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Zusammenfassung

Diese Dissertation behandelt das metastabile Verhalten von Markov Ket-
ten mit abzahlbarem diskreten Zustandsraum. Im ersten Teil betrachten wir
Markov Ketten, die reversibel beziiglich eines vorgegebenen Wahrscheinlich-
keitsmafses 7. sind. Der (kleine) Parameter ¢ € (0,1) erlaubt es uns, im
Rahmen des potentialtheoretischen Ansatzes von Bovier, Eckhoff, Gayrard
und Klein Metastabilitit rigoros zu definieren und nachzuweisen. Der wich-
tigste Begriff in diesem Ansatz ist die (Newtonsche) Kapazitit einer Markov
Kette. In einem ersten Schritt zeigen wir subexponentielle Abschatzungen
dieser Grofse unter sehr allgemeinen Bedingungen.

Das Hauptergebnis des ersten Teils liefert eine genaue Asymptotik der
Kapazitit unter restriktiveren Bedingungen an die Markov Kette und ihr re-
versibles Mafl. Unter zu Hilfenahme bereits bekannter Ergebnisse kénnen wir
daraus die Eyring-Kramers Formel herleiten, die die Asymptotik bestimmter
erwarteter Eintrittszeiten der Markov Kette angibt.

Im zweiten Teil werden diese Resultate auf das Hopfield Modell mit einer
festen Anzahl M von gelernten Mustern angewandt. Fiir die Komponenten
dieser Muster wahlen wir unabhéngige und gleichverteilte Zufallsvariablen.
Wir mochten das Verhalten fiir grofse Anzahlen N von Neuronen beschreiben.
Dabei modellieren wir die Dynamik mittels einer Markov Kette vom Glauber
Typ, die reversibel beziiglich des Gibbsmafies des Hopfield Modells ist.

Durch die Einfithrung von Blockspinvariablen erhalten wir eine Markov
Kette (y auf einer Teilmenge eines 2"-dimensionalen Gitters. Fiir (v kénnen
wir eine metastabile Menge bestehend aus 2M Punkten angeben, wobei jeder
Punkt zu Konfigurationen in der Ndhe eines der Muster oder seines Negativs
gehort.

Wir zeigen, dass fiir Ubergéinge zwischen diesen metastabilen Punkten
die Eyring-Kramers Formel gilt. Die asymptotisch erwarteten Eintrittszeiten
konnen hierbei explizit angegeben werden, da wir in einem (sehr kleinen)
Temperaturintervall alle essentiellen Sattelpunkte genau bestimmen kénnen.
Diese Punkte bleiben Kandidaten fiir die essentiellen Sattelpunkte bis zu
einem bestimmten Temperatur-Schwellenwert.

Mit den gleichen Einschriankungen an die Temperatur kénnen wir schliefs-
lich die genaue Struktur und Grofe der kleinsten Eigenwerte des Generators
von (y bestimmen. Aufgrund der Spin-Flip Symmetrie und der anomal klei-
nen Schwankungen der Grundzustdnde des Hopfield Models muss die Téler
Struktur des transformierten Hamiltonians beriicksichtigt werden.






Summary

This thesis is concerned with the metastable behaviour of time homoge-
neous Markov chains evolving on a discrete countable set. In the first part,
we consider Markov chains that are reversible with respect to a given prob-
ability measure 7. The small parameter ¢ € (0,1) allows us to investigate
metastability rigorously in the sense of the potential theoretic approach due
to Bovier, Eckhoff, Gayrard and Klein. The main notion in this approach is
the capacity of a Markov chain. We are able to show subexponential bounds
on this quantity under very general assumptions and for a big class of discrete
countable sets.

The main theorem in the first part yields, under more restrictive con-
ditions, precise asymptotics of the capacity with multiplicative errors that
tend to one. As a consequence we can prove the Eyring-Kramers formula
providing sharp estimates for certain expected hitting times of our Markov
chain. They exhibit the same form as in the case of a diffusion with small
noise intensity on a subset of R

In the second part we apply our results to the Hopfield model with a fixed
number, say M, of random patterns. We are interested in the behaviour for a
large number, N, of neurons. The dynamics are modelled by a Markov chain
of Glauber type on the set of all configurations, {—1, 1}N, which is reversible
with respect to the Gibbs measure associated to the Hopfield Hamiltonian.
With the help of a lumping procedure, we obtain a random Markov chain (y
on a subset of a lattice with dimension 2. We can construct a metastable
set of () consisting of 2M points that correspond to configurations near one
of the patterns or its negative.

Then we establish the Eyring-Kramers formula for transitions between
these metastable points. We obtain a completely explicit expression since we
can estimate precisely the (random) position and height of the relevant saddle
points. However, this holds only in a very small intervall of the temperature,
and it is an open question whether this result may be extended up to a
certain temperature threshold. For temperatures that are even lower we are
sure that the behaviour changes.

With the same restrictions on the temperature we are able to unravel the
structure of the low lying eigenvalues of the generator of (. Due to the spin
flip symmetry and the anomalously small random fluctuations of the ground
states we have to take into account the valley structure of the transformed
Hamiltonian.






Contents

I Introduction

1 Metastability of Markov chains
1.1 General methods . . . . . ... ... ... .. L.
1.2 Defining metastability . . . . . ... ... ... ... .....
1.3 Estimation of the capacity . . . . . . .. ... ... ... ...
1.4 Expected hitting times . . . . . . .. ..o
1.5 The pathwise approach . . . . . . .. . ... . .. .. ... ..

2 Metastability in the Hopfield model
2.1 The Hopfield model . . . . . . . .. ... . ... ... ... ..
2.2 Structure of the ground states . . . . . . ... ... ... ...

IT Metastability of Markov Chains

3 Equilibrium potential and capacity
3.1 The equilibrium potential . . . . . ... ... .. ... .. ..
3.2 Electrical networks . . . . . . ... Lo
3.3 Mean hitting time . . . . . ... ..o

4 Metastability
4.1 Metastability . . . ... ...
4.2 Awprioribounds . . . . ... ..o
4.3 Pathwise approach . . . . . . ... ...

5 Precise estimates for capacities and hitting times
5.1 Precise estimates of the capacity . . . . . ... ... ... ...
5.1.1 An associated inverse problem . . . . . ... ... ...

1

27

29
31
36
38

41
43
47
o1



5.1.2  General proof of Theorem 5.7 . . . . . . ... ... ..
5.2 Eyring-Kramers formula . . . . . ... ...
5.3 The global picture . . . . . . ... ... ...
5.4 Discrete approximation of SDE . . . . .. ... ... ... ..

Metastability in the Hopfield model

The Hopfield model

6.1 The Hopfield Hamiltonian . . . . . ... ... ... ......
6.2 Dynamics . . . . . . ..o
6.3 Random patterns . . . . . . . .. ... ... ...

Properties of the effective energy
7.1 Critical pointsof fz . . . ... .. ... ... ...
7.2 Precise critical points and barrier . . . . . .. .. .. ... ..

Structure of the ground states

8.1 Eyring-Kramers formula . . . . ... ... ... ... .. ...
8.2 Random graphs . . . . . . ... ...
8.3 Low lying eigenvalues of the generator . . . . . ... ... ..

Some proofs

9.1 Precise location of critical points . . . . . . .. ... ... .
9.2 Precise height of the minima and 1-saddles . . . . . . ... ..
9.2.1 Minima. . . . . . ...

Approximation of Gaussian sums via integrals

Estimation of sums by the Laplace-method

101
101
103
108

114
114
119

122
122
128
131

141
141
146
147

153

155



Part 1

Introduction






1 Metastability of Markov chains

This work is concerned with the metastable behaviour of time homoge-
neous Markov chains, ( = (Cn)neNo, evolving on a discrete countable set Y.
We call Y the state space of (. Assume ( is irreducible; then it is positive
recurrent if and only if there exists a stationary probability distribution, 7.
In this case it is called ergodic. It then follows that 7 is unique and positive
21 Assume now that ¢ is ergodic. Then for any f : Y — R such that

m(f]) < o0 (1.0.1)

and for any initial distribution u, the pathwise ergodic theorem states that

. 1
lim —
n—oo N,

n
S F(G) =7 (f). (1.02)
k=0
One says that the Markov chain ( converges to its equilibrium 7. The main
question we are confronted with is how long does this take and how does the
Markov chain proceed in order to approach the equilibrium.

We will be investigating Markov chains that need an exponentially long
time, measured on a certain scale, to come close to the equilibrium. For finite
chains, the time can be measured on the scale of |Y|, the number of states,
in general we will be using the inverse of a small parameter e.

One of the main motivations behind such studies comes from the attempt
to understand phenomena of non-equilibrium thermodynamics for (disor-
dered) interacting particle systems: Consider an interacting particle system
with N particles, whose equilibrium is described by the associated (random)
Gibbs measure on an asymptotically (for N — oo) infinite dimensional space
SN. For § = {—1,1} one has an interacting spin system. In order to ob-
serve how this system converges to equilibrium, we introduce a particular
kind of dynamics, namely a discrete time Markov chain that flips at most
one spin per time step. As we shall see in part III, in the important case
of the Hopfield model, one can use symmetries to map this Markov chain to
another Markov chain on a subset of a finite dimensional lattice and apply
our results.

1See e.g. Brémaud, [Bré99] Theorem 3.1, p. 104 and, for the next statement, Theorem
4.1, p. 111.



1.1 General methods
Define the hitting time of a subset A C Y to be
T4 :=inf{n >0]|(, € A}. (1.1.1)

To get a hold on the evolution of our Markov chain we isolate certain charac-
teristic points of the state space Y and give precise estimates of the expected
hitting times of these points. Working with points is certainly only possible
in a space having at most countably many elements.

Let us say a word about the methods we are using. At the heart of
our treatment lies the Dirichlet principle and a stochastic representation of
certain harmonic functions. We will briefly introduce these concepts now:

Denote by P, the law of ¢ with p as starting distribution. If ¢ starts at
point z € Y, we also write P,. Let p be the transition probability of ( and
L := p—1 the generator of (. Let A and B be disjoint compact subsets of Y.
The equilibrium potential hap : Y — [0,1] of ¢ is defined to be the unique
bounded solution of the Dirichlet problem

Lh=0 on (AUB),
h=1 on A, (1.1.2)
h=0 on B.

We also say that hy g is harmonic on Y\ (AU B) with respect to L. It is well
known (see e.g. |[Bré99|, Theorem 2.1, p. 181) that h4 5 has the stochastic
representation

hap(z) =P, (ta<7tp) forallzeY \(AUB). (1.1.3)
The quadratic form associated with L, namely
¢ (h) := —(h,Lh)_, (1.1.4)

is called Dirichlet form. We now consider the space of Iy (7)-functions having
the same boundary conditions as hy g, i.e.

Hap:={h€ly(r) | ha=0and hp=1}. (1.1.5)

Then the Dirichlet principle asserts that the infimum of ® under all functions
of H, p is attained by the equilibrium potential h4 5. The minimum value
is called the (Newtonian) capacity between A and B,

6



cap (A, B) :==® (hap). (1.1.6)

This theorem is the analogue for reversible Markov chains of the classical
Dirichlet principle from potential theory, which states the following: among
all continuously differentiable functions A on a smooth bounded domain D C
R? taking specific boundary values, the integral

/D!Vh ()]” da (1.1.7)

is minimised by the harmonic functions taking these boundary values. In the
discrete setting, one can further show that

cap (x, A)

P (ta<7)= (1.1.8)

7 (x)
and this can be applied recursively together with the Dirichlet principle.

Since our techniques so much depend on the Dirichlet principle, we have
to restrict ourselves to reversible Markov chains.

1.2 Defining metastability

A fundamental property of the Markov chains we investigate is their so called
metastability. First of all, let us give an informal description of this phe-
nomenon:

A Markov chain is said to exhibit metastable behaviour if, firstly, when
starting in a certain subset of initial conditions, the chain remains for a
“long” time in a limited subset of the state space. Secondly, this subspace has
negligible measure in equilibrium. And thirdly, the transition to equilibrium
or to another (larger) subspace occurs in an abrupt fashion.

Obviously metastability is a dynamical phenomenon that can only be
observed on certain timescales. A dynamical definition of metastability has
been suggested by Davies in [Dav82|. The requirement that the process spend
a large time in a restricted subset domain, implies that the chain relaxes
to a pseudo-equilibrium state. Thus, in a metastable state, the values of
the macroscopic observables of interest will not show any systematic time-
dependence, at least after some short initial transient effect.

Gaveau and Schulman revealed in [GS98| the intimate relation between
metastable time scales and the low lying eigenvalues of the generator of a
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Markov chain. In a series of papers starting with [BEGKO01]| Bovier, Eck-
hoff, Gayrard and Klein could rigorously verify a very precise form of this
relation for reversible Markov chains and trace it back to their definition of
metastability. They developed the so called potential theoretic approach to
metastability.

In order to come to a precise mathematical description, we introduce a
small positive parameter €, that enables us to zoom into this picture and
amplify the details we are interested in.

We let A C R, whereas (A.),_.., C A is a family of countable discrete
sets. Let (£°),.., be a family of irreducible homogeneous Markov chains such
that £ is positive recurrent on A.. Denote by P, the law of {¢ conditioned to
have p as starting distribution. If £¢ starts in a point x € A, we also write
P,. We denote the stationary distribution of £ by 7. Such Markov chains
can be fully characterised by specifying their transition matrix p,.

In the following, we will often be dealing with probabilities like P, [T4 < 7]
which we call escape probability from x to A.

Following Bovier, Eckhoff, Gayrard and Klein [BEGKO02|, we define meta-
stability in the following way:

Definition 1.1 (metastability) Let ., be a finite subset of A, such that the
cardinality |.#,| is independent of €. Let p : (0,1) — (0,1) be a monotone
increasing function with lim o p (€) = 0.

Then the family of Markov processes (£) g 1) is said to be p-metastable
with respect to (.#,), if

P, < T) < inf P, < Tg). 1.2.1
max P (T, < 7o) < p () inf Po (T4, <72) (1.2.1)

The elements of .Z, are called p-metastable points of (£°).
We say (£°) is metastable with respect to () if there exists a function
p for which (£°) is p-metastable.

This definition suggest a decomposition of the state space into a finite col-
lection of subsets. We define for each point m € .#, the domain of attraction
of m by

A(m, M) = {x EANNP (T =Tp.) > max P, (1, = 71//16)} ) (1.2.2)
ne e

In words, Definition 1.1 states the following: The infimum of the escape
probabilities from any point x € .Z° to .. is much bigger than the escape

8



probability from a point, m, in .#Z, to another one. The function p in Def-
inition 1.1 describes the factor, by which the escape probabilities between
metastable points is smaller compared to the escape probability of any point
with respect to the set of metastable points.

Therefore we have at least two different time scales: One that measures
the time required for a typical excursion away from m that stays inside
A (m, .#.) and another one on which we expect a changeover to ., \ m.
This type of behaviour has been studied for a long time and is rigorously
treated on the level of large deviations, in particular in the book of Freidlin
and Wentzell [FW84|.

The benefit of Definition 1.1 is that we only have to control hitting times
of points or finite sets of points on the state space. In the analogues situation
of a Diffusion in R¢, one can deal with small balls around these points (see
|IBEGKO04]).

Observe that Definition 1.1 does not determine a unique family (.Z;)
even for fixed p. Indeed, having isolated a very large set .Z,, in many cases
one can find a subset N, C .#. such that the Markov chain also exhibits
a metastable behaviour with respect to N.. We formulate this important
property of Definition 1.1 in

Proposition 1.2 Assume we have choose the set M, such that

e = e(x). 1.2.3
me (m) o max () (1.2.3)
Let I, be the set of all i € A, for which there exists ¢ > 0, independent of e,
such that

P (T4 < 7)) > cmax P (T4, < Tm) - (1.2.4)

m6<ﬂe

Then we can construct a minimal set J. C I. such that (£°) is metastable
with respect to M. = M.\ J..

We will use this reduction mechanism in part III to find the low lying eigen-
values for the generator. A similar argument has been used by Bovier et al.
in [BEGKO02|.

A striking example of the power of Definition 1.1, and the associated
potential theoretic approach, is the recent work of Bovier, den Hollander and
Nardi |[BAHNO06|, about the metastable behaviour of a lattice gas subject to
Kawasaki dynamics in two or three dimensions in the limit of low temperature
and low density.



1.3 Estimation of the capacity

We need to introduce some notions about the structural properties of the
equilibrium measure 7.

Definition 1.3 Since 7, is positive, we can define the potential F, : A, —
R-o by
F.(z) = —€lnm, (x). (1.3.1)

We now assume that (F,) converges uniformly to a unique continuous
function F': A — Ry, i.e. for all kK > 0 there exists ¢, > 0 such that for all
€ < €p we have

sup |F, (z) — F (z)| < k. (1.3.2)

TEA
Moreover, we assume that F' has compact level sets, i.e.

{F<b}cCcA forallb>0. (1.3.3)

Hence, for small € the potential will be the essential object, while the invariant
measure degenerates in the limit.

The key result that we prove for reversible Markov chains £° on a uni-
formly locally finite graph establishes a connection between the dynamical
behaviour of the chain and the geometry of its potential F'. Similar versions
have been shown e.g. in [BEGKO1].

To do this we describe the geometry of F' with the help of the following
notions: A path 7y is a finite sequence (7, ...,7x) of communicating points,
ie. pe (5,%ie1) >0 forall 1 <i <k —1. We write x € v when ~ visits the
point z. Let A and B be disjoint compact subsets of A.. We denote by Py p
the set of paths starting in A and ending in B. We define the communication
height between A and B to be

F.(A,B) := min maxF, (). (1.3.4)

YEPA,B TEY
We denote the lower level set of F. (A, B) by
W.(A, B) = {x e A | F. (z) < E. (A, B)} . (1.3.5)

Assume A C W,(A, B). Then the connected component of W (A, B) contain-

ing A is called the valley of A with respect to B and is denoted by V]ée) (A).
Under a mild condition on the transition probabilities p. (see section I1.4)
we obtain then

10



Proposition 1.4 Let (£°) be a family of ergodic and reversible Markov chains.
Let A and B be disjoint compact sets of A, such that F. (z) < F. (A, B) for
all x € A.
Then, under some regularity conditions there exist a constants cy,co > 0
such that
p cap (A, B)

ae = exp (—Fe (A, B) /e)

This property shows already how the potential theoretic approach works:
The capacity, which gives us information about the generator of the Markov
chain &¢, and therefore about the dynamics of our process, can be estimated
by quantities reflecting the geometry of the potential.

For example given m € ., it always holds true that the valley of m with
respect fo ., is a subset of the domain of attraction A (m, ).

To further illustrate the usage of Proposition 1.4 let M be the set of all
local minima of F', and assume M consists of finitely many points. Then
Proposition 1.4 implies that there exist subsets M, of A, with |[M.| = |M|
and such that £° is metastable with respect to (M,). (See Example 4.10)

Observe that we are not assuming that the limiting function F' is differ-
entiable. Bovier and Faggionato used similar results to prove metastability
in the sense of Definition 1.1 for Sinai’s random walk in a random potential
and gave precise estimates for the associated capacity [BF05].

Let us now assume that A, = A N eZ% Under some more restrictive
assumptions on the potentials F,, and assuming the limiting potential F' is
in C3 (A), we provide matching upper and lower bounds of the capacity up
to multiplicative errors that tend to one. To state the result precisely we
define the set of optimal paths between two minima m,n € .#. by

< cpe (1.3.6)

Omn = {7 € P | max F.(x) = F, (m, n)} : (1.3.7)
€y

For simplicity, we assume here that there is a unique point, s = s* (m,n),
that is visited by all paths of O,,,. This point is called the relevant saddle
point between m and n. Our basic example for £¢ is the Metropolis sampler
of the measure m.. In this case we have

L min (1, f@’) ifye N,

2d «(z)
Pe (a:,y) - 1— Zzesze (l’,Z) ify=u, (138)
0 else.
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We then prove the following

Theorem 1.5 Let (£°) be a family of ergodic Markov chains with reversible
measure .. Let m,n € M., and assume s = sf(m,n) is the unique relevant
saddle point between them. Then, under some reqularity conditions,

1 [2m\ ! A
cap (m,n) = ﬁ(?) ESETAE] X
x exp (—F, (s) /¢) (1 +O (mlne\w)) . (1.3.9)

where —\q s the unique negative eigenvalue of the Hessian matriz V2F, (s)
at the relevant saddle point.

The general strategy to prove this result is the same as in [BEGKO04|: First,
we will establish a direct connection between return probabilities and the
capacity cap (A, B) between disjoint subsets A and B of A, (see Definition
3.6), namely

cap (A, B) =Y e (z) Py (ta < 7). (1.3.10)

reEB
To obtain estimates for the capacity, we then use the Dirichlet principle. In
the reversible setting, one can rewrite the Dirichlet form as a sum of positive
terms, and this in turn yields a priori bounds on the capacity.
In a second step, we use a renewal equation for £¢ to obtain

cap (z, A)

h < —T1c
480 = ap (. B)

(1.3.11)
so that the a priori bounds for the capacity yield upper bounds for h4 5 and
hpa =1 — hyp. The form of these bounds suggests, as we will see, that
only a neighbourhood of the relevant saddle points (see Definition 4.3) needs
to be investigated in detail. Just like in the continuous setting, a precise
upper bound for the capacity can be achieved by choosing a function h*
that is nearly optimal in a certain neighbourhood of the relevant saddles and
inserting it in the Dirichlet form ®. But the lower bound is more intricate.
A special problem in the discrete setting is that the instable direction of a
relevant saddle need not to be one of the lattice directions. To overcome this
difficulty, we partition the lattice in a neighbourhood of a relevant saddle into
parallel “strings”, each string pointing in the right direction and having some
microscopic structure. In particular, these strings are in general non-disjoint.

12



1.4 Expected hitting times

Expected hitting times are interesting quantities not only for themselves, but
also because of their connection to the eigenvalues of the generator of £¢, see
e.g. [BEGKO02|. We will discuss this point in part III in the context of the
Hopfield model.

In [BEGKO02] (Corollary 3.3, p.230) it has been shown that the expected
hitting times of reversible Markov chains can be expressed by quantities we
already know, namely
. Te (hx,A)
~ cap (z,A)
In the context of a finite state space it was also established, (see [BEGK02],

Theorem 3.5, p. 231) that if (£°) is metastable with respect to .#,, then for
m e M,

E,7a (1.4.1)

T (Ac(m))
Enn = Gap (. A\ )

Furthermore, according to their Corollary 3.4 (p. 230) one has

(1+O(p(e)[Ad]) - (1.4.2)

A
E,.(T4) < | 6|, (1.4.3)

Qe

where
= inf P, < Ty)- 1.44
tci= inf Fo(ra <) (1.4.4)
By using formula (1.4.2) for the expected hitting time, one obains that a
family of reversible Markov chains (£°) on a finite state space is p-metastable
with respect to . iff

mmf6 E,, (tﬂe\m) > % a:eil{)ﬂe E.(Tn), (1.4.5)
where (m)
Pl = (I T (145)

Observe that (1.4.5) is useless for countable state spaces A, since then 7 (¢) =
oo. This can not be repaired easily, because

sup B, (T.x.) (1.4.7)
IEAe\-//e

13



can also be infinity in this case.

The main theorem of this part is the Eyring-Kramers formula, which we
state here only for the Metropolis algorithm and in the case of a unique
relevant saddle point, for simplicity:.

Theorem 1.6 (Eyring-Kramers formula) Let m € M, and assume s is the
unique relevant saddle point between m and M.\ m. Denote by —5\(1 the
unique negative eigenvalue of p(s) - V2F. (s). Then for &€ starting in m, the
expected time needed to reach another point of M, is given by

2r 1 [ |det V2E, (s)|
€ Mg\ |det V2F, (m)]

x (1—|—O(\/E|lne|3/2>>. (1.4.8)

En (TMe\m) exp {(FE (S) — F (m)) /6} X

We are left with the

Open Question How could these expected hitting times be given precise
estimates in the case of a non-reversible Markov chain?

1.5 The pathwise approach

In the recent treatise “Large Deviations and Metastability” by Enzo Olivieri
and Maria Eulalia Vares, [OV05|, metastability is discussed in great detail
from the point of view of a pathwise approach. Let us transfer in our setting
the two asymptotic properties of Metastability which are emphasised in this
book.

A point m € A, is called metastable in the sense of Olivieri and Vares iff
the following two properties hold:

1. Unpredictability of the tunneling time.
Assume £¢ starts in m. Then 7\, is called unpredictable if it con-
verges in distribution to an exponential random variable, i.e.

TMA\m

D
—————— 5 & fore |0, 1.5.1
B (o) l (1.5.1)

where £ is a unit mean exponential random variable.

14



2. Thermalisation.
Let s,t € Ny. We define the empirical average measure of £¢ between
the times s and s+ ¢ as

s+t

1
Hop =5 Z Ogs - (1.5.2)

k=s+1

Hence yi5; (B) is the fraction of time £ spends in B C A, between time
sand s +t. Let V := V;Z\m (m) be the valley of m with respect to
M\ m.

Let £° again start at m. We say &€ thermalises at m if there exists a de-
terministic time scale t. such that lim. o t. = oo, but t. = o (E,, (T9+v))
and for every open set B C R containing m and every x > 0

lig)l P, (Taﬂ/ >toand  sup  pey (B) >1-— /-f) =1.  (1.5.3)

§<Tg+y —te

Bovier, Eckhoff, Gayrard and Klein showed indeed that the unpredictability
can be seen as a consequence of Definition 1.1, see [ BEGK02|, Theorem 1.3
(iv), p. 223.

Here we show:

Theorem 1.7 Let (£°) be a family of ergodic and reversible Markov chains.
Let M, be the set of local minima of F.. Assume that M, is a finite set
and | M| is independent of €. Choose m € M, and let V := V/S/Et)e\m (m)
be the valley of m with respect to M.\ m. Assume £ starts at m, then it
thermalises at m.

It should be possible to show thermalisation for more general sets. Therefore
we have

Open Question Show the thermalisation property for a general metastable
set in the sense of Definition 1.1.

At least up to now, Definition 1.1 can describe more general situations. It
focuses not only on a single metastable state and the ensuing transition to
equilibrium, but describes a consistent set of metastable points. Moreover,
it seems to be easier to check the criterion of Definition 1.1 than the ther-
malisation property mentioned in the pathwise approach.
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2 Metastability in the Hopfield model

2.1 The Hopfield model

In the second part of this work, we apply the general results on metastability
of countable Markov chains to investigate the metastable behaviour of the
Hopfield model.

A famous interpretation of the Hopfield model is to view it as a model for
a neural network. Basically we mean by a neural network model a labeled
and possibly oriented graph I' = (A, €) together with a set S with at least
two elements; A is the set of neurons and £ the set of synapses connecting
these neurons. The activity of each of the neurons is described by a variable
o; taking its values in S, for all i € A). We will model the dynamics of this
network by a Markov chain o¢ = {o¢ (t)},cy, on St

One of the most important advances due to Hopfield ([Hop82]) has been
to understand that these dynamics correspond to a Hamiltonian Hy. As-
sume the information to be stored is encoded in so-called patterns &#, u €
{1,..., M (N)}, each of the &" itself being a sequence of { € S for i €
{1,..., N}. To make the neural net capable of adapting to different sequences
of patterns, we have to introduce a set of variables J;; for all {7, j} € £ called
the synaptic efficacy and describing the strength of interaction between the
neurons at sites ¢ and j. It is commonly assumed that the variable J;; is mea-
surable with respect to the set {&/',&¥|p e {1,..., M (N)}}. This is then
called locality of the weights .J;;. The associated Hamiltonian Hy is given
by

1
HN (0') = —5 Z Jijo-io-j- (211)

{i,7}€E

The Hopfield model ([Hop82|) is among the most classical and best under-
stood models of neural network. Although originally introduced by Pastur
and Figotin, [FP77], as a simplified model of a spin glass, this model earned
much of its success through its reinterpretation as an auto-associative mem-
ory by Hopfield and may therefore by right be called the Hopfield model. Here
the graph G is the complete graph Ky on the vertex set A ={1,..., N} and
S = {—1,+1} corresponds to a neuron being switched either 'on’ or ’off’,
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and the weights J;; are given by "Hebb’s learning rule’, i.e. by the formula

1 M(N
i = > g (2.1.2)
pn=1

Note that (2.1.1) may be rewritten in the convenient form

M(N)

. (e (2.1.3)

() = 37

The scalar product % (& o) is the so called overlap between &* and o. Note
that this scalar product may be regarded as an index for how similar o is to
either £* or —&#, because its absolute value can be written as

1€, €] = 1~ 2min {dy (€, €°)  dur (6%, €}, (2.1.4)

where dy is the normalised Hamming distance, namely

Zl oi £ T). (2.1.5)

At this point, one may notice the spin-flip symmetry

Hy (—0) = Hy (0), (2.1.6)

showing that the Hopfield model can not distinguish between a spin config-
uration and its negative.

Observe also that (2.1.3) makes it plausible that - at least for M (N) small
enough - the minima of Hy are located close to the patterns £#. (Actually
this is trivially fulfilled if the patterns are orthogonal, i.e. if (€/,£") = J,,).

Let 8 € R, be a non negative parameter; in the context of statistical
mechanics it plays the role of an inverse temperature. The Hamiltonian Hy
determines a finite volume Gibbs measure 7y = my s [£] given by

1
ZNp

exp (—(BHy (0)) . (2.1.7)

iy (o) =

Here, Znyg =), cov exp (—BHy (0)), the partition function, is a normalising
factor assuring that 7y is a probability measure.
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From now on we will refer to the Hopfield model as a Markov chain
ong = (0N (t)),en, On the configuration space SV that is reversible with
respect to the Gibbs measure my. We consider Glauber dynamics, so that
during each time step at most one spin is flipped.

Now we choose the components of the patterns, £, uniformly at random
in {—1,1} and independently of each other. Of course, oy s is then a Markov
chain with random rates. The dependence on

§= (") 1<p<m (2.1.8)

will be indicated explicitly whenever we want to stress it. Otherwise, we will
frequently drop it to simplify the notation.

There exists a threshold value for the number of patterns such that the
memory works for low temperatures i.e. § > 1. The critical dependence is
M (N) ~ aN with a ~ 0,138. (see e.g. |[AGS85],|[AGS87|,[BG94]).

We assume M (N) = M to be a finite number, independent of N, and
therefore we are in the regime of perfect memory. We will analyse the long
time behaviour of g . As we will see this can be described in the general
framework of metastability.

The following two papers have dealt with several aspects of the problem.

e V.A. Malyshev, F.M. Spieksma “Dynamics in Binary Neural Networks
with a Finite Number of Patterns” ([MS97]) treats the case of zero tem-
perature, i.e. § = oo. In this setting the phenomenon of metastability
does not occur. If the process reaches one of the local minima of the ef-
fective energy H, it stays there forever. The stochastic behaviour they
investigate is localised at the boundaries of the domains of attraction
of different minima.

e In G. Biroli and R. Monasson, “Relationship between Long Time Scales
and the Static Free-Energy in the Hopfield Model”, (|[BM98|), contrary
to the announcement in the title, the authors do not really investigate
the long time behaviour of the Hopfield model. They only show that
the Hopfield model behaves in the neighbourhood of a critical point
like a quantum mechanical harmonic oscillator, i.e. that the effective
energy can be approximated by a quadratic function near the critical
points.

We use the symmetry of the model to reduce the dimension of the state
space from N to d = 2M. This is done by a transformation invented by
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Grensing and Kiithn [GK86| that lumps together certain groups of spins. The
randomness of the pattern £ is then encoded in the size ¢, = 5 (1 + \/Lﬁ)\k)
of these groups. In the following we restrict ourselves to the set of patterns =
such that Ay = Olln N] for all k. Observe that due to the law of the iterated
logarithm = has asymptotically full measure. The transformed process is a
Markov chain, (g, on the (random) d-dimensional lattice Ly 3 = XZ=1%Z

intersected with the hypercube [—1,1]". (N is again reversible with respect
to a Gibbs measure gy g, which is characterised by a modified Hamiltonian
HNﬂ.

We can think of (g n as a process exploring a landscape given by the
random function fz, that equals up to a constant My The ground
states corresponds in this picture to the global minima of fg .

Let {by,...,bs} be an enumeration of all vectors in {—1,1}". Hence
b e {-1, 1}d, and we denote b™# := —b*. Moreover, we introduce the graph
G = (V, E), where

Vi={-M,...,M}\ {0}

and
B = {{mv} € VxV]pé{-vu}}.

Let m* denote the unique positive solution of the 'mean field equation’
m = tanh (Gm) . (2.1.9)

Similarly to e.g. Genz, (|Gen96|), we show that for all 5 > 1 the global
minima of f3 ) have positions that are small random perturbations of the
points

m, =m*V forpeV. (2.1.10)

Therefore the set of global minima of f3 ) can be written as
My :=(m,|peV). (2.1.11)

The minimum m4.,, corresponds to a spin configuration near the y-th pattern
or its negative, —&*.

We wil show that the Hopfield model exhibits metastable behaviour.
Therefore, as we saw in part II the long time evolution of (y g is controlled
by the position and height of the so called relevant saddle points between the
minima. To determine them, we have to be very careful. In a quite small
interval of the temperature, namely 1 < f < 1+ (9d + 500M8)_1, Koch
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and Piasko showed that the so called “symmetric eolutlons” provide the only
critical points of the deterministic function fz = f 0 :

Since all these critical points are non degenerate (det V2 f5 (s) # 0), the
only candidates for relevant saddle points are the critical points of f3 with a
Hessian matrix with one negative and (d — 1) positive eigenvalues (1-saddles).
We show that fz, has a unique critical point in a small neighbourhood of
each 1-saddle of the symmetric solutions

1
Supy = §m* (b +bv")  for {u,v} €E, (2.1.12)

and these are the only 1-saddles. Hence the set of 1-saddles can be repre-
sented by

(s | {m, v} € E). (2.1.13)

These points are 1-saddles for all 1 < 3 < ., where (. ~ 1.7 is the unique

positive solution of § = W This leads to the following

Open Question (a) Is it true that for all 1 < 8 < [, the relevant saddles

between the global minima of fz,, namely between the elements in
My, are contained in

(s | {,v} € E)? (2.1.14)

(b) What are the relevant saddles between these global minima for

B =87

In contrast to the heights of the lowest minima of fz) the heights of the
1-saddles perform random fluctuations with an amplitude of order 1/v/N.
To give the precise form of these fluctuations, we denote the free energy of
the Curie-Weiss model by
1 *2 1 *
fow (B) := S - B[(m ). (2.1.15)

We introduce the symmetric matrix Ay given by

A = \/LN (¢, gy forall p#v (2.1.16)

and AR := 0. As Kiilske pointed out ([Kiil97]), the matrix Ay has asymp-
totically standard normal entries outside the diagonal.
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Proposition 2.1 For all £ € = and N > Ny [£], we obtain

fﬁ,)\ (miu)
k InNY\*
= —fow (8) + 3 (43)"" + O (n—m) (2.1.17)
and
f,@,)\ (Su,:l:l/)
1 ky

= —§fcw (8) F \/_NA%V +

k
(A 43" = 2 (4R 0

ke In N

VN

The constants can be given explicitly in terms of 3, M and m*.

)3. (2.1.18)

67

We now have all the ingredients enabling us to apply the Eyring-Kramers
formula proved in part 1 in order to give a precise estimate for the expected
time needed by (3 to change over from one ground state to another one.
In the context of a neural network we can say we are associating another
pattern to the one we remembered first. Despite the mean field nature of the
Hopfield model and the i.i.d. choice of the patterns, this will be for all £ € =
and N > Ny [¢] uniquely determined.

We state our result for the (random) Markov chain (g y [£] on the compact
state space Xy [€] = [-1,1]" N Ly [€].

We assume that the values (AL"),_,_ ), are all sufficiently different.
Therefore we define

Ins €] = {n <N| ngé% (A2 — AN < n—%+5} : (2.1.19)
We can show that this set has cardinality
|Ins (€]l =0(N) forall £ € Z;. (2.1.20)
We denote now
Js [€] == {n € N| n;ie% (A2 — AY) < n—%+5} : (2.1.21)

For simplicity we assume that the original Markov chain oy g is the
(Glauber) Metropolis algorithm for 7.
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Theorem 2.2 We assume 1 < 3 < 1+ (9d + 500M8)"". Choose § € (0, D
and assume § € Zs and N > Ny[¢], as well as N € Js. Let I and J be
disjoint subsets of My .

If s € Sy(I,J) is a relevant saddle point between I and J we obtain

cap (I,J) = ky|Sn(I,J)|NU=272gy 5(s) x

X (1+(9<\/1n3N/\/N)). (2.1.22)

Starting in m € My \ I the expected (quenched) hitting time of J satisfies

E,, (1) BﬁTNJ)! S exp(Nbw(n, J)) x
’ neVy(m)
x (1+O <\/1n3 NNN)), (2.1.23)
where A
bn(n,7) = 5 (fan (0, 1) = foa(m) (2.1.24)

1s the barrier between n and J. The constants ks and ks can be given explic-
1tly.

Of course, the assumption of independence of the pattern components
is only one possible choice. Indeed, there are at least two sensible ways of
introducing correlations among the patterns. One is to consider spatial cor-
relation, i.e. to choose the patterns correlated in ¢ but independent in u,
which may be interesting when e.g. thinking about the patterns as images to
be stored. The other way is to choose sequentially or semantically correlated
patterns, which means that the dependency now enters via y only. This sit-
uation might be useful as a very simple model for patterns with some sort of
causal relations, as in the storage of films for example. The dependence can
be modelled e.g. via a Markov chain, i.e. in the case of spatial correlation,
&r | taking with probability p € (0,1) the same value as &' and with proba-
bility (1 — p) the value of —¢&. (See for example Lowe [Lo6w98]). This leads
to

Open Question Is it possible to compute the (Newtonian) capacity and the

expected hitting times separating ground states in a Hopfield model
with spatially or semantically correlated patterns?
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2.2 Structure of the ground states

We can represent the structure of fz ), (given by the minima and the 1-
saddles) through a weighted graph (V, E,w). The weights are given by

w,, =exp(—ky (€, &) forall {u,v} e FE. (2.2.1)

Due to the spin flip symmetry, we obtain the same weights between the
negatives, —m,,, i.e. w_, _, = wy,. The cross weights are given by w_,, =
w, —, = 1/w,, for y1 # v. There is no connection between m, and —m,,, i.e.
Wy,—y = 0.

The form of these weights implies that it is much easier to use several
edges (u, ) with smaller values of Ay than one with a larger matrix entry.

Consider the simplified weighted graph (V, E, E), where we identify pu
and its negative —y, i.e. the set of vertices is V := {1,..., M}, the edge set
is E={{p,v} €V xV|p#v}, and define

W, = min (w,,,w, ) for {u,v} € E. (2.2.2)

Hence we obtain

Wy = exp (—ky [(€",6)]) - (2.2.3)
This graph induces a tree structure appearing in the following way: We
arrange the edges linearly as (s1, $2,...) in such a way that

M
Wy, <Ws,,, foralll<i< ( 9 ) (2.2.4)

Now we start with M single vertices and then merge together classes of
vertices according to this order until all vertices are in one class. Using the
representation (2.1.4), we see that the distance of two leaves in this tree, say
m,, and m,, is determined by the minimal number of spins one has to change
in &" in order to reach either £” or —&¥.

Since every connected graph includes all edges corresponding to essential
saddles, these are included in particular in the edgeset of the minimal con-
nected graph. We then apply a theorem of Erdés and Rényi from the theory
of random graphs to get the desired estimate.

Theorem 2.3 Let £ € = and N > Ny[¢], and assume 1 < [ < 1+
(9d + 500M8)71. Then asymptotically almost surely (for M — oc), the com-
munication height between two disjoint subsets of My, say I and J, can be
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estimated by
5 1 kq
foall,J) = g few (B) — —-=v2In M. (2.2.5)

We now want to determine the low lying eigenvalues of the Hopfield
model. Let {)\0,...,)\2]\/],1} with 0 = )\0 S S )\2M71 be the small-
est eigenvalues of the generator —Ly g [¢] of the transformed Markov chain

(w5 [€]-

Due to the symmetry under total spin flip and the unusually small fluctu-
ations of the heights of the minima in My, we cannot directly use the results
of Bovier, Eckhoff, Gayrard and Klein in [BEGKO02|, but we can apply similar
methods.

The weighted graph structure (V, E,w) governs the form of the small
eigenvalues of the generator L = Lyg[¢]. Let T = (t1,...,tan—1) be a
minimal spanning tree of (V, E,w) such that

whM-1 < wh2M—2 <...< wh < 0.

Notice that (up to the order and sometimes choice of equally weighted edges)

Kruskal’s algorithm to construct a minimal spanning tree starts with 53,4

and adds along our enumeration edges to the spanning tree until it ends with

t1. Let I7 C {1,...,2M — 1} denote the set of indices such that w' < w'i-1.
Using the exception set Js defined by equation (2.1.21) we obtain

Theorem 2.4 Let £ € Z§ and N > Ny [¢]. There exists an increasing se-
quence (A; | i € I7) of metastable sets of (n . We define

B — i ( , ) 2.2.6
[=ag omin fax (m,n) (2.2.6)

Denote for all m € M;

~1
We distinguish three cases:
o Assume Ef = {{m,n},{—m,—n}}, then

/\i—l = /\Z = (/Ym,z + ’77171) (]_ + O (6_6N>) . (228)

24



o Assume Ef = {{m,n},{—m,n}}, then
Xi = (29m,i 4+ i) (1+ 0 (7)) (2.2.9)

and
Aict = Y (L+ O (M) (2.2.10)

o Assume Ef = {m,n}, then

Ai = (Ymi + ) (1+ O (7). (2.2.11)

Together with Theorem 2.2 this yields explicit estimates for the low lying
spectrum of the generator of (y 3.
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Part 11

Metastability of Markov Chains
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3 Equilibrium potential and capacity

This section describes the potential theoretic approach to metastability
developed by Bovier, Eckhoff, Gayrard and Klein. A review of this can also be
found in [Bov04]. We use this here mostly to introduce the notation. The po-
tential theoretic approach works for ergodic Markov processes on connected
locally finite graphs. The most results require a reversible process.

A graph, ', consists of a countable discrete set, Y, that has no cluster
points and a nonempty set, G C Y x Y, of ordered pairs of points, such that
(z,y) € G if and only if (y,z) € G. Without restriction of generality we
assume that all self edges (x,z) are in G. We say y is in the neighbourhood
of z,ie. y e Ny if (z,y) € G and & # y. The family N' = {N,} ., is called
the neighbourhood system of I associated to G. We say I' is locally finite, if
the number of neighbours of each point is finite, i.e. |[N,| < oo for all z € Y.

For A C Y we define the external boundary to be

Ot A = (U /\/) \ A (3.0.1)

seA

and the internal boundary to be
0~ A:=0%(A9). (3.0.2)
Here A° denotes the complement of A. Define moreover the thickened set
AT = AUOTA. (3.0.3)

Let I' = (Y,G) be a locally finite connected graph and ¢ = ((),er 2
homogeneous Markov process on I' with time set T. We consider the cases
of continuous time set, i.e. T = R, and of discrete time, i.e. T = Ny. In
the discrete time case we call ( a Markov chain. Here, ( is characterised
by the starting distribution and the transition probability, p. By ( being a
Markov process on I' we mean that p (x,y) > 0 if and only if (z,y) € G. For
continuous time a Markov process on I' has the property (&;,&;) € G for all
t € Rso.

We assume that ¢ is ergodic. Hence the whole space Y is a positive
recurrent class of ( and there exists a unique invariant probability measure
7. For x € Y we denote by P, the law of ( with starting point x and by E,
the associated expectation. Since some statements of this section do not use
reversibility, we indicate the places where it enters.
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Definition 3.1 We call a homogeneous Markov process, ¢, with continu-
ous time set reqular iff it is stable, conservative and nonexplosive, i.e. its
infinitesimal generator, L, is of the form

Lf(z) =) L(z.y)(f(y) - f () (3.0.4)

yeNz

with non negative finite rates (L (r,y)),,, and ¢ has a.s. only finitely many
jumps in a finite interval of time. The waiting time of ( at a point x € Y is
an exponential distributed random variable with parameter

r(z):=> L(zy). (3.0.5)

YEN

Remark 3.2 The Criterion of Reuter says that a stable and conservative
generator L is nonexplosive iff it admits no non-negative bounded eigenvec-
tors with positive eigenvalue (see |Bré99|, Theorem 4.4, p. 351).

The embedded Markov chain forgets about the waiting times of ( and notices
only the jumps while taking the number of jumps as time. We define

Definition 3.3 Let ( be a regular Markov process with continuous time
parameter and generator L. We denote r (z) := —L (z,x). The embedded
Markov chain is defined to have the same starting distribution and a transi-
tion matrix, p defined by

p(x,y) = L;fa;;/) for y € N, (3.0.6)

and zero otherwise.
Therefore the generator of the embedded Markov chain, L(®, has the form

LY (z,y) = ﬁL (z,9). (3.0.7)

For the associated invariant probability measure, 7(% we obtain

2@ () = r(z)m(x)
L S ek (3.08)
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3.1 The equilibrium potential

We only consider the discrete time setting, i.e. T = Ny and will use the
embedded Markov chain in the case of continuous time (see Definition 3.3).
Given two disjoint subsets A and B of Y and x € Y, what can we say

about the properties of
P, (14 < 71B)? (3.1.1)

To answer this question we use
Proposition 3.4 LetT' = (Y, G) be a locally finite graph, D C'Y a (nonempty)
connected set and L the generator of an ergodic Markov chain ( on I'. Sup-

pose f: 0D — R and g : D — R are bounded functions. If h is a bounded
solution of the Dirichlet-Poisson problem

{_Lh =9 onb (3.1.2)

h = f ondtD,

then T := Ty+p is P-a.s. finite and

h(z) = E: (f (&) + Ex

S (@»] (3.9

forallz € D.

Proof. Due to the ergodicity of ( we have for every x € Y that E,7, =
%x) < 00. Due to the irreducibility also 7 is almost surely finite independent
01<5 the starting point x € D. Now we can apply Theorem 2.1, p. 181 in

Brémaud |Bré99. O

Now we look, more specifically, at

Definition 3.5 Let L be the generator of the ergodic Markov chain (. The
equilibrium potential hap : Y — [0,1] of ¢ is defined to be the unique
bounded solution of the boundary value problem

Lh=0 on (AUB)C,
h=1 on A, (3.1.4)
h=0 on B.

We also say that hy g is harmonic on Y \ (AU B) with respect to L.

31



Then Proposition 3.4 tells us that
hap(x)=P,(ta<7g) forallzeY \(AUDB). (3.1.5)

To treat the case when the starting point of ( lies inside A U B, we use
the following reasoning to find an equation for P, (74 < 7). The first step
of ¢ leads either to B, and the event {74 < 75} fails to happen, or to A, in
which case the event happens, or to another point y ¢ AU B, in which case
the event happens with probability P, (74 < 7). Thus for all z € Y

Plra<tsl = Y pley)+ Y pla.y) Pylra <7s].
yeEA y¢AUB
= phap(x) = Lhap(v)+ 14 (x), (3.1.6)

since ha plaus = la.

In the case of continuous time we use the embedded Markov chain, that
has a transition probability matrix given in Definition 3.3. Therefore we
obtain

1
P, (14 <7g) =phap(z)= @LhAB () + 14 (x). (3.1.7)

This result suggests to introduce the following notion that originates from

the theory of electromagnetism.

Definition 3.6 Let A and B be disjoint subsets of Y and L the generator
of a Markov process ( on Y. We call e4 p := Lha p the equilibrium measure
for the capacitor A, B.

Now we can answer the question of the beginning of this section. Namely we
have proved the following

Proposition 3.7 Let L be the generator of the ergodic Markov chain (. In
the case of continuous time we define r (x) = —L (x,x), whereas in the case
of discrete time we put r (x) = 1. Then we can conclude that (3.1.1) can be
written in the form

hap(x) ,r€Y\(AUB),
Pylra<71pl =1 1+ gean() €A, (3.1.8)
ﬁe,&g (x) , x € B.
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The next definition introduces the essential object that will allow us to es-
timate the capacity. In particular, it will allow us to treat simultaneously
Markov processes with discrete and continuous time set T.

Definition 3.8 The Dirichlet form ® associated to a reversible Markov pro-
cess ( with generator L and invariant measure 7 on the graph I' is defined
as

P (h) := — (h, Lh)_ (3.1.9)
for all h € 2 (7).

Remark 3.9 (a) In our setting ( is assumed to have an invariant probability
measure and we will use this to obtain a unique Dirichlet form.

(b) ® has the alternative representation in terms of the conductance ma-
trix C' (see Remark 3.17)

D=5 3 Coylhle) ~ ()’ (3..10)

This can be seen by using equation (3.2.4) for the generator of (. Therefore
the symmetry of C' implies

®(h) = Zh2(x)Zny— > h(x)Coyh (y)

€Y yENL (z,y)eG*

= Z Coy (h(z) = h(y))*. (3.1.11)

(z,y)€G*

(c) For an arbitrary subset H of G*, the Dirichlet form restricted to H is
defined by

Ou(h)i== 3 Coy(h(@)—h(y). (3.1.12)

The following variational representation of the capacity in terms of the
Dirichlet form of ¢ will turn out to be of fundamental importance. The reason
is that it exhibits the monotonicity properties of the capacity. This “Dirichlet
principle” can be found for example in the book of Liggett (|Lig85|, p. 99,
Theorem 6.1).
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Theorem 3.10 (Dirichlet principle) Let ¢ be an irreducible Markov chain
that is reversible with respect to the positive probability measure w. Let ® be
the associated Dirichlet form. We consider two disjoint subsets of Y, A and
B. Let Ha p denote the space of functions

Hap={he€l(r) | ha=0and hp=1}. (3.1.13)
Then the equilibrium potential is the unique minimiser of ® inside Ha g, i.e.

@ (hap) = dnf @ (h). (3.1.14)

Remark 3.11 Doyle [Doy89| gives an analogous variational principle in the
non-reversible case. Consider the function space

Gap={9€l(n) | gaus =0} (3.1.15)
Then

(Wyp, Lhap)_ = inf sup (h—g,L(h+g)),. (3.1.16)

he€Ha,B geGa

Here 1 5 is the equilibrium potential for the reversed Markov chain ¢* that
has transition probability

p(z,y) = Mp (y, 7). (3.1.17)

7 ()
With the properties of the equilibrium potential follows
<h*A,Ba LhA,B>7r =& (hap). (3.1.18)

Unfortunately the variational representation (3.1.16) has not the same mono-
tonicity properties as the Dirichlet principle.

The Dirichlet principle motivates the following

Definition 3.12 The (Newtonian) capacity of A and B with respect to ( is
defined as

cap (A, B) .= ® (hap). (3.1.19)
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Remark 3.13 (a) Observe that the capacity is symmetric, since hp s =
1 —hapand L1 = 0. Due to the properties of the equilibrium potential and
Definition 3.6 of the equilibrium measure, e4 g, we can also write

cap (A, B) = — (la,ean), - (3.1.20)

(b) In contrast to the equilibrium measure, the capacity of the embedded
Markov chain of a continuous time process ( is the same as for . This is
implied by the representations (3.0.7) and (3.0.8) for the generator and the
invariant measure of the embedded chain.

(c) The representation (3.1.20) together with the identity (3.1.8) implies
that

cap (A, B) =Y 7 (x) P, (14 < 75), (3.1.21)
zeB
where 7(9 is the reversible measure of the embedded Markov chain, see equa-
tion (3.0.8). Of course the embedded Markov chain of a Markov chain ( is
the chain itself.
In the special case B = {x} we obtain therefore

cap (z, A)
mld (x)

The next proposition follows directly from Corollary 1.6 of [BEGKO01|. Tt
shows that the equilibrium potential can be approximated by capacities.
Together with the Dirichlet principle this proposition will provide us a way
to improve rough estimates on the capacity.

P (ta<T)= (3.1.22)

Proposition 3.14 [BEGK01] For A,B C Y, disjoint, xt ¢ AU B and (
reversible, we obtain

cap (x, A)
cap (z, B)

Proof. Since + ¢ AU B we have hap(z) = P, [ta < 7g]. If the process,
started at a point x, wants to realise the event {74 < 7}, it may do so by
going to A immediately and without returning to = again, or it may return
to x without either going to A or B. Clearly, once the process returns to x
it is in the same position as at the starting time, and we can use the strong
Markov property. Formally:

hap () < (3.1.23)

Pylra <71] = Polta < 7pus) + Pu|(7e < Taup) A (T4 < 7B)]
Py [Ta < Tpua) + Pr [Ta < Taus] Py [Ta < 78] (3.1.24)
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This is called a renewal equation. We can solve this equation for P, [T4 < 75] :

Px [TA < TBUm]
1 - P:): [7'33 < TAuB]
Px [TA < TBUx]

= =& @ = 3.1.25
Px [TAUB < Tx] ( )

Px[TA<’TB] =

By elementary monotonicity properties this representation yields the bound

Pylta<m] cap(z,A)
P, [t <7, cap(x,B)’

Py lra <7p] < (3.1.26)

D

3.2 Electrical networks

It will be convenient for the following to use the language of electrical net-
works. This subsection follows Doyle and Snell [DS84]. We introduce

Definition 3.15 Let I' = (Y, &) be a locally finite connected graph with
edgeset G. We denote G* := {(z,y) € G|z # y}, i.e. we leave out all self-
edges. Let A and B be subsets of Y and C': G* — R a positive symmetric
function, called the conductance matriz of I'.

(a) Let f : G* — R be a function and define f : Y — R by f(z) :=
> yens, [ (x,y). fis called a flow from A to B and f (z) the net flow out of
x, if

1. (anti-symmetry) f(x,y) = —f (y, z),

2. (Kirchhoff’s node law) f(z) =0forallz € Y\ (AU B).

f is called wunit flow if additionally erAf(x) = 1.
(b) An electrical network is a weighted graph (I", C).

Remark 3.16 Given the values of a function i : Y — [0,1], called wvoltage,
on the sets A and B there exists a unique flow 7 : G* — R from A to B,
called current, such that “Ohm’s law”

i(z,y) = Coy (h(z) = h(y)) (3.2.1)

is valid. This follows from Proposition 3.1.2.
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Proposition 3.17 (i) Let ( = ((;),cr be a reversible ergodic Markov chain
on a locally finite graph I' = (Y, G). Put G* = {(x,y) € G|z # y}. Then (
determines an electrical network (I',C) with conductance matriz C : G* —
R-¢ given by

Cypy =7 (z)L(x,y). (3.2.2)

(i) On the other hand a reversible ergodic Markov chain on I' is determined
by its invariant probability measure ™ and an arbitrary conductance matriz,
C:G*" — Ryg such that

c(z)
sup < 00, where ¢ (x) = C(x,y). (3.2.3)
sup <3 = 3 Cla

Proof. ad (i). Suppose we are given the Markov chain ¢. Then the conduc-
tance matrix C' given by (3.2.2) is indeed a symmetric function, because of
the reversibility of . Let N' = {N,} ., be the corresponding neighbourhood
system of G*, i.e. y € N, iff (z,y) € G*. Then the generator of { can be
written as

S(% for y € N,
L(z,y)=q =Y ,en, L(x,y) fory=u, (3.2.4)
0 else.

Hence the Dirichlet problem (3.1.4) is equivalent to

> yen, Coy (W (y) = h(z)) =0 forz e\ (AUDB),
h(zx)=1 forz e A, (3.2.5)
h(z) =0 forz € B.
Therefore the voltage is given by h (x) = P, (T4 < 7p5) and i defined by (3.2.1)

is a flow.
ad (ii). Given a conductance matrix C' and a probability measure 7 that
satisfies condition (3.2.3), we retrieve the transition matrix, p, of a reversible

Markov chain ¢ by setting Z := sup,.y C((x)) and

%W for y € N,
plz,y) =4 1- yen, P (x,y) fory =, (3.2.6)
0 else.
Obviously the reversible measure of ¢ is indeed given by 7. O
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Remark 3.18 The representation of the capacity via the Dirichlet principle
(3.1.14) shows that cap (A, B) is the “effective conductance” of the electrical
network (I', C') associated to £, when we apply a voltage 1 between A and B,
i.e. we set the boundary conditions h|4 = 1 and h|g = 0. Compare [DS84],
section 3.5, page 63.

Equivalently to the Dirichlet principle (3.1.14) there exists a variational
principle for the current, called Thompson’s principle: Denote

Fap:={f:G— R]|f unit flow from A to B} (3.2.7)

then X 1 1
ap(AB) st 2 T, g 3.2.8
v B 3 2 gl @) (3.2

z,yey
The unique minimiser of this problem is the current ¢, that satisfies Ohm’s
law (3.2.1). For a proof see [DS84], p. 63. We will use this principle to obtain
precise estimates of the capacity in the case of several relevant saddle points.

Example 3.19 In the case of a finite one-dimensional graph I' we can calcu-
late the equilibrium potential and the capacity of a network (I', C') directly.
For Y ={0,1,..., N} we denote C, = C (k — 1, k) and obtain for z € Y

hon () = (; c%) / (; c%) . (3.2.9)

The capacity is given by

cap (0,N) = ch (hon (k—1) —hon (k))2
N Yoy
- (oa) (Ba)

= 1/ (i C%) . (3.2.10)
k=1

3.3 Mean hitting time

Definition 3.20 We introduce the function wy g : Y — R by setting

E,7al;,cr, ,x & AUDB,
wA,B(x):{ 0 Atra<ts xiAUB. (3.3.1)
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If ( is a continuous time process we consider again the embedded chain with
transition probability given by p (z,y) = Tr(,fx?;) for y € N, and zero else. For
a discrete time Markov process £ we put r () = 1 for all z € Y. Then obtain

for wy p the following forward equation for x ¢ AU B:

WA,B (37) = ExTA17A<TB
1
= @Px [Ta < 78]+ Z p(z,y) was (y)
y¢ AUB
1

= @hA,B (33) +pwap (33) . (332)

Therefore w4 p is a solution to the linear boundary problem

—Lw = hap on (AUB)‘,
{ w = 0 on AU B. (3.3.3)

Note that — L is a positive operator. Proposition 3.4 implies that this problem
has a unique solution.

Let D be a subset of Y. Define the Green function, Gp : D x D — R, to
be the kernel of the inverse operator of —L on [y (D, 7). The Green function
contains all information about the law of the Markov process (.

We use the Definition 3.5(a) of the equilibrium potential to represent the
Green function. Let C' be another subset of Y, disjoint from D. Since
hep =0on D and ecp =0 on (C'U D), we obtain

hqD (LL’) = _GDcec,D (LL’)
= — Z GDc (33, y) €c,D (y) . (334)

yel

We will use now the reversibility of £, that means 7 (z) Gp (x,y) = 7 (y) Gp (y, x)
and choose C' = {y}. Then we obtain
h X T h/m
GDC (I’,y) — yrD( ) _ (y) .D (y)
ey, () ™ () eap (7)
_ hx,D (y)
= 7w(y) cap (D)’

This means, we can in principle determine the law of { completely, if we
know the capacity and the equilibrium potential.

We summarise the results in the next Proposition that resembles Corol-
lary 3.3 of [BEGKO02]

(3.3.5)

39



Proposition 3.21 [BEGK02] The Dirichlet Green function for any set D C
Y can be represented in terms of the equilibrium potential and capacities as

he.p (y)

Gpe (z,y) =7 (y) cap (z, D)’

(3.3.6)

The mean hitting time of A C'Y satisfies, for a starting point x ¢ AU B,

1
cap (z, AU B

]E:ETAlTA<TB =

) . W heavs @ hanly).  (33.7)

ye(AUB)©
Especially for B = () we obtain for all x ¢ A
1
Eytp = ——— hy . 3.3.8
A G (@, A) > 7 (Y) haa () (3.3.8)

yEAC
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4 Metastability

Let A C R? be open and connected and consider a family of countable
discrete sets, (Ac)y...; € A. We assume that A, is equipped with a neigh-
bourhood system N, = {'/V-Evm}xEAg’ that makes it a connected set. Moreover,
assume there exists » > 0, independent of ¢, such that the number of neigh-
bours is uniformly bounded by 7, i.e. |N.,| < rforallz € A.. The associated
r-uniformly locally finite graph is denoted by T'. = (A, E.).

Let (£°)y..; be a family of ergodic time-homogeneous Markov chains on
I'.. Assume that &€ is reversible with respect to the probability distribution
7. Let pe : Ac X Ac — [0, 1] the transition probability of £°. Recall that we
assume that £° only jumps between neighbours of A, i.e. p. (z,y) = 0 for all
y ¢ N U

Since &€ is reversible, p. can always be written in the form

pe (2,y) = g (z,y) min (1, ;T: Ei;) (4.0.1)

with a non negative symmetric function g, : Ac x A — Rxo.
We assume

C1 the function g, is on compact sets uniformly bounded from below, i.e.
for all K CC A, there exists a constant ¢ > 0, independent of €, such
that g. (z,y) > cforallz € K and y € N_,.

This assures in particular that £° can jump between any two neighbours of
A¢ and is not restricted to some connected subgraph.

Example 4.1 Consider A, = A N eZ% Let x and y be neighbours, i.e.
lz =yl = e
(a) For g. (z,y) := % we obtain, of course, the Metropolis algorithm.
(b) For
1 me (z) Ve (y)

1
ge (x,y) = 27 (@) + 7 (y) > 1 (4.0.2)

we recover the heat bath dynamics, i.e.

1 e (y)

20 () + e (3 409

pe(z,y) =

41



(c) For

L T T (v) A e (y) -
9e (v, y) = fe(z,y) \/—m oV ) > fe(z,9), (4.0.4)

where f is a non negative symmetric function that is uniformly bounded from
below on compact subsets of A, x A, we recover the dynamics given by

pe(z,y) = fe(z,y) (4.0.5)

Definition 4.2 We define the potential of £ to be the function F, : A, —
F.(x) = —€lnm, (x). (4.0.6)

The interesting case for us occurs when F, has at least two local minima.
We assume that

F1 (F.) converges uniformly to a unique continuous function F': A — R,
i.e. for all kK > 0 there exists ¢y > 0 such that for all € < ¢y we have

sup |F. (z) — F (z)| < k. (4.0.7)

xEAe

F2 The function F' has compact lower level sets, i.e.

{F<byccA forallb>0. (4.0.8)

The following definition of the so called relevant saddle points between two
subsets A and B of Y will be essential for the dynamics of the Markov
processes we consider.

Definition 4.3 Consider an arbitrary function f : Y — R on a locally finite
graph (Y, G). Let A and B be disjoint subsets of A..

(a) A path v is a finite sequence (71, . ..,7x) of communicating points, i.e.
(ViyYiz1) € G for 1 <i <k —1. We write € v when ~ visits the point z.
We denote by P4 p the set of paths starting in A and ending in B.

(b) The communication height between A and B is

A

f(A,B) ;== min max f(z). (4.0.9)

YEPA,B TEY
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Observe that the communication height depends, of course, on the edgeset
G we have chosen.
(c) We introduce the level set

G (A, B) = {z EA|f(2) = A(A,B)} . (4.0.10)
The set of optimal path is defined by
Ouni= {7 € Panlmaxf () = f(A B} @0

A gate G (A, B) is a minimal subset of G (A, B) with the property that all
optimal paths intersect G (A, B). That means for every H C G (A, B) there
exists a path v € O, p such that yN H = (). Note that G (A, B) is in general
not unique. The set S (A, B) of relevant saddle points is the union over all

gates G (A, B).

The notion of communication height between two sets leads a decompo-
sition of the state space into different valleys, described by the following

Definition 4.4 Let A, B CC A be disjoint compact sets.
(a) We define the lower level set

W(A, B) == {x e A Fz) < F(A, B)} . (4.0.12)

We assume that A C W(A, B). We set Vg (A), called the valley of A with
respect to B, denotes the connected component of W (A, B) containing A.
(b) Let x € A\ A. Then we define the barrier between = and A by

B(z,A) := F(z,A) — F(z). (4.0.13)

B(z, A) is the minimal height a path has to climb in order to connect x with

A.
Analogously we define B, and Vée) (A) for F..

4.1 Metastability

In the following, we will often be dealing with probabilities like P, [T4 < 7]
which we call escape probability from = to A.

Following Bovier, Eckhoff, Gayrard and Klein [BEGKO02|, we define meta-
stability in the following way:
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Definition 4.5 (metastability) Let .Z, be a finite subset of A, such that the
cardinality |.#| is independent of e. Let p : (0,1) — (0,1) be a monotone
increasing function with lim o p (€) = 0.

Then the family of Markov processes (56)56(071) is said to be p-metastable
with respect to (.#,), if

P < Tm) < inf P, <) 4.1.1
max P (7.4 < 7n) < p(€) nf Po(T4 <) (4.1.1)
The elements of .#, are called p-metastable points of (£°).

We say (£°) is metastable with respect to () if there exists a function
p for which (£°) is p-metastable.

This definition suggest a decomposition of the state space into a finite col-
lection of subsets. We define for each point m € .Z, the domain of attraction
of m by

nejle

A(m, A, = {x EN| P, (T =Tp.) > max P, (1, = 7'///)} ) (4.1.2)

It follows from Definition 4.5 of metastability that for all m € .,

lim P, (Tm < Tm) = 0. (4.1.3)

Hence, if there exists a limiting Markov chain, it is reducible with at least
|.#.| connected components.

In words, Definition 4.5 states the following: The infimum of the escape
probabilities from any point x € .Z° to .. is much bigger than the escape
probability from a point, m, in .#Z, to another one. The function p in Def-
inition 4.5 describes the factor, by which the escape probabilities between
metastable points is smaller compared to the escape probability of any point
with respect to the set of metastable points.

Therefore we have at least two different time scales: One that measures
the time required for a typical excursion away from m that stays inside
A (m, #.) and another one on which we expect a changeover to ., \ m.
This type of behaviour has been studied for a long time and is rigorously
treated on the level of large deviations, in particular in the book of Freidlin
and Wentzell [FW84].

The benefit of Definition 4.5 is that we only have to control hitting times
of points or finite sets of points on the state space. In the analogues situation
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of a Diffusion in R?, one can deal with small balls around these points (see
[BEGKO04]).

Observe that Definition 4.5 does not determine a unique family (.Z;)
even for fixed p. Indeed, having isolated a very large set .Z,, in many cases
one can find a subset N, C M, such that the Markov chain also exhibits
a metastable behaviour with respect to N.. We formulate this important
property of Definition 4.5 in

Proposition 4.6 Let I. be the set of all i € M. such that there exists c,
independent of €, and

P (14 <7)>cmax P (Tg < Tm) - (4.1.4)

mG///e

Then we can construct a minimal set J. C I, such that (£°) is metastable

with respect to M, = M, \ Je.

Proof. The definition of I, in (4.1.4) implies that there exist a monotone
decreasing function, r : (0,1) — [0, 1], with lim. o7 (¢) = 0 such that for all
m e M.\ 1.

P (T, < Tm) <71 (€) max P (Tp <T2). (4.1.5)
So at first sight it might be possible just to leave out all elements of I, from
M. to get a new metastable set, but this is not possible if some or all relevant
saddle points connect members of I, i.e. there exists ¢,j € I. and

E. (i, #.\ i) = F.(i,7) . (4.1.6)

In this case it may happen that by throwing away ¢ and j there arises a valley
of arbitrary depth that is not any more represented by an element of .Z, \ I..

We construct inductively the set J. by putting J©© = @ and J®tD =
J™ U {5} if there exists j € I, \ J™ and ¢ > 0, independent of ¢, such that

Pi (Tyoge < 75) 2 cmax P (T4, < Ti) - (4.1.7)

me.Me
Otherwise put J, = J™. Without loss of generality we assume that for all
1€ Je
7 (1) = max m(x). (4.1.8)

xevjie (’l)
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Let ¢ € J., then certainly it holds true that
P(r, <m) < Pi(rg <m)
< 00 inf Po(ra <7). (4.1.9)
Moreover, for all z ¢ .

Px (7-//[5 <7—x) SZPx (TZ<7'5(;)—|—PI (7'//26 <7—x>~ (4110)

1€Je

We denote A, (J.) = User, A (i, #.). Then for all i € J. and = ¢ A, (J.) we

know

Therefore we have shown up to now
Pi(r,; <m) <2 inf P, (1, <T.). 4.1.12
max P (rg <7) <20() i P74 <7) (4.1.12)

To proceed we use that

cap (z, A)

Py (1A <Tp) = (@) (4.1.13)
Let 7 € J., then certainly,
F. (:p///) - <1///) for all 2 € V(i) (4.1.14)
On the other hand for z € A (i, ///1) \ 'V ; (i) we obtain
F <x//[> —z. (4.1.15)

Therefore Proposition 4.8 tells us that for all i € J, and x € A <z,//2€) the
condition (4.1.8) implies

Pi(r, <m) < it P (7.4, < Ta) - (4.1.16)

Therefore

min £ (7.4, < 7.)

< inf P, (7, <T.). 4.1.17
< o Pe (7 <) (4.1.17)
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We have shown

Igi}fﬂ (T///; < 7',-) < 2p () m;rie P, (T//Ze < Tx) ) (4.1.18)

By construction of .J, there exists a monotone decreasing function, p : (0,1) —
[0, 1], with lim,|o p (¢) = 0 such that

max P, (7, <7,) <p(e)minP; (1, <7). (4.1.19)
ne. . ¢ i€ Je ¢

Hence,
max P, (T.//Z < Tn) <p(e) inf P, (7'///* < Tx) (4.1.20)
neMe € ¢ M. e

holds true and we are done. ]

Remark 4.7 Observe that if I, contains more than one point, then the small
eigenvalues of the generator — L. of £ depend on the structure of this set.
We will give a non trivial example in the case of the Hopfield model in part
IIT of this treatise.

4.2 A priori bounds

In this section we will estimate capacities of £¢ on a subexponential scale
and then use Proposition 3.14 to give an a priori bound on the equilibrium
potential. We use the notions of the electrical network, (FE, C(E)), associated
to &€ given in Definition 3.15, see Proposition 3.17. We consider only Markov
chains, i.e. Markov processes with time set T = Ny in this section. This
corresponds to the following property of the generator: ZyeNz L(z,y) <1
for all x € A.. In the case of continuous time one can think this as an
description of the embedded Markov chain.
The following proposition will play a key réle in our treatment.

Proposition 4.8 Let (£°) be a family of positive recurrent reversible Markov
chain that satisfies the conditions at the beginning of this section, in particular
C1. Let A and B be disjoint compact sets of A, such that F. (z) < F. (A, B)
for all x € A.
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Then there exist constants ¢, co > 0 such that

Cl€d < CapA(A’ B> S CQE_d.
exp (—FE (A, B) /e)

(4.2.1)

Proof. LOWER BOUND OF cap (A, B)
The Dirichlet principle of Theorem 3.1.14 tells us

cap(A,B) = inf ®(h) = (hap)

he€Ha,B

> O, (hap) > inf @ (h) (4.2.2)

h€H A, B

for every subset v C A, such that yN A and 7N B are not empty. We choose
now for v an optimal path, i.e. v € Oy4 p. Identify v with a graph with edges
between nearest neighbours. By using the calculation in Remark 3.13(b), we
obtain

inf @, (h) = 1/ > 1/C%|. (4.2.3)

heH A
o (z,y)€y

Since v is an optimal path we know v € {F6 <F (A, B)} which is a compact
set, because of assumptions F1 and F2. Assumption C1 assures now the
existence of a constant ¢ > 0 such that we can estimate

Cyy > cexp (—Fe (A, B) /e) for all z,y € . (4.2.4)
Therefore

inf @, (h)

h€Ha,B

> ﬁexp (—ﬁ; (A, B) /e)

>

} exp (—131 (A, B) /e> . (4.2.5)

Note that vol ({F6 < F.(A,B) ) < oo follows from assumption F2.
UPPER BOUND OF CAP (z, B)
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Denote by V. := Vée) (A) the valley of A with respect to B (see Definition
4.4(a)). We choose a function h* with A" =0 on V, and h* = 1 on V. Then

we obtain, since by reversibility C\ < 7. (z) A 7 (y) |
cap (A,B) < @ (hY)

= 2 2.9

€0~V yedtV,

< 1|07V exp <—F€ (A, B) /e)
< cvol (Vg (A)) e 4exp (— - (A, B) /6) : (4.2.6)

g

Remark 4.9 Let = € A and D C A, \ = such that F, (y) < F. (z, D) for all
y € D. Then we apply Proposition 4.8 with B containing only one point.
With equation 3.1.22 we obtain that the escape probabilities are controlled
on an exponential scale by the associated barriers:

1
P, (tp < 72) < cae Texp {——Be(x, D)} (4.2.7)
€
and .
P, (1p < 7p) > cretexp [——Be(sc, D)} : (4.2.8)
€
This implies that V., (m) C Ac (m).

Example 4.10 (a) Assume that the set M of local minima of F' consists of
finitely many points. Denote s := min,,erp B (m, M \ m). Then we can find
finite sets, .., of local minima of F, such that .#Z. — M with respect to the
Hausdorff distance of sets, |.Z,| = | M| and

e (m) = max = (x) (4.2.9)
€V g (M)

for all m € .. Let p(€) := exp (—h/e) with h < k. Proposition 4.8 shows
that £¢ is then p-metastable with respect to .., since for m € .

Pm (T///e\m < Tm) < Ce_d €xXp <_%B5 (m, '%5 \ m)) . (4210)
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Choose § < g (k — h). The uniform convergence of F, to F' (assumption F)
implies that there exists ¢y > 0 such that for all € < ¢y we have

|Be (m, A\ m) — Bc(m, M\ m)| <. (4.2.11)
Hence
—d R — 5
P (Toom < ) < ce %exp | — . (4.2.12)
€
Moreover, for © ¢ ., there exists €; such that for all € < ¢; we have
F(x, M) —F.(x) <k—h—20 (4.2.13)
and therefore
—h—20
P, (Tpm, <T2) > cre’exp <,{7) : (4.2.14)
€

Hence for all € < min (g, €;) we obtain

P, m < Tm) < inf P, < Tz), 4.2.15
max P (Taam < m) < p(€) Jnf Po (i, < 72) (4.2.15)
and therefore (£°) is p-metastable with respect to ...

(b) More generally, in the case p (¢) = exp (k/¢) (with £ > 0) a metastable
set M}, has the following property: In each valley of depth greater k exactly
one of the deepest minima of this valley is in Mj. In this case we have

B(m,n) >k Vm,n € M. (4.2.16)

Moreover, for all other points x ¢ M there has to be a point m € M such
that B (x,m) < k. Effectively we only have a condition for local minima of
F that are outside of M, namely

Bz, M) <k VYzeM\M,. (4.2.17)

We have found a connection between Definition 4.5 of a metastable set and
geometric properties of the function F..

To prove the precise bounds on the capacity between minima, m and n, we
need the following corollary, which will justify to restrict our attention to a
neighbourhood of the set S, (m,n) of relevant saddle points.
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Corollary 4.11 (a) Let A and B be disjoint compact sets of A. such that
F.(x) < F.(A,B) for allz € AU B. Then there exists ¢ > 0 such that for
r¢ AUB

hagp (7) < ce* exp {—% (FE (z,A) — F. (x, B))} : (4.2.18)

Proof. This follows from Proposition 3.14 combined with Proposition 4.8. []

4.3 Pathwise approach

A point m € A, is called metastable in the sense of Olivieri and Vares iff the
following two properties hold:

1. “unpredictability of the tunneling time”.
Assume £ starts in m. Then 7\, is called unpredictable if it con-
verges in distribution to an exponential random variable, i.e.
TMAm

D
————— 5 & fore |0, 4.3.1
Em (TME\m> l ( )

where £ is a unit mean exponential random variable.

2. “thermalisation”.
Let s,t € Ny. We define the empirical average measure of £° between
the times s and s+t as

s+t

1
Hop =5 Z Ogs - (4.3.2)
k=s+1
Hence p,: (B) is the fraction of time £ spends in B C A, between s
and s +¢. Let V := V(Z\m (m) be the valley of m with respect to
M\ m.

Let £° again start at m. We say &€ thermalises at m if there exists a de-
terministic time scale ¢, such that lim, o t. = oo, but t. = o (E,, (T9+v))
and for every open set B C R containing m and every & > 0

hfgl P, (Taﬂ/ >toand  sup  pey (B) >1-— /€> =1. (4.3.3)

§<Tg+y —te
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The next proposition gives a rough estimate for the distribution function of
the hitting time of the boundary of a valley.

Proposition 4.12 Let V, := V¥ (m) be the valley of m € M, with respect
to another point n € M.. Then

Py (Tory, < t) < ce @ |[t] exp (—%B6 (m, n)) ) (4.3.4)

Proof. We observe similar to Olivieri and Vares (see [OV05] Proposition
4.7, p. 233) that for x € 91V,

P, <t) < P, (& =x)

IA

(4.3.5)

Therefore we obtain, since e?vol (V) converges to the volume of compact set

Vo (m) C A,

Po(mpey < 1) < “ﬁn 3 @)

IN
A=
>

To prove the thermalisation of £¢ in the valley of a metastable point
m € M, that contains no more minima, we need moreover the following

Lemma 4.13 Let V, := V/ffl)e\m (m) be the valley of m € M. with respect to
M.\ m. Denote a. := exp (a/e), where 0 < a < B.(m, M.\ m). Given
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k € (0,1) and an open set, B, containing m, there exists ¢, > 0 and €y such
that for all € < eq and all integer t > a.

t
sup P; (75, (B) < 1 — k) < exp (—c,{—) : (4.3.7)
i€V Qe

Proof. It suffices to consider the case, where B is a small ball of radius

p > 0 around m. Denote the depth of B by

F,:= inf (F(x)—F(m)), (4.3.8)

[z—m|=p

fix b < a A F, and let b := exp (b/e). First we introduce

ge :=sup P, (?m > ﬂ) + P, (T, < be) (4.3.9)

eV

with 7, := min {n > 1|6, ¢ B}. To see that g — 0 in the limit of vanishing
¢, we use the Chebyshev inequality to estimate the first summand and obtain

P, (m > \/17) < \/1b_E (Tm) - (4.3.10)

Moreover, we obtain with Corollary 4.11

a |

Z Te (Y) him (y) < ke 34vol (V) exp (_

E. (m, M\ m)> . (4.3.11)

yeVe\i

Therefore with Proposition 3.21 follows
E; (Fp) < ce ™. (4.3.12)

With the same arguing as in Proposition 4.12, we obtain for the second
summand of ¢ in (4.3.9):

Pu(, <b) < [b]exp (—%Fp) | (4.3.13)

Now we can proceed as Olivieri and Vares in the proof of their Lemma 4.11,
p. 239 in [OVO05]. That means we fix €y such that b./a. < %/{ and /b, < i/{
as well as ¢. < %/i for all € < ¢.
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If € < ¢y and t > ac, due tob/a. < %/4; we may write

B(%i1<2263><1—/€) Spi(klg §1<EZ€B><1_S)

k=1 e“e
(4.3.14)

where k. = |t/a.].

For each 1 < k < k. let us say that the time interval [(k — 1) a, ka,) is
good if the process € hits m before time (k —1)ac + \/a. and spends the
rest of this time interval inside B. Otherwise, it is called bad. Let Y ;be
the indicator function of the event {[(k — 1) a., ka.) is bad} . Thus for any
1 eV,

P(Yor=1\Yo1=uy1,.... Y1 =yk-1) < q. 4.3.15
ke?ﬁ%ﬁ:s} ( k ‘ 1=MW k=1 = Yk 1) =~ q ( )
for any choice of yy,...,yx—1 € {0,1}. Since g < %/{, performing successive

conditioning and applying (4.3.15) we obtain, for arbitrary A > 0:

E; (exp (AkZYk» < (1 + g (e* - 1)>k€. (4.3.16)

Using (4.3.14) and (4.3.15) we see that

k.
1 & 1
P, (BY<1—kr) <P =Y Y.,>>r| <eheer 4.3.1
(7, (B) <1 r) < <k§ ,k_4n)_e (4317)
for all € < ¢y, which implies the lemma. At the last inequality we have

used the exponential Markov inequality and the preceding observation with
A = A (k) > 0 small enough such that

1
L+ zh (1) < i, (4.3.18)
0

Now we can show

Theorem 4.14 Let (£°) be a family of ergodic and reversible Markov chains.
Let M. be the set of local minima of F.. Assume that M. is a finite set and
|M| is independent of . Choose m € M, and let V = V/E/El)s\m (m) be the
valley of m with respect to M. \m. Assume £ starts at m, then it thermalises
at m.
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Proof. We proceed along the lines of the proof of Olivieri and Vares for
thermalisation in the case of the Curie-Weiss model. We introduce the equi-
librium measure restricted to V by setting for all B C A,

T (BNV)

melB) =

(4.3.19)

First we introduce of a restricted Markov chain, Ee, that cannot leave the
valley V. We determine fe by defining its transition probability matrix

pe (2, y) ifzeVyeN,NV
P(w,y) =9 1= cnyPe(m,2) ify=x€V (4.3.20)
0 else.

The equilibrium measure for EE is apparently .. We introduce the following
coupling between &€ and € : They both start in m and move together until
for the first time ¢ jumps out of V. Recalling (4.3.20), at this step ¢ remains
at 2 and from then on they behave independently. Therefore 7. = 7. and
Ez = ¢ for all t < 7.. Therefore the probability in (4.3.3) can be rewritten as

P, sup iy, (B) >1—rand To+y >t |, (4.3.21)
S<T g4y —le ’
which is bounded from below by
1= P, (Torv <t) — P (Ge). (4.3.22)

Here,

Go= U A (B)>1-F and K > 1], (4.3.23)
1€{0,.... K}

where K, := |To-v /te].
Now, for every k. € N we obtain

Pm(Ge) < Pm(KeZke)_l_kesupPi(ﬁOt (B)>1_E>
i€V e 2
< P (Tory > kete) + ke exp (—cn\/ﬂ) ) (4.3.24)

For the last inequality we used Lemma 4.13. U
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5 Precise estimates for capacities and
hitting times

5.1 Precise estimates of the capacity

We restrict ourselves now to the spaces A, = A N eZ?. Moreover, from now
on we pose the following stronger assumption on the family of potentials (F})
that sharpens assumption F1, namely

sF1 We assume there exists functions F, : A — Ry of class C3 (A) such
that
T (z) = e~ Fe@)/e Vo € A.. (5.1.1)

and (F,) converges uniformly on A to a limiting function F': A — R,

of class C® (A).

Let M be the set of local minima of F'. A point s is called a essential saddle
point if there exist minima m,n € M, such that s € S (m,n). The set of all
essential saddle points will be denoted by £. Analogously let M, be the set
of local minima of F, and &, the set of essential saddle points of F..

Remark 5.1 For all essential saddle points s € &£, there exists § € A, such
that VF, (5§) = 0 and ||$ — s/, < e. Without restriction of generality for all
s € & we assume VF, (s) =0, that is s = 5.

Definition 5.2 Let f € C? (]Rd) be given. We call a critical point of f
quadratic iff det V2f # 0. Otherwise it is called degenerate. A quadratic
critical point of f, say z, is a k-saddle, iff V2f (x) has exactly k negative
eigenvalues. We say, the function f is at = in k directions unstable and in
d — k directions stable.

To obtain precise estimates of the capacity and related quantities, we will
now pose additional assumptions on the set of local minima, M., of the
family of potential (F¢) ¢ ,)-

We assume

S1 The functions F, and F have only finitely many critical points.
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S2 All minima and all essential saddle points of F, and F' are quadratic
critical points. Moreover, V2F, (z.) — V?F (z) iff z. — z for all

e € M. UE,.

S3 All metastable points and essential saddles are well in the interior of A,
i.e. there exists k > 0, such that for all x € M U & the distance to the
boundary of A fulfills dist (x, A°) > k.

Remark 5.3 (a) By enlarging the set A condition S3 can be always satisfied.

(b) Condition S2 implies that all essential saddle points are 1-saddles. In
particular, it excludes situations prescribed in [MNOSO04|, Section 6.3. They
give an example, where an unessential saddle point (with the same height)
affects the prefactor of the capacity. This involves however essential saddle
points s with det V2F (s) = 0.

We also need a to add another condition on the transition probability, p.,

of the Markov chain £¢, given in the form (4.0.1). We define p; (z) :=

pe (x,z + €e;) and gi(g) (x) := g (x,z + €e;). Since £° is a reversible Markov

chain on a subset of the d-dimensional lattice with transitions only between

nearest neighbours, all information are encoded in (p; (z) |z € A, 1 < i <d).

C2 We assume gge) is uniformly Lipschitz continuous on compact subsets of
A, i.e. for all K CC A, there exists a constant L independent of € such
that

gi(E) (x) — gl@ (| < L|z—yl, forallz,yeK. (5.1.2)

We will first consider the case of a unique relevant saddle point, called
s* (m, n), between the metastable points m,n € .#.. As the treatment of the
rough estimates indicates merely a neighbourhood of s* (m,n) contributes in
leading order to the capacity between m and n.

We will use the parameter ¢ to measure the size of the neighbourhood of
a relevant saddle point with vanishing gradient. We choose

d =6 (€) := ke |lne| (5.1.3)

and with k& > 4d constant. Whenever we use ¢ it will have this meaning.
The following lemma gives an approximation of the conductance matrix
C© near a non degenerate critical point of F..
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Lemma 5.4 Let s be a quadratic critical point of F,.. Consider the ball B, (s)
around s with radius r = O (§). Then for all x € B, (s) we obtain

C' (z) = p; (s) 7 (2) (1 + O (6)). (5.1.4)

Proof. By definition C’i(g) () = me(x)p;(x). Since z € B, (s) we have
|z — s|l, = O (9) . Since gl@ is uniformly Lipschitz continuous and uniformly
bounded by a constant from below on B, (s), we obtain

9 () = ¢ (s) (1 + 0 (9)). (5.1.5)

Since F. € C®(A) and VF, (s) = 0 we obtain for z € B, (s) that

Te (flf + 667;)
= , 1.
(@) + O (9) (5.1.6)
Hence also p; () = p; (s) (1 4+ O (d)) and the result follows. O

As a lemma we show the continuous dependency of the capacity on (constant)
boundary conditions.

Lemma 5.5 Let I' = (Y, G) be a countable connected graph and A,B C'Y
disjoint subsets. Let a,b € [0,1] with a > b. We define the function spaces

HA,B = {hElg (71'6) | h|A:1 and h|B:0} (517)

and

Hap={h€ly(n) | hla=a and h|p = b}. (5.1.8)
Define cap (A, B) :==inf,_5; _ ®(h). Then the minimiser hap is of the form
BA,B =(a—0) hap+0.

Proof. }NZA,B fulfills the boundary value problem

Lh=0 onY\(AUB),

h=a on A, (5.1.9)
h=b on B.
Since this is a linear problem and L1 = 0, we are done. 0
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Notation 5.6 For v € R? we define v- to be the diagonal matrix with entries

(v-);; == vic

Now we formulate the main theorem of this treatise. It gives a precise esti-
mation of the capacity between two minima of F.. We formulate it here for
the case of a unique relevant saddle point; for the case of several relevant
saddles see Corollary 5.19.

Theorem 5.7 Let £° be a reversible and ergodic Markov chain such that the
assumptions at the beginning of this section are satisfied. Let I,J C M.
with INJ =0 and assume s = s* (I, J) is the unique relevant saddle point
between them. Then

N\ 421 v
2 ) A exp (—F. (s) /€) x

cap (I,J) = <_ |det V2F, (s)]

€
x (1+O(\/E|1ne|3/2>>, (5.1.10)
where —j\d 1s the unique negative eigenvalue of the matriz given by

(pi (5) 0:0; Fe (s)) .- (5.1.11)

To illustrate the general procedure we consider first the special case, where
the orthonormal basis of eigenvectors {by, ..., b} of B = V?F, (s) equals the
canonical basis {ej,...,eq} of the lattice Z¢, i.e. without loss of generality
b; = e; for all i € {1,...,d}. In this case the geometry of the lattice doesn’t
come into picture, because the process can take the direct way over the
relevant saddle. This case can be treated in the same way as the problem for
the function F' in a continuous setting, compare [BEGKO04|. Notice that in
this case Ay (0) = pa () .
Without loss of generality we assume s = 0 and (m, eq) < (n, eq).

The lower bound.

Denote

0; = 10 for 1 <i < dand d,; := lliéJ (5.1.12)
€4/(d—1) N\ €
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F<F(0)

U F>F(0)

Figure 5.1.1: The different neighbourhoods of the saddle for the lower (Us) and
upper (Ws) bound.

We define index sets to designate the points of A, in a neighbourhood of zero:
Rs = xS {65, =6+ 1,...,6;} (5.1.13)
and with a slight abuse of notation
2T5 :={—264, =204+ 1,...,204 — 1,204} . (5.1.14)
The associated neighbourhood of s = 0 is
Us = e (Rs x 2T5) (5.1.15)
We define the boundary toward m respectively n by
OmUs = {(r,—264) |7 € Rs} (5.1.16)
and 0,Us = {(r,204) |7 € Rs}. Us is chosen in that way to secure that
F.(z) < F.(0) — ¢° (5.1.17)
for x € 0,,Us U 0,,Us.
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We define for all r € Ry paths ~, : 275 — Us by
d—1
Vo (t) = eteq+€ > mie;. (5.1.18)
i=1
Let (7, (2T5),7) be the one dimensional graph associated to 7, with edges
between nearest neighbours. Note that while all points of Us are hit by a
path, only the edges parallel to e; are included in these paths. To leave out
some edges will only work in this case, because in general the process will
use all edges inside a suitable defined neighbourhood of the relevant saddle.
We define the function spaces

Huy, ={f:Us = [0,1] | f(2) = hpm (2) if z € 0,Us UO,Us}  (5.1.19)
and

He={f:7%—=100,1] | f(2) =hum(2) if 2 € {(r,—254),(r,204)}} .
(5.1.20)
With the help of Lemma 5.5 and the representation (3.2.10) of the capacity
of a one dimensional chain we obtain

inf @ (h) =& (hpm)

heHn,m
= (I)Ua (hn,m) > hé%f;] (I)Ua (h)
8
Us reRs reRs "

-1
1
= Z (hn,m (7” 25d) - hn,m (7“, _25d>)2 5 Z 1/C§E) (5121)
rERs SEYE

Now we use Corollary 4.11 and the inequality (5.1.17) to obtain a uniform
bounds on the boundary. We obtain for x € 0,,Us

A

hpm () < ce 2 exp (—% (F€ (x,n) — F (x,m)))
= e M = O (e). (5.1.22)

The last equation holds, since 0 = y/ke |[lne| with k& > 3d large enough. For
x € 0,Us we obtain a uniform lower bound, namely

hom (2) = 1= hon ()
= 1-0(). (5.1.23)
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We denote by {\,..., \s_1, — A4} the eigenvalues of the Hessian V?F, (0).
Since 0 is a 1-saddle of F. we can choose \; > 0 for all 1 < ¢ < d and
approximate F, inside Us by

d
1 1
Fe(2) = Fe(0) = ghari + 5 ; Nl + 0 (6%). (5.1.24)
Therefore we conclude

i, 2 )
-1
1 €

>3 5] 140

reRs EISe%

-1
1 — 1
= ( Z exp <—§GZ)\M§>> 3 Z 1/C) %
r€2R;s i=1 s€Y5
x (1+ 0 (6%/e)). (5.1.25)

The last equation uses Lemma 5.4. As we will see in the estimation of the
upper bound this inequality is enough to match the associated upper bound
up to multiplicative errors (1 4+ O (6)).

To evaluate these sums we use the quadratic approximation of F, inside
of Us

Then we use Lemma 5.4 and obtain

€ — € 16 2
Cl)rny = Pa(0) e Oeeza (140 (57 /e)). (5.1.26)

The resulting Gaussian sums can be approximated by integrals (see Propo-
sition A.1 in the Appendix). First we consider the sum over +; and obtain

204—1

Z exp (—%e/\dt2>
t=—26,
20g-1
:/ e 2Nt (1+ O (8°/e))
—204
24/ k|In €| L
_ 2 / e 2" dx (1+ 0 (6°/e))
€Ad Jo
s (1+0(8%/e)). (5.1.27)
6)\d
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The sum over 2R; can be approximated by an (d — 1)-dimensional Gaussian
sum (see Proposition A.1 in the Appendix):

d-1
Z exp (—%e Z )xﬂ"?)
1

reRs =

51 1 2
/ BN drg oy (140 (5))
-5

dqg—1

0d—1

1o Loy p2
= 271 H/ e 2NTidr; (14 O (6))
i=10

d—1 D)
= \/§(1+0(5)) (5.1.28)

=1

with the same transformation as before. Putting the pieces together we
obtain

hel';flrfz‘,m q) (h)

T d/2—1 g J ro X
— (2?) %e O/ (1+0(8%/€)). (5.1.29)

The upper bound.
To prove an upper bound use §; from (5.1.12) and define

2Rs = xIT 1 {—20;, —26; +1,...,20; — 1,25} (5.1.30)
and
Ts ={—0a,---,04} - (5.1.31)
Using these sets we put
W5 =€ (2R5 X T(g) (5132)
and
OmWs :=€(2Rs x {—64}) and 0,W;s := € (2Rs x {da}) - (5.1.33)

The remaining part of the inner boundary of Wy is called the central boundary
8CW5, i.e.
OWs =0~ W; \ (6mW5 U 8nW5) . (5.1.34)
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The neighbourhood Wy is chosen to secure that
F,(z) > F,(0) +6° (5.1.35)

for all z € 0. Ws.
We define D,,, as the connected component of

{z € A | F. (z) < F.(0) + 0°} (5.1.36)

that contains m. Define D,, := D,, \ W and D,, := D¢, \ W;.
Now we choose a function A' to our convenience. We make the choice:

W lp, =0,  &t|p, =1. (5.1.37)

By definition for all z € W; there exist a unique r € 2Rs and t € Ty such

that
z="(t): (Z rie; + ted> . (5.1.38)

Given this, we define on Wj

Wt (3 (1) <Z 1/C" w+1> 21/0“ . (5.1.39)

k=—084 sE'yO

Observe that this does not depend on 7.
We denote ¥~ := 9" D,,, \ W and ©* := 9~ D,, \ W;". Inserting h™ into
the Dirichlet form, we obtain

o (h) = Oy, (K + ) > 9+

TEX™ yeE+

+ > > C —ht(y)?.  (5.1.40)

e~ Wy yed+ Wy

Since we are in the case of discrete time, we have C{) < m (z) A 7 (y).
Therefore

Y cl) <d|s|exp (-% (F. (s) + 52)> (5.1.41)

€D~ yeXt
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and

Y Y o — 1t ()" < |0 exp (—% (F. (8>+52))’

red~ Wy yecd+ Wy

(5.1.42)
because h* = 0 on 9,,Ws and h™ = 1 on 9,Wj.
With the help of Lemma 5.4 the first term can be estimated as
Sa—1 72
_ €)
20 00) = (33 i (Slonens) )
re2Rs t=—0dy4
-2
1 S 10
2 S
IS0
—1
——e d- 1)\17’ 1 € 3
= (Z 2 ) 5Z1/(J§> (1+0(8%/€))
re2Rs SETS
= inf ®(h)(14+0(0)). (5.1.43)

h€Ha,B

Since 6 = y/ke |lne€| with & > 2d, the quantities in (5.1.41) and (5.1.42) are
by a factor €% smaller than the leading term.

Remark 5.8 Observe that, provided we have good a priori bounds, we only
need one property of the conductance matrix C© to get matching upper and
lower bounds (with multiplicative error tending to one), namely the existence
of functions A, and B, such that

C sy = Ac (8) Be(r) (14 0 (8%/¢)) - (5.1.44)

This means that we need approximately a separation of variables around the
relevant saddle.

5.1.1 An associated inverse problem

To prove Theorem 5.7 in the general case, we will now formulate a corre-
sponding inverse problem.
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Definition 5.9 Let I' = (Y, G) be a locally finite graph with positive sym-
metric weights C' : G — R.( on its edges. Let R be some index set and
consider for r € R connected subgraphs 7, = (Y,,G,) of I' with positive
symmetric weights CN’T : G, — R.y. For convenience we put C~'r|g\GT = 0.

The family of {(777«, CT) | r e R} is called a “partition” of (I', (), if

> Co(s)=C,forall s € G. (5.1.45)

reR
Note that the I', need not be disjoint.

There are of course very many ways of partitioning a given weighted graph,
but as we will see in the next Proposition, given the equilibrium potential
ha p there exists particular useful partitions.

Let <77,., é’r) be a partition of (I, C'). We denote
reR
- 1 .
®, (h) =5 > Co(s) (h(s2) = h(s1)), (5.1.46)
seG,

the Dirichlet form on 7,.

Proposition 5.10 Assume (nr, C’,,) is a partition of (I, C') that connects A
and B, 1i.e.

I NAl=|n.NB| =1 (5.1.47)
for allr € R. Then
A, B) > inf @, (h). 1.4
cap (4, )_gheggw () (5.1.48)

If C, satisfies additionally Kirchhoff’s node law at each “node” © € N with
voltage ha p, i.e. if

> Col@,y) (hap (x) = has (y) =0. (5.1.49)
yeENZ
then we obtain )
cap (A, B) =) ydnf & (). (5.1.50)
reR ’
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Proof. Notice that due to condition (5.1.45) of Definition 5.9

cap(A,B) = inf ®, (h). (5.1.51)

heH
A8 reR

This implies the inequality (5.1.48), because we are taking the infimum over
the larger class of functions

Hap={h:{Yi},cp — [0,1] |hla =1, h|p=0}. (5.1.52)

To prove equation 5.1.50, denote by £, : Y, — [0,1] the minimiser of ,.
The infimum and the sum in (5.1.51) can obviously be exchanged if h, =
ha.gly,. The variational problem (5.1.51) is equivalent to the linear problem
(3.1.4) with generator L : G — [0,1] given by L (v, y) := 1=Coy/ > .cr Cre-
Thus we obtain

> en, Coz (h(2) —h(2)) =0 forz e\ (AUB),
h(z)=1 forz €A, (5.1.53)
h(x) =0 forz € B.

But this means, that the capacity of A and B is given by (5.1.50), iff the
conductance matrices C, satisfies the Kirchhoff law for h4 g, i.e.

> Col@,y) (hap(y) —hap(z)) =0for z €Y, \ (AUB).  (5.1.54)

yeN

i

Solution to the inverse flat problem

Let p = (p1,...,pa) € R%, be given. We denote by ¢ € R%, the vector
with components ¢; := 1/,/p; and by @ the associated diagonal matrix with
entries Qi = ¢;.

We consider the electrical network that consists of the lattice Y, :=
x4, (¢;Z) with edges between pairs of nearest neighbours and the constant
conductance matrice C' given by

Ci(z) = C (z,x + qie;) = pi- (5.1.55)
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For this special choice the equilibrium potential hg, : Y, — [0,1] is of the

_ (aa)
lall?

We consider only those a such that v = Q7 'a € Z¢ and

simple form hg, () for any given direction a € R%,,.

vg > 1 and ged (vy, ... ,vq9) = 1. (5.1.56)
Under these assumptions we can construct explicitly a partition of (Y, p).

Definition 5.11 For simplicity we denote for any negative integer ¢ the set
{t,...,0} by {0,...,t}.

(a) Let v = (vy,...,vq) € Z* with properties (5.1.56). Define the element
E C T of size v and spacing q by

E = x{710,¢:,2¢; ..., vigi} % {qa,2qa - . ., vaga} U {0} (5.1.57)

and identify E with the graph with edges between nearest neighbours x,y €
E.
(b) We want to define a family (E,;) for all ¢t € Z. For t € Z we define
the translated set Ey; by
Eyy = E +ta. (5.1.58)

To define the elements E,., we need to be more careful: Let H, be the
hyperplane orthogonal to a, that contains the origin. The elements E,
should as good as possible start from the hyperplane H,. Hence we put for

re 741
d—1

Eno = E()’t* + Z Tiqi€; (5159)
i=1
with ¢* such that the intersection of E,, with H, is non-empty. In the
special case, where z € Z? N H,, there are possibly two elements E; and
Ey 441 hitting that point. In this case we will choose the lower one.
We now define
E.; = E.o+ta. (5.1.60)

(c) We define strings of elements by putting

Y, = JE.. (5.1.61)

teZ

Let 7, be the connected graph with vertexset Y, and edges between nearest
neighbours.
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Figure 5.1.2: Two connected elements.

Remark 5.12 The construction of the family (F, ;) implies that there exist
shifts s,; : Y — Y such that E,; = s,; (E).

Since the element F;, is a translation of £ and the Weigptfunctions C;
are constant on A, it is enough to find a conductance matrix C' that satisfies
the following equations: First the Kirchhoff equation

> C(2,y) (hoa (y) = hoa (¥)) =0 for z € E\{0,a} (5.1.62)
yer
and for all i € {0,...,d} and k € {0,...,v,} the consistency condition:
> Cla,z+ge) =pin (5.1.63)
r:xg=kqq

Observe that these conditions does not determine a unique conductance ma-
trix.
We define the associated current, I, by Ohm’s law, i.e.

I(z,y) = C (z.y) (hoa (y) — hoa (7)) (5.1.64)
Then the two conditions (5.1.62) and (5.1.63) read respectively:

d I(zy) = 0 (5.1.65)

yel
(%

Y I(wr+qe) = e (5.1.66)

r:xg=kqq
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Figure 5.1.3: The picture represents the current flow on three selected elements
in Z3, 6 lines symbolises one unit of the flow.

Proposition 5.13 Let E be an element of size v and spacing q and hg, (x) =

Tﬁlﬁ@ Then a conductance matriz C that satisfies conditions (5.1.62) and

(5.1.63) is given by

C(z,x + qe;) = pipi (x) (5.1.67)

for all z,x 4 qe; € E.
The function ¢ : E x {1,...,d} — [0,1] has the form

1—x4/aq forx=(0,0,...,0,24),1=d,

() = 1/v; forx = (ay,...,a;—1,2;,0,...,0,24),1 < d,
Vi ) wg/aq forx = (ay,...,a4-1,2q),1 =d,
0 else,

(5.1.68)
for all (x,1) € E x {1,...,d} such that x 4+ q;e; € E. Otherwise p; (x) :=

Proof. Insert C into (5.1.62) and (5.1.63). O
Now we define flows for shifted elements.

Definition 5.14 Let (E,;) = (s, (F)) be a family of translated elements
and C': E x{1,...,d} — [0,1] as in Proposition 5.13.
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~ (a) Define crt . B, x {1,...,d} — [0,1] by putting C~'Z.(T’t) (x) =
(b) We define the capacity of an element by

cap (Ec) = it Y Cay) (h(x) —h(y)?, (5.1.69)

hGHo,a
(zy)eb™

where E* is the edgeset of F. Analogously cap (Em, é) is defined with the
help of s,;.
(b) Let n <E, C’) be the average number of strings inside a unit volume

on the hyperplane H, (perpendicular to a).

Proposition 5.15 Assume C; (z) = p;, and C; (x) = pip; (z) as in Proposi-
tion 5.13. Then one element has the capacity

cap (E é) = (5.1.70)
lall
and the average number of strings is
; ol
E, C) = . 5.1.71
" ( vgdet Q ( )

Proof. Using Definition (5.1.64) we obtain

cap (B,C) = > C(@.y) (hoa () = hoa ()"

r,yeE

= > 1(@y) (hoa(y) = hoa (@) (5.1.72)

r,yeE

Notice that I is a flow in the sense of Doyle and Snell. Because of the
conservation of energy principle (see [DS84], section 3.5, page 61) it follows

cap (E é) = Iy (ho (@) — ho (0)) = I,

where [y = ZyeE I(0,y). Due to the geomtry of an element we obtain

cap (E,C) = 1(0,qqeq) = #. (5.1.73)
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Figure 5.1.4: The picture represents merely every fourth string of elements.

Now we calculate the average number of strings n (E , é) All edges are

completely occupied by the elements, since ) . go(r’t) (x) = 1. A single

)

element E uses the fraction ¢; (z) of an edge (x,z + ¢;e;), hence we obtain

ZZ%’ (x)

zeFE i=1
vg d—1 v;—1
= @d (O)+ 2 (a17"'7ai—1)nQi7O)"'707de)+
k=1 i=1 n=0
vg—1 vg—1
+ Z 04 (0,...,0,nqq) + Z ©a (U1, .., V4-1,nqq)
n=1 n=1
d—1 1 vg—1 n vg—1 n
=1 i — 11— — _
i D (5) 2
= 1+(d—1)vd+(vd—1) = duvy (5.1.74)

edges. Notice that a half open cube in A, contains d edges and has volume
det (). Hence the effective volume of an element is vy det (). Since the length
of an element in direction a is ||a|| we obtain

=\l
n <E C) = 3D (5.1.75)
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Remark 5.16 Since n (E, ) is the average number of strings inside a unite
d-cube, we can rearrange the strings by small perturbations to have starting
points inside the hyperplane H, orthogonal to a on a cubic lattice with side
length s such that s{Y = 1/n (E, ¢).

5.1.2 General proof of Theorem 5.7

The case of a unique relevant saddle

Proof. Without loss of generality we assume s* (m,n) = 0.

Let {A1,...,Ai—1, —Aqa} be the eigenvalues of V?F, (0) and {b;},.,, an
orthonormal basis of eigenvectors, such that b; belongs to the unique nega-
tive eigenvalue —\; and (m,by) < 0 < (n,bg). If b, coincides with a lattice
direction, say eg4, the proof is simply is discrete version of the proof of The-
orem 5.1 in [BEGKO04|. But in the general case we have to use the partition
of the last subsection.

Let ¢ € R? the vector with components

1
;1= 5.1.76
! pi (0) ( )

and () be the diagonal matrix with entries Q);; = ¢;. We denote

Ay = AN (XL (¢2)). (5.1.77)

During this proof we associate to a given function f, : A. — R, the trans-
formed function f, : A, — R by defining

foi=feoe@Q™ (5.1.78)
We denote by {5\1, cee ;\d_l, —j\d} the eigenvalues of
B.:=Q'V*F.(0) Q. (5.1.79)

Since all eigenvalues of () are positive, we can choose A > 0 for all i €
{1,...,d}. Let {wy,...,ws} be an orthonormal basis of eigenvectors of B,
such that w, corresponds to the negative eigenvalue —\; and (wg, bg) > 0.
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We will see, that w, points in the direction, in which the equilibrium potential
rises.
Assume first Q 'wy € Q4. Choose a || wy with (a,wg) > 0 such that
v:=Q 'a € Zand ged (vy, . ..,vq) = 1. Without loss of generality vy > 1.
We transform the Dirichlet form by a substitution y = %Qw

h) = . Z Cei () (h(x + ee;) — h(2))?

yEA
= & (h). (5.1.80)

We will use the parameter ¢ to measure the size of the neighbourhood the
relevant saddle point. We choose

d =9 (€) :=+/kel|lng| (5.1.81)

where k£ > 3d constant.

The lower bound

We define the following neighbourhood of the saddle point:

Us = {z €N, | |{(z,w;)| <

5
T Nz, wa)| < 26\/_} (5.1.82)

We denote by 0,,Us the face of the Uy, that lies entirely in the valley V,, (m)
and analogously 0,Us the opposite face. We will use the space of functions

HU(; = {f : Ug — [0, 1] ’ f’BnUguamU(; = En’m} (5183)

We obtain by cutting all edges outside the neighbourhood Us and then with
the quadratic approximation (5.1.85)

D (hym) =P (hym)
> Oy (hnm) > inf Oy (h). (5.1.84)

hGHU5
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Inside Uy we can approximate a,i due to assumption C1, C2 and sF1 by

1 €

Cei(y) = pi (0) exp (—;FE (0) =3 (v Bey>> (1+0(5%/e)). (5.1.85)

Hence we have to investigate

k()= inf o~ 5u,Bey) Z (h (y + qie;) — h (y))z | (5.1.86)

q;

We abbreviate f, (y) := e~ 2{v:Bev),

We use now a partition of (Us,p; (0) f.) with boundary sets 0,,Us and
0,Us in the sense of Definition 5.9. This gives us in any case a lower bound
as we noticed in (5.1.48). To obtain a good bound we choose the partition
of the flat case and take as conductance matrix C; (z) := f. ()& (). Here,
¢ (x) = p; () p; (0) and ¢ is given by 5.13. This gives us a good bound,
because in the neighbourhood of the saddle point the potential f, is nearly
flat.

Let E C Us be the elements of size v. We denote ¢ := n (E,¢) /@Y
and denote

1 4 1 )
0= |-—=| for1<i<dand §;:= | ——— 5.1.87
{e @.J d Uan \@J (5-1.87)

as well as

Rs = xTH {64+ 1,-6; +2,...,6 —2,0; — 1} (5.1.88)
and
25 = {2044+ 1,-204+2,...,204 — 2,20, — 1} . (5.1.89)

We define E,; like in Definition 5.11. The strings (7,, G,) with edges between

nearest neighbours inside Us for 7 in a suitable neighbourhood of 0 are defined
by

nei=J B (5.1.90)

Let 7, := {x € 1, | (z,a) = min} be the starting point and
0. == {x € 0, | (z,a) = max} the endpoint of the rth string. Observe that
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{7, 7}y C Us. Furthermore define the sets ) := {f+») | p € Rs} and 1} :=
{ﬁr(p) lp € R(;}. We denote the Dirichlet form of a single string by 7,

d

=Y fe@) Y @) (h(x + gie) — () (5.1.91)

TEN, =1

with ¢ defined in Proposition 5.13. We define the function space for a single
string,

H, :={h:n —[0,1] | h(x) = hpm (z)if 2 € {N, 0 }}. (5.1.92)

Moreover, put

Pipm := SUD {hom () | x €19} (5.1.93)

and h,, , := inf {hom (z) | z €9}
Proposition 5.10 yields

Since we can calculate the capacity of a one dimensional chain, as in (3.2.10),
we obtain with Lemma 5.5 that

k(e) > Z (E”m (ﬁr(p)) - E”m (777’(0)))2 X

pERs
-1
(S e
te2Ts
—1
> cap(E, &) (Bn,m - ) 3 (Z max f. (y ) (5.1.94)
peis \tear, Vo
By construction of (7,) we have for y € 7, using the definition of ¢;, (5.1.87),
d—1

62 <y: Bey> = Z )‘ <y7 wl) - 62)‘ol <y7 wd>2

< 4 452 = —30% (5.1.95)

Moreover, it holds
s (y,m) =y and s* (y,n) = 0.
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Hence Proposition 4.11 implies for y € 1

b ) = e exp (=2 (Fv) — £ (1) )

ce 23 (1 + O (6) = O (e). (5.1.96)

The last equation holds, since § = \/ke|lne| and k > 3d . For y € 7 we
obtain a uniform lower bound, namely

P () = 1 =l (y) = 1+ O (e). (5.1.97)
Altogether we obtain

(f}n,m - hn,mf —1+0(). (5.1.98)

Now we shift the strings 7, and rename them, such that E’p,o =T (Er(p),t)
begins for all p € R at the point /¢ Zf;ll p;w; in the hyperplane H, orthog-
onal to a. The shifts 7 can be chosen, such that their length is at most

max {K\/E, Ha||} The starting points of elements in the pth string can now
be parametrised by

d—1
2, (t) =ta+¢ Z PiW; (5.1.99)
i=1

for ¢ € 275 and p € Rs. Thus we have for y € E,,),
(4, Bey) — (2 (1), Bez, ()| = O (1)

Hence we obtain

k(e) > cap(FE,¢) Z (Z exp % (2, (1), Bez, (t)>> X

pERs \te2Ts

X (1+0(e)). (5.1.100)

By construction z, lies parallel to a, and thus we can separate the sums in ¢
and r from (5.1.100) and obtain:

k(e) > cap(F,¢) (Z exp <_§ lal? j\dt2>>_ X

te2Ts

X ) exp <—%£2 i&-p,?) (140 (e)). (5.1.101)

pERs
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We approximate the Gaussian sums of (5.1.100) with Gaussian integrals (see
Appendix A). Hence we obtain

Z exp (—% llal? th2> - H}TH\/% (1+0 (Ve)) (5.1.102)

te2Ts

and

d—1 d—1
. 1 2
Y exp (—%gQZAﬁ) = =11 6; (1+0(v4)).  (5.1.103)
i=1 i=1

pERs 7

The product can be evaluated by using, that {w;}, is an orthonormal basis
of eigenvectors of B:

A = det (QT'VAE.(0)Q7Y) /A

= (det Q)" det V*F, (0) /A, (5.1.104)

Inserting into (5.1.101), we obtain with Proposition 5.15:

d/2—1 8
k(e) > (2—7T) Ad X
€ det V2F, (0)

xcap (E,¢)n (E, ¢)|lal| det Q (1 + O (Ve))

2\
_ (?) ey (1O (V). (31105)

Observe that the eigenvalues of B, = Q 'V?F. (0) Q™' coincide with the
eigenvalues of Q2 (V2F. (0)).

The upper bound.

We will directly use the transformed Dirichlet form @ of equation (5.1.80).
We denote, using 6; from (5.1.87),

2Rs = x$7 {285, —20; +1,...,20; — 1,25;} (5.1.106)

and
T5 = {—5d, _6d+17"'75d_175d}' (51107)
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Define now the neighbourhood W5 C A, of the saddle point by

Ws = {z €N | |{z,w;)] <2 (z,wg)| < } (5.1.108)

)
ef eV

and the slightly larger set
Ws={E.s | By N W5 # 0} (5.1.109)
The neighbourhood Wy is chosen to secure that
F.(z) — F.(0) > §* (5.1.110)

for x € OW; \ @ng U 8nW5)
We define D,, as the connected component of

{z €A |F.(x) <F.(0)+5} (5.1.111)

that contains m. Define D,, := D,, \ Ws and D,, := Dfn \ Ws. To prove an
upper bound we just choose a function At to our convenience. We make the
choice

h*|p,, =0, htlp, = 1. (5.1.112)

Up to now we didn’t have to be very careful choosing h*. But in a neigh-
bourhood of the relevant saddle point of order O (§) we have to approximate
the real equilibrium potential %, ,,, as good as possible. Surprisingly it suf-
fices, to take h™ constant on hyperplanes perpendicular to a. We take now
a sum of resistances with value 1/ maxycf;j+1) {7e (Aa)} plus a term for the
remainder.

We denote f. () = exp(—e(z, Bx) /2) for & € W and introduce as
normalisation

da -1

N = . .11
h> (a7 00) (5.1.113)
—=—04q

Denote the orthogonal projection onto the vector a with Pr,, i.e. Pr, =
(a,-) W Denote ho, (z) = (a,z) /|lal|* and h(z) = [ {a,z) / Hasz. For
x € W5 we choose:

ht (x) =




We estimate now differences of h™ between nearest neighbours: Let i €
{1,...,d}, then we obtain for z € W5 and if h (z + gse;) = h (z):

(h* ((z + gies)) — b (z)) N
_ hO,a (33' + ql-el-) — }Nl (y) _ hO,a ($) — iL (y)
fe (Pro (z + €gie;)) fe (Proz)

a;

A ! )(1+O(62)) (5.1.115)

If on the other hand h (z + qlel) h(x) + 1 we obtain:
(R (z + gie;) — ™ (z)) N

1
= min — +
Ae[k(z)k(x)+1) fe (Aa)

)
N hoo (2 4 qie;) — h(z) — 1 o () — h(z)
fe(Pry (z + giei))

(1+0(6°/e)). (5.1.116)

a; 1
lalP fe(Pru)
Comparing (5.1.115) and (5.1.116), we see, that this hold independent of a
possible jump of h.

We denote ¥~ := 9" D,,, \ W and ©* := 9~ D,, \ W;". Inserting h™ into
the Dirichlet form, we obtain

O (h*) = Dy, (h7) + Z Z Cc(z,y) +

zeX— yeXt

+ Y > Celwy) () —hF ()°. (5.1.117)

€0~ Ws yed+Ws

Since we are in the case of discrete time, we have C\ (7,y) < 7. (z) AT, (y).
Therefore

> Cela,y) <d|S|exp (——( )+52)> (5.1.118)

€L~ yext

and

YN Cay) (b (@) - b ()’

€0~ W5 yedt Wy

< |0 W;|exp (—— (F.(0) + 52)) , (5.1.119)

—_

€
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because h™ = 0 on 9, W; and ht =1 on 9, W;s and the inequality (5.1.110).
Since I has compact level sets and § = /ke|ln €|, these term are negligible.

Now we estimate the first summand of (5.1.117). By a quadratic approx-
imation inside Wj we obtain

Oy, (BT) = K () exp (—F. (0) /e) (1 + O (6%/¢)), (5.1.120)
where K (€) is defined by
K (e)
=Y fila Z (0) (B* (x + qies) — T (). (5.1.121)
z€Ws i=1
With (5.1.116) we can estimate
K ( )
—2
< 1+00) IaH N2 x; fe(x (Ae[k % e Qa )}) - (5.1.122)
The crucial point is that the sum over ¢ € {1,...,d} vanishes. We use

Proposition 5.13 and Definition 5.14 to bring the non-disjoint sets F,; into
the picture. They provide for every i € {1,...,d} and z € Wj:

S e = > e (z) =1 (5.1.123)

YEE, :Ya=24 Es w3z

Therefore we can proceed like

> ho) {fe(Aa)})_2

zeWs

2
as
35 3D DRAL) BE B
B e, v Py el

X (Aenftii(l {fe ()\a)})_ (1+0(6°/¢))
= |la|®cap (E,¢) > max f.(x) x

A
Er,t€W5

x( max {f. ()\a)}) (1+0(8°/e)). (5.1.124)

AE[t,t+1)
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The last equation holds, because Definition 5.14(b) and Proposition 5.13
provides

d
1 . ~
Yo @ (@) a? = cap (E,¢). (5.1.125)

4
lall” &5, =

Inserting equation (5.1.124) into (5.1.122) provides with the help small shifts
of element to get the parametrisation (5.1.99):

K (€) /cap (E, ¢)

—2
< > (;ggﬁfg(ﬂi)) (Aéﬁ,?ﬁ)ff(m)) X

— Z exp <_%£225\m?> X
x (Zexp (=3 lalf W)) (1+0 (5%/¢))
<k(e) /cap (E,¢) (1+ 0O (6°/e)) . (5.1.126)

Therefore the upper bound coincides with the lower bound up to these error,
and we are done. Since the expressions for the upper and lower bound of
cap (m,n) agrees in this precision before an explicit evaluation of the sums
in (5.1.126), it should be possible to get the same result for more general
graphs.

Non rational directions.

To prove the case z = Q 1wy ¢ Q9, we first observe that z is an element
of the one-dimensional eigenspace associated to the negative eigenvalue, A4,
of A := Q7 'V2F,(0). Consider an increasing sequence z, € Q? such that
|zn — 2|, < 1 and lim,,_, 2, = z. Choose r € R, such that UsUW; C B, (0),
the ||-||,-ball in A,. Let D,, : RY — R? be the rotation from v to w, such
that D, ,, (z) = x for z € R?\ span (v, w).
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We define g, € C*° (Rd) with the following properties: g, is bijective and

=7 e, e
Consider now the sequence of functions F,, := F. o g,,. Then
Q 'V*F., (0)= D! _AD,, . (5.1.128)
has an eigenvector Dzmzz = z, € Q7 associated to \s. By construction

F,, — F, uniformly.
We denote by 7, the probability measure given by

T (2) = Zln exp (—%Fn (x)) (5.1.129)

67
with normalisation Z = " exp (—2F., (z)). We define a Markov process
£9" by putting

Pen (T,Y) := ge (x,y) min (1, e (y)) ) (5.1.130)

Ten (x)

Apparently 9" is reversible with respect to m,. Moreover, p.,, — p. in
the operator-norm associated to Iy (7). Since a Markov chain is uniquely
determined by its transition matrix and the sequence (L.,) is uniformly
tight, we obtain (see e.g. Theorem 15.5 on p. 127 in Billingsley |Bil68|) that
" — £ in D ([0,00), A).

Therefore the stochastic representation of h4 p of Proposition 3.4 yields
h 5 — ha p pointwise. We estimate

lehs —easl,

= |[Leatihp = Lehas]l,,

< ||L6,n (hz,B - hA,B) HWG + H(Le,n - Le) hA,BH7rE

N Eenll [ = ha)l], + e~ Lol Wrasl, (5.1.131)

Here we used again the operator norm

|| Lh
IL]lo == sup
hel?(me) H

me (5.1.132)

Te

Therefore e} ; — e p in [* () and the capacity of £ is also the limit of the
capacities of the approximating Markov processes &;. Ul
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Remark 5.17 (Rectangular lattices) Consider the case of a rectangular lat-
tice, i.e. A, := AN ( (enZ)). This problem can be reduced to the one
treated before: Let 7 € ]RdXd be the diagonal matrix with entries 7;; := r;
and put f := f o1 for every function f : A, — R. Then the Dirichlet form
can be transformed by a substitution y := 7'z as follows:

Or, (h) = > > Ci(x)(h(z+ere;) — h(x))

xEAer =1

_ ZZC h(y+ee;) —h(y)” (5.1.133)

yEA i=1

We approximate C; in the neighbourhood of a relevant saddle s through
Cily) = pite(y) (140 (9))

piefe&/eewmBT) (1 1 O (6)) (5.1.134)
with B := V?F, (s). Now Theorem 5.7 yields that
(QW)d/2_1 ’)\7»’
cap (m,n) = |— X
€ |det V2F, (s)]
xexp (—F. (s) /e) (1+ O(9)), (5.1.135)

where ), is the unique negative eigenvalue of 72p - (V2F, (s)).

Several relevant saddles

Now we treat the case of finitely many relevant saddle points, i.e.
Se (m, M\ m) ={s;|i € J}, (5.1.136)

where the cardinality |J| does not depend on €. We show that the transition
over each saddle point can be considered separately.

In the following definition we use that we have only quadratic essential
saddle points.

Definition 5.18 Let A and B C A be disjoint and compact. Assume
|S(A, B)| > 2. We call the relevant saddle points in S(A, B) serial if ev-
ery optimal path v € O(A, B) visits all of them. The other extreme are
parallel saddle points: We call a set of relevant saddle points parallel if there
is no optimal path that visits two of them.

84



Corollary 5.19 Let £° be a family of Markov chains that satisfies the as-
sumptions of Theorem 5.7.

(a) Then we obtain for parallel relevant saddle points

9\ 421 A )
cap(m,M\m) = (?) Z TV (54)\6 cEe(mMc\m)
ieJ €\
x(14+0 (ﬁ |In 6\3/2)). (5.1.137)

(b) For serial relevant saddle points we obtain

cap (m, M\ m)

_2m\ Vet V2F, (s,)]
—\ e Z ;\g)

€

-1
1
e—gFe(m,Me\m) %

e

><(1+O<\/E\1ne]3/2>). (5.1.138)
Here, —5\((;) is the unique negative eigenvalue of (p; (s;) 0;0kFe (8:)) k-

Remark 5.20 Observe, that case (b) can only occur, if the potential F, has
local minima, that does not belong to M..

In the general case we have a graph structure between the relevant saddle
points. This can, as the cases of parallel and serial saddles, be treated like
an electrical network, where we want to calculate the effective conductance,
given the conductance of all edges.

Proof. The proof of Theorem 5.7 shows that under our assumptions the
prefactor of the capacity is determined by a neighbourhood of the rele-
vant saddle points of radius § = y/ke|lne| with & > 0 constant. Denote
by A; := Uje; Byeme (i) the union of balls with radius /€|lne| around
Se (m, M \'m)\ s; for i € J.

ad (a). There exists disjoint optimal paths v; € O(m, M.\ m), such that
s; € 7; iff ¢ = j and therefore the a priori bounds are valid and we can choose
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neighbourhoods U; := Uéi) of s;, such that

cap (m,M,\'m) = Z Dy, (hmam) (L+ O (6))
= Y, () (14 0 ()
ice
= 7 (m) Z P (Tamom < Tmua,) (14 O (6(5.1.139)

ieJ

The explicit form follows with Theorem 5.7. We can also apply the method
of the upper bound: then the neighbourhoods in the separatrix can be chosen
separately.

ad (b). Denote n :=|J|. We choose an optimal path v € O(m, M.\ m).
By definition ~ visits all relevant saddle points between m and M, \ m. We
arrange them as (s;) according to their appearance in 7. Now we define
xo = m and let z; be the first minimum ~ visits between s; and s;;; for
1 <i < n—1. Moreover, let x, be the first minimum ~ visits in M, \ m.
Denote by

Fij =Af:Gec— R| f unit low from z; to z;}, (5.1.140)

then it follows with Thompson’s principle (3.2.8):

1 1
= inf 2
cap (m, M\m)  fekon s oo
= 3
T jeFon w (1+0(87/¢))
i=1 :vyeUZ
= Do dnt > o (0 (14 0(8%9))
i=1 x7y€UZ

n

= ZW (1+0(5/e)). (5.1.141)

fi—l,Ii)

The explicit form follows again with Theorem 5.7. U
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5.2 Eyring-Kramers formula

We will use now Proposition 3.21 to compute mean hitting times. Starting
from a minimum m € M., the first quantity we are interested in is the
expected time £° needs to change over to M, \ m.

To get explicit formula we introduce another assumption on F,, namely

F3 The function F, has exponentially tight level sets, i.e. there exists ¢, > 0
independent of ¢ and at most polynomial in a such that

meexp (—%F (x)) < o exp (=2 (5.2.1)

€A Fe(

We need this assumption to estimate integral by the Laplace method, see
Appendix, Proposition B.2.
The main theorem in this section is

Theorem 5.21 (Eyring-Kramers formula) Let M, be the set of local min-
ima of F.. Let m € M. and I C M.\ m such that for alln € M.\ (I Um)
the barriers satisfies

B.(m,n) > Be(n,I) (5.2.2)
or
Bc(n,m) < Be(n, I). (5.2.3)
Then
—d/2 (zﬁ)dﬁ 1 —F(n)/e

Em(TI) = € X

e
cap (m, 1) ne;(m) V/det (V2F (n))
x(1+0 <\/E\1ne]3/2>) (5.2.4)
The sum is meant to reach alln € M.\ I and in particular includes always
n=nm.
Proof. Proposition 3.21 yields in our setting

1
B (Tatm) = cap (m, M.\ m) ngZ\m e () hom avm () - (5.2.5)
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The a priori estimates on the equilibrium potential hp, p.\m, see Corol-
lary 4.11, are qualitatively of the same form as in the continuous case, see
[BEGKO04], Corollary 4.8, p. 414. Moreover, Proposition B.2 of the appendix
reveals that also the Laplace asymptotics are, up to a factor ¢, the same
as in the continuous case. Hence the proof is identical to the one of Theorem
6.2, p. 420 in [BEGKO04]. Observe that the range of the sum in (|[BEGKO04|)
is

n:F.(m,n) < F(nI). (5.2.6)
This is indeed the same as ours, since if n satisfies (5.2.6) then m € V;(n)
and hence also n € Vi(m). O

5.3 The global picture

In this section we summarise the results of [BEGKO01| and apply our more
precise estimates of the capacity. For the results on admissible transitions,
we need the following stronger assumptions:

T1 Given any two minima m,n € .#. the set of relevant saddle points
Se (m,n) contains a unique element s* (m,n).

T2 [, can be represented as F, = Fy, + €F' ., where F . is Lipschitz and
Fy . is twice Lipschitz, i.e. for i € {1,2}

[Fie (v) = Fie (y)| < Cllz =yl (5.3.1)
and moreover
[VeFoe(z) = VeFoe (9l < Cllz —yll, . (5.3.2)
where ||z||,, = maxj<;<g4|z;| is the maximum norm in R?.

Notation 5.22 In case assumption T1 holds and s = s* (m,n), we denote
the valley VA9 (m) also by V; (m).

Assumption S2 yields that all essential saddle points are quadratic. Therefore
V, consists of two components, that we denote by V.* with the understanding,
that

inf F,(z) < inf F,(x) (5.3.3)

zeVsh €V
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holds.

Under assumption of uniqueness of the relevant saddle points the struc-
ture of the landscape F, is encoded in a tree structure, that we define on the
set M, U &.. Define for any essential saddle s € &£ the two “children”

+ [ argmax{F.(z) |z € E.NVE} for ENVE A0,

as - { Me m ‘/;i else. (534)

Note, that the set M. N V= consists of a single point, if & NVE = ). Now
draw a link from any essential saddle to the two points a*. This produces a
connected tree, 7., with underlying set £ U M, having the property, that all
leaves are local minima, while all other points are essential saddle points.

An alternative way to construct this tree is by starting from below: From
each local minimum draw a link to the lowest essential saddles connecting
it to other minima. Then from each saddle point, that was reached before,
draw a line to the lowest saddle point above it, that connects it to further
minima. Continue until all minima are connected. Since we have assumed
that there is always a unique relevant saddle point between two minima, both
procedures give a unique answer. Denote by 7 , the branch of 7, emanating
from s, that contains x and by 7, the union of the two branches emanating
from s.

The tree 7. induces a natural hierarchical distance between two points in
E.UM.,, given by the length of the shortest path on 7, needed to join them.
This distance encodes the all information on the time scales of “exits” from
valleys. What is missing, is how the process descends into a neighbouring
valley after such an exit. It turns out, that all we need to know in addition,
is which minimum the process visits first after crossing a saddle point. In
general, the process has the option to visit various minima first with certain
probabilities. We will here only refer to the case, where F, is such, that there
is always one minimum that is visited first with overwhelming probability.
This situation is discussed in [BG99| and they showed, that under condition
T one can construct a certain deterministic dynamical system, which selects
in every valley, V; () a unique minimum, that is first visited after entering the
valley through the saddle point s. To make this more precisely, we introduce
the event

T. (z,y) == {1, <7 (Vi (2)°NM,) and & =z}, (5.3.5)

where x,y € M, s = s* (x,y) and V, ()" = A\ V; (z). In words vy is the first
minimum outside the valley V; (x), that the Markov process £° is visiting.
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Bovier and Gayrard showed by using large deviation estimates on the
path space (look [BEGKO01]|, Prop 4.3, p. 125)

Proposition 5.23 Let m,n € M, and s = s*(m,n) their unique relevant
saddle. Assume T2 and that the probability for £ when started in m to reach
a d-neighbourhood of the boundary of A in finite time T is exponentially small.
Then there ezists a unique minimum x € Vs (n) and o > 0, such that

—Q

P,, (T. (m,z)) > 1 — e (5.3.6)

This proposition motivates the following

Definition 5.24 A pair of minima (m,n) C M, is called connected, if

1. m is the deepest minimum in the valley V; (m) for s = s* (m,n)

3

2. n is the unique minimum in V; (n), such that P, (T, (m,n)) > 1 —
—K/e
e :

In this case the event T, (z,y), defined by (5.3.5) is called an admissible
transition. Note, that the number of points connected to a special m € M.,
is of course greater or equal to one and can be arbitrary large.

As [BEGKO01| pointed out, the rough estimate of Corollary 4.11 shows
that each transition can be decomposed into a sequence of admissible transi-
tions. The time scale for the transition is determined by the first admissible
transition, because this involves the relevant saddle point between the start-
ing point and the end point.

Another result we take from [BEGKO1|, Prop 5.5, p. 139, is

Proposition 5.25 Let s € & and m € V; the deepest minimum of Vi (m) .
Then for 0 < a,

Ep (T | T < 7 (Vs (m) N M,)) = e (Vs (m)) <1 +0 (e‘fﬁ>) . (5.3.7)
e (m)
This shows, that the expected recurrence time at m without leaving the
valley Vi (m) is up to exponentially small errors equal to the same time
of the restricted Markov chain 56 with state space V = V,(m) C A, and
transition probabilities

pe (2, 9) ifreV,ye NNV
Pe (z,y) = 1 - Zze/\fzﬂv pe(z,2) fy=z€eV (5.3.8)
0 else.
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Let 7. be the invariant measure of ée, then obviously
e (B)=m(BNV) /7 (V). (5.3.9)

Using the ergodic Theorem (see see [HLLO03|, Proposition 3.3.1, p. 44), we

obtain
~ 1 7 (V)

Eme =

o = (5.3.10)

We have seen that £¢ will choose with overwhelming probability the way
over the relevant saddle point s*(m,n) to change over to another minimum
n € M.. There is of course some probability, that it will take a completely
different way. We will compute the mean hitting time 7,, for £ starting in m
and conditioned that (m,n) is a pair of connected minima.

Theorem 5.26 Let m,n € M, and Bs(m) the ball with radius 0 around
m. Assume that (m,n) are connected minima and there is a unique relevant
saddle point s = s*(m,n) between m and n. Assume, there exists ¢ > 0
small, such that for 6 > 0 small enough

F.(x) > F.(m)+ ¢d* for all x € V, (m) \ Bs (d). (5.3.11)

Then Py, (T. (m,n)) converges for € | 0 exponentially fast to one and the
Eyring-Kramers formula is valid, i.e.

E,, (70| Te (m, n))

2 VTR (L, ) (10 () Yoo

Proof. Suppose £€ starts in x € A.. Let I C A, and y ¢ T Uxz. We will
derive another renewal equation by splitting the events that £ returns to x
or goes directly to vy :

E, (1, |7y < 71)
=P, (T1uy < 72) By (1 | 7y < T102)
+P, (7o < Truy) (Bo (7o | 7o < T1uy) + Ba (1 | 7y < 77)) . (5.3.13)
Therefore
E, (70 | 72 < T1uy)

]P)x (TIUy < 7-33)
+E, (7| 7y < True) - (5.3.14)

Ex(Ty‘Ty <T) =

Pm (7'33 < T]Uy) +
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We will use this equation now for z = m, y = n and I = (V, (m)*NM,) \
n. Bovier et al. proved (compare their proof of Theorem 5.1, page 137 in
[BEGKO1]), that in this case equation 5.3.14 can be estimated as

IEm (Tm ’ Tm < TIUn)
IP)m (TIUn < Tm)

B (70| 70 < 71) = (14+0(e)). (5.3.15)

With the help of Proposition 5.25 and the definition of the capacity, we obtain

Ene (7|70 < 1) = V2 (M) (140 (). (5.3.16)

cap (m,IUn

Since we have assumed condition (5.3.11), we can now directly apply the
Laplace method, see Appendix, Proposition B.1, and obtain

—1/2 2 4/2
S RO < (det V2F, (m)) (_) T (140 (1))
yeVs(m) ‘

(5.3.17)
The capacity cap (m,I Un) can be estimate with Theorem 5.7, because
s*(m,IUn) = s*(m,n). Inserting these results into the formula for the
conditioned mean hitting time (5.2.5) yields the Eyring-Kramers formula for
the lattice

Ep (70 | Tt (m, 1))

5 3
_2r 1 |det V2E (3)] . (/e (1 Lo (i)) . (5.3.18)
« Ful@) VI V2F () :

D

5.4 Discrete approximation of SDE

Let A C R? be an open connected set. Let F' € C?(A) with exponentially
tight level sets, i.e.

/ e F@/edy < cpeme. (5.4.1)
zEN:F(x)>
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In the following, we will construct the generator of a Markov process with
continuous time, that provides a discrete version of the stochastic differential

equation

dX, = VF (X;)dt + V2edB;. (5.4.2)

Denote Ay, :== ANhZ? and let I';, = (A, G},) be the graph with edges between

nearest neighbours.

We choose h small enough so that A, is a connected

graph. We define on I['y:

1

vhf (I) = = (f (y) - f(x))ye,/\ﬁcv (5'4'3)

h\/§

div,Z (z) = Y (2 Z (y,z)), (5.4.4)

h\/_ yENL

Apf(z) = —Z ). (5.4.5)

yeN

Note that with this definitions and the scalar products

on ly (Ap,) and

=Y fl@)g() (5.4.6)

TEA

=3 >V (@yZy) (5.4.7)

zEA, yGNx

on Iy (Gy,), the following relations are valid

(Vnf,2) = —{fdiv,2), (5.4.8)
(Vif,Vnf) = —=(f,Auf). (5.4.9)

Now consider the generator of the diffusion process X;

L = ee’div (e7F/V) . (5.4.10)

It’s discrete analogue on Ay, is

Therefore
Linf (z)

2h2

Lh = GGF/Edth (e_F/EVh) . (5411)

#J(w)/e 3" (e P T FOE) (£ (y) — f (x))

yEN

> (4 FEOFEOG (fy) = f(x).  (54.12)

yENZ

€
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This is the generator of a continuous time Markov process (;, with rates

rh(T,y) = 2—;2 (14 eF@=FWIE)  for y € N, (5.4.13)
re (x,0) = =, cn, Te (¥, y) and zero else. Therefore ¢, is stable and conser-

vative. The embedded Markov chain, ", has a transition matrix

( ) Te (f]:, y) 1 -+ e(F(w)—F(y))/e
€ I, = = .
P = @ n)] ~ Sy, (L4 eT@-FEe)

(5.4.14)

&€ is irreducible and has reversible probability measure, v,, given by

Zy@\/’ (1 + e(F(“’)—F(y))/e>

—F(z)/e
Ve (z) = 14y, T e : (5.4.15)

Hence £€ is positive recurrent. Therefore (¢ is nonexplosive.

The invariant probability measure of (j, is
7 () = —exp (—F (x) /e) (5.4.16)

with normalisation factor Z, := ., exp (=F'(z) /e).

To show a convergence result of (j, we look at it as a process on the
Skorohod space D ([0, 00), A).

Theorem 5.27 The Markov processes (p, given by Ly, converges in D ([0,00), A)

for h — 0 to the diffusion X on A with generator £ .
Proof. First we show, that

Lnf(z) = ZLf (x) (5.4.17)
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for every f € C?(A). Consider the following calculation

Sz 3 (T O (£ () — £ ()

YyEN:
1 d
= S e T @+ he) = f (a) -
i=1

—e O (f (2) = f(w = hea) +
+e O (f (24 hes) = f (@) =
—e POV (f (@) = f (2 = he)

d
1
=5 Y e Fethedleg f (x4 he;) — e "W, f (x)
=1

+e F@/q, f (v) — e Fle=hedleg, f (x — he;) + R (h)
— div (e 7@V f(z))  for h ] 0. (5.4.18)

The correction term R is defined by

R (h)

=5 > e @0 f (1) = 0if (x+ (h— &) er)) +

=1
e FET)/ (O, f (x + (h — &) €;) — Oif (x + hey)) +
e FOL (0,1 (1) = Ohf (2 = (h— &0) ) +
e Fehedl (9 f (x — he;) — Oif (x — (h — &) €))

— 0 for h |O. (5.4.19)

Here the mean value theorem yields &;,&; € (0,h), i.e. small real numbers,
going to 0 for h | 0.

We still have to show the tightness of (), ), the laws of (Gi) (o) in
D (]0,00),A). To do this, we introduce its modulus of continuity, we, by

we, (0) == sup |[Gu (s) = Cu (D] (5.4.20)

|s—t|<d

Now we use Theorem 15.5 on p. 127 of Billingsley |Bil68|, that says
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Proposition 5.28 Suppose that for each positive n, there exists an a € R
such that
=8 (Kh (O)| > CL) <mn, Vh < 1. (5.4.21)

Suppose further that, for each positive k and 7, there ezist a § € (0,1), and
an hy € (0,1), such that

Py (we, (0) > k) <, Vh < hy. (5.4.22)

Then (Ph)yeqqy @ tight, and, if P is the weak limit of a subsequence (Py),
then P (C) = 1.

To verify the conditions of Proposition 5.28 first notice, that the first condi-
tion is satisfied if the processes (;, are started in single points xj,, such that
limp o2, = * € A. To show the second condition we assume x < € and
denote by o the time of the first jump of (;,. Hence o is a random variable
with exponential distribution and parameter 7 (z) :== > _\, 7 (2,y), where
x denotes the starting point of (. We denote the transition probability of
Cn by pn, that means

We obtain for a fixed starting point x € Ay, :

P, ( up 161 (1)~ G (5)] > )

s<t<s+

<sup > Py (G (s) = y) Py (01 <)
¥ yeAy,

= sup Z (s, 2,y) (1 — e’“(y)‘s) : (5.4.24)
¥ yehy

Denote by A (z) :=={y € Ap|Fz ~y, s.t. max{F (y),F (z)} < F (z)}. Since
F has exponentially tight level sets (5.4.1) A (z) is a compact set. Moreover

we obtain
pn(s,2,y) < e FW=F@/e for o & A(x), (5.4.25)

since the process has to climb onto the level F (y).

(p is an irreducible time-continuous Markov process. Hence a fixed start-
ing point x and t > 0, py (t,z,y) > 0 for all y € Aj,. Therefore the h
dependence of p;, has the form

pn (t,z,y) = R (t,z,y) (1+0(1)) (5.4.26)
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to allow ZyeAh pn (t,z,y) = 1. This yields up to multiplicative errors (1 + o (1))
in h:

P s o= 6ol = )

s<t<s+
< 0 Z hdre (y) + Z hde_(F(y)—F(x))/ere (y)
yeA(@) yEA()"

=5 S ST At (14 PO FEN/)

yEA(x) 2ENy
FeF @ NN i (e FWIe PR
yEA(x)® zENy
< 5 (2de" @ eht | A ()] + 4depe) | (5.4.27)

where we have used again (5.4.1). O

Now we consider the case h = e.

Corollary 5.29 (of Theorem 5.7 and Theorem 5.21) Assume F € C3(A)
has exponentielly tight level sets and satisfies the conditions S1-83. Let (.
be the continuous time Markov process with statespace A, and generator L.
given by (5.4.11). Let M be the set of local mimima of F. Let I,J C M.
with I NJ =0 and assume s = s* (I,J) is the unique relevant saddle point
between them. Then the capacity of (. is given by

cap (I,.J) = (2_7T>d/2_1 Ad exp (=F(s)/e)

€ V1det V2F (s)] 2pen, €7@/
x (1 +0 <\/E|lne]3/2)> , (5.4.28)
where —\q is the unique negative eigenvalue of V2F (s).

The expected hitting times between local minima are given by Theorem
5.21.

Proof. Let £&° be the embedded Markov chain of (., whose transition proba-
bility is given by (5.4.14). We compare it with the Metropolis Markov chain
of 7, given in (5.4.16). The Metropolis algorithm has a transition matrix
pM on the A, with

1
P! () = ge MO for y € N, (5.4.29)
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and pM (z,2) =1 — Zye/\fz pM (x,9) > 0. The connection to the process .
is given by
pe (2, 9) = ge (z,9) pY (z,9) (5.4.30)

where ¢, is the symmetric function defined by

F(x)—F ¢

ge (z,y) = 2delF@-FOIT/e 14 oF@-F)/

o ZyEN. (1 4 eF@)=F)/e)
2 (1 + elFO)-F @I/

B Zye/\/ (1 + e(F@)=F)/e)’ (5.4.31)

The function g; defined by g¢; (z) := g. (z,x + €¢;) is on K CC A bounded
from below for € small enough by
1 4 eliF ()]

min ) 5.4.32
zeK 1 4+ 2 max?zl (@|83F(1’)‘) ( )

Hence, condition C1 is satisfied. Moreover, condition C2 is satisfied, since
g; is Lipschitz continuous in a neighbourhood of a critical point s € A.. We
obtain

14 e\F(s—i—eei)—F(s)\/e

Gi (3) = QdeeN (1 + e(F(s)fF(z))/e)
= 1+0/(e), (5.4.33)
since .
F(s+e€e;)=F(s)+ 56201-2F (s). (5.4.34)

Similarly the reversible probability measure v, of £ given by

ZyEN (1 + e(F(r)—F(y))/E)
Ve (x) = 4d ZzeAh e—F(z)/¢

e Fl@)/e (5.4.35)
satisfies

e F(s)/e
D en, € R (

Applying Theorem 5.7 yields formula (5.4.28) for the capacity cap (m,n).
Apparently the conditions of Theorem 5.21 are also satisfied. 0

ve(s) = 1+ 0 (e)). (5.4.36)
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Part 111

Metastability in the Hopfield
model
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6 The Hopfield model

6.1 The Hopfield Hamiltonian

Let N be a natural number and consider the vertexset

A={1,...,N}. (6.1.1)
Virtually all objects we introduce will depend on N, so we will hide this
dependence in some cases. We call Sy := {—1,1}" the set of spin config-
urations. Let {&',... &M} be fixed spin configurations. We consider the

Hopfield Hamiltonian Hy : Sy — R<( given by

1 M

—ox 2 (&, a)°. (6.1.2)

HN (O’) =

Observe that several sites ¢ € A are subject to the same force

OHn
(90'1‘

1 M
= -5 2 &€ 0). (6.1.3)
p=1

Therefore we can change to a reduced representation of the Hopfield model,
in which the independent degrees of freedom are d := 2 mean field variables.
This transformation was first used by Grensing and Kiihn in [GKS86].

Let {b1,...,bs} be a fixed enumeration of all vectors in {—1,1}". Any
choice of M patterns can then be regarded as a map

Erim &= (6.6,....8) (6.1.4)

that associates to each site ¢ € A one of the vectors b,. Hence the map &
determines a partition of A into sets Ay given by

Ap={ieAN|&=0b}. (6.1.5)

We restrict now the choices of patterns such that each Ay is non empty.
Denote the number of sites in A, by
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therefore ZZ=1 ¢, = N. Note that of course ¢}, depends on N and ¢ although
this is not indicated.
Denote by Ly = x9_, <%Z> the rectangular lattice with spacings 2//j.

We define the set of mean field configurations to be
Xy = [-1,11"Nn Ly (6.1.7)

and the map Xy : Sy — Xy by setting
1
Xng (o) = A Z ;. (6.1.8)

X determines a partition of the spin configuration space Sy into ¢ depen-
dent subsets Sy (7) := X' (7), indexed by x € Xy. We say that Xy lumps
together the sites in each Aj. Notice, that Xy maps the space Sy of asymp-
totically infinite dimension to a subset of [—1, 1]d and therefore mean field
configurations are much better to handle. Using the partition {A;} of A, we
obtain

(€0) = > > o

k=1 i€\

d
= ) Vil Xy (o). (6.1.9)
k=1

Let L denote the diagonal matrix with entries Ly, := ¢;. We denote by P
the orthogonal projection of R? onto the subspace spanned by the vectors

{b!, ... 0™}, Le.

M
1
Py, = ga;b',j. (6.1.10)
pn=1
Then we may write
1M
2
Hy (o) = —ﬁ;@“?LXN(U))
_ L pLxy (o) (6.1.11)
= ON N \O . .



Remark 6.1 We denote in this whole chapter the euclidean norm in any R"
by [-].

For any 3 € R we define the Gibbs measure m = 7y g on the finite set A
by setting:

1
7 (o) = T

Here, the partition function Zyg =Y, .se "V is a normalising factor.

e~ PHN(), (6.1.12)

6.2 Dynamics

To model the dynamics, we construct a reversible Markov chain

ONp = {O’N’g (t)}teNO (621)

on Sy. The kind of stochastic dynamics we use is called Glauber dynamics,
because in each time step only a single spin flip occurs. We denote by o' the
configuration with spins

N | o;  forj#i,
(o), = { —; for j=i. (6:22)

In order to use the lumping procedure induced by Xy defined in (6.1.8),
we choose transition probabilities wy = wy g of the form

fen (X (o), Xy (r) min (1,25 [l = o, =2,
wn (0.7) =9 1= 5w (0,07), r=o,
0, else,

(6.2.3)
where cy : Xy X Xy — Ry is a symmetric function. Therefore og y is
reversible.

We define ey (z) := ey (x, T+ %ek> for all 1 < k < d and assume

D there exists ¢ > 0, independent of N, such that
eng () > ¢ (6.2.4)

for all z € Ay and 1 < k < d. Moreover, we assume cy , is Lipschitz
continuous, more precisely there exists L > 0, independent of N, such
that

leng () —eng (y)| < L)z —y| forall z,y € Xy. (6.2.5)
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To lift o g onto the space of mean field configurations, we define a linear
transformation, Ay, which maps functions on Sy to functions on Xy by

(Axf) (@)= > f(o (6.2.6)

O'ESN )

Proposition 6.2 The chain (ns = {(vp ()}, on the set Xy of mean
field configurations defined by (np(t) == Xn (ong (t)) is again a Markov
chain and has transition matriz, py = pn g, given by

PN (2, y)
o (wy) (1 —z) A (1+ ) 25, y:x+zek,

=) ahen (@) (A+e) AL —w) 55) . v=12- e (6.27)
1- Zye/\fm pn (2,9), Y=z,
0 else.

(v 18 reversible with respect to the new Gibbs measure o = pnp that is
determined by the Hamiltonian

d 1
Hus (@) = =5 | PLal* - G1nlSy (@) (6.2.8)

Remark 6.3 Observe that py (x,y) > 0 for all nearest neighbours x,y. To
show this we assume without loss of generality that y = x + lek Therefore

=y —7 <1—¢ and hence (1 —xp) > & - > 0. Analogously, L+ye > 7
holds ’rrue

Proof. The Gibbs measure on Xy is defined by

0(z) = (Aym) (). (6.2.9)

Since 7 depends not on all information of o but only on Xy (o) as we showed
n (6.1.11), we can write with a slight abuse of notation

o(x) =|Sy (x)| 7 (x). (6.2.10)
o is the Gibbs distribution for the mean field Hamiltonian Hy s, given by

d 1
Hng () = =5 |PLx|* — Bln ISw (2)] . (6.2.11)
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The matrix py is defined by the equation py (Anf) = Ax (wy f). Inserting
x € Xy and putting f = 1SN(y) provides the form

Z > wy (o) (6.2.12)

O'ESN(J,’) T€SN(y)

py (7,y) = |3N

The Markov property holds, iff the probability to go from Sy (z) to Sy (y)
does not depend on the starting point, i.e.

Z wy (0,7) = Z wy (o', 7) (6.2.13)

TESN(Y) T€SN (y)

for all 0,0" € Sy (z). To prove this, we show that the left hand side does
not depend on . We denote the canonical basis of R? by {ej,...,e;} and
assume y = x + %ek. If the mean field configuration should increase in Ay,
then the flipped spin has to be a minus-spin. Hence

Z wy (o,7)

’LEAk
C ( |Sw ()] Q(y))
= l—zi)en(y) | LN 77— . 6.2.14
“on e I NS e ) Y
We used again that the Gibbs measure 7 (o) depends only on X (o), i.e
(o) = ‘Sg((%((a)))l and the number of minus spins in Ay, is 3¢, (1 — z;). For

y=1x— %ek we can derive analogously

Z wy (0, 7T)

TESN (z—%ek>

"1+ a) e (z,y) (1 A %) : (6.2.15)

Since these expressions does not depend on which ¢ in Sy () we have chosen,
condition (6.2.13) is satisfied and we obtain

T 2N

o (z,y) = Z wy (o,7) for any o € Sy (). (6.2.16)
TeS(y)
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To simplify expression (6.2.14) we use

}SN ZNfgek) ’ - (% (Cx —lkaﬁk)) / (% (0r + ikkfk + 2))

2
fk—l’kgk N 1—:L’k .

(6.2.17)

Plugging this into equations (6.2.14) and (6.2.15) we obtain the form given
in Proposition 6.2.

The reversibility of py with respect to p follows directly from equation
(6.2.12):

o@px(@y) = 7@ 3 Y wy(o7)

c€SN(z) TESN (y)

= Z Z 7 (o) wy (0,7)

ceSN(x) TESN (y)

= Z Z 7 (T)wy (T,0)

€SN (z) TESN (y)
= o(y)pn (y, ). (6.2.18)

We have used here again 7 (x) to denote 7 (o) for any o € Sy (z). O

Example 6.4 (a) As a particular example we consider the Metropolis sam-
ple for the Gibbs distribution 7

(1 A :((C:))) : T=0",
(6.2.19)

1
N

N i
1-> . wn(o,0"), T=o0,
0

else.

wy (o,7) =

In this case, the transition matrix py of the Markov chain (x g on the mean
field configurations has of course the form

A ((—z) A (L +y) 88 ), y=z+ Ze,

2N o(x)
4 ) _ 2
o (z,y) = g (L4 ap) A (1 — i) % » Y=T ek (6.2.20)
1—Zy€szN (Iay)a y=1x,
0 else.
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(b) Another interesting dynamics use the “magnetic field” h : Sy — RY
defined by

Z Jioj =~ Z g o) el — %az (6.2.21)

Like Biroli and Monasson, see [BM98|, we define a transition matrix, vy, on
the spin space Sy by

av (1 - - o tanh (hi (0))), T=0,
oy (0,7) =3 1=V oy (0,07, T=o0, . (6.2.22)
0 else.

To prove that vy is reversible with respect to 7 of (6.1.12), we observe
hi (¢*) = h; (o) (6.2.23)

and

Hy () = g5 2 (€0’

= Hy (o) +2h;(0)0;. (6.2.24)

by the definition in (6.2.21). We use 1 + tanh (z) = ez%f:,m and abbreviate
a; = fBh; (o) 0;. Then we obtain

TN,8 (O') UN (0'7 0’2) = NZNﬁ eXp( 6HN< )) m. (6225)
and
TN, (0‘1) UN (O‘Z’ 0‘) = NZNﬁ exp (_ﬁHN (0') — 2&1) m. (6226)
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Hence we have proved equality.

Analogously to proof of Proposition 6.2 we construct a Markov chain (y g
on the space of mean field configurations Xy, that is reversible with respect
to 0. We only have to check condition (6.2.13) for vy. Assume y = x + éek,
then for o € Sy ()

Z vy (0, 7)

TESN ()
i
= E UN (U,U ) 0o; -1
1EAE

= -m) (1 +tanh 55 ((PLx)k T %)) . (6227)

We have used the definition of 4 in (6.2.21). The last expression is indeed in-
dependent of o € Sy (). This works analogously for y = 2 — 2e;,. Therefore

L,
the transition matrix, gy, of (y 3 is given by

2
gnN (ma T+ _ek>
Cp

- 1w (1 +tanh 58 ((PL:c)k 4 %)) (6.2.28)

2
oo 2)
14 d M

and the usual conditions ¢y (z,2) =1 — Zyw qn (z,y) and gy (z,y) = 0 if
x and y are not equal or nearest neighbours.

and

6.3 Random patterns

Let (Q2,F,P) be a probability space. We choose {{/'}, < sy as a family of
mutually independent random variables that attain the values 1 and —1 with
equal probability % We continue to use the same letters for the objects we
have defined. athough the most of them are of course now random variables.

108



For example, ({y),.;, is a random vector with a multinomial distribution

with parameters N and é. Its components are correlated random variables

with mean value % and covariance

N

In order to discuss the N dependence of Hy, let us now change to normalised
variables by writing ¢ in the form

b = % (1 + \/LNAO : (6.3.2)

where )\, are centered random variables and have covariance
Cov ()\k, >\]) = d(SJk — 1. (633)

The range of Ay is the set ﬁ {—-N,—N +d,...,(d—=1) N} C R. Certainly
A depends on N, although this is not indicated.
Define the Cramér entropy function 7 : [-1,1] — R by

((+2)m(l+2)+(1—2)In(l—2)), e (=1,1),
I(x)=1q ¢
In2, ze{-1,1}.
(6.3.4)
and denote A := diag (\x), the diagonal d x d - matrix with entries Ay, = M.

Definition 6.5 In this definition we stress the dependence of A on N and €.
To work on a common probability space we define

AnE] = An [, - €] (6.3.5)

N
for all ¢ € ({—1, 1}M) . This can, of course, be done analogously for all

quantities that depend on N and £.
For each N we define

By = {f « ({—1,1}M)N | [An[E]l < Nm}. (6.3.6)

Moreover, denote

B = hjvnilo%f:]v’ (6.3.7)

i.e. Z is the space of all £ = (ng)lgugM,z’eN such that there exists Ny[¢] and

for all N > Ny[¢]
|IAn[E]| < 24/dlog N. (6.3.8)
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Remark 6.6 Observe that for £ € = and N > Ny[¢] indeed all subsets Ag[¢]
are non empty.

Part (a) of the next proposition resembles Lemma 2.2 of [Gen96|, while part
(b) is due to [KP89| (see equation (2.6) on p. 909).

Proposition 6.7 (a) Z is a set of full measure, i.e. P(Z) = 1.
(b) For £ € = and N > Ny[€], the Hamiltonian Hy g can be written as

H@N (l’) = Nfﬁ)\ (ZL‘) — %1112 + O (ln N) s (639)

where fg 1 [—1, 1]d — R is the function

for(z) = ﬁii <1+—/\k> I (x3) — 21d‘P (]H\/LNA%

Proof. ad (a). ‘/NA is the partial sum of the N centered i.i.d. ran-
dom variables (1 (f, = by) — )ke{l )
the statement follows from the Law of Iterated Logarithm for partial sums
of R*-valued random variables, whose proof can be found more generally for
Banach spaces in [LT91|, Theorem 8.2 on p. 197.

ad (b). With the help of Stirling’s formula

2. (6.3.10)

with values in [—1,1]%. Therefore

log (n!) = nlogn —n +log2mn+ O (1/12n) (6.3.11)

we can approximate for a > 0 and —1 < b < 1:
a _ 1 2
(%a(1+b)> = aln2—a](b)—§ln<2 (1—b)>

+O (a(1-0%))"". (6.3.12)

Therefore

In|Sy ()] = i( lek(fk+ zr) )

P
d
= Nhn2- %; (1 + \/LNA’“> I () +
+O(nN). (6.3.13)



The last estimation holds, since for £ € = and N > Ny[{] we obtain

N 1
Inl,—In—| = |In{14+—=AX
ni-mg] = (e gpn)
< i f1-oYdN) (6.3.14)
VN
This last expression converges to zero for N — oo. U

Remark 6.8 Note that the function fz, depends only over terms \;—’“N on

A and N. In particular, f3 := fz0 depends neither on & nor N (except of
course if M would depend on N).

Proposition 6.9 For { € = and N > Ny[¢], the sequence of functions fz
converges for N — oo uniformly to the deterministic function fg, i.e.

1+8 |/ InN

Proof. This is exactly the meaning of Proposition 2.3 in |[KP89|, p. 912
with )\KP = ﬁ)\, 5KP = 2\/d1nN/\/N, UN,6 = EN and Nkp ‘= 0. To be
clear we indexed the quantities Koch and Piasko use with a K P. Il

We introduce the matrix Ay that will be crucial to control the random devi-
ation of the minima and 1-saddles of f3 ) compared to the deterministic ones

Of fg.

Definition 6.10 (a) Denote by Ay the M (M — 1) /2 dimensional vector
space of symmetric M x M matrices with vanishing diagonal.

(b) Define Ay € Ay by setting
1
d

/'Lil/ Pp—
ALY =

(b, ABY) (6.3.16)

for all p,v e {1,..., M}.

We prove some properties of Ay in the next
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Proposition 6.11 (a) {AY”, u < v} are uncorrelated random variables with
expectation zero and variance one on (2, F,P). Alternatively Ay can be
written for u # v in the form

pv
AN =

1
— (&M, EY) . 6.3.17
) (6:317)
(b) For all £ € = and N > Ny[¢], we obtain for all x € RM

|Anz| < 24/pln N |z|. (6.3.18)

(¢) There exists (V®)i< ca<pmen i-i-d- one dimensional standard normal
distributed random variables on a common probability space with £ such that

o o log N
|A’](; — g]’f,’ |=0 ( i ) (6.3.19)

almost surely, where

i (6.3.20)

ﬂ\

for p < a and gy € ).

Remark 6.12 The matrices (gx)yoy can be understood as a random walk
in A); with time parameter N € N that starts in zero and has i.i.d. Gaussian
increments. For any N the M (M — 1) /2 independent components of gy are
one dimensional standard Gaussians.

Proof. ad (a). We have A" = tr (A) = 0. For « # p and @ # i we obtain
with (6.3.3)

E[AS"] = Zbab"E ] = (6.3.21)
and
E[AVAY] = & Zbab“]E [\ ] Db

= <b°w By — — (b, 0y (b7, b
= 5{a,ﬂ},{a,u}- (6.3.22)
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In other words the {A%", o < pu} are uncorrelated random variables with
expectation zero and variance one.
To prove the alternative representation for 1 # v, notice that

gy
f%
Z ghe
EAg

b, =
k=1

Q HM&

é (b ABY (6.3.23)

Sl ﬂ\

because of the orthogonality of b* and b”.

ad (b) This is Corollary 2.4 in [Gen96], p. 250, except that we have
relaxed iterated logarithm to a logarithm.

ad (c) This property is adopted from Kiilske ([Kiil97], p. 1286). It follows
from a strong invariance principle for partial sum processes for R*-valued in-
dependent random variables, whose proof can be found in [Rio93|, Cor. 4 on
p. 1712. O
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7 Properties of the effective energy

In the following unlabelled sums with Latin index have range {1,...,d}
and Greek index means range {1,...,M}. We will always assume § > 1,
which means we are in the low temperature regime. Denote by m* = m* ()
the unique positive solution of the transcendental equation

m = tanh (Gm) . (7.0.1)

We use now that fs, is a C*°-function from (—1,1)% to R. Since EA = 0 and
A fulfills a law of large numbers for N — oo, we first discuss the deterministic
function fz. Some of the proofs of the following statements are postponed
to section 9.

7.1 Ciritical points of fj

Using I’ (y) = artanh (y) we obtain

d 1 1
d—ykfﬂ (y) = I (yr) — 4 (Py), - (7.1.1)
The zeros of this functions are the solutions of the mean field equation
tanh [5 (Py),] = . (7.1.2)

In other words we are searching for fixed points of the mapping
y — Tanh (3Py), y e [-1,1]" (7.1.3)

where Tanh (y) := (tanhyy, tanh ys, ..., tanhy,).

An important result in Koch and Piasko [KP89| describes the so-called
“symmetric solutions of order n” of this equation for n > 0 (the case n = 0
corresponds to the trivial solution y = 0).

A symmetric solution of order n can be obtained by making the Ansatz
Py = a,v™ and

v =3 b, o € {=1,0,1}, |c]> =n. (7.1.4)
This Ansatz leads to the following equation for a,, :
a, =2 Z ( m ) - tanh [(n — 2m) Ba,] . (7.1.5)
0<m<n/2
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For 5 < 1, it is easy to see that equation (7.1.2) admits only the trivial
solution, and that fz takes its minimum value for y = 0. This minimum
turns into a local maximum as [ is increased past its critical value § = 1,
and the remaining 3" — 1 symmetric solutions bifurcate away from the origin.

Definition 7.1 Let f € C? (Rd) be given. We call a critical point of f
quadratic iff det V2f # 0. Otherwise it is called degenerate. A quadratic
critical point of f, say x, is a k-saddle, iff V2f (z) has exactly k negative
eigenvalues. We say, the function f is at = in k directions unstable and in
d — k directions stable. The d x d matrix V2 f (z) is said to have signature k.

Theorem 7.2 (Koch, Piasko) (a) Let f > 1 and n € N be given, then
equation (7.1.5) has a unique positive solution a, = a, ((). Furthermore, if
v satisfies (7.1.4) and y™ € R? is defined by

y,(fn) := tanh [ﬁanv(”)} , 1<k<d, (7.1.6)

then the function fz has a critical point at y™.
(b) Let 1 < B < 14(9d + 500M8)_1 and y € Re. If f5 has a critical point
at y, then y is a symmetric solution of some order n < p. In particular,
if y is a local minimum of fa, then y is a symmetric solution of order 1,
and if y is a 1-saddle of fg, then y is a symmetric solution of order 2.

Proof. ad (a). This is Theorem 1.3, p. 907 in [KP89|.
ad (b). The first part is Theorem 1.4 (i), p. 908 in [KP89| and we only
have to show the second. Define the map

QOp:[-L1 - P ([—1, 1]d> (7.1.7)

by
Qg () := PTanh (3Pz), ze[-1,1)%. (7.1.8)

Denote by P, and P the orthogonal projections on R? onto the subspaces
span {v,, } and span {b" | (v,,b") = 0}, respectively and let P, :== P— P, — P%.
It has been shown in [KP89|, that the linearisation of (25 at the point 2™ :=
a, () vy, has the following spectral representation

DQg (2™) = (s, + (n = 1) 1) P+ (80 — 10) P2+ 5, . (7.1.9)
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Here, s,, and r, are given by the equations
1 n
o= BB ;tanhz (gz,g )) (7.1.10)
1 n
ra = —fcuc, ) tanh® (52,2 ’) bivy, (7.1.11)
k

where ;1 # v are arbitrary numbers between one and M such that c,c, # 0.
Since s, + (n —1)r, < 1, DQps can have an eigenvalue greater one only if
Sp — Tn > 1.
As Koch and Piasko|KP89| pointed out (compare formula (3.5) on p.
917), we obtain
1 _
V2 (Tanh (52)) = 25 (1= GPTanl (327)) (Tankt’ (5:) - '
(7.1.12)
where Tanh' (ﬁz(")) - denotes the diagonal matrix with entries given by the
vector. Since it is a positive definite matrix the signature of the matrix

V2 f5 (Tanh (82™)) (7.1.13)

coincides with the signature of (]l — BPTanh’ (ﬁz(”))) .

If s, — r, < 1, we know that all eigenvalues of V2gs are positive and z
is a minimum and for s,, — r, > 1, we obtain at least dim (Png) negative
eigenvalues. Therefore only the points y® can be 1-saddles.

For n = 2, we obtain s, = /6(1 — %m*2) and ry = —%m*z. Hence,
s9 — 19 = [3 > 1. Let 35 denote the unique solution of the equation

2
S y—yy

Then the eigenvalue s,, gets bigger than 1 at ;. Therefore y® is a 1-saddle
of fz only in the temperature interval (1, J;). O

(7.1.14)

Corollary 7.3 Let 1 < 3 < 1+ (9d + 500M8)"". We define a vertez-set
Vi={-M,...,M}\ {0} (7.1.15)
and an edgeset

E={{prveVxV|iu¢{v,—v}}. (7.1.16)
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We denote My, := £m* (8)b* and S, 4, := sm* (0" £ V). Then
My ={m,|peV} (7.1.17)
is the set of local minima of fg and
Sy = {8 | {u,v} € E} (7.1.18)
is the set of 1-saddles of f3.

In the following we will use another result of Koch and Piasko [KP89], p.
919, namely

Proposition 7.4 Let I ={1,2,...,p} and for every subset J C I define
ol =Tl 0 1<k <d, (7.1.19)

where the value of an empty product is defined to be 1. Then the set {b‘] :J C I}
is an orthogonal basis for RY.

We introduce some abbreviations: denote

1
P — 7.1.20
1
Yo = 3 (7.1.21)
1
YBo= g (% +y2 =141+ (1 — 72)2) : (7.1.22)
1
Y=g (71 Tr—1l—y/1+(n- 72)2) : (7.1.23)
For J C I ={1,..., M} define u’/ € R? by
u’ =07 (1 + ") (7.1.24)
and
a’ = b’ (1 - ') (7.1.25)
and the mixtures ] ]
v = u® + u” (7.1.26)
=B Y2 =
and . )
(R u® + . (7.1.27)

Now we can formulate

117



Proposition 7.5 (a) The points m,, are minima for all 3 > 1 and the Hes-
sian dV?fg(m,) has eigenvectors b* with eigenvalue v, — 1 for 1 < o < M
and eigenvectors b’ with eigenvalue v, where J C {1,..., M} such that
|J] # 1.

(b) The points s, are 1-saddles for 1 < 3 < 35, where 35 is the unique
solution of the equation 3 = # The corresponding eigenvalues of the

B)?"
Hessian dV*f5 (S,,) are

eigenvalue ‘ multiplicity ‘ eigenvector ‘
" sd—M+1 u’ for [J| # 1
Yo sd—M+1|a’ for [J],[J\{p, v} #1
Vs M -2 v for a ¢ {p, v}
Va M -2 o for o ¢ {p, v}
v —1 1 b* + b”
Yo — 1 1 b — b¥

Proof. We use the representation (7.1.12) of V?f3 at a symmetric solution.
For the symmetric solution of order 1, we have simply

Tanh' (8zY) - = (1 —m*) 1. (7.1.28)

Therefore {bJ}JC{1 ) is a basis of eigenvectors for (PTanh’ (ﬁz(l)) -) with
eigenvalues \; = 1 —m*? if |J| = 1 and \; = 0 if | J| # 1. This leads to part

(a).
ad (b). We consider without restriction of generality 2 = Im* (b! 4 b%).
The matrix (Tanh’ (8z(?) -) has the representation

(Tenly (82) ) (1 - %m*z) 1 Lo (602 (7.1.20)

Hence, we have a connection between pairs of vectors (u,v) like (1,5'?) and
(b'3,b?%) that are related by v = ub{’#, as well as u = vb{1?}.

We define

m*2

@ = ppth P —— 7.1.30

a + = ( )

The representation (7.1.29) yields a basis of eigenvectors of (PTanh’ (32(?) ),
namely (b' — b?) with eigenvalue 1, (b' + b*) with eigenvalue (1 —m*?), as
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well as (M — 2) eigenvectors b with eigenvalue (1 —1m*?) and a® with

eigenvalue 0, for all a« € {3,...,M}. Moreover, there are (d —2M + 2)
eigenvectors of the form o/ where |J|,|J\ {1,2}] # 1. All of these have

eigenvalue 0.

Due to equation (7.1.29) the matrix (Tanh'(8z(?)-) has for this basis
of eigenvectors a block diagonal representation, namely two single valued
entries, 1 and (1 —m*?), associated to b' — b* and b* + b*. Then, for a €
{3,..., M}, associated to (b, a®) there are blocks of the form

2—2m*2+2m*4 _Lx2

2—m* 2

( 2m*28_m*2> 2(1— m*2) ) 5 (7131)
- (2 m*2)2 2—m*2

1_lm*2 _lm*Q
( 12 1 ) (7.1.32)

which are associated to pairs (b7, b7b{12}), where |J|,|J \ {1,2}| # 1. Diago-
nalising the inverted blocks multiplied from the left with the associated 2 x 2
blocks of the diagonal matrix % (1 — BPTanh’ (32)) leads to the statement
of the proposition. O

7.2 Precise critical points and barrier

Theorem 7.6 Denote v, = B *2) ap = 7’1”—_1 and ay = 21 5(m*ﬁm*2)

Then for all§ € = and N > Ny[], the function fs\ has 2M deepest minima,
namely

In N
My, = +m* <b“ + T ZA“%‘“) +0 ( r}V ) . (7.2.1)
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For1 < 3 < 14(9d + 500]\48)71 it has exactly ((2M) — M) 1-saddles, namely
Suty = gud:y (1 + 2@10/2\/_14#”) (722)

g ( uiy) 3 (AL £ A B+

In N
Lo (T>

forw # v e {l,....M} and s_,+, == —S,+,. Here, S,1, denotes the
diagonal matriz with entries given by the vector s, 4, .

The proof of this theorem will be given in section 9. Very similar results as
in Theorem 7.6 are already known, compare for the precise location of the
minimising order parameters e.g. [Gen96|, Theorem. 1.1, p. 246.

In the next proposition we give an explicit estimate of the random heights
of these minima and 1-saddles. We define the following constants:

ko = (Qﬁl Lemt %m* (7 + 2)) (7.2.3)
ko= a (m 71—%1 iZ) —%1( oF (7.2.4)
ky = (1—m?)ay Gm* (11 +2) - %1 Lt m*) . (7.2.5)
ks = maia (im* (m+2)+ % In 1 i_ Z*) ) (7.2.6)

Here, We have used the constants 7;, aq, as as in Theorem 7.6. Observe that
ko € ( T 4) and k; € (0,1) and ko, k3 have a singularity at (s, which is the
unique solution of § = 2

2-m* ()%
We denote the free energy of the Curie-Weiss model by
1 1
few (B) == §m*2 - BI (m"). (7.2.7)

Proposition 7.7 For all £ € = and N > Ny[], the explicit representation
of fs.n at the minima and the saddle points is given by

fﬁ,)x (imu)

— fow (B)+ T

v (A%)"+0 (13]_]\\;) (7.2.8)
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and

Joa (SMV)
= S fow (8) — S AR
9 cw \/N N

k k InNY\*
—ﬁ (A?‘V“+A?V”)2—N3(A“N”)2+O<n—m) . (7.2.9)

To obtain fgx (s,,—.) we have to substitute A} by —AY foralla€1,.... M
in equation (7.2.9).

Remark 7.8 Let gy be a random walk in .7, the space of symmetric M x M
matrices with vanishing diagonal as introduced in Proposition 6.11(b). Since
we can approximate Ay by gy we see that the height of the minima of Hy
varies only of order O (1) times a chi-square (with M degrees of freedom)
distributed random variable. The height of the saddles fluctuates of order

@) <\/N> times a normal random variable plus terms of higher order.
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8 Structure of the ground states

8.1 Eyring-Kramers formula

In this subsection we put together the ingredients to arrive at an Eyring-
Kramers formula for the Hopfield model. We consider the (random) set of
deepest minima of fz ) by

My ={m,|peV}. (8.1.1)

We will use the following Theorem of Lidskii (compare Kato [Kat76],
Theorem. 6.10, p. 126).

Proposition 8.1 [Lidskii, 1950] Let A and B be symmetric d x d-matrices
and C = B — A. Denote respectively by oy, Or and v, k € {1,...,d} the
repeated eigenvalues of A, B and C'. Then the d-dimensional numerical vector
(61 — i, ..., B4 — ayq) lies in the convex hull of the vectors obtained from
(V15 ---,7va) by all possible permutations of its elements.

Moreover, we need the following

Definition 8.2 Consider 6 € (0,3. Denote E := {{p,v} € VXV |pu#v}.
We define a random set of “good” numbers

Js == {n €N| min (A% — A) > n—%+5} : (8.1.2)
a#beFE

As we have seen in Proposition 6.11 (¢) we can think of the components of
An (up to the symmetry) to be independent random walk, hence a number
is not good if two of them come to close together. The next lemma shows
that almost surely the most n € N are “good”.

Lemma 8.3 We define

N
7 = {gez\ lim i21(neJ5):1}. (8.1.3)
n=1

Ntoo N
Then P (Z5) = 1.
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Proof. We define n% = (nfb)ieN by n = \/Lﬁ (5?15212 —£flff2) for a =
{a1,as} and b = {b;,by}. Then n® is a sequence of centered i.i.d. random

variables with finite variance and 5% = \/Lﬁ Sor  ne their normalised partial
sum and S% = A — A®. Apparently {Sﬁb}a pep are identically distributed;

let S,, be another random variable with the same distribution. Then

M
P (min Szb > n_%M) < ( >IP’ <Sn > n_%+5> ) (8.1.4)
a,beE 2
Therefore we can use Lemma 3, in [Kiil97|, p. 1279. O

We want to control the expected time (y g needs to get from one minimum
in My to another one. Since (y s is for each realisation of the patterns a
reversible Markov chain on a (compact) subset of a lattice we can apply the
Eyring-Kramers formula in the form proved in Theorem 5.21 of part II.

We incorporate the notions of Definition 4.3 of part II. In particular,
we denote the communication height between two subsets I,.J C My by
foa(I,J). The associated set of relevant saddle points is named Sy ([, .J).
Recall the notion of valley of Definition 4.4 of part II. Finally the barrier
between m € My \ I and I is defined as

b (m, 1) = B(far (m, 1) = faa(m). (8.1.5)

Theorem 8.4 We assume 1 < # < 1+ (9d + 500M®)™". Choose & € (0,1)
and assume & € Zs and N > Ny[¢], as well as N € Js. Let I and J
be disjoint subsets of My. Assume cyy = 1, i.e. we consider (Glauber)
Metropolis dynamics for the original Hopfield Markov chain.

If s € Sy(I,J) is a relevant saddle point between I and J we obtain

cap (I, J) = ky|Sn(I, J)|INU22gy 5(s) x

x <1+(9<\/1n3N/\/N>), (8.1.6)

where

= F—1(—m?)" (2mpd)"”
m/1-81—-m?)(1-p(1- %m*z»(M—?)/z'
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Starting in m € My \ I the expected (quenched) hitting time of J satisfies
ks N
En = — Nby(n,J)) X
") = Tatma, 2 )

neVy(m)

X (1 Lo <\/1n3 NNN)) , (8.1.8)

where

s = ™ (1 — m*z)d/4 1-p (1 - %m*Q) e ' (8.1.9)
\/m\ﬁ —B(1—Lim2) \ 1 =B —m)

Remark 8.5 (a) If we do not specialise to the Metropolis dynamics, we have
to multiply k4 by

Bdlv|
8—1 8.1.10
g1 ( )
where v is the unique negative eigenvalue of the matrix
2
<@" (v fﬂ)m) (8.1.11)
with ( | .
._ 1—m")eng(s) forkeU,,
ap = { cn g (s) for k ¢ U,,. (8.1.12)

Here, U, == {k € {1,...,d} | b} = b}}.

ks has to be divided by the same quantity.

Whenever ¢y, () depends only on 7 (x) and xy, this will yield , up to a
constant factor, again the result (8.1.6).

(b) The validity of this theorem could possibly be extended to 5 € (1, ),
where [ is the unique solution of the equation 3 = W Outside this

interval the points {+s**"} are no longer candidates for the relevant saddle
points and therefore there has to be others, which however are unknown up
to now.

Proof. We choose ¢ := % and F, := 3fg . as well as F' := 3f3. Proposition
6.9 shows that condition sF1 is satisfied and F2 holds since the statespace
is relatively compact and fs is continuous. Since

ge (1,1+ (9a+50000%) ) (8.1.13)
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Theorem 7.2 implies that there are only finitely many candidates for essential
saddle points of fz\. Therefore conditions S1-S3 of section 5 of part II are
satisfied. Assumption D assures that conditions D1 and D2 of chapter 5 of
part II are satisfied.

Hence we can apply Theorem 5.7 to estimate the capacity. This yields

for cap(/, J) up to multiplicative errors <1 +0 <v1n3 N/\/N)) the value

- il
(2rBN)4/2=D on.5(5), (8.1.14)
\/|det V2fg7)\(8)|
where 7 is the unique negative eigenvalue of L™?py (s) - V2f5. (s).
Moreover, Proposition 7.7 shows that the fluctuations of the minima are
small compared to the fluctuations of the 1-saddles. Since we assumed that
N € Js we see that the additional condition of Theorem 5.21 is satisfied. This

yields for E,, (TMN\m) up to multiplicative errors <1 +0 (vln3 N/\/N))

the value

T /ldet V2 f55 (5)]
26N [y] \/det V2 3 5 (m)

exp (Nby(n, J)). (8.1.15)

n€Vy(m)

Now we show that we can estimate the prefactor explicitly. From Propo-
sition 6.2 we obtain

PNk (8)
= e (s) [ = s (1 TR 63) Q(;—;) (8.1.16)

Since ¢y, is Lipschitz, this shows that also py y is Lipschitz continuous. The
representation (6.3.2) of ¢ yields:

N 1
b= 5 (14 on)

d
N vin N
= E<1+O< Nic )) (8.1.17)

Theorem 7.6 yields s =5 <1 +0 (ln N/\/N)) Therefore

(1 —sk) A (1+5k+%) = (1— I3 (1+O<%)). (8.1.18)
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Since fg € C* (R) and V f3, (s) = 0 we obtain

fa. (s + %%) = foa(s)+ O (N7?). (8.1.19)
Hence,
0 (s + %ek) =o(s)(1+O(NT)). (8.1.20)

Altogether we obtain

Pi(s) = %ak (1 +0 (%)) (8.1.21)

where a € R? is defined by 8.1.12.
With the formula (9.0.2) for the Hessian of f3, we obtain, since { € =
and N > Ny[¢]

(8.1.22)

v2fg7>\ (S) = v2fg (S) <1 + O ( th)) .

VN

Now we apply the Theorem of Lidskii (Proposition 8.1). Therefore the de-
viation of the eigenvalues of V2[5, (s) compared with the eigenvalues of

V2[5 (S) are of order O (ln N/\/N) In the same way we can relate
the eigenvalues of V2fs, (m,) to V2f5(m,) and of L™%py (s) - V2f5. (s)
to 5 (@ (V2f5(3)),,).

In the case of the Metropolis algorithm (6.2.20), we have cyy (z

The only (normed) eigenvector with negative eigenvalue of V2[5 (35) is v :
\/LQ_d (b* — b”) and hence v, = 0 for k € U,,, (compare Proposition 7.5). There-
fore using (8.1.12) the unique negative eigenvalue of 74 <ai (V2S5 (E))”> is
_B=1
2N23
If ey (z) depends only on ¢ (x) and x, then ay is constant for k ¢ U,,.
Therefore, up to a constant factor, the result of Theorem 8.4 holds also in
these cases.
The remaining part of the prefactor in (8.1.15) can be approximated using
the estimate (8.1.22) and the Theorem of Lidskii by

det V2fs ()] _ |det V2fs ()] (1 +o< M)) o

det VQf@)\ (m) N det V2f57,\ (m) \/N

) and the associated eigenvector is v.
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This does not depend any more on x4 or v and we obtain from Proposition

7.5 the following explicit form: Denote ¢ = % =1-0 (1 — %m*Q), then

|det V2 f5 (5.0
det V2f5 (mu)
(172) M ()™ (o — 1) (1 — )
AEM (yy — )M

(6951 M=t 1—
_ (B (—)
v —1 CY2

-0 a-m (1-80 - 4w\
=T <1—ﬁ(1—m*2)> . (8.1.24)

The prefactor for the capacity can be estimated analogously. U

Remark 8.6 If (x5 has the transition probability matrix ¢y defined by
(6.2.28), we receive

o (@) = f—]ﬁ[ (1 — ) (1 + tanh % ((PLx)k + %)) . (8.1.25)

Forz =5, +0O (IH—N) this equals (since £ € =)

2

2 (PLo), - (p (1 N \/LNA) ) 5,4 0(6). (8.1.26)

Therefore cyy, () = 5. Hence the expected value of the hitting time is 2

times the value of (8.4).

Proposition 8.7 Denote by v :=m, —3,,. Then for all0 <t <1
Vs (S +tv) 1 v, (8.1.27)

i.e. the gradient of fg points along the connecting line between s, and m,
towards m,,.
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Proof. We directly compute the gradient of f3 using the definition of m*.
We obtain

akfg (EW’ —+ tv)

1
= Bartanh (B +tv) = P (5, + tv),

1 *
_ (ﬁm*artanh (m* (1 - 1)) — (1 —t)) . (8.1.28)

The last identity follows, since

_ [ m*bl, keU
Spuv,k + tvk = { m* (1 o t) bg, k ¢ U, (8129)
where U := {k € {1,...,d} |V}, =b;}. Moreover, again with the definition
of m* follows for all ¢ € (0,1)

o) = ﬁ:n*artanh (m*(1—1) = (1—1) > 0. (8.1.30)

Hence
Vs (B +tv) =al(t)wv. (8.1.31)
0

8.2 Random graphs

In this section we estimate the communication height between two minima of
fa.x. Theorem 7.7 gives an explicit expression for the height of the 1-saddles
(su). We see that for large N their order statistic is given by the order
statistic of the standard Gaussians (g} ) constructed in Proposition 6.11.

To give deterministic bounds for the communication height we consider
the undirected weighted graph (V, E, g) with V, E' as introduced in Corollary
7.3. The weights are defined by

g(p,v) = sign(u)sign(u)g%“”‘ for p,v e E, (8.2.1)

reflecting the structure of the heights of the 1-saddles, fz (su).
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Let 7pin @ minimal spanning tree of (V, E, g). We define the unique set

Tmin = {t ek ’t c Tmin or —te Tmin} . (822)
Apparently set of essential saddle points is then
Ee= {8 |, v eT}. (8.2.3)

Taking into account the symmetry of the weights g (i, v) it is enough to
consider a simpler graph to estimate the communication heights. We identify
p and —p and associate the weight |g (1, V)| to the edge {u, v}. Then we get
the vertex set

V={1,...,M} (8.2.4)
and the edgeset
E={{prv}eVxV|iptv}. (8.2.5)

Now let us introduce some notions of random graph theory, see e.g.
[BolO1]. Let p € (0,1) be given. ¥(n,p) is the set of all graphs G with
n vertices such that each possible edge has independent probability p to be
in G. In other words, if GG is a graph with m edges, then

P (@) =p" (1 —-p) ). (8.2.6)

We write P, and E, to emphasise that the probability and expectation are
taken in ¢(n,p).

We will use the following theorem proved by Erdés and Rényi in 1959. It
gives a threshold value for the probability p(n) such that asymptotically for
n — oo almost all graphs out of ¢ (n, p(n)) are connected.

Theorem 8.8 (Erdos and Rényi) Let ¢ € R be fized and

! (logn+c+o0(1)). (8.2.7)

p(n):= n

Let G € 4 (n,p(n)) be a random graph. Then
Py (G is connected) — exp (—e™°) (8.2.8)

for n — oo.
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The proof of this theorem can be found in Bollobas [Bol01|, Theorem 7.3, p.
164.

We consider again the weighted graph (V,E, g). By regarding only the
edges with height bigger or equal to a given number x,;, we obtain a random
graph. This graph is an element of 4 (M, p (M)) with p (M) := P (|g| > zun).

All edges associated to essential saddle points are included in the maximal
spanning tree of (V, E, |gN|). Hence we are searching for the minimal p (M)
such that asymptotically a.s. all the graphs in ¢ (M,p (M)) are connected.

Theorem 8.9 Let & € = and N > Ny[¢] and assume 1 < 8 < 14(9d 4 500M8) "
Then asymptotically almost surely (for M — oc), the communication height
between two elements of My, say m and n, can be estimated by
fartm,n) < & few (5) — VAT (829
m,n) < = — —V2In M. 2.
B 5Jow JN
Proof. Proposition 7.7 yields an estimate of fs(s{uv}), which involves
the standard Gaussian random variable |¢g%”| for {u,v} € E. Theorem
8.8 implies that a random graph, Gy with edge probability p (M) =
P (|lg| > xpr) is almost surely for M — oo a connected graph, if

1

p(M) =7

(In M + ¢(M)), (8.2.10)

where ¢ (M) — oo for M — oo. Since we have for z > 0 the bound (compare

[Fel66], p. 175)
P(lg| >z)> (% — %) \/gexp (—%ﬁ) : (8.2.11)

we obtain for M > 20 that

2 2
Ty = \/ln 2M — 31ny 2M +o(l). (8.2.12)
T T
satisfies condition (8.2.10). Hence almost surely for M 1 oo every essential
saddle point satisfies the inequality (8.2.9).

We prove now that this result holds also for the original graph (V. E, gn).
Let G be a subgraph of (V, E, gy) that leads to a connected subgraph G of
(V,E,|g]). By definition G = G; UG, such that {m,n} € G, iff {—m, —n} €
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G5. Now every edge that does not belong to the maximal spanning tree of
(V,E,|g|) has equal probability to connect either two vertices out of the
same subgraph or a vertex of G; with one of GG3. Hence the probability that

1 nn—
GG and Gy are not connected is 1 — (%)n(ann 1), which converges to zero

exponentielly fast. O

8.3 Low lying eigenvalues of the generator

In this section we consider the generator of the Markov chain (g that is
defined by Ly 3 := pys—1. We abbreviate L = Ly 3. Due to the reversibility
of (v, L is a negative operator in {5 (p), i.e. it is symmetric and has only
negative eigenvalues. By ’low lying’ eigenvalues of L we mean eigenvalues
with small absolute value.

Let D C Xy. We say that A € C is an eigenvalue of the Dirichlet operator
LP if the equation

Lf(x) = Af(z), =€ D"
{ f(x) =0, veD (8.3.1)

has a non-zero solution fp . The solution fp ), is called eigenfunction of L.
Let \p denote the smallest eigenvalue of LP.

We assume again 1 < g < 1+ (9d+500]\/[8)71. The validity of the
statements in this section could possibly be extended to # € (1, [;), where
(s is the unique solution of the equation 3 = W

Since M is the complete set of local minimal of Hy on Xx g and has
constant cardinality |[My| = 2M, we know that (ys behaves metastable
with respect to My (in the sense of Definition 4.5 of part II, see Example
4.10). It is already known that therefore —L has 2M eigenvalues that are
exponentially small in N, and all other eigenvalues are at most polynomially
small in N, see e.g. [BEGKO02], Theorem 1.3, p. 222.

There exists a classical bound for the low lying eigenvalues of the Gener-
ator of a diffusion process proved by Donsker and Varadhan in 1976 [DV76|.
By analogue arguments it can be proved (see [BEGKO02|, Lemma 4.2, p. 236)

Proposition 8.10 For every nonempty subset J C My we have

Ay > (s;g E, (TJ)) B . (8.3.2)
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We will show that the low lying eigenvalues of L have indeed a similar struc-
ture.
We define the entrance time of (n g into the set A as

04 = min {t >0 | CN,ﬁ (t) S A} . (8.3.3)

Observe that o4 differs from the hitting time 74 since it takes the value 0 if

CN,B (0) € A.
As we have seen in Proposition 3.4 of part II the equilibrium potential of
(n, with respect to disjoint subsets A, B C Xy satisfies

hap(z) =P, (04 <op) forallze Xy. (8.3.4)
We use the abbreviation
Ry = P My\m,, forall peV. (8.3.5)

Now we can state the crucial proposition that allows us to control the low
lying eigenvalues of L :

Proposition 8.11 (/Bowvier, Gayrard, Klein|) Assume that (y g is k-metastable
with respect to My. Let X\ be one of the 2M smallest eigenvalues of —L, then
there exists an eigenvalue vy of the 2M x2M -matriz K = Ky g whose elements
are given by
(hy, th,>g
Pl 12wl

such that A =~ (1 + O (k)). We call K the capacity matriz of (y 5.

K, = (8.3.6)

Proof. The proof can be found in |[Bov04] Theorem 5.1, p. 36. Compare
also Section 4 of [BGKO05]. O

Remark 8.12 (a) To motivate the name, recall that the capacity between
m,, and My \ m,, is given by cap (m,, My \ m,) = — (h,, Lh,)
(b) The row sum of denominators of K is zero, i.e.

o

(R, Lh,), = 0. (8.3.7)
> .

veV
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This follows, since L is a linear operator, for all z € Xy

S by () =) Pyt < Tagy) =1 (8.3.8)

veV veV

and L1 = 0.

Due to the symmetry under total spin flip and the unusually small fluc-
tuations of the heights of the minima in My we cannot directly use the
results of [BEGKO02| or [BGKO05|, but we can apply similar methods. Let
{0y, Aanr—1} with 0 = A\g < ... < Agpr—1 be the smallest eigenvalues of
the generator — Ly g of the Hopfield model.

Proposition 8.13 We assume 1 < 8 < 1+ (9d + 5OOM8)_1. Choose 0 €
(0,1) and assume & € Zj and N > No[€], as well as N € Js. We define

'3
{p,v} € E to be such that

A = —max |AY]. (8.3.9)

aceE

Then the two largest eigenvalues of K are equal, i.e.
AoM—1 = Aapr—2 (8.3.10)
and there exists a constant ¢ such that their value can be estimated as
<Emu (Trtwrmy)~ + B, (TMN\W)‘I) (1 +0 (e—cN‘s)> : (8.3.11)
All other eigenvalues of IKC satisfy
A< 2Me™ N Ay (8.3.12)

Remark 8.14 This yields together with Theorem 8.4 an explicit formula for
Aopr—1 with multiplicative errors <1 + O (\/ In? N/\/N))

Proof. Recall that

By (raton) = oo (mi%‘]}v o (8.3.13)

First we investigate the quantities |h,[|,. We can approximate, as in the
proof of Theorem 5.21 of part II,

hll2 = ks N2 (m,,) (1 +0 (%)) , (8.3.14)
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where
ks: = (2m)"? )\ /det V2f5 (m,)
(1_m*2)d/2

(1=A 0 —m2) P

= (2rd3)"? (8.3.15)

Therefore Theorem 7.7 implies

71l = exp {koB ((9%)"" — (9%)7) } %

1l
x (1+(’) (hjg)) (8.3.16)

Since gy € Ay and

{on'} ~Nox V{p,v} ek, (8.3.17)
the quotient % is of order O (1) for N — oo (and M finite).

Due to the assumptions £ € Z§ and N ¢ J;, we have
AR > A% 4 N72t0 foralll <a<b< M. (8.3.18)

In the following we use a modification of the argument for the proof of Propo-
sition 7.12 and Theorem 7.13 in |[Bov04]|. We denote

G = {p, v} U {—p, —v}>. (8.3.19)
Now, we investigate the matrix K given by

Co ’ny: {x,y} S Guu

Koy = { 0, olse. (8.3.20)

Thereafter we show that the capacity matrix K is a perturbation of K.
We claim that the non-zero part of I has the structure

<I€xy>{:vy}e{u W AR (1 o (6_CN6>> ’ (8:321)
where we have denoted
_ h
A= ( L ) with a = 1lle (8.3.22)
—a a 1Rl
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Due to the spin-flip symmetry

Ky

( 35) = (lcxy> g (8.3.23)
{zy}re{-pn,—v} {z,y}e{pn.v}

Equality (8.3.21) holds true, because the property (8.3.9) of {u, v} yields the
following identity between sets of relevant saddle points

Sn (my, My \'m,) = Sy(my,, My\my)={su}. (83.24)

Moreover, Vig\fm,,m,} ({7, My }) contains no other minima.
We distinguish three cases:

1. Assume z € A(m,) U A(m,) and fg (z) < fgr (sw) + \/LN' Then we
obtain

P, (T{mu,my} < TMN) =1-0 (6_CN6> . (8325)

Therefore

h,(x) = P, (Tmu < Ty, | Timpmy < TMN) X

<(1o()

= 1-P, (Tmy < Ty | Tompmny < TMN) X

(1-o()

= (=h @) (1+0 (). (8.3.26)

2. Assume x ¢ A(m,) U A(m,) and fz () < fax (Su) + \/Lﬁ. Then we
obtain )
hy () = O (ech ) = hy (2). (8.3.27)
3. For z such that fg (z) > fax (Su) + \/Lﬁ we obtain
o(x) < exp (—ﬁNf@)\ (S) — 5\/N> . (8.3.28)
Since L1 = 0 we conclude

(huy L), = — (g Thy), (1 o) (e—cN“)) (8.3.29)
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and hence K, = —alC,, <1 +0 (e_CN5)>. Moreover,
(hy Lh,), = (hy, Lhy), (1 o) <e—cN“>) (8.3.30)

and hence K, = alC,, <1 +0 (6_CN6)> and we have proved the representa-

tion (8.3.21).
We can say even more, since with Remark8.12 > . (h,,Lh,) = 0 and
therefore in particular

Kag = KO ((acN‘s)) v {a, B} € {£p, 40} \ G (8.3.31)

The eigenvalues of A of (8.3.22) are 0 and (1 4- a®). Therefore the largest
eigenvalue of K is

A=K (1 + HZ“:E) (1+0 () (8.3.32)

and it has multiplicity two.
Now, we claim that C is a perturbation of IC. For this purpose we write

K=K+K (8.3.33)

To justify the claim we estimate the norm of K. We take as matrix norm the
Euclidean norm in R**. We observe

_ cap (ma, My \ my)

" ! (8.3.34)
1Al
Therefore with Theorem 8.4 we obtain for all N > Ny[¢]
K> e™  max K. (8.3.35)

zeV\{£u,tv}

For x # y we obtain like in [Bov04| by the Cauchy-Schwarz inequality that
K2, < K4y This and the estimate in (8.3.31) implies

1K < 2Me™N max (K, K - (8.3.36)

With the result (8.3.36) follows that the biggest eigenvalue of I and K co-
incide up to multiplicative errors <1 + 0O (6_CN5>>. U

136



We recall that we have introduced the minimal spanning tree 7., of the
weighted graph (V) E, g) in the last section.

We enumerate the edges of this tree 7., by (t1,...,t2n—1) such that
g (taps—1) < g(tapr—2) < ... < g(t1) < 0. Notice that (up to the order and
sometimes choice of equally weighted edges) the construction with Kruskal’s
algorithm starts with ¢55,_; and adds along our enumeration edges to the
spanning tree until it ends with ¢;. Let I7 C {1,...,2M — 1} denote the set
of indices such that g (¢;) < g (t;_1)-

Theorem 8.15 We assume 1 < < 14 (9d + 500M8)_1. Choose 0 € (0, %)
and assume § € Z§5 and N > Ny[¢], as well as N € J;.

Then there exists an increasing sequence (Mir1 |1 € I7) of metastable sets
of Cnp. Let {Xo,..., dap—1} with 0 = Ao < ... < Aop—1 be the smallest
eigenvalues of the generator —Ly g of the transformed Markov chain (ng.
We define

F= i i . 8.3.37
Sl arg {m,n?;‘l//fnl X M <f6’)\ <m’ n)> ( )
Denote for m € ;

-1

We distinguish three cases:

o Assume S; = {{m,n},{—m,—n}}, then
Nt = A = (i + ) (140 (7)) (8.3.39)
o Assume Sf = {{m,n},{—m,n}}, then

A = (2 + Vi) (1 +0O <e_CN6>> (8.3.40)

and

Nt = Y (1 +O (e—cN‘s)) . (8.3.41)
o Assume Sf = {m,n}, then

Ai = (Vi + Vi) (1 +0 <e*CN6)> . (8.3.42)

Remark 8.16 Combined with Theorem 8.4 this implies explicit estimates
provided we know (7;),; ;-
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Proof. For the proof we reduce step by step the cardinality of the set
Moy = My that is by definition described by the vertex-set of Z.;,.

We use now Proposition 4.6 of part II to find inductively smaller and
smaller metastable sets .#; of the Markov chain (y . We define K?M) =
and K£® to be the capacity matrix of ..

Assume we have already constructed .#; and the associated capacity ma-
trix is K. As in Definition 4.4 of part II, we define the valley V, (m) as

the connected component of the set {x € Xng | for (@) < fan (m,n)} that

contains m.

Assume {m,n} € S;, then from Definition 8.3.37 follows that the only
element of .#; that is contained in V,, (m) is m itself. Analogously V,, (n)
contains only n. Therefore we can conclude that

Sap € Sy (M, n), (8.3.43)
where {«, 3} are minimiser of

min (&Y. (8.3.44)
pemy € Vi (m) N My
v:my, €V, (n) N My

o If S¥ = {{m,n},{—m,—n}} (this has to be the case for .#5,,), where
o(m) < o(n), we put A;_o := A; \ {m,—m}. Observe that in this
case there is no metastable set of (y 3 with (i — 1) elements.

o If S = {m,n} , where o(m) < g (n), we have tie edges and we put
M;_1 = M; \ m. Observe that in particular n may be equal to —m in
this case.

e And third, if S} = {{m,n},{—m,n}}, we distinguish two cases. If
o(m) < o(n), we put again #;_o := M; \ {m,—m}. If on the other
hand o (n) < 0 (m), we put s = A, \ {m.n}.

Hence .; contains exactly ¢ points. Assume .#; = {my,...,m;} and denote
hiz = Py Mi\m.- Then

K(z) . <hi,ac7 Lhi,y>

() — T oyl (8.3.45)
Y Nhiall, higll,
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llhill,
llhiz2ll,
Proposition 8.13 we can treat IV as a perturbation of a simpler matrix. This
matrix depends now on the structure of 7;. In all three cases the estimate
of the smallness of this perturbation is shown exactly as in the proof of
Proposition 8.13.

We abbreviate ¢ = We show now that analogously to the proof of

e Assume S = {{my,mo, },{—m1, —ma}}, possibly by renumbering the
elements of .#;. Then we can describe K as a perturbation of the
matrix () given by

KV = { ’O?”y’ if?f} e {12 u{-1 -2} (8.3.46)
Moreover, this matrix has the following structure:
(K foperiop = Knd (140 (), (8.3.47)
where we denoted
A= ( _10 = ) | (8.3.48)

Due to the spin-flip symmetry

v — (kW)
( i ){x,y}E{fl,—z}Q - (,Cﬂcy ){w7y}e{1,2}2' (8.3.49)
The eigenvalues of A are {0, (1 + ¢?)} and therefore the largest eigen-

value of ) has multiplicity two and is, up to multiplicative errors

(1 + O (e*CN(S)), equal to

cap(ml,mQ)( ! ! > (8.3.50)

+
2 2
[hiall, IRzl

e Assume S; = {mj,my}, again by renumbering the elements of M.
Then we can describe C; as a perturbation of the matrix K(V) given by

ICx ) Z, € 172 ’
KW ::{ Koy {m.u} € 11,2} (8.3.51)

Moreover, this matrix has the following structure:
(U) _ —CN‘S
(Ker') epennap = Kud (1 +0 (6 >> (8.3.52)
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with A defined in (8.3.48). Therefore the unique largest eigenvalue of
KW is, up to multiplicative errors (1 +0 <e_CN6>>, equal to

cap(ml,m2)< ! ! ) (8.3.53)

_l’_
2 2
1hiall, — [lhiz2ll,

Observe that (only) in this case the set of relevant saddle points between
mq and ms contains two elements.

e The last possible case is S} = {{m1,m2},{—m1, m2}}. Hence we can
describe K; as a perturbation of the matrix ") given by

IC:E? ’ € 1722U _]"22
Ko ::{ Koy ilf’;e?{} {1,257 0{=1,2} (8.3.54)

Moreover this matrix has the following structure:

(K)o = KuC (140 (7)) (8.3.55)

where we have, due to the spin flip symmetry,

1 —c O
Ci=| —c 2 —c |. (8.3.56)
0 —c 1

The eigenvalues of C' are {0,1,1 4+ 2¢*} and therefore the two largest
eigenvalues of L") are, up to multiplicative errors <1 +0 <e_CN5>),

equal to
1 2
cap (my, ms) 5+ 5 (8.3.57)
1hill, — [lhizll,
and
cap (m, ms) (8.3.58)
5 3.
[hinll,

This proves the theorem. U
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9 Some proofs

From now on we leave out the N-dependence of Ay and write A = Ay.
We will frequently need the first and second derivative of f3 . We use I’ (y) =
artanh (y) and 1" (y) = ﬁ Thus

0 1
a—ykfﬁ,A (y) = (1 + \/_N)\k> X
X (%artanh (ye) — ZJ: Py; (1 + %)\j) y]-) (9.0.1)

and

9? 1
= (14— | x
a0 ) ( VN )

1 1

9.1 Precise location of critical points

This subsection contains the proof of Theorem 7.6.

We consider £ € Z and N > Ny[¢]. Due to the uniform convergence of
fs. to fz (proved in Proposition 6.9) the cluster points of a sequence (m(N))
of global minima of fz ) has to be contained in the set M of global minima of
fs. Therefore we can divide a given sequence into subsequences that converge
to a global minimum of f3. We show that if m™) converges for N — oo to
M4, then it is unique and has the form m, given in Theorem 7.6.

Note that this follows already from the general theorem of Bovier and
Gayrard [BG98|, Theorem 6.2, p. 40, since here their (5. (2) = 1.

Assume that § € PR? is a critical point of fs. Now we perform the
Ansatz y := 7y + \/—lﬁm to find a critical point of fg,. Here x = Ky is an

arbitrary random variable such that |k| = o (\/ N).
y is a critical point of fg iff
d

) =0, (9.1.1)
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Using (9.0.1) this is equivalent to

1 1 1 1

—Artanh ( 7 + —/i) = P (11 + —A) (y + —/i) . (9.1.2

B ( VN VN VN 5-1.2)
We were allowed to cancel the common factor (1 + ﬁ/\k» since £ € = and

N > Ny[¢]. We use now a Taylor expansion for arctanh (§+ ﬁ/—i) and

arrive at

1 1 1 1
Bartanh (Ur) + =70 mnk + O (N |f<0|2>

1 S | 1
=T+ = za: (7, Ay) b+ P (]1+ \/—NA) ki (9.1.3)

Using that ¥ is a critical point of fz leads us to

1 1
k=0 (1—1° g Ta+<ba,<1l+—A>/1>)ba+O<—/<¢2>,
k ﬁ ( yk) ~ < \/N k N | |
(9.1.4)
where we denoted r, := (b*, Ay). Now we multiply this equation with

v (1 + %Ak) (9.1.5)

and sum over all k € {1,...,d}. This yields the matrix equation for ¢t € RM
with ¢, = <b°‘, (]l + \%NA) Ii>. Moreover, t is of the same order as x and

therefore we obtain

e = BT X (ra +ta) b + O (1)
{t = G(r+t§+0(%|t|2), ' (9.1.6)

where GG is the M x M matrix with

G’ =43 <b”, (1-(7)%) (]1 + \/LNA) b“> . (9.1.7)

Here, - denotes the diagonal matrix with entries 7. To evaluate this further,
we have to use specific information about the point 7.
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Minima

Fix a p € {1,...,M}. We will calculate the precise location of the minima,
hence §y = m*b*. Denote again v, := We find r = m*A* with

AF = (A1 . A¥P) and

1
B(1—m*2)’

G=p(1-m"?) (11+ A> : (9.1.8)

-

Therefore equation (9.1.6) equals

Yt = (]1+ ﬁA) (t+7r)+0 (% |t|2)
& (ﬂ—%fl)t = d(Ile\/—lNA)?w—O(% |t|2), (9.1.9)

A 1 . i .. . . -
where a o The matrix (]1— T%A) is invertible, since ¢ € = and

N > Ny[¢], and therefore

v o) (e gt eon)
3 () (1 o) o ()

am* A" + O (1\1;]_]\\;) . (9.1.10)

I
jw)

The last equation uses r, = m*A** = O (\/ In N) for ¢ € Z and N > Ny[¢].

Inserting this in equation (9.1.6) gives us directly the correction x for the
minima my, :

m* In N
K = AR 4+ O 9.1.11
DD () (L1
or equivalently
ki = ZA““b“+O(lnN). (9.1.12)
=1 VN
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Saddle points

Let £ € Zand N > Ny[¢] [€]. To show that the essential saddle points of f5 5
are small deviations of the essential saddles of f3, we use again the uniform
convergence of Proposition 6.9: Let m™) n™) € My. Let v be an optimal
path of f3. Then 7 can be uniformly approximated by paths vy in Xy and

therefore by definition the communication height f/@)\ (m(N), n(N)) converges

to fz (m,n). Let Sy (m,n) be the set of all relevant saddle points between m
and n in Xy. Then each sequence in Sy (m™, n™)) has a subsequence that

converges to an element of S (m,n), the relevant saddles in [—1,1]. Now we
show that [SY (m™) n™)| = |S (m,n)|.
We use the abbreviation 5:=75, .

Lemma 9.1 We define the diagonal matriz S with elements Sy := 5. Then
the following properties hold:

1. 5?5 = m*%s.
2. (b, 527 = 1m*? (6,5 % O1a gy (un))-

Proof. ad 1. We have 5, = m*b//1,x_;». Therefore
k =05, =0y

S5 = (3k)° = m"P 1o
= m*5,. (9.1.13)
ad 2. This follows directly from
1
SE =73 = §m*2 (14 007). (9.1.14)
O
We want to use again equation (9.1.6), now with § := 35,,. Let B be

the M x M matrix with B7* = A7 — m*2% (b7, Ab*"). We receive 1, =
sm* (Ve + V) and with the help of Lemma 9.1 for o # p, v

1
G = (1 — 5m*2) doa + B7°. (9.1.15)
Thus equation (9.1.6) takes for o # u, v now the shape

t0:6(<1—%m*2> 1+ \/LNB) (r+t),. (9.1.16)
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With ¢ : - this is equivalent to
1-6(1-3m"2) ﬁm”)

c 1 1
—B |t =c((1—zm"” ]1+—B) To. 9.1.17
( VN ) (( 2 ) VN ( )
The matrix (]1 - LNB> is invertible for £ € Z and N > Ny[¢], and thus

v (i) ()1 L)
1 1

= cn(l - %m*2> Ty + O (%) : (9.1.18)

We have used B¢ = O (\/ In N) and r, = O (\/ In N) from Proposition 6.7.

For 0 = p we get

t, = ﬁ((l—%m”) 11+\/%B) (r+t), -
1
"

m* B (r, +t,) (9.1.19)

I

o
()¢
7 N

and analogues for o = v

1 1
t, = 1——m* 11+—B) r+t), —
o ((1-3m*) 1+ b)),
1
—Em% (rp+t.). (9.1.20)
Since r,, = r,, we obtain

1
t,—t, =0 (11 + \/—NB) (t, —t,) =0, (9.1.21)

because (3 (1 + ﬁA) # 1 for N large. Thus we can deduce

t,=p3 ((1 —m*?) 1+ %B) (r+1), (9.1.22)
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and, analogues to the derivation of (9.1.18), we obtain

=4O <—IHN) (9.1.23)
o1t VN
With Equation (9.1.6) and ¢ (1 — m*?) +1 = 5 we conclude

1 2
= 307 Y ot 0 (3 l?)

67

_ By o
= (1-3) Z (Cl{/w}c (a) + " _111{#,1/} (@) | rabl +

«

In N
+O0 | — ). 9.1.24
(\/N> ( )
We will use that 515 — ¢ = —im™ % and 5?5 = m*?5 to derive from

(9.1.24) another representation of e:

€ = C [(1 — Ei) E roby — m*ar,sy

«

o (%)

= - ((1 — %) D> (AR + AY) by — 2m*&A’]<,’”§k> +

[0}

3

O (%) . (9.1.25)

9.2 Precise height of the minima and 1-saddles

We prove now Proposition 7.7 about the precise height of the minima {mu}1<M<M
and the 1-saddles {s,,},, <, between them. o
Proof. We use the Taylor expansion of the logarithm to estimate the Cramér

entropy term, defined in (6.3.4), and obtain for v = O <\/ In N) :

1

I{u+—v

< VN)

1 1 1 1+u
=-In(1—u?) += —u |1

2n( u)+2(u+mv)n1_u+

11, In N\ ¥?
+ﬁ1—u2v +O(T) . (9.2.1)
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Now, we evaluate the function fs, defined in (6.3.10) at a point z := x +
\/—%y € B, (z) with r = kM :

foa ()
1 d
1+ 1 1 9
( (1—a; +Zkln1—xk+N1—x,2€yk)
3/2
_id‘P(]H%A) +O(IHN) . (9.2.2)

N
9.2.1 Minima.

We denote a = 71— First we consider the minimum m*, in other words we
put x = m*V" and y = a ), A**b* and use equation (9.2.2). In the following
we use trace (A) = 0 and

<

1+ m*b), 1L +m*
In—F =01 . 9.2.3
Hence equation (9.2.2) simplifies to
fax (m")
1 N
= In(1—m?) + L
25 ( )+ 5o W) +

1 14+m' 1 In N\ *?
_'_ﬁ In mOpNM — 5 Z (Opua) -+ O ( N > . (924)

«

(b, Lm*).

.« . R 1
Here, we used the overlap parameter at the minimum op,,, =

We obtain

1 o
= m*éw + ﬁ (m* + CL) AR + N (A2)'u . (925)
Therefore
L a
op,, = M+ (A" (9.2.6)
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and

D (0pua)” —m

[0}

N 3/2
- % [(m* +a)? + 2m*a] (A%)" + O (%) : (9.2.7)

To compute (9.2.4), we need moreover
(y,y) = a’d (V)™ (9.2.8)
Altogether this leads us to

fax (m")

1 fa,  14+m* 1 |, . N In N\ %2
+N(Zﬁln1—m* 5m (3a+m))(A) + 0O ~ (9.2.9)

Now f: A — R with f (a) = (a®)"” is Lipschitz-continuous with respect to
the matrix norm ||-||, defined by

la]l5 = max ) " (a™)*. (9.2.10)
17

To see this consider

|(0%)" = (@)™

E :buabua — atagre

e
§ e — v
a

< (llally + 11— all3) 16— all;- (9.2.11)

< ‘max {a"*, b}
(03

Therefore with the law of the iterated logarithm and the strong approxi-
mation property of Proposition 6.11 (a) and (b), we can replace (A2?)"* by
(g3)"™"
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Saddle Points.

Without loss of generality we consider the case 5 = m* (" +1”). De-
note v, = A»* + A¥* as an abbreviation. We will use here a = «,:n—*1
and k = 1—P"___ We start with equation (9.2.2) putting # = 5 with

- 21— 5(1_1 *2)
perturbation y = k (1 — S?) > vab® — akv,s from Proposition 7.6. We will
use

1
In (1-(5,)%) = —siIn (1 —m™) (9.2.12)
m
and
1473, 1 14+ m*
| = —35;1 2.1
n1—§k m*sknl—m* (9:2.13)
Then we obtain
fﬂ,)\ (su,u)
= 1 ln(l—m*Q) 5 ]1+LA 5 )+
2B8m*2d ’ VN
1 1+m*
@ In ] . (opu + opu) +

3/2

by (=570 - 5 X opa 0 () 0214

67

We used here the overlap parameter op,, := % (b*, Ls,, ). We obtain

eI aE)

1 1 1
(1 L) (s s )

\/kN{ %m2(va+vu( +5W))}+

1 *2 k Ba
+ (1 ém ) N Zﬂ:v/@A —
m*?k
~ 2dN

Zvﬁ (b D™ (9.2.15)
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This is valid, because

()7

1 1
=—-m" — 2.1
2m d <5au + 0qp + \/Nva) (9.2.16)
and, with the help of Lemma 9.1,
<b"‘ (11 + LA) (1—5%) b5>
’ VN
1 1
=d|(é6 —— AP ) — —m*2d (0 + 6 ,
< avﬁ + \/N ) 2m ( O‘ﬁ + {0675}7{#7 })
(44 4 (1900, A) (9.2.17)
_ af 4y ’ w\Y 92
2\/N(

We obtain from (9.2.15) using v, = v,

> (op,)’

1 1
+mN <<1 - §m*2> Zvi - §m*2 vi) : (9.2.18)



This can be simplified to

> (opy)?

e

1 . miam
= —m —|—
2 VN

+% (% +m* (1 —m*2)) Zvi+

«

" ] 5 o N\ 32
(L3 ) g o (%) e

v, +

N 2

As other ingredients we need

1 1
op,+op, = m"'|(1l——=akv 1+ —=v, | +
Pu P ( JN >< m”)

and
(007
= k? <Z Vo (Il — 52) b* — av,s, Z Uﬁbﬁ ~ 1 _am*Q Uu§>

@ &}

2
= K2 vgva (1= 8) 17, 67) + o0l (5.5) —
o,

—ak® Y " vav, (é ((1—5%)b",3) + <ba,§>) . (9.2.21)

[0}
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With Lemma 9.1 we obtain

1 o) .2 2 22,2, 1 o9 a’ 2
:(1—§m )deva—m kdvu"‘im kmdvﬂ—

—Qm*kQadvi

1 1
- (1 — §m*2> deza:vi ~ 1 (2k + Ba) a%m*2dvz. (9.2.22)

Putting this together leads to

far (5 +¢€)
= % (%[(m*) - %m*2> +
—i—\/%A’fV” (%[ (m*) + % In 1 j_L :;: - %m*’yla) +
—i—% (1—m*) (%ln 11_21‘: — im* (1 —1—2)) ;Ui —
—m;\?k (ﬁ In i J_r Z - im* (1 + 2)> v
Lo (IHTN)W_ (9.2.23)

By the inequality (9.2.11) and the strong approximation property of Propo-
sition 6.11, we can asymptotically replace A" by gi’. So we are done. [J
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Appendix A

Approximation of Gaussian sums
via integrals

Let H be a positive definite d x d matrix. Then we can evaluate the associated
Gaussian integral by

/ e ( ! (x Hx>> dx (2m)* —d/2 (A.0.1)
xp | —=€(x, = L€Y" 0.
R4 P\72 Vdet H

We show now that Gaussian sums can be approximated by these integrals in
a very precise way.

Proposition A.1 Let (HE)EE(O 1y be a family of positive definite dx d-matrices.
We assume there exists k > 0, independent of €, such that

|He| > kx|  for all v € R™. (A.0.2)

Then the related Gaussian sum can be approrimated by a Gaussian integral,
that means we have

1 (277)d/2 —d/2
Z exp (—56 (k, HJ{:)) = \/ﬁe (1+0 (Ve)). (A.03)

Proof. Denote

Sq = Z oe () (A.0.4)

We prove the result by induction over the dimension n.
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1. Fixing the induction at n = 1: We obtain by approximating the Gaus-
sian integral via step functions from below and above using monotonicity

D o (k) < /OOO e () dx <> ¢ (k). (A.0.5)

Thus we have
s1—1< / 6_%€H5$2d1' <s; + 1. (AOG)
R

Since we have assumed that the spectrum of H, is uniformly bounded from
below (A.0.2), we obtain

s1=4[/ = (1+0 (Ve)). (A.0.7)

2. Induction step {1,...,n} — n+ 1: By approximating again the Gaus-
sian integral via step functions from below and above and using monotonicity,

we obtain

Sam< | s@a< Y o). (A.0.8)

keNnt1 RY keNpt!

Let K C {1,...,n} and define A, x := {z € Z" |z = 0for k € K}. Denote
for H. € R™™ by H") the (n —|K|) x (n —|K|)-matrix that arises by
dropping the jth row and column of H, for all j € K. We use now the
fact, that the projection of a normal density on R"*! onto a k-dimensional
subspace is again a normal density, i.e.

S exp (—%e (z, Hex>>

mGAmK

= > exp(—%e<x,He(K)x>). (A.0.9)

reZn—IK|

Since we know from the induction hypothesis s, = O (e‘k/z) for k < n, we
obtain with the inclusion-exclusion principle

Sp+l = / em2elnHer) L 0 (67"/2)
Rnt1

(27T)(n+1)/2 s
= WE—W 2 (140 (Ve)). (A.0.10)
Hence, we have shown the proposition. L]
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Appendix B

Estimation of sums by the
Laplace-method

Let a € R? and b > 0. The Gaussian integral

o 1
I(a,b) = / exp (—ax — §6bx2) dx (B.0.1)
0

can be evaluated by a quadratic completion

I (a,b) = \/%exp (;‘—:b) (1 — Moa (%)) . (B.0.2)

Here .44, denotes the standard normal distribution function.

Now, we distinguish two different asymptotic behaviours. For notational
convenience we leave out the dependence of a and b on e.

(a) Assume there exists a constant 3 > 0 such that a/veb = O (eﬁ).

Then we obtain
T 1

I(a,b)=/=—= (1+ 0O (). B.0.3
@ =375 1+0 () B03)
This holds since
a 11 Ve,
N1 [ —= = —4+ — e 2% dx
01(\/5) 2 2m Jo
1
= §+(9(e6). (B.0.4)



(b) Assume there exists a constant v € (0, 3] such that veb/a = O (7).
Then we obtain

I(a,b) = %(Ho(e%)). (B.0.5)

This holds since

a 1 > 1.2
- M| —= ) = —/ e 2% dx
o (\/5) 2m a/\eb

a

Y Eea(E) 0. no

For a proof of this see e.g. |Fe|, p. 175.
We will show now that exponential sums have a very similar behaviour.

Proposition B.1 Let A be an open interval that contains 0. We consider
a family (fe)ee(o 1y with feo € C3 (A,R). Define the one sided lattice N, :=
ANeNy and assume f. has exponentially tight level sets on N, i.e.

Z exp (—f. () J€) < cqe®e. (B.0.7)

zENe: fe(z)>a

We distinguish two cases:
(a) Assume there exists constants c, 3 > 0 such that lim. o f' (0) > ¢ and

fl(0)=0 <€%+6 . Moreover, assume there exists a > 0 small, such that for
all 6 > 0 small enough

fe (z) > £.(0) + ad* for all x > 6. (B.0.8)
Then we obtain
> exp(—fe (z) /e)

xENC
_ %exp(—fe 0) /) (1+0 (), (B.0.9)

where 3 := % AB.
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(b) Assume there exists vy € (0, %] and ¢ > 0, independent of €, such that
lim, o <f€’ (0) /e%*7> > c. Assume there ezists a > 0 small, such that for all

0 small enough

fe(x) > fo(0)4+ad  for all x > 6. (B.0.10)

Then we obtain

S exp (— /. (et) fe)
teN.

= mexp(—fe (0) /e) (1+ O (€)). (B.0.11)

In the case lim. g f. (0) > ¢, (i.e. v =1) we get the more precise estimate

S exp (—f. () /e)

IEN&

_ 1 _ lef,/ <O> effe(o) (]_ _|_ effe(o)) »
1 —efi0) 277¢ (1 — e Ji)?

x exp (—f. (0) fe) (L + O (7). (B.0.12)

Proof. ad (a). We choose § = 6 (¢) := y/ke |ln€| with k constant. The sum
(B.0.29) can be written as

Z e fe(@)/e — e‘fﬁ(o)/e(z e~ (fel@)—fe()/e Z e~ (Fe@=10)/ey  (B.0.13)

TEN, <d >5

The sums on the right hand side contains, of course, also only x € N.. With
the help of (B.0.8) and the exponentially small level sets of f. (assumption
F3), the second sum of (B.0.13) is bounded by Cos2€ te10%/€ = ¢ eka—d NG
for k large enough. As we will see this summand is negligible.

We abbreviate a = f/(0) and b = f” (0). Then we approximate f. by a
Taylor series of second order around 0:

fe (et) = fe(0) = eat + %e%t? +0 ((et)). (B.0.14)
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Inserting this into the first sum of (B.0.13), we obtain

Z exp (—fe (et) + fc (0)) /e

tENo,t<5/6

= Z exp (—at — %eth +0 (62t3))
t<d/e

= Z exp (—at — %eth) (1+0(8°/e)) . (B.0.15)
t<d/e

Notice that remainder of the sum satisfies

1
Z exp <—at — 56()152)
t>0/¢€

[e.9]

= exp (—a(t—l—[5/61)—%6[)(1&—1—(5/51)2)

=0
G 1

ok Zexp (—at - §ebt2) : (B.0.16)
=0

which is negligible compared to the last sum for k& > % Therefore

(S

<e€

Z exp (—fe (et) + fc (0)) /e
t<[d/e]

o

= (exp (—at _ %ebtz)) 1+0 (/)  (B07)

t=0

We approximate now this sum by an integral. Due to the monotonicity of
(—at — 1ebt?) on (0,00) we have

o0

1
Z exp | —at — —ebt?
2
t=0
< exp | —ax — —ebzx” | dx
0 2

< i (exp (—at — %ebt2)> . (B.0.18)

t=1
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Therefore
> 1
Zexp (—at — §ebt2) =1(a,b) +0O(1). (B.0.19)
t=0

with the Gaussian integral I defined in (B.0.1).
Since a = O (eﬂ\/@> we obtain as in (B.0.3)

I (a.,b) = J_ (1+0 (). (B.0.20)

Altogether we obtain for v small enough

—fe (et) + fc (0)) e = \[ 7 0)
KZ&/Eexp € €= 77 (0

with 8 = min {%,ﬁ}
ad (b). The sum (B.0.29) can be written as

Z e~ fe@/e — o=fe(0)/e Z e~ (felet)=fe(0))/e | Z e~ (fe(et)=fe(0)) /€

zeN, t<r/e t>k/€

1 +0 (eB |lne|3>> (B.0.21)

(B.0.22)

With the help of (B.0.10) and the exponentially small level sets of f. (as-
sumption F3), the second sum of (B.0.22) is bounded by c.e~¢*/¢. We choose
K = ke = €7 with a > 0 small, hence this summand is exponentially small.
We abbreviate a = f/(0). Then we approximate f. by a Taylor series of

second order around 0:

fe(et) — £.(0) = eat + O ((et)?) . (B.0.23)
Inserting this into the first sum of (B.O.22), we obtain

Zexp (et) + fc (0)) /e

t<k/e

= Z exp (—at) (1+ O (¢7%%)) . (B.0.24)

Notice that remainder of the sum satisfies

Z exp (—at)

t>kK/€

M8
@
%

= exp ( (B.0.25)

t=0
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which is asymptotically exponentially smaller than this last sum for o > %—fy.
Therefore

S exp (—f (et) + £ (0) fe

t<r/e
oo

= (exp (=) (1+0 (7))
1

—_ 6_(1

(140 (%)) . (B.0.26)

Hence we obtain for o = $ (1 — ) the desired estimate.
In the case v = % we obtain

[r/€]
Z exp (—fc (et) + f. (0)) /e
- t 1 " 2 2—4a
_ ;exp (—£.(0)) (1 —5efl (O)t ) (1+0 (7))
1 1 e—10) (1 4 =10 o4
_ (m S AC 1 _(eizw))?’ >> (140 (€7'(B0.27)

The last step follows from

2 _at __ at
D e —@Ze . (B.0.28)
t=0 t=0

Hence we obtain for o = % the assertion.
O

Now we want to estimate sums in Z? of the form

Z exp (fe (ex) /e) as N — oo. (B.0.29)
z€ZL?
For v = {vy,...,v4} € RY we introduce as usual the norm |-|| by
= il - B.0.30
[olloo :=  macx fuil (B-0.30)



Proposition B.2 Consider a family (fe)ee(o 1y with fe € C3 (Rd). We as-
sume f. has exponentially small level sets, i.e.

> exp(—fe(x) /) < cae. (B.0.31)

x€eZl: fe(x)>a

Assume that (f.) converges uniformly on A to a function f € C3(N). We
assume that f has only finitely many critical points. Moreover, we assume
that f and f. have a unique global minimum at 0 and V?f (0) and (V2f.(0))
are positive definite matrices such that

11%1 V3£ (0) = V2f (0) . (B.0.32)
Then we obtain

> ep(-fi) /) = 0 [ exp(-1(o)je)dex

€€zl Rd
x (1 +0O <\/E Hnd?’/Q)) .
In particular

exp (—f. (z) /) = Eﬂj/?ﬂex B )
2w (=L@ Toroy o O (T O)/0) x

= x (1 +O <\/E\lne]3/2>> . (B.0.33)

Proof. Let § := \/ke|lne| with & > 0 constant. The sum (B.0.29) can be
written as

Z e~ fe@)/e = g f0)/¢( Z e~ (fe(@)=fe(0))/e | Z e~ (@)= 1e0)/ey,
x€eZd |] o <8 lz|| oo >6
(B.0.34)
The sums on the right hand side contains, of course, also only x € €Z.
Since 0 is the unique global minimum of f. and V2f, (0) is positive defi-
nite, there exists a > 0 such that for all § > 0 small enough we have

fo(z) > f.(0) 4 ad® for all ||z > 4. (B.0.35)

With the help of (B.0.8) and the exponentially small level sets of f. (B.0.31),
the second sum of (B.0.34) is bounded by cq52¢7%"/¢. Inserting § = +/ke [In €]
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we obtain c.e?* < /e for k large enough. As we will see, this summand can
be neglected.

We denote H, = V2f.(0). To estimate the first sum in (B.0.34), we use
the second order Taylor series

1
fe (k) = £e(0) = ¢ (k, Hek) + O ([lehll%,) - (B.0.36)
Inserting this yields

Z exp [— (fe (ek) — fc (0)) /€]

keZd:||k|| , <8/€

- Y e (—%e<k,Hek>+0(53/e))

||kl <6 /€
= Z exp (—%6 (k, Hek:}) (1 +0 (\/E In e|3/2>>
|| kl| o <6 /€
=3 exp (—%e (k. Hﬁk>> (1 +O <\/E\lne|3/2>) . (B.0.37)

To obtain the last equality notice that

> exp (—%e (k, HJ{:))

killkll oo >0/

< exp (—%e_2VA) S exp (—%e(k,HJc))  (B.0.38)

kezd

where A denotes the smallest eigenvalue of H..
Since V2 (0) and (V2f.(0)) are positive definite matrices and (B.0.32)
we can apply Proposition A.1 and obtain

3

@/ _ —df2 (2m)"2 N )
2; TR P09 % (B0)
x (140 (Velme*?)). (B.0.40)
O
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