test 23,529 87.25%
Production control 289 1.07%

Total number of requirements 26,966
Label cardinality1 1.096
Label density 0.183

numbers or special characters because these requirements did
not contain relevant information.

Th retain as much information of the input requirement
as possible. Therefore, we decided to neither remove stop
words nor to use a stemming method. Consequently, no
information about the order of words, the dependency of words
or information about the conjugation of words was lost.

Last but not least, we eliminated duplicate requirements
occurring in more than one specification. The resulting dataset
consists of 26,966 requirements that specify automotive soft-
ware systems from the interior of a car. These requirements
are written in natural language and do not follow any specific
form of writing. An overview of the distribution of examples
with respect to the different labels is provided in Table I.

About 87% of all requirements carry the PVM value Test.
The least frequently specified PVM value is Production control,
which is only associated with a little more than 1% of all
requirements. The label cardinality shows that 1.096 labels are
attached to each requirement on average. The label density
(label cardinality divided by number of labels) of 0.183
indicates that a requirement covers 18.3% of all labels on
average.

The labels are not independent from each other. Some labels
have a higher chance to be selected together with certain
other labels. Table II provides an overview of the probability
of occurrence of the labels, depending on the occurrence of
another label. For example, 95% of requirements with the
PVM value Simulation/Analysis also have the PVM value Test.
A possible explanation is that simulation software such as
MATLAB Simulink is well suited for virtual testing and that
simulation regularly goes hand in hand with virtual tests. Due
to that, both PVM values are set.

The PVM values Process Audit and Production Control are
very often accompanied by the PVM value Review. In both
cases, an assessment by an expert could be essential. If this is
required, a Review should be mandatory.

Another observation can be taken from the last row: The
PVM value Formal Verification is frequently set with additional
PVM values. Usually, Formal Verification requires a lot of
resources. Sometimes, a Test, a Review, or a Process Audit

1Label cardinality is the average number of labels per example in the set.
Label density is the number of labels per sample divided by the total number
of labels, averaged over the samples. [16]

TABLE II: Label dependencies

then
Simulation/

Analysis Test Review
Production

Control
Process

Audit
Formal

Verification
if

Simulation/Analysis - 0.9505 0.0294 0.0000 0.0000 0.0046
Test 0.0261 - 0.0233 0.0003 0.0145 0.0142
Review 0.0055 0.1573 - 0.0787 0.1947 0.1270
Production Control 0.0000 0.0277 0.9481 - 0.1073 0.2491
Process Audit 0.0000 0.4327 0.8604 0.0393 - 0.4264
Formal Verification 0.0036 0.4014 0.5313 0.0865 0.4038 -

beforehand is inevitable in order to reduce time and costs
during the formal verification process.

Ultimately, the label dependencies show that sometimes a
single potential verification method is not enough to verify a
requirement or that it is possible to choose a different one. This
is more often the case for more detailed verification methods.
On the contrary, Test as a single requirement verification method
is sufficient in more than 99% of the cases where it is used.

B. Building and Training the Classifier

Our classifier takes a requirement and assigns labels to
it, which represent the different PVM values. There are six
different PVM values and since more than one PVM value
can be assigned to a requirement, our classifier has to perform
a multiclass and multilabel classification. This is achieved by
having 6 different output values at the end of the CNN and
using sigmoid as the activation function.

In order to counteract the problem of class imbalance as
seen in Table I, we weighted the different labels [17]. We
determined their individual number of occurrences in relation to
the number of occurrences of the most frequent label Test. Thus,
we determined weight factors for our six PVM values. These
class weights were used to give more credit to underrepresented
classes during training.

Additional parameters that we had to determine include the
number of epochs, which indicates how often the classifier
is trained on all examples in the dataset. Each epoch is
divided into multiple iterations. The number of samples that
the classifier processes in each iteration is defined by the batch
size. We chose these parameters empirically to minimize both
training time and the negative effects on gradient computation
due to too large batches. In addition, early stopping was used
to save time.

Furthermore, we had to choose additional parameters of the
network. The embedding size parameter defines how many
dimensions are used to represent words using word2vec. Using
more dimensions results in a more fine-grained model, which
captures more semantic information from the dataset. Also,
we may choose to use static embeddings (constant pre-trained
vectors for each word). Non-static embeddings are handled as
weights during training and may be changed to better fit the
classification task.

The filter sizes parameter defines the shape of the filters.
Using filters of varying length allows the network to learn
word patterns of different lengths. For each filter size, the

TABLE III: Dataset for binary classification task

PVM value
Number of reqs

with label Ratio

Test 23,529 87.25%
No Test 3,437 12.75%

Total number of requirements 26,966

count per size parameter defines how many filters are used.
Using more filters allows the network to learn more word
patterns in parallel, which usually increases the performance.

The word embedding used for the classifier was created based
on all available requirements specifications and was specifically
trained for use with our classifier. We opted against using a
public pre-trained model since these models do not contain
many of the domain-specific words used in the specifications.

We trained and evaluated our classifier using 10-fold cross
validation. The folds were produced by first shuffling the
training data and then creating 10 parts of equal size. Shuffling
ensures that the distribution of all labels across the folds
is roughly the same. We considered using stratification as
well. however, this prove to be difficult due to the multilabel
setting [18].

C. Building a Binary Test/No-Test Classifier

In addition to the classifier as described in the previous sub-
section, we also constructed a binary classifier discriminating
between Test and other verification methods (No Test). The
reason is that our industry partner told us that, in fact, the
distinction between requirements that are verified by testing
and requirements verified by other means is most important to
them because subsequent development steps are fundamentally
different.

The labels in the dataset were modified using the following
method: We discarded all labels except Test. For all require-
ments without any label, we assigned the new No Test label.
Table III shows an overview of the modified dataset. The
classifier was modified slightly to fit the altered scenario: The
final layer now has 2 output neurons and uses softmax as
its activation function.

The remainder of the procedure is largely equal to the
procedure used for the multilabel and multiclass classifier:
We determined hyper-parameters manually, used class weights
to counteract the problem of class imbalance, and used 10-fold
cross validation to assess the performance of the model.

V. EVALUATION

In order to evaluate our model using standard evaluation
metrics such as precision, recall, and F1 score, we have created
a baseline using the ZeroR classifier. This classifier simply
assigns the most frequent class in the dataset to all input
examples without inspecting any features of the input examples.
Any other classifier should perform better than ZeroR.

For all configurations and the baseline acquired using the
ZeroR classifier, the following measures are compared:

• Accuracy. Multilabel accuracy on the test splits.
• Perfect Match Ratio. This score is the percentage

of test examples on which all classes were predicted
correctly. This is similar to accuracy in a non-multilabel
classification task.

• Macro-F1. Macro-Averaged F1 score. This score is partic-
ularly useful, since it is more sensitive to the performance
of the classifier on the underrepresented classes.

• Micro-F1. Micro-Averaged F1 score.
The results for the baseline as well as for different config-

urations of the CNN can be found in Table IV. The ZeroR
baseline has high values for Accuracy, Exact Match Ratio, and
Micro-F1 due to the fact that the class Test is the most frequent
class in our dataset.

We used grid search to test various network configurations
and search for the set of network parameters that works best
for our dataset, also shown in Table IV.

We used various combinations of embedding sizes, filter
sizes, and filter count, and also allowed the classifier to fine-
tune the embedding parameters (non-static embeddings). We
were able to achieve better results by increasing the number
of filters per size and the embedding size, by using filters of
more sizes and by allowing the network to also change the
embedding parameters. The number of filters per size affects
the network performance most, since more filters allow the
network to detect more word patterns. Increasing the size of
the word embeddings from 32 to 128 dimensions also results in
consistent improvements. Allowing the network to also change
word embeddings parameters increases the performance when
the word embedding has few dimensions (32). Gains in network
performance vary when larger word embeddings are used.
Adding filters with length 4 does not affect the performance
at all.

A. Evaluation of the Multilabel/Multiclass Classifier
To further assess the performance of the network on indi-

vidual classes, we selected the configuration with the highest
macro-F1 score (word embedding layer: 256 dimensions, non-
static embeddings, filters of length 2 and 3, 64 each), since this
score is a good indicator for network performance averaged over
all classes. Table V shows detailed results for this configuration.

We are able to achieve 97% recall and precision for the Test
label. These results show that our classifier performs well in
discerning requirements validated using a test on the actual
system versus requirements validated using other methods.

Considering that our dataset probably contains some in-
correctly classified items due to how the data was collected,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

Review Formal Verification Test

Simulation/Analysis Process Audit Production Control

Fig. 2: Recall-precision graph

our classifier performs reasonably well on the Review and
Process audit classes, yielding an F1 score of 80.9% and
82.4% respectively. The F1 score on the remaining classes
(Simulation/Analysis, Formal verification, Production control)
is comparatively low. Recall on Simulation/analysis and Produc-
tion control is especially low: The classifier essentially misses
to assign these labels for almost every second requirement.

Since missing requirements of a particular label is worse
than assigning too many requirements to that label, tuning the
classifier for recall at the expense of precision may increase
its usefulness. In order to assess the losses in precision, we
created recall-precision graphs for all classes by choosing
different thresholds for the network output (see Fig. 2). By
increasing recall to 90%, precision drops to roughly 60% to
10%, depending on the label.

B. Evaluation of the Binary Classifier

Our binary classifier performs well in discerning require-
ments that require tests from requirements that do not require
tests. The results are displayed in Table VI. Precision on the Test
class is close to 100%, meaning that almost all requirements
classified as Test actually do require a test. Recall is reasonably
good as well on both classes. The low precision on the No Test
class (83%) indicates that the classifier favors the No Test class
over the Test class for ambiguous requirements. Depending
on the application, this may be an issue and can be adjusted
using a different threshold.

C. Evaluation with Document-based Cross Validation

When applying the classifier in a real world scenario, it will
be trained on complete documents and applied to completely
unseen documents. However, in a 10-fold cross validation with
shuffling, certain requirements of a single given document will
end up in a training set whereas the remaining requirements
will end up in the test set. To make an evaluation that is
closer to the potential application scenario, we also employed
a document-based cross validation in addition to the 10-fold
cross validation.

For this validation, the folds were constructed as follows.
We used as many folds as we had documents available. For

TABLE IV: Results for the multiclass/multilabel classifier with different configurations

Embeddings Filters
Size Static Sizes Count per size Accuracy Perfect Match Ratio Macro-F1 Micro-F1

ZeroR baseline 0.8477 0.8293 0.1553 0.8323

32 yes 2, 3 8 0.8979 0.8682 0.5818 0.9003
32 yes 2, 3 64 0.9099 0.8824 0.7131 0.9153
32 yes 2, 3, 4 8 0.9016 0.8718 0.6119 0.9042
32 yes 2, 3, 4 64 0.9177 0.8930 0.7331 0.9226

32 no 2, 3 8 0.9130 0.8856 0.7127 0.9177
32 no 2, 3 64 0.9266 0.9044 0.7644 0.9316
32 no 2, 3, 4 8 0.9140 0.8872 0.7179 0.9177
32 no 2, 3, 4 64 0.9275 0.9070 0.7706 0.9331

128 yes 2, 3 8 0.9057 0.8766 0.6705 0.9098
128 yes 2, 3 64 0.9234 0.9019 0.7641 0.9286
128 yes 2, 3, 4 8 0.9055 0.8768 0.6954 0.9104
128 yes 2, 3, 4 64 0.9249 0.9048 0.7696 0.9314

128 no 2, 3 8 0.9220 0.8986 0.7523 0.9265
128 no 2, 3 64 0.9313 0.9122 0.7809 0.9361
128 no 2, 3, 4 8 0.9260 0.9049 0.7623 0.9307
128 no 2, 3, 4 64 0.9304 0.9119 0.7549 0.9360

256 yes 2, 3 8 0.9082 0.8800 0.6948 0.9121
256 yes 2, 3 64 0.9274 0.9067 0.7753 0.9332
256 yes 2, 3, 4 8 0.9130 0.8876 0.7157 0.9173
256 yes 2, 3, 4 64 0.9270 0.9068 0.7707 0.9329

256 no 2, 3 8 0.9224 0.9002 0.7518 0.9281
256 no 2, 3 64 0.9310 0.9115 0.7904 0.9368
256 no 2, 3, 4 8 0.9251 0.9043 0.7671 0.9307
256 no 2, 3, 4 64 0.9261 0.8995 0.6960 0.9308

TABLE V: Results for multiclass/multilabel classifier

PVM value Support Precision Recall F1

Review 3,483 0.818 0.800 0.809
Simulation/Analysis 646 0.755 0.563 0.645
Formal verification 832 0.910 0.692 0.786
Process audit 788 0.865 0.787 0.824
Test 23,529 0.970 0.977 0.973
Production control 289 0.856 0.599 0.705

Micro-Averaged 0.944 0.930 0.937
Macro-Averaged 0.862 0.736 0.790

TABLE VI: Results for test/no-test binary classifier

PVM value Support Precision Recall F1

Test (ZeroR) 23,529 0.872 1 0.932
No Test (ZeroR) 3,437 undefined 0 undefined

Test 23,529 0.997 0.969 0.983
No Test 3,437 0.833 0.981 0.901

Micro-Averaged 0.975 0.971 0.972
Macro-Averaged 0.916 0.975 0.942

each fold, we used one document for testing and all other
documents for training. This way, we can ensure that each
document will be used for testing exactly once and that the
requirements of a single document will be either used entirely
for training, or entirely for testing.

However, this approach also introduces issues regarding the
evaluation: Only very few documents contain the majority of
certain underrepresented labels. By using this cross validation

TABLE VII: Results for the binary classifier with document-
based cross validation

PVM value Support Precision Recall F1

Test 23,529 0.948 0.962 0.955
No Test 3,437 0.437 0.366 0.399

Micro-Averaged 0.915 0.916 0.916
Macro-Averaged 0.692 0.664 0.677

approach, we cannot ensure that the samples of these underrep-
resented labels will be appropriately distributed among training
and test sets.

Table VII shows the performance of our binary classifier with
the document-based cross validation. The performance of the
classifier drops significantly for both classes. We assume this
effect is caused by the diversity in styles introduced by varying
authorship. Requirements originating from one document
may be written in a similar manner, whereas requirements
originating from different documents may be quite different
in terms of writing and terminology. Additionally documents
may contain domain specific words which are exclusively used
in that particular document. Therefore, detecting the correct
label in completely unseen documents is very challenging.

We also considered applying the document-based cross
validation to the multilabel/multiclass classifier. However, the
examples of the underrepresented classes were distributed very
unevenly among all documents (i.e., a very small fraction
of documents contained almost all examples labeled with
Production Control). This means that either almost all examples

are used for training and none for testing, or vice versa, leading
to F1 scores close to 0 on multiple classes.

VI. DISCUSSION

In this section, we discuss the results presented in Section V
and present possible applications of our approach.

A. What Words Say About Verification

Winkler and Vogelsang have proposed a technique that
allows tracing back decisions made by convolutional neural
networks for text classification and visualizing them on the
input sentences [4]. For any trained model, this technique
reveals the reasons (i.e., important word structures in an input
example) due to which the classifier chose the assigned labels
for an example. The approach essentially reverses the operations
performed by a neural network and creates a Document
Influence Matrix, indicating which inputs in a particular input
example were especially significant. This technique may be
used to create ranked lists of particularly important words for
each class as well as visualizations of individual input examples
in which important words are highlighted.

Table VIII displays example sentences from each class.
The highlighting shows individual words that are especially
important for the classification process in this particular
sentence. The sentences were translated from German to
English. This has only been done for a better understanding in
this paper and we tried to keep them as close as possible to their
respective German original. Please note that the importance
of single words is not universal but differs between examples
depending on the context (e.g., the word “be” has a high
influence value in the first example because it is used in a
context “must be activated”, whereas in the sixth example
“must be agreed”, the word “be” is not as relevant for the
classification). Since these visualizations were created based
on what the classifier learned, their expressiveness largely
depends on the accuracy of our classifier.

We examined several examples in our dataset and also created
a list of words with the highest average influence values for
each class. Based on that, we were able to characterize the
different classes with respect to certain words and phrases.

Simulation/Analysis is often used for requirements that either
define functionality depending on the state of the ignition lock,
specify precise values (i.e., voltage, dimensions, time, etc.), or
deal with functionality of other components (names of other
components have a high influence value).

Process Audit is a verification method used to verify require-
ments describing engineering processes rather than system
properties. These requirements usually define what rights and
liabilities a contractor and client have, what they shall do, and
what requirements they need to fulfill. Consequently, the words
emphasized in the last sentence have a high impact value.

Production Control is used for requirements defining how
certain parts will be produced. As such, requirements labeled
with this label usually contain words regarding parts and
components, time constraints for production, or physical
properties of the component.

Test is the class used for almost all other requirements at
our industry partner. These are functional requirements of the
respective system or component and are verified using various
test methods involving the system or component itself (i.e.,
hardware in the loop, integration test, etc.) Words such as
“will” or “shall” that are typically used to formulate functional
requirements have high influence values for this class.

Review is used whenever no test is required to verify the
requirement. Rather than performing a test, the fulfillment
of these requirements is verified manually. When comparing
examples from this class and the Process Audit class, it is worth
noting that similar words are highlighted as important (e.g.,
contractor). This is due to the fact that whenever Processs
Audit is used for verifying a requirement, Review is used very
often as well (cf. Table II).

We were unable to draw any conclusions about requirements
verified using the method Formal Verification. We expected
that this method is used whenever certain safety-critical
requirements are specified, however this was not the case.
Requirements labeled with Formal Verification were almost
indistinguishable from requirements labeled with Test.

B. Application of the Approach

In previously published works [15], we used the same tech-
niques as presented in this paper to solve a similar classification
problem. We used CNNs to separate requirements from non-
requirement content elements in requirements specifications
(i.e., additional information such as examples, references, and
explanations). Similar to the PVM attribute, requirements
engineers are expected to manually set an attribute called
Object Type to either information or requirement.

We built a tool using a trained CNN model that displays
warnings where the actual Object Type differs from the
predicted Object Type. In a preliminary case study [19], we
showed that such a tool provides several benefits, such as
increased rate of error detection, decreased review time and
decreased error introduction rate. These benefits may also be
transferred to the problem described in this paper.

A tool that includes a model trained to classify requirements
regarding their PVM attribute may provide the following
benefits over manual inspection of the PVM attribute:

• Users of the tool may be able to easily identify re-
quirements within a requirements specification where
the defined potential verification method differs from
what is normally used in similar requirements, because
requirements with warnings are visually highlighted.

• As a side effect, users may also be able to identify
requirements where a potential verification method has
not yet been set.

• Users of such a tool might be able to find and fix more
errors regarding the PVM attribute than users without the
tool on the same document due to the issued warnings.
Thus, using the tool can help to increase the quality of
requirements specifications regarding the PVM attribute.

• Since the tool shifts the attention of the users towards
elements with warnings, the users are less inclined

TABLE VIII: Visualizing the importance of parts of the input sentence for the classification decision.

Class Example Sentences

Test The actuators and switches must be activated separately within the control unit .
Test The function is triggered whenever a definable rain intensity is detected for a definable time .
Test The function must be initiated immediately if the switch is pressed and released within 100 ms .

Review The contractor must agree on a suitable test platform and test plan with the department .
Review When mesh is used in front of the ultrasonic sensors the compliance with world-wide legal and insurance requirements has to be

ensured
Review All can signals must always carry meaningful values and must be agreed on with the contractor .

Production control All materials and processes must comply with current legal regulations regarding regulated substances and reusability .
Production control The weight of the remote control in operational state must be between 100 and 200 g .

Formal verification Consistency between nvram and noinitram has to be ensured .

Simulation/Analysis In order to ensure availability of the bus systems , the bus systems must never be impaired or even blocked .
Simulation/Analysis Since an electronic horn has a down time of aproximately 50 ms after initiation , the horn must be triggered for at least 100 ms .

Process audit The contractor must fulfill the requirements regarding logistics according to the description in the separate logistics specifications .
Process audit The contractor must consider and demonstrate weight-reducing measures during the entire development cycle .

to change the PVM attribute of requirements without
warnings. Therefore, less errors might be introduced when
the tool is used.

• Since the tool issues warnings only on a fraction of all
requirements within a requirements specification and the
users focus on elements with warnings, they might be
able to complete the review of a specification in shorter
time than without the tool.

• Due to using a tool that assists requirements engineering
practitioners in their tasks, they might be more motivated
to fix issues within their documents.

A separate case study has to be performed in order to prove
these claims. However, since we have already performed a case
study on a similar classification problem, we may get similar
results.

As stated in the case study on requirements and non-
requirements in [19], using a tool also carries certain limitations
and risks. Since 100% accuracy on the classification task at
hand is not achievable, such a tool will never help require-
ments engineers to achieve perfect requirements specification
documents regarding the PVM attribute.

Furthermore, since the focus of users is shifted towards
requirements with visual warnings, users tend to inspect
requirements without warnings less carefully and are thus more
likely to miss defects in these requirements. This was shown in
the case study as well: Users without the tool found and fixed
more unwarned defects than users with the tool. However, the
number of missed defects compared to defects fixed was still
small and the authors were able to achieve improvements by
introducing the tool.

As these benefits and limitations have only been proven for
the task of discerning requirements from non-requirements,
further experiments have to be conducted to determine whether
and which benefits transfer to the PVM classification task,
especially since the usefulness of such a tool will largely
depend on the accuracy of the underlying classifier.

C. Limitations of the Approach

In this section, we will outline the various limitations of our
approach.

The classifier was trained to discern between six different
types of requirements verification methods that we extracted
from guidelines at our industry partner. Other companies may
use a different set of verification methods. Also, even if
the same set of potential verification methods is used, other
companies’ processes regarding requirements verification may
be different from the processes practiced at our industry partner.
Therefore, the trained model might not be directly applicable.
To counteract this issue, the model needs to be trained again
using company-specific data.

As shown in Section VI-A, the model learned to recognize
certain company-specific words and uses these words to decide
between the output classes. These words are present in the
dictionary of the embedding layer, since the word embedding
was also created from documents at the same company.
However, other companies might use different terminology not
present in the dictionary, severely hindering the performance
of the model. As with the previous limitation, the model might
need to be trained again.

The trained model may as well be domain-specific since it
has been trained on data acquired from a company in the auto-
motive domain. In other domains, such as rail and aerospace,
requirements may be verified using different techniques (e.g.,
formal verification is used much more in the aerospace domain
compared to the automotive domain).

As already discussed in the previous section, achieving
100% accuracy is impossible and therefore, using our approach
will not lead to perfect requirements specification documents
regarding the PVM attribute.

Furthermore, after training a model and deploying it in a
tool, the weights and vocabulary of the model are usually fixed.
Should the company alter their methods and guidelines for
writing requirements or introduce new potential verification
methods, the model will not adapt to these changes and its
usefulness will decrease. To counter this issue, active learning

approaches (see [20]) have to be implemented. Active Learning
will allow users to gradually adapt the model by correcting
incorrect predictions. However, this is not an easy task due
to catastrophic forgetting: when retraining neural networks
with different input data, they tend to forget information about
previously learned examples by using important weights for
learning new information [21].

D. Threats to Validity

In this section, we describe the threats to the validity of our
evaluation.

The most severe threat is the way we collected the data for
training and evaluation. We used requirements specifications
available at our industry partner that have already gone through
several iterations of quality checks. However, these documents
may still contain misclassified items. Due to the large amount
of data required to train neural networks, we were unable to
manually check the correct labeling of all examples in the
dataset.

A related issue arises since many different people from
multiple departments worked on the requirements specifications
used to create our dataset. Despite company-wide guidelines on
how requirements should be verified, there might be differences
between departments. This may result in similar requirements
in our dataset being labeled with different potential verification
methods.

A label cardinality of 1.096 shows that a majority of the
requirements only have one specified PVM value. This may
indicate that the addressed problem is, in fact, not a multilabel
classification problem. Our industry partner confirmed that the
company’s guideline allows selecting multiple PVM values,
however, they also confirmed that they have a closer look at
requirements with more than one PVM value because this may
indicate that the requirement is not yet specific enough and
covers multiple aspects. Therefore, it is possible that solving
the classification problem with a single-label classifier that
only suggests the most promising label may be perceived as
more useful by the engineers.

Overfitting may also be an issue. As seen in Section V,
using more network parameters tends to yield better results.
However, increasing the network size too much results in only
minor improvements. At that point, the network may learn
specifics about individual examples and does not generalize
on the dataset anymore. This is especially an issue, since our
dataset is relatively small (compared to other datasets used in
natural language machine learning applications).

Furthermore, our dataset was randomly split into 10 folds
for performing 10-fold cross validation. Due to that, we
could not ensure that the distribution of samples per class
is approximately the same across all 10 pairs of training and
test sets. Also, applying stratified sampling in a multilabel
classification task is not a trivial task [18].

The classification was performed using only the text of the
requirement in question. However, deciding the PVM of a
requirement may require more information than just the text,
such as other attributes or the text of surrounding requirements

in the specification. Using more information may result in
better classification performance, especially in the multilabel
case. However, the label of a requirement may also depend on
information that is not available in the specification documents,
such as domain knowledge of the requirements engineers.

VII. RELATED WORK

Automatic classification on content elements of requirements
specifications has been performed before for many purposes
and using varying techniques.

Cleland-Huang et al. [22] built a classifier to distinguish
between functional and non-functional requirements. Their
dataset contains about 350 functional and 350 non-functional
requirements. The non-functional requirements are further
subdivided into NFR types such as availability, usability,
security, etc. The classifier achieved an average recall of 80%
and precision of 20%. The authors suspect that achieving 100%
recall and a reasonably good precision at the same time may be
impossible. They argue that their classifier may be used to aid
requirements engineers reviewing requirements specifications
and detecting non-functional requirements.

Hayes et al. [23] present a tool that incorporates the Weka
toolset to perform automatic classification on requirements. The
tool is evaluated using two different datasets: a dataset contain-
ing functional and non-functional requirements and a dataset
containing temporal and non-temporal requirements. The
authors argue that by providing easy-to-use tools, approaches
incorporating machine learning techniques may be more likely
to be adopted by requirements engineering practitioners.

In [24] and [25], the authors train and compare different
classification techniques (Multinomial Naive Bayes, Support
Vector Machines) for classifying requirements into different
topics (such as temperature, velocity, voltage). They argue that
by grouping requirements by topics, requirements engineers are
able to review requirements much faster and more consistently.

VIII. CONCLUSIONS & FUTURE WORK

In this work, we presented our approach towards classifying
requirements regarding their potential verification method. We
used convolutional neural networks adapted to text classification
and trained this network on a dataset created from requirements
specifications at our industry partner.

Overall, we achieved mixed results. Inspecting the perfor-
mance of our model reveals that it does not work particularly
well on certain classes, most likely due to imperfect training
data. However, due to very good results on the Test class, our
classifier is very well fit to separate requirements within and
requirements outside that class.

As shown in previous studies on a related classification task
[19], integrating the classifier into a tool to support review
processes may provide certain benefits such as shorter review
time and increased number of errors fixed. In the future, we
plan to evaluate this using our PVM classification model.

However, certain improvements have to be made beforehand:
First of all, a better and possibly larger dataset has to be created.
This is particularly challenging since acquiring large amounts

of high quality and consistently labeled data without manually
labeling each sample is difficult.

Dividing the class Test into multiple subclasses may also
be beneficial, since this verification method is very generic
and many different test strategies exist, such as hardware in
the loop and tests on the actual vehicle. Our industry partner
hinted that they consider to subdivide the class Test into more
refined classes such as Test (component), Test (integration),
and Test (vehicle).

Due to the points laid out in Section VI-C, the trained
model is most likely not applicable in other companies or other
domains. Whether it is possible to create a model that works
across different domains and companies has to be 6investigated.
We believe that for each domain and company, a specialized
model has to be trained in order to be useful.

REFERENCES

[1] “ISO/IEC/IEEE International Standard - Systems and software engineer-
ing – Life cycle processes –Requirements engineering,” ISO/IEC/IEEE
29148:2011(E), pp. 1–94, 2011.

[2] M. Glinz, “A Glossary of Requirements Engineering Terminology:
Version 1.6.”

[3] J. Eckhardt, A. Vogelsang, and D. Méndez Fernández, “On the Distinction
of Functional and Quality Requirements in Practice,” in Product-
Focused Software Process Improvement, P. Abrahamsson, A. Jedlitschka,
A. Nguyen Duc, M. Felderer, S. Amasaki, and T. Mikkonen, Eds. Cham:
Springer International Publishing, 2016, pp. 31–47.

[4] J. P. Winkler and A. Vogelsang, “’What Does My Classifier Learn?’ A
Visual Approach to Understanding Natural Language Text Classifiers,” in
Proceedings of the 22nd International Conference on Natural Language
& Information Systems, ser. NLDB, 2017, pp. 468–179.

[5] C. C. Aggarwal and C. Zhai, “A Survey of Text Classification Algorithms,”
in Mining Text Data, C. C. Aggarwal and C. Zhai, Eds. Springer US,
2012, pp. 163–222.

[6] J. T. Y. Kwok, “Automated Text Categorization Using Support Vector
Machine,” in In Proceedings of the International Conference on Neural
Information Processing (ICONIP, 1998, pp. 347–351.

[7] V. Narayanan, I. Arora, and A. Bhatia, “Fast and Accurate Sentiment
Classification Using an Enhanced Naive Bayes Model,” in Intelligent
Data Engineering and Automated Learning – IDEAL 2013, H. Yin,
K. Tang, Y. Gao, F. Klawonn, M. Lee, T. Weise, B. Li, and X. Yao, Eds.
Springer Berlin Heidelberg, 2013, pp. 194–201.

[8] J. Diederich, J. Kindermann, E. Leopold, and G. Paass, “Authorship
attribution with support vector machines,” Applied Intelligence,
vol. 19, no. 1-2, pp. 109–123, 2003. [Online]. Available: http:
//dx.doi.org/10.1023/A:1023824908771

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems 25, Pereira, Fernando C. N., C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc,
2012, pp. 1097–1105.

[10] Y. Kim, “Convolutional Neural Networks for Sentence Classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014, pp. 1746–1751.

[11] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A Convolutional
Neural Network for Modelling Sentences,” in Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics, 2014,
pp. 655–665.

[12] Y. Zhang and B. C. Wallace, “A Sensitivity Analysis of (and Practitioners’
Guide to) Convolutional Neural Networks for Sentence Classification,”
arXiv preprint, vol. abs/1510.03820, 2015.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estima-
tion of Word Representations in Vector Space,” arXiv preprint, vol.
abs/1301.3781, 2013.

[14] O. Maimon and L. Rokach, “Introduction to Knowledge Discovery and
Data Mining,” in Data Mining and Knowledge Discovery Handbook,
O. Maimon and L. Rokach, Eds. Boston, MA: Springer US, 2010, pp.
1–15.

[15] J. P. Winkler and A. Vogelsang, “Automatic Classification of Require-
ments Based on Convolutional Neural Networks,” in 3rd IEEE Interna-
tional Workshop on Artificial Intelligence for Requirements Engineering
(AIRE), 2016, pp. 39–45.

[16] F. C. Bernardini, R. B. d. Silva, R. M. Rodovalho, and E. B. M. Meza,
“Cardinality and Density Measures and Their Influence to Multi-Label
Learning Methods,” Learning & Nonlinear Models, vol. 12, no. 1, pp.
53–71, 2014.

[17] S. Wang, W. Liu, J. Wu, L. Cao, Q. Meng, and P. J. Kennedy,
Eds., Training Deep Neural Networks on Imbalanced Data Sets: 2016
International Joint Conference on Neural Networks (IJCNN), 2016.

[18] K. Sechidis, G. Tsoumakas, and I. Vlahavas, “On the Stratification of
Multi-label Data,” in Machine Learning and Knowledge Discovery in
Databases, D. Gunopulos, T. Hofmann, D. Malerba, and M. Vazirgiannis,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 145–158.

[19] J. P. Winkler and A. Vogelsang, “Using Tools to Assist Identification
of Non-Requirements in Requirements Specifications - A Controlled
Experiment,” in Requirements Engineering: Foundation for Software
Quality: 24th International Working Conference, 2018.

[20] B. Settles, “Active Learning,” Synthesis Lectures on Artificial Intelligence
and Machine Learning, vol. 6, no. 1, pp. 1–114, 2012.

[21] A. Robins, “Catastrophic Forgetting, Rehearsal and Pseudorehearsal,”
Connection Science, vol. 7, no. 2, pp. 123–146, 1995.

[22] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated classifica-
tion of non-functional requirements,” Requirements Engineering, vol. 12,
no. 2, pp. 103–120, 2007.

[23] J. H. Hayes, W. Li, and M. Rahimi, “Weka meets TraceLab: Toward
Convenient Classification: Machine Learning for Requirements Engineer-
ing Problems: A Position Paper,” in 1st IEEE International Workshop on
Artificial Intelligence for Requirements Engineering (AIRE), ser. AIRE,
2014, pp. 9–12.

[24] E. Knauss and D. Ott, “(Semi-) automatic Categorization of Natural
Language Requirements,” in Requirements Engineering: Foundation for
Software Quality: 20th International Working Conference, REFSQ 2014,
Essen, Germany, April 7-10, 2014. Proceedings, C. Salinesi and I. van de
Weerd, Eds. Cham: Springer International Publishing, 2014, pp. 39–54.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-05843-6_4

[25] D. Ott, “Automatic Requirement Categorization of Large Natural
Language Specifications at Mercedes-Benz for Review Improvements,”
in Requirements Engineering: Foundation for Software Quality: 19th
International Working Conference, REFSQ 2013, Essen, Germany, April
8-11, 2013. Proceedings, J. Doerr and A. L. Opdahl, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 50–64.

