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A B S T R A C T

Automatic sound event detection and computational auditory scene
analysis gain importance through the increasing prevalence of technical
systems operating autonomously or in the background, since such
operation requires awareness of the system’s environment.

In realistic scenes, reliable sound event detection, despite the big
improvements of the related automatic speech recognition, still poses a
difficult problem: general sounds often are less definable than speech
and exhibit less regularities and rules; commonly, many sounds occur
simultaneously and in all kinds of acoustic environments.

Binaural robotic systems are particularly interesting due to their re-
semblance of human means, but they are also more limited through the
restriction to two microphones, specifically regarding spatial acoustic
scene analysis. Spatial hearing figures prominently in humans, but for
automatic sound event detection so far has gone mostly unregarded.

One of the core objectives running through the entire thesis is the de-
velopment of fundamental systematic methodology with respect to (a)
the building of robust sound event detection models, and (b) the elabo-
rate analysis regarding their application in many different situations —
both is underrepresented in available research publications.

In the hereinafter presented studies, sound event detection models are
built in different training schemes and evaluated in detail with respect
to their performance in various acoustic scene conditions. Analyses
are conducted on scenes with one to four co-occurring sound events,
with sound-to-sound energy ratios of −20 dB to +20 dB, with differ-
ent spatial source distributions, and in diverse acoustic environments
from anechoic to church aula. It is shown (i) to which extent models
that have been trained under specific acoustic conditions specialize to
these, and (ii) that even with simple algorithms like logistic regression,
through acoustically multifarious training almost optimal performances
as achieved by the specialized models can be obtained consistently. The
influence of temporal information integration is investigated, and it
is shown that algorithms able to model context over longer durations
benefit particularly in demanding scenes and get more precise in their
detection.

Moreover, a method for joining sound event detection and source
localization is presented by which coherent auditory objects can be
created. The proposed system associates the attributes “sound type”
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and “source location” successfully; for measuring success of such joint
systems – almost uncharted territory –, performance measures are
suggested. It is shown that in an active binaural system spatial sound
event detection performance can be increased considerably through
suited head orientation.

Finally, all developed models get tested in a simulated “online”-
robotic system and their potential for forming integral components in
computational auditory scene analysis is demonstrated.

Z U S A M M E N FA S S U N G

Automatische Geräuscherkennung und auditorische Szenenanalyse ge-
winnt mit der Verbreitung von technischen Systemen, die selbstständig
oder im Hintergrund agieren, an Bedeutung, da selbstständiges Wirken
ein Bewusstsein der Umgebung voraussetzt.

In realistischen Szenen stellt eine zuverlässige Geräuscherkennung
trotz der Erfolge in der verwandten Spracherkennung allerdings nach
wie vor ein schwieriges Problem dar: Geräusche sind oft weniger promi-
nent abgrenzbar als Sprache und folgen weniger Regeln, und sie treten
häufig vielfach überlappend auf und in verschiedensten akustischen
Umgebungen.

Binaurale robotische Systeme sind auf Grund ihrer Ähnlichkeit mit
dem Menschen besonders interessant, aber durch die Begrenzung auf
zwei Mikrophone auch eingeschränkter, insbesondere in Hinsicht auf
die räumliche akustische Szenenanalyse. Räumliches Hören spielt für
den Menschen eine wesentliche Rolle, wurde bis jetzt aber in der
automatischen Geräuscherkennung praktisch nicht beachtet.

Ein die gesamte Dissertation durchziehendes Kernanliegen ist die
Erarbeitung von grundlegender, systematischer Methodik sowohl in
Bezug auf die Erstellung von robusten Geräuscherkennungsmodellen,
als auch in Bezug auf deren ausführliche Analyse hinsichtlich der
Anwendung in verschiedenen Situationen — beides ist in verfügbaren
Forschungsarbeiten unterrepräsentiert.
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In den im folgenden präsentierten Studien werden Geräuscherken-
nungsmodelle in verschiedenen Trainingsschemata entwickelt und im
Detail bezüglich ihrer Erkennungsleistung in verschiedensten akusti-
schen Szenenkonfigurationen evaluiert. Analysen finden über Szenen
mit ein bis vier gleichzeitig aktiven Geräuschen, mit Geräusch-zu-
Geräusch-Energieverhältnissen von −20 dB bis +20 dB, mit verschiede-
nen räumlichen Quellenverteilungen, und in verschiedenen akustischen
Umgebungen von reflexionsfrei bis Kirchensaal statt. Es wird gezeigt,
(i) wie stark Modelle, die unter bestimmten akustischen Bedingungen
trainiert werden, sich auf diese spezialisieren, und (ii) dass selbst mit
einfachen Algorithmen wie der logistischen Regression durch akustisch
möglichst mannigfaltiges Training fast durchgehend optimale Erken-
nungsleistungen wie von den spezialisierten Modellen erreichbar sind.
Der Einfluss von temporaler Informationsintegration wird untersucht,
und gezeigt, dass Algorithmen, die einen Kontext über längere Zeiträu-
me modellieren können, davon speziell in herausfordernden Szenen
stark profitieren und präziser in ihrer Erkennung werden.

Schließlich wird eine Methode zur Verbindung von der Geräuscher-
kennung mit einer Quellenlokalisierung vorgestellt, mit der auditori-
sche Objekte mit kohärenten Attributen erzeugt werden können. Das
präsentierte System verknüpft die Attribute „Geräuschtyp“ und „Quel-
lenort“ erfolgreich; zur Bemessung des Erfolgs eines solchen kombi-
nierten Systems – fast komplettes Neuland – werden Leistungsmaße
vorgeschlagen. Es wird gezeigt, dass in einem aktiven binauralen Sys-
tem die räumliche Erkennung durch passende Orientierung des Kopfes
erheblich gesteigert werden kann.

Final werden alle entwickelten Modelle in einem simulierten „online“-
Robotiksystem getestet und gezeigt, dass sie wie vorhergesagt funktio-
nieren und integrale Bestandteile einer automatischen auditorischen
Szenenanalyse darstellen können.
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F I R S T T H I N G S F I R S T





1
I N T R O D U C T I O N

Sound, in common phrasing, is referring to two (tightly related) phenom-
ena: the sound waves, oscillations in (usually air) pressure originating
from a physical vibration source; and the auditory reception and per-
ception of these waves in our brains, creating a sensation.

Hearing is the sense of sound perception, and thus a major part of life.
It increases situational awareness, facilitates interaction, and can create
sensations with strong emotional impact. While vision supposedly is
more powerful with respect to comprehension of the world we live in,
sound may be coupled tighter to emotional reactions. Music works very
well without added visuals, but making movies work without music is
a difficult task. The emotional aspect holds not only for music (Kryter
2013): hearing a crying baby without seeing it likely is emotionally
more painful compared to seeing a crying baby, but not hearing it.
Hearing birds sing feels peaceful. Hearing very deep sounds creates
tension, because something big and potentially dangerous is antici-
pated1. Alarms, screeches, and screams are frightening and make one
want to flee. Sound and hearing is an intuitive sense, with a shortcut to
emotions — and because of that, I like sound, and find it a fascinating
research object.

This chapter introduces the background, scope, related work, termi-
nology, and research questions covered in this thesis.

1.1 auditory scene analysis

In everyday life, we are surrounded by many different sources of
sounds; isolated or simultaneously emitted, from clearly identifiable
directions or diffuse, quiet or loud, continuous or discrete, structured
or noise-like. Natural sounds, human sounds, sounds from human-
made environments, machine sounds, music — there is a large range

1 which is why sound designers in movies make excessive use of a lot of deep sounds to
make scenes exciting that otherwise wouldn’t be

3
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of different sounds and sources, and a wide range of transformations
to these sounds and conditions in which they occur.

Usually, we identify these acoustic events instantaneously and sub-
consciously, often many events blur into an acoustic scene. If we want
to (or sometimes even if we don’t want to), we can focus and attend to
a particular sound. The acoustic pressure waves reaching our ears are
the arithmetic sum of the pressure waves generated from the individual
sound sources, and energies from these individual sound sources often
overlap in time and frequency. We only have two sensors – our ears –,
but often efficiently process sounds from more sources, so the reliable
human identification of sound events is remarkable. However, research
on environmental sounds, compared to speech and music, has so far
been underrepresented (Gygi and Shafiro 2007).

When our listening experience is rather occupied with the sources
of what we hear, this process is called everyday listening (Gaver 1993a,
1993b), compared to when we focus on the actual sound and its at-
tributes like pitch or timbre, which is then called musical listening. In
this definition, everyday listening is the perception of sound-producing
events, which in the mentioned work are divided into a hierarchy based
on the materials and interactions of sources.

Relatedly, A. S. Bregman (1994) coined the term auditory scene analysis
(ASA). In a definition given by him in A. Bregman (2008),

auditory scene analysis is the name for both a problem and
a perceptual process. The problem is how to form mental
representations of individual sounds from the summed
waveform that reaches the ear of the listener. It is also the
name of the brain process that accomplishes this result.

This process produces perceptual interpretations which he calls auditory
streams: separate coherent patterns – “sounds” – attributed to individual
acoustic sources present in the acoustic scene. Auditory scene analysis
can thus be thought of as de-mixing of the mixture that physically occurs
when acoustic sources generate signals simultaneously. Bregman de-
scribed how the human auditory system uses “bottom-up” rules about
acoustic regularities, sequential and simultaneous organization to build
its mental representations of distinct sounds. “Top-down” rules are less
clearly defined and investigated, and involve conscious processes like
attention, or past experience with particular sound classes.

1.2 computational auditory scene analysis

Computational auditory scene analysis (CASA) (Brown and Cooke 1994;
Ellis 1996; Rosenthal and Okuno 1998; Wang and Brown 2006) is the
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computer-based realization of ASA, in a human-like binaural scope. At
the core is segregation into auditory streams2 with individual sounds,
as in ASA. Mostly (e. g., in all of above works except Ellis (1996)),
CASA is speech-focused3 (as arguably speech is the sound type most
important for humans), and then CASA is defined through components
like speech detection, segregation and separation of speech streams,
localization of speakers (and potentially subsequent recognition of
speech contents, but this is not classically part of the CASA process
itself). Famous as the speech-centric description of the task of CASA is
the “cocktail party problem” (Cherry 1957).

Lyon (2010, 2017) cover machine hearing, strongly related to CASA,
but not coupled as tightly to the original concepts of stream formation
of ASA, and without focus on speech or music. Finding “meaning”
and “understanding” of sounds therein is not necessarily preceded
by stream segregation (nor is stream segregation the goal); and this
segregation anyway is difficult to completely be separated from actual
identification of the sounds, Lyon (Lyon 2017, Ch. 23.3.2) writes:

In all of these [CASA] approaches, some kind of attention
mechanism is needed to decide which part of the mixture to
pay attention to. This attention mechanism must be at least
partly in, or controlled by [..] the application that defines
the kind of meaning that the system is trained to extract.

Similarly, in Bregman’s work on ASA, top-down “schema-based” pro-
cesses aid in segregation, where auditory features belonging to learned
patterns are grouped together. In this line of argumentation, sound
identification can be considered an integral component of (a broader
defined) CASA, because identifying sounds goes hand in hand with
forming mental representations of individual sounds.

Sound identification, and, more general, CASA, are of similar im-
portance for machines as for humans (Gygi and Shafiro 2007) — rec-
ognizing sounds and analyzing acoustic scenes helps understanding
the current environment (Lyon 2010). Robots can achieve better situa-
tional awareness, and thus will be able to execute more targeted actions.
Sounds can help identification of objects that are in sight, but not clearly
recognized; and sounds can also be heard when sources are visually
obstructed.

In medical technology, particularly hearing aids (maybe also cochlear
implants) are still in need of significant improvements (Gygi and Ann
Hall 2016), and hence certainly it is fair to assume that the more “un-
derstanding” of what is heard, the better the filtering relevant from

2 consisting of auditory objects
3 sometimes, additionally, music-focused
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Figure 1.1: Two!Ears system overview. Left panel: Flow graph that illustrates
the degree of detail in current discussions within the consortium. Two
kinds of feedback are differentiated in the figure: low-level feedback akin
to reflexive circuits and feedback from higher-level processing triggered by
hypotheses in the blackboard system. Right panel: Diagram of the main
functional blocks of Two!Ears, also referring to the technical work packages.
© Two!Ears

irrelevant. In all kinds of bio-sensory technology, for example for de-
tecting anomalies in breathing in a baby phone, but also like in animal
sensing, detecting sounds can be important.

And of course just in any general kind of assistance technology – at
home (Alexa etc.), in cars (check for snoring), in safety-critical situations
(cocking a gun, smashing a window), and so on –, understanding
observed acoustic events can be helpful.

1.3 the two!ears project

A considerable part (both time-wise and content-wise) of this thesis was
realized during the course and in the frame of the Two!Ears EU-project
(Raake et al. 2014). Two!Ears’ goal was to “develop an intelligent, ac-
tive computational model and platform of auditory perception and
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experience”4, with a strong emphasis on keeping the system compa-
rable to human auditory processing such that it could help further
understanding of human auditory perception. The model’s core was
a system of individual experts in a blackboard system responsible for
different tasks like stream formation, sound event identification and lo-
calization, head rotation commandment, or acoustic quality assessment.
A key factor of the project was considered the combination of bottom-
up (signal-driven) and top-down (hypothesis-driven) processing, that
is, the inclusion of feedback from higher-level experts to lower-level
experts, to the robot or to the auditory processing. The system was
developed to run in a simulated environment as well as on a robot;
with an open and extendable architecture published as public-domain.
Fig. 1.1 presents a diagram of the proposed Two!Ears system and
functional blocks.

1.4 environmental sound identification

This thesis is occupied with general (without restriction of types) sound
event detection (SED) in binaural systems such as the Two!Ears system.

Sound event detection (or: acoustic event detection) refers to the
detection of specific sound events (not the detection of general sound
activity) — in its application, it basically is synonymous with what
one would call sound identification. From a terminological point of
view, a detector “searches” for occurrences of sound events of a given
specific type, while identification searches for the correct type given an
occurrence of a sound. However, in technical implementation (when
using many sound event detectors for different sound types), both
commonly boil down to the same thing, an attribution of sound event
type to an occurrence of a sound, and this is always only possible
within the range of known types of the system.

In a distinction, SED usually includes detecting on- and offsets of
sound events and/or is performed on continuous streams, whereas
sound identification is also called sound classification, sound recog-
nition, audio classification, and audio tagging, when detecting sound
events’ temporal “borders” is irrelevant. Sound event detection, in con-
trast to other forms of sound identification, thus has to be the modus
operandi of any online system required to identify sounds “live” and
(at least almost) instantaneously.

Research until recently has mostly focused on classification of full-
length sound events, and is still more active in this domain. However, Research Gap

although SED is more difficult than audio classification (McLoughlin et

4 www.twoears.eu

www.twoears.eu
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al. 2017; Huy Phan et al. 2017), the two share the largest part of related
methodology, and results from one often carry over to the other. Very
commonly – and in this thesis –, SED actually is implemented through
very-short-segment audio classification (on partial sound events) with
sliding windows (segments). Therefore, in the following, relevant re-
search is presented and related with this work across both modes of
sound identification.

For long, research on sound identification has been underrepresented
compared to automatic speech recognition and music analysis (Lyon
2010). However, the analysis of environmental sounds is different from
the analysis of these two special cases (Alıías et al. 2016) in that general
sounds exhibit a wide range of variability from very fluctuating to very
stationary (Yamakawa et al. 2010), and thus has become a field of its
own. This research has been accelerated a lot by the CLEAR (Stiefelha-
gen et al. 2007) and Detection and Classification of Acoustic Scenes and
Events (DCASE) challenges (A. Mesaros et al. 2018; Annamaria Mesaros
et al. 2019; Plumbley et al. 2018; Dan Stowell et al. 2015) throughout the
last decade.

1.4.1 Common classifiers

Progress in the field over the last years largely has been made due to
improved classifiers. Commonly used classifiers for quite a while were
particularly support vector machines (SVMs), Gaussian mixture models
(GMMs), and hidden markov models (HMMs) (Sharan and Moir 2016;
Stiefelhagen et al. 2007; Dan Stowell et al. 2015), but deep learning
methods (LeCun et al. 2015) in various forms are predominant in sound
event detection by now (Hertel et al. 2016; Li et al. 2017; Huy Phan
et al. 2016; Purwins et al. 2019). A. Mesaros et al. (2018) and Annamaria
Mesaros et al. (2019) analyzed the DCASE 2016 and DCASE 2017 SED
challenges results, and found that in DCASE 2013, there were no DNN
entries, in DCASE 2016, there were many but not all more successful
than others, while in DCASE 2017 and 2018 there were almost only
DNN systems and they have been always the top-performing ones.

1.5 influence of acoustic conditions on binaural sound

event detection

Research on sound event detection has not gone back a very long
way, even less so research on general sound event detection in complex
acoustic scenes. Until recently, most work was done on monophonic SED,
that is, only sounds occurring without superposition of other sound
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events were identified (Sharan and Moir 2016; Dan Stowell et al. 2015).
Consequentially, models usually have turned out very sensitive to
perturbations and differing conditions, as e. g. in Dufaux et al. (2000).

1.5.1 Noisy data

Several groups demonstrated improvements based on engineering of
potentially noise-robust features or models for audio classification in
mismatched conditions with added noise down to 0 dB: for example
with one-class SVM and wavelet features (Rabaoui et al. 2008), kNN clas-
sifiers on spectrogram image features (Dennis et al. 2012), convolutional
neural networks (CNNs) on mel-frequency spectrograms (Haomin
Zhang et al. 2015), or spiking-neurons-learning (Wu et al. 2018).

However, in their evaluations, they all have limited disturbances to
diffuse background noise (of different types, like babble or jet cockpit
noise), which make singular sound events stand out stronger compared Research Gap

to other disturbing sound events. Even though these background noises
are not stationary (as e. g. white noise), the problem is that they are
almost always more stationary than the target sound events. That such
noise would be the only or main source of acoustic perturbation, is an
unrealistic assumption in a lot of situations5.

Typically, the described systems exhibit modest performance de-
creases for SNRs down to 10 dB, and serious degradation for values
down to 0 dB.

McLoughlin et al. (2017) recognized above described shortcomings,
and partially alleviated them by modifying the evaluation scheme
to continuous sound event detection and slight polyphony. They find
that these changes decrease system performances by as much as 50 %
for 0 dB noise level, compared to the original tests without added
polyphonic events and on the whole sound events.

1.5.2 Polyphonic data

The introduction of polyphony extends the problem depth significantly
(Stiefelhagen et al. 2007): there may be an arbitrary number of sounds
co-occurring, at different ratios of energy, overlapping sounds may be
of very different and hence unpredictable structures, and one cannot
assume that a particular sound dominates the auditory scene (Barker
et al. 2005; López-Pacheco et al. 2016). Non-stationary, highly variable
general disturbances emitted from distinct sources are different from

5 Gygi and Shafiro (2007) hypothesizes that the same is a problem in human auditory scene
research: the common signal/masker scheme is often unrealistic in the noise being too
stationary.
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steady, diffuse background noise and might influence detection in more
unpredictable ways.

The DCASE challenges went to tackle this gap, and introduced the
first polyphonic SED challenge in 2013 (Dan Stowell et al. 2015), attract-
ing modest participation, followed by 2016 (A. Mesaros et al. 2018) and
2017 (Annamaria Mesaros et al. 2019) with a lot more contributions.
2013 and 2016 events hosted synthetic polyphonic tasks (on synthe-
sized scenes mixed from isolated sound events), 2016 and 2017 added
real-life-audio polyphonic tasks.

In DCASE 2013, results still reflected strong difficulties in recognizing
sound events from noisy scenes with the employed methods (mostly
HMMs, some still with Mel-frequency cepstral coefficients (MFCC) fea-
tures), but performances improved starting from 2016, where more than
half of the submissions employed DNNs; MFCCs had been replaced
by mel-scaled time-frequency representations. Success on the synthetic
task in 2016 was evenly distributed between DNNs and traditional
methods (non-negative matrix factorization (NMF), random forests,
kNN); the winning system employed NMF (Komatsu et al. 2016), very
closely followed by two deep learning systems (Choi et al. 2016; Hayashi
et al. 2016).

The works of Benetos et al. (2016), Gemmeke et al. (2013), and
Heittola et al. (2011) represent popular earlier attempts to deal with
polyphony by building exemplar-based (also called dictionary-based)
NMF-systems; the underlying idea was to find bases (exemplars) in
time-frequency domain that are closer to monophonic representations
of individual sources.

Representative for more recent approaches to polyphonic SED, Cakir
et al. (2015b), Hayashi et al. (2017), and Parascandolo et al. (2016)
presented well-performing deep learning architectures operating on
mel-frequency spectrograms, using different methods of data augmen-
tation to increase training data size and variability. Neural networks
by design are able to predict multi-labels (several different positives at
a time), and are thus inherently more directly relatable to polyphonic
situations than many other binary models like SVMs.

However, to spoil the improved performances of presented systems:
the levels of polyphony for the tasks actually have been modest, namely
between averagely 1.1 and 1.8 simultaneously active sources for the
2013 event synthetic scenes, between 1.2 and 1.5 for the 2016 event
synthetic scenes, and 2.53 for the real-life-audio — both measuredResearch Gap

excluding times of no sound event activity, i. e., with a lot of additional
“gaps” more easy to classify and hence increasing average performance.

A. Mesaros et al. (2018) and Annamaria Mesaros et al. (2019) con-
cluded that data-driven approaches were replacing manual design, but
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that systems needed to improve handling data imbalance across sound
types: contributions across the different events commonly failed to de- Research Gap

tect several small (with respect to number of occurrences) sound types,
which hints on (a) problems in the definitions of optimization loss and
(b) problems in the definitions of task metrics. Also, they stated in their
review of DCASE 2016 and 2017 that databases with strongly labeled
sound events (including on- and offset times) are still insufficient in
size for robust learning of sound event detection.

Unfortunately, work done on polyphonic SED like the ones intro-
duced here usually presented “well-performing” systems, but no analy- Research Gap

sis with respect to the different conditions.

1.5.3 Binaural data

Research on sound event detection has rarely been done on binaural6

settings. Exemplary for a few exceptions (basically all working with the
same dataset), Adavanne and Virtanen (2017), A. Mesaros et al. (2010),
and Parascandolo et al. (2016) identified sounds from real life recordings
with a person wearing microphones in his ears. Adavanne, Politis,
and Virtanen (2018) and Xu, Kong, Huang, et al. (2017) have shown
that models for acoustic event detection benefit from multi-channel
acquisition with two or more microphones. However, no investigations
regarding dependency on the added binaural acoustic modality of Research Gap

sources locations relative to the head have been published.

1.5.4 Systematic analyses

Even though commonly, sound event detection research is not per-
formed on “clean” data only any more, analyses with respect to the
different conditions are rare. Sometimes, as in the examples above, this Research Gap

comes as a “small extra”, most commonly then as an investigation of
the effect of diffuse background noise (usually with SNRs only down
to about 0 dB, although humans certainly are able to detect sounds
with lower SNRs), but no systematic, fine-grained studies on different
acoustic modalities in wide ranges have been published. There are
only few works in which the dependency of sound event detection
performance on number of sources and energy ratios between sources
are analyzed (Adavanne, Politis, Nikunen, et al. 2018; Lafay et al. 2017);
but the effects of different source positions – irrelevant for monaural
(single-channel) data, more relevant for multi-channel data, and partic-

6 Strictly used, “binaural” refers not to any two-channel data like stereo data, but two-
channel data related to acquisition through two ears.
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ularly interesting for binaural human-like robotic systems –, as well as
the impact of different room acoustics are basically unexplored.

The above described lack of analyses is two-fold: it is a lack on studies
about how the different conditions influence the maximally achievable
model performances, and it is a lack on studies about how deviations of
conditions from training conditions degrade model performances.

Research
Question 1 What influence can be expected on binaural sound identification

of various realistic different acoustic modalities? How big is the
impact on performance upon deviations from training conditions?

Contribution 1
Thorough analyses on the influence of (i) the number of co-occurring
sources up to 4, (ii) the energy ratios between co-occurring sources
down to −20 dB, (iii) the locations of sources, and (iv) the room
acoustics on sound event detection are provided. The aspect of
correct and robust performance measurement and its importance is
illuminated and contrasted to common practice. A sound database
tailored to the task of polyphonic SED is made available.

1.6 robust sound event detection

The main problem of robust sound event detection designed to be
applied in the “real world” is: all of above described acoustic conditions
usually are unknown a priori, that is, it is difficult to tune them to
specific conditions to achieve maximum performance. Instead, it is
necessary to build models that exhibit low degradation upon deviations
from specific conditions.

Audio classification research has traditionally been close to signal
processing domains, with stronger focus on engineering models than
on building models from data. In this line, approaches to making
models robust to disturbances like noise long time have been hand-
crafted methods to eliminate the impeding influences as far as possible
(Bardeli et al. 2010; Cooke et al. 2001; Zhuang et al. 2010). Nowadays,
with increasing computing power and increasing access to a wealth
of data, this approach in general (for problems difficult to manually
solve by handmade rules) is more and more replaced by data-driven
model building through techniques of machine learning. This applies
particularly to sense-related applications like visual object recognition,
speech recognition, or also sound identification.
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1.6.1 Multi-conditional training

Data-driven robustness through multi-conditional training across con-
ditions has been applied successfully for a while in speech-related
audio analysis systems. Saeidi et al. (2010) and H. Yu et al. (2016)
have assessed multi-conditional training for speaker identification, and
showed that error rates are clearly reduced under known and unknown
noisy test conditions, while performance for undisturbed conditions
almost remains optimal. Yin et al. (2015) trained a DNN speech recog-
nition system individually under various different noisy (and clean)
conditions, and cross-tested it on other conditions. They demonstrated
that training on all noisy and clean data together resulted in optimal
performance across different (a priori unknown) conditions. Rajnoha
(2009) showed that multi-conditionally trained speech recognition mod-
els outperform models with a noise reduction system, but trained on
clean data, in real environments. Hsiao et al. (2015) and Ko et al. (2017)
showed that speech recognition can be improved strongly by multi-
conditional training across real or even simulated reverberant room
acoustics. Multi-conditional training is also found in the context of
multi-speaker localization models, where diffuse Gaussian noise was
superimposed on top of target speech sounds at different signal-to-
noise ratios in order to reduce front-back confusions and increase
generalization performance (May, Ma, et al. 2015).

For sound event detection, multi-conditional training has so far not
been employed as regularly and even less analyzed. Using signals from Research Gap

multiple channels as multiple conditions has been demonstrated to
yield increased performance in Giannoulis et al. (2014) and H. Phan
et al. (2015). Dennis et al. (2010), Huy Phan et al. (2016), and Q. Yu
et al. (2019) employed multi-conditional training over SNRs and noise
types, and showed that this improved their performances over models
trained on clean data in mismatched conditions significantly, but only Research Gap

diffuse background noise was used (no polyphony), and only down to
0 dB.

Martin-Morato et al. (2018) recently investigated the robustness of
features from a very-large-scale-trained DNN (“SoundNet”, Aytar et
al. (2016)), with respect to background noise and reverberation. Their
results, achieved without multi-conditional training, indicate severe
drops in performance when testing in reverberant conditions, and very
strong influence of background noise, even already for SNRs above
0 dB.

Since the prevalence of deep learning is accompanied with the need
for lots of data, data augmentation is being used in increasing frequency;
in the DCASE 2018 task 2 (DCASE Community 2019), there were almost
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no contributions without any form of it. Data augmentation can be
seen as a form of multi-conditional training, although usually it is less
clearly tied to different acoustic conditions, and its goal commonly is not
robustness across varying conditions, but to help prevent overfitting
on training set sound events. Often, variants of time stretching or
frequency shifting are employed (e. g. Piczak (2015a) and Salamon
and Bello (2017)). So-called “block-mix”, “mixup” or “between-class”
augmentation (Takahashi et al. 2016; Tokozume et al. 2017; Wei et
al. 2018) also involve superposition of different training samples.

The DCASE 2018 challenge task 3 (D. Stowell et al. 2018) on bird
audio detection specifically involved the problem of generalizing across
different (also unknown) acoustic conditions and recording equipment.
About 35 000 weakly labeled audio clips of 10 s length, by design multi-
conditional, were made available as training data. The winning system
(a CNN on mel-frequency spectrograms, Lasseck (2018)) showed quite
good performance, making extensive use of further data augmentation
like superposition (increased polyphony and noise), time and frequency
shifting, and others.

In general, it can be stated that research on sound identification so
far has often focused on optimizing the newest/best training algorithm
and tuning features, with the goal of achieving high performance
on specific data under specific conditions7, and less on developing
generally applicable methodology on how to robustly train and test
models.

Research
Question 2 Can multi-conditional binaural sound event detection models for

polyphonic scenes be built that will generalize with high perfor-
mance across different number of co-occuring sources (1-4), across
different SNRs (20 dB to −20 dB), across different room acoustics
(anechoic to church), and across different locations of sources? How
will performance compare to maximally achievable performances
gained through training and testing under the same conditions?

Contribution 2
Robustness can be achieved in a data-driven way with auditory-
inspired features even with simple linear classifiers far from the
learning power of DNNs. Multi-conditional training produces ro-
bust sound event detection models able to generalize across the
proposed range of acoustic conditions with performances match-
ing up to train-test-matching single-conditional models. Thorough
analyses comparing these performances in iso- and cross-test se-
tups are provided.

7 as promoted by challenges like DCASE
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1.6.2 Temporal context

As stated above, of the research done on sound identification, the
larger part is on audio classification, i. e., on classification of whole
sound events. The overlap is large, but sound event detection with its
“online” character has the added difficulty of usually having available
less complete information (Huy Phan et al. 2017). However, it is unclear
to what extent sound event systems actually need access to context over Research Gap

time in order to efficiently detect. How long is long enough? It seems
likely that acoustic scene complexity would influence the necessary
temporal context. This question has been tackled for acoustic scenes
(Huy Phan et al. 2018), but not sound events.

Certainly DNN model architectures – that are able to integrate in-
formation over time – are state of the art nowadays: in DCASE 2017,
almost only DNNs models participated, and the winning systems were
all deep learning-based (Adavanne and Virtanen 2017; Cakir and Vir-
tanen 2017; Jeong et al. 2017; Lim and Park 2017; Xu, Kong, Wang,
et al. 2017). However, a systematic comparison with respect to the size
of temporal context, acoustic conditions, and time-integration model
capability has not yet been conducted.

Even when using recurrent neural networks (RNNs), which are able
to adjust the accessed temporal context data-driven in training, usually
fixed length audio sequences are employed (e. g. Jeong and Lim (2018)),
which then often implies truncation of streams. The trade-off is potential
loss in performance due to not using all available information (full time
context), versus ease and speed of training and data preparation, as
sequences of varying lengths complicate batch creation.

Research
Question 3To what extent is temporal context necessary, and to what is it

profitable for efficient sound event detection? How does robust
performance in difficult acoustic scenes depend on it?

Contribution 3
An analysis on how sound event detection performance increases
with the size of temporal context is presented, and it is shown
that it increases particularly for difficult auditory conditions and
that it is very class-specific. The extent to which context can be
accessed by simple linear models through statistically summarized
temporal features is compared with the extent to which models
able to learn temporal integration themselves can profit from. Two
different modes of defining training targets are analyzed, one more
“physically” motivated and supposedly more “exact”, and one
more perceptually motivated with a “smoothed” interpretation.
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1.7 spatial sound event detection and active computa-
tional auditory scene analysis

As mentioned in Section 1.2, CASA includes also localization of sound
sources; and of course information on sound type and sound source
locations shall be attributed coherently – that is, jointly – to auditory
objects.

Even by SED standards, research on joining polyphonic sound event
detection and sound source localization is very scarce; available have
been a few investigations on parallel SED and sound source localiza-
tion (SSL) on monophonic events, like Lopatka et al. (2016). Only veryResearch Gap

recently, studies on truly joint systems started to appear, and this year,
there will for the first time be a specific sound event localization and
detection (SELD) challenge held at DCASE 2019. SELD is a considerably
more difficult task than pure sound event detection, and additionally,
data for training SELD models is basically not available and manu-
facturable only at significantly higher effort than data for SED model
training.

There seem to be three approaches that have been started to get
explored: (i) sound-type masked SSL, detecting sound events and then lo-
calizing them isolated through their type-specific time-frequency mask
(Chakraborty and Nadeu 2014; Ma et al. 2018), (ii) spatially masked SED,
localizing active sources and then identifying them isolated through
their location-specific time-frequency mask (May et al. 2012) or through
beam-forming (Grobler et al. 2017), (iii) joint SELD, localizing and iden-
tifying sound events simultaneously (Adavanne, Politis, Nikunen, et
al. 2018; W. He et al. 2018; Hirvonen 2015).

Because it fitted well into the Two!Ears system and into the concepts
of CASA, the work described in this thesis follows the approach of
detecting sound events on spatial streams. Compared to sound-type
masked SSL, this has the advantage of allowing localized identification
of multiple sources of the same type or with similar frequency ranges,
compared to joint SELD, this approach is feasible also with less powerful
model classes which are faster to train and easier to understand.

The related SELD system published in May et al. (2012) was confined
on speaker localization and identification. Opposed to the online modeResearch Gap

of sound event detection, it performed SELD on whole audio excerpts
including complete speech segments. Unlike the data-driven multi-
conditional approach followed in this thesis, training was conducted
on clean data, and source-masking only in testing. Despite employing
a missing data approach (as presented in Cooke et al. (2001)), their
results consequentially exhibited strong negative dependence on SNR
even above 0 dB.



1.7 spatial sound event detection and active casa 17

The only related publications covering binaural SELD are Ma et
al. (2018) and May et al. (2012). In general, spatial segregation and Research Gap

localization often rely on the availability of multiple microphones for
maximum performance (Gannot et al. 2017; Nadiri and Rafaely 2014;
Sumitani et al. 2019). However, on the one hand, human-inspired sys-
tems are scientifically interesting because of the possibility to compare
with human performance and behavior, and in the best case even draw
inferences about human mechanisms. On the other hand (with a bit of
human egocentrism), it can be claimed that over the last few billions of
years, using two ears has turned out to be the best compromise between
performance and resource-usage, otherwise we would have more ears
— at least for reaching human performance, which machines are not
even close at yet for CASA, two channels are enough. So it seems a
valuable goal to restrict the scope to two channels, from two ears.

Research
Question 4How can binaural multi-source sound event detection and local-

ization be joint? Is detection on spatially segregated streams an
effective approach? How can efficiency of joint sound event lo-
calization and detection be measured? Does robustness through
multi-conditional training carry over to localized detection?

Contribution 4
Sound event detection and sound source localization can be joined
efficiently through spatial masking in a modular system; robust
performance can be achieved through multi-conditional training.
Measures for quantification of localized sound event detection
success are developed and presented. Analyses with respect to the
different acoustic conditions are given; particularly the influence
of spatial source distribution, which in binaural robotic systems is
adjustable, is elaborated on. The effects of precision in localization
and source count estimation are investigated.

1.7.1 Active CASA

One explicit goal of the Two!Ears project (Section 1.3) was the develop-
ment of a platform enabling active computational auditory perception,
with intertwined bottom-up and top-down processing. One dimen-
sionality of “activity” is reflective feedback from high-level models to
low-level robotic sensomotoric functions in order to achieve a specific
auditory effect8. One example for such reflective feedback or “attention”
is found in Ma et al. (2018), where high-level knowledge about present
sound types was used to “focus” localization on auditory cues relevant

8 Confer Blauert et al. 2014 for a literature review on auditory feedback.
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to this sound. With more reflexive feedback models, Bustamante et
al. (2016) and Ma et al. (2017) have developed sound source localization
models able to reduce uncertainty about locations by commanding
head rotation and movement towards active sources.

From above introduced investigation and analysis on the influence
of spatial source distribution around the head on localized detection
performance, rules can be concluded about how to optimally orient the
head — in the domain of sound event detection, let alone joint soundResearch Gap

event localization and detection, this has not been done before. Imple-
menting these rules as reflective feedback in the Two!Ears simulation
framework with the models developed in this thesis would be the final
showcase of the proposed techniques’ effectiveness.

Research
Question 5 Are the developed SED and SELD models suitable components

for a robotic binaural system performing computational auditory
scene analysis? Can SELD performance be improved if this system
is active and if the models are allowed commandment of head
movement?

Contribution 5
Binaural computational auditory scene analysis with the devel-
oped components employed in the Two!Ears robotic simulation
platform is performed and analyzed. Higher detection and local-
ization performances are demonstrated when models are allowed
to reflectively command head rotation according to the system’s
observations.

1.8 structure of this thesis

This thesis is structured as follows. Continuing this part, first, in Chap-
ters 2 and 3, the newly compiled sound database NIGENS, data repre-
sentations, methods of auditory scene generation, model building and
testing are presented.

Part ii then starts with an investigation in Chapter 4 on performance
of “single-conditional” SED models not particularly trained for acoustic
robustness, when deviating from training conditions in noise level and
in location of sources. To overcome the therein demonstrated sensitivity,
Chapter 5 introduces “multi-conditional” SED modeling and shows that
it enhances robustness severely. Chapter 6 continues with the multi-
conditional approach and analyzes it in regard to changes of room
acoustics, i. e. particularly reverberation. Chapter 7 completes this part
with a study on the effect of temporal context on robustness, at the
level of model type (involving state-of-the-art DNN models), and with
respect to length of temporal context accessible for models.
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Part iii widens the scope from pure SED towards integral CASA, and
proposes and analyzes an approach to multi-conditional joint SELD
in Chapter 8. In the subsequent Chapter 9, in addition to the previous
systematic (but static) evaluation, the obtained models are tested and
evaluated in the dynamic Two!Ears development system including
simulation of head rotation (and showing its advantage).

Part iv with Chapters 10 and 11 finally discusses various aspects of
this work and puts them into relevant scientific context, and concludes
this thesis with a summary and the mentioning of the contributions of
this work.

The appendix in Part v contains a description of the developed
Auditory Machine Learning Training and Testing Pipeline (AMLTTP),
which was crucial for the investigations in this thesis and is accessible
as open-source.
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B I N AU R A L S O U N D A N D R E P R E S E N TAT I O N S

Crucial for training well-generalizing models and testing their gener-
alization well1 is having available enough suitable data — this holds
for any machine learning, and also for sound event detection (SED).
“Enough” and “suitable” for the purposes followed in this thesis were
achievable only through simulation of acoustic scenes (in contrast to
acquiring audio from real scenes). Simulation allows to create arbitrary
numbers of scenes in well-defined configurations.

This chapter introduces the data used throughout this work and
associated methods on three levels: Section 2.1 presents the collected
original sound data, Section 2.2 explains the simulation of binaural
acoustic scenes through generation from the original data, and Sec-
tion 2.3 covers the utilized representations computed from the binaural
scenes by auditory processing.

2.1 sound data – the nigens database

This section is based on Ivo Trowitzsch, Jalil Taghia, et al. 2019b. The NIGENS General

Sound Events Database. Technical report. Technische Universität Berlin. eprint: arXiv:

1902.08314.

Compared to speech recognition, which is more mature (and still one of
the most active domains of applied machine learning research), general
sound event detection has only recently picked up pace, particularly
since the introduction of the Detection and Classification of Acoustic
Scenes and Events (DCASE) challenge series in 2013 (Dan Stowell et
al. 2015). This is also reflected in the availability of general sound event
databases, which are still scarce (Fonseca et al. 2017; “IEEE DCASE
2016 Challenge” 2016; Annamaria Mesaros et al. 2017; Piczak 2015b;
Salamon et al. 2014) and have their limitations (see Section 2.1.1).

Since complex acoustic scenes should be simulated, a database of
isolated high quality sound events was needed, big enough for the

1 pun intended
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development of robust SED models. No suitable database was avail-
able unfortunately – available databases were either very small, or
didn’t contain isolated sound events, or didn’t provide event on- and
offset annotations, or all of these. Hence, it was decided to build a
new database containing sound events of 14 different types2, strongly
labeled with perceptual on- and offset times: the Neural Information
processing group GENeral Sounds (NIGENS) database, tailored to the
task of synthesizing complex acoustic scenes.

While real recordings of complete scenes would always be the gold
standard, particularly for training on spatial acoustic scenes, a data set
like NIGENS and simulated scenes are indispensable: labeling of (many)
recorded real spatial audio with ground truth about sound types and
source locations would be of prohibitive effort, and scene synthesis the
only realistically viable option to obtain well-defined acoustic scenes of
specific complexity.

To enable training of models which are able to cope with disturbances
of unknown type, a large collection of “general” sounds of all kinds and
sorts except the 14 target classes was included in addition to sounds of
the detector target classes, which is another unique feature. Section 2.1.2
describes the database’s contents more detailed.

NIGENS is accessible at Trowitzsch, Taghia, et al. (2019a) and de-
scribed by Trowitzsch, Taghia, et al. (2019b), free to use non-commercially
under Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 license.

2.1.1 Other data sets

The following is a list of the other mentioned datasets, that contain
(more or less) isolated sound events:

• The DCASE 2016 (“IEEE DCASE 2016 Challenge” 2016) task 2

(synthetic audio sound event detection) data set consists of 20
short mono sound files for each of 11 sound classes (from office
environments, like clearthroat, drawer, or keyboard), each file
containing one sound event instance. Sound files are annotated
with event on- and offset times, however silences between actual
physical sounds (like with a phone ringing) are not marked and
hence “included” in the event. This data set is very small.

• The DCASE 2017 (Annamaria Mesaros et al. 2017) rare sound
events task data set contains isolated sound events for three
classes: 148 crying babies (mean duration 2.25 s), 139 glasses

2 chosen to be able to realize an emergency scenario, which was one demonstration
application in the Two!Ears project
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breaking (mean duration 1.16 s), and 187 gun shots (mean du-
ration 1.32 s). As with the DCASE 2016 data, silences are not
excluded from active event markings in the annotations. While
this data set contains many samples per class, there are only
three classes, which limits possible scene generation and also
generalization of obtained results considerably.

• The UrbanSound and UrbanSound8k datasets (Salamon et al. 2014)
provide a large database with 1302 different sound files (con-
taining 27 h of audio) distributed across ten classes of urban
environments, like car horn, dog bark, or jackhammer. Sounds
originated from Freesound.org and were enhanced by manual
annotations of sound event starting and ending times. Unfor-
tunately, sound events are not necessarily isolated, but instead
marked with saliency annotations whether the respective event is
perceived to be in the foreground or background. Using the Ur-
banSound8k dataset, which is a subset of UrbanSound with slices
of 4 s length, and constraining to foreground instances, could be
a way to at least obtain events that are perceived dominant.

• The ESC-50 dataset (Piczak 2015b) comprises 2000 5 s-clips of
50 different classes across natural, human and domestic sounds,
again, drawn from Freesound.org. While it has been attempted
to extract sounds restricted to foreground events with limited
background noise, events are not truly isolated. Also, events are
not annotated with event on- and offset times.

• The Freesound Datasets (Fonseca et al. 2017) consist of audio
samples from Freesound.org, organized in a hierarchy based
on the AudioSet Ontology, with verified event labels. It is an
ongoing project (albeit a very large one already) more than a
completed dataset, aiming to increase the number of audio files
with (through crowd-sourcing) verified labels. However, these
annotations are weak labels, as they only provide information
about the existence of a sound event throughout the file, but no
information about when it occurs. As with UrbanSound, events
are not necessarily isolated, but are labeled to be predominant or
not. As of presented in Fonseca et al. (2017), 20 206 audio clips
(92.5 h) are already labeled and verified with predominant events.

All in all, there is no other database available with strongly labeled,
isolated sound events, of reasonable size. As a side note, all of these
data sets were published after the creation of NIGENS.

Freesound.org
Freesound.org
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(a) Alarm
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(d) Crash
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(e) Phone ringing
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(h) Engine
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(i) Piano
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(l) Fire
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(m) Dog barking
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Figure 2.1: Class-average persistence spectra. Temporal “density” of sounds
over frequency and power is displayed, showing power distribution over
frequencies, but also sound structure. Density scales equal for all plots.

2.1.2 NIGENS contents

NIGENS consists of 1017 audio files of various lengths (between 1 s and
5 min), in total comprising 4 h:45 min:12 s of sound material. Mostly,
sounds are provided with 32-bit precision and 44 100 Hz sampling rate.
Files contain isolated sound events, that is, without superposition of
ambient or other foreground sources. The contained sound types are
described in the subsections below.

alarm Diverse alarm sounds from old-fashioned fire bells to elec-
tronic beeps. Mostly high-pitched, discrete, sequential, very structured
events; some continuous wailing. As observable in the confusion matrix
(Fig. 2.2), alarm is the NIGENS class with most overlap to the other
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classes – alarm sound segments exhibit high erroneous detection rates
by other models, e. g., 37 % are detected by the scream detector and
35 % by the phone detector. There seem to be particular ambiguities
with “crying babies”, “ringing phone”, “piano”, and “scream”. 49 files,
19.4 s average length.

baby crying Crying babies. Mostly sequences of cries, also sin-
gle sobs and squeals. Looking at Fig. 2.2, crying babies seem to be
easily mistaken for alarms3, and, logically, for (adult) screams. Recom-
mendation: don’t listen. Will break your heart. 40 files, 27.1 s average
length.

crash Crashing structures, destructive impacts; noise-like, but sud-
den, bursting, singular sounds. Lots of energy across wide range of
frequencies. 50 files, 9.8 s average length.

dog barking Dogs barking, mostly several times in a row. Peak
of energy around 1kHz, short, discrete events. 45 files, 11.6 s average
length.

engine Long continuous sounds of running engines of different
kinds, idling or changing speed. Engine sound segments have a very
high misclassification rate by the fire model (and vice versa). 39 files,
53.6 s average length.

female scream Short single screams of females, high-pitched, peak
of energy around 1.8kHz. 45 files, 3.7 s average length.

female speech Females calmly speaking short English sentences.
Female and male speech are the sound classes best detectable and least
confusable, as is observable in Fig. 2.2. A small amount of female speech
segments gets mistakenly detected as alarm sounds; on the other hand,
the femaleSpeech model takes some piano segments for female speech,
which is maybe more flattering. 100 files, 2.9 s average length.

fire Long continuous sounds of burning fires. Noise-like broadband
sounds, but with higher energy in low frequencies. Fire sound segments
have a very high misclassification rate by the engine model (and vice
versa, see Fig. 2.2), and additionally often wrongly get detected as
crashes (most probably because the distinct difference of fire being
continuous long sound versus the short sudden nature of impact sounds
gets lost in the segmented prediction). 51 files, 53.4 s average length.

3 Which kind of makes sense — one could say: mission accomplished.
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footsteps Diverse sounds of (individual) people walking, on all
kinds of surfaces from wood to snow. Sequences of very short events.
From Fig. 2.2, it is apparent that footsteps sound segments are hardly
mistaken as other sounds. 42 files, 26.8 s average length.

knocking Knocking on something, mostly doors. Sequences of very
short events. Most energy in low bands. 40 files, 2.6 s average length.

male scream Short single screams of males. Peak of energy around
1.2kHz. 31 files, 6.4 s average length.

male speech Males calmly speaking short English sentences. Male
and female speech are the sound classes best detectable and least
confusable, as is observable in Fig. 2.2. 100 files, 2.6 s average length.

phone ringing Mostly classic phones, sequences of long ringings –
notable overlap with alarm. 40 files, 18.4 s average length.

piano Playing piano. Both individual notes as well as monophonic
sequences as well as polyphonic pieces. Significant potential for con-
fusion with alarms, referencing the results in Fig. 2.2. 42 files, 20.8 s
average length.

general Anything outside the other classes. Discrete and continu-
ous, single or sequential events, peaked or broadband. 303 files, 18.2 s
average length.

Often, sound event detectors are trained to discriminate between a
target class and all other target classes, sometimes added by broadband-
like ambient noise. If testing is done the same way, this certainly pro-
duces highest performances. However, this approach lacks a real-world
circumstance: there will always be a lot of sound events occurring that
were not part of any target training class, many of them discrete and not
noise-like. A. Mesaros et al. (2018) also identify this as a key difference
between the DCASE 2016 SED synthetic and real audio tasks. To explic-
itly take this into account, and help better define target detector models
against sounds different from other target classes, the general class
was collected. This class contains sounds intended both as “disturbance”
sound events (superposing) and as counterexamples to the target sound
classes.

The general class is a pool of sound events other than the 14 distin-
guished target sound classes, containing as heterogeneous sounds as
possible. For example, it includes nature sounds such as wind, rain,
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Figure 2.2: NIGENS confusion matrix, values are classification rates in percent in
scenes with one source. Rows correspond to trained SED models (fullstream
models described in Chapter 8), columns to types of active sound events.
For better readability, only values of at least 10 % are displayed with label.
The averages are without sensitivities (the values for matching sound and
model type), that is, they are misclassification averages.

or animals, sounds from human-made environments such as honks,
doors, or guns, as well as human sounds like coughs.

Fig. 2.1 shows persistence spectra for all classes, averaged over all sounds
of each class. Persistence spectra display temporal “density” (rate of
occurrence), over frequency and power. They are computed based on
short-time Fast-Fourier Transform (FFT) spectrograms, but in contrast
to them can be reasonably averaged. Compared to pure power spectra,
they are able to also depict structure of sounds. Note, for instance, the
similar structure of alarm and phone, versus the similar structures of
engine and fire. The general (Fig. 2.1o) class shows, as expected, a
broadband, unstructured spectrum, since there are so many different
types of sounds included.
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Fig. 2.2, in advance of elaborating on the models producing these
results4, shows a classification rate confusion matrix of the NIGENS
types and corresponding trained models. The values are percentages of
(500 ms-) segments of binaural auditory one-source-scenes classified by
the models as their corresponding type. On the diagonal are the sensi-
tivities (positive classification rates, or detection rates), all other values
are misclassifications: for example, the “femaleSpeech” model classified
(correctly) 99 % of the actual femaleSpeech segments as femaleSpeech,
but also (wrongly) 10 % of the “piano” segments. These classification
rates, although of course specific to the models which produced them,
can serve as an indicator of the overlap of the sound classes.

2.1.3 Event on- and offset times

In order to effectively train models that detect sound events of partic-
ular classes, sounds have been annotated by time stamps indicating
perceptual on- and offsets of occurring sound events. Wave files are thus
accompanied by an annotation (.txt) file that includes on- and offset
times of that file’s sound events. The general sounds do not come with
on- and offset time annotations, since these files do not constitute any
coherent sound class (to the contrary, by design) and are not intended
to be positive examples for classifiers.

A specialized sound event labeling tool has been designed to enable
efficient perceptual labeling by presenting aurally extracts of the sound
files and letting the user label via a simple automated user interface.

In contrast to other SED data sets, only active sound were labeled as
actual sound events, that is, times of silence are not part of sound events
with this labeling. Positive labeling across “gaps” in sound events is
more of a semantic-logical labeling (referring to a series of individual
phone rings as “phone ringing”, for example), but it can be assumed
that this complicates training since the direct correlation of physical
features and label gets lost.

2.1.4 Attribution

The largest part of the sounds was acquired from and kindly granted
redistribution for research under above license by “StockMusic.com”
(2014). Speech sounds were compiled from the GRID (Cooke et al. 2006)
and TIMIT (Garofolo et al. 1993) copora. Several sounds were down-
loaded and included from freesound.org (Font et al. 2013) under attri-
bution licenses, a list can be found in Trowitzsch, Taghia, et al. (2019a).

4 confer Chapter 8 about the respective models

freesound.org
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Figure 2.3: Coordinate system top view. Head and two sources are shown.
Azimuth is always given with respect to the nose of the head (in counter-
clockwise direction). Target and distractor sources in this example are
located at 45°/135°.

2.2 generation of binaural auditory scenes

Since the goal of this work was not classifying audio files (audio tag-
ging), but performing sound event detection in auditory scenes, such
scenes were needed to train and test the SED models.

Auditory refers to hearing, meaning processes in-ear and in-brain,
and is thus related to perception of acoustic (sonic) signals. Acoustic and
auditory scenes are thus directly connected: the acoustic scene consists
of the sources producing sound at their locations, the environment
and the listener, and the auditory scene – as the term is used here – is
the product with respect to our hearing of it, i. e., the sonic mixture
as it gets perceived through the ear and subsequent processing. In the
most “basic” or low-level form, when using the term auditory scene,
here the ear-signals (the waveform of the sonic pressure changes in the
ears) generated by an acoustic scene are meant. In a more cognitive
form, the term auditory scene refers to the interpretation of the acous-
tic scene produced by the auditory processing from the ear-signals.
When writing “scene” without further specification, context makes
clear whether acoustic or auditory scene is meant. The terms (acoustic)
“scene” and “condition” sometimes are used interchangeably, referring
to a particular acoustic “condition”.

This section covers the definition of acoustic scenes and the genera-
tion of the (low-level) auditory scenes (that is, the ear-signals).
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2.2.1 Definition of scenes

The definition of an acoustic/auditory scene (or “condition”) through-
out this work involves:

• The number of sources in the scene, varied between one and four.

• The type of sources. Mostly, point-sources are employed in this
work, but in Chapter 5, there are also non-head-related sources
(as from in-ear headphones, for example).

• The location of point-sources, relative to the listener’s head. A
restricted usage of the term “location” is employed, actually refer-
ring to the azimuth with respect to the nose of the head (counter-
clockwise) regardless of the distance, and level with the head
(disregarding elevation). See Fig. 2.3.

• The mean energy ratio between the sources, for ease of the term
called signal-to-noise ratio (SNR), see Section 2.2.2.

• The sound types emitted by the sources. Two modes are differ-
entiated: either sources emit any of the NIGENS sounds, or they
emit only sounds of the “general” class.

• The room acoustics. Either free-field scenes (anechoic) are sim-
ulated, or rooms between office size to large concert halls, see
Section 2.2.2.

In each scene, one source is declared the target source, the others
distractor sources. The target source is the “signal” regarding the SNRs
between sources.

Scene-instance denotes the combination of an original sound file with
a particular scene, i. e. the application of this sound file as sound
emitted by the target source defined in this scene. (Of course, scenes
with more than one source (scenes with distractor sources) produce
scene-instances created from more than one sound file.)

For all scenes, each of the NIGENS files (from the respective training
or test split, see Section 3.3.1) was used once as target source sound
(constituting a scene-instance). Sounds on the target source shorter than
30 s were looped, to create sufficient temporal context and reduce dif-
ference in amount of material between sound classes with long sounds,
like fire, and sound classes with short sounds, like knocking. Distractor
sources got “filled” with random sequences of their designated sounds
until full overlap in length with the target source sound.
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Figure 2.4: The Two!Ears robot. A Knowles Electronic Manikin for Acoustic
Research (KEMAR) dummy head, rotatable on the torso, which is mounted
on the moving platform. © Two!Ears

2.2.1.1 Restrictions on test scenes

A few arrangements have been made to facilitate a systematic evaluation
of models’ performances with respect to acoustic conditions:

1. The SNRs was set such that it was the SNR of the target to each
individual distractor source.

2. Distractor sources never emitted sounds from the model target
class.

3. Distractor sources never simultaneously emitted a sound from
the same class as currently emitted by the target source.5

This serves the purpose of being able to characterize a scene with one
SNR that describes the SNR of target sounds, these SNRs between
scenes to be comparable, and hence the performances between scenes
being evaluable with respect to SNR.

2.2.2 Binaural scene synthesis

To create the two-channel ear-signals, the “binaural simulator” of the
Two!Ears system (Winter, Wierstorf, and Trowitzsch 2016, Ch. 2.2) was
used. The binaural simulator produces ear-signals for point-sources by
convolving (mono) audio signals with either an anechoic head-related

5 Note that target sources do not only emit sounds from the target class.
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impulse response (HRIR) or a binaural room impulse response (BRIR)6.
HRIRs and BRIRs are recorded impulse responses that characterize the
acoustic “transfer” of an impulse sound signal from a source up to
the microphone in the inner ear (of a dummy head, or human), in an
open space (HRIR) or room (BRIR). Since the media transmitting sound
(mostly air) are well-modeled as linear time-invariant (LTI)-systems,
with such an impulse response, it is possible to simulate the transfer of
any sound signal from that source to the inner ear, replicating the exact
dynamics of the system on that particular transmission path. Confer
books on signal processing related to audio for further information on
this topic, e. g. Downey (2016).

For open-space scenes, an HRIR measured with a KEMAR head (see
Fig. 2.4) was used, as described in Wierstorf et al. (2011). For reverberant
scenes in rooms, several different BRIRs were used, referenced and
described at the respective passages in the text (Chapter 6).

Non-head-related signals were employed by adding the mono sources
to the ear-signals without any further processing.

Binaural simulation was conducted for each source separately, to
allow control over the energy ratio of the sources at the level of ear-
signals. To this end, the resulting ear-signals for each source were mixed
at the scene-defined ratios referred to as SNR, even though there is no
classic noise involved. For mean SNR calculation, ear-signal amplitudes
were first squared and averaged over both binaural channels, and then
averaged over the duration of sound activity, to not influence the SNR
by periods of silence. That is, the SNRs determine the ratio of the
average energy of the target source, while active, to the average energy
of the distractor source, while active. This ratio is expressed in decibel
(dB).

2.3 auditory representations

The ear-signals generated through binaural simulation are represen-
tations of physical signals, namely of the sounds’ waveforms in the
inner ear. To extract meaning from them, it is reasonable to extract
auditory representations (Brown and Cooke 1994), with specifically fil-
tering into frequency bands being important, which of course also is a
major step of human auditory processing. Confer e. g. Lyon (2017) and
Wang and Brown (2006) for books covering human and machine audi-
tory representations, including auditory physiology; Alıías et al. (2016)
provides a review on features without focusing on human auditory
representations.

6 The naming convention admittedly is confusing. BRIRs are also HRIRs, because both use
a head. But BRIRs are recorded in a room.
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Audio signals were frequency-filtered using gammatone filters. For
all representations, gammatone center frequencies were set to range
from 80 Hz to 8 kHz linearly spaced on the (logarithmic) ERB scale
(Glasberg and Moore 1990). Auditory-inspired features extracted from
frequency filters on logarithmic scales are the standard by now and have
been shown to perform better than linearly-scaled features (DCASE
Community 2019; Huzaifah 2017; Annamaria Mesaros et al. 2019).

The simulated binaural signals (Section 2.2) for each scene-instance
were processed by the Auditory Front-end (AFE) (May, Decorsière,
et al. 2015) of the Two!Ears system (Two!Ears Team 2018) to obtain the
auditory representations described in the following. Where not stated
otherwise, default parameters were used as set by the AFE.

Section 10.1.4 discusses the selection of representations.

2.3.1 Ratemaps

Ratemaps are auditory spectrograms that resemble auditory nerve firing
rates over time and frequency. Ratemaps are computed by first applying
an inner hair cell transform (Lyon 2017, Ch. 18) to the gammatone-
filtered signals, and then smoothing with a leaky integrator (typically
with a time constant of 8 ms). The smoothed inner hair cell signal gets
squared and averaged into overlapping frames of 20 ms length (10 ms
shift). Ratemaps are used frequently in computational auditory analysis
systems, often under the name of “Cochleagram”, and are for example
described in Brown and Cooke (1994), Patterson and Holdsworth (1996),
or Wang and Brown (2006). Fig. 2.5c shows an example of a ratemap.

2.3.2 Amplitude modulation spectrograms

Amplitude modulation spectrograms represent envelope fluctuations,
which have been shown to play an important role in the human au-
ditory system (Luo et al. 2006; Shannon et al. 1995; Smith et al. 2002)
and perform well in speech recognition systems (Mitra et al. 2014;
Moritz et al. 2015). Logarithmically-spaced second-order bandpass
modulation filters are used to extract these envelope characteristics
from each channel of the gammatone-filtered inner hair cell signals in
an auditory-inspired way (Ewert and Dau 2000; Tobias May and Torsten
Dau 2014). The obtained amplitude modulation responses are, similar
to the ratemaps, averaged into overlapping frames of 20 ms length with
10 ms shift. Fig. 2.5b shows an example of an amplitude modulation
spectrogram together with inner haircell representation.
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(a) Inner haircell representation (b) Amplitude modulation spectrogram

(c) Ratemap (d) AM filter responses

Figure 2.5: Inner haircell, amplitude modulation (16-channel) and ratemap
(32-channel) representations of a speech sound. (d) shows, as an example,
amplitude filter responses of frequency band 7 (center frequency 920 Hz)
over the respective inner haircell representation.

2.3.3 Spectral features

What is call “Spectral features” in the following, in principle is no
stand-alone auditory representation7. This term summarizes 14 differ-
ent features condensing the spectral content of the ratemap for each
time frame, i. e., these features are different statistics applied across
frequency channels: Centroid, Spread, Brightness, High-frequency con-
tent, Spectral crest measure, Decrease, Entropy, Flatness, Irregularity,
Kurtosis, Skewness, Roll-off, Flux, Variation. (Geiger et al. 2013; Jensen
and Andersen 2003; Lerch 2012; Marchi et al. 2016; Misra et al. 2004)

7 But computed by the AFE, compared to the time-wise statistics explained in Section 3.1.1.1,
which is why they are listed in this chapter.
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2.3.4 Interaural time and level differences

With energies over frequencies and amplitude modulation carrying
a great deal of information about the content of sound, interaural
time-differences (ITDs) and interaural level-differences (ILDs) exhibit
information particularly about the (head-relative) location – specifically
the azimuth – of sound sources (May et al. 2013; Wightman and Kistler
1992). ITDs and ILDs are computed per time-frequency bin as in the
ratemap (both are very frequency-dependent); the ITDs basically es-
timate the phase difference between left and right ear-signals, while
ILDs compare the energy differences between left and right ear-signals.

2.3.5 Other representations

Among other representations that commonly are used in sound event
detection, Mel-frequency cepstral coefficients (MFCCs) for a long time
have been the most popular and successful (Serizel et al. 2018). How-
ever, they are sensitive to noisy conditions (Sharan and Moir 2016),
and spectral energy features have gained a lot of room particular since
the rising success of deep learning architectures, for instance Cakir et
al. (2015b), Huzaifah (2017), and Takahashi et al. (2016) are only a few
examples of models recently having produced better performance with
deep neural network (DNNs) on logarithmic filter-bank energies com-
pared to MFCCs. Throughout the Two!Ears project, MFCCs remained
unused due to their lack of biological motivation.

Spectro-temporal Gabor filterbanks are used to capture not only
temporal and spectral, but joint spectro-temporal modulations (Schädler
et al. 2012; Schröder et al. 2015).

Spectrograms, usually created using the Fast Fourier transform, are
very similar to ratemaps (Section 2.3.1), but less biologically founded.
If phase information of spectrograms is not disregarded, it can be seen
as the technical counterpart to ITDs (Section 2.3.4).





3
M O D E L B U I L D I N G A N D E VA L UAT I O N

After the introduction of the data in the last chapter, here the general
sound event detection (SED) model building and evaluation are covered.

Section 3.1 describes how the model input (features and labels) is
constructed. In Section 3.2, model training aspects unspecific to partic-
ular algorithms are discussed, Section 3.3 elaborates on performance
measurement of the models. The herein used model algorithms, logistic
regression and deep neural networks, are introduced in Sections 3.4
and 3.5.

3.1 model input

To get from auditory representations to predictions about sound event
activity by SED models, the auditory representations and scene anno-
tations have to be worked up into actual model input. The following
sections cover the production of features and labels for the models.

3.1.1 Feature construction

For segment-based (or block-based, the terms segment and block are
used interchangeably) models, all representations obtained from the Au-
ditory Front-end (AFE) (see Section 2.3) for SED (in general ratemaps,
amplitude modulation spectrograms, and spectral features) were split
into overlapping blocks. Only for the deep neural network (DNN) mod-
els used in Chapter 7, the full-length representations were used without
any cutting. Depending on whether mean-channel or two-channel fea-
tures were constructed (cf. Chapters 4 and 5), representations from left
and right channel were then averaged, or they got concatenated.

Energy-based representations were compressed with a root function;
ratemaps were additionally scaled for each block individually such that
the median of all non-zero values was projected onto 0.5.

37
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3.1.1.1 Time-invariant features

For model architectures that have no inherent mechanism for dealing
with data varying over time – like logistic regression, support vector
machines (SVMs), or Gaussian mixture models (GMMs) –, it can be very
difficult to learn relationships from parts of time series, since data struc-
tures translate along the time dimension and usually will not be aligned
with some standard point in time. There are model types that have in-
built capabilities to model relationships over time, like hidden markov
models (HMMs), or recurrent neural networks (RNNs), and model
types that are able to build new feature representations including filters
over time, like all sorts of DNNs, but particularly convolutional neural
networks (CNNs). See Sections 3.4, 3.5.2 and 3.5.3 for descriptions of
logistic regression, temporal convolutional network (TCN) and (long
short-term memory (LSTM)) recurrent neural networks, and Chapter 7

for a comparison study on these different model types applied to the
SED problem.

However, logistic regression models certainly are not able to learn
relationships of data translating along time, the input features for the
model need to be made time-invariant. To achieve this, a function can
be applied onto the features mapping time series onto values without
notion of time; common choices are statistical moments like the mean,
variance, or also skewness and kurtosis. Here, L-statistics (L-mean,
L-scale, L-skewness, L-kurtosis, Hosking (1990)) were chosen, which
can be more robust than conventional statistics, particularly for higher
moments and little data (David and Nagaraja 2003, Ch. 9).

To increase information extracted from the data, specifically informa-
tion about the development of data over time, the first two discrete time
derivatives (“deltas”) of the auditory representations were computed
prior to application of L-statistics.

With RM the ratemap, AM the amplitude modulation spectrogram,
and SF the spectral features representations, the concatenated represen-
tations and their deltas are:

CR =

⎛⎜⎜⎝RM

AM

SF

⎞⎟⎟⎠ , CṘ = CRT − CRT−1 , CR̈ = CṘ T − CṘ T−1 , (3.1)

and the time-independent feature vector F is defined as

F =

⎛⎜⎜⎜⎜⎝
fL−mean(R)

fL−scale(R)

fL−skewness(R)

fL−kurtosis(R)

⎞⎟⎟⎟⎟⎠ with R =

⎛⎜⎜⎝CR

CṘ

CR̈

⎞⎟⎟⎠ . (3.2)
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The dimensionality d of feature vector F depends on the dimensions
of the original auditory representations, the number of moments and
deltas applied, but not on the length of the corresponding segment.

3.1.1.2 Frame-based features

In above-mentioned study with TCN and LSTM (Chapter 7), the DNN
models are able (and supposed) to learn relationships including tem-
poral development of data, thus the section above on constructing
time-invariant features does not apply there. Instead, the models get
frame-based features as input, that is, the “raw” auditory representa-
tions. The resulting feature matrix is of dimensionality dxT, where d
depends on the dimensions of the original auditory representations,
and T is the number of frames in the segment or the full scene-instance
(in case of features for LSTM).

3.1.1.3 Feature standardization

As is common in many machine learning applications, feature center-
ing and feature scaling was performed: before training models, each
individual feature variable gets subtracted its mean (such that the mean
becomes 0) and then divided by its variance (such that the variance be-
comes 1). Very importantly, the mean and variance are only calculated
from the training set features (in cross-validation, from the training
folds), and have to be saved to later apply the same procedures with the
values from the training set onto test features. The goal of this proce-
dure is to avoid a bias of models to prefer variables with larger variance.
With L1-regularized logistic regression, this furthermore makes betas
from the model (see Section 3.4) comparable because they are on the
same scale, and thereby enables feature analysis.

3.1.2 Sample labels

Supervised machine learning works by providing target values to the
algorithms that provide ground truth about the produced output given
the input features; the algorithm will optimize the model such that
the defined loss between produced output and these target values is
minimized. In classification, these target values are also called (class)
labels. Labels (usually denoted y) and features (usually denoted x)
together constitute a sample (x, y). For logistic regression, a feature
vector/matrix is attached with one label. For LSTM and TCN, the
feature matrix is attached with a label vector of length T.
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Figure 3.1: Example of representations and labelings of an auditory scene with
a crying baby. Upper panel shows the left ear-signal waveform, lower panel
the corresponding ratemap. The middle panel depicts the event on- and
offset ground truth annotations, frame-based labeling, and 500 ms-segment-
based labeling (black dots indicate “ambiguous” segments).

In the case of SED, labels are needed that express whether a sound
event of particular type is present in the corresponding features (re-
spective segment of auditory scene-instance), or not. The ground truth
about the activity of sound events is available through the event on-
and offset annotations of the original sound files (cf. Section 2.1.3);
scene synthesis (Section 2.2) entailed generation of event on- and offset
annotations for scene-instance scope. With knowledge about the actual
event on- and offsets, the creation of labels about sound event presence
is tantamount to reasonably defining presence, and in this work, two
different definitions are used, explained in the following subsections.

3.1.2.1 Segment-based labeling

When using features including information of whole segments, it seems
reasonable to also include information about the whole segment in
the label. However, defining sound event presence in this case is not
obvious. The simple approach of simply checking whether the sound
event was active any time in the segment does not seem sensible,
because this includes situations in which a sound event was active only
for a few milliseconds at the border of the segment. While it is true then,
that the sound event was active, (a) this definition is not a perceptual
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one, because humans would (depending on the actual length) not
detect the sound event in this situation, and (b), this definition would
be counterproductive for model training, because it produces many
samples with low correlation of features and label.

A sound event therefore is defined present, if

• either it overlapped at least 75 % of a segment,

• or, for events shorter than a segment, at least 75 % of the sound
event was included in the segment.

Segments with sound event overlap of less than these 75 %, but more
than 0 %, did neither get a “present” nor “not present” label, because
they were considered ambiguous. To avoid confusion of the model
algorithm and unclear performance measurement, these samples were
excluded from training and testing.

Fig. 3.1 shows an example of segment-based labeling, next to the
event annotation ground truth and frame-based labeling.

3.1.2.2 Frame-based labeling

As the segment-based labeling targets output with a certain lag and
with a smoothing over time, additionally a frame-based, instantaneous
labeling was produced, reflecting whether a sound event was active at
the time of a frame, or not. Since frames are only of length 20 ms, the
label of a frame was defined “present” if the sound event was active in
it at any time, for any duration.

Usage of frame-based labels is obvious for LSTM and TCN, which
use frame-based features also, and produce output for every time step
(frame). For a logistic regression model, which produces one prediction
for a whole segment of features, the label of the last frame was attached.

Fig. 3.1 shows an example of frame-based labeling, next to the event
annotation ground truth and segment-based labeling.

3.2 model training

This section covers general aspects, methods, and decisions regarding
the building of the SED models.

3.2.1 Binomial classification

All sound detection models were trained as binary classifiers, detecting
the presence (positive class) or absence (negative class) of the particular
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sound type. This implies training in an one-vs-all scheme — discrimi-
nate one class (the target sound type) against all others.

Classic multinomial models (like k-nearest neighbors) are not an
option to use in scenes with co-occurring sounds (polyphonic scenes),
since they categorize instances into exactly one class at a time.

Using combined single-label models increases flexibility in applica-
tions and adding new models for other sound types. Also, it gives
choice to more algorithms, since any classification algorithm can clas-
sify single-label binomial problems, but not all can produce multi-label
output. Dealing with multi-label models can also be more difficult in
training with respect to sub-sampling or weighting samples to adjust
for unbalanced class distributions (which is necessary, see Section 3.2.3).
On the upside, using multi-label models may, depending on the algo-
rithm, decrease training time considerably, since only one model has to
be trained.

Cakir et al. (2015a) investigated the difference of training combined
single-label SED models versus training multi-label models (DNNs).
They found a minimal reduction in performance of the combined
single-label models (without statement of statistical significance of this
reduction); and concluded that the correlation structure between labels
does not add relevant information to the model training.

With logistic regression models (Section 3.4), true multi-label mod-
eling is not possible. While GLMNET allows producing multi-label
Gaussian regression models, these actually are combined single-label
models with individual model parameters per class1. This is in contrast
to DNN models (Section 3.5), which can use a large combined network
with only smaller individual sub-networks in the last hidden layers and
output layers providing an effective multi-label approach.

3.2.2 Single- and multi-conditional training

For building sound detection models, two schemes of training were em-
ployed in regard to what acoustic scenes were used. (Confer Section 2.2
for definition and explanation of acoustic scenes.)

With the term single-conditional (sc) training, training on data taken
from one acoustic scene (condition) only is referred, i. e. a defined
number of sources, at specific azimuths, with specific signal-to-noise
ratios (SNRs), etc. All scene-instances of the chosen scene were then
used for training. See Chapters 4 and 6 for the analysis of performance
of single-conditional models.

1 One possibly interesting use-case is the application of grouped lasso, i. e. the coefficients
for the multiple labels (multiple models) are penalized together across models.
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The term multi-conditional (mc) training is used when training models
on data taken across more than one scene (typically many, e. g. 80). The
idea of multi-conditional training is to incorporate model invariance (or:
robustness) against deviation of auditory testing/application conditions
from training conditions. Building models able to be invariant towards
changes in the data unrelated to the categorization in question and at the
same time sensitive towards variance in the data related to the classifica-
tion targeted really is at the core of machine learning application2. In
principle, there exist two approaches to achieving such robustness:

1. Explicit engineering of invariance. The obvious necessity is prior
knowledge about the irrelevant variance and knowledge about
how to transform data to be invariant. An example for this ap-
proach would be de-mixing of sound mixtures to (hopefully)
retain individual sounds such that a system trained on isolated
sounds can be reasonably applied.

2. Learning invariance in a data-driven way. That is: the data pre-
sented to the training algorithm has to include the irrelevant
variance, such that the algorithm can find out about it by itself —
if it can. The obvious necessity here is an algorithm able to extract
the irrelevance in question, often, this will imply more power-
ful/complex models. In connection with the example before, the
system would be trained from the start on sound mixtures, and
identifying target sounds in overlapped mixtures would be left to
the model.

The latter is the multi-conditional approach followed and proposed
here; the example given for explicit invariance engineering exemplary
illustrates the motivation: without many constraints (on the number
of channels, prior knowledge about occurring sounds, ...), de-mixing
of sound mixtures ranges from difficult to hardly possible. That is,
the author of this thesis doesn’t see the necessary knowledge and
techniques about how to transform binaural sound data to be invariant
for example in SNR, location of sources, reverberation, or number of
co-occurring sources. See Chapters 5 to 8 for the studies on performance
and robustness of multi-conditional models.

3.2.3 Sample subsets and cost

A typical problem in machine learning, also in SED, is data imbalance,
which refers to imbalance among the classes (or sub-classes) in the
amount of data used for training. For one thing, classes often naturally

2 LeCun et al. (2015) call this “selectivity–invariance dilemma”.
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are of different size: sounds from the class “fire”, for example, are
on average much longer than sounds from the class “knocking”. For
another thing, data imbalance is especially likely to occur in multi-class
settings that are solved through binomial classification (cf. Section 3.2.1),
since the one-vs-all approach necessarily yields more negative than
positive samples. The problem about data imbalance is, when treated
naively (or not treated), bias in the model training towards optimizing
the correctness of output of samples belonging to the dominant class(es),
and neglecting the others. If, for instance, positive samples amount
to very small percentages (they do here – about 2 % to 10 %), training
algorithms can achieve high overall accuracy by producing models that
always predict negative, however, nothing would have been “learned”
and decisions be un-informed.

The following sample subsets were defined: “positive” samples, i. e.,
samples with label +1, and “negative” samples, i. e., samples with
label −1. These were further sub-divided into samples from mixtures
with one, two, three, or four sources active, respectively. For samples
segregated from the ear-signals mixture, further distinction between
segregated negative samples from mixtures with a positive active, and
segregated negative samples from mixtures without positive active
was needed, confer Chapter 8. Note that all these samples types are
individual to each sound class, or rather, the designation of actual
samples into subsets is individual to each sound class.

When full training data anyway could not be utilized because of
algorithmic or computational restrictions – as was the case with GLM-
NET, which was not able to cope with more than 2 GB input –, first
off sub-sampling in a way to already alleviate the data imbalance was
performed. That is, higher proportions from the above mentioned sub-
sets with lower percentage were sub-sampled, and vice versa; equal
amounts of samples were drawn from each scene-instance.

After sub-sampling, samples got weighted according to their sample
type and scene-instance length in order to achieve equal cost in model
optimization for each of the types and scene-instances. The weight wi
of sample (xi, yi) was set to

wi = 1/(NL(i),nas(i) · Nsi(i)) (3.3)

where NS denotes the number of samples in subset S, indicated by L(i),
the label yi of the sample, nas(i), the number of sources in the mixture
of the sample, and si(i), the scene-instance the sample originated from.
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3.3 evaluating models

Goal of successful machine learning is building models able to generalize
on the data. Generalization is the ability to (successfully) predict on
data unseen in the model building process, and thus the opposite to
memorization of the training data. It implies finding and extracting
rules/patterns/structure in the training data that still hold for new
data. If an algorithm is not able to learn training data structure, this
is called underfitting. If an algorithm is able to learn the training data
structure, but with the built model is not able to efficiently predict
unseen (test or validation) data, it basically memorized training data
instead of generalizing, which is called overfitting.

A necessity in building well-generalizing models is to actually measure
the generalization performance, such that in the training process, these
models can be found and selected. “Model selection” is part of many
machine learning algorithms, particularly always when algorithms
include hyper-parameter optimization, as is the case in this work with
L1-regularized logistic regression (λ parameter, see Section 3.4) and
DNNs (number of layers, number of neurons, and many more, see
Section 3.5).

Of course, even without hyper-parameter optimization and the need
for measuring generalization performance as part of the training pro-
cess, it will usually be necessary or at least desirable to evaluate the
generalization capabilities of built models to report and analyze them.

3.3.1 Training sets, test sets, and cross-validation

To measure generalization of final models, it is necessary to keep parts
of the available data for measurement and not use it for training; this
part of the data is then called test set. It is important to not incorporate
this data in any way during training and model selection, otherwise
the performance estimate drawn from it is not a valid estimate of
generalization. For estimating generalization in model selection during
training, another part of the data not included in the test set and not
to be used during model parameter optimization, needs to be retained.
This part is called validation set.

Cross-validation

However, very commonly (and also in this work), there is a lack of
data and cutting away large parts from training leads to underfitting.
As there is no way to avoid holding out a test set, one has to balance
between necessary training data to generate good models, and desirable
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predictive power of the test data. To not additionally loose the validation
data for training, often cross-validation is employed, and so it is done
here as well.

For performing cross-validation, training data is split into k folds.
Then k − 1 models are trained on all fold combinations that leave one
fold out, and each of those models is tested on the left-out fold (then
the validation fold). The mean of the k measured performances then
is an estimate of the average generalization performance of models
built with the applied algorithm on an independent test set from the
same data distribution. In hyper-parameter optimization, the cross-
validated performances can then be used to select a model; and the
final model sequentially be trained on the full training set. The “cost”
of cross-validation is mainly increased computational effort. See Hastie
et al. (2009, Ch. 7) for further information on model assessment.

Splitting the data

It is important not only that the training algorithm does not “touch”
test or validation data, but equally important that test and validation
data are independent from training data. This implies splitting of data
at the right level in the sample generation process, and in this case,
it was necessary to make sure that samples from the training set and
samples from the test set, or samples from cross-validation folds used
for training and for testing, never contained parts from the same sound
file. Since this included sounds both emitted from target and distractor
sources, mixtures in scenes with more than one source also had to
be made from only sounds in the same training/validation/test set.
To make this computationally manageable, from the start all sound
files got divided into 8 stratified3 folds and mixtures only generated
from sounds within each fold. This way recombination of the folds into
training, cross-validation, and test sets was possible; usually two folds
were used for final testing, and 6-fold cross-validation was performed
on the other six folds used for training the models.

In the employed approach to SED, there are two factors influencing
the amount of training data: (1) the number of original sound files,
that is, the number of unique examples for sound events of each class,
and (2) the number of scenes applied onto them, that is, the number of
scene-instances generated. However, it should be clear that the number
of original sound event examples is the decisive factor regarding the
potential for capturing the structure of the different sound event classes,
and that the number of scenes applied can only help exploiting this
potential through delivering different versions (particularly: different

3 replicating the files’ distribution of sound classes
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mixtures) of the sound event examples4. The number of sound files per
class being the crucial variables relativized the size of the produced
training data, and was the rationale for the choice of training versus
test set sizes (75 % versus 25 % of the sound files) and utilizing cross-
validation for model selection.

3.3.2 Performance measures

Measuring the performance of models presumes choice of a suitable
measure. The most obvious measure is accuracy, percentage of cor-
rectly classified samples. However, as with not treating data imbalance
in training (see Section 3.2.3), using accuracy on imbalanced testing
data has performance dominated by the larger sample class (here, the
negative class). It would thus not be very informative here.

3.3.2.1 Balanced Accuracy

One solution to this problem is equivalent to sample weighting in train-
ing: using weighted accuracy, and here, balanced accuracy (BAC). BAC
is defined as the arithmetic mean of sensitivity (positive class accuracy,
also called detection rate) and specificity (negative class accuracy). With
TP, TN, FP, and FN the number of true positives, true negatives, false
positives, and false negatives, balanced accuracy calculates as:

BAC =
1
2
·
(︃

TP
TP + FN

+
TN

TN + FP

)︃
=

1
2
· (SENS + SPEC) . (3.4)

3.3.2.2 BAC2

For performance measurement in model selection during training, a
modified version of balanced accuracy was constructed that penalizes
differences between sensitivity and specificity:

BAC2 = 1 −
√︂
((1 − SENS)2 + (1 − SPEC)2)/2). (3.5)

This performance measure is upper bounded by the standard balanced
accuracy. If sensitivity and specificity are exactly equal, the value of
BAC2 is equal to the balanced accuracy. If classification is perfect,
i. e. if both sensitivity and specificity are equal to 1, then BAC2 = 1. If
sensitivity and specificity are both 0.5, then BAC2 = 0.5. Any difference
between sensitivity and specificity is penalized. The motivation for this

4 Of course, here, this is rather a positive side-effect than the goal of applying many scenes,
because the goal is to produce models robust to changes in acoustic conditions through
the multi-conditional training (cf. Section 3.2.2).
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is that in the absence of information about the true distribution of
samples (and cost of errors) in later application of the trained models,
a classifier would be preferred that shows a specificity of 0.8 and
sensitivity of 0.8 (BAC2 = 0.8) over one that exhibits a specificity of
0.6 and a sensitivity of 1.0 (BAC2 = 0.72), for example. Classifiers that
assign all data to a single category, such as the larger class, yield only a
performance value of BAC2 = 1 − 1/

√
2 = 0.29.

3.3.2.3 F-score

In SED, F-score (also called F1 measure) is the most commonly used
performance measure, calculated as follows:

F1 =
2 · TP

2 · TP + FN + FP
=

2 · PREC · SENS
PREC + SENS

(3.6)

with PREC =
TP

TP + FP
. (3.7)

Since the F-score does not take into account the true negatives, it
depends on the data distribution. This gets transparent by rearranging
the formula through a few steps such that it shows its relation to
sensitivity and specificity:

F1 =
2 · SENS

1 + SENS + rNP · FPR
(3.8)

where rNP :=
N
P

=
TN + FP
TP + FN

(3.9)

and FPR = 1 − SPEC . (3.10)

The entailment of rNP shows the F-score’s dependence on the ratio of
negative to positive samples (because neither sensitivity nor specificity
or false positive rate depend on the amounts of negatives or positives).
F1 increases with decreasing rNP.

Because this dependency makes F-scores hard to compare and less
informative with respect to how “informed” a classifier’s decision is, the
F-score was opted against, and instead chosen the BAC. See Section 10.2
for the extended rationale about this decision and a discussion on this
topic.

3.3.3 Class-average performances

Mostly in this work, class-average performances are presented, com-
pared, and analyzed, because the goal was developing methodology
for robust SED model building in general, that is, not specific to a
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particular sound class. There basically exist two widespread inter-class
performance averaging methods: micro- and macro-averaging.

The first builds averages by summing true positives (TPs), true neg-
atives (TNs), false positives (FPs), and false negatives (FNs) across all
classes and then calculating the performance measure of choice. This
reflects class distributions, such that large classes (the fire sound class,
for instance, since fire sound events mostly are long) have stronger
influence on the TPs and FNs, and small classes (the female scream
sound class, for instance) have stronger influence on the TNs and FPs5.
This can be desired, but consequentially makes performance numbers
not representatives of all sound event detectors equally, but instead
representatives of the conglomerate of all detectors together on the very
actual data set.

Thus here, always the macro-average is used, which is built by first
calculating class-wise performance measures like the BAC, and then
averaging over these. This way, each class-specific performance obtains
the same weight in the class-average performance, which is desirable in
order to present performance numbers representing average capability
of the sound event detector models.

3.4 model building with linear logistic regression

The majority of model building in this work was conducted using L1-
regularized linear logistic regression models (e. g. Hastie et al. (2009,
Ch. 3.4)). Logistic regression is a simple yet very widespread method,
with the intention of modeling the probabilities of data points belonging
to particular classes. As elaborated on in Section 3.2.1, models are re-
stricted to the binary two-class cases. Logistic regression is capable only
of linear separation between classes; nonlinear dependencies can only
be modeled if feature construction includes projecting these relation-
ships into linear space. L1-regularized Logistic regression’s strengths,
however, are high computation speed6 both in training and testing,
interpretability of the models and of the models’ outputs (probabili-
ties), and great efficiency in dealing with very high dimensional feature
spaces, even for situations where the number of available feature vectors
is lower than their dimensionality.

L1 regularization applied to linear regression models is also called
the Least Absolute Shrinkage and Selection Operator (LASSO) and was
introduced in Tibshirani (1996). The L1 penalty leads to sparse models
by translating regression coefficients towards zero and truncating at

5 This is true if all models predict on all samples, because then classes with higher share of
positives also have lower share of negatives, and vice versa.

6 magnitudes higher than that of most (if not all) nonlinear methods, particularly DNNs
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zero, making Lasso a classification method with an embedded feature
selection procedure. L1-regularization provides high efficiency in pre-
venting overfitting, which is theoretically underlined in Ng (2004). The
equally popular (although maybe more in the context of linear Gaussian
regression) L2-regularization shrinks coefficients proportionally and
pushes correlated predictors towards each other, but does not push
onto and truncate at zero, hence does not select a subset of features.

Logistic regression in practice often will perform about similar to
other popular linear methods, like the linear support vector machine
(Hastie et al. 2009, Ch. 12) and linear discriminant analysis (Hastie
et al. 2009, Ch. 4.3). Compared to the first, logistic regression has the
advantage of providing probabilistic output, compared to the latter,
it has the advantage of not assuming Gaussian distribution of data7.
Also, most other models including the two mentioned ones are not as
interpretable, whereas logistic regression allows added insight into the
dependencies of classification on the individual variables.

The “GLMNET” package (Friedman et al. 2010; Qian et al. 2013) was
utilized for training these models. Through cyclical coordinate descent,
GLMNET – in the binomial mode – minimizes the following objective
function (with a quadratic approximation to the binomial log-likelihood
in there):

min
(β0,β)∈Rp+1

− 1
N

N

∑
i=1

wi·l(b, xi, yi) + λ
[︁
(1 − α)||β||22/2 + α||β||1

]︁
,

with l(b, x, y) = ybTx − log(1 + ebT x). (3.11)

With the model trained, the probability of any x to belong to the
“positive” class (G = 1) is calculated as

Pr(G = 1|X = x) =
ebT x

1 + ebT x
. (3.12)

In these equations, (x, y) are the N data points and their respective
labels, β are the model coefficients and β0 is the intercept; x includes
an extra leading 1 for multiplication with the intercept in the combined
coefficients variable b = {β0, β}. α controls the regularization, which
can be anything between sole L1 (α = 1, LASSO) and pure L2 (α = 0,
ridge); λ determines the strength of the overall penalty. Because strict
L1-regularization can lead to numerical instabilities, α was actually set
to 0.99.

For adjusting the regularization parameter λ, k-fold stratified cross-
validation was performed (see Section 3.3.1) on the training set. The

7 Of course, this is only an advantage if the data is not distributed Gaussian.
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value with the best cross-validation performance was chosen and used
to train the model on the full training set.

Importantly, GLMNET supports usage of observation weights (wi),
which allow for sample-specific cost inflicted on the objective function.
This is particularly important in cases where class distributions are
highly imbalanced (as is the case in this work), but prediction quality
for the different classes shall be equally important. It thus enables
optimizing for balanced accuracy (Section 3.3.2.1), and weighing cost
according to additional intra-class rules, as described in Section 3.2.3.

3.5 model building with deep neural networks

Although “conventional” methods like the LASSO can still achieve
good performance (as will be shown in the next chapters), state-of-
the-art nowadays is deep learning (LeCun et al. 2015) with deep neural
network (DNN) architectures. This is due mainly to two factors: (i)
DNNs are powerful representation learners, i. e., they can learn complex
features which often are difficult to hand-craft as efficiently, and (ii)
they have inherent capabilities to access data context, i. e., exploit locality
in features along dimensions such as time or space8. Two architectures
have emerged as particularly successful with respect to the second
point: convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). Two variants are considered in this work:

• Long short-term memory (LSTM) (Greff et al. 2017; Hochreiter
and Schmidhuber 1997), a very popular and successful RNN
model designed to learn temporal relationships over potentially
long durations. LSTM has solved problems hindering effective
usage of RNNs before, like the vanishing gradient problem.

• Temporal convolutional network (TCN) (Bai et al. 2018), a recent
CNN architecture based on work in Kalchbrenner et al. (2016),
Long et al. (2015), and Oord et al. (2016). TCN provides an efficient
feed-forward alternative to LSTM with supposedly comparable
sequence modeling capability.

LSTM are commonly assumed to be the natural choice for temporal
sequence processing, because their access to temporal information in
principle is unrestricted and can be learned from data. CNN, on the
other hand, are more efficiently parallelizable for GPU utilization in
training, and excel at spatial feature extraction.

8 (i) and (ii) are not necessarily separate points, actually they go together very well.
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3.5.1 Shared training methodology

Models were coded and trained in Python with Keras (Chollet et
al. 2015) with TensorFlow back-end, utilizing the cuDNN (Chetlur
et al. 2014) library for fast GPU training.

Output layers always consisted of neurons (one per sound type) with
logistic sigmoid activation function, in each frame producing probabili-
ties about the presence of sound events. Weighted cross entropy was
used as loss function for model optimization:

−wi · (yi,m log(p(xi)) + (1 − yi,m) log(1 − p(xi))) (3.13)

with y and p(x) being the target and predicted output for features x, w
the sample weight, i referring to the sample index, and m the sound
type/output neuron index.

Sample weights were set as described in Section 3.2.3, such that bal-
anced accuracy was optimized and scene-instances of different length
and scenes with different number of sources are equally important.

The minimization of the loss with respect to network model param-
eters (connection weights) was performed using the Adam optimizer
(Kingma and Ba 2014). Cross-validation as described in Section 3.3.1
was performed for hyperparameter optimization, conducted as random
search (Bergstra and Bengio 2012).

Model training was terminated once the balanced accuracy on the
respective validation set did not improve for five consecutive epochs.
The number of training epochs for the final model got set to the median
of the validation sets best epoch numbers.

3.5.2 Temporal convolutional networks

The TCN differs from a conventional convolutional neural network (e. g.
Espi et al. (2015) and Piczak (2015a) for sound event classification) in
four ways:

1. It is based on a one-dimensional (time) fully-convolutional archi-
tecture Long et al. 2015, implicating an output sequence of the
same length as the input sequence,

2. the convolutions are causal (future points in time cannot be ac-
cessed),

3. convolutions are dilated to create a receptive field that exponen-
tially increases with the number of layers (Oord et al. 2016),

4. instead of stacked convolutional layers, a stack of residual blocks
compose the network (Kalchbrenner et al. 2016).
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Figure 3.2: Temporal convolutional network architecture. A: Dilated causal
convolution with dilation factor d = 20, 21, 22, and filter size 3. B: Residual
block with convolution filter size 3 and dilation factor 1 mapping from input
xt to first hidden layer. Rectified linear unit (ReLU) activations for both
convolutional layers and spatial dropout between these layers are indicated.
C: Temporal convolutional network with M = 3 residual blocks, each with
dilation factor 1, and convolution filter size K = 3 (i.e., T3,3 = 17). Modified
from Bai et al. (2018) with permission.

Fig. 3.2 A depicts the ideas of points 1-3.
Each residual block consists of two consecutive convolutions with

the same (internal) dilation factor, and after each follows a ReLU as
activation function. An identity map is added to the output of the
second convolution (see Fig. 3.2 B). This allows learning of modifications
of the identity mapping rather than the entire transformation, which
has been shown to ease deep learning (Bai et al. 2018; K. He et al. 2016).
Spatial dropout – zeroing out whole feature maps (Tompson et al. 2015)
– within each residual block is employed for regularization. Although
part of the original model formulation, weight normalization (Salimans
and Kingma 2016) in this work was omitted, since it did not accelerate
optimization in the conducted experiments.

In Fig. 3.2 C, a temporal convolutional network with a stack of 3
residual blocks and filter size 3 is shown; each residual block has
internal dilation factor 1 (the receptive field of each residual block
hence is of length 5).

training The following hyperparameters had to be optimized: the
convolution filter size K; the batch size; the initial learning rate of
the Adam optimizer; the maximum gradient norm for clipping; the
number of feature maps; and the (spatial) dropout rate. Depending
on the required temporal context length T (in frames), the number
of residual blocks M was chosen as smallest upper bound for T ≤
TK,M = (K − 1) · 2M + 1, where TK,M is the resulting effective receptive
field/history length.
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A B

C

ReLU

Logistic

Figure 3.3: LSTM + DNN architecture (LDNN). A: LDNN consists of an LSTM
with a multilayer perceptron (MLP) stacked on top. LDNN process input in
a recurrent manner producing output each step in time. Input sequences
may be spread across multiple batches which truncates the gradient back-
ward pass in the backpropagation but the internal states of the LSTM-cells
are propagated across batch boundaries. B: The MLP consists of 1-2 fully
connected (FC) layers with ReLU activation function followed by an output
layer with logistic sigmoid as activation function. C: The LSTM part con-
sists of 3-5 LSTM-Cell layers where every layer processes its input by an
individual internal state.

The network weights were initialized by independently drawing from
an appropriate uniform distribution (Glorot and Bengio 2010), biases
were initially set to zero.

When scene-instances were longer than chosen batch lengths, remain-
ders of scene-instances were copied to a later batch (with overlap in the
size of the receptive field minus one). Consequentially, the first TK,M − 1
frames of the later batch got marked with an ignore mask in order to
not double measure the respective loss.

3.5.3 LDNN

LDNNs (Sainath and Li 2016) consist of LSTM layers for processing of
the temporal input, with FC layers stacked on top for transformation
of the extracted intermediate representation to the output. LSTM are
specifically designed for processing sequences containing long-term
dependencies (Hochreiter and Schmidhuber 1997), by maintaining
an internal state (modified sequentially by the input) from which the
necessary information will be extracted. Fig. 3.3 depicts the architecture.
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training Training batches get composed of many stacked scene-
instance feature sequences, but scene-instances are of different lengths.
To avoid (i) padding with zeros at the end and (ii) assembling batches
from scene-instances with the same length, which would e. g. introduce
dependencies on sound type in sequence sampling, scene-instances
were sampled and stacked randomly, but were then split into parts
to create batches with the same finite length. This may lead to distri-
bution of scene-instances on multiple batches, resulting in truncated
backpropagation at the batch boundaries. In the forward pass, LSTM
cell internal states can still be propagated across batch boundaries.
The length of a batch – the range of input frames in between batch
boundaries – then is the effectively accessible temporal context of the
LDNN, as the back-propagated feedback can only lead to adjusting
weights to incorporate temporal dependencies within that range.

Dropout regularization (Srivastava et al. 2014) was applied to the acti-
vations of the FC layers (except the output layer) and to the activations
of the hidden states of the LSTM layers. Furthermore, for regularization
of the internal cell states of the LSTM with a comparable effect to Re-
current Dropout (Gal and Ghahramani 2016) (which was not available
in the cuDNN implementation used), a variant of it was developed,
setting the recurrent weights connected to the dropped neurons to zero.
This resembles DropConnect (Wan et al. 2013), with the difference that
not the weights are selected randomly to be dropped, but the neurons
they are connected to (matching the original Dropout formulation). A
similar approach to this one is used in Merity et al. (2017).

Weights connecting the input with the LSTM cell states and weights
of the FC layers were initialized by independently drawing from an
appropriate uniform distribution (Glorot and Bengio 2010), whereas
the weights connecting the cell states with the different gates and to
itself were initialized as random orthogonal matrices (Saxe et al. 2013).
Biases of the forget gates were initially set to one and all others to zero
(Jozefowicz et al. 2015). These initialization choices follow the Keras
defaults.

The following hyperparameters had to be optimized: the number of
LSTM layers; the number of FC layers; the number of total neurons;
the fraction of neurons contained in the LSTM layers; the maximum
gradient norm for clipping; the Dropout regularization strengths.

FC layers were set to use ReLU activation functions.





Part II

R O B U S T S O U N D E V E N T D E T E C T I O N

Robustness is key in the real world. Hard training makes
tough models.





4
S I N G L E - C O N D I T I O N A L M O D E L S

This chapter is based on Ivo Trowitzsch et al. 2017. “Robust Detection of Environmental

Sounds in Binaural Auditory Scenes.” IEEE/ACM Transactions on Audio, Speech, and

Language Processing 25 (6): 1344–1356.

The goal of this work was investigating the behavior of sound event
detection (SED) models under varying auditory conditions, and devel-
oping methods for increasing the robustness of models with respect to
these conditions.

To begin with, it was necessary to establish what performances can
be achieved in optimal situations, and what performance losses are to
be expected when deviating from optimal situations. This chapter thus
provides a systematic assessment of performances of SED models

1. trained on single-source auditory scenes (“clean data”, “mono-
phonic models”), tested on the same scenes; as baseline,

2. trained on single-source scenes, but tested on two-source scenes;
to evaluate the impact superimposed sounds have on models
naively trained on “clean” data,

3. trained on various two-source scenes (“polyphonic models”),
tested on the same scenes; to rate the performance achievable
when models are trained under the same auditory condition as in
testing,

4. trained on various two-source scenes, but tested on other two-
source scenes; to quantify how deviations from training conditions
affect performance.

To address this question, single-conditional models were built and
analyzed, that is, models which are trained on data from exactly one
scene (as described in Section 3.2.2).

In the work described in this chapter, the effects of different angular
source configurations and signal-to-noise ratios (SNRs)1 were studied.

1 Chapter 6 covers the effects rooms (i. e. among other factors, reverberation) impose on
SED models.
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Since binaural data was used, two different approaches to constructing
features for the models were investigated: averaging the two channels’
representations, or building features from each channel individually
and concatenate them.

Section 4.1 describes any particularities or amendments to Chap-
ters 2 and 3 with respect to data and methods concerning this chapter,
Section 4.2 then elaborates on results of situations 1 to 3 from the list
above, and Section 4.3 presents the analysis of generalization across
conditions, situation 4.

4.1 data and methods

Four aspects are to be described additionally to the general data and
methods description of the chapters before: the actual auditory scenes
used in this study, the two different feature sets, the model training
specifics, and the two evaluation modes.

4.1.1 Auditory scenes

The original sound data for synthesizing auditory scenes was taken
from the NIGENS database, described in Section 2.1. For methodology
and terms regarding the scene rendering, confer Section 2.2.

Two sets of scenes were defined:

1. Five single-source scenes with a point source at azimuths {0°,
22.5°, 45°, 67.5°, 90°}. These rendered scene-instances in the fol-
lowing also are referred to as clean sounds or data, because there
was no simultaneous disturbance.

2. Scenes containing two point sources emitting superimposed sounds.
The target source emitted sounds from all classes, including “gen-
eral”, the distractor source emitted sounds only from the general
class. Target and distractor sound sources were located at the
following combinations of azimuths2:

• 0°/{0°, 45°, 90°, 180°}

• 22.5°/{−22.5°, −67.5°, 112.5°, −157.7°}

• 45°/{0°, −45°, 135°, −135°}

• 67.5°/{112.5°, −112.5°}

• 90°/{180°, 0°, −90°}

2 listed as: target source azimuth / set of azimuths for distractor source



4.1 data and methods 61

Each of these azimuth combinations got combined with four differ-
ent SNRs (10 dB, 0 dB, −10 dB, −20 dB). Together, this amounted
to 17 × 4 = 68 scenes in this set.

In the analyses below, sometimes the two sets are referred to together;
the “clean” sounds (set 1) then got designated an SNR of in f dB.

Set 2 was compiled to provide high angular resolution, both with re-
spect to the target source azimuths, as well as to the number of azimuth
combinations with each target source. As the number of combinations
needed to be limited because of the amount of tests implied by each
(see Section 4.1.4), this came at the cost of coverage: the target source
was located between 0° and 90° in all configurations. Fig. 5.1b shows a
diagram of the azimuth scene configurations in the set.

4.1.2 Feature sets

Features for the models were constructed as described in Section 3.1.1,
specifically Section 3.1.1.1. As base auditory representations, ratemaps,
spectral features, and amplitude modulation spectrograms were used,
described in Section 2.3, plus onset strengths. The onset strength rep-
resentation is another derivation of the ratemap, measured as the
frame-based increase in logarithmically-scaled energy of the ratemap
(Klapuri 1999). The four representations were split into overlapping
blocks of 500 ms length, with a shift of 167 ms.

Since SED models were built from binaural signals, and the described
investigation among others was to analyze dependency on azimuths of
sources, two different feature sets were constructed:

mean-channel features Auditory representations were first aver-
aged over the left and right channel. Generating time-invariant
features by applying L-moments over time as described in Sec-
tion 3.1.1.1 finally amounted to 1082 dimensions per feature vector
in this set.

two-channel features Instead of averaging the auditory repre-
sentations over the two channels, features were constructed for
each channel separately. Applying the same procedure as for
the mean-channel features resulted consequentially in 2164 feature
dimensions.

The two-channel features were assumed to contain more information
about sound events that were emitted from sources at one side of
the head, but to also be more specialized to the particular azimuth
configuration used in training and hence more sensitive to deviations
therefrom.
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4.1.3 Training

Due to the high computational demand of the analyses conducted in
this part (cf. Section 4.1.4), SED models were built only for four of the
sound classes: alarm, crying baby, female speech, and fire. For these,
segment-based labels were produced as described in Section 3.1.2.1.
However, the sounds from all other classes of course still served as neg-
ative examples during the training and testing of these four classifiers.

For each of the four target sound types, binary one-vs-all classifiers
were trained with GLMNET single-conditionally, as described in Sec-
tions 3.2 to 3.4. Models were trained on three different (overlapping)
training-test-set splits. Each of the training sets consisted of 75 % of the
sound files, which amounted to roughly 75 000 samples for each scene.

To enforce the effect of SNR on training and testing, thus helping
systematic evaluation with respect to it, blocks with inactive distractor
source were removed, since sounds can exhibit silences and the SNR
naturally varies over time3. The distractor source was defined inactive
in a block if its energy in the block was below −30 dB compared to the
99th-percentile of the distractor energy in the whole scene-instance.

4.1.4 Evaluation

For this study, performance was evaluated either

• on test data from the same scene (hence combination of SNR and
azimuth configuration) as in training, called iso-testing, or

• on test data from a different scene than in training, which is called
cross-testing.

The first tests the achievable performance on this scene (with the used
sound data, features, algorithm, and methodology), the second tests
the robustness of models with respect to deviations from training
conditions.

Below, further in-between terms will be used:

• iso-azimuth to refer to tests where the same azimuth configuration
was used in training and testing, but where SNR values between
training and testing could differ, and

• iso-SNR to refer to tests where the same SNR was used in training
and testing, but where azimuth configurations between training
and testing could differ.

3 In scene rendering, the time-average SNR excluding silences is fixed, cf. Section 2.2.2.
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Figure 4.1: Iso- and cross-test performances of the scin f models, separately for
mean- and two-channel features, each boxplot aggregating results from the
three dataset splits, four target types, and all scenes with the respective
SNRs (denoted “@<snr> dB”). © 2017 IEEE (Trowitzsch et al. 2017)

Evaluation was carried out for the models on the three test sets
for each scene separately. With (68 + 5)× 3 = 219 (scenes from sets
1 and 2, data splits) single-conditionally trained models, therefore
219 × (68 + 5) ∼ 16k (models, scenes from sets 1 and 2) iso and cross
tests per class, it becomes apparent why only models of four target
classes were trained and tested for this study.

4.2 generalization of one-source models on two-source

scenes

In the first analysis, it was investigated how well sound detection
models trained on clean sounds (scenes set 1, cf. Section 4.1.1) generalize
to noisy situations with an additional distractor source present. For
this purpose, models trained on clean sounds (in the following with
the token scinf, for “trained single-conditionally on a scene with in f dB
SNR”) were iso-tested, as well as cross-tested on scenes from set 2,
where a distractor source emitted co-occurring sounds at SNRs of
10 dB, 0 dB, −10 dB and −20 dB.

Fig. 4.1 shows the test set model performances pooled over the four
target classes, 17 angular configurations, and three data set splits, for
each of the SNRs. The figure shows two groups of box-plots, correspond-
ing to mean-channel features (left) and two-channel features (right).
The first box-plot in each group corresponds to iso-testing (trained and
tested on clean sounds, with the same azimuth configuration), whereas
the next four plots correspond to cross-testing (trained on single-source



64 single-conditional models

scenes, tested on scenes with two sources; same target source azimuth
configuration) with increasing distractor energy level. On each box, the
central mark indicates the median, and the bottom and top edges of the
box indicate the 25th and 75th percentiles. The notches represent the
95 % confidence interval for the median, while the whiskers indicate
the minimum and maximum values.

While models trained on clean sounds perform well under iso-
conditions with a median balanced accuracy (BAC) of about 0.96, their
median cross-test performance is significantly worse, even when only a
relatively quiet distractor sound is added to the scene (SNR of 10 dB),
and decreases strongly further with decreasing SNR. There is no consid-
erable difference between the median performance of the mean-channel
and two-channel feature sets. This was expected, because in the case
of training on one-source scenes, models did not have to learn to favor
the stronger of the two channels for separating from a distractor source
– if only one sound is emitted at a time, both ears receive a sufficiently
strong signal, regardless of the azimuth the source is placed.

4.2.1 Achievable performance with specialized two-source models

This result gave rise to the question whether the bad generalization
of monophonic models to polyphonic data was due to the intrinsic
increased difficulty of the task, i. e. a better performance could not be
expected, or whether models trained on clean sounds might be sub-
optimal when applied in a setting where multiple sources are present
simultaneously.

To answer this question, a second analysis was conducted, where not
only the detection models trained on clean sounds were considered, but
also detection models trained on scenes with a distractor source (set 2

in Section 4.1.1). SNR and angular configuration were set to the same
values that were later used for testing (iso-testing). The corresponding
performances are shown in Fig. 4.2, pooled again over model tests of
all azimuth configurations, dataset splits, and target classes.

Again a drop in performance with increasing noise level is observed
– however, it is much less steep compared to Fig. 4.1. It can be seen
that for each SNR, the iso models perform considerably better than the
models trained only on clean sounds, with differences in BAC up to
0.15. In addition to this, the performance decrease with SNR can be
observed to be shaped differently from the performance decrease of the
clean models, namely going from a small drop to higher ones, instead
of the other way around.

For models trained on scenes set 2, the iso-test performances are
notably higher for the two-channel than for the mean-channel feature
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Figure 4.2: Iso-performances of models trained at various SNRs, separately for
mean- and two-channel features, each boxplot aggregating results from the
three dataset splits, four target types, and all scenes with the respective
SNRs (denoted “@<snr> dB)”. © 2017 IEEE (Trowitzsch et al. 2017)

set, and the difference grows with decreasing SNR. Contrary to the
case of single-source training of models, the two-channel feature set
enables models in training on two-source scenes to profit from angular
separation between target and distractor sources by favoring the channel
on the side of the target source.

These results suggest that models trained on clean sounds do not gen-
eralize well to realistic acoustic environments occupied by additional
distractor sound sources. Instead, models specialized to the particular
average SNR condition at training time were shown to yield much bet-
ter performance at test time. One likely explanation is that the models
trained on clean data emphasize features that are well discriminating in
the monophonic case, but no longer in the polyphonic scenarios. How-
ever, if distracting sounds are already superimposed during training,
models obtain a higher robustness against such noise.

Note that the general sound class used for generating the distractor
signals contains a very diverse set of environmental sounds, hardly
showing any similarities other than being a sound at all, and that
neither distractor nor target sounds used for testing have been involved
in the training process at any point. Therefore, the models could not
adapt to a particular type of distractor signal and filter it out, but rather
had to learn to be robust against a wide spectrum of possible distractors
by finding the features that uniquely discriminate the target class from
all others.
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SNR, averaged over all iso-azimuth scenes, data set splits, and sound classes.
© 2017 IEEE (Trowitzsch et al. 2017)

4.3 generalization across conditions

The previous analysis addressed the generalization of monophonic
models to superimposed sounds from two-source scenes. In the fol-
lowing, the question of how robust models are against deviation from
training conditions is approached more generally, and it is investi-
gated in how performance of such cross-tests depends on the similarity
between training and test conditions.

In the scenes with two simultaneously present sound sources two
factors describe the conditions: (i) the SNR between the two sources, and
(ii), the azimuths of the two sources. In order to understand how cross-
testing the two factors affects generalization, each factor was modulated
separately, and performed iso-azimuth and iso-SNR (cf. Section 4.1.4)
tests. These two test paradigms have an overlap: the tests in which both
azimuth and SNR are iso-tested, i. e. the tests that perfectly match the
training conditions.

4.3.1 Cross-SNR generalization

The effects of average distractor energy level differences between testing
and training on the generalization performance are depicted in Fig. 4.3,
summarizing the iso-azimuth tests. The graphs show the BAC, averaged
over all azimuth configurations, data set splits and target sound types,
as a function of the SNR at test and train time. Results are plotted
separately for mean-channel and two-channel feature sets.

The values on the diagonals, i. e. values of models trained at the same
SNR as tested, are highest with respect to fixed testing SNRs. As the
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training SNR deviates away from the testing SNR, the performance com-
pared to iso-models decreases monotonically, across all testing SNRs,
and in both directions of deviation. There are a few combinations with
only small effects, like testing at 10 dB of models trained at 0 dB or vice
versa, but in general the performance decrease is quite large. Looking
at it the other way around, i. e. at a fixed training SNR, performances
do (mostly) increase for higher testing SNRs, but never reach the values
of models that were trained at the same SNR.

As was observable in the study above, for training or testing SNRs
below in f dB, in general the two-channel feature set models performed
stronger.

4.3.2 Cross-azimuths generalization

In order to assess the effect of changing the angular configuration of
target and distractor source, a simple (geometric) distance measure for
two-source azimuth configurations was defined.

Let (φ1, θ1) and (φ2, θ2) be two azimuth configurations c1, c2. The
distance δ(c1, c2) ∈ [0°, 360°] between these two azimuth configurations
is defined as

δ(c1, c2) := α(φ1, φ2) + α(θ1, θ2), (4.1)

where α(ϕ1, ϕ2) ∈ [0°, 180°] is the smallest angular distance between
two azimuths ϕ1, ϕ2 ∈ (−180°, 180°], defined by

α(ϕ1, ϕ2) := min (|ϕ1 − ϕ2|, 360° − |ϕ1 − ϕ2|) . (4.2)

Fig. 4.4 shows the average BAC of the iso-SNR tests as a function of
this distance δ between testing and training azimuth configurations, for
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both the mean-channel and the two-channel feature set. The average
includes all iso-SNR performances of the three data set splits and four
target classes. Three observations are notable:

• For the mean-channel feature set, the performance decreases only
slightly with the distance in angular source configuration. The
increase at the end of the distance curve can be explained by
the geometric nature of the distance measure, which does not
account for symmetry effects in binaural auditory perception
(there is symmetry between sounds coming from the front and
the back of the head, i. e. models trained for a particular azimuth
configuration in the frontal hemisphere may also work well for
the mirrored configuration in the back hemisphere).

• For the two-channel feature set, the performance drops much
more steeply as δ increases. For a δ of 180°, the drop in average
BAC is about 0.11.

• For δ = 0° (iso-azimuth), the two-channel feature set models exhibit
a higher average performance than the mean-channel models.
The two curves cross at a distance of about 90°. This shows that
sound event detection models with the two-channel feature set
are better at making use of directional separation of sources,
but consequently are at the same time more strongly affected by
deviations of the true (testing) angular source configuration from
the training situation.

4.4 summary

In this chapter,

• it was shown that binaural sound event detection models trained
on one-source scenes degrade strongly in cases when a distractor
source is present simultaneously emitting unspecific sounds, but
by superimposing highly variable general sounds at training time,
models can learn to focus on the target class in the presence of
distracting sounds.

• it has been established that the performance of such models
still depends on how similar the training conditions (azimuth
configurations and SNRs) are to test conditions. In particular,
deviations in SNR lead to distinct performance drops. Effects of
deviations in the azimuth configuration were different for the
two feature sets that were analyzed: while the mean-channel
feature set handled deviations in this parameter more tolerantly
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than the two-channel set, the latter showed significantly better
performance if training and testing configurations were close
enough.

• methodology for investigation of model robustness with respect
to acoustic conditions has been introduced.

All in all, the results presented here make clear that models trained
at particular auditory conditions are specialized to these conditions, and
do not generalize well to different conditions.
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M U LT I - C O N D I T I O N A L M O D E L S : D ATA - D R I V E N
R O B U S T N E S S

This chapter is based on Ivo Trowitzsch et al. 2017. “Robust Detection of Environmental

Sounds in Binaural Auditory Scenes.” IEEE/ACM Transactions on Audio, Speech, and

Language Processing 25 (6): 1344–1356.

In the last chapter, the impact of deviations in acoustic conditions from
the ones in sound event detection (SED) model training was analyzed.
Section 4.3 showed that the application of models is very sensitive
to deviations of the environment from training conditions. Practical
applications are confronted with two problems:

1. Training specialized models for every possible combination of
conditions would be extremely demanding, if not prohibitive.

2. Inferring the current conditions is very difficult, in particular for
the signal-to-noise ratio (SNR), which also varies strongly over
time. Unfortunately, model performance is particularly sensitive
to the deviation of the SNR from the training situation.

In this chapter, a method to increase the robustness of SED models by
performing multi-conditional (MC) training is suggested and evaluated.
In this scheme (introduced in Section 3.2.2), training data for model
building gets composed from many different auditory scene configu-
rations of target and superimposing sources. As in the chapter before,
SNRs and angular source directions were varied — multi-conditional
models varying room acoustics are investigated in the next chapter.

It will be shown that it is possible to a large extent to make models
learn robustness against varying and deviating acoustic conditions, com-
pletely data-driven, and, looking at it the other way around, specifically
without any engineering like noise-suppression, source separation, et
cetera.

First, Section 5.1 describes any particularities or amendments to Chap-
ters 2 and 3 with respect to data and methods concerning this chapter.
Study results are presented then starting in Section 5.2, which elaborates

71
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Figure 5.1: Depiction of sets of scenes. Black filled circles depict distractor
sources, target sources (green) are highlight by an enclosing open circle.
Each scene is indicated by one circle fragment. The head is at the center. In
(b), some scenes are mirrored along the 0°-axis such that distractor sources
always are positioned counter-clockwise, as was the interpretation in the
analysis of azimuth-configuration dependence (Section 5.3).

on overall and SNR-specific performance of multi-conditional models in
comparison to single-conditional ones; Section 5.3 analyzes dependence
on actual azimuth configurations. In Section 5.4, the multi-conditional
approach is applied to Detection and Classification of Acoustic Scenes
and Events (DCASE)-2013 challenge data and performance compared
to other systems.

5.1 data and methods

Data and methods in this chapter follow up on the ones described
in Section 4.1, that is, elucidations given therein are applicable here
too. For this study, mainly auditory scene sets were added to the
ones defined in the chapter before; feature sets, model training, and
evaluation in large parts are equal to the single-conditional training.

5.1.1 Auditory scenes

The original sound data for synthesizing auditory scenes was taken
from the NIGENS database, described in Section 2.1. For methodology
and terms regarding the scene rendering, confer Section 2.2.

Additionally to the scene sets defined in Section 4.1.1, the following
sets were used in this study:
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3. Scenes containing two point sources emitting superimposed sounds.
The target source emitted sounds from all classes, including “gen-
eral”, the distractor source emitted sounds only from the general
class. Target and distractor sound sources were located at the
following combinations of azimuths1:

• 0°/{0°, 45°}

• 45°/{135°, −135°} & −45°/{−45°, −90°}

• 90°/{180°, −90°} & −90°/{−45°, 90°}

• 135°/{−135°, 45°} & −135°/{−90°, 45°}

• 180°/{180°, 0°}

Each of these azimuth combinations got combined with four
different SNRs (10 dB, 0 dB, −10 dB, −20 dB). A one-source scene
was added for each of above target source azimuths to this set.
Together, this amounted to 16 × 4 + 8 = 72 scenes in this set.

4. Four scenes containing a non-head-related target signal with
sounds from all classes, and a non-head-related distractor sig-
nal with sounds from the general class, at SNRs of 10 dB, 0 dB,
−10 dB and −20 dB. A scene with only one non-head-related
source emitting sounds from all classes was added.

In set 3, the target and distractor sources are distributed uniformly
around the circle. This set was used for training the multi-conditional
point-source models. Since it provided higher angular resolution and
to keep it comparable to single-conditional performance, set 2 defined
in Section 4.1.1 was used for testing. Fig. 5.1 depicts the two sets.

5.1.2 Training

For multi-conditional model building, the same feature sets as in the
study on single-conditional models was used, cf. Section 4.1.2, and
segment-based labels as described in Section 3.1.2.1.

Two types of mc models were developed:

1. mcnhr: Models trained by combining data from all 5 non-head-
related signal configurations from scene set 4 in Section 5.1.1.
Specialization to any directional head-related changes of the sig-
nals was impossible for these models since the signals didn’t
convey these by definition (cf. Section 2.2.2).

1 listed as: target source azimuth / set of azimuths for distractor source
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2. mcps: Models trained by combining data from all 72 point source
configurations from scene set 3 in Section 5.1.1. In this set, target
and distractor point sources were uniformly distributed around
the circle. In contrast to the mcnhr models, in this case directional
and head-related changes of the signal were included in the
training, and investigation directed at whether this model type
would also be able to generalize across azimuth configurations.

Training was performed as with the single-conditional models (Sec-
tion 4.1.3), with the difference of using training data across above
specified scenes multi-conditionally (Section 3.2.2). For each model
training, 100 000 samples were subsampled as described in Section 3.2.3
across samples from all scenes (about 5 400 000).

5.1.3 Evaluation

To compare the generalization performance of multi-conditional models
to single-conditional models, single-conditional performances were
summarized in the following different paradigms:

• sciso: training and testing under the same conditions, both with
respect to SNR and azimuth.

• scisoAzm: training and testing were performed at the same azimuth
configuration. All combinations of SNRs in training versus testing
were evaluated (that is, including both iso and cross). This displays
a situation in which no information about the true testing SNR is
available and thus a model trained at an arbitrary SNR is chosen.

• sc: training and testing at arbitrary iso- and cross-configurations,
resembling a situation in which there is no information about the
true SNR and azimuth configuration.

The multi-conditional models were tested on the same single-conditional
data as the sc models, using sets 1 and 2 defined in Section 4.1.1. Note
that the mcnhr models were also tested on the point-source test scenes;
training with non-head-related signals was only a mean to gain models
robust to varying and deviating directional source configurations.

5.2 multi-conditional model performance

First, results of “grand-average” evaluation are presented, that is, with-
out analyzing performance condition-specific, but rather pooling across
all conditions. This is then followed by studying the dependence of
different model types’ performances depending on the testing SNR.
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Figure 5.2: Performances of multi-conditional and single-conditional models
under different testing paradigms (iso and cross), boxes pooling over SNRs
{in f , 10, 0,−10,−20}, all corresponding iso- and/or cross-azimuth config-
urations, data set splits and sound classes. © 2017 IEEE (Trowitzsch et
al. 2017)

5.2.1 Grand-average multi-conditional performance

In Fig. 5.2 depicts generalization performances of the mcnhr and mcps
models next to the performances of the single-conditional models. The
figure shows box-plots of the balanced accuracies (BACs) for each
model/test situation. Results were pooled over all azimuth configura-
tions in the respective test paradigm, all SNRs, all data set splits, and
all target sound classes, both for the mean-channel and two-channel
feature set. On each box, the central mark indicates the median, and the
bottom and top edges of the box indicate the 25th and 75th percentiles.
The notches represent the 95 % confidence interval for the median,
while the whiskers indicate the minimum and maximum values.

The best median performance is obtained for the sciso models for both
feature sets (the two-channel sciso models stronger than mean-channel).
This is not surprising, as these models are specialized to the particular
angular source configuration and SNR present in the test set. The
scisoAzm models, which are only specialized to the correct angular source
configuration but trained at an arbitrary SNR, perform on average much
worse (about 0.1). For the “arbitrary” sc model, performance drops even
further, by about 2% on the mean-channel feature set and by about
4% on the two-channel feature set (recall from Section 4.3 that the
two-channel models suffer from stronger degradation in cross-azimuth
situations).
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Figure 5.3: Performance of different model groups at particular SNRs, averaged
over all azimuth (iso-azimuth, for sc models) configurations, data set splits,
and sound classes. © 2017 IEEE (Trowitzsch et al. 2017)

The multi-conditional non-head-related (mcnhr) models, which were
not trained on signals containing head-related directional information,
(i) perform on average slightly better than the scisoAzm models, although
the latter were specialized on the correct angular configuration, and
(ii) clearly outperform the sc models trained at an arbitrary SNR and
azimuth configuration. This means that in the absence of reliable in-
formation about the testing conditions, which would allow a suitable
choice of trained model, the mcnhr models offer a stronger performance
– without the need to train many models and predetermine conditions.

However, the multi-conditional non-head-related models are clearly
outperformed by the multi-conditional point source models (mcps),
which were trained on a directionally on the circle uniformly dis-
tributed set of target and distractor sources under varied SNR. The
median performance of the mcps models lies close to the performance
of sciso models that were trained at the true angular source distribution
and SNR. Note that this is the case even though most of the azimuth
configurations from set 2 that had been used for testing are not in the
training set for the mcps models, which underlines the strong general-
ization of these models. All models except the mcps models exhibited a
higher median performance on the two-channel feature set than on the
mean-channel feature set.

5.2.2 Dependence of multi-conditional performance on SNR

In Fig. 5.3, a more detailed plot is given of how the mcnhr and mcps
models compare to single-conditional models that were trained at
specific SNRs and tested iso-azimuth at all SNR conditions. It shows the
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average BAC as a function of the SNR at test time for the mean-channel
feature set (a), and the two-channel feature set (b).

The following effects are observed:

• The performance of the mcps models always lie close to the iso-
SNR/iso-azimuth sc performance, and even exceed it on the mean-
channel feature set for low SNRs. When not being able to use the
features of both channels to better separate spatially distributed
sources, the mcps models seem to generalize better at low SNRs
than the specialized sciso models. With the two-channel feature
set, the single-conditional models perform better in iso-SNR/-iso-
azimuth tests for all SNRs.

• The mcnhr models do not quite reach the performance of the iso-
SNR/iso-azimuth sc models, but outperform in many cross-SNR/iso-
azimuth tests. This is without making use of any directional and
head-related information during the training phase.

Inspecting the sc models again, the performance curves of the scin f
models are exhibiting a convex shape, whereas the curves of other sc
models are mostly concave. A possible explanation for this finding is
that the models trained on clean sounds have not learned to accom-
modate the presence of simultaneous distractors at all, and are more
strongly affected even by small amounts of noise than the other sc
models. For these other sc models, performance leveling out at SNRs
higher than the SNR at which they were trained can be observed (sc−10
shows this most obviously). One reason for this could be that these
models specialize on features that do not get more discriminative with
increasing SNR.

In summary, the results show that multi-conditional training by
including different SNRs in the training data produces robust models
that perform well over a wide range of SNRs. Although this also works
if training is conducted with non-head-related signals, close-to-optimal
performance can be achieved when the multi-conditional training is
conducted on point sources varying not only in SNR but also including
multiple angular source configurations.

5.3 dependence of performance on azimuth configura-
tion

After studying the dependence of models on SNR, the azimuth config-
uration’s influence on sound event detection performance was investi-
gated, with the implication of addressing whether a binaural robotic
system could improve performance by turning its head.



78 multi-conditional models : data-driven robustness

18
0°

distractor
source +9

0°

-9
0°

0°

target
source

Figure 5.4: Compared to Fig. 2.3, the head has turned and the target-distractor
azimuth configuration is now −22.5°/67.5°. © 2017 IEEE (Trowitzsch et
al. 2017)

-45 -22.5 0 22.5 45 67.5
target azimuth (distractor 45° clockwise)

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

BA
C

sciso (mch)

mcps (mch)

mcnhr (mch)

mcnhr (2ch)

sciso (2ch)
mcps (2ch)

(a) 45° azm distance

-90 -67.5 -45 -22.5 0 22.5 45 67.5 90
target azimuth (distractor 90° clockwise)

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

(b) 90° azm distance

-90 -67.5 -45 -22.5 0 22.5 45 67.5 90
target azimuth (distractor 180° clockwise)

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

(c) 180° azm distance
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classes; plotted over target azimuth with the distractor always put counter-
clockwise. © 2017 IEEE (Trowitzsch et al. 2017)

For this purpose, model performance was analyzed separately for
all azimuth configurations of set 2 except 0°/0°. These were assigned
to three groups based on the azimuth distance between target and
distractor source (α), namely 45°, 90°, and 180°. Changing the azimuth
configuration while keeping α fixed can be interpreted as a rotation
of the head (see Fig. 5.4), if target and distractor are kept in the same
topology.

Exploiting the mirror symmetry between right and left hemisphere
of the binaural system, performances of models tested and trained at
azimuth configuration t◦/d◦ could be re-interpreted as performances
of models tested and trained at azimuth configuration −t◦/−d◦. This
trick enabled interpreting model performances as if all azimuth config-
urations had been ordered with the distractor put counter-clockwise
from the target source, see Fig. 5.1b.



5.3 dependence of performance on azimuth configuration 79

For each azimuth distance and target azimuth, the BAC of multi-
conditional models trained on non-head-related sounds (mcnhr), multi-
conditional models trained on point source sounds (mcps), and single-
conditional iso-models (sciso) was evaluated. The results of these tests
at an SNR of −20 dB2 are shown in Fig. 5.5; separately for azimuth
distances α = 45° (a), α = 90° (b), and α = 180° (c). The x-axis denotes
the azimuth of the target source; the distractor is always assumed to
be counter-clockwise from the target at a relative angle of α. Color and
line style indicate the different models sciso, mcps and mcnhr, each on
the mean-channel and the two-channel feature set indicated through
different markers.

Strong effects (up to around 0.13 BAC difference between best-
performing and worst-performing head orientation) are found with the
following qualities:

• For the sciso and mcnhr models, the two-channel feature set mod-
els perform better than their mean-channel counterpart on all
azimuth configurations, but the difference between the two varies
greatly with head orientation and azimuth distance.

• A higher performance can be reached with larger azimuth dis-
tance3, although a saturation seems to be reached at α = 90°. This
follows the intuition that sources lying closely together are harder
to discriminate.

• The three azimuth distance groups show distinct performance
profiles over the target azimuth.

1. For α = 45°, best performance can be reached at a target az-
imuth of 0°, for α = 90° performance peaks at −22.5° target
azimuth (distractor thus at 67.5° – the situation depicted in
Fig. 5.4), and for α = 180°, the highest performance is found
at a configuration with the target at ±67.5°. All of these are
configurations with the nose of the head being close to the
angle bisector of target and distractor azimuths.

2. Sub-optimal performance is particularly found at configura-
tions that put both target and distractor on one side of the
head, which is well-observable in the 90° azimuth distance
plot, and at configurations where one source is in the front
and the other is in the back, which is well-observable in the
180° azimuth distance plot.

2 The effect was stronger for lower SNRs, since higher distractor energy increased the
positive impact of spatial separation.

3 results for the 0°/0°-condition, i. e. α = 0°, are not shown in this figure, but performance
is lower than for the other azimuth distances.
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• The performance differences between head orientations are stronger
for the two-channel feature set (for sciso and mcnhr models). This is
to be expected; it is more of a surprise that even the mean-channel
feature set exhibits such a clear effect.

• Although the mcnhr models did not learn any directional infor-
mation during training and the mcps models had to learn from
uniformly distributed azimuth configurations, the performance
profiles of the three different model types for varying head orien-
tations are, qualitatively, very similar. This indicates that changes
in head orientation have beneficial or detrimental effects on perfor-
mance that are similar for all models, but that the effect size differs
between models. Single-conditional models that are specialized to
particular azimuth configurations can more effectively exploit the
spatial separation of target and distractor at the beneficial head
orientations than multi-conditional models.

It can thus be concluded that the azimuth configuration plays a
substantial role not only for single-conditional models, but also for
multi-conditional models, even though they have learned to generalize
across target and distractor sources being distributed around the circle.
In a binaural system able to rotate the head, this configuration can
be influenced such that the nose directs between the two sources, to
increase detection accuracy.

5.4 multi-conditional dcase-2013 models

To also validate the multi-conditional approach on other publicly avail-
able data, models were built using the DCASE-2013 (Dan Stowell et
al. 2015) event detection Office Synthetic (OS) task training data, and
tested on both the OS and Office Live (OL) test data.

The DCASE training data consists of 320 audio files from 16 sound
classes (from office environments, like speech or printer) containing
individual sound events. Single-conditional and multi-conditional mod-
els were trained in similar fashion as before, with the difference that
only non-head-related signals instead of point sources were used (be-
cause DCASE tests are not binaural). Also, since a “general” class is
not employed in DCASE, the distractor source emits sounds from all
but the target class. Models were optimized using BAC.

The DCASE testing data consists of 12 (OS) plus 11 (OL) wav-files
containing sequences of overlapping (OS) or non-overlapping (OL)
sound events. The OL test files are actual recordings while the OS files
are “synthetic” mixtures. The frame-based evaluation was conducted
on non-overlapping 10 ms blocks per file.
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Table 5.1: Performance on DCASE-2013 event detection test sets.

model BACos F1os BACol F1ol

scin f 59.20 17.73 68.28 16.65

sc10 63.53 21.21 66.85 17.93

sc0 67.85 23.08 68.30 20.30

sc−10 71.50 22.78 72.62 17.05

sc−20 68.43 18.43 67.86 11.53

mcnhr 71.97 24.56 73.91 18.51

dcasebaseline – 12.76 – 10.72

dcasewinner – 21.28 – 61.52

Table 5.1 presents the results of the models on the OS task (columns
2 and 3) and on the OL task (columns 4 and 5), BAC and F-score
values are given. For comparison, the DCASE-2013 baseline system’s
results as well as the challenge-winning system’s results are added
(“GVV” system for the OS task, an NMF decomposition with HMM
post-processing (Gemmeke et al. 2013), and “SCS_2” system for the
OL task, a Gabor filter bank feature extraction followed by a 2-layer
HMM (Schröder et al. 2013), overview in Dan Stowell et al. (2015)).
All performance values were computed using the published metrics
code of the challenge to ensure results are completely comparable,
F-score values were thus micro-averaged (cf. Section 3.3.3). BAC value
computation was added to this code (thus for the DCASE systems these
numbers are not available), macro-averaging over the 12 respective 11
performances was applied here.

The following points are noteworthy:

• Most importantly and supporting the results on NIGENS pre-
sented above, the multi-conditional model performs better than
the single-conditional models, demonstrating the increased ro-
bustness and invariance to different conditions.

• On the (supposedly more difficult) OS task, the mcnhr model
outperforms the winner of the DCASE-2013 challenge. Without
any temporal modeling (through HMM or the like) and detecting
purely block-based, furthermore without utilizing the DCASE
development data sets which would improve model selection, this
is only a lower bound on the possible performance of this training
scheme. It serves though as validation of the reasonability of the
approach as well as of the used algorithm and features.
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• Comparing the F-scores of the OL task, the multi-conditional
model is far away from the winning system, but still reason-
ably over the provided baseline system’s performance. Again,
the DCASE development set was not utilized, which may have
been particularly useful for the OL task, because it included back-
ground noise not included in the training set. Also, models were
optimized for BAC (with consistent value compared to the OS
task), and thresholds for logistic regression models optimizing
BAC will usually not optimize the F-score. It is thus fair to assume
that the models easily could be tuned to a higher F-score.

Fig. 5.6 shows – similar to the plots in Fig. 5.3 – in more detail the
behavior of the single-conditional and multi-conditional models in
dependency of the difficulty of the test case. Unlike before, difficulty
here not only refers to the SNR between target and distractor source, but
is a combination of (a) SNR between events and background noise and
(b) “density” of events, i. e. their degree and frequency of overlap. As in
the extensive tests on NIGENS data, the multi-conditional outperforms
almost all single-conditional models on almost all conditions.

5.5 summary

In this chapter,
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• the use of multi-conditional training was proposed and intro-
duced in order to obtain robust classifiers independent of testing
condition, which in real-world applications can change quickly.

• it was found that multi-conditional training on point source super-
positions from multiple azimuth configurations at multiple SNRs
resulted in models with very stable performance competitive to
specialized models trained under exact testing conditions, and
that clearly outperformed single-conditional models trained at
arbitrary SNRs and azimuth configurations. Two-channel features
do not provide an advantage for these models.

• the approach was further validated by application of multi-conditional
models onto the DCASE-2013 event detection challenge data.

• the effect of azimuth configuration and head orientation on sound
event detection performance was investigated for different az-
imuth distances between target and distractor source. It was
found that for both multi-conditional and single-conditional mod-
els, there is an optimal head orientation depending on the azimuth
distance, at which the performance is maximized.

In conclusion, multi-conditional point-source models are a good choice
for practical binaural applications: only a single model needs to be
trained for each target sound class, inferring the conditions a priori is
not required, the resulting models are robust with respect to conditions
and even reach a close-to-optimal performance.
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M U LT I - C O N D I T I O N A L M O D E L S F O R R E V E R B E R A N T
S C E N E S

This chapter is based on results produced in the context of Jan Dikow. 2018. “Analyse
des Einflusses von Räumlichkeit auf die Robustheit maschineller Geräuscherkennung in
binauralen Hörszenen.” Master thesis, Technische Universität Berlin.
The thesis was conceptualized and supervised by me, data (NIGENS database) and tools
(AMLTTP) were also provided. The actual design of experiments, including the search for
suitable BRIRs, the experiments’ coding and conduction was done by Jan Dikow. Graphs,
texts and analyses in this chapter are new and produced by me.

In Chapters 4 and 5, the sensitivity of single-conditional sound event
detection (SED) models was analyzed regarding deviations of acoustic
conditions from training conditions; and multi-conditional modeling
proposed and investigated to overcome this behavior and gain robust
performance. So far, analysis was conducted with respect to signal-to-
noise ratio (SNR) and azimuth, under free-field (anechoic) conditions.

However, in realistic applications, there will often be room acoustics,
that is, specifically reverberation, involved. While it is more possible to
know room conditions of models in application in advance than it is for
the SNR or azimuth configuration, one can think of more applications
in which models should be robustly able to detect in varying or a priori
unknown room acoustics, than the other way around.

Therefore this chapter presents a study on the effect deviations of
room acoustics impose on SED models trained at other room conditions,
and demonstrates that the scheme of multi-conditional training is
applicable also to this facet of robust model building.

Section 6.1 introduces particularities or amendments to Chapters 2

and 3 and Sections 4.1 and 5.1 with respect to data and methods
concerning this chapter. Analysis of single-conditionally trained models’
performance and robustness is presented in Section 6.2, followed by
Section 6.3 in which the insensitivity of multi-conditionally trained
models is demonstrated.
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6.1 data and methods

Data and methods in this chapter follow up on the ones presented in
Sections 4.1 and 5.1, so descriptions given therein are applicable here
too. For this study, different auditory scene sets were defined; feature
sets, model training, and evaluation in large parts are equal to the
single- and multi-conditional training methodology introduced before.

6.1.1 Auditory scenes

The original sound data for synthesizing auditory scenes was taken
from the NIGENS database, described in Section 2.1. For methodology
and terms regarding the scene rendering, confer Sections 2.2 and 2.2.2.

Room acoustics

Head-related impulse responses (HRIRs) and binaural room impulse
responses (BRIRs) were selected for the experiments in this study to
exhibit a wide range of different acoustics:

• The anechoic HRIR with KEMAR manikin at 3 m distance (Wier-
storf et al. 2011), which was used in Chapters 4 and 5.

• Two BRIRs recorded in the audio lab of the University of Rostock
with a KEMAR manikin at about 2 m distance (Erbes et al. 2015).
The lab is of shoe-box type, sized 5 m × 5.75 m × 3 m height, has
plastered walls and optional broadband absorbers (in which case
it is also almost anechoic).

• Six BRIRs recorded in a lecture room from the Aachen Impulse
Response (AIR) database described in Jeub et al. (2009). The room
is of size 10.8 m × 10.9 m × 3.15 m height, with parquet, glass
windows, one concrete wall, wooden tables and chairs. A HEAD
HMS2 dummy head with microphones positioned next to the
pinna (that is: outside the ear) was placed distanced between
about 2 m to 10 m from the source.

• Six BRIRs recorded in the Aula Carolina, an old church, taken
from an updated version of above mentioned AIR database. The
room has stone floor and walls, large glass windows, and very
high ceiling, size 30 m × 19 m. Same head and microphone posi-
tion as above, at six different distances from the source between
1 m to 15 m.

• Two BRIRs recorded in the Promenadikeskus concert hall in Pori,
Finland (Merimaa et al. 2005). It is sized 33 m × 23 m × 15 m
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Table 6.1: Room acoustics configurations overview

room abbr . distance (m) T60 (s) BR D50 (%)

free-field ane 3 0.07 1.4 100

audio lab URO (abs.) labAbs 1.88 0.29 1.27 98

audio lab URO lab 1.88 1.06 1.33 83

lecture room lr2 2.25 0.86 0.96 93

lr4 4 0.85 0.86 86

lr6 5.56 0.89 0.92 73

lr7 7.1 0.89 0.95 71

lr9 8.68 0.88 0.92 65

lr10 10.2 0.87 0.95 62

concert hall co5 4.6 2.22 1.09 68

co12 11.7 2.22 1.08 21

church ch1 1 3.43 2.53 96

ch2 2 3.47 2.21 91

ch3 3 3.51 2.26 85

ch5 5 3.50 2.21 72

ch10 10 3.45 2.49 31

ch15 15 3.47 2.13 16

height, and has a variety of diseffusers and reflectors to enhance
acoustics for audience and musicians, rising floor, upholstered
seats, and balconies on the sides. A Brüel and Kjær HATS dummy
head with in-ear microphones was used at two distances to the
source of about 5 m and 12 m.

Table 6.1 lists all room/position configurations together with reverbera-
tion times T60, bass ratio BR, and Deutlichkeit D50 (all computed from
the actual BRIRs, cf. Weinzierl (2008))).

Scenes rendered

For each of the room/position configurations, two scenes were ren-
dered:

1. A single-source scene with the source emitting sounds from all
classes. The head faces the source, i. e., the source’s azimuth is
(about) 0°.
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2. A two-source scene with the target source emitting sounds from
all classes, including “general”, and the distractor source emitting
sounds only from the general class. Both sources are placed at the
same position with the head facing the sources, i. e., the sources’
azimuths are (about) 0°. The SNR was set to 0 dB.

All experiments were restricted to using scenes either of type 1 or type
2, both for training and testing. That is, no cross-testing with regard
to the number of sources was conducted, and no multi-conditional
training across number of sources was performed.

6.1.2 Training

As in Chapters 4 and 5, the study was restricted to the four sound
classes alarm, crying baby, female speech, and fire. For each of these
four target sound types, binary one-vs-all classifiers were trained with
GLMNET single-conditionally (models in the following abbreviated
sc) or multi-conditionally (models abbreviated mc), as described in
Sections 3.2 to 3.4. Models were trained on four overlapping training-
test-set splits, each of the training sets consisting of 75 % of the sound
files.

Single-conditional models were developed from the following 9
room/position configurations: ane, labAbs, lab, co5, co12, lr2, lr10, ch1,
ch10. (Confer Table 6.1 regarding the abbreviations.)

Multi-conditional models were developed from the following config-
urations:

• mc1: ane + ch10

• mc2: ane + ch10 + lr10

• mc3: all of above stated configurations used for sc model training.

Since the analysis in Chapter 5 revealed that for the superior multi-
conditional (point-source) models, the two-channel feature set does not
yield advantages, the study was confined to the mean-channel feature
set, cf. Section 4.1.2.

6.1.3 Evaluation

For performance evaluation, the terms of iso- and cross-testing in-
troduced in Section 4.1.4 were adhered to, relating not to SNRs and
azimuth configurations, but to the particular room acoustics configura-
tions used for training and testing.
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To compare the generalization performance of multi-conditional
models to single-conditional models, single-conditional performances
were summarized in the following different paradigms:

• sciso: training and testing under the same conditions, both with
respect to SNR and azimuth.

• scisoRoom: training and testing were performed in the same room.
All combinations of positions in the room in training versus
testing were evaluated (that is, including both iso and cross).

• sc: training and testing at arbitrary iso- and cross-configurations,
resembling a situation in which there is no a-priori information
about the true room acoustics.

The multi-conditional models were tested on the same single-conditional
data as the sc models. Evaluation was carried out for the models on
the four test sets for each scene separately. Since results for both scene
types (one-source and two-source) were similar with respect to behavior
regarding room acoustics1, in the following, they are always pooled
together and the different room/position configurations are referred.

6.2 performance of single-conditional models

Two questions are to be answered in the evaluation of single-conditional
models in this section:

1. How well can optimally trained SED models perform under dif-
ferent room acoustics?

2. How does generalization of models across room acoustics depend
on the training acoustics?

Investigation is started with a special case of question two and the
question: is it good enough to train sound event detection models
in free-field conditions? Do these models generalize to other room
acoustics? Fig. 6.1 therefore presents model performances of the scane
models, which were trained single-conditionally on the anechoic HRIR,
both iso-tested on the same room, and cross-tested on the other 16
room acoustics. Boxes pool performances from the four dataset splits,
four sound target classes, and two scenes; central marks indicate the
medians, bottom and top edges of the boxes indicate the 25th and
75th percentiles. The notches represent the 95 % confidence interval for
the median, while the whiskers indicate the minimum and maximum
values.

1 of course the one-source scenes obtained higher detection performances
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Figure 6.1: Iso- and cross-test performances of the scane models, each boxplot
aggregating results from the four dataset splits, four target types, and two
scenes from the respective room/position (denoted “@<roomPos-abr>”).

From these results, it is very clear that models trained under free-
field conditions do not perform well on other room situations. A strong
decrease of performances can be observed for all but the labAbs config-
uration (which however also exhibits moderately lower performance).
The worst cross-performance is obtained in the Aula Carolina (church)
room with 15 m distance from the source — also intuitively the room
acoustics situation most different to an anechoic chamber.

6.2.1 Achievable performance for different acoustics

To look at whether the low performances of above tests are due to
bad generalization of the scane models, or due to intrinsic difficulty of
sound event detection in the other rooms, sciso performances have to
be compared, that is, the performances of the models trained under the
same condition as tested.

Fig. 6.2 shows a box-plot of the 9 single-conditional iso performances,
and it is apparent that room acoustics have no significant effect on the
fundamentally achievable detection performance, at least not in the
regions they were varied here. Medians, 25th and 75th percentiles are
almost the same at all configurations. The low cross-test performance of
the anechoic model hence is bad acoustic generalization (specialization
to the anechoic case).
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Figure 6.2: Iso-test performances of single-conditional SED models in different
rooms. Each boxplot aggregates results from the respective models from
the four dataset splits, four target types, and two scenes from the respective
room/position (denoted “@<roomPos-abr>”)

6.2.2 Test performances across room acoustics conditions

If in principle achievable performances are the same for different room
acoustics, the question is how cross-test performances depend on the
used room/position configuration in training. Additionally to the re-
sults presented in Fig. 6.1, Fig. 6.3a depicts the average performance of
all test/training configuration combinations. Training room acoustics
are put along the x-axis, test configurations along the y-axis. Configu-
rations are ordered by cross-test performance with respect to the scane
iso-performance, with configurations from the same room next to each
other. Combinations inside one room (isoRoom) are highlight by thin
frames.

Several things are observable:

• As expected, iso-performances are highest.

• For testing under room acoustics other than anechoic, the two
training conditions ane and labAbs (which is almost anechoic) are
producing very bad-performing models.

• Iso-room test performances are high, that is, the differences in
room acoustics introduced through varying distances and posi-
tions in rooms are having small (but observable) impact.
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• Models trained at (supposedly) more “difficult” room acoustics
seem to generalize better to “easier” conditions (upper right
triangle of the cross-test matrix) than vice versa (lower left triangle
of the cross-test matrix).

• Models trained in the Aula Carolina or in the lecture room gen-
eralize surprisingly well to each other, and better than to con-
figurations from other rooms — although the two rooms are,
acoustically, quite different.

The latter may very well be indicative of a confounding effect: cross-
performances in this study are not only affected by acoustic properties
of the rooms, but also by the different recording setups, particularly the
different heads, and most of all the usage of inner-ear versus outer-ear
microphones. Both the lecture room and the Aula Carolina recordings
have been done with outer-ear microphones. To only measure effects
of room acoustics, all BRIR recordings would have to be done with the
completely same setup; and such BRIRs were unfortunately not found.

6.2.3 Cross-test performances depending on room acoustic parameters

In Fig. 6.4, sc test performances are displayed in a different way: in
each of the four panels, performances are plotted against test-training
differences in acoustic parameters, defined as dAP = APtest − APtrain
(AP being the acoustic parameter of choice). dAP = 0 thus corresponds
to iso-tests (with respect to this parameter), any other values on the
x-axes to cross-tests. Each of the dots represents the mean performances
of models trained and tested at a particular combination of conditions
over the dataset splits, target classes, and scenes.

The following trends can be pulled out of these results:

1. The best performance is always achieved if training models at
the parameter values of the testing environment. For all four
parameters, the top performances are lower for stronger deviation
of the parameter from training condition.

2. Cross-test performance decreases are lower when training was
conducted under more difficult conditions than testing:

• Regarding the reverberation time T60, performance seems to
suffer less if training was conducted under room acoustics
with higher T60 than in testing (negative dT60), than vice
versa.

• The bass ratio BR shows the least clear effect, but tenden-
tiously, higher values in training than in testing produce less
degradation compared to the other way around.
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(a) SC mean iso- and cross performances (b) SC mean iso- and cross per-
formances

Figure 6.3: Performances of single-conditional and multi-conditional SED
models in different rooms. (a) depicts mean iso- and cross-test single-
conditional performances (isoRoom-tests framed black), (b) displays mean
multi-conditional iso- and cross-test performances (configurations included
in training framed green). Each average aggregates results from the respec-
tive models from the four dataset splits, four target types, and two scenes
from the respective room/position (denoted “@<roomPos-abr>”). Color
scales are equal for both plots.

• For the Deutlichkeit D50, cross-test performances are better
for low values at training time.

• A higher distance between head and source in training re-
sults in higher cross-test performances than the other way
around.

However, since the sample size with respect to different rooms was
small and impulse response recording setups were not equal for all
rooms, those are not more than assumptions indeed.

6.3 performance of multi-conditional models

At least for situations in which the general room acoustics in model
application are not clear a priori, single-conditional SED models come
with a probability of reduced performance. As before for situations
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Figure 6.4: Single-conditional SED performances depending on train-test-
distances of room/position attributes. 0 distances correspond to iso-tests,
others to cross-tests. Each dot represents the average results from the
four dataset splits, four target types, and two scenes of a training-test-
room/position combination. ρ states the corresponding Pearson correlation
coefficient.

with unknown SNR and azimuth configuration (Chapter 5), multi-
conditional training (Section 3.2.2) is hoped to be able to build models
invariant to variations of room acoustics.

Fig. 6.3b displays the mean performances of the three multi-conditional
models (as defined in Section 6.1.2) under all test room/position config-
urations, next to the single-conditional performances. It is eye-catching
that all three models perform much stronger on unseen configurations
than the single-conditional models; even the mc1 model, trained only on
two different room acoustic configurations2, only has one stronger “slip-
up” at the lecture room in distance 10 m. Both mc1 and mc2 demonstrate
that the multi-conditional models generalize well also to completely
other rooms (and heads). The mc3 model, which includes training data
from all rooms (but not all positions), excels across all configurations
with optimal performance.

Fig. 6.5 summarizes these results in a box-plot aggregating perfor-
mances for the multi-conditional models, the single-conditional models
tested at the same room/position as trained (sciso), and tested in the
same room as trained (scisoRoom), and tested on arbitrary configurations
(sc). To keep the boxes comparable, here test results were only taken
from the 9 configurations that were also used for training.

Tightly, sciso models exhibit the highest median performance, but the
difference to mc2 and mc3 median performance is not significant, and
mc1 median performance is within reach. All three multi-conditional
models show notably higher performance than single-conditional mod-

2 deliberately two configurations with very different acoustic properties
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Figure 6.5: Performances of single-conditional and multi-conditional SED mod-
els tested under different room acoustic conditions, each boxplot aggregat-
ing results from the four dataset splits, four target types, and two scenes
from all respective room/positions.

els trained at arbitrary configurations. However, if the room is known a
priori, a single-conditional model trained on data from that room can
perform similarly strong as the multi-conditional models.

6.4 summary

In this chapter,

• it was shown that single-conditional SED models specialize to
the room and head acoustics they are trained on, and hence are
sensitive to deviation at test time from these.

• results indicate that single-conditional models are less prone to
cross-test performance degradation, if they were trained under
“difficult” room acoustics.

• it was found that single-conditional models can perform ade-
quately if they were trained on data from the room they are
applied in later, but they do not need to be trained on data from
the exact same position in the room.

• it was demonstrated that models trained multi-conditionally gen-
eralize very well across and to other room acoustics.

Therefore, it is concluded that multi-conditional models trained on data
from several different room acoustics are the means of choice when
acoustic conditions are not known a priori.
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T H E I N F L U E N C E O F T E M P O R A L C O N T E X T

This chapter is partly based on results produced by Heiner Spieß in the context of the
seminar “NI-project”. The conducted project was conceptualized and supervised by me
in collaboration with my colleague Moritz Augustin, data for training and testing was
created and provided by me. LSTM-coding and training was done by Heiner Spieß,
TCN-coding and training by Moritz Augustin. Everything else was done by me, including
specifically production of all graphs, texts and analyses in this chapter.

Sound is an inherently temporal information; successful sound event
detection (SED) therefore relies on representations efficiently describing
and classifiers efficiently modeling temporal data.

The first has been treated through construction of time-invariant
features over blocks of 500 ms lengths in the studies presented so far,
but the latter has remained untackled: the employed Least Absolute
Shrinkage and Selection Operator (LASSO) classifier has no capabilities
of modeling temporal relationships.

Deep neural network (DNNs), on the other hand, specifically convolu-
tional neural networks (CNNs) and recurrent neural networks (RNNs),
are famous for their capabilities of modeling any kind of context, in-
cluding temporal context — which is why they are the dominant ar-
chitectures in sound event detection nowadays. Recent top-performing
models and advances made have been primarily achieved by employing
DNNs (Cakir and Virtanen 2017; Hayashi et al. 2017; Hertel et al. 2016;
Jeong et al. 2017; Li et al. 2017; Huy Phan et al. 2016; Purwins et al. 2019;
Xia et al. 2019).

Hence, this chapter describes experiments on multi-conditional SED
in demanding polyphonic situations, comparing the already introduced
LASSO models with two DNN architectures specifically designed for
modeling of temporal sequences: (i) the very popular long short-term
memory (LSTM) (Greff et al. 2017; Hochreiter and Schmidhuber 1997),
which by design is constructed to learn temporally distant relation-
ships through gating information over long durations, and (ii) temporal
convolutional network (TCN) (Bai et al. 2018), a recent architecture pro-
viding an efficient feed-forward alternative to LSTM with supposedly
comparable sequence modeling capability.
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Motivated by DNNs’ ability to naturally output predictions every
time step, the problem of temporal modeling is furthermore augmented
by a comparison of perceptually-motivated smooth segment-based and
“instantaneous” frame-based labeling.

Analyses are conducted (i) with regard to behavior in different acous-
tic conditions, and particularly (ii) with regard to the influence of the
size of temporal context accessible to the models.

First the used acoustic scenes and different models are introduced in
Section 7.1. Results are presented in Section 7.2 with an evaluation of
scene-average results about model types and sound classes, temporal
context length and labeling methods; Section 7.3 analyzes scene-specific
results about robustness across acoustic conditions. The two different
DNN models and how they were employed in this study are discussed
in Section 7.4.

7.1 methods and data

The basic methods and data introduced in Chapters 2 and 3 are also
used here. Anything specific to the experiments described in this chap-
ter in this regard is elaborated on in the following sections. Additionally
to the description of the auditory scenes rendered for training and test-
ing, particularly the training of the DNN models is explained.

All scene generation, data processing, LASSO model training and
testing was done using the Auditory Machine Learning Training and
Testing Pipeline (AMLTTP) (Appendix A), which wraps all related steps
described in the following sections. DNN training and testing was done
using Python and KERAS (cf. Section 3.5), but fed with data produced
by the AMLTTP.

7.1.1 Auditory scenes

The original sound data for synthesizing auditory scenes was taken
from the NIGENS database, described in Section 2.1. For methodology
and terms regarding the scene rendering, confer Section 2.2.

A set of binaural auditory scenes was rendered for training the
detection models, and another set for testing. Compared to the studies
in Chapters 4 to 6, the scope was extended beyond two-source scenes
up to scenes with four simultaneously active sources. All sources,
whether target source or distractor source, emitted sounds from all
sound classes.

Eighty training scenes were defined for multi-conditional training
(Section 3.2.2). Due to the increased number of free parameters of scenes
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Figure 7.1: Test scene configurations (restricted to scenes with at least two
sources and spread larger than 0°), sorted with respect to number of sources.
Black filled circles depict distractor sources, target sources (green) are
highlight by an enclosing open circle. Each scene is indicated by one circle
fragment. The head is at the center. Neighboring scenes have the same
number of sources and inter-source distances to make apparent the potential
for investigation of the effect of head rotation.

with more than two sources, it seemed more efficient to randomly
sample the parameter space compared to manual definition of scenes
(as was done in Chapter 5). Randomly chosen were

• the number of sources (one to four)

• the azimuths of sources (uniformly between ±180°, discretized to
22.5°-steps1)

• the signal-to-noise ratios (SNRs) between target and other sources
(uniformly between −20 dB and +20 dB).

For testing, 168 scenes were defined (manually) such that it would be
possible to look at only one scene parameter changing and keeping
the others constant — the higher number of scenes compared to the
training set is due to this constraint. The following parameters were
varied:

• the number of sources (one to four)

• the SNRs between target and distractor sources (−20 dB, −10 dB,
0 dB, +10 dB, +20 dB)

• the azimuth difference between sources (0°, 20°, 45°, 90°)

• the “scene mode”:

1 This discretization served computation efficiency; 22.5° is a compromise between smaller
number of renderings and more dense spatial sampling.
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1. bisecting: the nose (0° azimuth) points between target and
distractor source(s)

2. target@0: the nose points towards the target source

3. front-left: sources are mainly between 0° and 90°; they are not
bisected and targets are not at 0°, and they are not symmetric
around the ear

4. ear-centered: sources are distributed in the left hemisphere
symmetrically around the ear (90°)

Fig. 7.1 depicts the scenes.

7.1.2 Model input

As base auditory representations, ratemaps and amplitude modulation
spectrograms were used, plus spectral features for the LASSO models,
described in Section 2.3. Models were trained multi-conditionally (cf.
Section 3.2.2 and Chapter 5) aggregating over all 80 training scenes (see
Section 7.1.1). Training was performed on one training-test-set split,
with the training set consisting of 75 % of the sound files.

Segment-based (referencing 0.5 s segments) and frame-based labels
as described in Sections 3.1.2.1 and 3.1.2.2 were produced for each
feature vector. For the segment-based labeling mode, temporal context
size T was varied between 0.5 s to 20 s, for the frame-based labeling
mode, the lower end was 50 ms.

lasso model features were constructed as described in Sec-
tion 3.1.1.1. All three representations were split into overlapping blocks
of length T, with a shift of 200 ms. The mean-channel feature set, as
defined in Section 4.1.2, was constructed from these representations.

dnn model features were constructed frame-based as described
in Section 3.1.1.2. Ratemaps and amplitude modulation spectrograms
(averaged over the two channels) were used as model input amounting
to a 160-dimensional feature vector in each frame, i. e., every 10 ms, cut
to length T. Spectral features were not used since in principle, DNNs
should be able to build useful statistics over frequency themselves from
the ratemaps input.

7.1.3 Lasso Models

LASSO models were trained with GLMNET for each of the thirteen
target sound types defined by NIGENS as described in Sections 3.2
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Table 7.1: Lasso model variants, both segment-based and frame-based labeling
modes (SL and FL). The times specify block boundaries from segment
ends; multi-block models can include overlapping or consecutive blocks. As
an example, [1 − 0.5, 0.5 − 0] describes that the respective model uses two
consecutive 0.5 s blocks as input, thus the segment length with this model is
1 s. The variants achieving best mean performance of a respective temporal
context are marked with *.

T (s) Block boundaries from segment end (s) / labeling mode

0.05 [0.05 − 0, 0.01 − 0]* FL

0.2 [0.2 − 0, 0.01 − 0]* FL

0.5 [0.5 − 0]* SL

[0.5 − 0, 0.01 − 0]* FL

1.0 [1 − 0] SL [1 − 0.5, 0.5 − 0] SL [1 − 0, 0.5 − 0]* SL

[1 − 0, 0.01 − 0] FL [1 − 0.5, 0.5 − 0, 0.01 − 0]* FL

2.0 [2 − 0] SL [2 − 0, 0.5 − 0]* SL [2.0 − 1.5, 1.5 − 1, 1 − 0.5, 0.5 − 0] SL

[2 − 1.25, 1.25 − 0.5, 0.5 − 0, 0.01 − 0]* FL

10.0 [10 − 0] SL [10 − 0, 2 − 0, 0.5 − 0]* SL

[10 − 0, 1 − 0, 0.5 − 0, 0.01 − 0]* FL

20.0 [20 − 0, 10 − 0, 2 − 0, 0.5 − 0]* SL

to 3.4 and below. For each model training, 2 × 105 samples (out of
about 12 × 106) across all scenes were sub-sampled2 from the complete
training set. The sub-sampling was done as described in Section 3.2.3;
furthermore, the sub-sampling process enforced using equally many
samples from each scene-instance, so that long sound files would not
be overrepresented in the training set.

multi-block segment-based-label models The time-invariant
features construction process described in Section 3.1.1.1 has shown
in the studies before (Chapters 4 to 6) to produce descriptive features
for blocks of 0.5 s length. However, since this method is based on the
application of statistical moments over time, conjecturally this descrip-
tiveness would not transfer to arbitrary segment lengths — through
time-averaging, longer segments will get more “blurry”. To assess this,
for LASSO models for temporal contexts of longer than 0.5 s, addition-
ally, multi-block models were trained, which were fed with concatenated
features (built as usual) from consecutive and/or overlapping blocks
out of the respective temporal context segment. All frame-based la-
beling LASSO models were multi-block models, as the features from

2 As the Lasso model has few free parameters (number of features + 1), this amount was
enough — actually performance saturated even before.



102 the influence of temporal context

the last frame (corresponding to the label) were always concatenated
additionally. Table 7.1 lists all variants trained.

7.1.4 Deep neural network models

Both LSTM + DNN architecture (LDNN) and TCN are described in
Section 3.5, along with methodology. Only the non-general details are
given account of in the next sections.

DNNs are inherently able to learn multi-label problems. That is,
compared to LASSO for which one binary model needed to be trained
per sound type (13), with the DNNs architectures it was only one model
with 13 output neurons3.

Since nonetheless many models with different temporal context sizes
had to be trained on the very extensive multi-conditional training data
(about 242 × 106 frames – 672 h –, all together), and in lack of access
to big GPU clusters, optimization of hyperparameters was reduced to
partial cross-validation (pCV) (Girard 1998) on the three most represen-
tative (determined by LASSO cross-validation performance) splits.

7.1.4.1 LDNN models

Section 3.5.3 describes the model and further training methodology;
Fig. 3.3 depicts the employed architecture. The following elaborates on
concretely used hyperparameter values and further training details.

The number of LSTM layers was sampled from {3, 4, 5} and the
number of fully connected (FC) layers from {1, 2} (excluding the out-
put layer). The number of total neurons was sampled uniformly in
[500, 3000] ∩ N, and then distributed between the LSTM and FC layers
in a ratio sampled from {0.25, 0.5, 0.75}. All LSTM layers and all FC
layers got the same number of neurons, respectively. The remaining
neurons were allocated to the FC layers.

The FC layers’ dropout rate was sampled uniformly in [0.25, 0.75].
In addition, binary hyperparameters determined whether recurrent
variational dropout, dropout on the LSTM-cell hidden units, or both
got employed; and if yes, whether at the FC layers’ rate, or half of it.

The Adam optimizer was set to an initial learning rate of 0.001 and
the remaining parameters were left at the defaults published in the
original paper (Kingma and Ba 2014). Gradient clipping got set to 1.0
to prevent back-propagated gradients from becoming to large, which
LSTM-Cells can still suffer from (Sutskever et al. 2014). 128 sequences
were used per batch.

3 Cakir et al. (2015a) discussed multi-label vs single-label DNNs for SED
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Due to limited computational resources, the optimal hyperparameter
set was evaluated for the model trained with segment-based labels and
a temporal context length of 10 s only. A small exploration led to the
conclusion that this set would also be a good choice for models with
different temporal context and trained with frame-based labels.

the best-performing hyperparameter combination was
found to be employing 5 LSTM layers with each 420 neurons, 2 FC
layers (plus output layer) with each 370 neurons; a FC layer dropout
rate of 0.7, and a rate of 0.35 each for the dropout on the LSTM-cell
hidden units and for the recurrent variational dropout.

7.1.4.2 TCN models

Section 3.5.2 describes the architecture and further training methodol-
ogy; Fig. 3.2 depicts the employed model. The following elaborates on
concretely used hyperparameter values and further training details.

The values of several hyperparameters got fixed without complete
search: the time convolution filter size K was set to 3, as a non-
exhaustive exploration of kernel sizes between 3-5 showed no significant
differences. The batch size was set to 128 and the initial learning rate
of the Adam optimizer to 2 × 10−3 (in a small exploration with batch
sizes 64, 128, 256 and learning rates 0.0005, 0.001, 0.002, this was iden-
tified as best combination). Gradient clipping was set to 1.5 (monitored
gradient norms before clipping were usually below the value of 1.0).
The length of each batch was set to 2500 frames (chosen for efficiency
of the parallel convolution operation).

In systematic search, the number of feature maps was uniformly
sampled within [20, 160] ∩ N. The (spatial) dropout rate was uniformly
sampled from [0, 0.25].

Due to limited computational resources, the optimal hyperparameter
set was evaluated for the model trained with segment-based labels and
a temporal context length of 20.49 s only. A small exploration led to the
conclusion that this set would also be a good choice for models with
different temporal context and trained with frame-based labels.

the best-performing hyperparameter combination was
found (after 43 random samples) to be employing 119 feature maps
and a spatial dropout rate of 0.095.

For TK,M = 2049 frames and K = 3, consequentially M = 10 stacked
residual blocks were used. The number of epochs to train the final
model (found from early stopped training) varied between minimally 8
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(a) Segment-based labels (b) Frame-based labels

Figure 7.2: BAC depending on model type and temporal context. Performances
are averaged over all test scenes, all test files, and all classes. Lines display
arithmetic means, shaded areas the 95 % confidence intervals for the mean.

(T3,10 = 2049 frames) and maximally 31 (T3,5 = 65 frames), and seemed
to be anti-correlated with depth.

7.1.5 Model testing

While training was conducted multi-conditionally, tests were performed
on individual scenes in order to conclude on relations between scene
parameters and performances. All samples from the test set (168 scenes,
each with 243 scene-instances) were used without sub-sampling, amount-
ing to about 8.5 × 106 samples tested with each LASSO model and
about 168 × 106 frames with each DNN model.

Balanced accuracy (BAC) (cf. Section 3.3.2.1) was employed as per-
formance measure with macro-averaging (cf. Section 3.3.3) over classes
and scene-instances.

7.2 influence of temporal context and labeling method

Firstly, model performances subject to different temporal contexts were
evaluated disregarding scene dependencies. Fig. 7.2 shows the perfor-
mance for the different model types and labeling methods, depending
on temporal context size, averaged over classes and scene-instances.

Standing out immediately, there is a clear mean performance correla-
tion with temporal context size; and it is obvious that the DNNs are
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able to accumulate evidence about active sound events over long dura-
tions. The best-performing model overall is the LDNN with a temporal
context of 10 s. Interestingly, the LDNNs seem to be less efficient for
short temporal contexts; this shows both for the segment-based and for
the frame-based modes.

Pooling LDNNs and TCNs together, the DNN models throughout
all temporal context sizes perform stronger than the LASSO models.
The difference particularly gets larger beyond 1 s, after which LASSO
fails to make use of the additional information, while the DNNs are
capable of extracting more useful information with longer temporal
context accessible.

Notably, the LASSO models are not able to make use of temporal
context beyond 1 s, which is their peak for both modes. This is despite
the multi-block modeling; shown are the performances of the best-
performing variants (cf. Table 7.1). For the other variants, performance
was significantly degraded with longer contexts, which confirms the
hypothesis that through the employed time-invariant feature construc-
tion (Section 3.1.1.1), information from longer segments will get less
descriptive with regard to the sound event potentially occurring at the
end of the segment.

Overall, however, the LASSO models come off surprisingly well in
comparison to the much more powerful DNNs. For small temporal
context lengths, the difference is as low as 0.01 to 0.02. This could imply
two things: either the features constructed for the LASSO models are
well-engineered and include a lot of relevant information for the SED
problem, or the DNN architectures and/or training employed have not
exploited their full potential — not unlikely, it is both.

frame-based labels pose the more difficult problem. Intuitively,
this makes sense: the segment-based labels are smoother, since they
express whether a sound event has been active for the larger part of
the last half second. The frame-based labels, on the other hand, express
whether a sound event is active right in this moment, which particularly
for the beginning of an event can be hard to predict. Performances for
equal temporal context are consistently lower by about 0.01 to 0.02;
which fairly can be called a small difference, however. The dependency
on sufficient context size is even more pronounced by the stronger
decreasing performances for very short context sizes.

7.2.1 Sound event type specifics

Fig. 7.3 depicts performances for individual sound classes and model
types. Performances are averaged over all test scenes and all test files.
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Figure 7.3: BAC for individual classes and model types. Performances are
averaged over all test scenes and all test files. Lines depict the range of
performances over temporal context length. Sound types are sorted from
top to down by increasing difference between the best (over model types)
minimum and maximum (over context size) performance.

Lines depict the range of performances over temporal context length.
Sound types are sorted from top to down by increasing difference
between the best (over model types) minimum (over context size) and
best (over model types) maximum (over context size) performance,
averaged over both labeling modes. That is, the classes at the top
profited least from additional temporal context, and the classes at the
bottom profited most.

The degree to which the models are able to increase performance
by including more temporal context varies considerably between the
different sound event types: from piano with a difference of 0.025 to
crash with a difference of 0.085. This influence does not seem to be
correlated with the sound event’s general detectability; actually, no
clear relationship is identifiable.

Not shown here, for the LASSO and TCN models it is very class-
dependent which temporal context leads to the best performance. For
example, with the phone class, the best LASSO and TCN frame-based
models use a 1 s and 0.33 s temporal context, with the knock class, they
use 0.5 s and 20.49 s temporal context, and with the fire class, they use
10 s and 10.25 s temporal context. The same effect does not hold for the
LDNN models: for basically all sound classes, the longest temporal
context makes up the best performing model — one of LSTM’s most
advertised features is that one does not need to know a priori what
context size is appropriate.
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For the phone class, and (less pronouncedly) for the alarm and piano
classes, the LASSO models perform stronger than the DNNs. In general,
this is not to be expected, and implies that there are features that the
LASSO models can use that the DNNs failed to learn — specifically,
these likely may be the spectral features (cf. Section 7.1.2), which were
selected with high weights by the LASSO algorithm particularly for the
mentioned sound classes.

On the two speech classes, the DNN models reach very high detection
performance – close to 0.95 –, when considering that these values are
averages over all scenes (including SNRs down to −20 dB and up to 4
simultaneously active sources).

7.3 influence of scene configuration

The presented all-scenes average results showed that using longer
temporal context considerably helps increasing detection performances.
The following analyses are supposed to show in which situations it
helps particularly.

To investigate the factors influencing performance, three main scene
configuration parameters were varied systematically across scenes: the
SNR between target and distractor sources, the number of distractor
sources, and the scene mode.

7.3.1 SNR

The performance over different SNRs is presented in Fig. 7.4. For all
SNRs, the same azimuth configurations are aggregated, hence the
SNR is the only parameter varied. For each model type, the best and
the worst models’ performances are plotted. The legend indicates the
respective temporal context sizes.

Very clearly it can be observed that the influence of temporal context
is larger for lower SNRs: particularly for situations with lower target
than distractor(s) energy, the difference between worst and best models
increases up to about 0.11. Comparing performances “horizontally”,
the best models have a detection advantage of about 10 dB. For SNRs
above 10 dB, performances almost converge. For both labeling modes,
the worst LDNN models are a bit different in that they are not able to
catch up in performance for higher SNRs — their performance seems
to be “globally” worse.

Intuitively, it is reasonable that for harder listening situations, it
would be advantageous to be able to listen longer and integrate in-
formation to come to a conclusion. One part contributing to this may
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Figure 7.4: Balanced accuracies depending on model type, temporal context,
and SNR. Depicting performances of each model class’ best and worst
model over SNR. Performances are averaged over all respective test scenes,
all test files, and all classes. Lines display arithmetic means.

be “glimpsing” (Cooke 2006) – focusing recognition on segments less
impeded by distractor noise, if it varies over time –, which is known
behavior for humans when recognizing speech in noisy situations.

Interestingly, the best LASSO models reach the highest performance
of all models for SNR of 20 dB. Two explanations seem possible: for
almost “clean” conditions and hence less advantage for the temporal-
context-integrating models (the DNNs), the spectral features (which the
LASSO models use) come into play again and give them an edge. Or
the DNN models optimized their feature extraction more with respect
to the difficult scenes, and this came at the cost of slightly reduced
performance for unimpeded sound events.

7.3.2 Number of sources

Fig. 7.5 presents the performance of the models over different number
of co-occurring sources. Similar behavior as regarding the SNR can be
noted: for easy scenes (only one active source), model performances
are much closer to each other — increased temporal context is not
necessary/helpful4. For more difficult scenes with simultaneously ac-

4 Guillaume et al. (2004) studied the time needed for humans recognizing isolated sound
events — results showed that for a lot of sound events, as short as below 150 ms was
enough, and no sound they tested needed more than 675 ms (averaged across subjects).
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Figure 7.5: Balanced accuracies depending on model type, temporal context, and
number of sources. Depicting performances of each model class’ best and
worst model over number of sources. Performances are averaged over all
respective test scenes, all test files, and all classes. Lines display arithmetic
means.

tive sources, the performance differences increase. However, there is
less clear gradation of this performance difference; between 2, 3, and 4
sources, the difference between worst and best model does not change
very much. Also, the difference is lower than for difficult SNRs, with
about 0.07 in BAC that the 10 s LDNN can catch up on.

Again, for the segment-based labeling mode and the easiest situation
(one source), the strongest model turned out to be the LASSO, and the
explanation given there is equally applicable here.

The LDNN with 0.5 s temporal context (segment-based) exhibits,
when compared to the plotting over SNR, curious behavior: while for
easy SNR, it was worst and for difficult SNR it was bad, its performance
on one-source scenes is, together with the LASSO, highest. It seems
that this model specialized on situations with only one source active
and is perturbed even by slight noise introduced through additional
sources.

7.3.3 Sources position

The performances of the models depending on source positions are
presented in Fig. 7.6, showing performances of the best and worst
models over scene mode. Two conclusions can be drawn: (i) the influ-
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Figure 7.6: Balanced accuracies depending on model and azimuth mode (cf.
Section 7.1.1). Performances are averaged over test scenes with different SNR
and number of sources, all test files, and all classes. Depicting performances
of each model class’ best and worst model over scene mode.

ence of temporal context is not dependent on the source positions —
performance differences are (almost) constant over azimuth modes. (ii)
Detection performances are worse when sources are distributed around
the ear on one side of the head only. After the findings presented in
Section 5.3, this was expected, but the effect found for the models de-
veloped here was smaller. This likely can be accounted to the extension
of the multi-conditional training up to four co-occurring sources, which
makes specialization to favorable source distributions more difficult
than in the two-source case.

7.4 discussion of dnn results

Conclusions on performance differences between TCNs and LDNNs
should be drawn conservatively — it does look like TCNs may deal
better with short temporal contexts, and that LDNNs may be able to
extract more relevant information from long temporal contexts. But
while the differences between models’ performances are significant,
the random search in hyperparameter optimization does introduce
chance, and insufficient number of samplings could result in arbitrary
advantages for the best found combinations of the one or the other
model.

As mentioned in Section 7.1.4, the hyperparameter optimizations for
both the LDNN and TCN models were performed under computational
constraints (particularly the available GPU hardware), leading to an
under-sampling of the various parameters. Hence, it is possible that



7.4 discussion of dnn results 111

more search would find hyperparameter combinations that made TCN
models perform as well as LDNN on long contexts, and LDNN perform
as well as TCN on short contexts. Of course it is also possible that
LDNN simply are more efficient at learning from long contexts (10 s
correspond to 1000 frames – quite a lot of time steps) than TCN.

Unfortunately, due to the resource-wise limitations, it was also not
possible to also train a 20 s LDNN model, so whether performance
would increase further – as is the case for TCN –, is unknown. In
general, additional models with even longer context sizes should have
been trained, since up to 20 s, TCN performance is still increasing.

Concerning the TCN models, a problem-specific convolution dila-
tion sequence (in contrast to exponentially increasing with the layer
number) or feature map size (instead of using the same for all layers)
might lead to improved performance particularly for large temporal
context lengths. Instead of the disregarded weight normalization other
techniques for optimization stabilization such as batch normalization
(Ioffe and Szegedy 2015) or layer normalization (Ba et al. 2016) could
be included.

Concerning the LDNN models, individual number of neurons for
different layers and applying LayerNorm (an LSTM batchnorm alterna-
tive) might improve performance. The batch sizes and learning rates
(usually highly dependent on each other) could have been optimized
rather than fixing values.

With both LDNN and TCN, a potential performance gain was missed
by ignoring locality/invariances along the feature dimensions of fre-
quency and modulation frequency (for amplitude modulation spec-
trograms). It would be possible (and likely profitable) to use two-
and three-dimensional convolutional kernels for the TCNs (Espi et
al. (2015) and Piczak (2015a) used 2D-kernels, for instance), and addi-
tional one- and two-dimensional convolutional layers with the LDNNs
as described in Xingjian et al. (2015). The same was discussed in Huy
Phan et al. (2016). The sound type-specific results presented above
(Section 7.2.1) indeed indicate a shortcoming in this regard for several
classes.

An advantage of TCN over LSTM is its increased parallelization,
allowing for faster training, since the convolution kernel can slide
independently along the temporal dimension while the LSTM graph
traversing is an inherently sequential operation. Apart from the better
performance in the presented experiments, the LSTM has the benefit of
not needing to optimize the used context size individually per sound
type — the TCN architecture showed more dependence in this aspect,
cf. Section 7.2.1.
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It has to be mentioned that the performance gains observed by
including longer temporal context certainly are only possible for sound
events that either inherently are as long, or are repeated over the time,
as is the case for the constructed scene-instances in this study (cf.
Section 2.2.1). The first naturally is not the case for all events (but for
a substantial amount, it is), the latter occurs regularly, but not always.
Concerning the sound types tested in this study, only for knock, scream,
and crash, doubts on the realism of both assumptions could be cast5.

7.5 summary

In this chapter,

• the sequence modeling capabilities of LSTM and its recent com-
petitor TCN have been confirmed for sound event detection; both
outperformed LASSO models by a significant margin.

• it has been shown that models able (and allowed) to integrate
information over long time can increase detection performances
considerably particularly for acoustically demanding polyphonic
situations with distracting sources exhibiting higher energy than
target sources.

• perceptually-motivated smooth segment-based labeling has been
compared with “instantaneous” frame-based labeling, and the
latter shown to be the more difficult problem, but qualitatively
not different.

• it was demonstrated that multi-conditional modeling smoothly
extends beyond two-source scenes by incorporating up to four
simultaneous sources and to other model types; random multi-
conditional training scene parameter sampling produces effective
sound event detectors. The impact of spatial source distribution
found before is still there, but attenuated.

Concluding, building sound event detection models for continu-
ous realistic polyphonic scenes should employ architectures able to
exploit long-range temporal context information like LSTM or TCN
for reaching maximum performance. Training should be conducted
multi-conditionally and over sufficiently long scenes of at least 10 s
length.

5 On the other hand, depending on the situation, if a knock or scream would not be heard,
they may be repeated, of course.



Part III

R O B U S T S PAT I A L S O U N D E V E N T
D E T E C T I O N

If there is a crying baby and a fire, we want to know where
the baby is.





8
M U LT I - C O N D I T I O N A L S O U N D E V E N T D E T E C T I O N
O N S PAT I A L S T R E A M S

This chapter is based on Ivo Trowitzsch, Christopher Schymura, et al. 2019. “Joining

Sound Event Detection and Localization Through Spatial Segregation.” In review for

IEEE/ACM Transactions on Audio, Speech, and Language Processing, arXiv preprint

arXiv:1904.00055.

Two key issues in computational auditory scene analysis (CASA) are (a)
detecting sound events and their types within that stream, which was
addressed in Part ii of this thesis, and (b) localizing the corresponding
sources emitting the sounds, denoted sound source localization (SSL).
In this chapter, the combination of the two is investigated: joint sound
event localization and detection (SELD). For comprehensive understanding
of acoustic (or any) scenes, it is not only necessary to know what is
there and where there is something, but instead to know what is where.

There are four different fundamental approaches to joining sound
event detection and source localization:

1 – temporal correlation Associating type and location of
sounds through temporal correlation. This however is not possible for
multiple sounds starting at the same time; and difficult for moving
sources. If sources move (temporarily) to the same location, tracking
gets lost.

2 – sound-type masked ssl Attending to streams related to in-
dividual sound events. This “focus” can be created through masking
the input such that a particular sound known to be active is “passed
through” to SSL, and other sounds or noise are suppressed. Such mask-
ing is feasible in time-frequency domain if sound events exhibit specific
frequency signatures. The subsequent localization then produces loca-
tions associable to these events. However, not all sound event classes ex-
hibit coherent (and narrow) frequency signatures – for instance “alarm”
is more of a semantic class, and can range from electronic beeps to
fire bells; or “piano” ranges from very low to high frequencies. Also,
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the approach is likely to fail for co-occuring sound events with similar
frequency patterns.

3 – spatially masked sed Attending to streams related to indi-
vidual source locations. This implies masking of the input such that
only sound from a particular direction is passed through to sound event
detection (SED), and sound from other directions is suppressed. Such
masking is technically doable in time domain through beam-forming,
or in time-frequency domain through spatial segregation, attributing
individual time-frequency-bins to particular directions. Sound events
detected on the spatial streams are then associated with a location.
Efficient masking depends on spatial separation of sources and hence
dissimilar spatial cues.

4 – joint seld Building models that by construction detect localized
sound events. Such models do not localize and detect separately or
subsequently (as in approaches 2 and 3), but instead produce joint
attributes from the start. While – because of the implicit combination
of approaches 1-3 – this approach should in principle be the most
powerful, it also requires the most powerful model, more difficult to
train and to understand.

Approach 3, detecting sound events on spatially segregated streams,
was chosen to be followed in this study. The employed spatial segrega-
tion model, computing softmasks in time-frequency space as similarly
described in Harishkumar and Rajavel (2014), Kolossa and Orglmeister
(2004), and Ma et al. (2018), serves as a processing step for associating
auditory features later used for sound event detection with specific
sound source locations.

Compared to approach 2, sound event detection on spatial streams
has the advantage of enabling localized identification of multiple
sources of the same type or with similar frequency ranges active. Com-
pared to approach 4, this approach is feasible also with less powerful
models classes, faster to train, and easier to understand. Furthermore,
systems following approach 3 are modular, which enables work and
research on the individual components.

The spatially masked auditory features are used for sound event
detection in the introduced scheme of multi-conditional training (Sec-
tion 3.2.2 and Chapters 5 and 7). Although in Chapter 7 SED models
based on deep neural network (DNNs) have been built with superior
performance, for this study lasso models were used again, because
they are very easy and fast to train and test and have shown to pro-
duce decent performance with the employed features. The focus was to
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rather perform and provide extensive tests and qualitative analysis of
the system instead of demonstrating the best performance possible.

The system as presented here is a proposition of how to join sound
event detection and localization, as well as how to analyze and measure
performance of such a system. Fig. 8.2 depicts the system and its
information flow.

In this chapter, Section 8.1 firstly describes particularities and exten-
sions to Chapters 2 and 3 with respect to data and methods concerning
this chapter. Study results are presented then starting in Section 8.2,
which elaborates on overall performance and the principal practicabil-
ity of the method; Section 8.3 analyzes dependence on acoustic scene
configurations (signal-to-noise ratio (SNR), number of sources, and
spatial distribution of sources). In Sections 8.4 and 8.5, the influence of
perturbation of information about number of active sources and their
locations fed to the stream segregation model is investigated.

8.1 methods and data

The basic methods and data introduced in Chapters 2 and 3 are also
used here. Anything specific to the experiments described in this chap-
ter in this regard is elaborated on in the following sections. Additionally
to the description of the auditory scenes rendered for training and test-
ing, particularly the inclusion of the spatial stream segregation model
into the sound event detection process, which implies some important
changes and amendments to methodology used in the chapters before,
is explained.

8.1.1 Auditory Scenes

The original sound data for synthesizing auditory scenes was taken
from the NIGENS database, described in Section 2.1. For methodology
and terms regarding the scene rendering, confer Section 2.2.

For training the detection models, the set defined in Section 7.1.1 was
used. The testing set defined in there was extended significantly for
higher coverage of spatial source distributions: 468 scenes were defined
with the following parameters varied:

• the number of sources (one to four)

• the SNRs between target and distractor sources (−20 dB, −10 dB,
0 dB, +10 dB, +20 dB)

• the azimuth difference between sources (0°, 10°, 20°, 45°, 60°, 90°,
120°, 180°)
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Figure 8.1: Test scene configurations (only scenes with at least two sources),
sorted into the different scene modes. Black filled circles depict distractor
sources, target sources (green) are highlight by an enclosing open circle.
Each scene is indicated by one circle fragment. The head is at the center.

• the “scene mode” (depicted in Fig. 8.1):

1. bisecting: the nose (0° azimuth) points between target and
distractor source(s)

2. target@0: the nose points towards the target source

3. front-left: sources are mainly between 0° and 90°; they are not
bisected and targets are not at 0°, and they are not symmetric
around the ear

4. ear-centered: sources are distributed in the left hemisphere
symmetrically around the ear (90°)

• the position of the target among the sources: either at one end, or
(only for three-source scenes1) at the center.

1 Only for three-source scenes to save computation time.
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All together, 96 different azimuth configurations are used among the
468 scenes. Exact definitions of training and test scenes can be found in
Trowitzsch (2019).

8.1.2 Spatial stream segregation model

A spatial stream segregation model developed in the Two!Ears project
and described in Ma et al. (2016) and Trowitzsch, Schymura, et al. (2019)
was used.

Blocks of interaural time-differences (ITDs) and interaural level-
differences (ILDs) in time-frequency-representation (cf. Section 2.3),
as well as the estimated number of active sources with correspond-
ing locations serve as inputs to the segregation model. It produces
a softmask weighting factor for the i-th source at time-step k and
frequency-channel l according to

m(i)
kl =

p(ỹkl | g(ϕi), Rl)

∑M
j=1 p(ỹkl | g(ϕj), Rl)

, (8.1)

given a set of M estimated azimuthal source locations {ϕi}M
i=1 and an

observation model for the binaural observations ỹkl =
[︂
τkl δkl

]︂T

(ITD (τkl) and ILD (δkl) cues at time frame k and frequency channel l).
This observation model is implemented through generalized linear

models (GLMs) (Dobson 2002), trained from anechoic binaural auditory
scenes generated employing the head-related impulse response (HRIR)
also used for SED model scene synthesis (see Section 2.2.2, Wierstorf
et al. (2011)). White noise was used as source signals for this training.

An example of softmasks produced by Eq. (8.1) and the general infor-
mation flow concerning the stream segregation stage and its embedding
into the segregated detection system is depicted in Fig. 8.2.

8.1.3 Detection model input

Features for the models were constructed as described in Section 3.1.1.1.
As base auditory representations, ratemaps, spectral features, and am-
plitude modulation spectrograms were used, described in Section 2.3.
The three representations were split into overlapping blocks of 500 ms
length, with a shift of 333 ms. The mean-channel feature set, as defined
in Section 4.1.2, was constructed from these representations.

Segment-based labels as described in Section 3.1.2.1 were produced
for each feature vector.
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Figure 8.2: From binaural scenes to localized detections. Exemplary scene
with three sources, at −10° (emitting female speech), +10° (alarm sound),
and +30° (rattling sound). From ear-signals, detection and segregation
features are computed and cut into blocks of 500ms (amplitude modulation
spectrograms (AMS) and spectral features (SF) omitted for clarity). Together
with input about number of active sources and their azimuths (ground
truth at training time, systematically perturbed or ground truth at testing
time for the analysis; estimated or set values in a deployment system), the
segregation model produces one softmask for each spatial stream, that is,
for each azimuth. Each softmask gets applied to the detection features, such
that one set of features is formed per stream. Labels about the presence
of target sound events (alarm, in this case) are attached according to the
associated azimuth. Segregated features are then input to the segregated
detection models, which are trained to predict the presence of target events
in the passed blocks (in the depicted example, all predictions are correct).
Fullstream models, not part of the segregated detection but complementary
and for comparison, get non-masked detection features and detect the
presence of target events in the full mixture.

8.1.3.1 Segregated detection model input

Segregation into spatial streams takes place after the generation of the
different auditory representations and their segmentation into blocks
(see above), and before the construction of mean-channel feature vectors
from the blocked auditory representations.

The segregation model produces a set of probabilistic time-frequency
softmasks (see Section 8.1.2), with the number of masks corresponding
to the number of currently active sources in the scene2. A source was
defined active in a block if its mean energy in that block was above
−40 dB of its whole scene-instance maximum energy.

2 Actually of the number of locations with active sources (active spatial streams) — two
sources at the same location have to count as one.
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These masks were applied (through multiplication) to the ratemaps
and amplitude modulation spectrograms; spectral features were after-
wards computed from the masked ratemaps. Hence, one set of masked
representations per spatial stream was produced, such that one mean-
channel feature vector per spatial stream could be generated. Fig. 8.2
summarizes the data processing steps.

Since each mask was generated based on a presumed location of
active sound source(s), each mask is associated with this particular
location. Ergo, each feature vector for the detection model is attributable
to this location — and hence each detection on this feature vector, which
is why in the following the output/activity of the segregated detection
models is also called localized detection.

Both for training the detection models and testing their performance,
labels indicating the presence or absence of target sound types are
needed. If a block was labeled negative before segregation, all seg-
regated blocks were labeled negative. If a block was labeled positive
before segregation, the segregated feature vector associated to the lo-
cation closest to the target source was labeled positive, and the others
negative.

Note that through this labeling for the segregated detection, there
emerge effectively three kinds of sample types: negative samples from
mixture blocks in which the target sound event was not present, positive
samples from mixture blocks in which the target sound event was
present, and negative samples from mixture blocks in which the target
sound event was active. The respective negatives in the following are
sub-indexed npp or pp for “no-positive-present” or “positive-present”.

8.1.4 Model training

Two types of models were trained: fullstream detection models, op-
erating on the full (mixed) stream, and segregated detection models,
operating on the segregated streams, features, and labels as described
above. Apart from this difference in input and a difference in sam-
ple weighting (elaborated on below), both model types were trained
identically, as described in Sections 3.2 to 3.4 and below.

For each of the thirteen target sound types defined by NIGENS, bi-
nary one-vs-all classifiers were trained with GLMNET multi-conditionally
(cf. Section 3.2.2 and Chapter 5) using the 80 training scenes (see Sec-
tion 8.1.1) for all models in this study. Models were trained on one
training-test-set split, with the training sets consisting of 75 % of the
sound files.
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For each model training, 200 0003 samples were sub-sampled across
all scenes. The sub-sampling was done as described in Section 3.2.3; for
segregated detection, the sample weights (Eq. (3.3)) had to be amended
because of the differentiation of the two effective types of negative
samples: the weights of positive samples (xi, yi = +1) were set as
before to

wi = 1/(NL(i)=+1,nas(i) · Nsi(i)) , (8.2)

but the weights of negative samples (xi, yi = −1) were set to

wi = 1/(2 · NLPP(i),nas(i) · Nsi(i)) (8.3)

where LPP(i) indicates whether the sample was generated from a block
in which a positive was present or not, respectively (see Section 8.1.3.1).

8.1.5 Model testing

While training was conducted multi-conditionally, tests were performed
on individual scenes in order to conclude on relations between scene
parameters and performances.

Blocks in which not all sources were active (since sources emit sounds
that also exhibit silences), got removed to better reflect the influence of
the number of sources. All remaining samples from the test set were
used without further sub-sampling, amounting to about 12 million
samples tested with each fullstream model and about 30 million with
each segregated detection model.

As described in Section 8.1.2, the segregation model needs input
on the number of active spatial streams and on their azimuths. For
training, ground truth knowledge was used. For testing, three different
modes were implemented:

1. Using ground truth for both data.

2. Using ground truth for the number of active streams, but perturb-
ing the location information of those streams. This perturbation
was conducted by adding random azimuth values drawn from a
normal distribution with sigma of 5°, 10°, 20°, 45°, and 1000° to
each block’s location. The latter basically corresponds to drawing
locations uniformly. Note that the sources’ locations in the scenes
were not changed, but only the information about them given as
input to the segregation model, and consequentially the azimuth
associated with a block.

3 As the Lasso model has few free parameters (number of features + 1), this amount was
enough. Actually performance saturated even before.
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Table 8.1: Spatially segregated detection measures & nomenclature overview

pure detection

BACsw Stream-wise balanced accuracy (used for training). Mean of SENSsw and
SPECsw

SENSsw Stream-wise sensitivity. Positive detection rate

SPECsw Mean of SPECpp and SPECnpp

SPECpp Specificity (negative class accuracy) of blocks (streams) that do not contain
a target event, but at times at which in another stream, the target event is
active

SPECnpp Specificity of blocks that do not contain a target event, at times at which the
target event is inactive in all streams

BACtw Time-wise segregated detection models’ balanced accuracy. Mean of DRtw
and SPECtw

DRtw Time-wise segregated detection models’ detection rate; aggregated over
streams.

SPECtw Time-wise segregated detection models’ specificity (negative class accu-
racy); aggregated over streams.

BAC f s Fullstream models’ balanced accuracy. Mean of DR f s and SPEC f s

DR f s Fullstream models’ detection rate (positive class accuracy).

SPEC f s Fullstream models’ specificity (negative class accuracy).

localized detection

(all conditioned on target events being active and detected)

BAPR Best-assignment-possible rate. Proportion of sound event detections in the
best-available (azimuth-wise) stream, but in no other stream

NEP Number of excess positive assignments — amount of streams with false
positive event detections

AzmErr Mean azimuth error. Averages the azimuth distance of all positive-assigned
streams to the correct azimuth

Placement likeli-
hood

Depicts the average proportions of event detections in streams depending
on their distance to the event’s correct azimuth

3. Using ground truth for the locations of active streams, but per-
turbing the data about the active source number. A uniformly
drawn random number between −2 and +2 was added to the
number of streams ground truth (thresholding downwards at 1).
In case of a reduction, the respective number of locations handed
to the segregation model was removed randomly. In case of an
increase, locations drawn randomly from a uniform distribution
between 0° and 360° were added to the segregation model input.
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8.1.6 Performance measurement and evaluation

Training and testing performance was measured utilizing balanced
accuracy (BAC) respectively its constituents sensitivity and specificity,
cf. Section 3.3.2.

For segregated detection training, BAC had to be adjusted: with this
method, there exist many negative samples of points in time without
positive present (as with fullstream negative samples), but there also
exist negative samples of points in time with a positive present in
another spatial stream, see Sections 8.1.3.1 and 8.1.4. These, however,
have a much lower proportion than the npp negatives and would, if
not up-weighted, have minor influence on training. This, consequently,
would result in worse localized detection performance, because of too
low cost of not discriminating between target and distractor streams.
Thus, BACsw (sw for stream-wise) was defined for segregated detection:

BACsw := 0.5 · SENS + 0.5 · SPECsw, with (8.4)

SPECsw := 0.5 · SPECpp + 0.5 · SPECnpp.

While BACsw summarizes performance in one number so that the
models can be optimized, it is difficult to gain insight into the actual
behavior of the models through that number. Two different aspects of
segregated detection performance are interesting: time-wise detection
performance, and localized detection performance.

8.1.6.1 Time-wise detection evaluation

To evaluate how well the system recognizes sound events irrespective
of location and to compare performance to fullstream sound event
detection models, time-wise measures were used, namely BACtw, mean
of detection rate DRtw and specificity SPECtw. To obtain these, the
segregated detection models’ predictions over streams were aggregated
for each point in time: a positive prediction in any stream produces an
aggregate positive prediction. Hence, an aggregate negative prediction
is constituted only if all streams are predicted negative. It is obvious
that this can lead to an increase of the number of true positives as well
as of false positives (shown and discussed in Sections 8.2 and 8.3.2).

The subindex tw indicates time-wise aggregate segregated detection
performance, f s indicates fullstream models’ performance.

8.1.6.2 Localized detection evaluation

To evaluate how well the system assigns detected sound events to the
localized streams, four measures were established that provide under-
standing of the behavior when a sound event is present and detected:
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Table 8.2: Generalization: stream-wise performances on full training and test
set, averaged over classes and all scenes

performance test set mean training set (cv) mean

BACsw 0.777 0.806

SENSsw 0.775 n/a

SPECpp 0.649 n/a

SPECnpp 0.837 n/a

• The placement likelihood measures the average proportion samples
are getting assigned positives, depending on their associated
distance from the sound event’s correct azimuth. Ideally, the
placement likelihood would be 1 at the correct azimuth, and 0
everywhere else4.

• The best-assignment-possible rate (BAPR) describes how often the
system assigns a positive to the stream with associated location
closest to the true azimuth, and only to this stream. For unimpaired
source-count and location input (see Section 8.1.5), the closest
stream is always the one with correct azimuth; for perturbed
situations, it may well be a stream with azimuth distance greater
than 0°.

• The number of excess positive assignments (NEP) indicates how many
streams erroneously got assigned a positive. Ideally, this would
be zero.

• The mean azimuth error (AzmErr) averages the distance of all
positive-assigned streams to the correct azimuth.

Table 8.1 provides an overview over measures and nomenclature for
easy reference.

8.2 evaluation : method practicability

Training produces functional models, as Table 8.2 shows. BACsw on
the test set (averaged such that scenes with 1,2,3,4 sources have equal
weight, as in training) is only a bit below training performance and well
above chance level. (SENSsw, SPECpp and SPECnpp constitute BACsw,
cf. Section 8.1.6.) Since different sounds and different scenes are used in
the test set compared to the training set, this performance demonstrates
successful generalization of the models.

4 Only if the correct azimuth is actually always among the segregated streams, that is, for
unperturbed data.
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Figure 8.3: Grand average (full test set, all test files, all classes) performances.
Time-wise performances (a) are ignorant of location, providing detection
performance aggregated over streams for segregated detection models, and
comparing to fullstream models’ detection performance on the full mix. Lo-
calized detection performances (b),(c) present measures regarding detection
in the correct stream (that is, associated to the correct location). Box-plots
indicate the 25th to 75th percentiles, the median and its 95 % confidence
interval, whiskers depict the complete range of values. The placement like-
lihood plot (c) displays the arithmetic mean and, shaded, the 25th to 75th
percentiles. Table 8.1 or Section 8.1.6 provide descriptions of the presented
measures.

Disassembling the surrogate performance number BACsw, in Fig. 8.3a,
time-wise performances (as introduced in Section 8.1.6.1) of segregated
detection are given and compared to fullstream detection. While being
in the same range, the fullstream models do exhibit higher balanced
accuracy. This is due to a notably worse specificity of the segregated
detection models (median of 0.66, i. e. one out of three times, without a
sound event present, the system actually assigns a positive to one or
more streams) for which the better detection rate (median of 0.9, i. e.
nine out of ten times, when a sound event is present, it is also detected)
can not make up. This has to be carefully interpreted (see Section 8.3.2),
since the additionally depicted underlying stream-wise SPECnpp of the
segregated detection models is actually even a bit higher than the
fullstream’s specificity.

The actual purpose of the segregated detection models is assigning
sound events to the correct spatial stream. Figs. 8.3b and 8.3c show
different indicators in this regard:
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• Looking at the placement likelihood5, a sound event placement
is most likely in a stream at the correct azimuth. This likelihood
quickly drops with increasing azimuth distance up to around 60°.
The ideal system would produce a peak at 0° only, but the graph
shows that the method produces assignments more likely to be
close to the true azimuth than far from it.

• The best-assignment-possible rate (BAPR) is, in the median, about
40 %. That is, for the more difficult half of the scenes, between
0 % and 40 % of the event assignments are made to the correct
stream (and only to it). For the easier half of the scenes, between
40 % and 100 % of the assignments are made to the correct stream
(and only to it). The wide range indicates that scenes differ a lot
in how well they can be segregated into localized streams; which
is analyzed and discussed in Section 8.3.

• The median azimuth error (AzmErr), giving the mean distance
between the true sound event’s azimuth and the azimuths of its
assigned streams, is about 13° and ranges from 0° to 125°. This
low average deviation is consistent with the placement likelihood
plot, showing that most assignments are done close to the true
azimuth.

• The median number of excess positive assignments (NEP) is 0.6.
For about 25 % of the scenes, only one stream is assigned a positive
(which is ideal), but for the larger part of scenes, assignments to
more than one stream occur frequently. Looking at the azimuth
error, at least these excess assignments usually happen to streams
close to the true azimuth.

8.3 influence of scene configuration

The presented all-scenes grand average results exhibit a very wide range
of performance. To investigate the factors influencing performance,
three main scene configuration parameters are varied systematically
across scenes in the following: the SNR between target and distractor
sources, the number of distractor sources, and the scene mode.

5 This graph reads like: if there was a stream located at 20° distance to the true sound
source’s azimuth, the mean proportion of blocks from this stream getting a positive
sound event assignment would be 0.6.



128 multi-conditional sound event detection on spatial streams

(a) SNR dependence (b) no. of srcs dependence (c) scene mode dependence

(d) Placement likelihood
over SNR

(e) Placement likelihood over
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(f) Placement likelihood
over scene modes

Figure 8.4: Performances depending on SNR (a),(d), number of sources (b),(e),
and scene mode (c),(f), averaged over all respective test scenes, test files,
and classes. Line plots display arithmetic means and, shaded, 25th to 75th
percentiles. Table 8.1 provides descriptions of the presented measures.

8.3.1 SNR

The performance of the system over different SNRs is presented in
Figs. 8.4a and 8.4d. For all SNRs, the same scene configurations are
aggregated, hence the SNR is the only parameter varied.

Detection rate and specificity show typical behavior — DRtw drop-
ping with SNR, SPECtw remaining mostly constant. Notable are the
differences between segregated detection and fullstream models: the
offset between specificities remains the same, while the detection rate
differs only for difficult SNRs, where the segregated detection models
perform better.

The number of positively assigned streams increases with SNR, be-
cause the stronger target source dominates the time-frequency space
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and more likely overrides ITDs and ILDs of the weak distractors. On
the other side the mean azimuth error decreases with SNR, implying
that — even though with more of them — the positive assignments at
high SNRs are closer to the correct azimuth. The placement likelihood
graph reflects this as well: up to about 30° azimuth distance, higher
SNRs produce more (percentage-wise) assignments. Above about 30°,
it reverses and higher SNRs of the target produce less assignments.

8.3.2 Number of sources

The performance of the system over different source counts is presented
in Figs. 8.4b and 8.4e.

A clear negative correlation between number of sources and per-
formance values can be observed, with the notable exception of the
detection rate, which counter-intuitively increases slightly from two to
four sources. For one and two sources, detection rate and specificity
of segregated detection and fullstream models are very similar. The
time-wise segregated detection SPECtw however decreases for higher
source counts much more strongly than SPEC f s — while the block-wise
SPECnpp shows almost exactly the same behavior as SPEC f s. This im-
plies that the model’s general ability to classify negatives is actually not
lower than that of the fullstream models, and leads to the assumption
that the reason for both the strong decrease in time-wise specificity
as well as for the increase in detection rate is actually the successful
segregation into streams — which eases detection of positives, be they
true, or be they false, due to sound similarity. In a mix of active sources,
any positive (true or false) is less likely detected (this is shown by the
detection rate of the fullstream model), but the segregation (to a certain
extent) un-mixes. Since all sounds apart from the target class sounds
are emitted from all distractor sources, higher number of sources mean
higher probability of (false) positive occurrences. Hence, the time-wise
aggregation over streams produces an increase in detection rate through
true or false positives, and a decrease in specificity through false pos-
itives. This is an effect deemed practically unavoidable. In order to
re-balance performance between time-wise detection rate and speci-
ficity to increase precision, it may be an option to adjust the training
performance measure (BACsw) such that the weight of specificity is
increased beyond 0.5.

The indicators of localized detection performance, BAPR, AzmErr
and NEP, all show lower performance for higher number of sources.
This is to be expected, since more sources imply more overlap in
time-frequency-space and thus less distinct segregation masks. In the
placement likelihood graph, this is difficult to observe, because the
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means are very similar, but it can be noted by looking at the shaded
indications of the 25th to 75th percentiles.

8.3.3 Scene mode

The performance of the system for the four different scene modes (cf.
Section 8.1.1) are presented in Figs. 8.4c and 8.4f. A clear gradation can
be observed, with the bisected and target@0 modes performing best,
front-left scenes performing worse and ear-centered-single-hemisphere
scenes performing by far worst. This holds for all performance indi-
cators apart from specificity. Although for the fullstream models the
scene mode is far less influential (since the spatial features are not used
there), on a much lower scale the same pattern can be noted for the
detection rate.

For scenes in bisected or target@0 modes, BAPR is high and AzmErr
is low (about 60% of all cases with the optimal assignment, and around
15° mean azimuth error), and few excess positives are assigned.

Particularly the latter increase strongly for the other two modes (neg-
atively correlating BAPR) due to the increased occurence of front-back-
confusions. Front-back-confusions emerge because of the (approximate)
front-back-symmetry of the head, which leads to similar spatial features
for azimuths symmetric to the ear axis (Ma et al. 2017). The employed
segregation model (Section 8.1.2) for this reason actually disregards
differences between front and back at all, in favor of more robust segre-
gation in the frontal hemisphere; any ear-symmetric scene hence must
produce equal softmasks and result in the same classification of the
symmetric streams.

The placement likelihood graph shows these effects very clearly. The
bisected mode shows a curve close to the ideal, while the ear-centered
curve demonstrates a severe lack of discrimination between locations
for event assignments. Scenes with target at 0° show similar behavior
as bisecting ones, but exhibit front-back-confusion approaching 180°.

While SNR and number of sources are unchangeable attributes of a
given scene, the scene mode is changeable by head rotation. At least in
a scene with sources changing positions slower than the head can turn,
it should be possible to notably increase performance by choosing the
head orientation such that the sources of interest are spread as wide as
possible throughout the frontal hemisphere, optimally bisected. This is
in accordance with results about dynamically improving localization
performance in a binaural robot system (Ma et al. 2017).
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(a) Time-wise
performances

(b) BAPR over
scene modes

(c) Segregated detection
performances

(d) Placement likelihood

Figure 8.5: Grand average (full test set, all test files, all classes) performances
depending on strength of perturbation of location information fed into
the segregation model. Localization error is given as standard deviation of
the Gaussian perturbation added onto true azimuths, “rnd” standing for
“random”. Line plots display arithmetic means and, shaded, 25th to 75th
percentiles. Table 8.1 or Section 8.1.6 provide descriptions of the presented
measures.

8.4 detector performance and localization deviation

The segregation model relies on knowledge of two scene configuration
attributes: the number of active sources and the locations (azimuths)
of those sources. For the results above, both model inputs have been
fed with ground truth. Since a real system likely would not (always)
produce correct information about these two aspects, experiments were
conducted with systematically perturbed values.

This section analyzes the influence of perturbation of the location
input. The locations fed into the segregation model have an added
random Gaussian component (see Section 8.1.5) with different variances
between 5° and 45°. Additionally, tests were performed with completely
random azimuth input. For each individual variance, models were
tested again on all test scenes and sound files and analyzed as before.

Fig. 8.5 shows the performances over localization error. Looking at
the time-wise detection performance, it is notable that detection rate
and specificity behave inversely, and both only change on a small scale
(about ±0.03).

The segregated detection performance indicators show stronger de-
pendency on localization. The best-assignment-possible rate of the four
different scene modes (cf. Sections 8.1.1 and 8.3.3) converge toward sim-
ilar (low) values with increasing localization error — particularly the
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(a) Time-wise
performances

(b) BAPR over
scene modes

(c) Segregated detection
performances

(d) Placement likelihood

Figure 8.6: Grand average (full test set, all test files, all classes) performances
depending on strength of perturbation of source count information fed into
the segregation model. Line plots display arithmetic means and, shaded,
25th to 75th percentiles. Table 8.1 or Section 8.1.6 provide descriptions of
the presented measures.

two well-performing modes (bisecting and target@0) decrease strongly.
Interestingly, with random localization, the ear-centered scene mode
exhibits the best BAPR, standing out from the other three modes. This
is because for target sources at 90°, which occur in this scene mode, the
probability of any spatial stream with random location getting a similar
mask is least (highest for 0°). This can not lead to head turning rules
of course, because with random localization, a robot would not know
how to position sources at the ear.

Since the performance order of the four modes remains stable up
to very high localization errors, the head orientation guiding princi-
ple deduced in Section 8.3.3 stays valid, albeit with lower resulting
performance gain.

The straight increase of AzmErr with localization error is logical —
actually, the localization error does not even fully add to the system-
inherent (at 0° localization error) azimuth error of about 22°.

8.5 dependence on number of sources estimation

After localization error, the impact of incorrect input of the number of
active sources was analyzed. To this end, an error of ±2 was added to
the source count and accordingly produced streams by the segregation
model.

Fig. 8.6 shows performance over source count error — it is appar-
ent that deviations from the correct number of streams bear strong
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performance changes. Time-wise detection rate and specificity show
anti-correlated behavior: for underestimation of number of sources, the
detection rate degrades heavily, for overestimation of the source count,
specificity drops even more.

Azimuth error and placement likelihood show that segregating into
the wrong number of streams in both directions leads to worse localized
detection performance. The azimuth error rises with any deviation: with
too few streams, because the correct stream may be omitted, with too
many streams, because segregation becomes more difficult and, as can
be noted looking at NEP, because more excess positives are assigned.

The latter is also comprised in the strong decrease of BAPR for
source count overestimation — any case of excess positive assignment
is not a best-possible assignment. The increase of BAPR for negative
source count error is no indicator of somehow better localized detection
performance, but a mere logical consequence of the fact that with
number of sources underestimation, scenes with two, respectively three,
sources become segregated into one stream only, in which case the
best-possible assignment is trivial.

Clearly the implication of these results is that the segregated detection
system as proposed is dependent on an accurate estimation of number
of active sources.

8.6 summary

In this chapter,

• a method to annotate binaural sound scenes with joint sound
event type and location information by combining spatial segrega-
tion in time-frequency-space with robust sound event detection on
the segregated streams in training and testing has been suggested
and evaluated.

• it was demonstrated that this approach can produce localized
sound type information under a broad range of auditory condi-
tions. The localized detection performance depends particularly
on the number of active sources in the scene, and on their spatial
distribution. By turning the head such that the sources of interest
are in the frontal hemisphere (and at best bisected by the nose),
the system’s performance in many situations can be increased
strongly.

• it was found that proper estimation of the number of active spatial
streams is a precondition of this approach; localization error does
not influence segregated detection as heavily.
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• a diverse set of test scenes has been defined for thorough study
of performance behavior, together with a suitable training perfor-
mance measure and several test performance indicators to enable
capturing different qualitative aspects of the joint behavior of the
combined models.

It can therefore be concluded that the proposed method for joint sound
event localization and detection could be one core component of a
binaural scene analysis system.



9
E M P L O Y M E N T I N T H E T W O ! E A R S S Y S T E M

All studies evaluated in the chapters before have been on simulations of
static auditory scenes. One of the strengths (and goals) of the Two!Ears

project was development of active auditory models, and the developed
blackboard system hence supported models working with feedback
loops and commanding of robot actions.

In Chapter 8, evaluation of the proposed sound event localization and
detection (SELD) system was performed with ground truth information
about source locations and number of sources. In the study detailed
in the following, actual localization and number of sources estimation
modules were employed as input to the spatial segregation system.

Furthermore, a new head turning module trying to maximize spatial
separability was developed and is described below. Results presented
below show that this head rotation strategy indeed increases segregated
sound event detection performance significantly.

All in all, in this final study, the models developed in this thesis
were employed in the Two!Ears blackboard system and active robust
binaural computational auditory scene analysis was demonstrated.

In Section 9.1, the Two!Ears system and employed components as
well as the acoustic scenes used are introduced, Section 9.2 presents the
obtained results.

9.1 methods and data

The study described in this chapter involves no model training, but
only testing. Methods with respect to auditory data generation are
used here as put in Chapter 2. The description of the training of the
sound event detection (SED) and SELD models has been given in
Chapter 8. In Sections 9.1.2 and 9.1.3, the test execution environment
– the Two!Ears blackboard system – and its setup is described (so far,
tests had been executed in the Auditory Machine Learning Training
and Testing Pipeline (AMLTTP) (Appendix A)); Section 9.1.1 details the
auditory scenes used for the testing.

135
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Table 9.1: Scenes overview for model evaluation in Two!Ears development
system. Cf. Fig. 9.2 for the layout of the ADREAM room. Fig. 9.1 depicts the
azimuth configurations. “Num Srcs/act/pred” refers to the scenes’ set-up
number of sources, the actual mean active number of sources over time, and
the mean predicted number of sources by the number of sources estimation
module.

room acoustics num srcs/act/pred source azms snr (dB)

anechoic 2/1.4/1.0 10°, 110° 0

3/2.0/1.2 10°, 110°, −160°

4/2.7/1.4 10°, 110°, −160°, −45°

anechoic 2/1.4/0.9 −5°, 55° 0

3/2.0/1.1 −5°, 55°, 115°

4/2.7/1.3 −5°, 55°, 115°, 175°

anechoic 2/1.4/1.0 180°, 150° 0

3/2.0/1.2 180°, 150°, 120°

4/2.7/1.5 180°, 150°, 120°, 90°

ADREAM room, 2/1.4/1.8 srcs@(pos4, pos2) 0

head@pos2 3/2.0/2.2 srcs@(pos4, pos2, pos1)

4/2.7/2.3 srcs@(pos4, pos2, pos1, pos3)

9.1.1 Auditory scenes

Twelve auditory scenes were used in this study; four with two, three,
and four sources each. Anechoic scenes rendered with the head-related
impulse response (HRIR) from Wierstorf et al. (2011) as well as re-
verberant scenes rendered with the binaural room impulse response
(BRIR) from Winter, Wierstorf, Podlubne, et al. (2016) are included (see
Section 2.2.2 about binaural scene synthesis). Some scenes have sources
distributed all around the head, some contain sources more densely
packed. The average signal-to-noise ratio (SNR) between sources was
always set to 0 dB. Table 9.1 and Fig. 9.1 detail the configurations of the
auditory scenes used in this study.

Sounds from all classes of NIGENS (cf. Section 2.1) that had not been
used for training of any of the included models, that is, only from the
test sets, were used for scene rendering (245 files, 77 of which from
the “general” sound class). Different to testing in the studies described
in the chapters before, these files were randomly concatenated into
four continuous streams (instead of the scene-instances produced so
far for each original sound file). Random silences of 2 s to 10 s between
concatenations were inserted to have the number of active sound sources
vary. Prior to concatenation, sound files shorter than 10 s were looped
until this threshold was reached. Each of the four streams, which were
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0°

45°

90°

135°

+-180°

-135°

-90°

-45°

Figure 9.1: Two!Ears system employment test scenes. Black filled circles depict
sources, each scene is indicated by one circle fragment. The head is at the
center. For system configurations with head rotation modules, the above
depiction is the starting situation.

subsequently used as input to the scene rendering, had a length of
1 h : 10 min.

9.1.2 Two!Ears blackboard system

The Two!Ears blackboard system was developed in the Two!Ears

project basically as a middleware providing a platform for easy im-
plementation of auditory modules in a dynamic binaural system; as
similarly described for example in Ellis (1996) and Godsmark and
Brown (1999). This system connects the acquisition of ear-signals with
basic auditory data processing, and then mediates data between these
basic stages and higher-level modules as well as between these higher-
level modules. The system is dynamic, since modules can change basic
auditory processing and command actions of the system host (real or
simulated robot). It is described in detail in Ma et al. (2014, Ch. 3).

Two core modules are always part of the Two!Ears blackboard sys-
tem:

• The binaural simulator (Winter, Wierstorf, and Trowitzsch 2016,
Ch. 2.2) (or the robot interface, in case of robot deployment),
which produces ear-signals from definitions of acoustic scenes (cf.
Sections 2.2.1 and 2.2.2).

• The Auditory Front-end (AFE) (May, Decorsière, et al. 2015),
which produces different auditory data representations of the
ear-signals (cf. Section 2.3).
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2

1

4

3

5

Figure 9.2: Layout of positions and orientations of the robot and the loud speak-
ers in the ADREAM apartment (Winter, Wierstorf, Podlubne, et al. 2016)
used during recordings. The arcs around the positions indicate the orienta-
tion ranges at which the BRIR were recorded.

During execution of the set-up blackboard systems, all data and
results produced by models – i. e., source localizations, active source
count estimations, sound event detections, etc. – get saved, enabling
later analysis.

9.1.3 Blackboard system setup

To perform the investigation of spatially segregated SELD with actual
source localization and different head rotation strategies, four different
variants of the blackboard system were set-up in this study:

1. No head rotation — the head is fixed in the starting position of
the scenes. Ground truth about number of currently active sources
is known.
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2. Random head rotation. The head is rotated arbitrarily irregard-
less of locations of currently active sources. Ground truth about
number of currently active sources is known.

3. Maximum lateral distance head rotation, the head is rotated to
maximize lateral separation of currently active sources. Ground
truth about number of currently active sources is known.

4. Maximum lateral distance head rotation and number of currently
active sources estimation.

The following components were thus employed in the blackboard
system for execution of above setups:

• Sources localization module and localization confusion solver
module as described in Ma et al. (2017) and Ma et al. (2016,
Ch. 3.4.1). The underlying localization model is a deep neural
network (DNN) architecture trained on anechoic data, and pro-
duces a likelihood of source activity over time for all azimuths
based on interaural level-differences (ILDs) and left-right ear sig-
nal cross-correlation features. The localization confusion solver
module integrates source location likelihood distributions prior
and posterior to head rotations in order to eliminate phantom
sources.

• (only setup 4) Number of active sources estimation module as
described in Ma et al. (2016, Ch. 3.5.2), which was trained on
auditory scenes from the ADREAM room (Winter, Wierstorf,
Podlubne, et al. (2016), Fig. 9.2) and uses DUET features (Rickard
2007), interaural time-differences (ITDs), ILDs, and the source
location likelihood distribution output of the source localization
module.

• Spatial stream segregation module as described in Section 8.1.2
and Trowitzsch, Schymura, et al. (2019), taking ILDs, ITDs, the
source location likelihood distribution output of the source lo-
calization module, and the number of active sources estimation
output by the respective module or ground truth about the active
source count as input.

• Spatially segregated SELD modules: as described in Chapter 8,
one for each target sound class.

• Fullstream SED modules: as described in Chapter 8, one for each
target sound class.
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• (only setup 2) Random head rotation module. The name says it
all — commands random head rotations (with a rotation speed of
maximally 40° s−1).

• (setups 3 and 4) Maximum lateral distance head rotation module,
described below in Section 9.1.3.1.

All of these modules processed consecutive 500 ms blocks of auditory
data; blocks did not overlap in this study.

9.1.3.1 Maximum lateral distance head rotation

Analysis of localized detection’s dependence on spatial distribution
of sources in Section 8.3.3 led to the conclusion that best performance
can be achieved by positioning the head such that sources are spread
as wide as possible throughout the frontal hemisphere. However, the
employed spatial segregation model (Trowitzsch, Schymura, et al. 2019)
does not differentiate between frontal and dorsal hemisphere, and
uses an observation model mapping azimuthal locations to ITDs and
ILDs through a generalized linear model (GLM) of sine functions.
Therefore, it is suggested here that the head be oriented to maximize
lateral distances between sources, irregardless of whether they are in the
frontal or dorsal hemisphere.

To test this method, which shall be called maximum lateral distance
(MLD) head rotation in the following, a Two!Ears blackboard system
module implementing this rule was developed. This module is executed
after every new block of data and subsequent estimation of sources
location distribution, i. e. in the case of the described experiments, every
500 ms.

Since true azimuths of sources are unknown, the sources location
probability distribution over azimuths pL as estimated by the localiza-
tion module then is the basis for calculation of lateral distances: for
each possible head orientation, calculate lateral distance latDist with
respect to pL as well as their mean longitudinal position longPos as

latDist =
360

∑
a1=1

360

∑
a2=1

|sin(a1)− sin(a2)| · min(pL(a1), pL(a2)) (9.1)

longPos =
360

∑
a=1

pL(a) · cos(a). (9.2)

The maximum lateral distance (MLD) orientation is then defined as
the orientation maximizing latDist; for equal latDist, it is the orienta-
tion additionally maximizing longPos (i. e. orientations with sources in
the front are preferred over orientations with sources in the back).
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Figure 9.3: Fullstream and aggregated time-wise balanced accuracies in
Two!Ears system employment over number of sources with different sys-
tem components (without head rotation module, with random head rotation
module, with MLD head rotation module, with MLD head rotation and
number of sources estimation module). Line plots depict averages over all
respective scenes and 13 target sound classes.

The head is then rotated towards the MLD orientation, but with a
rotation speed of maximally 40° s−1. Since the used localization module
seems to be particularly prone to front-back confusions for sources at az-
imuths of 0° or 180°, as a heuristic, the module avoids such positioning
and instead slightly shifts a bit.

9.2 results

For each of the above described blackboard system configurations
(Section 9.1.3), for each of the above described scenes (Section 9.1.1), the
saved detection model output was individually evaluated and compiled
into the performance measures introduced in the previous chapters
(Sections 3.3.2 and 8.1.6). These results were aggregated (i) into grand
averages over all classes and scenes and (ii) into averages over classes
and scenes with the same number of sources, i. e. scenes with two, three,
or four sources.

9.2.1 Pure detection performances

Figs. 9.3, 9.4c and 9.4d show balanced accuracies (BACs) of the full-
stream and segregated detection models. Box-plots indicate the 25th to
75th percentiles, the median and its 95 % confidence interval, whiskers
depict the complete range of values. Line plots indicate arithmetic
means.
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Figure 9.4: Average localized detection performance measures in Two!Ears sys-
tem employment with different system components (without head rotation
module, with random head rotation module, with MLD head rotation mod-
ule, with MLD head rotation and number of sources estimation module).
Boxplots pool performances over all scenes and 13 target sound classes.

Firstly, these results show that the models efficiently work not only
in the testing environment of AMLTTP, but also in the continuously
streaming “live” environment of the Two!Ears blackboard system.
Secondly, it is observable that performances of the fullstream model
are completely unaffected by the different head rotation strategies
and blackboard setups. This is more or less to be expected; more,
because the fullstream models in principle are independent (because
of the good generalization across azimuth configurations) of head
orientation, and less, because evaluation in Section 8.3.3 had predicted
small advantages for azimuth configurations with sources distributed in
the frontal hemisphere, which the MLD head rotation strategy enforces.
However, the advantage was very small, and the MLD rotation due to
restricted head rotation speed (see Section 9.1.3.1) does not have the
head at optimal orientation always.

Looking at the pure detection BACs over number of sources, behavior
is as reported in Section 8.3.2, with the time-wise segregated detection
performances being a bit lower than the fullstream performances.

Notable is the significantly lower time-wise detection performance
with the number of sources model active (setup 4, Section 9.1.3), which,
inspecting Fig. 9.4b, can be traced back to a very low detection rate
for this setup. In Table 9.1, the average predicted number of sources
are reported next to the true average active number of sources — it is
apparent that the used model is strongly underestimating the active
source count for the anechoic scenes (it was trained on ADREAM
scenes). In Section 8.5, a strong degradation of detection rate was
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Figure 9.5: Localized detection performance measures in Two!Ears system
employment over number of sources with different system components
(without head rotation module, with random head rotation module, with
MLD head rotation module, with MLD head rotation and number of sources
estimation module). Line plots depict averages over all respective scenes
and 13 target sound classes.

predicted for underestimation of number of sources, but the observed
loss is even higher, and not compensated by increased specificity. This
may be due to the fact that in Section 8.5, source locations were deleted
randomly for source count underestimation, but in actual application,
the azimuths with lowest localization likelihood are omitted. These
probably have lower energy and are less likely detected in a “wrong”
spatial stream than more energetic sources.

9.2.2 Localized detection performances

The stream-wise BAC was used as a localized detection performance
surrogate for training of the segregated detection models in Chapter 8

and Section 8.1.4. While it does not allow insight into specific behavior
of the models, it does provide an overall performance measurement.

Fig. 9.4a displays the grand average stream-wise BAC for the four
different system setups and head rotation strategies. The worst perfor-
mance was achieved by setup 4, using number of sources estimation
instead of ground truth; the low detection rate of this setup was already
discussed above.

With respect to the different head rotation strategies, BACsw shows
clearly a significant increase going from no rotation over random ro-
tation to MLD rotation. Figs. 9.5b and 9.6b show that for the mean
azimuth error, the dependency is even stronger, specifically going from
no rotation to random rotation. The large difference between these
two modes – although there would be no reason to assume that the
segregated detection performs significantly stronger with random head
orientation than with fixed head – indicates the large gain in localiza-
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(c) NEP

Figure 9.6: Average localized detection performance measures in Two!Ears sys-
tem employment with different system components (without head rotation
module, with random head rotation module, with MLD head rotation mod-
ule, with MLD head rotation and number of sources estimation module).
Boxplots pool performances over all scenes and 13 target sound classes.

tion accuracy introduced through integration of pre- and post-rotation
localizations of the confusion solver employed (cf. Section 9.1.3, and
Ma et al. (2017))1. With MLD rotation, the mean azimuth error can be
further reduced in the median by about 8°, which is in the predicted
range of the evaluation in Section 8.3.3.

The behavior of best-assignment-possible-rate (BAPR) (Figs. 9.5a
and 9.6a) and number of excess positives (NEP) (Figs. 9.5c and 9.6c)
similarly reflect the advantage of the MLD rotation. The BAPR in the
median is increased by about 10 %, the median NEP is reduced from
about 0.28 to 0.22. These performance differences show for scenes with
two, three, or four sources (almost) equally.

As observed and discussed already in Section 8.5, the underestima-
tion of the active source count model leads to high BAPR and low NEP,
which is simply a consequence of the subsequent segregation into fewer
spatial streams.

9.3 summary

In this chapter,

1 Comparing Fig. 9.5b and Fig. 8.5c, an average localization error of somewhere between
20° to 45° could be inferred with the random head rotation module active.
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• it was demonstrated that the fullstream and segregated detec-
tion models efficiently detect sound events in a dynamic online
binaural system with actual sound source localization instead of
ground truth.

• it was validated that performances in the Two!Ears blackboard
system were well predicted in the evaluation of tests performed
in the (static) AMLTTP in Chapter 8.

• it was suggested a new head rotation strategy that maximizes lat-
eral source separation, thereby optimizes spatial segregability, and
which significantly increased localized detection performance.

Concluding, it was shown that the models developed in this thesis
indeed robustly detect sound events both on full- and spatially segre-
gated streams and constitute efficient components of a binaural system
performing computational auditory scene analysis.





Part IV

D I S C U S S I O N A N D C O N C L U S I O N

For what it’s worth.





10
D I S C U S S I O N

Many aspects of the presented work have been reasoned about already
throughout the analyses in Parts ii and iii and placed into existing
research in Chapter 1. In the following sections, several aspects are
continued, topics spanning across the individual chapters are discussed,
and further related literature is reviewed.

10.1 building robust sound event detection models

The development and analysis of polyphonic sound event detection
(SED) by and large started to gain attention through the Detection and
Classification of Acoustic Scenes and Events (DCASE) 2013 and 2016

challenges (A. Mesaros et al. 2018; Dan Stowell et al. 2015). Unfortu-
nately, the level of polyphony was very low; to an extent making it
hard to call scenes polyphonic1, at least for the 2016 synthetic task —
consequently, Lafay et al. (2017) in their analysis of results have not
found performance differences between monophonic and polyphonic
scenes.

The challenge tasks on real audio (DCASE 2016 and 2017) were
much harder, with mean polyphony of 2.53 (excluding silences for the
calculation). Results accordingly were much worse, leading A. Mesaros
et al. (2018) and Annamaria Mesaros et al. (2019) to the conclusion that
polyphonic SED on real audio still is difficult to tackle and data sets for
training were still too small.

This thesis is the first to address robust sound event detection in
polyphonic scenes with up to four co-occurring sources, and the first to
present thorough analyses about the effects of the different dimensions
of polyphonic sound scenes and systematic solutions about polyphonic
model building.

1 At the hardest level, 55 sound events with average duration of about 1.5 s were distributed
randomly along 120 s.
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10.1.1 Data

One contribution of the work done in the course of this thesis was the
creation and public deployment of the NIGENS database (Section 2.1,
Trowitzsch, Taghia, et al. (2019b)). It is tailored to the task of synthe-
sizing complex acoustic scenes through providing over 1000 sound
files with isolated events and frame-level labeling, something which to
this extent was unavailable so far (see Section 2.1.1). Particularly for
realistic spatial scene creation, such a data set is indispensable: labeling
of recorded real spatial audio with ground truth about sound types
and source locations would be of prohibitive effort, and scene synthesis
the only realistic viable option to obtain well-defined acoustic scenes of
specific complexity.

Admittedly, real recordings of complete scenes would always be the
gold standard; and for pure SED without localization, there exist the
DCASE real audio data sets. For the multi-conditional training approach
followed here and for the fine-grained analyses (which both rely on the
capability to synthesize scenes along acoustic scene dimensions), these
data sets were not suitable (although they even are real binaural data).
But it remains desirable to additionally train (with adapted procedures)
and test on these data sets as a comparison.

Using “general” sounds (cf. Section 2.1.2) instead of only target
sounds is a clear distinction from other works, since the general class
has high overlap with all target classes, and thus renders model defini-
tion (realistically) more difficult compared to a situation where class
boundaries only have to be found against (usually limited amounts of)
other target classes (with less overlap).

A shortcoming is the neglect of diffuse background noise in this
work. While the focus intentionally was sound event detection in sit-
uations with simultaneously active distinct sources, in real life there
are frequently situations with noise-like background without specific
events, like noise from rain, or wind going through trees in a forest, or
thousands of cars in the vicinity. In defense, there are noise-sounds like
these in the general class, and there is the “fire” class, which exhibits
the mentioned features as well. However, they were not used as diffuse
(non-spatial) sounds, but emitted from point sources. Adding diffuse
background noise to the proposed training and testing would be easy,
and add an interesting additional dimension for analysis2.

2 As a side-note and as described in Section 1.5.1, in most existing literature, it is the other
way around: only background noise and no distinct disturbing other sound events.
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10.1.1.1 Unlabeled data

While strongly labeled data with event on- and offset annotations is
rare, there is an abundance of unlabeled or weakly labeled data avail-
able on platforms like YouTube or Freesound. Exploiting this wealth
has a lot of potential for semi-supervised approaches, pre-training, or
representation learning, which can be followed by supervised learning
on labeled data. A few such approaches are described in the following.

In a very large-scale setup, Aytar et al. (2016) trained a convolutional
neural network (CNN) on raw waveform from 2 million unlabeled
Flickr videos, supervised by visual recognition networks. The resulting
network (which they called “SoundNet”) built a new internal repre-
sentation for the sound input, which subsequently could be used for
supervised sound classification training. Their results on DCASE and
ESC data suggested superior performance compared to other models
without the SoundNet pre-training3.

Z. Zhang et al. (2017) have proposed to use a recurrent neural net-
work (RNN) encoder-decoder trained on predicting audio sequences,
subsequently extracted so-called bottleneck features from the RNN, and
trained audio classification models on top of it. Again, results suggest
strong performance, but unfortunately, tests only have been performed
on individual sounds, instead of polyphonic situations.

Another pre-trained public deep neural network (DNN) model mak-
ing available deep feature representations (learned from 100 million
videos), called “VGGish”, was released by Google (Hershey et al. 2017).

After unlabeled sound data, the second most available sound data is
weakly labeled data, that is, audio clips with global tags without notion of
when individual sound events occur. To make use of this data anyway
for SED, Kong et al. (2019) have proposed a system consisting of two
models, one CNN trained to segregate the time-frequency (TF)-space,
and another one to identify the masked sound events. Their results
indicate that this could be a valuable approach.

Because of its increasing importance, weakly labeled SED is now part
of the DCASE series (Annamaria Mesaros et al. 2019).

10.1.2 Multi-conditional modeling and Robustness

The results presented in this thesis demonstrate that robust polyphonic
sound event detection models efficiently can be built in data-driven
ways, even with conventional models like the Least Absolute Shrinkage
and Selection Operator (LASSO). This is in line with the general trend

3 But other results (Shan and Ren 2018) of models built on SoundNet implied worse
performance than time-frequency energy-based counterparts.
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towards data-driven over manual design, as also noticed by A. Mesaros
et al. (2018) in their review of the DCASE 2016 challenge.

Multi-conditional modeling has been the means of choice in this
work, and the such-trained models have proven to be robust at the di-
mensions of signal-to-noise ratio (SNR), number of sources and azimuth
configuration, plus – separately – room acoustics. A study modeling
multi-conditionally across all four dimensions, and showing simultane-
ous generalization should be done additionally.

That the robustness in polyphonic acoustic scenes obtained through
multi-conditional training is fundamental, could be demonstrated by
training models for many qualitatively different sound classes, with
three different model types operating on two different kinds of represen-
tation, and two different labeling methods; all performing qualitatively
similar with respect to the acoustic conditions.

For sound event detection, no other work compares multi-conditional
and single-conditional models on matching and non-matching condi-
tions4. However, for speech recognition, Yin et al. (2015) have presented
results very similar to the ones presented here in Chapters 4 and 5.
They demonstrated that training on all noisy and clean data together
resulted in optimal performance across different (a priori unknown)
conditions without deterioration compared to the matching single-
conditional models; validating the evaluations here. Despite the facts
that an extended SNR range, additional variability through azimuths
of sources, less predictable noise (distinct versus background noise),
and a less powerful model type was used here, the same generalization
effects were generated.

Martin-Morato et al. (2018) recently investigated the robustness of
features extracted from SoundNet, a DNN trained on millions of sound
from video clips (Aytar et al. 2016) with respect to background noise
and reverberation, similar to the analysis in Sections 4.2 and 6.2. Their
results indicate severe drops in performance when testing in reverberant
conditions, and very strong influence of background noise, even already
for SNRs above 0. This accordance with results shown here confirms
the assumption that model architecture and highly adapted features are
not the main factors in robustness across acoustic conditions, but rather
the training scheme. The conclusion presented in Martin-Morato et
al. (2018) – that SoundNet’s deep representation needs to be increased
to get robust – is not shared here. In light of the outcomes provided,
models using SoundNet’s (or any other valuable) representation rather

4 A few do, but only monophonic with diffuse background noise, and with single-
conditional models only trained for one (clean) condition, e. g. Dennis et al. (2012),
Wu et al. (2018), and Haomin Zhang et al. (2015).
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should still be trained multi-conditionally to avoid overfitting onto the
acoustic condition.

Generally, it seems a promising approach to train multi-conditional
models on labeled datasets like NIGENS or ESC (Piczak 2015b) with the
deep representations (like SoundNet or variants tailored to SED with
higher temporal resolution, Wang and Metze (2017)) obtained through
unsupervised training from the wealth of available unlabeled data, see
Section 10.1.1.1 above.

data augmentation Since the prevalence of deep learning accom-
panied with the need for lots of data in order to prevent overfitting,
data augmentation is being used frequently; in DCASE Community
(2019), there are basically no contributions without any form of data
augmentation. Often, variants of time stretching or frequency shifting
are employed, which mostly show small effects (e. g. Piczak (2015a) and
Salamon and Bello (2017)). So-called “mixup” or “between-class” aug-
mentation (Jeong and Lim 2018; Tokozume et al. 2017; Wei et al. 2018),
borrowed from image recognition (Hongyi Zhang et al. 2017), is closer
to the proposed multi-conditional training, since it also involves super-
position of different training samples.

Inoue et al. (2018) and Takahashi et al. (2016) propose “Equalized
Mixture Data Augmentation” and show a strong performance increase
(over not using it with the same system). As with the here employed
multi-conditional training, different sounds are mixed to increase sam-
ple variety. In contrast, they propose to mix inside each sound class; the
intention was not to gain robustness with respect to acoustic conditions,
but robustness with respect to intra-class variance. This approach could
be well combinable with acoustical multi-conditional training.

10.1.3 Model types

The choice of LASSO (Section 3.4) as an SED classifier is uncommon,
frequently used classifiers (before DNNs) for sound identification have
been particularly support vector machines (SVMs), Gaussian mixture
models (GMMs), and hidden markov models (HMMs) (Sharan and
Moir 2016; Stiefelhagen et al. 2007; Dan Stowell et al. 2015). This choice
was made for the following reasons: (i) the LASSO is very fast and
easy to train with a very efficient tool (GLMNET), (ia) it is much faster
to train than any non-linear method, (ib) linear models commonly all
perform about similarly, (ii) it is extremely easy and fast in application,
which can be useful with low performance hardware as in hearing
aids, for example, but also was an issue with the Two!Ears robotic
platform, (iii) it can efficiently deal with very high-dimensional data,
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also with highly correlated variables, and (iv) it provides indications
about variable importance through its L1-regularization.

Certainly, the LASSO was a limit to performance in the presented
investigations (as Chapter 7 – expectably – showed). However, non-
exhaustive tests with nonlinear SVM (rbf kernels) and random forests
had not improved performance, which led to the supposition that basic
nonlinear information in the data was already extracted in the feature
creation (Section 3.1.1.1).

Generally, the aim of this thesis was to rather perform and pro-
vide extensive tests and qualitative analyses of how to fundamentally
tackle sound event detection, instead of demonstrating the highest per-
formance possible. Definitely, using a potent, up-to-date model class,
with the available computational resources a lot of the presented work
would not have been possible to conduct. But to be honest: it was a
(welcome) surprise that the LASSO models were able to perform as
well on multi-conditional data across such wide ranges of acoustic
scenes. This can only be interpreted highly in favor of the extracted
perceptually motivated features.

Of course, algorithms providing temporal modeling capabilities were
expected to increase performance, as information about sound identity
is to a good extent encoded temporally. DNNs were the natural choice
in this regard, as they have taken over from HMMs for several years
now, particularly CNNs and RNNs (A. Mesaros et al. 2018; Annamaria
Mesaros et al. 2019; Purwins et al. 2019; Xia et al. 2019).

10.1.4 Features

Two fundamental auditory representations are used in this thesis:
ratemaps (and derived from it, spectral features) and amplitude modu-
lation spectrograms (AMSs) (see Section 2.3).

Ratemaps belong to the group of mel-scaled frequency-filtered en-
ergy representations. In the latest three DCASE SED challenges (DCASE
Community 2019; A. Mesaros et al. 2018; Annamaria Mesaros et al. 2019),
mel-scaled energy representations are both the most used features as
well as the winning features. They have thus taken over from the long
time more popular Mel-frequency cepstral coefficients (MFCCs).

AMS, in contrast to the speech recognition domain5, seem not to be
used a lot in SED. This is surprising, since (a) evidence of its importance
in human hearing is clear (Gygi et al. 2004; Luo et al. 2006; Shannon et
al. 1995; Smith et al. 2002), (b) it is reasonable to assume that overlapping
sound events in the same frequency band may still be separable to a

5 For example in T. May and T. Dau (2013), Mitra et al. (2014), and Moritz et al. (2015)
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certain extent through their different amplitude modulation, and (c)
the LASSO models trained here confirm these points by making strong
use particularly of the AMS-derived features (identified by means of
the L1-regularized model coefficients; not shown here).

Some publications exist promoting spectro-temporal Gabor filter-
banks, argued to capture not only temporal and spectral, but joint
spectro-temporal modulations (Schröder et al. 2015). In a short ex-
periment with ratemap, AMS, and spectro-temporal Gabor features,
indeed a minimally higher performance compared to the feature set
without the Gabor features was found. Unfortunately, a check whether
the Gabor features could have actually replaced the AMS features,
i. e., whether AMS in presence of spectro-temporal Gabor modulation
features still conveyed unique information, was not done here.

Temporal information is summarized by computing statistical mo-
ments over time similar to Nogueira (2016), Nogueira et al. (2013),
and H. Phan et al. (2015), and complemented with spectral summaries
similar to Geiger et al. (2013), Marchi et al. (2016), and Nogueira et
al. (2013).

The established model building pipeline would facilitate more exper-
iments with respect to features, for example investigating the effect of a
Dual-resonance non-linear filter bank (Meddis et al. 2001) or automatic
gain control (Lyon 2017), both implying better (and more human-like)
handling of signals with varying energy level.

Even more biologically-inspired (Smith and Lewicki 2006) features,
namely spiking neural representations, are gaining popularity: Scholler
and Purwins (2011), Wu et al. (2018), and Q. Yu et al. (2019) have utilized
such features for audio classification, and Wu et al. (2018) and Q. Yu
et al. (2019) additionally demonstrated multi-conditional training and
very good performance with these features. Whether their results hold
for more complex acoustic scenes than they investigated (monophonic
+ diffuse background noise), would be interesting.

The power of DNNs allows using raw waveform as input features;
in DCASE 2017, a few challenge entries did so, and achieved decent,
but lower performance compared to the systems using log-mel energies
(Annamaria Mesaros et al. 2019). Dai et al. (2017) suggest that DNNs
models indeed have to be very deep, that is, have many layers, to be able
to efficiently perform SED on raw audio data. They find a model per-
forming well – similar to a model operating on log-mel energies – with
18 layers. Most SED-systems still operate on spectro-temporal represen-
tations instead of raw audio (Xia et al. 2019). However, in principle, deep
learning systems can learn feature representations tailored to the task.
An intermediate approach could be to let DNNs operate on individual
gammatone-filtered raw audio or inner hair-cell signals, alleviating
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the network from the task of learning frequency-selective filtering, but
leaving it with the possibility to find finer, task- and frequency-specific
representations from the filtered audio. In an interesting work in a
similar manner, Çakir and Virtanen (2018) started training a DNN
with a weight-initialization such that the network already had in-built
time-frequency representations, but during training could re-learn to
whatever function most beneficial. However, results turned out to be
worse compared to handcrafted time-frequency representations.

frequencies 80 Hz to 8 kHz is the frequency range employed in
this work. This range was chosen because (a) it is a common choice (Sha-
ran and Moir 2016), (b) with increased range comes either decreased
resolution or increased number of filters (hence increased computa-
tional effort), and particularly because (c) it allows usage of a sample
rate of 16 kHz, which means considerably faster processing and con-
siderably less memory/disk space needs both in the binaural scene
synthesis and in the auditory processing.

But is this enough? The persistence spectra in Fig. 2.1 reveal content
beyond 8 kHz. Humans can hear up to about 20 kHz. Gygi et al. (2004)
showed that for humans the most informative frequency range for iden-
tification of environmental sounds is 1200 Hz to 2400 Hz, and that the
information gain through including the range from 2400 Hz to 4800 Hz
was small. On the other hand, 70 % of the sounds were still identifiable
when only using information above 8 kHz — therefore at least, one
could conclude that the high frequencies offer redundant information
which would be helpful in polyphonic situations. Whether and how
much this extended frequency range would provide information gain
about co-occurring sound events in this context, should be tested. Re-
sults in Çakir and Virtanen (2018) and Jeong and Lim (2018) indicate
an advantage of higher sample rates and thus higher frequency range.
Also, the leading models in DCASE Community (2019) were working
with at least 32 kHz sample rate.

10.1.4.1 Binaural features

The whole modeling presented here was done using binaural data
from two microphones in a dummy head’s ears. Experiments with
different schemes for combining the binaural features were performed:
either superposition or concatenation of the representations from both
channels was applied (Section 4.1.2).

Over the last few years, the use of multi-channel features has been
suggested for improving audio scene classification and SED (Adavanne
et al. 2017; Adavanne, Politis, and Virtanen 2018; Adavanne and Virta-
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nen 2017; H. Phan et al. 2015; Xu, Kong, Huang, et al. 2017), facilitating
recognition of overlapping events.

Similarly, in the performed experiments on single-conditional iso-
and cross-performances (Chapter 4) clear advantages were found for
models employing (concatenated) two-channel features over models em-
ploying mean-channel features — but only, if training was performed
with data from scenes with the same or very similar source locations
as in testing. For mismatched source locations, the mean-channel fea-
tures performed stronger. Interestingly, even with the mean-channel
multi-conditional models, source distributions could be identified that
increase or decrease detection performance. An investigation of these
dependencies had not been conducted before.

10.1.5 Temporal context

Audio classification usually was based on features extracted from time
windows of multiple seconds in order to sufficiently capture non-
stationary and temporal characteristics (e. g. Valero and Alias (2012)).
It has been shown that time windows can be reduced to one second
without significant loss in performance (Khunarsal et al. 2013). For
“online” sound event detection in a robotic system, this may still be too
long; hence in this work, the time windows for the LASSO models were
even further reduced to 0.5 s to build responsive detectors.

In order to make use of longer temporal contextual information
and investigate the benefit from it, RNNs and CNNs, which have the
fundamental capability to aggregate information over long time, and
still be responsive, were trained. They were compared to several variants
of above mentioned LASSO models, with different (also multiple) time
windows (Chapter 7).

Even when training RNNs, in literature often rather short fixed length
audio sequences are employed (e. g. Jeong and Lim (2018)), which
then often implies truncation of sequences. In realistic and/or highly
disturbed/noisy scenes, this bears potential loss in performance due
to not using all available information. Takahashi et al. (2016) showed
an improvement of (single-source) SED performance with DNNs for
increasing input time context. For their system, performance seemed to
saturate between about 1 s to 3 s. However, investigations with respect
to the influence of temporal context in polyphonic situations had not
been published so far. Huy Phan et al. (2018) have investigated the
influence of temporal context length for audio scene classification with
CNN and RNN, and found considerable scene-dependent performance
profits for increased test signal lengths up to 30 s.
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The results presented demonstrate significant gain in demanding au-
ditory situations from using temporal context sizes up to the maximum
tested, 20 s (the limit may thus be even higher). This was only possible
for the DNN models, all tested variants of LASSO models failed to
benefit from context longer than one second.

Considering that in this work the concept of semantic realism in the
analyzed acoustic scenes was completely ignored, these results are
assumed to actually underestimate the benefit from longer temporal
context information. While the acoustic scenes here were rendered from
randomly drawn sound events independent from each other, in reality,
sound events of course very often are not independent. It seems likely
that it would be easier to identify sound events if they occurred in an
acoustic scene in which they usually do (Huang et al. 2018; Niessen
et al. 2008). This should be the case even more so, when models have
access to longer time context, because longer time context would mean
more semantic context.

However, interestingly, experiments with humans in this regard seem
to not have provided clear results yet. In Gygi and Shafiro (2011),
sounds embedded in incongruent scenes were slightly better identified
than in congruent scenes. Contrary, Risley et al. (2012) have shown a
positive effect of semantic context in the perception of environmental
sounds.

10.2 evaluating sound event detection models

The choice of loss function for the model optimization and performance
measure for model selection and generalization evaluation is a substan-
tial factor for the success of machine learning – it defines what’s success
and what not.

The following subsections discuss the avoidance of the most-commonly
performance metric in SED, the F-score, and the utilization of the bal-
anced accuracy (BAC) instead.

10.2.1 Why not F-score

As elaborated in Section 3.3.2.3, the F-score is dependent on the ratio of
negative to positive samples. So, F-scores do not only make a statement
about the quality of models’ predictions, but they are statements about
the quality of models’ predictions on data with a particular ratio of
negatives to positives: hence F-scores are not comparable for different
data distributions.
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However – unless very careful pre-selection is performed –, in the
binomial one-vs-all multi-label setup employed in this thesis (and with
most others for SED), usually data distributions do differ, and this not
only between different experiments and studies, but already between
the different sound classes in the same experiment, because samples of
different sound classes rarely occur in balanced amounts6. The F-scores
of models for different sound types thus are not comparable, even if
tested on the same mixtures.

Based on above reasoning, the F-score is reasonably used only when
optimizing model performance on a particular data set/distribution is
of interest, but less so, if interpretation of algorithm performance or
comparison of modeling approaches are goals, because the values have
no direct interpretation and are rarely comparable. Similarly, if chances
are that proportions of positives and negatives in application of models
differ from training, model assessment via F-score is problematic. (Hand
(2006) argues that such differences are more likely than not.)

Unfortunately, flawed comparisons based on F-scores obtained from
different distributions are common practice. For example, the evalua-
tion of the DCASE polyphonic challenges (Lafay et al. 2017; Dan Stowell
et al. 2015) in this regard was conducted methodologically erroneous.
On same-length scenes, F-scores on different densities of events are not
comparable. Scenes with higher density of sound events by definition
have lower rNP (cf. Eq. (3.9)), and models operating on them consequen-
tially (unless the false positive rate is 0) have higher F-score (cf. Eq. (3.8))
— without actually getting better. However, the level of polyphony in
the challenge was controlled by event density; scenes got more diffi-
cult because the event densities were increased and more polyphonic
overlap occurred. So the problem there interpretation-wise was even
doubled: models could achieve higher F-scores without getting better —
on more difficult scenes. Similarly, in A. Mesaros et al. (2018) F-scores
between DCASE 2016 task 2 (synthetic scenes) and task 3 (real audio)
were compared — but because the data sets are different, conclusions
drawn from such comparisons are questionable.

error rate In DCASE and elsewhere commonly used additionally
to the F-score, it shares exactly the same problems, because it does not
take into account the true negatives either. A description can be found
in Annamaria Mesaros et al. (2016).

6 Even less so for mixtures of sounds.
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10.2.2 Why balanced accuracy

Because of above reasons, and since producing robust – particularly
with respect to conditions differing from training, including different
distributions – classifiers was the goal of this work, choosing BAC
(see Section 3.3.2.1) as performance measure seemed more appropriate.
BAC is closer as a metric to an interpretation of “informedness” of
a classifier. The same line of argumentation can be found in Powers
(2011) promoting Bookmaker Informedness (also known as Youden’s J
Statistic (Youden 1950)), which is a scaled equivalent of BAC.

However, the choice of performance measure in this work, both for
training and testing, is legitimate subject for debate as well. To come to
a really informed decision, first of all would need a clear definition of
the problem with respect to cost of misallocation of classifiers, which
was not done here. Instead through usage of balanced accuracy on
data with small share of positives, implicitly higher cost was allocated
to false negatives than to false positives, which is to a certain extent
arbitrary.

So for one thing, it is debatable whether BAC was the optimal choice.
Frequently, the Matthews correlation coefficient is suggested as the
most informative single score binary classification measure, least im-
pacted by class imbalance (Chicco 2017; Powers 2011), so this might
have been an alternative. Alternatively, Hand (2009) and Hand and
Anagnostopoulos (2014) propose the “H-measure” (and strongly argue
against the commonly used AUC measure) for situations in which
misallocation cost is not known a-priori, so maybe this would have
been the most appropriate measure.

For another thing, using BAC2 (Section 3.3.2.2) for training and
then BAC for testing is questionable. BAC2 does work to prefer a
configuration of equal sensitivity and specificity, but because of this
it also rates SENS = 0.8, SPEC = 0.8 over SENS = 0.9, SPEC = 0.72,
which would feature higher BAC. No systematic investigation upon the
effect of using BAC2 in training has been done; this should be caught
up upon, or BAC should be used in training as well.

10.2.3 Macro-averaging

As explained in Section 3.3.3, class-average performance numbers are
used throughout this thesis. Annamaria Mesaros et al. (2019) in their
report on the DCASE 2017 task 3 illustrate why, and fuel the criticism of
common performance evaluation: the F-score was used in the challenge
class-independently (micro-averaged), leading to the situation that the
top-performing systems were actually unable to recognize a single
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instance for three out of six classes. They may have been the top-
performing systems, but with that metric, they have not shown that
they are able to detect a whole spectrum of sound events. Contributions
across the different DCASE events commonly failed to detect several
small (with respect to number of occurrences) sound types, which may
be attributed among other reasons to the described problems in the
definitions of task metrics (and thus optimization targets).

10.2.4 Event continuity

One aspect completely disregarded in the performed evaluations is
whether predicted sound events were continuous from onset to off-
set (evaluation metrics called “event-based” in Annamaria Mesaros
et al. (2016)). Instead, evaluation was on percentages of correctly de-
tected blocks or frames, irregardless of any mistaken pauses in-between
(evaluation metrics called “segment-based” in Annamaria Mesaros et
al. (2016)). With sufficiently high detection rates, probably some run-
ning average or alike could solve most small discontinuities (which is
what many systems do, e. g. Cakir et al. (2015b)), and whether they
pose a problem at all, will be task-dependent.

When using a further validation model classifying the whole event
subsequent to primary detection, as proposed in Huy Phan et al. (2017)
to reduce false positives, producing “continuous” events would be of
increased importance.

10.3 robust spatial sound event detection

Joint sound event localization and detection (SELD) is a new field (at
least with respect to machines performing it 7), unsurprising, consid-
ering that even SED does not have a very long history. Publications
tackling it are hard to find, and then often do not describe true SELD
systems, because identities and locations are predicted side by side
(Butko et al. 2011; Lopatka et al. 2016), not solving the problem of how
to associate found locations and identities.

In this thesis, an approach for binding the prediction of the two
modalities through spatial segregation has been developed and an-
alyzed (Chapter 8). It could be shown that SED and sound source
localization (SSL) can be joined efficiently with this method in a mod-
ular system, and that robust performance can be achieved through
multi-conditional training. Analyses with respect to different acoustic

7 but, as far as the author of this thesis understands from the literature known to him, it is
also not yet fully understood with humans (Bizley and Cohen 2013)
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conditions have been presented, particularly regarding the influence of
spatial source distribution around the head, which is something that
has not been done before in this context. Strong impact of the true
source locations on the system’s performance has been found. In a
binaural robotic system, source locations are subject to the head orienta-
tion, hence it was proposed to turn the head such that favorable relative
source positions can be achieved. In Chapter 9, successful application
of this approach was demonstrated.

The most similar method was published in May et al. (2012), perform-
ing speech detection and localization bound through spatial segregation,
plus speaker identification. Additionally to the restriction on speech,
different training paradigms were used.

Firstly, their system processed whole sentences, rather than the 0.5 s-
blocks used for the localized sound event detection here. Using longer
segments certainly would be an easy way to increase performance:
sound events become more identifiable (cf. Chapter 7) and streams
more segregable, because the strength of superposition varies over time
and longer blocks include more frames with the individual sources
standing out (“glimpsing”, also discussed in Section 7.3.1). However,
when considering longer temporal contexts for spatially segregated
detection, it gets less likely that scenes stay static, i. e., that sources don’t
move. This then makes segregating into coherent streams and running
SED models like the DNNs introduced in Chapter 7 over long time on
them a more challenging problem, because some sort of tracking would
need to be implemented.

Secondly, the system presented in May et al. (2012) was trained on
clean (single-source) data, and spatial masks were applied only during
testing, together with a missing data approach (Cooke et al. (2001),
one of the most widely used missing/unreliable auditory data ap-
proaches). This is a clear contrast to the system proposed here, for
which robustness is learned through training multi-conditionally in
polyphonic scenes with spatial masks already applied. If one wants, it is
a difference of manual versus data-driven design. The results presented
in May et al. (2012) show a strong degradation of the final speaker
identification for SNR even above 0 dB, while the performances of the
herein developed system only degrade very slightly for this SNR range.

Proper estimation of the number of active (spatial) streams is a pre-
condition of the here proposed approach; deviation of more than one
leads to very strong performance degradation. This was shown both
in the systematic testing environment of Auditory Machine Learning
Training and Testing Pipeline (AMLTTP) (Section 8.5) and in the on-
line continuous environment of the Two!Ears simulation framework
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(Section 9.2), employing a number-of-sources estimation model with
insufficient accuracy8.

Localization error, on the other hand, does not influence segregated
detection as heavily. Even with large errors, the system does not break
down, but propagates the input error under mild impairment of assign-
ment precision to the output (Section 8.4).

Adavanne, Politis, Nikunen, et al. (2018) recently presented a fully
joint SELD system based on a convolutional recurrent neural network
(CRNN) model which produces sound event information over time and,
for each sound type modeled, continuous output about the direction
of arrival. Their proposed system looks promising in that it combines
all information into one powerful (DNN) model that consequentially
can make use of auditory cues about sound types and source locations
simultaneously rather than sequentially. Furthermore, it is not needing
a priori information about the number of active sources. On the other
side of the coin, only one source emitting the same sound type can be
localized.

As part of the contribution with respect to SELD of this thesis, mea-
sures for the quantification of localized sound event detection success
have been developed and presented. The solutions obtained include two
metrics that similarly have been developed independently in Adavanne,
Politis, Nikunen, et al. (2018): what is called here mean azimuth error
(azmErr), is called there “DOAerror”, and what is called here “number
of excess positives” (NEP) and time-wise specificity and detection rate,
is summarized in their work through the “frame recall”, which is the
percentage of frames with correct number of out-put active source
locations. The “placement likelihood” presented in this work is unique
and adds more fine-grained information about the system’s behavior.

As elaborated above already (Section 10.2), the choice of training
performance measure has a crucial impact on system performance in
any machine learning model. For training the SELD models, a single-
number metric is needed. Compared to employing standard BAC, that
can not distinguish between negative samples with or without positive
in another stream (cf. Section 8.1.6.2) and hence would result in models
largely unable to assign events to only the correct stream, the modified
BACsw was proposed. While it has shown to produce functioning
models, there may as well be more suitable measures; in particular,
BACsw does not impose cost on azimuth distance to the correct location

8 The development of an efficient model for the estimation of the number of active sources
was out of scope in this thesis, but would be another very interesting problem to be
solved for an integrated CASA system.
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of positive assignments9. This would be an interesting point for further
research.

Looking at human auditory scene analysis (ASA), the approach of
segregating sounds only by means of spatial cues and treating individ-
ual time-frequency bins independently (as is proposed here), certainly
falls short. As A. S. Bregman (1993) reasons, it is more likely that spatial
cues are used together with rules about sound regularities. Hence, it
is reasonable to assume that the performance of the proposed SELD
system could profit significantly from a more sophisticated segregation
model that takes into account spatio-spectro-temporal context. This is
what a fully joint model like the one presented in Adavanne, Politis,
Nikunen, et al. (2018) does implicitly. However, it would be equally
interesting to do such context-sensitive explicit segregation in the se-
quential modular approach proposed here, particularly when also being
interested in human-like ASA.

The importance (and impact on performance) of such a segregation
model would undoubtedly increase in reverberant conditions. The anal-
ysis presented does not include reverberant acoustic scenes; and the
investigations with respect to impact of reverberation on fullstream
models (Chapter 6) may not translate to the joint detection and lo-
calization, since reverberation particularly perturbs spatial cues. This
is a shortcoming and should be caught up on, but favoring depth in
anechoic analysis over adding reverberant analysis was a compromise
necessary to keep the investigation feasible.

As closing words for this section: the field of SELD is due to see
increased activity and advances soon — the DCASE 2019 challenge for
the first time includes a task about this problem. The work presented
here about spatial sound event detection hopefully can also help to
start off systematic research on this topic.

9 Other than discriminating between correct or incorrect stream
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The following sections summarize the work done in the course of this
thesis and its contributions to the fields of sound event detection, joint
sound event localization and detection, and computational auditory
scene analysis.

the nigens database Systematic polyphonic binaural sound event
detection (SED) modeling and testing across many different acoustic
scenes is feasible only through simulated (synthesized) scenes. The
NIGENS general sounds database (Section 2.1) was tailored to this task.
It features 1017 wav-files containing isolated sound events distributed
among 14 different sound classes plus a “general” sound class con-
sisting of a very wide variety of sounds not contained in the other
event classes. Frame-level event on- and offset annotations make sure
that scene synthesizers can generate consistent polyphonic scenes with
scene-wide annotations and training algorithms work with precise
targets. The database was made available under Creative Commons
Attribution Non Commercial 4.0 license.

the auditory machine learning training and testing

pipeline To get from sound files to complex synthesized acous-
tic scenes to ear-signals, from ear-signals to auditory representations to
features and labels for machine learning algorithms, from training data
to proper model training by many different algorithms, taking heed
of appropriate performance measurement and model selection, from
trained models to tested models to evaluated models, a comprehensive
pipeline is necessary. The Auditory Machine Learning Training and
Testing Pipeline (AMLTTP) (Appendix A) is this pipeline (and more),
implemented for consistent development of auditory models of all
kinds. Basically everything presented in this thesis was created through
the AMLTTP. It has been published as public-domain open-source code.
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analysis of acoustic scene configuration influence The
acoustic performance factors of polyphonic SED have been thoroughly
analyzed. It was shown that sound event detection models trained on
one-source scenes degrade strongly in cases when a distractor source
is present simultaneously emitting sound events even of much lower
energy (10 dB), but by superimposing highly variable general sounds at
training time, models can learn to focus on the target class in the pres-
ence of distracting sounds even with much stronger energy (−20 dB)
(Chapter 4). Compared to existing publications, the range of investi-
gated conditions and severity of disturbances has been considerably
increased, with the number of co-occurring sources up to 4 (Chap-
ter 7) and the energy ratios between co-occurring target and distractor
sources down to −20 dB.

Particular focus was put on investigation of performance behavior
in mismatched conditions, i. e., when models have been trained under
different acoustic conditions than they are used in. It was shown that it
is not enough to train with polyphonic scenes (but better than training
on clean scenes, which is frequently done), because model performances
anyway strongly depend on how similar the training conditions were
to test conditions. In particular, deviations in mean signal-to-noise ratio
(SNR) lead to distinct performance drops.

The provided results provide indication of what to expect in these
various conditions, minimum baselines for what is possible to reach,
and guidelines of what has to be considered.

binaural sound event detection All signals used for training
and testing the sound event detection models in this work have been
binaural ear-signals from a (simulated) robot dummy head (Section 2.2).
Compared to most SED research that is conducted on single-channel
data, this adds the (so far completely untreated) dimension of source
locations to acoustic scenes; furthermore the question how to build
features from the two channels.

Addressing the latter, channel-average and channel-concatenated
features have been evaluated (Chapter 4). The mean-channel feature
set handled deviations of the training azimuth configuration more
tolerantly than the two-channel set, which instead showed significantly
better performance if training and testing configurations were close
enough. The investigation of the effect of azimuth configuration and
head orientation on SED performance was conducted throughout all
parts of this work, and it was found that for all models tested, there is
an optimal head orientation relative to the sources, at which detection
performance is maximized (Sections 5.3, 7.3.3 and 8.3.3).
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That these results can lead to the development of robotic systems
that actively maximize performance through head rotation, has been
demonstrated in Chapter 9.

development of polyphonic multi-conditional models

How to produce robust models in a data-driven way through multi-
conditional training – and analyzing their robustness – is the core of
this thesis. Robust classifiers should be as independent as possible of
acoustic testing conditions, which in real-world applications can change
quickly.

It was possible to show that robustness can be achieved using this
method with auditory-inspired features (Sections 2.3 and 3.1.1) even
with simple linear classifiers (Sections 3.2 and 3.4) far from the learning
power of deep neural network (DNNs). Multi-conditional training pro-
duces robust sound event detection models able to generalize across a
wide range of acoustic conditions (Chapters 5 to 8), analyses comparing
multi-conditional with single-conditional iso- and cross-test perfor-
mances have been conducted (Chapters 5 and 6). The multi-conditional
models clearly outperformed single-conditional models tested at a pri-
ori unknown configurations. Even better, they reached almost optimal
(single-conditional condition-matched) performance for most configu-
rations. Only single-conditional models at matched conditions using
two-channel features could outperform the multi-conditional models,
which naturally can not specialize to particular source locations.

Furthermore, it was demonstrated that multi-conditional modeling
smoothly extends to other model types like long short-term memory
(LSTM) or temporal convolutional network (TCN) (Chapter 7). One
conclusion of this thesis therefore is that multi-conditionally trained
models are a good choice for practical binaural applications (Chapter 9):
only a single model needs to be trained for each target sound class,
inferring the conditions a priori is not required, the resulting models
are robust with respect to conditions and even reach a close-to-optimal
performance.

analysis of influence of room acoustics The influence of
room acoustics and training-test-mismatches in this aspect on sound
event detection has been investigated for the first time.

The presented results (Chapter 6) show that single-conditional SED
models specialize to the room and head acoustics they are trained on,
and hence are sensitive to deviation at test time from these; but they are
less prone to mismatch performance degradation if they were trained
under “difficult” room acoustics. It was found that single-conditional
models can perform adequately if they were trained on data from the
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room they are applied in later, and that they do not need to be trained
on data with the exact same position in the room. However, it could
be demonstrated that models trained multi-conditionally across room
acoustics generalize very well across and also to other room acoustics.

robust performance measurement In sound event detection,
the most widely used performance measure, the F-score, brings with
it a lot of problems outside of training for a specific, a priori known,
data distribution. The most widely used way of dealing with class-
specific performances measured, micro-averaging, brings with it mis-
interpretation with respect to general sound event detection potential
of algorithms. Hence, in this work, the aspect of correct and robust
performance measurement (Sections 3.2.3 and 3.3) and its importance
is illuminated and contrasted to common practice (Section 10.2).

influence of temporal context Sound events in realistic
acoustic scenes often occur over longer periods of time and not only
once. Therefore, an analysis on how sound event detection performance
increases with the size of temporal context accessible to the models has
been presented in this work (Chapter 7). It was shown that performance
increases particularly for complex acoustic scenes and demanding au-
ditory conditions and that this is very sound class-specific.

The extent to which context can be accessed by simple linear models
through statistically summarized temporal features (Section 3.1.1.1) was
compared with the extent to which models able to learn temporal inte-
gration themselves (here, DNNs, Section 3.5) can profit from. Evaluation
showed that the difference is quite considerable: while the architectures
able to exploit long-range temporal context information, LSTM and
TCN, were able to exploit up to (the maximally tested) 20 s context
and continuously increased performance, the simple models peaked
at 1 s at lower performance. Hence, training should be conducted over
sufficiently long scenes.

While both LSTM and its convolution-based competitor TCN have
shown their sequence modeling power, LSTM produced the maximum
performance achieved.

Related to questions of temporal context is the definition of training
targets (and for evaluation, testing targets). Two different modes of
defining training targets have been investigated here, one more “physi-
cally” motivated and supposedly more exact/instantaneous (without
any notion of temporal context, Section 3.1.2.2), and one more percep-
tually motivated with a “smoothed” (temporally integrated, and hence
a bit lagged) interpretation (Section 3.1.2.1). While the first showed to
be the more difficult problem, qualitatively with respect to behavior
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over acoustic conditions, they were not different (Chapter 7). What one
choses hence can be decided based on the needs of the application.

spatially segregated sound event detection Aside “pure”
sound event detection, a substantial part of this thesis was devoted
to spatially segregated sound event detection (Chapter 8), which was
suggested and evaluated as a method to annotate sound scenes with
joint sound event type and location information in a binaural system.
The proposed method combines spatial masking in time-frequency-
space with sound event detection on the segregated streams, enabling
formation of coherent auditory objects with location and sound event
type associated.

Along with the proposed system, the general problem of joint sound
event localization and detection (SELD), which only very recently
started to get treated, has been introduced and discussed. Performance
measures for quantification and qualification of localized sound event
detection success were developed and presented (Section 8.1.6).

Evaluation showed that sound event detection and sound source
localization can be joined efficiently through spatial masking in a mod-
ular system. Analyses with respect to the different acoustic conditions
showed robust performance under a broad range of conditions. The in-
fluence of spatial source distribution has been particularly investigated
due to its increased importance with respect to spatial segregation
based on inter-aural signal differences.

The presented analysis demonstrates that this approach can produce
localized sound type information and could be one core component of
a binaural scene analysis system. The localized detection performance
depends particularly on the number of active sources in the scene, and
on their spatial distribution. By turning the head such that the sources
of interest are laterally separated (and at best bisected by the nose),
the system’s performance in many situations can be increased strongly.
It was found that proper estimation of the number of active spatial
streams is a precondition of this approach, while localization error does
not influence segregated detection as heavily.

A diverse set of test scenes for thorough study of the behavior and
conditions of good performance was defined. It can serve, together with
the proposed performance measures, as testbed and benchmarks for
alike systems with different components and other approaches to the
problem, and of course particularly for spatial segregation and sound
event detection models.

casa with the developed models in the two!ears system

Finally, binaural computational auditory scene analysis was conducted
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with the developed components employed in the Two!Ears robotic sim-
ulation platform (Chapter 9). It was demonstrated that the fullstream
and segregated detection models efficiently detect sound events in a
dynamic online binaural system with actual sound source localization
instead of location ground truth. Results asserted that performances
were well-predicted in the evaluation of tests performed in the (static)
AMLTTP in Chapter 8.

A new head rotation strategy was proposed that maximizes lateral
source separation (Section 9.1.3.1) and thereby optimizes spatial segre-
gability. Indeed, utilizing this strategy in the dynamic Two!Ears system
resulted in significantly increased localized detection performance.

Concluding, it was showed that the models developed in this thesis
indeed robustly detect sound events both on full- and spatially segre-
gated streams and constitute efficient components of a binaural system
performing computational auditory scene analysis.
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A
T H E AU D I T O RY M A C H I N E L E A R N I N G T R A I N I N G
A N D T E S T I N G P I P E L I N E

This chapter is based on Ning Ma et al. 2016. Deliverable 3.5: Report on Evaluation of
the Two!Ears Expert System. Final report. Two!Ears Project. http://twoears.eu/wp-
content/uploads/deliverables/D3.5_evaluation_of_expert_system.pdf.
Parts of the following text have been published in that project report already; but also
completely written by me.

All scene generation, data processing, model training and model test-
ing was done using the open-source Auditory Machine Learning Train-
ing and Testing Pipeline (AMLTTP) (Trowitzsch, Kashef, et al. 2019),
which wraps all steps described in Chapters 2 to 8. A considerable
amount of time has been spent on developing, testing and improving
this tool — without it, it would not have been possible to conduct the
studies described in this thesis.

AMLTTP is particularly suited for sound event detection (SED) model
training; among other features, it enables straight-forward generation
of complex spatial polyphonic sound scenes together with polyphonic
annotations, from databases with isolated sounds like NIGENS.

However, it is not limited to SED model training, rather, AMLTTP is
an object-oriented (Matlab) framework for building and evaluating all
kinds of models for auditory sound object annotation and assigning
attributes to them. It consists of two major parts: (i) a data generation
engine, and (ii) a model training and testing back-end; both parts can
be broken down into further sub-stages and components. While the
pipeline is designed with flexibility in mind and is extendable to new
target attributes, data features, or model and training algorithms, it so
far serves the specific purpose of training and evaluation of block-based
auditory object-type, object-location, and number-of-sources classifiers
using data from simulated auditory scenes generated within the same
framework. It is tightly coupled with the Two!Ears system and its
components.
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a.1 data generation

First and very important, AMLTTP contains a large-scale data generator
including acoustic scene synthesis. “Large-scale”, because AMLTTP not
only generates data, it also efficiently manages huge amounts of data at
all stages, keeping track of everything already created, enabling resume
and reuse at all levels1.

auditory scene simulation What has been described in Sec-
tion 2.2, was executed by the AMLTTP scene synthesizer. Ear-signals are
produced from audio files using the binaural simulator (Winter, Wier-
storf, and Trowitzsch 2016, Ch. 2.2) from the Two!Ears system. This
can be done under various conditions, set up through a configuration
object specifying the following (and more):

• An arbitrary number of sources point-sources with configurable
positions relative to the head can be created.

• The “head”, i. e. the head-related impulse response (HRIR) used,
can be exchanged. By default, it is defined as a KEMAR head.

• Sources can be set up to emit specific audio files or white noise.

• Sources can be set up to playback one audio file and then mute,
or loop over this audio file, or playback audio files from a set in
random order, for a defined duration.

• Ear-signal-level average SNRs between sources can be fixed. They
are defined as the ratio of powers between the individual sources’
ear-signals.

• Simulated reverberation (shoe-box room model) can be defined,
or

• binaural room impulse responses (BRIRs) can be used instead of
HRIRs. Multi-speaker BRIRs are supported to allow for setting
up multiple sources.

The scene synthesizer is very automatable and thus enables efficient
generation of large amounts of scenes.

1 In the course of this thesis, AMLTTP temporarily managed up to 40 TB data consisting
of several hundreds of different scenes with a variety of auditory representations and
plenty of different feature and label sets.
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computation of auditory representations After ear-signals
have been generated, stage two basically wraps the Two!Ears Audi-
tory Front-end (AFE) (May, Decorsière, et al. 2015) for automated and
efficient computation of base auditory representations (Section 2.3)
like ratemaps, amplitude modulation spectrogram (AMS) or interaural
time-differences (ITDs) — the whole range of representations the AFE
can compute is usable.

features construction Stage three performs feature construc-
tion (Section 3.1.1) from the auditory representations, executed by
so-called FeatureCreators.
FeatureCreators inherit from a common base interface and are mod-

ules to be implemented by the user of the AMLTTP2. They construct
data vectors in a form that is suitable for the model to be trained — for
example, as described in Sections 3.1.1.1 and 3.1.1.2 for time-invariant
segment-based features or frame-based features. To be able to later
evaluate models on a feature-level, e. g. for dimensionality reduction,
FeatureCreators automatically produce a detailed description of each
feature dimension. Masks can be used to incorporate results of feature
selection methods and only train or test with selected dimensions.

label creation Similar to the generation of feature vectors de-
scribed in the section above, the corresponding target vectors are pro-
duced by LabelCreators to produce labels as for example described in
Section 3.1.2. These are later used in the supervised training of mod-
els, and serve as ground truth in the testing of models. Analogous to
FeatureCreators, LabelCreators implement a common interface for
quickly creating new labelers describing different object attributes. Any
of these object attributes are derived from scene-wide annotations at
different levels of abstraction (e. g. active sources, source energies, etc.)
which were produced in the scene generation stage and are passed
through the pipeline. LabelCreators for producing sound type, source
location and number of sources targets are already available and can be
used ‘right out of the box’, including combinations thereof. Binomial
(Section 3.2.1), multinomial, or regression targets can be produced, and
combined to form multivariate labels.

coupling with the two!ears system The AMLTTP and the
Two!Ears blackboard system are tightly coupled in two central as-
pects: AMLTTP-trained models can be used from within the blackboard
system, and blackboard system knowledge sources can be used from
within the AMLTTP.

2 Hence any feature set imaginable can be implemented.
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Existing Two!Ears system knowledge sources and the models that
come packaged with them can get included as “data processors” into
the AMLTTP through a wrapper interface. This enables incorporation of
other models’ hypotheses about the ear-signals into the data generation
process. Models that use other models’ outputs can be built through
this feature. As an example, the spatial-segregation module of the
Two!Ears system has been included through this mechanism into
AMLTTP and this way enabled training on spatially segregated auditory
data (Section 8.1.3).

utility A lot of work has gone into making the AMLTTP both easy
and effective to use. While the first is accomplished through a clean
high-level interface, the latter is enabled to a large extent through the
following two points:

1. All products from intermediate stages, such as the generated ear-
signals, or features produced by the AFE, are saved together with
their corresponding configurations inside a caching system. Since
these stages can be very time-costly for large data sets: repeating
trainings with a different model, resuming a process after a crash,
etc., are made possible without having to recompute everything
again. Also, data are saved in such a way that they will be re-
combined automatically whenever parts of a configuration have
already been computed before. This saves a lot of computation
time and helps assigning the produced data to many different
experiments’ configurations and reproduce experiments more
easily.

2. The AMLTTP can be run concurrently on many processes and/or
machines, whilst working from the same data. This is secured
through file semaphores so that processes don’t interfere with one
another when operating on the same configuration in the same
stage.

standalone usage The data generation facilities of the AMLTTP
can be used with or without subsequent model training and testing.
All data generated can be easily exported to mat-files for usage in other
environments, as was for example proceeded for the training of deep
neural network (DNNs) (Chapter 7) with Python and Tensorflow.

a.2 model training and testing

The other core part of AMLTTP is the model training and testing back-
end, working seamlessly together with the data generation pipeline.
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proper model building back-end A lot of machine learning
best practices and utilities for proper training and testing are integrated
into AMLTTP. Among them are:

• Easy system for data set splitting into training, validation and
test sets from re-combinable “folds”. Wrapper modelTrainers (see
below) provide implemented (parallel executing) cross-validation
(Section 3.3.1) and hyperparameter selection for any kind of model
algorithm.

• In-built feature standardization (Section 3.1.1.3).

• Flexible and user-extendable sample weighting system enabling
sample-specific cost/loss, as described in Sections 3.2.3 and 8.1.4
for the herein developed models.

• Several implemented performance measures (Section 3.3.2) for
model selection and model testing, including balanced accuracy
(BAC) and F-score. A common base interface enables users to
implement the measure of their choice.

• Powerful model evaluation support through associating individ-
ual model predictions for short segments with the respective
scene annotations.

model training algorithms Consistent with the concept of
modularity and extendability, common interfaces exist for models and
their corresponding modelTrainers. Any algorithm for model construc-
tion can be used, and any model type can be constructed and tested. A
class inheriting from these interfaces can implement its own technique
and can be plugged into AMLTTP. Currently implemented are:

• L1-regularized, L2-regularized, or elastic net logistic (Section 3.4),
Gaussian, or Poisson regression,

• random forest,

• and support vector machines (SVMs).

While DNNs are state-of-the-art for much model building nowadays, (i)
Matlab unfortunately is not state-of-the-art for DNNs, (ii) of course it is
anyway completely possible and easy to implement DNN modelTrainers

with Matlab, and (iii) this thesis has shown that “conventional” models
still can achieve very good performances.
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a.3 use-cases

There have been many use-cases for the AMLTTP in this thesis:

• Building of single-conditional sound event detection models, and
testing them in matched and mis-matched conditions (Chapters 4

and 6).

• Training of multi-conditional sound event detection models, and
testing them on wide ranges of conditions on robustness (Chap-
ters 5 and 6).

• Generation of multi-conditional data for training and testing
of DNN sound event detection models on long acoustic scenes
(Chapter 7).

• Development of a joint sound event localization and detection
(SELD) system by training multi-conditional sound event detec-
tion models on spatially segregated data (Chapter 8).

• Development of models employable as components in the Two!Ears

binaural system for computational auditory scene analysis (CASA)
(Chapter 9). Models created by the AMLTTP can be plugged into
the blackboard system and be used there without any modifica-
tion or interface adjustments. They automatically employ the right
FeatureCreator and feed the system with their hypotheses about
auditory object attributes. Regardless of whether the ear-signals
that are fed into the blackboard system are produced using a
binaural simulator or acquired from actual microphones, features
are produced in exactly the same manner as in the AMLTTP.

Presented in Two!Ears project reports, there have also been:

• Training of a model estimating the number of active sound sources
(Ma et al. 2016, Ch. 3.5.2).

• Generation of data for a fully joint SELD system based on DNNs
(Ma et al. 2016, Ch. 3.4.4).

• Analyses of feature importance for sound event detection models
based on L1-regularized logistic regression models (Ma et al. 2015,
Ch. 3).

And of course, there would be countless other projects that one could
conduct through the means of the AMLTTP.
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