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ZusammenfassungDiese Dissertation behandelt das metastabile Verhalten von Markov Ket-ten mit abzählbarem diskreten Zustandsraum. Im ersten Teil betrahten wirMarkov Ketten, die reversibel bezüglih eines vorgegebenen Wahrsheinlih-keitsmaÿes πǫ sind. Der (kleine) Parameter ǫ ∈ (0, 1) erlaubt es uns, imRahmen des potentialtheoretishen Ansatzes von Bovier, Ekho�, Gayrardund Klein Metastabilität rigoros zu de�nieren und nahzuweisen. Der wih-tigste Begri� in diesem Ansatz ist die (Newtonshe) Kapazität einer MarkovKette. In einem ersten Shritt zeigen wir subexponentielle Abshätzungendieser Gröÿe unter sehr allgemeinen Bedingungen.Das Hauptergebnis des ersten Teils liefert eine genaue Asymptotik derKapazität unter restriktiveren Bedingungen an die Markov Kette und ihr re-versibles Maÿ. Unter zu Hilfenahme bereits bekannter Ergebnisse können wirdaraus die Eyring-Kramers Formel herleiten, die die Asymptotik bestimmtererwarteter Eintrittszeiten der Markov Kette angibt.Im zweiten Teil werden diese Resultate auf das Hop�eld Modell mit einerfesten Anzahl M von gelernten Mustern angewandt. Für die Komponentendieser Muster wählen wir unabhängige und gleihverteilte Zufallsvariablen.Wir möhten das Verhalten für groÿe Anzahlen N von Neuronen beshreiben.Dabei modellieren wir die Dynamik mittels einer Markov Kette vom GlauberTyp, die reversibel bezüglih des Gibbsmaÿes des Hop�eld Modells ist.Durh die Einführung von Blokspinvariablen erhalten wir eine MarkovKette ζN auf einer Teilmenge eines 2M -dimensionalen Gitters. Für ζN könnenwir eine metastabile Menge bestehend aus 2M Punkten angeben, wobei jederPunkt zu Kon�gurationen in der Nähe eines der Muster oder seines Negativsgehört.Wir zeigen, dass für Übergänge zwishen diesen metastabilen Punktendie Eyring-Kramers Formel gilt. Die asymptotish erwarteten Eintrittszeitenkönnen hierbei explizit angegeben werden, da wir in einem (sehr kleinen)Temperaturintervall alle essentiellen Sattelpunkte genau bestimmen können.Diese Punkte bleiben Kandidaten für die essentiellen Sattelpunkte bis zueinem bestimmten Temperatur-Shwellenwert.Mit den gleihen Einshränkungen an die Temperatur können wir shlieÿ-lih die genaue Struktur und Gröÿe der kleinsten Eigenwerte des Generatorsvon ζN bestimmen. Aufgrund der Spin-Flip Symmetrie und der anomal klei-nen Shwankungen der Grundzustände des Hop�eld Models muss die TälerStruktur des transformierten Hamiltonians berüksihtigt werden.





SummaryThis thesis is onerned with the metastable behaviour of time homoge-neous Markov hains evolving on a disrete ountable set. In the �rst part,we onsider Markov hains that are reversible with respet to a given prob-ability measure πǫ. The small parameter ǫ ∈ (0, 1) allows us to investigatemetastability rigorously in the sense of the potential theoreti approah dueto Bovier, Ekho�, Gayrard and Klein. The main notion in this approah isthe apaity of a Markov hain. We are able to show subexponential boundson this quantity under very general assumptions and for a big lass of disreteountable sets.The main theorem in the �rst part yields, under more restritive on-ditions, preise asymptotis of the apaity with multipliative errors thattend to one. As a onsequene we an prove the Eyring-Kramers formulaproviding sharp estimates for ertain expeted hitting times of our Markovhain. They exhibit the same form as in the ase of a di�usion with smallnoise intensity on a subset of Rd.In the seond part we apply our results to the Hop�eld model with a �xednumber, say M , of random patterns. We are interested in the behaviour for alarge number, N , of neurons. The dynamis are modelled by a Markov hainof Glauber type on the set of all on�gurations, {−1, 1}N , whih is reversiblewith respet to the Gibbs measure assoiated to the Hop�eld Hamiltonian.With the help of a lumping proedure, we obtain a random Markov hain ζNon a subset of a lattie with dimension 2M . We an onstrut a metastableset of ζN onsisting of 2M points that orrespond to on�gurations near oneof the patterns or its negative.Then we establish the Eyring-Kramers formula for transitions betweenthese metastable points. We obtain a ompletely expliit expression sine wean estimate preisely the (random) position and height of the relevant saddlepoints. However, this holds only in a very small intervall of the temperature,and it is an open question whether this result may be extended up to aertain temperature threshold. For temperatures that are even lower we aresure that the behaviour hanges.With the same restritions on the temperature we are able to unravel thestruture of the low lying eigenvalues of the generator of ζN . Due to the spin�ip symmetry and the anomalously small random �utuations of the groundstates we have to take into aount the valley struture of the transformedHamiltonian.
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Part I
Introdution
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1 Metastability of Markov hains
This work is onerned with the metastable behaviour of time homoge-neous Markov hains, ζ = (ζn)n∈N0

, evolving on a disrete ountable set Y .We all Y the state spae of ζ. Assume ζ is irreduible; then it is positivereurrent if and only if there exists a stationary probability distribution, π.In this ase it is alled ergodi. It then follows that π is unique and positive.1 Assume now that ζ is ergodi. Then for any f : Y → R suh that
π (|f |) < ∞ (1.0.1)and for any initial distribution µ, the pathwise ergodi theorem states that

lim
n→∞

1

n

n∑

k=0

f (ζk) = π (f) . (1.0.2)
One says that the Markov hain ζ onverges to its equilibrium π. The mainquestion we are onfronted with is how long does this take and how does theMarkov hain proeed in order to approah the equilibrium.We will be investigating Markov hains that need an exponentially longtime, measured on a ertain sale, to ome lose to the equilibrium. For �nitehains, the time an be measured on the sale of |Y |, the number of states,in general we will be using the inverse of a small parameter ǫ.One of the main motivations behind suh studies omes from the attemptto understand phenomena of non-equilibrium thermodynamis for (disor-dered) interating partile systems: Consider an interating partile systemwith N partiles, whose equilibrium is desribed by the assoiated (random)Gibbs measure on an asymptotially (for N → ∞) in�nite dimensional spae
SN . For S = {−1, 1} one has an interating spin system. In order to ob-serve how this system onverges to equilibrium, we introdue a partiularkind of dynamis, namely a disrete time Markov hain that �ips at mostone spin per time step. As we shall see in part III, in the important aseof the Hop�eld model, one an use symmetries to map this Markov hain toanother Markov hain on a subset of a �nite dimensional lattie and applyour results.1See e.g. Brémaud, [Bré99℄ Theorem 3.1, p. 104 and, for the next statement, Theorem4.1, p. 111. 5



1.1 General methodsDe�ne the hitting time of a subset A ⊂ Y to be
τA := inf {n > 0 | ζn ∈ A} . (1.1.1)To get a hold on the evolution of our Markov hain we isolate ertain hara-teristi points of the state spae Y and give preise estimates of the expetedhitting times of these points. Working with points is ertainly only possiblein a spae having at most ountably many elements.Let us say a word about the methods we are using. At the heart ofour treatment lies the Dirihlet priniple and a stohasti representation ofertain harmoni funtions. We will brie�y introdue these onepts now:Denote by Pµ the law of ζ with µ as starting distribution. If ζ starts atpoint x ∈ Y , we also write Px. Let p be the transition probability of ζ and

L := p−1l the generator of ζ. Let A and B be disjoint ompat subsets of Y .The equilibrium potential hA,B : Y → [0, 1] of ζ is de�ned to be the uniquebounded solution of the Dirihlet problem




Lh = 0 on (A ∪ B)c ,
h = 1 on A,
h = 0 on B.

(1.1.2)
We also say that hA,B is harmoni on Y \(A ∪ B) with respet to L. It is wellknown (see e.g. [Bré99℄, Theorem 2.1, p. 181) that hA,B has the stohastirepresentation

hA,B (x) = Px (τA < τB) for all x ∈ Y \ (A ∪ B) . (1.1.3)The quadrati form assoiated with L, namely
Φ (h) := −〈h, Lh〉π , (1.1.4)is alled Dirihlet form. We now onsider the spae of l2 (π)-funtions havingthe same boundary onditions as hA,B, i.e.

HA,B :=
{
h ∈ l2 (π) | h|A = 0 and h|B = 1

}
. (1.1.5)Then the Dirihlet priniple asserts that the in�mum of Φ under all funtionsof HA,B is attained by the equilibrium potential hA,B. The minimum valueis alled the (Newtonian) apaity between A and B,6



cap (A,B) := Φ (hA,B) . (1.1.6)This theorem is the analogue for reversible Markov hains of the lassialDirihlet priniple from potential theory, whih states the following: amongall ontinuously di�erentiable funtions h on a smooth bounded domain D ⊂
Rd taking spei� boundary values, the integral

∫

D

|∇h (x)|2 dx (1.1.7)is minimised by the harmoni funtions taking these boundary values. In thedisrete setting, one an further show that
Px (τA < τx) =

cap (x,A)

π (x)
, (1.1.8)and this an be applied reursively together with the Dirihlet priniple.Sine our tehniques so muh depend on the Dirihlet priniple, we haveto restrit ourselves to reversible Markov hains.

1.2 De�ning metastabilityA fundamental property of the Markov hains we investigate is their so alledmetastability. First of all, let us give an informal desription of this phe-nomenon:A Markov hain is said to exhibit metastable behaviour if, �rstly, whenstarting in a ertain subset of initial onditions, the hain remains for a�long� time in a limited subset of the state spae. Seondly, this subspae hasnegligible measure in equilibrium. And thirdly, the transition to equilibriumor to another (larger) subspae ours in an abrupt fashion.Obviously metastability is a dynamial phenomenon that an only beobserved on ertain timesales. A dynamial de�nition of metastability hasbeen suggested by Davies in [Dav82℄. The requirement that the proess spenda large time in a restrited subset domain, implies that the hain relaxesto a pseudo-equilibrium state. Thus, in a metastable state, the values ofthe marosopi observables of interest will not show any systemati time-dependene, at least after some short initial transient e�et.Gaveau and Shulman revealed in [GS98℄ the intimate relation betweenmetastable time sales and the low lying eigenvalues of the generator of a7



Markov hain. In a series of papers starting with [BEGK01℄ Bovier, Ek-ho�, Gayrard and Klein ould rigorously verify a very preise form of thisrelation for reversible Markov hains and trae it bak to their de�nition ofmetastability. They developed the so alled potential theoreti approah tometastability.In order to ome to a preise mathematial desription, we introdue asmall positive parameter ǫ, that enables us to zoom into this piture andamplify the details we are interested in.We let Λ ⊂ Rd, whereas (Λǫ)0<ǫ<1 ⊂ Λ is a family of ountable disretesets. Let (ξǫ)0<ǫ<1 be a family of irreduible homogeneous Markov hains suhthat ξǫ is positive reurrent on Λǫ. Denote by Pµ the law of ξǫ onditioned tohave µ as starting distribution. If ξǫ starts in a point x ∈ Λǫ, we also write
Px. We denote the stationary distribution of ξǫ by πǫ. Suh Markov hainsan be fully haraterised by speifying their transition matrix pǫ.In the following, we will often be dealing with probabilities like Px [τA < τx]whih we all esape probability from x to A.Following Bovier, Ekho�, Gayrard and Klein [BEGK02℄, we de�ne meta-stability in the following way:De�nition 1.1 (metastability) Let Mǫ be a �nite subset of Λǫ suh that theardinality |Mǫ| is independent of ǫ. Let ρ : (0, 1) → (0, 1) be a monotoneinreasing funtion with limǫ↓0 ρ (ǫ) = 0.Then the family of Markov proesses (ξǫ)ǫ∈(0,1) is said to be ρ-metastablewith respet to (Mǫ), if

max
m∈Mǫ

Pm (τMǫ
< τm) ≤ ρ (ǫ) inf

x/∈Mǫ

Px (τMǫ
< τx) . (1.2.1)The elements of Mǫ are alled ρ-metastable points of (ξǫ).We say (ξǫ) is metastable with respet to (Mǫ) if there exists a funtion

ρ for whih (ξǫ) is ρ-metastable.This de�nition suggest a deomposition of the state spae into a �nite ol-letion of subsets. We de�ne for eah point m ∈ Mǫ the domain of attrationof m by
A (m,Mǫ) :=

{
x ∈ Λǫ |Px (τm = τMǫ

) ≥ max
n∈Mǫ

Px (τn = τMǫ
)

}
. (1.2.2)In words, De�nition 1.1 states the following: The in�mum of the esapeprobabilities from any point x ∈ M c

ǫ to Mǫ is muh bigger than the esape8



probability from a point, m, in Mǫ to another one. The funtion ρ in Def-inition 1.1 desribes the fator, by whih the esape probabilities betweenmetastable points is smaller ompared to the esape probability of any pointwith respet to the set of metastable points.Therefore we have at least two di�erent time sales: One that measuresthe time required for a typial exursion away from m that stays inside
A (m,Mǫ) and another one on whih we expet a hangeover to Mǫ \ m.This type of behaviour has been studied for a long time and is rigorouslytreated on the level of large deviations, in partiular in the book of Freidlinand Wentzell [FW84℄.The bene�t of De�nition 1.1 is that we only have to ontrol hitting timesof points or �nite sets of points on the state spae. In the analogues situationof a Di�usion in Rd, one an deal with small balls around these points (see[BEGK04℄).Observe that De�nition 1.1 does not determine a unique family (Mǫ)even for �xed ρ. Indeed, having isolated a very large set Mǫ, in many asesone an �nd a subset Nǫ ⊂ Mǫ suh that the Markov hain also exhibitsa metastable behaviour with respet to Nǫ. We formulate this importantproperty of De�nition 1.1 inProposition 1.2 Assume we have hoose the set Mǫ suh that

πǫ (m) = max
x∈A(m,Mǫ)

πǫ (x) . (1.2.3)
Let Iǫ be the set of all i ∈ Mǫ for whih there exists c > 0, independent of ǫ,suh that

Pi (τMǫ
< τi) ≥ c max

m∈Mǫ

Pm (τMǫ
< τm) . (1.2.4)Then we an onstrut a minimal set Jǫ ⊂ Iǫ suh that (ξǫ) is metastablewith respet to M̂ǫ ≡ Mǫ \ Jǫ.We will use this redution mehanism in part III to �nd the low lying eigen-values for the generator. A similar argument has been used by Bovier et al.in [BEGK02℄.A striking example of the power of De�nition 1.1, and the assoiatedpotential theoreti approah, is the reent work of Bovier, den Hollander andNardi [BdHN06℄, about the metastable behaviour of a lattie gas subjet toKawasaki dynamis in two or three dimensions in the limit of low temperatureand low density. 9



1.3 Estimation of the apaityWe need to introdue some notions about the strutural properties of theequilibrium measure πǫ.De�nition 1.3 Sine πǫ is positive, we an de�ne the potential Fǫ : Λǫ →
R>0 by

Fǫ (x) := −ǫ ln πǫ (x) . (1.3.1)We now assume that (Fǫ) onverges uniformly to a unique ontinuousfuntion F : Λ → R≥0, i.e. for all κ > 0 there exists ǫ0 > 0 suh that for all
ǫ < ǫ0 we have

sup
x∈Λǫ

|Fǫ (x) − F (x)| < κ. (1.3.2)Moreover, we assume that F has ompat level sets, i.e.
{F ≤ b} ⊂⊂ Λ for all b ≥ 0. (1.3.3)Hene, for small ǫ the potential will be the essential objet, while the invariantmeasure degenerates in the limit.The key result that we prove for reversible Markov hains ξǫ on a uni-formly loally �nite graph establishes a onnetion between the dynamialbehaviour of the hain and the geometry of its potential F . Similar versionshave been shown e.g. in [BEGK01℄.To do this we desribe the geometry of F with the help of the followingnotions: A path γ is a �nite sequene (γ1, . . . , γk) of ommuniating points,i.e. pǫ (γi, γi+1) > 0 for all 1 ≤ i ≤ k − 1. We write x ∈ γ when γ visits thepoint x. Let A and B be disjoint ompat subsets of Λǫ. We denote by PA,Bthe set of paths starting in A and ending in B. We de�ne the ommuniationheight between A and B to be
F̂ǫ (A,B) := min

γ∈PA,B

max
x∈γ

Fǫ (x) . (1.3.4)
We denote the lower level set of F̂ǫ (A,B) by

Wǫ(A,B) :=
{

x ∈ Λǫ |Fǫ (x) < F̂ǫ (A,B)
}

. (1.3.5)Assume A ⊂ Wǫ(A,B). Then the onneted omponent of Wǫ(A,B) ontain-ing A is alled the valley of A with respet to B and is denoted by V
(ǫ)
B (A).Under a mild ondition on the transition probabilities pǫ (see setion II.4)we obtain then 10



Proposition 1.4 Let (ξǫ) be a family of ergodi and reversible Markov hains.Let A and B be disjoint ompat sets of Λǫ suh that Fǫ (x) < F̂ǫ (A,B) forall x ∈ A.Then, under some regularity onditions there exist a onstants c1, c2 > 0suh that
c1ǫ

d ≤ cap (A,B)

exp
(
−F̂ǫ (A,B) /ǫ

) ≤ c2ǫ
−d. (1.3.6)

This property shows already how the potential theoreti approah works:The apaity, whih gives us information about the generator of the Markovhain ξǫ, and therefore about the dynamis of our proess, an be estimatedby quantities re�eting the geometry of the potential.For example given m ∈ Mǫ it always holds true that the valley of m withrespet fo Mǫ is a subset of the domain of attration A (m,Mǫ).To further illustrate the usage of Proposition 1.4 let M be the set of allloal minima of F , and assume M onsists of �nitely many points. ThenProposition 1.4 implies that there exist subsets Mǫ of Λǫ with |Mǫ| = |M|and suh that ξǫ is metastable with respet to (Mǫ). (See Example 4.10)Observe that we are not assuming that the limiting funtion F is di�er-entiable. Bovier and Faggionato used similar results to prove metastabilityin the sense of De�nition 1.1 for Sinai's random walk in a random potentialand gave preise estimates for the assoiated apaity [BF05℄.Let us now assume that Λǫ ≡ Λ ∩ ǫZd. Under some more restritiveassumptions on the potentials Fǫ, and assuming the limiting potential F isin C3 (Λ), we provide mathing upper and lower bounds of the apaity upto multipliative errors that tend to one. To state the result preisely wede�ne the set of optimal paths between two minima m,n ∈ Mǫ by
Om,n :=

{
γ ∈ Pm,n | max

x∈γ
Fǫ (x) = F̂ǫ (m,n)

}
. (1.3.7)

For simpliity, we assume here that there is a unique point, s ≡ s∗ (m,n),that is visited by all paths of Om,n. This point is alled the relevant saddlepoint between m and n. Our basi example for ξǫ is the Metropolis samplerof the measure πǫ. In this ase we have
pǫ (x, y) =





1
2d

min
(
1, πǫ(y)

πǫ(x)

) if y ∈ Nx,

1 −∑z∈Nx
pǫ (x, z) if y = x,

0 else. (1.3.8)
11



We then prove the followingTheorem 1.5 Let (ξǫ) be a family of ergodi Markov hains with reversiblemeasure πǫ. Let m,n ∈ Mǫ, and assume s ≡ s∗ǫ (m,n) is the unique relevantsaddle point between them. Then, under some regularity onditions,
cap (m,n) =

1

2d

(
2π

ǫ

)d/2−1
λd√

|det∇2Fǫ (s)|
×

× exp (−Fǫ (s) /ǫ)
(
1 + O

(√
ǫ |ln ǫ|3/2

))
, (1.3.9)where −λd is the unique negative eigenvalue of the Hessian matrix ∇2Fǫ (s)at the relevant saddle point.The general strategy to prove this result is the same as in [BEGK04℄: First,we will establish a diret onnetion between return probabilities and theapaity cap (A,B) between disjoint subsets A and B of Λǫ (see De�nition3.6), namely

cap (A,B) =
∑

x∈B

πǫ (x) Px (τA < τx) . (1.3.10)
To obtain estimates for the apaity, we then use the Dirihlet priniple. Inthe reversible setting, one an rewrite the Dirihlet form as a sum of positiveterms, and this in turn yields a priori bounds on the apaity.In a seond step, we use a renewal equation for ξǫ to obtain

hA,B (x) ≤ cap (x,A)

cap (x,B)
, (1.3.11)so that the a priori bounds for the apaity yield upper bounds for hA,B and

hB,A = 1 − hA,B. The form of these bounds suggests, as we will see, thatonly a neighbourhood of the relevant saddle points (see De�nition 4.3) needsto be investigated in detail. Just like in the ontinuous setting, a preiseupper bound for the apaity an be ahieved by hoosing a funtion h+that is nearly optimal in a ertain neighbourhood of the relevant saddles andinserting it in the Dirihlet form Φ. But the lower bound is more intriate.A speial problem in the disrete setting is that the instable diretion of arelevant saddle need not to be one of the lattie diretions. To overome thisdi�ulty, we partition the lattie in a neighbourhood of a relevant saddle intoparallel �strings�, eah string pointing in the right diretion and having somemirosopi struture. In partiular, these strings are in general non-disjoint.12



1.4 Expeted hitting timesExpeted hitting times are interesting quantities not only for themselves, butalso beause of their onnetion to the eigenvalues of the generator of ξǫ, seee.g. [BEGK02℄. We will disuss this point in part III in the ontext of theHop�eld model.In [BEGK02℄ (Corollary 3.3, p.230) it has been shown that the expetedhitting times of reversible Markov hains an be expressed by quantities wealready know, namely
ExτA =

πǫ (hx,A)

cap (x,A)
. (1.4.1)In the ontext of a �nite state spae it was also established, (see [BEGK02℄,Theorem 3.5, p. 231) that if (ξǫ) is metastable with respet to Mǫ, then for

m ∈ Mǫ

EmτMǫ\m =
πǫ (Aǫ (m))

cap (m,Mǫ \ m)
(1 + O (ρ (ǫ) |Λǫ|)) . (1.4.2)Furthermore, aording to their Corollary 3.4 (p. 230) one has

Ex (τMǫ
) ≤ |Λǫ|

aǫ
, (1.4.3)

where
aǫ := inf

x∈Eǫ\Mǫ

Px (τMǫ
< τx) . (1.4.4)By using formula (1.4.2) for the expeted hitting time, one obains that afamily of reversible Markov hains (ξǫ) on a �nite state spae is ρ-metastablewith respet to Mǫ i�

inf
m∈Mǫ

Em

(
τMǫ\m

)
≥ 1

ρ (ǫ)
sup

x∈Λǫ\Mǫ

Ex (τMǫ
) , (1.4.5)

where
ρ (ǫ) = ρ (ǫ) |Λǫ|

πǫ (m)

πǫ (Aǫ (m))
. (1.4.6)Observe that (1.4.5) is useless for ountable state spaes Λǫ, sine then ρ (ǫ) =

∞. This an not be repaired easily, beause
sup

x∈Λǫ\Mǫ

Ex (τMǫ
) (1.4.7)

13



an also be in�nity in this ase.The main theorem of this part is the Eyring-Kramers formula, whih westate here only for the Metropolis algorithm and in the ase of a uniquerelevant saddle point, for simpliity.Theorem 1.6 (Eyring-Kramers formula) Let m ∈ Mǫ and assume s is theunique relevant saddle point between m and Mǫ \ m. Denote by −λ̂d theunique negative eigenvalue of p (s) · ∇2Fǫ (s). Then for ξǫ starting in m, theexpeted time needed to reah another point of Mǫ is given by
Em

(
τMǫ\m

)
=

2π

ǫ

1

λ̂d

√
|det∇2Fǫ (s)|
|det∇2Fǫ (m)| exp {(Fǫ (s) − Fǫ (m)) /ǫ} ×

×
(
1 + O

(√
ǫ |ln ǫ|3/2

))
. (1.4.8)We are left with theOpen Question How ould these expeted hitting times be given preiseestimates in the ase of a non-reversible Markov hain?

1.5 The pathwise approahIn the reent treatise �Large Deviations and Metastability� by Enzo Olivieriand Maria Eulalia Vares, [OV05℄, metastability is disussed in great detailfrom the point of view of a pathwise approah. Let us transfer in our settingthe two asymptoti properties of Metastability whih are emphasised in thisbook.A point m ∈ Λǫ is alled metastable in the sense of Olivieri and Vares i�the following two properties hold:1. Unpreditability of the tunneling time.Assume ξǫ starts in m. Then τMǫ\m is alled unpreditable if it on-verges in distribution to an exponential random variable, i.e.
τMǫ\m

Em

(
τMǫ\m

) D→ E for ǫ ↓ 0, (1.5.1)
where E is a unit mean exponential random variable.14



2. Thermalisation.Let s, t ∈ N0. We de�ne the empirial average measure of ξǫ betweenthe times s and s + t as
µs,t :=

1

t

s+t∑

k=s+1

δξǫ
k
. (1.5.2)

Hene µs,t (B) is the fration of time ξǫ spends in B ⊂ Λǫ between time
s and s + t. Let V := V

(ǫ)
Mǫ\m (m) be the valley of m with respet to

Mǫ \ m.Let ξǫ again start at m. We say ξǫ thermalises at m if there exists a de-terministi time sale tǫ suh that limǫ↓0 tǫ = ∞, but tǫ = o (Em (τ∂+V ))and for every open set B ⊂ Rd ontaining m and every κ > 0

lim
ǫ↓0

Pm

(
τ∂+V > tǫ and sup

s<τ∂+V −tǫ

µs,tǫ (B) > 1 − κ

)
= 1. (1.5.3)

Bovier, Ekho�, Gayrard and Klein showed indeed that the unpreditabilityan be seen as a onsequene of De�nition 1.1, see [BEGK02℄, Theorem 1.3(iv), p. 223.Here we show:Theorem 1.7 Let (ξǫ) be a family of ergodi and reversible Markov hains.Let Mǫ be the set of loal minima of Fǫ. Assume that Mǫ is a �nite setand |Mǫ| is independent of ǫ. Choose m ∈ Mǫ and let V := V
(ǫ)
Mǫ\m (m)be the valley of m with respet to Mǫ \ m. Assume ξǫ starts at m, then itthermalises at m.It should be possible to show thermalisation for more general sets. Thereforewe haveOpen Question Show the thermalisation property for a general metastableset in the sense of De�nition 1.1.At least up to now, De�nition 1.1 an desribe more general situations. Itfouses not only on a single metastable state and the ensuing transition toequilibrium, but desribes a onsistent set of metastable points. Moreover,it seems to be easier to hek the riterion of De�nition 1.1 than the ther-malisation property mentioned in the pathwise approah.

15



2 Metastability in the Hop�eld model
2.1 The Hop�eld modelIn the seond part of this work, we apply the general results on metastabilityof ountable Markov hains to investigate the metastable behaviour of theHop�eld model.A famous interpretation of the Hop�eld model is to view it as a model fora neural network. Basially we mean by a neural network model a labeledand possibly oriented graph Γ = (Λ, E) together with a set S with at leasttwo elements; Λ is the set of neurons and E the set of synapses onnetingthese neurons. The ativity of eah of the neurons is desribed by a variable
σi taking its values in S, for all i ∈ Λ). We will model the dynamis of thisnetwork by a Markov hain σG = {σG (t)}t∈N0

on SΛ.One of the most important advanes due to Hop�eld ([Hop82℄) has beento understand that these dynamis orrespond to a Hamiltonian HN . As-sume the information to be stored is enoded in so-alled patterns ξµ, µ ∈
{1, . . . ,M (N)}, eah of the ξµ itself being a sequene of ξµ

i ∈ S for i ∈
{1, . . . , N}. To make the neural net apable of adapting to di�erent sequenesof patterns, we have to introdue a set of variables Jij for all {i, j} ∈ E alledthe synapti e�ay and desribing the strength of interation between theneurons at sites i and j. It is ommonly assumed that the variable Jij is mea-surable with respet to the set {ξµ

i , ξµ
j |µ ∈ {1, . . . ,M (N)}

}. This is thenalled loality of the weights Jij. The assoiated Hamiltonian HN is givenby
HN (σ) := −1

2

∑

{i,j}∈E

Jijσiσj. (2.1.1)
The Hop�eld model ([Hop82℄) is among the most lassial and best under-stood models of neural network. Although originally introdued by Pasturand Figotin, [FP77℄, as a simpli�ed model of a spin glass, this model earnedmuh of its suess through its reinterpretation as an auto-assoiative mem-ory by Hop�eld and may therefore by right be alled the Hop�eld model. Herethe graph G is the omplete graph KN on the vertex set Λ = {1, . . . , N} and

S = {−1,+1} orresponds to a neuron being swithed either 'on' or 'o�',16



and the weights Jij are given by 'Hebb's learning rule', i.e. by the formula
Jij :=

1

N

M(N)∑

µ=1

ξµ
i ξµ

j . (2.1.2)
Note that (2.1.1) may be rewritten in the onvenient form

HN [ξ] (σ) = − 1

2N

M(N)∑

µ=1

〈ξµ, σ〉2 . (2.1.3)
The salar produt 1

N
〈ξµ, σ〉 is the so alled overlap between ξµ and σ. Notethat this salar produt may be regarded as an index for how similar σ is toeither ξµ or −ξµ, beause its absolute value an be written as

1

N
|〈ξµ, ξν〉| = 1 − 2 min {dH (ξµ, ξν) , dH (ξµ,−ξν)} , (2.1.4)where dH is the normalised Hamming distane, namely

dH (σ, τ) =
1

N

N∑

i=1

1 (σi 6= τi) . (2.1.5)
At this point, one may notie the spin-�ip symmetry

HN (−σ) = HN (σ) , (2.1.6)showing that the Hop�eld model an not distinguish between a spin on�g-uration and its negative.Observe also that (2.1.3) makes it plausible that - at least for M (N) smallenough - the minima of HN are loated lose to the patterns ξµ. (Atuallythis is trivially ful�lled if the patterns are orthogonal, i.e. if 〈ξµ, ξν〉 = δµν).Let β ∈ R≥0 be a non negative parameter; in the ontext of statistialmehanis it plays the role of an inverse temperature. The Hamiltonian HNdetermines a �nite volume Gibbs measure πN ≡ πN,β [ξ] given by
πN (σ) :=

1

ZN,β

exp (−βHN (σ)) . (2.1.7)
Here, ZN,β ≡∑σ∈SN exp (−βHN (σ)), the partition funtion, is a normalisingfator assuring that πN is a probability measure.17



From now on we will refer to the Hop�eld model as a Markov hain
σN,β ≡ (σN,β (t))t∈N0

on the on�guration spae SN that is reversible withrespet to the Gibbs measure πN . We onsider Glauber dynamis, so thatduring eah time step at most one spin is �ipped.Now we hoose the omponents of the patterns, ξµ
i , uniformly at randomin {−1, 1} and independently of eah other. Of ourse, σN,β is then a Markovhain with random rates. The dependene on

ξ ≡ (ξµ)1≤µ≤M (2.1.8)will be indiated expliitly whenever we want to stress it. Otherwise, we willfrequently drop it to simplify the notation.There exists a threshold value for the number of patterns suh that thememory works for low temperatures i.e. β > 1. The ritial dependene is
M (N) ∼ αN with α ≈ 0, 138. (see e.g. [AGS85℄,[AGS87℄,[BG94℄).We assume M (N) ≡ M to be a �nite number, independent of N , andtherefore we are in the regime of perfet memory. We will analyse the longtime behaviour of σβ,N . As we will see this an be desribed in the generalframework of metastability.The following two papers have dealt with several aspets of the problem.

• V.A. Malyshev, F.M. Spieksma �Dynamis in Binary Neural Networkswith a Finite Number of Patterns� ([MS97℄) treats the ase of zero tem-perature, i.e. β = ∞. In this setting the phenomenon of metastabilitydoes not our. If the proess reahes one of the loal minima of the ef-fetive energy H̄, it stays there forever. The stohasti behaviour theyinvestigate is loalised at the boundaries of the domains of attrationof di�erent minima.
• In G. Biroli and R. Monasson, �Relationship between Long Time Salesand the Stati Free-Energy in the Hop�eld Model�, ([BM98℄), ontraryto the announement in the title, the authors do not really investigatethe long time behaviour of the Hop�eld model. They only show thatthe Hop�eld model behaves in the neighbourhood of a ritial pointlike a quantum mehanial harmoni osillator, i.e. that the e�etiveenergy an be approximated by a quadrati funtion near the ritialpoints.We use the symmetry of the model to redue the dimension of the statespae from N to d ≡ 2M . This is done by a transformation invented by18



Grensing and Kühn [GK86℄ that lumps together ertain groups of spins. Therandomness of the pattern ξµ is then enoded in the size ℓk ≡ N
d
(1 + 1√

N
λk)of these groups. In the following we restrit ourselves to the set of patterns Ξsuh that λk = O[lnN ] for all k. Observe that due to the law of the iteratedlogarithm Ξ has asymptotially full measure. The transformed proess is aMarkov hain, ζN,β, on the (random) d-dimensional lattie LN,β = ×d

k=1
2
ℓk

Zinterseted with the hyperube [−1, 1]d. ζN,β is again reversible with respetto a Gibbs measure ̺N,β, whih is haraterised by a modi�ed Hamiltonian
HN,β.We an think of ζβ,N as a proess exploring a landsape given by therandom funtion fβ,λ that equals up to a onstant 1

N
HN,β. The groundstates orresponds in this piture to the global minima of fβ,λ.Let {b1, . . . , bd} be an enumeration of all vetors in {−1, 1}M . Hene

bµ ∈ {−1, 1}d, and we denote b−µ := −bµ. Moreover, we introdue the graph
G = (V,E), where

V := {−M, . . . ,M} \ {0}and
E := {{µ, ν} ∈ V × V |µ /∈ {−ν, ν}} .Let m∗ denote the unique positive solution of the 'mean �eld equation'

m = tanh (βm) . (2.1.9)Similarly to e.g. Genz, ([Gen96℄), we show that for all β > 1 the globalminima of fβ,λ have positions that are small random perturbations of thepoints
mµ = m∗bµ for µ ∈ V. (2.1.10)Therefore the set of global minima of fβ,λ an be written as
MN := (mµ |µ ∈ V ) . (2.1.11)The minimum m±µ orresponds to a spin on�guration near the µ-th patternor its negative, −ξµ.We wil show that the Hop�eld model exhibits metastable behaviour.Therefore, as we saw in part II the long time evolution of ζN,β is ontrolledby the position and height of the so alled relevant saddle points between theminima. To determine them, we have to be very areful. In a quite smallinterval of the temperature, namely 1 < β < 1 + (9d + 500M 8)

−1, Koh19



and Piasko showed that the so alled �symmetri solutions� provide the onlyritial points of the deterministi funtion fβ ≡ f
(N)
β,0 .Sine all these ritial points are non degenerate (det∇2fβ (s) 6= 0), theonly andidates for relevant saddle points are the ritial points of fβ with aHessian matrix with one negative and (d − 1) positive eigenvalues (1-saddles).We show that fβ,λ has a unique ritial point in a small neighbourhood ofeah 1-saddle of the symmetri solutions

sµ,ν =
1

2
m∗ (bµ + bν) for {µ, ν} ∈ E, (2.1.12)and these are the only 1-saddles. Hene the set of 1-saddles an be repre-sented by (

sµν

∣∣ {µ, ν} ∈ E
)
. (2.1.13)These points are 1-saddles for all 1 < β < βc, where βc ≈ 1.7 is the uniquepositive solution of β = 2

2−m∗(β)2
. This leads to the followingOpen Question (a) Is it true that for all 1 < β < βc the relevant saddlesbetween the global minima of fβ,λ, namely between the elements in

MN , are ontained in
(
sµν

∣∣ {µ, ν} ∈ E
)
? (2.1.14)(b) What are the relevant saddles between these global minima for

β ≥ βc?In ontrast to the heights of the lowest minima of fβ,λ the heights of the1-saddles perform random �utuations with an amplitude of order 1/
√

N .To give the preise form of these �utuations, we denote the free energy ofthe Curie-Weiss model by
fCW (β) :=

1

2
m∗2 − 1

β
I (m∗) . (2.1.15)

We introdue the symmetri matrix AN given by
Aµν

N :=
1√
N

〈ξµ, ξν〉 for all µ 6= ν (2.1.16)
and Aµµ

N := 0. As Külske pointed out ([Kül97℄), the matrix AN has asymp-totially standard normal entries outside the diagonal.20



Proposition 2.1 For all ξ ∈ Ξ and N ≥ N0 [ξ], we obtain
fβ,λ (m±µ)

= −fCW (β) +
k0

N

(
A2

N

)µ,µ
+ O

(
ln N√

N

)3 (2.1.17)and
fβ,λ (sµ,±ν)

= −1

2
fCW (β) ∓ k1√

N
Aµ,ν

N +

−k2

N

∑

α

(Aαµ
N ± Aαν

N )2 − k3

N
(Aµν

N )2 + O
(

ln N√
N

)3

. (2.1.18)
The onstants an be given expliitly in terms of β,M and m∗.We now have all the ingredients enabling us to apply the Eyring-Kramersformula proved in part 1 in order to give a preise estimate for the expetedtime needed by ζβ,N to hange over from one ground state to another one.In the ontext of a neural network we an say we are assoiating anotherpattern to the one we remembered �rst. Despite the mean �eld nature of theHop�eld model and the i.i.d. hoie of the patterns, this will be for all ξ ∈ Ξand N ≥ N0 [ξ] uniquely determined.We state our result for the (random) Markov hain ζβ,N [ξ] on the ompatstate spae XN [ξ] ≡ [−1, 1]d ∩ LN [ξ].We assume that the values (Aµν

n )1≤µ<ν≤M are all su�iently di�erent.Therefore we de�ne
JN,δ [ξ] :=

{
n ≤ N | min

a,b∈E

(
Aa

n − Ab
n

)
< n− 1

2
+δ

}
. (2.1.19)We an show that this set has ardinality

|JN,δ [ξ]| = o (N) for all ξ ∈ Z ′
δ. (2.1.20)We denote now

Jδ [ξ] :=

{
n ∈ N | min

a,b∈E

(
Aa

n − Ab
n

)
< n− 1

2
+δ

}
. (2.1.21)For simpliity we assume that the original Markov hain σN,β is the(Glauber) Metropolis algorithm for πN .21



Theorem 2.2 We assume 1 < β < 1 + (9d + 500M 8)
−1. Choose δ ∈ (0, 1

2
)and assume ξ ∈ Z ′

δ and N ≥ N0[ξ], as well as N ∈ Jδ. Let I and J bedisjoint subsets of MN .If s ∈ SN (I, J) is a relevant saddle point between I and J we obtain
cap (I, J) = k4|SN (I, J)|N (d−2)/2̺N,β(s) ×

×
(
1 + O

(√
ln3 N/

√
N
))

. (2.1.22)
Starting in m ∈ MN \I the expeted (quenhed) hitting time of J satis�es

Em (τI) =
k5N

|SN (m,J)|
∑

n∈VJ (m)

exp(NbN(n, J)) ×

×
(
1 + O

(√
ln3 N/

√
N
))

, (2.1.23)where
bN(n, J) := β

(
f̂β,λ (n, I) − fβ,λ(n)

) (2.1.24)is the barrier between n and J . The onstants k4 and k5 an be given expli-itly.Of ourse, the assumption of independene of the pattern omponentsis only one possible hoie. Indeed, there are at least two sensible ways ofintroduing orrelations among the patterns. One is to onsider spatial or-relation, i.e. to hoose the patterns orrelated in i but independent in µ,whih may be interesting when e.g. thinking about the patterns as images tobe stored. The other way is to hoose sequentially or semantially orrelatedpatterns, whih means that the dependeny now enters via µ only. This sit-uation might be useful as a very simple model for patterns with some sort ofausal relations, as in the storage of �lms for example. The dependene anbe modelled e.g. via a Markov hain, i.e. in the ase of spatial orrelation,
ξµ
i+1 taking with probability p ∈ (0, 1) the same value as ξµ

i and with proba-bility (1 − p) the value of −ξµ
i . (See for example Löwe [Löw98℄). This leadstoOpen Question Is it possible to ompute the (Newtonian) apaity and theexpeted hitting times separating ground states in a Hop�eld modelwith spatially or semantially orrelated patterns?
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2.2 Struture of the ground statesWe an represent the struture of fβ,λ (given by the minima and the 1-saddles) through a weighted graph (V,E,w). The weights are given by
wµ,ν = exp (−k1 〈ξµ, ξν〉) for all {µ, ν} ∈ E. (2.2.1)Due to the spin �ip symmetry, we obtain the same weights between thenegatives, −mµ, i.e. w−µ,−ν = wµν . The ross weights are given by w−µ,ν =

wµ,−ν = 1/wµν for µ 6= ν. There is no onnetion between mµ and −mµ, i.e.
wµ,−µ = ∞.The form of these weights implies that it is muh easier to use severaledges (µ, ν) with smaller values of Aµν

N than one with a larger matrix entry.Consider the simpli�ed weighted graph (V ,E,w
), where we identify µand its negative −µ, i.e. the set of verties is V := {1, . . . ,M}, the edge setis E =

{
{µ, ν} ∈ V × V |µ 6= ν

}, and de�ne
wµν := min (wµν , wµ,−ν) for {µ, ν} ∈ E. (2.2.2)Hene we obtain

wµν = exp (−k1 |〈ξµ, ξν〉|) . (2.2.3)This graph indues a tree struture appearing in the following way: Wearrange the edges linearly as (s1, s2, . . .) in suh a way that
wsi

< wsi+1
for all 1 ≤ i ≤

(
M

2

)
. (2.2.4)

Now we start with M single verties and then merge together lasses ofverties aording to this order until all verties are in one lass. Using therepresentation (2.1.4), we see that the distane of two leaves in this tree, say
mµ and mν , is determined by the minimal number of spins one has to hangein ξµ in order to reah either ξν or −ξν .Sine every onneted graph inludes all edges orresponding to essentialsaddles, these are inluded in partiular in the edgeset of the minimal on-neted graph. We then apply a theorem of Erdös and Rényi from the theoryof random graphs to get the desired estimate.Theorem 2.3 Let ξ ∈ Ξ and N ≥ N0 [ξ], and assume 1 < β < 1 +
(9d + 500M 8)

−1. Then asymptotially almost surely (for M → ∞), the om-muniation height between two disjoint subsets of MN , say I and J , an be23



estimated by
f̂β,λ(I, J) ≤ 1

2
fCW (β) − k1√

N

√
2 lnM. (2.2.5)

We now want to determine the low lying eigenvalues of the Hop�eldmodel. Let {λ0, . . . , λ2M−1} with 0 = λ0 ≤ . . . ≤ λ2M−1 be the small-est eigenvalues of the generator −LN,β [ξ] of the transformed Markov hain
ζN,β [ξ].Due to the symmetry under total spin �ip and the unusually small �utu-ations of the heights of the minima in MN , we annot diretly use the resultsof Bovier, Ekho�, Gayrard and Klein in [BEGK02℄, but we an apply similarmethods.The weighted graph struture (V,E,w) governs the form of the smalleigenvalues of the generator L ≡ LN,β [ξ]. Let T = (t1, . . . , t2M−1) be aminimal spanning tree of (V,E,w) suh that

wt2M−1 ≤ wt2M−2 ≤ . . . ≤ wt1 < 0.Notie that (up to the order and sometimes hoie of equally weighted edges)Kruskal's algorithm to onstrut a minimal spanning tree starts with t2M−1and adds along our enumeration edges to the spanning tree until it ends with
t1. Let IT ⊂ {1, . . . , 2M − 1} denote the set of indies suh that wti < wti−1 .Using the exeption set Jδ de�ned by equation (2.1.21) we obtainTheorem 2.4 Let ξ ∈ Z ′

δ and N ≥ N0 [ξ]. There exists an inreasing se-quene (Mi | i ∈ IT ) of metastable sets of ζN,β. We de�ne
E∗

i = arg min
{m,n}∈Mi×Mi

(
f̂β,λ (m,n)

)
. (2.2.6)

Denote for all m ∈ Mi

γm,i = Em

(
τMi\m

)−1
. (2.2.7)We distinguish three ases:

• Assume E∗
i = {{m,n} , {−m,−n}}, then

λi−1 = λi = (γm,i + γn,i)
(
1 + O

(
e−δN

))
. (2.2.8)
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• Assume E∗
i = {{m,n} , {−m,n}}, then

λi = (2γm,i + γn,i)
(
1 + O

(
e−δN

)) (2.2.9)and
λi−1 = γm,i

(
1 + O

(
e−δN

))
. (2.2.10)

• Assume E∗
i = {m,n}, then

λi = (γm,i + γn,i)
(
1 + O

(
e−δN

))
. (2.2.11)

Together with Theorem 2.2 this yields expliit estimates for the low lyingspetrum of the generator of ζN,β.
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Part II
Metastability of Markov Chains
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3 Equilibrium potential and apaityThis setion desribes the potential theoreti approah to metastabilitydeveloped by Bovier, Ekho�, Gayrard and Klein. A review of this an also befound in [Bov04℄. We use this here mostly to introdue the notation. The po-tential theoreti approah works for ergodi Markov proesses on onnetedloally �nite graphs. The most results require a reversible proess.A graph, Γ, onsists of a ountable disrete set, Y , that has no lusterpoints and a nonempty set, G ⊂ Y ×Y , of ordered pairs of points, suh that
(x, y) ∈ G if and only if (y, x) ∈ G. Without restrition of generality weassume that all self edges (x, x) are in G. We say y is in the neighbourhoodof x, i.e. y ∈ Nx if (x, y) ∈ G and x 6= y. The family N = {Nx}x∈Y is alledthe neighbourhood system of Γ assoiated to G. We say Γ is loally �nite, ifthe number of neighbours of eah point is �nite, i.e. |Nx| < ∞ for all x ∈ Y .For A ⊂ Y we de�ne the external boundary to be

∂+A :=

(
⋃

s∈A

Ns

)
\ A (3.0.1)

and the internal boundary to be
∂−A := ∂+ (Ac) . (3.0.2)Here Ac denotes the omplement of A. De�ne moreover the thikened set
A+ := A ∪ ∂+A. (3.0.3)Let Γ = (Y,G) be a loally �nite onneted graph and ζ ≡ (ζt)t∈T

ahomogeneous Markov proess on Γ with time set T. We onsider the asesof ontinuous time set, i.e. T = R≥0 and of disrete time, i.e. T = N0. Inthe disrete time ase we all ζ a Markov hain. Here, ζ is haraterisedby the starting distribution and the transition probability, p. By ζ being aMarkov proess on Γ we mean that p (x, y) > 0 if and only if (x, y) ∈ G. Forontinuous time a Markov proess on Γ has the property (ξt, ξt−) ∈ G for all
t ∈ R≥0.We assume that ζ is ergodi. Hene the whole spae Y is a positivereurrent lass of ζ and there exists a unique invariant probability measure
π. For x ∈ Y we denote by Px the law of ζ with starting point x and by Exthe assoiated expetation. Sine some statements of this setion do not usereversibility, we indiate the plaes where it enters.29



De�nition 3.1 We all a homogeneous Markov proess, ζ, with ontinu-ous time set regular i� it is stable, onservative and nonexplosive, i.e. itsin�nitesimal generator, L, is of the form
Lf (x) =

∑

y∈Nx

L (x, y) (f (y) − f (x)) (3.0.4)
with non negative �nite rates (L (x, y))x6=y and ζ has a.s. only �nitely manyjumps in a �nite interval of time. The waiting time of ζ at a point x ∈ Y isan exponential distributed random variable with parameter

r (x) :=
∑

y∈Nx

L (x, y) . (3.0.5)
Remark 3.2 The Criterion of Reuter says that a stable and onservativegenerator L is nonexplosive i� it admits no non-negative bounded eigenve-tors with positive eigenvalue (see [Bré99℄, Theorem 4.4, p. 351).The embedded Markov hain forgets about the waiting times of ζ and notiesonly the jumps while taking the number of jumps as time. We de�neDe�nition 3.3 Let ζ be a regular Markov proess with ontinuous timeparameter and generator L. We denote r (x) := −L (x, x). The embeddedMarkov hain is de�ned to have the same starting distribution and a transi-tion matrix, p de�ned by

p (x, y) :=
L (x, y)

r (x)
for y ∈ Nx (3.0.6)

and zero otherwise.Therefore the generator of the embedded Markov hain, L(d), has the form
L(d) (x, y) =

1

r (x)
L (x, y) . (3.0.7)

For the assoiated invariant probability measure, π(d) we obtain
π(d) (x) =

r (x) π (x)∑
z∈Y r (z)π (z)

. (3.0.8)
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3.1 The equilibrium potentialWe only onsider the disrete time setting, i.e. T = N0 and will use theembedded Markov hain in the ase of ontinuous time (see De�nition 3.3).Given two disjoint subsets A and B of Y and x ∈ Y , what an we sayabout the properties of
Px (τA < τB)? (3.1.1)To answer this question we useProposition 3.4 Let Γ = (Y,G) be a loally �nite graph, D ( Y a (nonempty)onneted set and L the generator of an ergodi Markov hain ζ on Γ. Sup-pose f : ∂+D → R and g : D → R are bounded funtions. If h is a boundedsolution of the Dirihlet-Poisson problem

{
−Lh = g on D,

h = f on ∂+D,
(3.1.2)

then τ := τ∂+D is P -a.s. �nite and
h (x) = Ex (f (ξτ )) + Ex

[
τ−1∑

n=0

g (ξn)

] (3.1.3)
for all x ∈ D.Proof. Due to the ergodiity of ζ we have for every x ∈ Y that Exτx =

1
π(x)

< ∞. Due to the irreduibility also τ is almost surely �nite independentof the starting point x ∈ D. Now we an apply Theorem 2.1, p. 181 inBrémaud [Bré99℄. �Now we look, more spei�ally, atDe�nition 3.5 Let L be the generator of the ergodi Markov hain ζ. Theequilibrium potential hA,B : Y → [0, 1] of ζ is de�ned to be the uniquebounded solution of the boundary value problem




Lh = 0 on (A ∪ B)c ,
h = 1 on A,
h = 0 on B.

(3.1.4)
We also say that hA,B is harmoni on Y \ (A ∪ B) with respet to L.31



Then Proposition 3.4 tells us that
hA,B (x) = Px (τA < τB) for all x ∈ Y \ (A ∪ B) . (3.1.5)To treat the ase when the starting point of ζ lies inside A ∪ B, we usethe following reasoning to �nd an equation for Px (τA < τB). The �rst stepof ζ leads either to B, and the event {τA < τB} fails to happen, or to A, inwhih ase the event happens, or to another point y /∈ A ∪ B, in whih asethe event happens with probability Py (τA < τB). Thus for all x ∈ Y

Px [τA < τB] =
∑

y∈A

p (x, y) +
∑

y/∈A∪B

p (x, y) Py [τA < τB] .

= phA,B (x) = LhA,B (x) + 1A (x) , (3.1.6)sine hA,B|A∪B = 1A.In the ase of ontinuous time we use the embedded Markov hain, thathas a transition probability matrix given in De�nition 3.3. Therefore weobtain
Px (τA < τB) = phA,B (x) =

1

r (x)
LhA,B (x) + 1A (x) . (3.1.7)

This result suggests to introdue the following notion that originates fromthe theory of eletromagnetism.De�nition 3.6 Let A and B be disjoint subsets of Y and L the generatorof a Markov proess ζ on Y . We all eA,B := LhA,B the equilibrium measurefor the apaitor A,B.Now we an answer the question of the beginning of this setion. Namely wehave proved the followingProposition 3.7 Let L be the generator of the ergodi Markov hain ζ. Inthe ase of ontinuous time we de�ne r (x) ≡ −L (x, x), whereas in the aseof disrete time we put r (x) ≡ 1. Then we an onlude that (3.1.1) an bewritten in the form
Px [τA < τB] =





hA,B (x) , x ∈ Y \ (A ∪ B) ,
1 + 1

r(x)
eA,B (x) , x ∈ A,

1
r(x)

eA,B (x) , x ∈ B.
(3.1.8)
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The next de�nition introdues the essential objet that will allow us to es-timate the apaity. In partiular, it will allow us to treat simultaneouslyMarkov proesses with disrete and ontinuous time set T.
De�nition 3.8 The Dirihlet form Φ assoiated to a reversible Markov pro-ess ζ with generator L and invariant measure π on the graph Γ is de�nedas

Φ (h) := −〈h, Lh〉π (3.1.9)for all h ∈ l2 (π).
Remark 3.9 (a) In our setting ζ is assumed to have an invariant probabilitymeasure and we will use this to obtain a unique Dirihlet form.(b) Φ has the alternative representation in terms of the ondutane ma-trix C (see Remark 3.17)

Φ (h) =
1

2

∑

(x,y)∈G∗

Cxy (h (x) − h (y))2 (3.1.10)
This an be seen by using equation (3.2.4) for the generator of ζ. Thereforethe symmetry of C implies

Φ (h) =
∑

x∈Y

h2 (x)
∑

y∈Nx

Cxy −
∑

(x,y)∈G∗

h (x)Cxyh (y)

=
1

2

∑

(x,y)∈G∗

Cxy (h (x) − h (y))2 . (3.1.11)
() For an arbitrary subset H of G∗, the Dirihlet form restrited to H isde�ned by

ΦH (h) :=
1

2

∑

(x,y)∈H

Cxy (h (x) − h (y))2 . (3.1.12)
The following variational representation of the apaity in terms of theDirihlet form of ζ will turn out to be of fundamental importane. The reasonis that it exhibits the monotoniity properties of the apaity. This �Dirihletpriniple� an be found for example in the book of Liggett ([Lig85℄, p. 99,Theorem 6.1). 33



Theorem 3.10 (Dirihlet priniple) Let ζ be an irreduible Markov hainthat is reversible with respet to the positive probability measure π. Let Φ bethe assoiated Dirihlet form. We onsider two disjoint subsets of Y , A and
B. Let HA,B denote the spae of funtions

HA,B :=
{
h ∈ l2 (π) | h|A = 0 and h|B = 1

}
. (3.1.13)Then the equilibrium potential is the unique minimiser of Φ inside HA,B, i.e.

Φ (hA,B) = inf
h∈HA,B

Φ (h) . (3.1.14)
Remark 3.11 Doyle [Doy89℄ gives an analogous variational priniple in thenon-reversible ase. Consider the funtion spae

GA,B ≡
{
g ∈ l2 (π)

∣∣ g|A∪B = 0
}

. (3.1.15)Then
〈
h∗

A,B, LhA,B

〉
π

= inf
h∈HA,B

sup
g∈GA,B

〈h − g, L (h + g)〉π . (3.1.16)
Here h∗

A,B is the equilibrium potential for the reversed Markov hain ζ∗ thathas transition probability
p∗ (x, y) :=

π (y)

π (x)
p (y, x) . (3.1.17)

With the properties of the equilibrium potential follows
〈
h∗

A,B, LhA,B

〉
π

= Φ (hA,B) . (3.1.18)Unfortunately the variational representation (3.1.16) has not the same mono-toniity properties as the Dirihlet priniple.The Dirihlet priniple motivates the followingDe�nition 3.12 The (Newtonian) apaity of A and B with respet to ζ isde�ned as
cap (A,B) := Φ (hA,B) . (3.1.19)
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Remark 3.13 (a) Observe that the apaity is symmetri, sine hB,A =
1− hA,B and L1 = 0. Due to the properties of the equilibrium potential andDe�nition 3.6 of the equilibrium measure, eA,B, we an also write

cap (A,B) = −〈1A, eA,B〉π . (3.1.20)(b) In ontrast to the equilibrium measure, the apaity of the embeddedMarkov hain of a ontinuous time proess ζ is the same as for ζ. This isimplied by the representations (3.0.7) and (3.0.8) for the generator and theinvariant measure of the embedded hain.() The representation (3.1.20) together with the identity (3.1.8) impliesthat
cap (A,B) =

∑

x∈B

π(d) (x) Px (τA < τB) , (3.1.21)
where π(d) is the reversible measure of the embedded Markov hain, see equa-tion (3.0.8). Of ourse the embedded Markov hain of a Markov hain ζ isthe hain itself.In the speial ase B = {x} we obtain therefore

Px (τA < τx) =
cap (x,A)

π(d) (x)
. (3.1.22)The next proposition follows diretly from Corollary 1.6 of [BEGK01℄. Itshows that the equilibrium potential an be approximated by apaities.Together with the Dirihlet priniple this proposition will provide us a wayto improve rough estimates on the apaity.Proposition 3.14 [BEGK01℄ For A,B ⊂ Y , disjoint, x /∈ A ∪ B and ζreversible, we obtain

hA,B (x) ≤ cap (x,A)

cap (x,B)
. (3.1.23)Proof. Sine x /∈ A ∪ B we have hA,B (x) = Px [τA < τB]. If the proess,started at a point x, wants to realise the event {τA < τB}, it may do so bygoing to A immediately and without returning to x again, or it may returnto x without either going to A or B. Clearly, one the proess returns to xit is in the same position as at the starting time, and we an use the strongMarkov property. Formally:

Px [τA < τB] = Px [τA < τB∪x] + Px [(τx < τA∪B) ∧ (τA < τB)]

= Px [τA < τB∪x] + Px [τx < τA∪B] Px [τA < τB] .(3.1.24)35



This is alled a renewal equation. We an solve this equation for Px [τA < τB] :

Px [τA < τB] =
Px [τA < τB∪x]

1 − Px [τx < τA∪B]

=
Px [τA < τB∪x]

Px [τA∪B < τx]
. (3.1.25)By elementary monotoniity properties this representation yields the bound

Px [τA < τB] ≤ Px [τA < τx]

Px [τB < τx]
=

cap (x,A)

cap (x,B)
. (3.1.26)

�

3.2 Eletrial networksIt will be onvenient for the following to use the language of eletrial net-works. This subsetion follows Doyle and Snell [DS84℄. We introdueDe�nition 3.15 Let Γ = (Y,G) be a loally �nite onneted graph withedgeset G. We denote G∗ := {(x, y) ∈ G |x 6= y}, i.e. we leave out all self-edges. Let A and B be subsets of Y and C : G∗ → R>0 a positive symmetrifuntion, alled the ondutane matrix of Γ.(a) Let f : G∗ → R be a funtion and de�ne f : Y → R by f (x) :=∑
y∈Nx

f (x, y). f is alled a �ow from A to B and f (x) the net �ow out of
x, if1. (anti-symmetry) f (x, y) = −f (y, x),2. (Kirhho�'s node law) f (x) = 0 for all x ∈ Y \ (A ∪ B).
f is alled unit �ow if additionally∑x∈A f (x) = 1.(b) An eletrial network is a weighted graph (Γ, C).Remark 3.16 Given the values of a funtion h : Y → [0, 1] , alled voltage,on the sets A and B there exists a unique �ow i : G∗ → R from A to B,alled urrent, suh that �Ohm's law�

i (x, y) = Cxy (h (x) − h (y)) (3.2.1)is valid. This follows from Proposition 3.1.2.36



Proposition 3.17 (i) Let ζ = (ζt)t∈T
be a reversible ergodi Markov hainon a loally �nite graph Γ = (Y,G). Put G∗ = {(x, y) ∈ G |x 6= y}. Then ζdetermines an eletrial network (Γ, C) with ondutane matrix C : G∗ →

R>0 given by
Cxy := π (x) L (x, y) . (3.2.2)(ii) On the other hand a reversible ergodi Markov hain on Γ is determinedby its invariant probability measure π and an arbitrary ondutane matrix,

C : G∗ → R>0 suh that
sup
x∈Y

c (x)

π (x)
< ∞, where c (x) :=

∑

y∈Nx

C (x, y) . (3.2.3)
Proof. ad (i). Suppose we are given the Markov hain ζ. Then the ondu-tane matrix C given by (3.2.2) is indeed a symmetri funtion, beause ofthe reversibility of ζ. Let N = {Nx}x∈Y be the orresponding neighbourhoodsystem of G∗, i.e. y ∈ Nx i� (x, y) ∈ G∗. Then the generator of ζ an bewritten as

L (x, y) =





Cxy

π(x)
for y ∈ Nx,

−∑y∈Nx
L (x, y) for y = x,

0 else. (3.2.4)
Hene the Dirihlet problem (3.1.4) is equivalent to





∑
y∈Nx

Cxy (h (y) − h (x)) = 0 for x ∈ Γ \ (A ∪ B) ,

h (x) = 1 for x ∈ A,
h (x) = 0 for x ∈ B.

(3.2.5)
Therefore the voltage is given by h (x) = Px (τA < τB) and i de�ned by (3.2.1)is a �ow.ad (ii). Given a ondutane matrix C and a probability measure π thatsatis�es ondition (3.2.3), we retrieve the transition matrix, p, of a reversibleMarkov hain ζ by setting Z := supx∈Y

c(x)
π(x)

and
p (x, y) :=





1
Z

Cxy

π(x)
for y ∈ Nx,

1 −∑y∈Nx
p (x, y) for y = x,

0 else. (3.2.6)
Obviously the reversible measure of ξ is indeed given by π. �
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Remark 3.18 The representation of the apaity via the Dirihlet priniple(3.1.14) shows that ap (A,B) is the �e�etive ondutane� of the eletrialnetwork (Γ, C) assoiated to ξ, when we apply a voltage 1 between A and B,i.e. we set the boundary onditions h|A = 1 and h|B = 0. Compare [DS84℄,setion 3.5, page 63.Equivalently to the Dirihlet priniple (3.1.14) there exists a variationalpriniple for the urrent, alled Thompson's priniple: Denote
FA,B := {f : G → R | f unit �ow from A to B} (3.2.7)then

1

cap (A,B)
= inf

f∈FA,B

1

2

∑

x,y∈Y

1

Cxy

f (x, y)2 . (3.2.8)The unique minimiser of this problem is the urrent i, that satis�es Ohm'slaw (3.2.1). For a proof see [DS84℄, p. 63. We will use this priniple to obtainpreise estimates of the apaity in the ase of several relevant saddle points.Example 3.19 In the ase of a �nite one-dimensional graph Γ we an alu-late the equilibrium potential and the apaity of a network (Γ, C) diretly.For Y = {0, 1, . . . , N} we denote Ck = C (k − 1, k) and obtain for x ∈ Y :
h0,N (x) =

(
x∑

k=1

1

Ck

)
/

(
N∑

k=1

1

Ck

)
. (3.2.9)

The apaity is given by
cap (0, N) =

N∑

k=1

Ck (h0,N (k − 1) − h0,N (k))2

=

(
N∑

k=1

Ck
1

C2
k

)
/

(
N∑

k=1

1

Ck

)2

= 1/

(
N∑

k=1

1

Ck

)
. (3.2.10)

3.3 Mean hitting timeDe�nition 3.20 We introdue the funtion wA,B : Y → R+ by setting
wA,B (x) =

{
ExτA1τA<τB

, x /∈ A ∪ B,
0 , x ∈ A ∪ B.

(3.3.1)
38



If ζ is a ontinuous time proess we onsider again the embedded hain withtransition probability given by p (x, y) := r(x,y)
r(x)

for y ∈ Nx and zero else. Fora disrete time Markov proess ξ we put r (x) ≡ 1 for all x ∈ Y . Then obtainfor wA,B the following forward equation for x /∈ A ∪ B:
wA,B (x) = ExτA1τA<τB

=
1

r (x)
Px [τA < τB] +

∑

y/∈A∪B

p (x, y) wA,B (y)

=
1

r (x)
hA,B (x) + pwA,B (x) . (3.3.2)Therefore wA,B is a solution to the linear boundary problem

{
−Lw = hA,B on (A ∪ B)c ,

w = 0 on A ∪ B.
(3.3.3)Note that−L is a positive operator. Proposition 3.4 implies that this problemhas a unique solution.Let D be a subset of Y . De�ne the Green funtion, GD : D ×D → R, tobe the kernel of the inverse operator of −L on l2 (D,π). The Green funtionontains all information about the law of the Markov proess ζ.We use the De�nition 3.5(a) of the equilibrium potential to represent theGreen funtion. Let C be another subset of Y , disjoint from D. Sine

hC,D = 0 on D and eC,D = 0 on (C ∪ D)c, we obtain
hC,D (x) = −GDceC,D (x)

= −
∑

y∈C

GDc (x, y) eC,D (y) . (3.3.4)
We will use now the reversibility of ξ, that means π (x) GD (x, y) = π (y) GD (y, x)and hoose C = {y}. Then we obtain

GDc (x, y) = −hy,D (x)

ey,D (y)
= −π (y) hx,D (y)

π (x) ex,D (x)

= π (y)
hx,D (y)

cap (x,D)
. (3.3.5)This means, we an in priniple determine the law of ζ ompletely, if weknow the apaity and the equilibrium potential.We summarise the results in the next Proposition that resembles Corol-lary 3.3 of [BEGK02℄ 39



Proposition 3.21 [BEGK02℄ The Dirihlet Green funtion for any set D ⊂
Y an be represented in terms of the equilibrium potential and apaities as

GDc (x, y) = π (y)
hx,D (y)

cap (x,D)
. (3.3.6)

The mean hitting time of A ⊂ Y satis�es, for a starting point x /∈ A ∪ B,
ExτA1τA<τB

=
1

cap (x,A ∪ B)

∑

y∈(A∪B)c

π (y) hx,A∪B (y) hA,B (y) . (3.3.7)
Espeially for B = ∅ we obtain for all x /∈ A

ExτA =
1

cap (x,A)

∑

y∈Ac

π (y) hx,A (y) . (3.3.8)
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4 Metastability
Let Λ ⊂ Rd be open and onneted and onsider a family of ountabledisrete sets, (Λǫ)0<ǫ<1 ⊂ Λ. We assume that Λǫ is equipped with a neigh-bourhood system Nǫ = {Nǫ,x}x∈Λǫ

, that makes it a onneted set. Moreover,assume there exists r > 0, independent of ǫ, suh that the number of neigh-bours is uniformly bounded by r, i.e. |Nǫ,x| ≤ r for all x ∈ Λǫ. The assoiated
r-uniformly loally �nite graph is denoted by Γǫ = (Λǫ, Eǫ).Let (ξǫ)0<ǫ<1 be a family of ergodi time-homogeneous Markov hains on
Γǫ. Assume that ξǫ is reversible with respet to the probability distribution
πǫ. Let pǫ : Λǫ × Λǫ → [0, 1] the transition probability of ξǫ. Reall that weassume that ξǫ only jumps between neighbours of Λǫ, i.e. pǫ (x, y) = 0 for all
y /∈ Nx ∪ x.Sine ξǫ is reversible, pǫ an always be written in the form

pǫ (x, y) = gǫ (x, y) min

(
1,

πǫ (y)

πǫ (x)

) (4.0.1)
with a non negative symmetri funtion gǫ : Λǫ × Λǫ → R≥0.We assumeC1 the funtion gǫ is on ompat sets uniformly bounded from below, i.e.for all K ⊂⊂ Λǫ there exists a onstant c > 0, independent of ǫ, suhthat gǫ (x, y) ≥ c for all x ∈ K and y ∈ Nǫ,x.This assures in partiular that ξǫ an jump between any two neighbours of
Λǫ and is not restrited to some onneted subgraph.Example 4.1 Consider Λǫ ≡ Λ ∩ ǫZd. Let x and y be neighbours, i.e.
‖x − y‖ = ǫ.(a) For gǫ (x, y) := 1

2d
we obtain, of ourse, the Metropolis algorithm.(b) For

gǫ (x, y) :=
1

2d

πǫ (x) ∨ πǫ (y)

πǫ (x) + πǫ (y)
≥ 1

4d
, (4.0.2)we reover the heat bath dynamis, i.e.

pǫ (x, y) =
1

2d

πǫ (y)

πǫ (x) + πǫ (y)
. (4.0.3)
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() For
gǫ (x, y) := fǫ (x, y)

√
πǫ (x) ∧ πǫ (y)

πǫ (x) ∨ πǫ (y)
≥ fǫ (x, y) , (4.0.4)where f is a non negative symmetri funtion that is uniformly bounded frombelow on ompat subsets of Λǫ × Λǫ, we reover the dynamis given by

pǫ (x, y) = fǫ (x, y)

√
πǫ (y)

πǫ (x)
. (4.0.5)

De�nition 4.2 We de�ne the potential of ξǫ to be the funtion Fǫ : Λǫ →
R>0 with

Fǫ (x) := −ǫ ln πǫ (x) . (4.0.6)The interesting ase for us ours when Fǫ has at least two loal minima.We assume thatF1 (Fǫ) onverges uniformly to a unique ontinuous funtion F : Λ → R≥0,i.e. for all κ > 0 there exists ǫ0 > 0 suh that for all ǫ < ǫ0 we have
sup
x∈Λǫ

|Fǫ (x) − F (x)| < κ. (4.0.7)
F2 The funtion F has ompat lower level sets, i.e.

{F ≤ b} ⊂⊂ Λ for all b ≥ 0. (4.0.8)
The following de�nition of the so alled relevant saddle points between twosubsets A and B of Y will be essential for the dynamis of the Markovproesses we onsider.De�nition 4.3 Consider an arbitrary funtion f : Y → R on a loally �nitegraph (Y,G). Let A and B be disjoint subsets of Λǫ.(a) A path γ is a �nite sequene (γ1, . . . , γk) of ommuniating points, i.e.
(γi, γi+1) ∈ G for 1 ≤ i ≤ k − 1. We write x ∈ γ when γ visits the point x.We denote by PA,B the set of paths starting in A and ending in B.(b) The ommuniation height between A and B is

f̂(A,B) := min
γ∈PA,B

max
x∈γ

f(x). (4.0.9)
42



Observe that the ommuniation height depends, of ourse, on the edgeset
G we have hosen.() We introdue the level set

G (A,B) :=
{

z ∈ Λǫ | f (z) = f̂ (A,B)
}

. (4.0.10)The set of optimal path is de�ned by
OA,B :=

{
γ ∈ PA,B | max

x∈γ
f (x) = f̂ (A,B)

}
. (4.0.11)A gate G (A,B) is a minimal subset of G (A,B) with the property that alloptimal paths interset G (A,B). That means for every H ( G (A,B) thereexists a path γ ∈ OA,B suh that γ∩H = ∅. Note that G (A,B) is in generalnot unique. The set S (A,B) of relevant saddle points is the union over allgates G (A,B).The notion of ommuniation height between two sets leads a deompo-sition of the state spae into di�erent valleys, desribed by the followingDe�nition 4.4 Let A,B ⊂⊂ Λ be disjoint ompat sets.(a) We de�ne the lower level set

W (A,B) :=
{

x ∈ Λ |F (x) < F̂ (A,B)
}

. (4.0.12)We assume that A ⊂ W (A,B). We set VB (A), alled the valley of A withrespet to B, denotes the onneted omponent of W (A,B) ontaining A.(b) Let x ∈ Λ \ A. Then we de�ne the barrier between x and A by
B(x,A) := F̂ (x,A) − F (x). (4.0.13)

B(x,A) is the minimal height a path has to limb in order to onnet x with
A. Analogously we de�ne Bǫ and V

(ǫ)
B (A) for Fǫ.

4.1 MetastabilityIn the following, we will often be dealing with probabilities like Px [τA < τx]whih we all esape probability from x to A.Following Bovier, Ekho�, Gayrard and Klein [BEGK02℄, we de�ne meta-stability in the following way: 43



De�nition 4.5 (metastability) Let Mǫ be a �nite subset of Λǫ suh that theardinality |Mǫ| is independent of ǫ. Let ρ : (0, 1) → (0, 1) be a monotoneinreasing funtion with limǫ↓0 ρ (ǫ) = 0.Then the family of Markov proesses (ξǫ)ǫ∈(0,1) is said to be ρ-metastablewith respet to (Mǫ), if
max
m∈Mǫ

Pm (τMǫ
< τm) ≤ ρ (ǫ) inf

x/∈Mǫ

Px (τMǫ
< τx) . (4.1.1)The elements of Mǫ are alled ρ-metastable points of (ξǫ).We say (ξǫ) is metastable with respet to (Mǫ) if there exists a funtion

ρ for whih (ξǫ) is ρ-metastable.This de�nition suggest a deomposition of the state spae into a �nite ol-letion of subsets. We de�ne for eah point m ∈ Mǫ the domain of attrationof m by
A (m,Mǫ) :=

{
x ∈ Λǫ |Px (τm = τMǫ

) ≥ max
n∈Mǫ

Px (τn = τMǫ
)

}
. (4.1.2)

It follows from De�nition 4.5 of metastability that for all m ∈ Mǫ

lim
ǫ↓0

Pm

(
τMǫ\m < τm

)
= 0. (4.1.3)

Hene, if there exists a limiting Markov hain, it is reduible with at least
|Mǫ| onneted omponents.In words, De�nition 4.5 states the following: The in�mum of the esapeprobabilities from any point x ∈ M c

ǫ to Mǫ is muh bigger than the esapeprobability from a point, m, in Mǫ to another one. The funtion ρ in Def-inition 4.5 desribes the fator, by whih the esape probabilities betweenmetastable points is smaller ompared to the esape probability of any pointwith respet to the set of metastable points.Therefore we have at least two di�erent time sales: One that measuresthe time required for a typial exursion away from m that stays inside
A (m,Mǫ) and another one on whih we expet a hangeover to Mǫ \ m.This type of behaviour has been studied for a long time and is rigorouslytreated on the level of large deviations, in partiular in the book of Freidlinand Wentzell [FW84℄.The bene�t of De�nition 4.5 is that we only have to ontrol hitting timesof points or �nite sets of points on the state spae. In the analogues situation44



of a Di�usion in Rd, one an deal with small balls around these points (see[BEGK04℄).Observe that De�nition 4.5 does not determine a unique family (Mǫ)even for �xed ρ. Indeed, having isolated a very large set Mǫ, in many asesone an �nd a subset Nǫ ⊂ Mǫ suh that the Markov hain also exhibitsa metastable behaviour with respet to Nǫ. We formulate this importantproperty of De�nition 4.5 inProposition 4.6 Let Iǫ be the set of all i ∈ Mǫ suh that there exists c,independent of ǫ, and
Pi (τMǫ

< τi) ≥ c max
m∈Mǫ

Pm (τMǫ
< τm) . (4.1.4)

Then we an onstrut a minimal set Jǫ ⊂ Iǫ suh that (ξǫ) is metastablewith respet to M̂ǫ ≡ Mǫ \ Jǫ.Proof. The de�nition of Iǫ in (4.1.4) implies that there exist a monotonedereasing funtion, r : (0, 1) → [0, 1], with limǫ↓0 r (ǫ) = 0 suh that for all
m ∈ Mǫ \ Iǫ

Pm (τMǫ
< τm) ≤ r (ǫ) max

x∈Mǫ

Px (τMǫ
< τx) . (4.1.5)So at �rst sight it might be possible just to leave out all elements of Iǫ from

Mǫ to get a new metastable set, but this is not possible if some or all relevantsaddle points onnet members of Iǫ, i.e. there exists i, j ∈ Iǫ and
F̂ǫ (i,Mǫ \ i) = F̂ǫ (i, j) . (4.1.6)In this ase it may happen that by throwing away i and j there arises a valleyof arbitrary depth that is not any more represented by an element of Mǫ \ Iǫ.We onstrut indutively the set Jǫ by putting J (0) ≡ ∅ and J (n+1) =

J (n) ∪ {j} if there exists j ∈ Iǫ \ J (n) and c > 0, independent of ǫ, suh that
Pj

(
τMǫ\J(n) < τj

)
≥ c max

m∈Mǫ

Pm (τMǫ
< τm) . (4.1.7)

Otherwise put Jǫ ≡ J (n). Without loss of generality we assume that for all
i ∈ Jǫ

πǫ (i) = max
x∈V

M̂ǫ
(i)

πǫ (x) . (4.1.8)
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Let i ∈ Jǫ, then ertainly it holds true that
Pi

(
τ
M̂ǫ

< τi

)
≤ Pi (τMǫ

< τi)

≤ ρ (ǫ) inf
x/∈Mǫ

Px (τMǫ
< τx) . (4.1.9)Moreover, for all x /∈ Mǫ

Px (τMǫ
< τx) ≤

∑

i∈Jǫ

Px (τi < τx) + Px

(
τ
M̂ǫ

< τx

)
. (4.1.10)

We denote Aǫ (Jǫ) ≡ ∪i∈Iǫ
A (i,Mǫ). Then for all i ∈ Jǫ and x /∈ Aǫ (Jǫ) weknow

Px (τi < τx) ≤ Px

(
τ
M̂ǫ

< τx

)
. (4.1.11)Therefore we have shown up to now

max
i∈Jǫ

Pi

(
τ
M̂ǫ

< τi

)
≤ 2ρ (ǫ) inf

x/∈Mǫ∪Aǫ(Jǫ)
Px

(
τ
M̂ǫ

< τx

)
. (4.1.12)To proeed we use that

Px (τA < τx) =
cap (x,A)

πǫ (x)
. (4.1.13)Let i ∈ Jǫ, then ertainly,

F̂ǫ

(
x, M̂ǫ

)
= F̂ǫ

(
i, M̂ǫ

) for all x ∈ V
M̂ǫ

(i) . (4.1.14)
On the other hand for x ∈ A

(
i, M̂ǫ

)
\ V

M̂ǫ
(i) we obtain

F̂ǫ

(
x, M̂ǫ

)
= x. (4.1.15)

Therefore Proposition 4.8 tells us that for all i ∈ Jǫ and x ∈ A
(
i, M̂ǫ

) theondition (4.1.8) implies
Pi

(
τ
M̂ǫ

< τi

)
≤ inf

x∈A(i,Mǫ)
Px

(
τ
M̂ǫ

< τx

)
. (4.1.16)Therefore

min
i∈Jǫ

Pi

(
τ
M̂ǫ

< τi

)

≤ inf
x∈Aǫ(Jǫ)

Px

(
τ
M̂ǫ

< τx

)
. (4.1.17)
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We have shown
max
i∈Jǫ

Pi

(
τ
M̂ǫ

< τi

)
≤ 2ρ (ǫ) inf

x/∈Mǫ

Px

(
τ
M̂ǫ

< τx

)
. (4.1.18)

By onstrution of Jǫ there exists a monotone dereasing funtion, ρ̂ : (0, 1) →
[0, 1], with limǫ↓0 ρ̂ (ǫ) = 0 suh that

max
n∈M̂ǫ

Pn

(
τ
M̂ǫ

< τn

)
≤ ρ̂ (ǫ) min

i∈Jǫ

Pi

(
τ
M̂ǫ

< τi

)
. (4.1.19)

Hene,
max
n∈M̂ǫ

Pn

(
τ
M̂ǫ

< τn

)
≤ ρ̂ (ǫ) inf

x/∈M̂ǫ

Px

(
τ
M̂ǫ

< τx

) (4.1.20)holds true and we are done. �

Remark 4.7 Observe that if Iǫ ontains more than one point, then the smalleigenvalues of the generator −Lǫ of ξǫ depend on the struture of this set.We will give a non trivial example in the ase of the Hop�eld model in partIII of this treatise.
4.2 A priori boundsIn this setion we will estimate apaities of ξǫ on a subexponential saleand then use Proposition 3.14 to give an a priori bound on the equilibriumpotential. We use the notions of the eletrial network, (Γǫ, C

(ǫ)
), assoiatedto ξǫ given in De�nition 3.15, see Proposition 3.17. We onsider only Markovhains, i.e. Markov proesses with time set T = N0 in this setion. Thisorresponds to the following property of the generator: ∑y∈Nx
L (x, y) ≤ 1for all x ∈ Λǫ. In the ase of ontinuous time one an think this as andesription of the embedded Markov hain.The following proposition will play a key r�le in our treatment.

Proposition 4.8 Let (ξǫ) be a family of positive reurrent reversible Markovhain that satis�es the onditions at the beginning of this setion, in partiularC1. Let A and B be disjoint ompat sets of Λǫ suh that Fǫ (x) < F̂ǫ (A,B)for all x ∈ A. 47



Then there exist onstants c1, c2 > 0 suh that
c1ǫ

d ≤ cap (A,B)

exp
(
−F̂ǫ (A,B) /ǫ

) ≤ c2ǫ
−d. (4.2.1)

Proof. lower bound of cap (A,B)The Dirihlet priniple of Theorem 3.1.14 tells us
cap (A,B) = inf

h∈HA,B

Φ (h) = Φ (hA,B)

≥ Φγ (hA,B) ≥ inf
h∈HA,B

Φγ (h) (4.2.2)
for every subset γ ⊂ Λǫ suh that γ ∩A and γ ∩B are not empty. We hoosenow for γ an optimal path, i.e. γ ∈ OA,B. Identify γ with a graph with edgesbetween nearest neighbours. By using the alulation in Remark 3.13(b), weobtain

inf
h∈HA,B

Φγ (h) = 1/


 ∑

(x,y)∈γ

1/C(ǫ)
xy


 . (4.2.3)

Sine γ is an optimal path we know γ ∈
{
Fǫ ≤ F̂ǫ (A,B)

} whih is a ompatset, beause of assumptions F1 and F2. Assumption C1 assures now theexistene of a onstant c > 0 suh that we an estimate
Cxy ≥ c exp

(
−F̂ǫ (A,B) /ǫ

) for all x, y ∈ γ. (4.2.4)Therefore
inf

h∈HA,B

Φγ (h)

≥ c

|γ| exp
(
−F̂ǫ (A,B) /ǫ

)

≥ cǫdvol{F ≤ F̂ (A,B)
} exp

(
−F̂ǫ (A,B) /ǫ

)
. (4.2.5)

Note that vol({Fǫ ≤ F̂ǫ (A,B)
})

< ∞ follows from assumption F2.upper bound of ap (x,B) 48



Denote by Vǫ := V
(ǫ)
B (A) the valley of A with respet to B (see De�nition4.4(a)). We hoose a funtion h+ with h+ = 0 on Vǫ and h+ = 1 on V c

ǫ . Thenwe obtain, sine by reversibility C
(ǫ)
xy ≤ πǫ (x) ∧ πǫ (y) ,

cap (A,B) ≤ Φ
(
h+
)

=
∑

x∈∂−Vǫ

∑

y∈∂+Vǫ

C(ǫ)
xy

≤ r
∣∣∂−Vǫ

∣∣ exp
(
−F̂ǫ (A,B) /ǫ

)

≤ cvol (VB (A)) ǫ−d exp
(
−F̂ǫ (A,B) /ǫ

)
. (4.2.6)

�

Remark 4.9 Let x ∈ Λǫ and D ⊂ Λǫ \ x suh that Fǫ (y) < F̂ǫ (x,D) for all
y ∈ D. Then we apply Proposition 4.8 with B ontaining only one point.With equation 3.1.22 we obtain that the esape probabilities are ontrolledon an exponential sale by the assoiated barriers:

Px (τD < τx) ≤ c2ǫ
−d exp

[
−1

ǫ
Bǫ(x,D)

] (4.2.7)
and

Px (τD < τx) ≥ c1ǫ
d exp

[
−1

ǫ
Bǫ(x,D)

]
. (4.2.8)This implies that VMǫ\m (m) ⊂ Aǫ (m).Example 4.10 (a) Assume that the set M of loal minima of F onsists of�nitely many points. Denote κ := minm∈M B (m,M\ m). Then we an �nd�nite sets, Mǫ, of loal minima of Fǫ suh that Mǫ → M with respet to theHausdor� distane of sets, |Mǫ| = |M| and

πǫ (m) = max
x∈VMǫ (m)

πǫ (x) (4.2.9)
for all m ∈ Mǫ. Let ρ (ǫ) := exp (−h/ǫ) with h < κ. Proposition 4.8 showsthat ξǫ is then ρ-metastable with respet to Mǫ, sine for m ∈ Mǫ

Pm

(
τMǫ\m < τm

)
≤ cǫ−d exp

(
−1

ǫ
Bǫ (m,Mǫ \ m)

)
. (4.2.10)
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Choose δ < 1
3
(κ − h). The uniform onvergene of Fǫ to F (assumption F)implies that there exists ǫ0 > 0 suh that for all ǫ < ǫ0 we have

|Bǫ (m,Mǫ \ m) − Bǫ(m,M\ m)| < δ. (4.2.11)Hene
Pm

(
τMǫ\m < τm

)
≤ cǫ−d exp

(
−κ − δ

ǫ

)
. (4.2.12)Moreover, for x /∈ Mǫ there exists ǫ1 suh that for all ǫ < ǫ1 we have

F̂ (x,Mǫ) − Fǫ (x) < κ − h − 2δ (4.2.13)and therefore
Px (τMǫ

< τx) ≥ c1ǫ
d exp

(
κ − h − 2δ

ǫ

)
. (4.2.14)

Hene for all ǫ < min (ǫ0, ǫ1) we obtain
max
m∈Mǫ

Pm

(
τMǫ\m < τm

)
≤ ρ (ǫ) inf

x/∈Mǫ

Px (τMǫ
< τx) , (4.2.15)

and therefore (ξǫ) is ρ-metastable with respet to Mǫ.(b) More generally, in the ase ρ (ǫ) = exp (k/ǫ) (with k > 0) a metastableset Mk has the following property: In eah valley of depth greater k exatlyone of the deepest minima of this valley is in Mk. In this ase we have
B (m,n) > k ∀m,n ∈ Mk. (4.2.16)Moreover, for all other points x /∈ Mk there has to be a point m ∈ Mk suhthat B (x,m) < k. E�etively we only have a ondition for loal minima of

F that are outside of Mk, namely
B (x,Mk) < k ∀x ∈ M \Mk. (4.2.17)We have found a onnetion between De�nition 4.5 of a metastable set andgeometri properties of the funtion Fǫ.To prove the preise bounds on the apaity between minima, m and n, weneed the following orollary, whih will justify to restrit our attention to aneighbourhood of the set Sǫ (m,n) of relevant saddle points.50



Corollary 4.11 (a) Let A and B be disjoint ompat sets of Λǫ suh that
Fǫ (x) ≤ F̂ǫ (A,B) for all x ∈ A ∪ B. Then there exists c > 0 suh that for
x /∈ A ∪ B

hA,B (x) ≤ cǫ−2d exp

{
−1

ǫ

(
F̂ǫ (x,A) − F̂ǫ (x,B)

)}
. (4.2.18)Proof. This follows from Proposition 3.14 ombined with Proposition 4.8. �

4.3 Pathwise approahA point m ∈ Λǫ is alled metastable in the sense of Olivieri and Vares i� thefollowing two properties hold:1. �unpreditability of the tunneling time�.Assume ξǫ starts in m. Then τMǫ\m is alled unpreditable if it on-verges in distribution to an exponential random variable, i.e.
τMǫ\m

Em

(
τMǫ\m

) D→ E for ǫ ↓ 0, (4.3.1)
where E is a unit mean exponential random variable.2. �thermalisation�.Let s, t ∈ N0. We de�ne the empirial average measure of ξǫ betweenthe times s and s + t as

µs,t :=
1

t

s+t∑

k=s+1

δξǫ
k
. (4.3.2)

Hene µs,t (B) is the fration of time ξǫ spends in B ⊂ Λǫ between sand s + t. Let V := V
(ǫ)
Mǫ\m (m) be the valley of m with respet to

Mǫ \ m.Let ξǫ again start at m. We say ξǫ thermalises at m if there exists a de-terministi time sale tǫ suh that limǫ↓0 tǫ = ∞, but tǫ = o (Em (τ∂+V ))and for every open set B ⊂ Rd ontaining m and every κ > 0

lim
ǫ↓0

Pm

(
τ∂+V > tǫ and sup

s<τ
∂+V

−tǫ

µs,tǫ (B) > 1 − κ

)
= 1. (4.3.3)
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The next proposition gives a rough estimate for the distribution funtion ofthe hitting time of the boundary of a valley.Proposition 4.12 Let Vǫ := V
(ǫ)
n (m) be the valley of m ∈ Mǫ with respetto another point n ∈ Mǫ. Then

Pm (τ∂+Vǫ
< t) ≤ cǫ−d ⌊t⌋ exp

(
−1

ǫ
Bǫ (m,n)

)
. (4.3.4)

Proof. We observe similar to Olivieri and Vares (see [OV05℄ Proposition4.7, p. 233) that for x ∈ ∂+Vǫ

Pm (τx < t) ≤
⌊t⌋∑

k=1

Pm (ξǫ
k = x)

=

⌊t⌋∑

k=1

1

πǫ (m)
Pπǫ

(ξǫ
0 = m, ξǫ

k = x)

≤
⌊t⌋∑

k=1

1

πǫ (m)
Pπǫ

(ξǫ
k = x)

= ⌊t⌋ πǫ (x)

πǫ (m)
. (4.3.5)

Therefore we obtain, sine ǫdvol (Vǫ) onverges to the volume of ompat set
Vn (m) ⊂ Λ,

Pm (τ∂+V < t) ≤ ⌊t⌋
πǫ (m)

∑

x∈∂+Vǫ

πǫ (x)

≤ ⌊t⌋
πǫ (m)

vol (Vn (m)) ǫ−d exp

(
−1

ǫ
F̂ǫ(m,n)

)
. (4.3.6)

�To prove the thermalisation of ξǫ in the valley of a metastable point
m ∈ Mǫ that ontains no more minima, we need moreover the followingLemma 4.13 Let Vǫ := V

(ǫ)
Mǫ\m (m) be the valley of m ∈ Mǫ with respet to

Mǫ \ m. Denote aǫ := exp (a/ǫ), where 0 < a < Bǫ (m,Mǫ \ m). Given52



κ ∈ (0, 1) and an open set, B, ontaining m, there exists cκ > 0 and ǫ0 suhthat for all ǫ < ǫ0 and all integer t ≥ aǫ

sup
i∈V

Pi (µt (B) < 1 − κ) < exp

(
−cκ

t

aǫ

)
. (4.3.7)Proof. It su�es to onsider the ase, where B is a small ball of radius

ρ > 0 around m. Denote the depth of B by
Fρ := inf

‖x−m‖=ρ
(F (x) − F (m)) , (4.3.8)

�x b < a ∧ Fρ and let bǫ := exp (b/ǫ). First we introdue
qǫ := sup

i∈V
Pi

(
τm >

√
bǫ

)
+ Pm (τ ρ < bǫ) (4.3.9)

with τ ρ := min
{

n ≥ 1 | ξǫ

k /∈ B
}. To see that qǫ → 0 in the limit of vanishing

ǫ, we use the Chebyshev inequality to estimate the �rst summand and obtain
Pi

(
τm >

√
bǫ

)
≤ 1√

bǫ

Ei (τm) . (4.3.10)
Moreover, we obtain with Corollary 4.11

∑

y∈Vǫ\i
πǫ (y) hi,m (y) ≤ kǫ−3dvol (V ) exp

(
−1

ǫ
F̂ǫ (m,Mǫ \ m)

)
. (4.3.11)

Therefore with Proposition 3.21 follows
Ei (τm) ≤ cǫ−4d. (4.3.12)With the same arguing as in Proposition 4.12, we obtain for the seondsummand of qǫ in (4.3.9):

Pm (τ ρ < bǫ) ≤ ⌊bǫ⌋ exp

(
−1

ǫ
Fρ

)
. (4.3.13)

Now we an proeed as Olivieri and Vares in the proof of their Lemma 4.11,p. 239 in [OV05℄. That means we �x ǫ0 suh that bǫ/aǫ ≤ 1
2
κ and √

bǫ ≤ 1
4
κas well as qǫ ≤ 1

5
κ for all ǫ < ǫ0. 53



If ǫ < ǫ0 and t ≥ aǫ, due tobǫ/aǫ ≤ 1
2
κ we may write

Pi

(
1

t

t∑

k=1

1
(
ξ

ǫ

k ∈ B
)

< 1 − κ

)
≤ Pi

(
1

kǫaǫ

kǫaǫ∑

k=1

1
(
ξ

ǫ

k ∈ B
)

< 1 − κ

2

)

(4.3.14)where kǫ = ⌊t/aǫ⌋.For eah 1 ≤ k ≤ kǫ let us say that the time interval [(k − 1) aǫ, kaǫ) isgood if the proess ξ
ǫ hits m before time (k − 1) aǫ +

√
aǫ and spends therest of this time interval inside B. Otherwise, it is alled bad. Let Yǫ,kbethe indiator funtion of the event {[(k − 1) aǫ, kaǫ) is bad} . Thus for any

i ∈ Vǫ

max
k∈{1,...,kǫ}

Pi

(
Yǫ,k = 1

∣∣Yǫ,1 = y1, . . . , Yǫ,k−1 = yk−1

)
≤ qǫ (4.3.15)for any hoie of y1, . . . , yk−1 ∈ {0, 1}. Sine qǫ ≤ 1

5
κ, performing suessiveonditioning and applying (4.3.15) we obtain, for arbitrary λ > 0:

Ei

(
exp

(
λ

kǫ∑

k=1

Yǫ,k

))
≤
(
1 +

κ

5

(
eλ − 1

))kǫ

. (4.3.16)
Using (4.3.14) and (4.3.15) we see that

Pi (µt (B) < 1 − κ) ≤ Pi

(
1

kǫ

kǫ∑

k=1

Yǫ,k ≥ 1

4
κ

)
≤ e−kǫcκ (4.3.17)

for all ǫ < ǫ0, whih implies the lemma. At the last inequality we haveused the exponential Markov inequality and the preeding observation with
λ = λ (κ) > 0 small enough suh that

1 +
1

5
κ
(
eλ − 1

)
< e

1
4
λκ. (4.3.18)

�Now we an showTheorem 4.14 Let (ξǫ) be a family of ergodi and reversible Markov hains.Let Mǫ be the set of loal minima of Fǫ. Assume that Mǫ is a �nite set and
|Mǫ| is independent of ǫ. Choose m ∈ Mǫ and let V := V

(ǫ)
Mǫ\m (m) be thevalley of m with respet to Mǫ\m. Assume ξǫ starts at m, then it thermalisesat m. 54



Proof. We proeed along the lines of the proof of Olivieri and Vares forthermalisation in the ase of the Curie-Weiss model. We introdue the equi-librium measure restrited to V by setting for all B ⊂ Λǫ

πǫ (B) :=
πǫ (B ∩ V )

πǫ (V )
. (4.3.19)

First we introdue of a restrited Markov hain, ξ
ǫ, that annot leave thevalley V . We determine ξ

ǫ by de�ning its transition probability matrix
pǫ (x, y) :=





pǫ (x, y) if x ∈ V, y ∈ Nx ∩ V
1 −∑z∈Nx∩V pǫ (x, z) if y = x ∈ V
0 else. (4.3.20)

The equilibrium measure for ξ
ǫ is apparently πǫ. We introdue the followingoupling between ξǫ and ξ

ǫ
: They both start in m and move together untilfor the �rst time ξǫ jumps out of V . Realling (4.3.20), at this step ξ

ǫ remainsat Σ and from then on they behave independently. Therefore τ ǫ = τǫ and
ξ

ǫ

t = ξǫ
t for all t ≤ τǫ. Therefore the probability in (4.3.3) an be rewritten as

Pm

(
sup

s<τ
∂+V

−tǫ

µs,tǫ (B) > 1 − κ and τ ∂+V > tǫ

)
, (4.3.21)

whih is bounded from below by
1 − Pm (τ∂+V ≤ tǫ) − Pm (Gǫ) . (4.3.22)Here,

Gǫ :=
⋃

l∈{0,...,Kǫ}

{
µltǫ,tǫ (B) > 1 − κ

2
and Kǫ ≥ 1

}
, (4.3.23)

where Kǫ := ⌊τ ∂−V /tǫ⌋.Now, for every kǫ ∈ N we obtain
Pm (Gǫ) ≤ Pm (Kǫ ≥ kǫ) + kǫ sup

i∈V
Pi

(
µ0,tǫ (B) > 1 − κ

2

)

≤ Pm (τ ∂+V ≥ kǫtǫ) + kǫ exp
(
−cκ

√
tǫ
)
. (4.3.24)For the last inequality we used Lemma 4.13. �
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5 Preise estimates for apaities and
hitting times
5.1 Preise estimates of the apaityWe restrit ourselves now to the spaes Λǫ ≡ Λ ∩ ǫZd. Moreover, from nowon we pose the following stronger assumption on the family of potentials (Fǫ)that sharpens assumption F1, namelysF1 We assume there exists funtions Fǫ : Λ → R>0 of lass C3 (Λ) suhthat

πǫ (x) = e−Fǫ(x)/ǫ ∀x ∈ Λǫ. (5.1.1)and (Fǫ) onverges uniformly on Λ to a limiting funtion F : Λ → R≥0of lass C3 (Λ).Let M be the set of loal minima of F . A point s is alled a essential saddlepoint if there exist minima m,n ∈ M, suh that s ∈ S (m,n). The set of allessential saddle points will be denoted by E . Analogously let Mǫ be the setof loal minima of Fǫ and Eǫ the set of essential saddle points of Fǫ.Remark 5.1 For all essential saddle points s ∈ Eǫ there exists ŝ ∈ Λ, suhthat ∇Fǫ (ŝ) = 0 and ‖ŝ − s‖2 < ǫ. Without restrition of generality for all
s ∈ Eǫ we assume ∇Fǫ (s) = 0, that is s = ŝ.De�nition 5.2 Let f ∈ C2

(
Rd
) be given. We all a ritial point of fquadrati i� det∇2f 6= 0. Otherwise it is alled degenerate. A quadratiritial point of f , say x, is a k-saddle, i� ∇2f (x) has exatly k negativeeigenvalues. We say, the funtion f is at x in k diretions unstable and in

d − k diretions stable.To obtain preise estimates of the apaity and related quantities, we willnow pose additional assumptions on the set of loal minima, Mǫ, of thefamily of potential (Fǫ)ǫ∈(0,1).We assumeS1 The funtions Fǫ and F have only �nitely many ritial points.56



S2 All minima and all essential saddle points of Fǫ and F are quadratiritial points. Moreover, ∇2Fǫ (xǫ) → ∇2F (x) i� xǫ → x for all
xǫ ∈ Mǫ ∪ Eǫ.S3 All metastable points and essential saddles are well in the interior of Λ,i.e. there exists κ > 0, suh that for all x ∈ M∪ E the distane to theboundary of Λ ful�lls dist (x, Λc) > κ.Remark 5.3 (a) By enlarging the set Λ ondition S3 an be always satis�ed.(b) Condition S2 implies that all essential saddle points are 1-saddles. Inpartiular, it exludes situations presribed in [MNOS04℄, Setion 6.3. Theygive an example, where an unessential saddle point (with the same height)a�ets the prefator of the apaity. This involves however essential saddlepoints s with det∇2F (s) = 0.We also need a to add another ondition on the transition probability, pǫ,of the Markov hain ξǫ, given in the form (4.0.1). We de�ne pi (x) :=

pǫ (x, x + ǫei) and g
(ǫ)
i (x) := gǫ (x, x + ǫei). Sine ξǫ is a reversible Markovhain on a subset of the d-dimensional lattie with transitions only betweennearest neighbours, all information are enoded in (pi (x) |x ∈ Λǫ, 1 ≤ i ≤ d) .C2 We assume g

(ǫ)
i is uniformly Lipshitz ontinuous on ompat subsets of

Λǫ, i.e. for all K ⊂⊂ Λǫ there exists a onstant L independent of ǫ suhthat
∣∣∣g(ǫ)

i (x) − g
(ǫ)
i (y)

∣∣∣ ≤ L ‖x − y‖2 for all x, y ∈ K. (5.1.2)
We will �rst onsider the ase of a unique relevant saddle point, alled
s∗ǫ (m,n), between the metastable points m,n ∈ Mǫ. As the treatment of therough estimates indiates merely a neighbourhood of s∗ǫ (m,n) ontributes inleading order to the apaity between m and n.We will use the parameter δ to measure the size of the neighbourhood ofa relevant saddle point with vanishing gradient. We hoose

δ ≡ δ (ǫ) :=
√

kǫ |ln ǫ| (5.1.3)and with k ≥ 4d onstant. Whenever we use δ it will have this meaning.The following lemma gives an approximation of the ondutane matrix
C(ǫ) near a non degenerate ritial point of Fǫ.57



Lemma 5.4 Let s be a quadrati ritial point of Fǫ. Consider the ball Br (s)around s with radius r = O (δ) . Then for all x ∈ Br (s) we obtain
C

(ǫ)
i (x) = pi (s) πǫ (x) (1 + O (δ)) . (5.1.4)Proof. By de�nition C

(ǫ)
i (x) = πǫ (x) pi (x). Sine x ∈ Br (s) we have

‖x − s‖2 = O (δ) . Sine g
(ǫ)
i is uniformly Lipshitz ontinuous and uniformlybounded by a onstant from below on Br (s), we obtain

g
(ǫ)
i (x) = g

(s)
i (s) (1 + O (δ)) . (5.1.5)Sine Fǫ ∈ C3 (Λ) and ∇Fǫ (s) = 0 we obtain for x ∈ Br (s) that

πǫ (x + ǫei)

πǫ (x)
= 1 + O (δ) . (5.1.6)

Hene also pi (x) = pi (s) (1 + O (δ)) and the result follows. �As a lemma we show the ontinuous dependeny of the apaity on (onstant)boundary onditions.Lemma 5.5 Let Γ = (Y,G) be a ountable onneted graph and A,B ⊂ Ydisjoint subsets. Let a, b ∈ [0, 1] with a > b. We de�ne the funtion spaes
HA,B := {h ∈ l2 (πǫ) | h|A = 1 and h|B = 0} (5.1.7)and
H̃A,B := {h ∈ l2 (πǫ) | h|A = a and h|B = b} . (5.1.8)De�ne c̃ap (A,B) := infh∈ eHA,B

Φ (h). Then the minimiser h̃A,B is of the form
h̃A,B = (a − b) hA,B + b.Proof. h̃A,B ful�lls the boundary value problem





Lh = 0 on Y \ (A ∪ B) ,
h = a on A,
h = b on B.

(5.1.9)
Sine this is a linear problem and L1 = 0, we are done. �
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Notation 5.6 For v ∈ Rd we de�ne v· to be the diagonal matrix with entries
(v·)ii := vi.Now we formulate the main theorem of this treatise. It gives a preise esti-mation of the apaity between two minima of Fǫ. We formulate it here forthe ase of a unique relevant saddle point; for the ase of several relevantsaddles see Corollary 5.19.Theorem 5.7 Let ξǫ be a reversible and ergodi Markov hain suh that theassumptions at the beginning of this setion are satis�ed. Let I, J ⊂ Mǫwith I ∩ J = ∅ and assume s ≡ s∗ǫ (I, J) is the unique relevant saddle pointbetween them. Then

cap (I, J) =

(
2π

ǫ

)d/2−1
λ̂d√

|det∇2Fǫ (s)|
exp (−Fǫ (s) /ǫ) ×

×
(
1 + O

(√
ǫ |ln ǫ|3/2

))
, (5.1.10)

where −λ̂d is the unique negative eigenvalue of the matrix given by
(pi (s) ∂i∂jFǫ (s)) . (5.1.11)To illustrate the general proedure we onsider �rst the speial ase, wherethe orthonormal basis of eigenvetors {b1, . . . , bd} of B ≡ ∇2Fǫ (s) equals theanonial basis {e1, . . . , ed} of the lattie Zd, i.e. without loss of generality

bi = ei for all i ∈ {1, . . . , d}. In this ase the geometry of the lattie doesn'tome into piture, beause the proess an take the diret way over therelevant saddle. This ase an be treated in the same way as the problem forthe funtion F in a ontinuous setting, ompare [BEGK04℄. Notie that inthis ase λ̂d (σ) = pd (s) λd.Without loss of generality we assume s = 0 and 〈m, ed〉 < 〈n, ed〉.
The lower bound.Denote

δi :=

⌊
1

ǫ

δ√
(d − 1) λi

⌋ for 1 ≤ i < d and δd :=

⌊
1

ǫ

1√
λd

δ

⌋
. (5.1.12)
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F<F(0)

F>F(0)

Figure 5.1.1: The di�erent neighbourhoods of the saddle for the lower (Uδ) andupper (Wδ) bound.
We de�ne index sets to designate the points of Λǫ in a neighbourhood of zero:

Rδ := ×d−1
i=1 {−δi,−δi + 1, . . . , δi} (5.1.13)and with a slight abuse of notation

2Tδ := {−2δd,−2δd + 1, . . . , 2δd − 1, 2δd} . (5.1.14)The assoiated neighbourhood of s = 0 is
Uδ = ǫ (Rδ × 2Tδ) (5.1.15)We de�ne the boundary toward m respetively n by

∂mUδ = {(r,−2δd) | r ∈ Rδ} (5.1.16)and ∂nUδ = {(r, 2δd) | r ∈ Rδ}. Uδ is hosen in that way to seure that
Fǫ (x) < Fǫ (0) − δ2 (5.1.17)for x ∈ ∂mUδ ∪ ∂nUδ. 60



We de�ne for all r ∈ Rδ paths γr : 2Tδ → Uδ by
γr (t) := ǫted + ǫ

d−1∑

i=1

riei. (5.1.18)
Let (γr (2Tδ) , γ∗

r ) be the one dimensional graph assoiated to γr with edgesbetween nearest neighbours. Note that while all points of Uδ are hit by apath, only the edges parallel to ed are inluded in these paths. To leave outsome edges will only work in this ase, beause in general the proess willuse all edges inside a suitable de�ned neighbourhood of the relevant saddle.We de�ne the funtion spaes
HUδ

:= {f : Uδ → [0, 1] | f (z) = hn,m (z) if z ∈ ∂mUδ ∪ ∂nUδ} (5.1.19)and
Hr := {f : γr → [0, 1] | f (z) = hn,m (z) if z ∈ {(r,−2δd) , (r, 2δd)}} .(5.1.20)With the help of Lemma 5.5 and the representation (3.2.10) of the apaityof a one dimensional hain we obtain

inf
h∈Hn,m

Φ (h) = Φ (hn,m)

≥ ΦUδ
(hn,m) ≥ inf

h∈HUδ

ΦUδ
(h)

≥ inf
h∈HUδ

∑

r∈Rδ

Φγr
(h) =

∑

r∈Rδ

inf
h∈Hr

Φγr
(h)

=
∑

r∈Rδ

(hn,m (r, 2δd) − hn,m (r,−2δd))
2


1

2

∑

s∈γ∗
r

1/C(ǫ)
s




−1

.(5.1.21)
Now we use Corollary 4.11 and the inequality (5.1.17) to obtain a uniformbounds on the boundary. We obtain for x ∈ ∂mUδ

hn,m (x) ≤ cǫ−2d exp

(
−1

ǫ

(
F̂ǫ (x, n) − F̂ǫ (x,m)

))

= cǫ−2de−δ2/ǫ = O (ǫ) . (5.1.22)The last equation holds, sine δ =
√

kǫ |ln ǫ| with k ≥ 3d large enough. For
x ∈ ∂nUδ we obtain a uniform lower bound, namely

hn,m (x) = 1 − hm,n (x)

= 1 −O (ǫ) . (5.1.23)61



We denote by {λ1, . . . , λd−1,−λd} the eigenvalues of the Hessian ∇2Fǫ (0).Sine 0 is a 1-saddle of Fǫ we an hoose λi > 0 for all 1 ≤ i ≤ d andapproximate Fǫ inside Uδ by
Fǫ (x) = Fǫ (0) − 1

2
λdx

2
d +

1

2

d∑

i=1

λix
2
i + O

(
δ3
)
. (5.1.24)

Therefore we onlude
inf

h∈Hn,m

Φ (h)

≥
∑

r∈Rδ


1

2

∑

s∈γ∗
r

1/C(ǫ)
s




−1

(1 + O (ǫ))

=

(
∑

r∈2Rδ

exp

(
−1

2
ǫ

d−1∑

i=1

λir
2
i

))
1

2

∑

s∈γ∗
0

1/C(ǫ)
s




−1

×

×
(
1 + O

(
δ3/ǫ

))
. (5.1.25)The last equation uses Lemma 5.4. As we will see in the estimation of theupper bound this inequality is enough to math the assoiated upper boundup to multipliative errors (1 + O (δ)).To evaluate these sums we use the quadrati approximation of Fǫ insideof UδThen we use Lemma 5.4 and obtain

C
(ǫ)
γ(t),γ(t+1) = pd (0) e−Fǫ(0)/ǫe

1
2
ǫλdt2

(
1 + O

(
δ3/ǫ

))
. (5.1.26)The resulting Gaussian sums an be approximated by integrals (see Propo-sition A.1 in the Appendix). First we onsider the sum over γ∗

0 and obtain
2δd−1∑

t=−2δd

exp

(
−1

2
ǫλdt

2

)

=

∫ 2δd−1

−2δd

e−
1
2
ǫλdt2dt

(
1 + O

(
δ3/ǫ

))

=
2√
ǫλd

∫ 2
√

k|ln ǫ|

0

e−
1
2
x2

dx
(
1 + O

(
δ3/ǫ

))

=

√
2π

ǫλd

(
1 + O

(
δ3/ǫ

))
. (5.1.27)
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The sum over 2Rδ an be approximated by an (d − 1)-dimensional Gaussiansum (see Proposition A.1 in the Appendix):
∑

r∈Rδ

exp

(
−1

2
ǫ

d−1∑

i=1

λir
2
i

)

=

∫ δd−1

−δd−1

. . .

∫ δ1

−δ1

e−
1
2
ǫ

P
i λir

2
i dr1 . . . drd−1 (1 + O (δ))

= 2d−1
d−1∏

i=1

∫ δi

0

e−
1
2
ǫλir2

i dri (1 + O (δ))

=
d−1∏

i=1

√
2π

ǫλi

(1 + O (δ)) (5.1.28)
with the same transformation as before. Putting the piees together weobtain

inf
h∈Hn,m

Φ (h)

=

(
2π

ǫ

)d/2−1
pd (0) λd√
λ1λ2 . . . λd

e−F (0)/ǫ
(
1 + O

(
δ3/ǫ

))
. (5.1.29)

The upper bound.To prove an upper bound use δi from (5.1.12) and de�ne
2Rδ := ×d−1

i=1 {−2δi,−2δi + 1, . . . , 2δi − 1, 2δi} (5.1.30)and
Tδ = {−δd, . . . , δd} . (5.1.31)Using these sets we put
Wδ := ǫ (2Rδ × Tδ) (5.1.32)and

∂mWδ := ǫ (2Rδ × {−δd}) and ∂nWδ := ǫ (2Rδ × {δd}) . (5.1.33)The remaining part of the inner boundary of Wδ is alled the entral boundary
∂cWδ, i.e.

∂cWδ := ∂−Wδ \ (∂mWδ ∪ ∂nWδ) . (5.1.34)63



The neighbourhood Wδ is hosen to seure that
Fǫ (x) > Fǫ (0) + δ2 (5.1.35)for all x ∈ ∂cWδ.We de�ne D̃m as the onneted omponent of

{
x ∈ Λǫ |Fǫ (x) ≤ Fǫ (0) + δ2

} (5.1.36)that ontains m. De�ne Dm := D̃m \ Wδ and Dn := D̃c
m \ Wδ.Now we hoose a funtion h+ to our onveniene. We make the hoie:

h+|Dm
= 0, h+|Dn

= 1. (5.1.37)By de�nition for all z ∈ Wδ there exist a unique r ∈ 2Rδ and t ∈ Tδ suhthat
z = γr (t) := ǫ

(
d−1∑

i=1

riei + ted

)
. (5.1.38)

Given this, we de�ne on Wδ

h+ (γr (t)) :=

(
t−1∑

k=−δd

1/C
(ǫ)
γ0(k),γ0(k+1)

)
/


1

2

∑

s∈γ∗
0

1/C(ǫ)
s


 . (5.1.39)

Observe that this does not depend on r.We denote Σ− := ∂+Dm \W+
δ and Σ+ := ∂−Dm \W+

δ . Inserting h+ intothe Dirihlet form, we obtain
Φ
(
h+
)

= ΦWδ

(
h+
)

+
∑

x∈Σ−

∑

y∈Σ+

C(ǫ)
x,y +

+
∑

x∈∂−Wδ

∑

y∈∂+Wδ

C(ǫ)
x,y

(
h+ (x) − h+ (y)

)2
. (5.1.40)

Sine we are in the ase of disrete time, we have C
(ǫ)
x,y ≤ πǫ (x) ∧ πǫ (y).Therefore

∑

x∈Σ−

∑

y∈Σ+

C(ǫ)
x,y ≤ d

∣∣Σ−∣∣ exp

(
−1

ǫ

(
Fǫ (s) + δ2

)) (5.1.41)
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and
∑

x∈∂−Wδ

∑

y∈∂+Wδ

C(ǫ)
x,y

(
h+ (x) − h+ (y)

)2 ≤ |∂cWδ| exp

(
−1

ǫ

(
Fǫ (s) + δ2

))
,(5.1.42)beause h+ = 0 on ∂mWδ and h+ = 1 on ∂nWδ.With the help of Lemma 5.4 the �rst term an be estimated as

ΦWδ

(
h+
)

=

(
∑

r∈2Rδ

δd−1∑

t=−δd

C
(ǫ)
γr(t),γr(t+1)

(
C

(ǫ)
γ0(t),γ0(t+1)

)−2
)

×

×


1

2

∑

s∈γ∗
0

1/C(ǫ)
s




−2

=

(
∑

r∈2Rδ

e−
1
2
ǫ

Pd−1
i=1 λir

2
i

)
1

2

∑

s∈γ∗
0

1/C(ǫ)
s




−1

(
1 + O

(
δ3/ǫ

))

= inf
h∈HA,B

Φ (h) (1 + O (δ)) . (5.1.43)
Sine δ =

√
kǫ |ln ǫ| with k ≥ 2d, the quantities in (5.1.41) and (5.1.42) areby a fator ǫd smaller than the leading term.Remark 5.8 Observe that, provided we have good a priori bounds, we onlyneed one property of the ondutane matrix C(ǫ) to get mathing upper andlower bounds (with multipliative error tending to one), namely the existeneof funtions Aǫ and Bǫ suh that

C
(ǫ)
γr(t),γr(t+1) = Aǫ (t) Bǫ (r)

(
1 + O

(
δ3/ǫ

))
. (5.1.44)This means that we need approximately a separation of variables around therelevant saddle.

5.1.1 An assoiated inverse problemTo prove Theorem 5.7 in the general ase, we will now formulate a orre-sponding inverse problem.
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De�nition 5.9 Let Γ = (Y,G) be a loally �nite graph with positive sym-metri weights C : G → R>0 on its edges. Let R be some index set andonsider for r ∈ R onneted subgraphs ηr = (Yr, Gr) of Γ with positivesymmetri weights C̃r : Gr → R>0. For onveniene we put C̃r|G\Gr
≡ 0.The family of {(ηr, C̃r

)
| r ∈ R

} is alled a �partition� of (Γ, C), if
∑

r∈R

C̃r (s) = Cs for all s ∈ G. (5.1.45)
Note that the Γr need not be disjoint.There are of ourse very many ways of partitioning a given weighted graph,but as we will see in the next Proposition, given the equilibrium potential
hA,B there exists partiular useful partitions.Let (ηr, C̃r

)
r∈R

be a partition of (Γ, C). We denote
Φ̃r (h) :=

1

2

∑

s∈Gr

C̃r (s) (h (s2) − h (s1))
2 , (5.1.46)

the Dirihlet form on ηr.Proposition 5.10 Assume (ηr, C̃r

) is a partition of (Γ, C) that onnets Aand B, i.e.
|ηr ∩ A| = |ηr ∩ B| = 1 (5.1.47)for all r ∈ R. Then

cap (A,B) ≥
∑

r∈R

inf
h∈HA,B

Φ̃r (h) . (5.1.48)
If C̃r satis�es additionally Kirhho�'s node law at eah �node� x ∈ ηr withvoltage hA,B, i.e. if

∑

y∈Nx

C̃r (x, y) (hA,B (x) − hA,B (y)) = 0. (5.1.49)
then we obtain

cap (A,B) =
∑

r∈R

inf
h∈HA,B

Φ̃r (h) . (5.1.50)
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Proof. Notie that due to ondition (5.1.45) of De�nition 5.9
cap (A,B) = inf

h∈HA,B

∑

r∈R

Φ̃r (h) . (5.1.51)
This implies the inequality (5.1.48), beause we are taking the in�mum overthe larger lass of funtions

H̃A,B =
{
h : {Yr}r∈R → [0, 1] |h|A = 1, h|B = 0

}
. (5.1.52)To prove equation 5.1.50, denote by h̃r : Yr → [0, 1] the minimiser of Φ̃r.The in�mum and the sum in (5.1.51) an obviously be exhanged if h̃r =

hA,B|ηr
. The variational problem (5.1.51) is equivalent to the linear problem(3.1.4) with generator L : G → [0, 1] given by L (x, y) := 1−Cxy/

∑
z∈Nx

Cxz.Thus we obtain




∑
z∈Nx

Cxz (h (z) − h (x)) = 0 for x ∈ Γ \ (A ∪ B) ,
h (x) = 1 for x ∈ A,
h (x) = 0 for x ∈ B.

(5.1.53)
But this means, that the apaity of A and B is given by (5.1.50), i� theondutane matries C̃r satis�es the Kirhho� law for hA,B, i.e.

∑

y∈Nx

C̃r (x, y) (hA,B (y) − hA,B (x)) = 0 for x ∈ Yr \ (A ∪ B) . (5.1.54)
�

Solution to the inverse �at problemLet p = (p1, . . . , pd) ∈ Rd
>0 be given. We denote by q ∈ Rd

>0 the vetorwith omponents qi := 1/
√

pi and by Q the assoiated diagonal matrix withentries Qii = qi.We onsider the eletrial network that onsists of the lattie Yq :=
×d

i=1 (qiZ) with edges between pairs of nearest neighbours and the onstantondutane matrie C given by
Ci (x) ≡ C (x, x + qiei) ≡ pi. (5.1.55)67



For this speial hoie the equilibrium potential h0,a : Yq → [0, 1] is of thesimple form h0,a (x) = 〈a,x〉
‖a‖2 for any given diretion a ∈ Rd

>0.We onsider only those a suh that v ≡ Q−1a ∈ Zd and
vd ≥ 1 and gd (v1, . . . , vd) = 1. (5.1.56)Under these assumptions we an onstrut expliitly a partition of (Yq, p).De�nition 5.11 For simpliity we denote for any negative integer t the set

{t, . . . , 0} by {0, . . . , t}.(a) Let v = (v1, . . . , vd) ∈ Zd with properties (5.1.56). De�ne the element
E ⊂ Γ of size v and spaing q by

E := ×d−1
i=1 {0, qi, 2qi . . . , viqi} × {qd, 2qd . . . , vdqd} ∪ {0} (5.1.57)and identify E with the graph with edges between nearest neighbours x, y ∈

E. (b) We want to de�ne a family (Er,t) for all r, t ∈ Z. For t ∈ Z we de�nethe translated set E0,t by
E0,t := E + ta. (5.1.58)To de�ne the elements Er,0 we need to be more areful: Let Ha be thehyperplane orthogonal to a, that ontains the origin. The elements Er,0should as good as possible start from the hyperplane Ha. Hene we put for

r ∈ Zd−1

Er,0 := E0,t∗ +
d−1∑

i=1

riqiei (5.1.59)
with t∗ suh that the intersetion of Er,0 with Ha is non-empty. In thespeial ase, where x ∈ Zd ∩ Ha, there are possibly two elements E0,t and
E0,t+1 hitting that point. In this ase we will hoose the lower one.We now de�ne

Er,t := Er,0 + ta. (5.1.60)() We de�ne strings of elements by putting
Yr :=

⋃

t∈Z

Er,t. (5.1.61)
Let ηr be the onneted graph with vertexset Yr and edges between nearestneighbours.
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Figure 5.1.2: Two onneted elements.
Remark 5.12 The onstrution of the family (Er,t) implies that there existshifts sr,t : Y → Y suh that Er,t = sr,t (E).Sine the element Et,r is a translation of E and the weightfuntions Ciare onstant on Λǫ, it is enough to �nd a ondutane matrix C̃ that satis�esthe following equations: First the Kirhho� equation

∑

y∈E

C̃ (x, y) (h0,a (y) − h0,a (x)) = 0 for x ∈ E \ {0, a} (5.1.62)
and for all i ∈ {0, . . . , d} and k ∈ {0, . . . , vd} the onsisteny ondition:

∑

x:xd=kqd

C̃ (x, x + qiei) = pi. (5.1.63)
Observe that these onditions does not determine a unique ondutane ma-trix.We de�ne the assoiated urrent, I, by Ohm's law, i.e.

I(x, y) := C̃ (x, y) (h0,a (y) − h0,a (x)) . (5.1.64)Then the two onditions (5.1.62) and (5.1.63) read respetively:
∑

y∈E

I (x, y) = 0 (5.1.65)
∑

x:xd=kqd

I (x, x + qiei) =
vi

‖a‖2 . (5.1.66)
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Figure 5.1.3: The piture represents the urrent �ow on three seleted elementsin Z3, 6 lines symbolises one unit of the �ow.
Proposition 5.13 Let E be an element of size v and spaing q and h0,a (x) =
〈a,x〉
‖a‖2 . Then a ondutane matrix C̃ that satis�es onditions (5.1.62) and(5.1.63) is given by

C̃ (x, x + qiei) := piϕi (x) (5.1.67)for all x, x + qiei ∈ E.The funtion ϕ : E × {1, . . . , d} → [0, 1] has the form
ϕi (x) :=





1 − xd/ad for x = (0, 0, . . . , 0, xd) , i = d,
1/vi for x = (a1, . . . , ai−1, xi, 0, . . . , 0, xd) , i < d,
xd/ad for x = (a1, . . . , ad−1, xd) , i = d,
0 else, (5.1.68)for all (x, i) ∈ E × {1, . . . , d} suh that x + qiei ∈ E. Otherwise ϕi (x) := 0.Proof. Insert C̃ into (5.1.62) and (5.1.63). �Now we de�ne �ows for shifted elements.De�nition 5.14 Let (Er,t) = (sr,t (E)) be a family of translated elementsand C̃ : E × {1, . . . , d} → [0, 1] as in Proposition 5.13.70



(a) De�ne C̃(r,t) : Er,t × {1, . . . , d} → [0, 1] by putting C̃
(r,t)
i (x) :=

C̃i

(
s−1

r,t (x)
).(b) We de�ne the apaity of an element by

cap
(
E, C̃

)
:= inf

h∈H0,a

∑

(x,y)∈E∗

C̃ (x, y) (h (x) − h (y))2 , (5.1.69)
where E∗ is the edgeset of E. Analogously cap

(
Er,t, C̃

) is de�ned with thehelp of sr,t.(b) Let n
(
E, C̃

) be the average number of strings inside a unit volumeon the hyperplane Ha (perpendiular to a).Proposition 5.15 Assume Ci (x) ≡ pi, and C̃i (x) = piϕi (x) as in Proposi-tion 5.13. Then one element has the apaity
cap

(
E, C̃

)
=

vd

‖a‖2 , (5.1.70)
and the average number of strings is

n
(
E, C̃

)
=

‖a‖
vd det Q

. (5.1.71)
Proof. Using De�nition (5.1.64) we obtain

cap
(
E, C̃

)
=

∑

x,y∈E

C̃ (x, y) (h0,a (y) − h0,a (x))2

=
∑

x,y∈E

I (x, y) (h0,a (y) − h0,a (x)) . (5.1.72)
Notie that I is a �ow in the sense of Doyle and Snell. Beause of theonservation of energy priniple (see [DS84℄, setion 3.5, page 61) it follows

cap
(
E, C̃

)
= I0 (h0,a (a) − h0,a (0)) = I0,where I0 ≡

∑
y∈E I (0, y). Due to the geomtry of an element we obtain

cap
(
E, C̃

)
= I (0, qded) =

vd

‖a‖2 . (5.1.73)
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Ha

Figure 5.1.4: The piture represents merely every fourth string of elements.
Now we alulate the average number of strings n

(
E, C̃

). All edges areompletely oupied by the elements, sine ∑r∈R ϕ
(r,t)
i (x) = 1. A singleelement E uses the fration ϕi (x) of an edge (x, x + qiei), hene we obtain

∑

x∈E

d∑

i=1

ϕi (x)

= ϕd (0) +

vd∑

k=1

d−1∑

i=1

vi−1∑

n=0

ϕi (a1, . . . , ai−1, nqi, 0, . . . , 0, kqd) +

+

vd−1∑

n=1

ϕd (0, . . . , 0, nqd) +

vd−1∑

n=1

ϕd (v1, . . . , vd−1, nqd)

= 1 + vd

d−1∑

i=1

vi
1

vi
+

vd−1∑

n=1

(
1 − n

vd

)
+

vd−1∑

n=1

n

vd

= 1 + (d − 1) vd + (vd − 1) = dvd (5.1.74)edges. Notie that a half open ube in Λq ontains d edges and has volume
det Q. Hene the e�etive volume of an element is vd det Q. Sine the lengthof an element in diretion a is ‖a‖ we obtain

n
(
E, C̃

)
=

‖a‖
vd det Q

. (5.1.75)
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Remark 5.16 Sine n (E,ϕ) is the average number of strings inside a united-ube, we an rearrange the strings by small perturbations to have startingpoints inside the hyperplane Ha orthogonal to a on a ubi lattie with sidelength s suh that s(d−1) = 1/n (E,ϕ).
5.1.2 General proof of Theorem 5.7The ase of a unique relevant saddleProof. Without loss of generality we assume s∗ (m,n) = 0.Let {λ1, . . . , λd−1,−λd} be the eigenvalues of ∇2Fǫ (0) and {bk}1≤k≤d anorthonormal basis of eigenvetors, suh that bd belongs to the unique nega-tive eigenvalue −λd and 〈m, bd〉 < 0 < 〈n, bd〉. If bd oinides with a lattiediretion, say ed, the proof is simply is disrete version of the proof of The-orem 5.1 in [BEGK04℄. But in the general ase we have to use the partitionof the last subsetion.Let q ∈ Rd the vetor with omponents

qi :=
1√

pi (0)
(5.1.76)

and Q be the diagonal matrix with entries Qii ≡ qi. We denote
Λq := Λ ∩ (×d

i=1(qiZ)). (5.1.77)During this proof we assoiate to a given funtion fǫ : Λǫ → R, the trans-formed funtion f ǫ : Λq → R by de�ning
fǫ := fǫ ◦ ǫQ−1. (5.1.78)We denote by {λ̂1, . . . , λ̂d−1,−λ̂d

} the eigenvalues of
Bǫ := Q−1∇2Fǫ (0)Q−1. (5.1.79)Sine all eigenvalues of Q are positive, we an hoose λ̂i > 0 for all i ∈

{1, . . . , d}. Let {w1, . . . , wd} be an orthonormal basis of eigenvetors of Bǫ,suh that wd orresponds to the negative eigenvalue −λ̂d and 〈wd, bd〉 > 0.73



We will see, that wd points in the diretion, in whih the equilibrium potentialrises.Assume �rst Q−1wd ∈ Qd. Choose a ‖ wd with 〈a, wd〉 > 0 suh that
v := Q−1a ∈ Zd and gd (v1, . . . , vd) = 1. Without loss of generality vd ≥ 1.We transform the Dirihlet form by a substitution y = 1

ǫ
Qx:

Φ (h) =
∑

x∈Λǫ

d∑

i=1

Cǫ,i (x) (h (x + ǫei) − h (x))2

=
∑

y∈Λσ

d∑

i=1

Cǫ,i (y)
(
h (y + qiei) − h (y)

)2

=: Φ
(
h
)
. (5.1.80)We will use the parameter δ to measure the size of the neighbourhood therelevant saddle point. We hoose

δ ≡ δ (ǫ) :=
√

kǫ |ln ǫ| (5.1.81)where k ≥ 3d onstant.
The lower boundWe de�ne the following neighbourhood of the saddle point:

Uδ :=

{
z ∈ Λσ | |〈z, wi〉| ≤

δ

ǫ
√

λ̂i

, |〈z, wd〉| ≤ 2
δ

ǫ
√

λ̂d

}
. (5.1.82)

We denote by ∂mUδ the fae of the Uδ, that lies entirely in the valley Vn (m)and analogously ∂nUδ the opposite fae. We will use the spae of funtions
HUδ

:=
{
f : Uδ → [0, 1] | f |∂nUδ∪∂mUδ

= hn,m

}
. (5.1.83)We obtain by utting all edges outside the neighbourhood Uδ and then withthe quadrati approximation (5.1.85)

Φ (hn,m) = Φ
(
hn,m

)

≥ ΦUδ

(
hn,m

)
≥ inf

h∈HUδ

ΦUδ
(h) . (5.1.84)
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Inside Uδ we an approximate Cǫ,i due to assumption C1, C2 and sF1 by
Cǫ,i (y) = pi (0) exp

(
−1

ǫ
Fǫ (0) − ǫ

2
〈y,Bǫy〉

)(
1 + O

(
δ3/ǫ

))
. (5.1.85)

Hene we have to investigate
k (ǫ) ≡ inf

h∈HUδ

∑

y∈Uδ

e−
ǫ
2
〈y,Bǫy〉

d∑

i=1

(
h (y + qiei) − h (y)

qi

)2

. (5.1.86)
We abbreviate fǫ (y) := e−

ǫ
2
〈y,Bǫy〉.We use now a partition of (Uδ, pi (0) fǫ) with boundary sets ∂mUδ and

∂nUδ in the sense of De�nition 5.9. This gives us in any ase a lower boundas we notied in (5.1.48). To obtain a good bound we hoose the partitionof the �at ase and take as ondutane matrix C̃ǫ,i (x) := fǫ (x) c̃i (x). Here,
c̃i (x) ≡ ϕi (x) pi (0) and ϕ is given by 5.13. This gives us a good bound,beause in the neighbourhood of the saddle point the potential fǫ is nearly�at.Let E ⊂ Uδ be the elements of size v. We denote ℓ := n (E,ϕ)−1/(d−1)and denote

δi :=

⌊
1

ℓ

δ√
λi

⌋ for 1 ≤ i < d and δd :=

⌊
1

‖a‖
δ√
λ̂d

⌋ (5.1.87)
as well as

Rδ := ×d−1
i=1 {−δi + 1,−δi + 2, . . . , δi − 2, δi − 1} (5.1.88)and

2Tδ := {−2δd + 1,−2δd + 2, . . . , 2δd − 2, 2δd − 1} . (5.1.89)We de�ne Er,t like in De�nition 5.11. The strings (ηr, Gr) with edges betweennearest neighbours inside Uδ for r in a suitable neighbourhood of 0 are de�nedby
ηr :=

⋃

t∈2Tδ

Er,t. (5.1.90)
Let η̌r := {x ∈ ηr | 〈x, a〉 = min} be the starting point and
η̂r := {x ∈ ηr | 〈x, a〉 = max} the endpoint of the rth string. Observe that75



{η̌r, η̂r}r(ρ) ⊂ Uδ. Furthermore de�ne the sets η̂ :=
{
η̂r(ρ) | ρ ∈ Rδ

} and η̌ :={
η̌r(ρ) | ρ ∈ Rδ

}. We denote the Dirihlet form of a single string by ηr

Φr (h) :=
∑

x∈ηr

fǫ (x)
d∑

i=1

c̃i (x) (h (x + qiei) − h (x))2 (5.1.91)
with ϕ de�ned in Proposition 5.13. We de�ne the funtion spae for a singlestring,

Hr := {h : ηr → [0, 1] | h (x) = hn,m (x) if x ∈ {η̌r, η̂r}} . (5.1.92)Moreover, put
ȟn,m := sup

{
hn,m (x) | x ∈ η̌

} (5.1.93)and ĥn,m := inf
{
hn,m (x) | x ∈ η̂

}.Proposition 5.10 yields
k (ǫ) ≥

∑

ρ∈Rδ

inf
h∈Hr(ρ)

Φr(ρ) (h) .

Sine we an alulate the apaity of a one dimensional hain, as in (3.2.10),we obtain with Lemma 5.5 that
k (ǫ) ≥

∑

ρ∈Rδ

(
hn,m

(
η̂r(ρ)

)
− hn,m

(
η̌r(ρ)

))2 ×

×
(
∑

t∈2Tδ

cap (Er,t, fǫc̃)
−1

)−1

≥ cap (E, c̃)
(
ĥn,m − ȟn,m

)2 ∑

ρ∈Rδ

(
∑

t∈2Tδ

max
y∈Er(ρ),t

fǫ (y)−1

)−1

.(5.1.94)
By onstrution of (ηr) we have for y ∈ η̌, using the de�nition of δi, (5.1.87),

ǫ2 〈y,Bǫy〉 = ǫ2

d−1∑

i=1

λ̂i 〈y, wi〉2 − ǫ2λ̂d 〈y, wd〉2

≤ δ2 − 4δ2 = −3δ2. (5.1.95)Moreover, it holds
s∗ (y,m) = y and s∗ (y, n) = 0.76



Hene Proposition 4.11 implies for y ∈ η̌

hn,m (y) ≤ cǫ−2d exp

(
−1

ǫ

(
F̂ǫ (y, n) − F̂ǫ (y,m)

))

= cǫ−2de−3δ2/ǫ (1 + O (δ)) = O (ǫ) . (5.1.96)The last equation holds, sine δ =
√

kǫ |ln ǫ| and k ≥ 3d . For y ∈ η̂ weobtain a uniform lower bound, namely
hn,m (y) = 1 − hm,n (y) = 1 + O (ǫ) . (5.1.97)Altogether we obtain
(
ĥn,m − ȟn,m

)2

= 1 + O (ǫ) . (5.1.98)Now we shift the strings ηr and rename them, suh that Ẽρ,0 = τ
(
Er(ρ),t

)begins for all ρ ∈ Rδ at the point ℓ
∑d−1

i=1 ρiwi in the hyperplane Ha orthog-onal to a. The shifts τ an be hosen, suh that their length is at most
max

{
ℓ
√

d, ‖a‖
}. The starting points of elements in the ρth string an nowbe parametrised by

zρ (t) = ta + ℓ
d−1∑

i=1

ρiwi (5.1.99)for t ∈ 2Tδ and ρ ∈ Rδ. Thus we have for y ∈ Er(ρ),t

|〈y,Bǫy〉 − 〈zρ (t) , Bǫzρ (t)〉| = O (1)Hene we obtain
k (ǫ) ≥ cap (E, c̃)

∑

ρ∈Rδ

(
∑

t∈2Tδ

exp
ǫ

2
〈zρ (t) , Bǫzρ (t)〉

)−1

×

× (1 + O (ǫ)) . (5.1.100)By onstrution zρ lies parallel to a, and thus we an separate the sums in tand r from (5.1.100) and obtain:
k (ǫ) ≥ cap (E, c̃)

(
∑

t∈2Tδ

exp
(
− ǫ

2
‖a‖2 λ̂dt

2
))−1

×

×
∑

ρ∈Rδ

exp

(
− ǫ

2
ℓ2

d−1∑

i=1

λ̂iρ
2
i

)
(1 + O (ǫ)) . (5.1.101)
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We approximate the Gaussian sums of (5.1.100) with Gaussian integrals (seeAppendix A). Hene we obtain
∑

t∈2Tδ

exp
(
− ǫ

2
‖a‖2 λ̂dt

2
)

=
1

‖a‖

√
2π

ǫλ̂d

(
1 + O

(√
ǫ
)) (5.1.102)

and
∑

ρ∈Rδ

exp

(
− ǫ

2
ℓ2

d−1∑

i=1

λ̂iρ
2
i

)
=

1

ℓd−1

d−1∏

i=1

√
2π

ǫλ̂i

(
1 + O

(√
ǫ
))

. (5.1.103)
The produt an be evaluated by using, that {wi}i is an orthonormal basisof eigenvetors of B:

d−1∏

i=1

λ̂i = det
(
Q−1∇2Fǫ (0) Q−1

)
/λ̂d

= (det Q)−2 det∇2Fǫ (0) /λ̂d. (5.1.104)Inserting into (5.1.101), we obtain with Proposition 5.15:
k (ǫ) ≥

(
2π

ǫ

)d/2−1
λ̂d√

det∇2Fǫ (0)
×

×cap (E, c̃) n (E,ϕ) ‖a‖ det Q
(
1 + O

(√
ǫ
))

=

(
2π

ǫ

)d/2−1
λ̂d√

|det∇2Fǫ (0)|
(
1 + O

(√
ǫ
))

. (5.1.105)
Observe that the eigenvalues of Bǫ = Q−1∇2Fǫ (0) Q−1 oinide with theeigenvalues of Q−2 (∇2Fǫ (0)).
The upper bound.We will diretly use the transformed Dirihlet form Φ of equation (5.1.80).We denote, using δi from (5.1.87),

2Rδ := ×d−1
i=1 {−2δi,−2δi + 1, . . . , 2δi − 1, 2δi} (5.1.106)and
Tδ := {−δd,−δd + 1, . . . , δd − 1, δd} . (5.1.107)78



De�ne now the neighbourhood Wδ ⊂ Λσ of the saddle point by
Wδ :=

{
z ∈ Λσ | |〈z, wi〉| ≤ 2

δ

ǫ
√

λ̂i

, |〈z, wd〉| ≤
δ

ǫ
√

λ̂d

} (5.1.108)
and the slightly larger set̂

Wδ = {Er,t | Er,t ∩ Wδ 6= ∅} . (5.1.109)The neighbourhood Wδ is hosen to seure that
F ǫ (x) − F ǫ (0) > δ2 (5.1.110)for x ∈ ∂Wδ \ (∂mWδ ∪ ∂nWδ).We de�ne D̃m as the onneted omponent of

{
x ∈ Λǫ |F ǫ (x) ≤ F ǫ (0) + δ2

} (5.1.111)that ontains m. De�ne Dm := D̃m \ Wδ and Dn := D̃c
m \ Wδ. To prove anupper bound we just hoose a funtion h+ to our onveniene. We make thehoie

h+|Dm
= 0, h+|Dn

= 1. (5.1.112)Up to now we didn't have to be very areful hoosing h+. But in a neigh-bourhood of the relevant saddle point of order O (δ) we have to approximatethe real equilibrium potential hn,m as good as possible. Surprisingly it suf-�es, to take h+ onstant on hyperplanes perpendiular to a. We take nowa sum of resistanes with value 1/ maxλ∈[j,j+1) {πǫ (λa)} plus a term for theremainder.We denote fǫ (x) ≡ exp (−ǫ 〈x,Bx〉 /2) for x ∈ Ŵδ and introdue asnormalisation
N :=

δd∑

t=−δd

(
max

λ∈[t,t+1)
fǫ (λa)

)−1

. (5.1.113)
Denote the orthogonal projetion onto the vetor a with Pra, i.e. Pra =
〈a, ·〉 a

‖a‖2 . Denote h0,a (x) = 〈a, x〉 / ‖a‖2 and h̃ (x) =
⌊
〈a, x〉 / ‖a‖2⌋. For

x ∈ Wδ we hoose:
h+ (x) :=

1

N


h0,a (x) − h̃ (x)

fǫ (Prax)
+

h̃(x)∑

j=−δd

min
λ∈[j,j+1)

(
1

fǫ (λa)

)
 (5.1.114)
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We estimate now di�erenes of h+ between nearest neighbours: Let i ∈
{1, . . . , d}, then we obtain for x ∈ Wδ and if h̃ (x + qiei) = h̃ (x):

(
h+ ((x + qiei)) − h+ (x)

)
N

=
h0,a (x + qiei) − h̃ (y)

fǫ (Pra (x + ǫqiei))
− h0,a (x) − h̃ (y)

fǫ (Prax)

= qi
ai

‖a‖2

1

fǫ (Prax)

(
1 + O

(
ǫ2
)) (5.1.115)

If on the other hand h̃ (x + qiei) = h̃ (x) + 1 we obtain:
(
h+ (x + qiei) − h+ (x)

)
N

= min
λ∈[k(x),k(x)+1)

1

fǫ (λa)
+

+

(
h0,a (x + qiei) − h̃ (x) − 1

fǫ (Pra (x + qiei))

)
− h0,a (x) − h̃ (x)

fǫ (Prax)

= qi
ai

‖a‖2

1

fǫ (Prax)

(
1 + O

(
δ3/ǫ

))
. (5.1.116)Comparing (5.1.115) and (5.1.116), we see, that this hold independent of apossible jump of h̃.We denote Σ− := ∂+Dm \W+

δ and Σ+ := ∂−Dm \W+
δ . Inserting h+ intothe Dirihlet form, we obtain

Φ
(
h+
)

= ΦWδ

(
h+
)

+
∑

x∈Σ−

∑

y∈Σ+

Cǫ (x, y) +

+
∑

x∈∂−Wδ

∑

y∈∂+Wδ

Cǫ (x, y)
(
h+ (x) − h+ (y)

)2
. (5.1.117)

Sine we are in the ase of disrete time, we have Cǫ (x, y) ≤ πǫ (x) ∧ πǫ (y).Therefore
∑

x∈Σ−

∑

y∈Σ+

Cǫ (x, y) ≤ d
∣∣Σ−∣∣ exp

(
−1

ǫ

(
Fǫ (0) + δ2

)) (5.1.118)
and ∑

x∈∂−Wδ

∑

y∈∂+Wδ

Cǫ (x, y)
(
h+ (x) − h+ (y)

)2

≤
∣∣∂+Wδ

∣∣ exp

(
−1

ǫ

(
Fǫ (0) + δ2

))
, (5.1.119)
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beause h+ = 0 on ∂−
mWδ and h+ = 1 on ∂−

n Wδ and the inequality (5.1.110).Sine F has ompat level sets and δ =
√

kǫ |ln ǫ|, these term are negligible.Now we estimate the �rst summand of (5.1.117). By a quadrati approx-imation inside Wδ we obtain
ΦWδ

(
h+
)

= K (ǫ) exp (−Fǫ (0) /ǫ)
(
1 + O

(
δ3/ǫ

))
, (5.1.120)where K (ǫ) is de�ned by

K (ǫ)

:=
∑

x∈Wδ

fǫ (x)
d∑

i=1

pi (0)
(
h+ (x + qiei) − h+ (x)

)2
. (5.1.121)

With (5.1.116) we an estimate
K (ǫ)

≤ (1 + O (δ))

‖a‖2 N2

∑

x∈Wδ

fǫ (x)

(
max

λ∈[k(x),k(x)+1)
{fǫ (λa)}

)−2

. (5.1.122)
The ruial point is that the sum over i ∈ {1, . . . , d} vanishes. We useProposition 5.13 and De�nition 5.14 to bring the non-disjoint sets Er,t intothe piture. They provide for every i ∈ {1, . . . , d} and z ∈ Wδ:

∑

y∈Er,t:yd=zd

ϕ
(r,t)
i (y) =

∑

Es,u∋z

ϕ
(s,u)
i (z) = 1. (5.1.123)

Therefore we an proeed like
∑

x∈Wδ

fǫ (x)

(
max

λ∈[k(x),k(x)+1)
{fǫ (λa)}

)−2

≤
∑

Er,t∈Ŵδ

∑

x∈Er,t

fǫ (x)
d∑

i=1

ϕ
(r,t)
i (x)

a2
i

‖a‖2 ×

×
(

max
λ∈[t,t+1)

{fǫ (λa)}
)−2 (

1 + O
(
δ3/ǫ

))

= ‖a‖2 cap (E, c̃)
∑

Er,t∈Ŵδ

max
x∈Er,t

fǫ (x) ×

×
(

max
λ∈[t,t+1)

{fǫ (λa)}
)−2 (

1 + O
(
δ3/ǫ

))
. (5.1.124)
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The last equation holds, beause De�nition 5.14(b) and Proposition 5.13provides
1

‖a‖4

∑

x∈Er,t

d∑

i=1

ϕ
(r,t)
i (x) a2

i = cap (E, c̃) . (5.1.125)
Inserting equation (5.1.124) into (5.1.122) provides with the help small shiftsof element to get the parametrisation (5.1.99):

K (ǫ) /cap (E, c̃)

≤
∑

Er,t∈Ŵδ

(
max
x∈Er,t

fǫ (x)

)(
max

λ∈[t,t+1)
fǫ (λa)

)−2

×

×
(
∑

t∈Tδ

(
max

λ∈[t,t+1)
fǫ (λa)

)−1
)−2 (

1 + O
(
δ3/ǫ

))

=
∑

ρ∈2Rδ

exp

(
− ǫ

2
ℓ2

d−1∑

i=1

λ̂iρ
2
i

)
×

×
(
∑

t∈Tδ

exp
(
− ǫ

2
‖a‖2 λ̂dt

2
))−1 (

1 + O
(
δ3/ǫ

))

≤ k (ǫ) /cap (E, c̃)
(
1 + O

(
δ3/ǫ

))
. (5.1.126)Therefore the upper bound oinides with the lower bound up to these error,and we are done. Sine the expressions for the upper and lower bound of

cap (m,n) agrees in this preision before an expliit evaluation of the sumsin (5.1.126), it should be possible to get the same result for more generalgraphs.
Non rational diretions.To prove the ase z ≡ Q−1wd /∈ Qd, we �rst observe that z is an elementof the one-dimensional eigenspae assoiated to the negative eigenvalue, λd,of A := Q−1∇2Fǫ (0). Consider an inreasing sequene zn ∈ Qd suh that
‖zn − z‖2 < 1 and limn→∞ zn = z. Choose r ∈ R, suh that Uδ∪Wδ ⊂ Br (0),the ‖·‖1-ball in Λq. Let Dv,w : Rd → Rd be the rotation from v to w, suhthat Dv,w (x) = x for x ∈ Rd \ span (v, w).82



We de�ne gn ∈ C∞ (Rd
) with the following properties: gn is bijetive and

gn (x) =

{
Dzn,z (x) for x ∈ Br (0) ,
x for x /∈ Br+1 (0) .

(5.1.127)Consider now the sequene of funtions Fǫ,n := Fǫ ◦ gn. Then
Q−1∇2Fǫ,n (0) = DT

zn,zADzn,z (5.1.128)has an eigenvetor DT
zn,zz = zn ∈ Qd assoiated to λd. By onstrution

Fǫ,n → Fǫ uniformly.We denote by πǫ,n the probability measure given by
πǫ,n (x) =

1

Zǫ,n
exp

(
−1

ǫ
Fǫ,n (x)

) (5.1.129)with normalisation Z =
∑

exp
(
−1

ǫ
Fǫ,n (x)

). We de�ne a Markov proess
ξǫ,n by putting

pǫ,n (x, y) := gǫ (x, y) min

(
1,

πǫ,n (y)

πǫ,n (x)

)
. (5.1.130)Apparently ξǫ,n is reversible with respet to πǫ,n. Moreover, pǫ,n → pǫ inthe operator-norm assoiated to l2 (πǫ). Sine a Markov hain is uniquelydetermined by its transition matrix and the sequene (Lǫ,n) is uniformlytight, we obtain (see e.g. Theorem 15.5 on p. 127 in Billingsley [Bil68℄) that

ξǫ,n → ξǫ in D ([0,∞),Λ).Therefore the stohasti representation of hA,B of Proposition 3.4 yields
hn

A,B → hA,B pointwise. We estimate
∥∥en

A,B − eA,B

∥∥
πǫ

=
∥∥Lǫ,nh

n
A,B − LǫhA,B

∥∥
πǫ

≤
∥∥Lǫ,n

(
hn

A,B − hA,B

)∥∥
πǫ

+ ‖(Lǫ,n − Lǫ) hA,B‖πǫ

≤ ‖Lǫ,n‖∞
∥∥(hn

A,B − hA,B

)∥∥
πǫ

+ ‖Lǫ,n − Lǫ‖∞ ‖hA,B‖πǫ
.(5.1.131)Here we used again the operator norm

‖L‖∞ := sup
h∈l2(πǫ)

‖Lh‖πe

‖h‖πe

. (5.1.132)
Therefore en

A,B → eA,B in l2 (πǫ) and the apaity of ξǫ is also the limit of theapaities of the approximating Markov proesses ξǫ
n. �
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Remark 5.17 (Retangular latties) Consider the ase of a retangular lat-tie, i.e. Λǫr := Λ ∩
(
×d

i=1 (ǫriZ)
). This problem an be redued to the onetreated before: Let τ ∈ Rd×d be the diagonal matrix with entries τii := riand put f̌ := f ◦ τ for every funtion f : Λǫr → R. Then the Dirihlet forman be transformed by a substitution y := τ−1x as follows:

ΦΓs
(h) =

∑

x∈Λǫr

d∑

i=1

Ci (x) (h (x + ǫriei) − h (x))2

=
∑

y∈Λǫ

d∑

i=1

Či (y)
(
ȟ (y + ǫei) − ȟ (y)

)2 (5.1.133)
We approximate Či in the neighbourhood of a relevant saddle s through

Či (y) = piπ̌ǫ (y) (1 + O (δ))

= pie
Fǫ(s)/ǫe〈y,τBτy〉 (1 + O (δ)) (5.1.134)with B := ∇2Fǫ (s). Now Theorem 5.7 yields that

cap (m,n) =

(
2π

ǫ

)d/2−1 |λr|√
|det∇2Fǫ (s)|

×

× exp (−Fǫ (s) /ǫ) (1 + O (δ)) , (5.1.135)where λr is the unique negative eigenvalue of τ 2p · (∇2Fǫ (s)).
Several relevant saddlesNow we treat the ase of �nitely many relevant saddle points, i.e.

Sǫ (m,M\ m) = {si | i ∈ J} , (5.1.136)where the ardinality |J | does not depend on ǫ. We show that the transitionover eah saddle point an be onsidered separately.In the following de�nition we use that we have only quadrati essentialsaddle points.De�nition 5.18 Let A and B ⊂ Λ be disjoint and ompat. Assume
|S(A,B)| ≥ 2. We all the relevant saddle points in S(A,B) serial if ev-ery optimal path γ ∈ O(A,B) visits all of them. The other extreme areparallel saddle points: We all a set of relevant saddle points parallel if thereis no optimal path that visits two of them.84



Corollary 5.19 Let ξǫ be a family of Markov hains that satis�es the as-sumptions of Theorem 5.7.(a) Then we obtain for parallel relevant saddle points
cap (m,M\ m) =

(
2π

ǫ

)d/2−1∑

i∈J

λ̂
(i)
d√

|det∇2Fǫ (si)|
e−

1
ǫ
F̂ǫ(m,Mǫ\m) ×

×(1 + O
(√

ǫ |ln ǫ|3/2
)
). (5.1.137)

(b) For serial relevant saddle points we obtain
cap (m,M\ m)

=

(
2π

ǫ

)d/2−1
[
∑

i∈J

√
|det∇2Fǫ (si)|

λ̂
(i)
d

]−1

e−
1
ǫ
F̂ǫ(m,Mǫ\m) ×

×(1 + O
(√

ǫ |ln ǫ|3/2
)
). (5.1.138)

Here, −λ̂
(i)
d is the unique negative eigenvalue of (pj (si) ∂j∂kFǫ (si))j,k.

Remark 5.20 Observe, that ase (b) an only our, if the potential Fǫ hasloal minima, that does not belong to Mǫ.In the general ase we have a graph struture between the relevant saddlepoints. This an, as the ases of parallel and serial saddles, be treated likean eletrial network, where we want to alulate the e�etive ondutane,given the ondutane of all edges.
Proof. The proof of Theorem 5.7 shows that under our assumptions theprefator of the apaity is determined by a neighbourhood of the rele-vant saddle points of radius δ ≡

√
kǫ |ln ǫ| with k > 0 onstant. Denoteby Ai :=

⋃
j∈J\i B

√
ǫ|ln ǫ| (si) the union of balls with radius √

ǫ |ln ǫ| around
Sǫ (m,Mǫ \ m) \ si for i ∈ J .ad (a). There exists disjoint optimal paths γi ∈ O(m,Mǫ \m), suh that
si ∈ γj i� i = j and therefore the a priori bounds are valid and we an hoose85



neighbourhoods Ui := U
(i)
δ of si, suh that

cap (m,Mǫ \ m) =
∑

i∈J

ΦUi

(
hm,Mǫ\m

)
(1 + O (δ))

=
∑

i∈J

inf
hi

ΦUi
(hi) (1 + O (δ))

= π (m)
∑

i∈J

Pm

(
τMǫ\m < τm∪Ai

)
(1 + O (δ)) .(5.1.139)

The expliit form follows with Theorem 5.7. We an also apply the methodof the upper bound: then the neighbourhoods in the separatrix an be hosenseparately.ad (b). Denote n := |J |. We hoose an optimal path γ ∈ O(m,Mǫ \m).By de�nition γ visits all relevant saddle points between m and Mǫ \ m. Wearrange them as (si) aording to their appearane in γ. Now we de�ne
x0 = m and let xi be the �rst minimum γ visits between si and si+1 for
1 ≤ i ≤ n − 1. Moreover, let xn be the �rst minimum γ visits in Mǫ \ m.Denote by

Fi,j := {f : Gǫ → R | f unit �ow from xi to xj} , (5.1.140)
then it follows with Thompson's priniple (3.2.8):

1

cap (m,M\ m)
= inf

f∈F0,n

∑

x,y∈Λǫ

1

Cxy

f2
xy

= inf
f∈F0,n

n∑

i=1

∑

x,y∈Ui

1

Cxy

f2
xy

(
1 + O

(
δ3/ǫ

))

=
n∑

i=1

inf
fi∈Fi−1,i

∑

x,y∈Ui

1

Cxy

(fi)
2
xy

(
1 + O

(
δ3/ǫ

))

=
n∑

i=1

1

cap (xi−1, xi)

(
1 + O

(
δ3/ǫ

))
. (5.1.141)

The expliit form follows again with Theorem 5.7. �
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5.2 Eyring-Kramers formulaWe will use now Proposition 3.21 to ompute mean hitting times. Startingfrom a minimum m ∈ Mǫ, the �rst quantity we are interested in is theexpeted time ξǫ needs to hange over to Mǫ \ m.To get expliit formula we introdue another assumption on Fǫ, namelyF3 The funtion Fǫ has exponentially tight level sets, i.e. there exists ca > 0independent of ǫ and at most polynomial in a suh that
∑

x∈Λǫ:Fǫ(x)≥a

exp

(
−1

ǫ
Fǫ (x)

)
≤ caǫ

−d exp
(
−a

ǫ

)
. (5.2.1)

We need this assumption to estimate integral by the Laplae method, seeAppendix, Proposition B.2.The main theorem in this setion isTheorem 5.21 (Eyring-Kramers formula) Let Mǫ be the set of loal min-ima of Fǫ. Let m ∈ Mǫ and I ⊂ Mǫ \ m suh that for all n ∈ Mǫ \ (I ∪ m)the barriers satis�es
Bǫ(m,n) > Bǫ(n, I) (5.2.2)or
Bǫ(n,m) < Bǫ(n, I). (5.2.3)Then

Em (τI) = ǫ−d/2 (2π)d/2

cap (m, I)

∑

n∈VI(m)

1√
det (∇2F (n))

e−F (n)/ǫ ×

×(1 + O
(√

ǫ |ln ǫ|3/2
)
) (5.2.4)

The sum is meant to reah all n ∈ Mǫ \ I and in partiular inludes always
n = m.Proof. Proposition 3.21 yields in our setting

Em

(
τMǫ\m

)
=

1

cap (m,Mǫ \ m)

∑

y/∈Mǫ\m
πǫ (y) hm,Mǫ\m (y) . (5.2.5)
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The a priori estimates on the equilibrium potential hm,Mǫ\m, see Corol-lary 4.11, are qualitatively of the same form as in the ontinuous ase, see[BEGK04℄, Corollary 4.8, p. 414. Moreover, Proposition B.2 of the appendixreveals that also the Laplae asymptotis are, up to a fator ǫ−d, the sameas in the ontinuous ase. Hene the proof is idential to the one of Theorem6.2, p. 420 in [BEGK04℄. Observe that the range of the sum in ([BEGK04℄)is
n : F̂ǫ (m,n) < F̂ (n, I) . (5.2.6)This is indeed the same as ours, sine if n satis�es (5.2.6) then m ∈ VI(n)and hene also n ∈ VI(m). �

5.3 The global pitureIn this setion we summarise the results of [BEGK01℄ and apply our morepreise estimates of the apaity. For the results on admissible transitions,we need the following stronger assumptions:T1 Given any two minima m,n ∈ Mǫ the set of relevant saddle points
Sǫ (m,n) ontains a unique element s∗ (m,n).T2 Fǫ an be represented as Fǫ = F0,ǫ + ǫF1,ǫ, where F1,ǫ is Lipshitz and
F0,ǫ is twie Lipshitz, i.e. for i ∈ {1, 2}

|Fi,ǫ (x) − Fi,ǫ (y)| ≤ C ‖x − y‖1 (5.3.1)and moreover
‖∇ǫF0,ǫ (x) −∇ǫF0,ǫ (y)‖∞ ≤ C ‖x − y‖1 , (5.3.2)where ‖x‖∞ = max1≤i≤d |xi| is the maximum norm in Rd.Notation 5.22 In ase assumption T1 holds and s ≡ s∗ (m,n), we denotethe valley V

(ǫ)
n (m) also by Vs (m).Assumption S2 yields that all essential saddle points are quadrati. Therefore

Vs onsists of two omponents, that we denote by V ±
s with the understanding,that

inf
x∈V +

s

Fǫ (x) < inf
x∈V −

s

Fǫ (x) (5.3.3)
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holds.Under assumption of uniqueness of the relevant saddle points the stru-ture of the landsape Fǫ is enoded in a tree struture, that we de�ne on theset Mǫ ∪ Eǫ. De�ne for any essential saddle s ∈ Eǫ the two �hildren�
a±

s =

{
arg max {Fǫ (x) |x ∈ Eǫ ∩ V ±

s } for Eǫ ∩ V ±
s 6= ∅,

Mǫ ∩ V ±
s else. (5.3.4)

Note, that the set Mǫ ∩ V ±
s onsists of a single point, if Eǫ ∩ V ±

s = ∅. Nowdraw a link from any essential saddle to the two points a±
s . This produes aonneted tree, Tǫ, with underlying set Eǫ ∪Mǫ having the property, that allleaves are loal minima, while all other points are essential saddle points.An alternative way to onstrut this tree is by starting from below: Fromeah loal minimum draw a link to the lowest essential saddles onnetingit to other minima. Then from eah saddle point, that was reahed before,draw a line to the lowest saddle point above it, that onnets it to furtherminima. Continue until all minima are onneted. Sine we have assumedthat there is always a unique relevant saddle point between two minima, bothproedures give a unique answer. Denote by Ts,x the branh of Tǫ emanatingfrom s, that ontains x and by Ts the union of the two branhes emanatingfrom s.The tree Tǫ indues a natural hierarhial distane between two points in

Eǫ ∪Mǫ, given by the length of the shortest path on Tǫ needed to join them.This distane enodes the all information on the time sales of �exits� fromvalleys. What is missing, is how the proess desends into a neighbouringvalley after suh an exit. It turns out, that all we need to know in addition,is whih minimum the proess visits �rst after rossing a saddle point. Ingeneral, the proess has the option to visit various minima �rst with ertainprobabilities. We will here only refer to the ase, where Fǫ is suh, that thereis always one minimum that is visited �rst with overwhelming probability.This situation is disussed in [BG99℄ and they showed, that under onditionT one an onstrut a ertain deterministi dynamial system, whih seletsin every valley, Vs (x) a unique minimum, that is �rst visited after entering thevalley through the saddle point s. To make this more preisely, we introduethe event
Tǫ (x, y) := {τy ≤ τ (Vs (x)c ∩Mǫ) and ξǫ

0 = x} , (5.3.5)where x, y ∈ M, s = s∗ (x, y) and Vs (x)c ≡ Λǫ \Vs (x). In words y is the �rstminimum outside the valley Vs (x), that the Markov proess ξǫ is visiting.89



Bovier and Gayrard showed by using large deviation estimates on thepath spae (look [BEGK01℄, Prop 4.3, p. 125)Proposition 5.23 Let m,n ∈ Mǫ and s ≡ s∗ (m,n) their unique relevantsaddle. Assume T2 and that the probability for ξǫ when started in m to reaha δ-neighbourhood of the boundary of Λ in �nite time T is exponentially small.Then there exists a unique minimum x ∈ Vs (n) and α > 0, suh that
Pm (Tǫ (m,x)) ≥ 1 − e−ǫ−α

. (5.3.6)This proposition motivates the followingDe�nition 5.24 A pair of minima (m,n) ⊂ Mǫ is alled onneted, if1. m is the deepest minimum in the valley Vs (m) for s = s∗ (m,n),2. n is the unique minimum in Vs (n), suh that Pm (Tǫ (m,n)) ≥ 1 −
e−Kǫ/ǫ.In this ase the event Tǫ (x, y), de�ned by (5.3.5) is alled an admissibletransition. Note, that the number of points onneted to a speial m ∈ Mǫis of ourse greater or equal to one and an be arbitrary large.As [BEGK01℄ pointed out, the rough estimate of Corollary 4.11 showsthat eah transition an be deomposed into a sequene of admissible transi-tions. The time sale for the transition is determined by the �rst admissibletransition, beause this involves the relevant saddle point between the start-ing point and the end point.Another result we take from [BEGK01℄, Prop 5.5, p. 139, isProposition 5.25 Let s ∈ Eǫ and m ∈ Vs the deepest minimum of Vs (m) .Then for β < α,

Em (τm | τm < τ (Vs (m)c ∩Mǫ)) =
πǫ (Vs (m))

πǫ (m)

(
1 + O

(
e−ǫ−β

))
. (5.3.7)This shows, that the expeted reurrene time at m without leaving thevalley Vs (m) is up to exponentially small errors equal to the same timeof the restrited Markov hain ξ̃ǫ with state spae V ≡ Vs (m) ⊂ Λǫ andtransition probabilities

p̃ǫ (x, y) :=





pǫ (x, y) if x ∈ V, y ∈ Nx ∩ V
1 −∑z∈Nx∩V pǫ (x, z) if y = x ∈ V
0 else. (5.3.8)
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Let π̃ǫ be the invariant measure of ξ̃ǫ, then obviously
π̃ǫ (B) = πǫ (B ∩ V ) /πǫ (V ) . (5.3.9)Using the ergodi Theorem (see see [HLL03℄, Proposition 3.3.1, p. 44), weobtain
Ẽmτm =

1

π̃ǫ (m)
=

πǫ (V )

πǫ (m)
. (5.3.10)We have seen that ξǫ will hoose with overwhelming probability the wayover the relevant saddle point s∗ (m,n) to hange over to another minimum

n ∈ Mǫ. There is of ourse some probability, that it will take a ompletelydi�erent way. We will ompute the mean hitting time τn for ξǫ starting in mand onditioned that (m,n) is a pair of onneted minima.Theorem 5.26 Let m,n ∈ Mǫ and Bδ (m) the ball with radius δ around
m. Assume that (m,n) are onneted minima and there is a unique relevantsaddle point s = s∗ (m,n) between m and n. Assume, there exists c > 0small, suh that for δ > 0 small enough

Fǫ (x) ≥ Fǫ (m) + cδ2 for all x ∈ Vs (m) \ Bδ (d) . (5.3.11)Then Pm (Tǫ (m,n)) onverges for ǫ ↓ 0 exponentially fast to one and theEyring-Kramers formula is valid, i.e.
Em (τn |Tǫ (m,n))

=
2π

ǫλ̂d (q)

√
|det∇2Fǫ (s)|√
det∇2Fǫ(m)

exp

(
1

ǫ
Bǫ (m,n)

)(
1 + O

(
δ3

ǫ

))
.(5.3.12)

Proof. Suppose ξǫ starts in x ∈ Λǫ. Let I ⊂ Λǫ and y /∈ I ∪ x. We willderive another renewal equation by splitting the events that ξǫ returns to xor goes diretly to y :

Ex (τy | τy < τI)

= Px (τI∪y < τx) Ex (τy | τy < τI∪x)

+Px (τx < τI∪y) (Ex (τx | τx < τI∪y) + Ex (τy | τy < τI)) . (5.3.13)Therefore
Ex (τy | τy < τI) =

Ex (τx | τx < τI∪y)

Px (τI∪y < τx)
Px (τx < τI∪y) +

+Ex (τy | τy < τI∪x) . (5.3.14)91



We will use this equation now for x = m, y = n and I = (Vs (m)c ∩Mǫ) \
n. Bovier et al. proved (ompare their proof of Theorem 5.1, page 137 in[BEGK01℄), that in this ase equation 5.3.14 an be estimated as

Em (τn | τn < τI) =
Em (τm | τm < τI∪n)

Pm (τI∪n < τm)

(
1 + O

(
e−ǫα))

. (5.3.15)
With the help of Proposition 5.25 and the de�nition of the apaity, we obtain

Em (τn | τn < τI) =
πǫ (Vs (m))

cap (m, I ∪ n)

(
1 + O

(
ǫ−κe−Kǫ/ǫ

))
. (5.3.16)

Sine we have assumed ondition (5.3.11), we an now diretly apply theLaplae method, see Appendix, Proposition B.1, and obtain
∑

y∈Vs(m)

e−Fǫ(y) ≤
(
det∇2Fǫ (m)

)−1/2
(

2π

ǫ

)d/2

e−Fǫ(m)/ǫ
(
1 + O

(√
ǫ
))

.(5.3.17)The apaity cap (m, I ∪ n) an be estimate with Theorem 5.7, beause
s∗ (m, I ∪ n) = s∗ (m,n). Inserting these results into the formula for theonditioned mean hitting time (5.2.5) yields the Eyring-Kramers formula forthe lattie

Em (τn |Tǫ (m,n))

=
2π

ǫ

1

λ̂d (q)

√
|det∇2Fǫ (s)|√
|det∇2Fǫ (m)|

eBǫ(m,n)/ǫ

(
1 + O

(
δ3

ǫ

))
. (5.3.18)

�

5.4 Disrete approximation of SDELet Λ ⊂ Rd be an open onneted set. Let F ∈ C3 (Λ) with exponentiallytight level sets, i.e.
∫

x∈Λ:F (x)≥a

e−F (x)/ǫdx ≤ cae
−a/ǫ. (5.4.1)
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In the following, we will onstrut the generator of a Markov proess withontinuous time, that provides a disrete version of the stohasti di�erentialequation
dXt = ∇F (Xt) dt +

√
2ǫdBt. (5.4.2)Denote Λh := Λ∩hZd and let Γh = (Λh, Gh) be the graph with edges betweennearest neighbours. We hoose h small enough so that Λh is a onnetedgraph. We de�ne on Γh:

∇hf (x) :=
1

h
√

2
(f (y) − f (x))y∈Nx

, (5.4.3)
divhZ (x) :=

1

h
√

2

∑

y∈Nx

(Z (x, y) − Z (y, x)) , (5.4.4)
∆hf (x) :=

1

h2

∑

y∈Nx

(f (y) − f (x)) . (5.4.5)
Note that with this de�nitions and the salar produts

〈f, g〉 :=
∑

x∈Λh

f (x) g (x) (5.4.6)
on l2 (Λh) and

〈Y, Z〉 =
∑

x∈Λh

∑

y∈Nx

Y (x, y) Z (x, y) (5.4.7)
on l2 (Gh), the following relations are valid

〈∇hf, Z〉 = −〈f, divhZ〉 , (5.4.8)
〈∇hf,∇hf〉 = −〈f,∆hf〉 . (5.4.9)Now onsider the generator of the di�usion proess Xǫ

t

L = ǫeF/ǫdiv
(
e−F/ǫ∇

)
. (5.4.10)It's disrete analogue on Λh is

Lh = ǫeF/ǫdivh

(
e−F/ǫ∇h

)
. (5.4.11)Therefore

Lhf (x) =
ǫ

2h2
eF (x)/ǫ

∑

y∈Nx

(
e−F (x)/ǫ + e−F (y)/ǫ

)
(f (y) − f (x))

=
ǫ

2h2

∑

y∈Nx

(
1 + e(F (x)−F (y))/ǫ

)
(f (y) − f (x)) . (5.4.12)
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This is the generator of a ontinuous time Markov proess ζh with rates
rh (x, y) =

ǫ

2h2

(
1 + e(F (x)−F (y))/ǫ

) for y ∈ Nx, (5.4.13)
rǫ (x, x) = −∑y∈Nx

rǫ (x, y) and zero else. Therefore ζh is stable and onser-vative. The embedded Markov hain, ξh, has a transition matrix
pǫ (x, y) :=

rǫ (x, y)

|rǫ (x, x)| =
1 + e(F (x)−F (y))/ǫ

∑
z∈Nx

(1 + e(F (x)−F (z))/ǫ)
. (5.4.14)

ξǫ is irreduible and has reversible probability measure, νǫ, given by
νǫ (x) =

∑
y∈Nx

(
1 + e(F (x)−F (y))/ǫ

)

4d
∑

z∈Λh
e−F (z)/ǫ

e−F (x)/ǫ. (5.4.15)
Hene ξǫ is positive reurrent. Therefore ζǫ is nonexplosive.The invariant probability measure of ζh is

πh (x) =
1

Zh

exp (−F (x) /ǫ) (5.4.16)
with normalisation fator Zh :=

∑
x∈Λh

exp (−F (x) /ǫ).To show a onvergene result of ζh, we look at it as a proess on theSkorohod spae D ([0,∞) ,Λ).
Theorem 5.27 The Markov proesses ζh given by Lh onverges in D ([0,∞) ,Λ)for h → 0 to the di�usion Xǫ on Λ with generator L .
Proof. First we show, that

Lhf (x) → L f (x) (5.4.17)94



for every f ∈ C2
b (Λ). Consider the following alulation

1

2h2

∑

y∈Nx

(
e−F (x)/ǫ + e−F (y)/ǫ

)
(f (y) − f (x))

=
1

2h2

d∑

i=1

e−F (x+hei)/ǫ (f (x + hei) − f (x)) −

−e−F (x)/ǫ (f (x) − f (x − hei)) +

+e−F (x)/ǫ (f (x + hei) − f (x)) −
−e−F (x−hei)/ǫ (f (x) − f (x − hei))

=
1

2h

d∑

i=1

e−F (x+hei)/ǫ∂if (x + hei) − e−F (x)/ǫ∂if (x)

+e−F (x)/ǫ∂if (x) − e−F (x−hei)/ǫ∂if (x − hei) + R (h)

→ div
(
e−F (x)/ǫ∇f (x)

) for h ↓ 0. (5.4.18)The orretion term R is de�ned by
R (h)

=
1

2h

d∑

i=1

e−F (x)/ǫ (∂if (x) − ∂if (x + (h − ξ1) ei)) +

+e−F (x+hei)/ǫ (∂if (x + (h − ξ1) ei) − ∂if (x + hei)) +

+e−F (x)/ǫ (∂if (x) − ∂if (x − (h − ξ2) ei)) +

+e−F (x−hei)/ǫ (∂if (x − hei) − ∂if (x − (h − ξ2) ei))

→ 0 for h ↓ 0. (5.4.19)Here the mean value theorem yields ξ1, ξ2 ∈ (0, h), i.e. small real numbers,going to 0 for h ↓ 0.We still have to show the tightness of (Ph)h∈(0,1), the laws of (ζh)h∈(0,1) in
D ([0,∞) ,Λ). To do this, we introdue its modulus of ontinuity, wζh

by
wζh

(δ) := sup
|s−t|<δ

‖ζh (s) − ζh (t)‖ . (5.4.20)
Now we use Theorem 15.5 on p. 127 of Billingsley [Bil68℄, that says
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Proposition 5.28 Suppose that for eah positive η, there exists an a ∈ Rsuh that
Ph (|ζh (0)| > a) ≤ η, ∀h < 1. (5.4.21)Suppose further that, for eah positive κ and η, there exist a δ ∈ (0, 1), andan h0 ∈ (0, 1), suh that
Ph (wζh

(δ) ≥ κ) ≤ η, ∀h ≤ h0. (5.4.22)Then (Ph)h∈(0,1) is tight, and, if P is the weak limit of a subsequene (Ph′),then P (C) = 1.To verify the onditions of Proposition 5.28 �rst notie, that the �rst ondi-tion is satis�ed if the proesses ζh are started in single points xh, suh that
limh↓0 xh = x ∈ Λ. To show the seond ondition we assume κ < ǫ anddenote by σ1 the time of the �rst jump of ζh. Hene σ1 is a random variablewith exponential distribution and parameter rǫ (x) :=

∑
y∈Nx

rǫ (x, y), where
x denotes the starting point of ζh. We denote the transition probability of
ζh by ph, that means

ph (t, x, y) = Px (ζh (t) = y) . (5.4.23)We obtain for a �xed starting point x ∈ Λh :

Px

(
sup

s<t<s+δ
‖ζh (t) − ζh (s)‖ ≥ κ

)

≤ sup
s

∑

y∈Λh

Px (ζh (s) = y) Py (σ1 < δ)

= sup
s

∑

y∈Λh

ph (s, x, y)
(
1 − e−rǫ(y)δ

)
. (5.4.24)

Denote by A (x) := {y ∈ Λh | ∃z ∼ y, s.t. max {F (y) , F (z)} < F (x)}. Sine
F has exponentially tight level sets (5.4.1) A (x) is a ompat set. Moreoverwe obtain

ph (s, x, y) ≤ e−(F (y)−F (x))/ǫ for y /∈ A (x) , (5.4.25)sine the proess has to limb onto the level F (y).
ζh is an irreduible time-ontinuous Markov proess. Hene a �xed start-ing point x and t > 0, ph (t, x, y) > 0 for all y ∈ Λh. Therefore the hdependene of ph has the form

ph (t, x, y) = hdg (t, x, y) (1 + o (1)) (5.4.26)96



to allow∑y∈Λh
ph (t, x, y) = 1. This yields up to multipliative errors (1 + o (1))in h :

Px

(
sup

s<t<s+δ
‖ζh (t) − ζh (s)‖ ≥ κ

)

≤ δ
∑

y∈A(x)

hdrǫ (y) +
∑

y∈A(x)c

hde−(F (y)−F (x))/ǫrǫ (y)

= δ
∑

y∈A(x)

∑

z∈Ny

hd
(
1 + e(F (y)−F (z))/ǫ

)
+

+eF (x)/ǫ
∑

y∈A(x)c

∑

z∈Ny

hd
(
e−F (y)/ǫ + e−F (z)/ǫ

)

≤ δ
(
2deF (x)/ǫhd |A (x)| + 4dcF (x)

)
, (5.4.27)where we have used again (5.4.1). �Now we onsider the ase h = ǫ.Corollary 5.29 (of Theorem 5.7 and Theorem 5.21) Assume F ∈ C3 (Λ)has exponentielly tight level sets and satis�es the onditions S1-S3. Let ζǫbe the ontinuous time Markov proess with statespae Λǫ and generator Lǫgiven by (5.4.11). Let M be the set of loal mimima of F . Let I, J ⊂ Mǫwith I ∩ J = ∅ and assume s ≡ s∗ǫ (I, J) is the unique relevant saddle pointbetween them. Then the apaity of ζǫ is given by

cap (I, J) =

(
2π

ǫ

)d/2−1
λd√

|det∇2F (s)|
exp (−F (s) /ǫ)∑

x∈Λǫ
e−F (x)/ǫ

×

×
(
1 + O

(√
ǫ |ln ǫ|3/2

))
, (5.4.28)where −λd is the unique negative eigenvalue of ∇2F (s) .The expeted hitting times between loal minima are given by Theorem5.21.Proof. Let ξǫ be the embedded Markov hain of ζǫ, whose transition proba-bility is given by (5.4.14). We ompare it with the Metropolis Markov hainof πǫ, given in (5.4.16). The Metropolis algorithm has a transition matrix

pM
ǫ on the Λǫ with

pM
ǫ (x, y) =

1

2d
e−[F (y)−F (x)]+/ǫ for y ∈ Nx (5.4.29)
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and pM
ǫ (x, x) := 1 −∑y∈Nx

pM
ǫ (x, y) ≥ 0. The onnetion to the proess χǫis given by

pǫ (x, y) = gǫ (x, y) pM
ǫ (x, y) , (5.4.30)where gǫ is the symmetri funtion de�ned by

gǫ (x, y) = 2de[F (x)−F (y)]+/ǫ 1 + e(F (x)−F (y))/ǫ

∑
y∈Nx

(1 + e(F (x)−F (y))/ǫ)

=
2d
(
1 + e|F (y)−F (x)|/ǫ

)
∑

y∈Nx
(1 + e(F (x)−F (y))/ǫ)

. (5.4.31)
The funtion gi de�ned by gi (x) := gǫ (x, x + ǫei) is on K ⊂⊂ Λ boundedfrom below for ǫ small enough by

min
x∈K

1 + e|∂iF (x)|

1 + 2 maxd
j=1

(
e|∂jF (x)|) . (5.4.32)

Hene, ondition C1 is satis�ed. Moreover, ondition C2 is satis�ed, sine
gi is Lipshitz ontinuous in a neighbourhood of a ritial point s ∈ Λǫ. Weobtain

gi (s) = 2d
1 + e|F (s+ǫei)−F (s)|/ǫ

∑
z∈Ns

(1 + e(F (s)−F (z))/ǫ)

= 1 + O (ǫ) , (5.4.33)sine
F (s + ǫei) = F (s) +

1

2
ǫ2∂2

i F (s) . (5.4.34)Similarly the reversible probability measure νǫ of ξǫ given by
νǫ (x) =

∑
y∈Nx

(
1 + e(F (x)−F (y))/ǫ

)

4d
∑

z∈Λh
e−F (z)/ǫ

e−F (x)/ǫ (5.4.35)
satis�es

νǫ (s) =
e−F (s)/ǫ

∑
z∈Λh

e−F (z)/ǫ
(1 + O (ǫ)) . (5.4.36)Applying Theorem 5.7 yields formula (5.4.28) for the apaity cap (m,n).Apparently the onditions of Theorem 5.21 are also satis�ed. �
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Part III
Metastability in the Hop�eldmodel
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6 The Hop�eld model
6.1 The Hop�eld HamiltonianLet N be a natural number and onsider the vertexset

Λ := {1, . . . , N} . (6.1.1)Virtually all objets we introdue will depend on N , so we will hide thisdependene in some ases. We all SN := {−1, 1}N the set of spin on�g-urations. Let {ξ1, . . . , ξM} be �xed spin on�gurations. We onsider theHop�eld Hamiltonian HN : SN → R≤0 given by
HN (σ) = − 1

2N

M∑

µ=1

〈ξµ, σ〉2 . (6.1.2)
Observe that several sites i ∈ Λ are subjet to the same fore

∂HN

∂σi

= − 1

N

M∑

µ=1

ξµ
i 〈ξµ, σ〉 . (6.1.3)

Therefore we an hange to a redued representation of the Hop�eld model,in whih the independent degrees of freedom are d := 2M mean �eld variables.This transformation was �rst used by Grensing and Kühn in [GK86℄.Let {b1, . . . , bd} be a �xed enumeration of all vetors in {−1, 1}M . Anyhoie of M patterns an then be regarded as a map
ξ : i 7→ ξi ≡

(
ξ1
i , ξ

2
i , . . . , ξ

M
i

) (6.1.4)that assoiates to eah site i ∈ Λ one of the vetors bk. Hene the map ξdetermines a partition of Λ into sets Λk given by
Λk := {i ∈ Λ | ξi = bk} . (6.1.5)We restrit now the hoies of patterns suh that eah Λk is non empty.Denote the number of sites in Λk by

ℓk := |Λk| , (6.1.6)101



therefore∑d
k=1 ℓk = N . Note that of ourse ℓk depends on N and ξ althoughthis is not indiated.Denote by LN := ×d

k=1

(
2
ℓk

Z
) the retangular lattie with spaings 2/ℓk.We de�ne the set of mean �eld on�gurations to be

XN := [−1, 1]d ∩ LN (6.1.7)and the map XN : SN → XN by setting
XN,k (σ) :=

1

ℓk

∑

i∈Λk

σi. (6.1.8)
XN determines a partition of the spin on�guration spae SN into ξ depen-dent subsets SN (x) := X−1

N (x), indexed by x ∈ XN . We say that XN lumpstogether the sites in eah Λk. Notie, that XN maps the spae SN of asymp-totially in�nite dimension to a subset of [−1, 1]d and therefore mean �eldon�gurations are muh better to handle. Using the partition {Λk} of Λ, weobtain
〈ξµ, σ〉 =

d∑

k=1

∑

i∈Λk

ξµ
i σi

=

d∑

k=1

bµ
kℓkXN,k (σ) . (6.1.9)

Let L denote the diagonal matrix with entries Lkk := ℓk. We denote by Pthe orthogonal projetion of Rd onto the subspae spanned by the vetors{
b1, . . . , bM

}, i.e.
Pjk :=

1

d

M∑

µ=1

bµ
j b

µ
k . (6.1.10)

Then we may write
HN (σ) = − 1

2N

M∑

µ=1

〈bµ, LXN (σ)〉2

= − d

2N
|PLXN (σ)|2 . (6.1.11)
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Remark 6.1 We denote in this whole hapter the eulidean norm in any Rnby |·|.For any β ∈ R≥0 we de�ne the Gibbs measure π ≡ πN,β on the �nite set Λby setting:
π (σ) :=

1

ZN,β

e−βHN (σ). (6.1.12)Here, the partition funtion ZN,β :=
∑

σ∈S e−βHN (σ) is a normalising fator.
6.2 DynamisTo model the dynamis, we onstrut a reversible Markov hain

σN,β = {σN,β (t)}t∈N0
(6.2.1)on SN . The kind of stohasti dynamis we use is alled Glauber dynamis,beause in eah time step only a single spin �ip ours. We denote by σi theon�guration with spins

(
σi
)

j
=

{
σj for j 6= i,
−σj for j = i.

(6.2.2)In order to use the lumping proedure indued by XN de�ned in (6.1.8),we hoose transition probabilities wN ≡ wN,β of the form
wN (σ, τ) :=





1
N

cN (XN (σ) , XN (τ)) min
(
1, π(τ)

π(σ)

)
, ‖τ − σ‖1 = 2,

1 −∑N
i=1 wN (σ, σi) , τ = σ,

0, else, (6.2.3)where cN : XN × XN → R≥0 is a symmetri funtion. Therefore σβ,N isreversible.We de�ne cN,k (x) := cN

(
x, x + 2

ℓk
ek

) for all 1 ≤ k ≤ d and assumeD there exists c > 0, independent of N , suh that
cN,k (x) ≥ c (6.2.4)for all x ∈ ΛN and 1 ≤ k ≤ d. Moreover, we assume cN,k is Lipshitzontinuous, more preisely there exists L > 0, independent of N , suhthat

|cN,k (x) − cN,k (y)| ≤ L |x − y| for all x, y ∈ XN . (6.2.5)
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To lift σN,β onto the spae of mean �eld on�gurations, we de�ne a lineartransformation, AN , whih maps funtions on SN to funtions on XN by
(ANf) (x) :=

∑

σ∈SN (x)

f (σ) . (6.2.6)
Proposition 6.2 The hain ζN,β ≡ {ζN,β (t)}t∈N0

on the set XN of mean�eld on�gurations de�ned by ζN,β (t) := XN (σN,β (t)) is again a Markovhain and has transition matrix, pN ≡ pN,β, given by
pN (x, y)

=





ℓk

2N
cN (x, y)

(
(1 − xk) ∧ (1 + yk)

̺(y)
̺(x)

)
, y = x + 2

ℓk
ek,

ℓk

2N
cN (x, y)

(
(1 + xk) ∧ (1 − yk)

̺(y)
̺(x)

)
, y = x − 2

ℓk
ek,

1 −∑y∈Nx
pN (x, y) , y = x,

0 else. (6.2.7)
ζN,β is reversible with respet to the new Gibbs measure ̺ ≡ ̺N,β that isdetermined by the Hamiltonian

HN,β (x) = − d

2N
|PLx|2 − 1

β
ln |SN (x)| . (6.2.8)

Remark 6.3 Observe that pN (x, y) > 0 for all nearest neighbours x, y. Toshow this, we assume without loss of generality that y = x + 2
ℓk

ek. Therefore
xk = yk − 2

ℓk
≤ 1− 2

ℓk
and hene (1 − xk) ≥ 2

ℓk
> 0. Analogously, 1 + yk ≥ 2

ℓkholds true.Proof. The Gibbs measure on XN is de�ned by
̺ (x) = (ANπ) (x) . (6.2.9)Sine π depends not on all information of σ but only on XN (σ) as we showedin (6.1.11), we an write with a slight abuse of notation

̺ (x) = |SN (x)| π (x) . (6.2.10)
̺ is the Gibbs distribution for the mean �eld Hamiltonian HN,β, given by

HN,β (x) = − d

2N
|PLx|2 − 1

β
ln |SN (x)| . (6.2.11)
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The matrix pN is de�ned by the equation pN (ANf) = AN (wNf). Inserting
x ∈ XN and putting f = 1SN (y) provides the form

pN (x, y) =
1

|SN (x)|
∑

σ∈SN (x)

∑

τ∈SN (y)

wN (σ, τ) . (6.2.12)
The Markov property holds, i� the probability to go from SN (x) to SN (y)does not depend on the starting point, i.e.

∑

τ∈SN (y)

wN (σ, τ) =
∑

τ∈SN (y)

wN (σ′, τ) (6.2.13)
for all σ, σ′ ∈ SN (x). To prove this, we show that the left hand side doesnot depend on σ. We denote the anonial basis of Rd by {e1, . . . , ed} andassume y = x + 2

ℓk
ek. If the mean �eld on�guration should inrease in Λk,then the �ipped spin has to be a minus-spin. Hene
∑

τ∈SN

“
x+ 2

ℓk
ek

”
wN (σ, τ)

=
∑

i∈Λk

wN

(
σ, σi

)
δσi,−1

=
ℓk

2N
(1 − xk) cN (x, y)

(
1 ∧ |SN (x)| ̺ (y)

|SN (y)| ̺ (x)

)
. (6.2.14)

We used again that the Gibbs measure π (σ) depends only on X (σ), i.e.
π (σ) = ̺(XN (σ))

|S(XN (σ))| and the number of minus spins in Λk is 1
2
ℓk (1 − xk). For

y = x − 2
ℓk

ek we an derive analogously
∑

τ∈SN

“
x− 2

ℓk
ek

”
wN (σ, τ)

=
ℓk

2N
(1 + xk) cN (x, y)

(
1 ∧ |SN (x)| ̺ (y)

|SN (y)| ̺ (x)

)
. (6.2.15)

Sine these expressions does not depend on whih σ in SN (x) we have hosen,ondition (6.2.13) is satis�ed and we obtain
pN (x, y) =

∑

τ∈S(y)

wN (σ, τ) for any σ ∈ SN (x) . (6.2.16)
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To simplify expression (6.2.14) we use
|SN (x)|∣∣∣SN

(
x + 2

ℓk
ek

)∣∣∣
=

(
ℓk

1
2
(ℓk + xkℓk)

)
/

(
ℓk

1
2
(ℓk + xkℓk + 2)

)

=
ℓk + xkℓk + 2

ℓk − xkℓk
=

1 +
(
xk + 2

ℓk

)

1 − xk
. (6.2.17)Plugging this into equations (6.2.14) and (6.2.15) we obtain the form givenin Proposition 6.2.The reversibility of pN with respet to ̺ follows diretly from equation(6.2.12):

̺ (x) pN (x, y) = π (x)
∑

σ∈SN (x)

∑

τ∈SN (y)

wN (σ, τ)

=
∑

σ∈SN (x)

∑

τ∈SN (y)

π (σ) wN (σ, τ)

=
∑

σ∈SN (x)

∑

τ∈SN (y)

π (τ) wN (τ, σ)

= ̺ (y) pN (y, x) . (6.2.18)We have used here again π (x) to denote π (σ) for any σ ∈ SN (x). �

Example 6.4 (a) As a partiular example we onsider the Metropolis sam-ple for the Gibbs distribution π

wN (σ, τ) :=





1
N

(
1 ∧ π(σi)

π(σ)

)
, τ = σi,

1 −∑N
i=1 wN (σ, σi) , τ = σ,

0 else. (6.2.19)
In this ase, the transition matrix pN of the Markov hain ζN,β on the mean�eld on�gurations has of ourse the form

pN (x, y) =





ℓd

2N

(
(1 − xk) ∧ (1 + yk)

̺(y)
̺(x)

)
, y = x + 2

ℓk
ek,

ℓd

2N

(
(1 + xk) ∧ (1 − yk)

̺(y)
̺(x)

)
, y = x − 2

ℓk
ek,

1 −∑y∈Nx
pN (x, y) , y = x,

0 else. (6.2.20)
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(b) Another interesting dynamis use the �magneti �eld� h : SN → RNde�ned by
hi (σ) :=

1

N

∑

j( 6=i)

Jijσj =
1

N

M∑

µ=1

〈ξµ, σ〉 ξµ
i − M

N
σi. (6.2.21)

Like Biroli and Monasson, see [BM98℄, we de�ne a transition matrix, vN , onthe spin spae SN by
vN (σ, τ) :=





1
2N

(1 − σi tanh (βhi (σ))) , τ = σi,

1 −∑N
i=1 vN (σ, σi) , τ = σ,

0 else. . (6.2.22)
To prove that vN is reversible with respet to π of (6.1.12), we observe

hi

(
σi
)

= hi (σ) (6.2.23)and
HN

(
σi
)

= − 1

2N

M∑

µ=1

〈
ξµ, σi

〉2

= − 1

2N

M∑

µ=1

(〈ξµ, σ〉 − 2ξµ
i σi)

2

= HN (σ) +
2

N

M∑

µ=1

〈ξµ, σ〉 ξµ
i σi −

2M

N

= HN (σ) + 2hi (σ) σi. (6.2.24)by the de�nition in (6.2.21). We use 1 + tanh (x) = 2ex

ex+e−x and abbreviate
ai ≡ βhi (σ) σi. Then we obtain

πN,β (σ) vN

(
σ, σi

)
=

1

NZN,β

exp (−βHN (σ))
e−ai

eai + e−ai
. (6.2.25)

and
πN,β

(
σi
)
vN

(
σi, σ

)
=

1

NZN,β

exp (−βHN (σ) − 2ai)
eai

eai + e−ai
. (6.2.26)
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Hene we have proved equality.Analogously to proof of Proposition 6.2 we onstrut a Markov hain ζN,βon the spae of mean �eld on�gurations XN , that is reversible with respetto ̺. We only have to hek ondition (6.2.13) for vN . Assume y = x + 2
ℓk

ek,then for σ ∈ SN (x)

∑

τ∈SN (y)

vN (σ, τ)

=
∑

i∈Λk

vN

(
σ, σi

)
δσi,−1

=
ℓk

4N
(1 − xk)

(
1 + tanh β

d

N

(
(PLx)k +

M

d

))
. (6.2.27)

We have used the de�nition of h in (6.2.21). The last expression is indeed in-dependent of σ ∈ SN (x). This works analogously for y = x− 2
ℓk

ek. Thereforethe transition matrix, qN , of ζN,β is given by
qN

(
x, x +

2

ℓk

ek

)

=
ℓk

4N
(1 − xk)

(
1 + tanh β

d

N

(
(PLx)k +

M

d

)) (6.2.28)
and

qN

(
x, x − 2

ℓk
ek

)

=
ℓk

4N
(1 + xk)

(
1 − tanhβ

d

N

(
(PLx)k −

M

d

)) (6.2.29)
and the usual onditions qN (x, x) = 1 −∑y∼x qN (x, y) and qN (x, y) = 0 if
x and y are not equal or nearest neighbours.
6.3 Random patternsLet (Ω,F , P) be a probability spae. We hoose {ξµ

i }1≤µ≤M,i∈N
as a family ofmutually independent random variables that attain the values 1 and −1 withequal probability 1

2
. We ontinue to use the same letters for the objets wehave de�ned. athough the most of them are of ourse now random variables.108



For example, (ℓk)1≤k≤d is a random vetor with a multinomial distributionwith parameters N and 1
d
. Its omponents are orrelated random variableswith mean value N

d
and ovarianeCov (ℓk, ℓj) =

N

d2
(dδjk − 1) . (6.3.1)In order to disuss the N dependene of HN , let us now hange to normalisedvariables by writing ℓk in the form

ℓk :=
N

d

(
1 +

1√
N

λk

)
, (6.3.2)where λk are entered random variables and have ovarianeCov (λk, λj) = dδjk − 1. (6.3.3)The range of λk is the set 1√

N
{−N,−N + d, . . . , (d − 1) N} ⊂ R. Certainly

λ depends on N , although this is not indiated.De�ne the Cramér entropy funtion I : [−1, 1] → R by
I (x) =

{
1
2
((1 + x) ln (1 + x) + (1 − x) ln (1 − x)) , x ∈ (−1, 1) ,

ln 2, x ∈ {−1, 1} .(6.3.4)and denote Λ := diag (λk), the diagonal d×d - matrix with entries Λkk = λk.De�nition 6.5 In this de�nition we stress the dependene of λ on N and ξ.To work on a ommon probability spae we de�ne
λN [ξ] := λN [(ξ1, . . . , ξN )] (6.3.5)for all ξ ∈

(
{−1, 1}M

)N. This an, of ourse, be done analogously for allquantities that depend on N and ξ.For eah N we de�ne
ΞN :=

{
ξ ∈

(
{−1, 1}M

)N ∣∣ |λN [ξ]| < 2
√

d log N

}
. (6.3.6)Moreover, denote

Ξ := lim inf
N→∞

ΞN , (6.3.7)i.e. Ξ is the spae of all ξ = (ξµ
i )1≤µ≤M,i∈N

suh that there exists N0[ξ] andfor all N ≥ N0[ξ]

|λN [ξ]| ≤ 2
√

d log N. (6.3.8)
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Remark 6.6 Observe that for ξ ∈ Ξ and N ≥ N0[ξ] indeed all subsets Λk[ξ]are non empty.Part (a) of the next proposition resembles Lemma 2.2 of [Gen96℄, while part(b) is due to [KP89℄ (see equation (2.6) on p. 909).Proposition 6.7 (a) Ξ is a set of full measure, i.e. P (Ξ) = 1.(b) For ξ ∈ Ξ and N ≥ N0[ξ], the Hamiltonian HN,β an be written as
Hβ,N (x) = Nfβ,λ (x) − N

β
ln 2 + O (ln N) , (6.3.9)

where fβ,λ : [−1, 1]d → R is the funtion
fβ,λ (x) :=

1

βd

d∑

k=1

(
1 +

1√
N

λk

)
I (xk) −

1

2d

∣∣∣∣P
(

1l +
1√
N

Λ

)
x

∣∣∣∣
2

. (6.3.10)
Proof. ad (a). √

N
d

λ is the partial sum of the N entered i.i.d. ran-dom variables (1 (ξi = bk) − 1
d

)
k∈{1,...,d} with values in [−1, 1]d. Thereforethe statement follows from the Law of Iterated Logarithm for partial sumsof Rk-valued random variables, whose proof an be found more generally forBanah spaes in [LT91℄, Theorem 8.2 on p. 197.ad (b). With the help of Stirling's formula

log (n!) = n log n − n + log 2πn + O (1/12n) (6.3.11)we an approximate for a > 0 and −1 < b < 1:
(

a
1
2
a (1 + b)

)
= a ln 2 − aI (b) − 1

2
ln
(π

2
a
(
1 − b2

))
+

+O
(
a
(
1 − b2

))−1
. (6.3.12)Therefore

ln |SN (x)| =
d∑

k=1

(
ℓk

1
2
ℓk (1 + xk)

)

= N ln 2 − N

d

d∑

k=1

(
1 +

1√
N

λk

)
I (xk) +

+O (ln N) . (6.3.13)110



The last estimation holds, sine for ξ ∈ Ξ and N ≥ N0[ξ] we obtain
∣∣∣∣ln ℓk − ln

N

d

∣∣∣∣ =

∣∣∣∣ln
(

1 +
1√
N

λk

)∣∣∣∣

≤
∣∣∣∣∣ln
(

1 − 2

√
d ln N√

N

)∣∣∣∣∣ . (6.3.14)
This last expression onverges to zero for N → ∞. �

Remark 6.8 Note that the funtion fβ,λ depends only over terms λk√
N

on
λ and N . In partiular, fβ := fβ,0 depends neither on ξ nor N (exept ofourse if M would depend on N).Proposition 6.9 For ξ ∈ Ξ and N ≥ N0[ξ], the sequene of funtions fβ,λonverges for N → ∞ uniformly to the deterministi funtion fβ, i.e.

‖fβ,λ − fβ‖∞ ≤ 3
1 + β

β

√
d
ln N

N
. (6.3.15)

Proof. This is exatly the meaning of Proposition 2.3 in [KP89℄, p. 912with λKP := 1√
N

λ, δKP := 2
√

d ln N/
√

N , UN,δ := ΞN and ηKP := 0. To belear we indexed the quantities Koh and Piasko use with a KP . �We introdue the matrix AN that will be ruial to ontrol the random devi-ation of the minima and 1-saddles of fβ,λ ompared to the deterministi onesof fβ.De�nition 6.10 (a) Denote by AM the M (M − 1) /2 dimensional vetorspae of symmetri M × M matries with vanishing diagonal.(b) De�ne AN ∈ AM by setting
Aµ,ν

N :=
1

d
〈bµ,Λbν〉 (6.3.16)

for all µ, ν ∈ {1, . . . ,M}.We prove some properties of AN in the next111



Proposition 6.11 (a) {Aµ,ν
N , µ < ν} are unorrelated random variables withexpetation zero and variane one on (Ω,F , P). Alternatively AN an bewritten for µ 6= ν in the form
Aµ,ν

N =
1√
N

〈ξµ, ξν〉 . (6.3.17)
(b) For all ξ ∈ Ξ and N ≥ N0[ξ], we obtain for all x ∈ RM

|ANx| ≤ 2
√

p ln N |x| . (6.3.18)() There exists (γµ,α
n )1≤µ<α≤p;n∈N

i.i.d. one dimensional standard normaldistributed random variables on a ommon probability spae with ξ suh that
|Aµ,α

N − gµ,α
N | = O

(
log N√

N

) (6.3.19)
almost surely, where

gµ,α
N =

1√
N

N∑

n=1

γµ,α
n (6.3.20)

for µ < α and gN ∈ AM .Remark 6.12 The matries (gN)N∈N
an be understood as a random walkin AM with time parameter N ∈ N that starts in zero and has i.i.d. Gaussianinrements. For any N the M (M − 1) /2 independent omponents of gN areone dimensional standard Gaussians.Proof. ad (a). We have Aµ,µ

N = 1
d
tr (Λ) = 0. For α 6= µ and α 6= µ we obtainwith (6.3.3)

E [Aα,µ
N ] =

1

d

∑

k

bα
k bµ

kE [λk] = 0 (6.3.21)
and

E
[
Aα,µ

N Aα,µ
N

]
=

1

d2

∑

j,k

bα
j bµ

j E [λjλk] b
α
k bµ

k

=
1

d

〈
bαµ, bαµ

〉
− 1

d2
〈bα, bµ〉

〈
bα, bµ

〉

= δ{α,µ},{α,µ}. (6.3.22)112



In other words the {Aα,µ
N , α < µ} are unorrelated random variables withexpetation zero and variane one.To prove the alternative representation for µ 6= ν, notie that

1√
N

∑

i∈Λ

ξµ
i ξν

i

=
1√
N

d∑

k=1

∑

i∈Λk

ξµ
i ξν

i

=
1√
N

d∑

k=1

bµ
kb

ν
kℓk =

1

d
〈bµ,Λbν〉 , (6.3.23)

beause of the orthogonality of bµ and bν .ad (b) This is Corollary 2.4 in [Gen96℄, p. 250, exept that we haverelaxed iterated logarithm to a logarithm.ad () This property is adopted from Külske ([Kül97℄, p. 1286). It followsfrom a strong invariane priniple for partial sum proesses for Rk-valued in-dependent random variables, whose proof an be found in [Rio93℄, Cor. 4 onp. 1712. �
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7 Properties of the e�etive energyIn the following unlabelled sums with Latin index have range {1, . . . , d}and Greek index means range {1, . . . ,M}. We will always assume β > 1,whih means we are in the low temperature regime. Denote by m∗ ≡ m∗ (β)the unique positive solution of the transendental equation
m = tanh (βm) . (7.0.1)We use now that fβ,λ is a C∞-funtion from (−1, 1)d to R. Sine Eλ = 0 and

λ ful�lls a law of large numbers for N → ∞, we �rst disuss the deterministifuntion fβ. Some of the proofs of the following statements are postponedto setion 9.
7.1 Critial points of fβUsing I ′ (y) = artanh (y) we obtain

d

dyk

fβ (y) =
1

βd
artanh (yk) −

1

d
(Py)k . (7.1.1)The zeros of this funtions are the solutions of the mean �eld equation

tanh [β (Py)k] = yk. (7.1.2)In other words we are searhing for �xed points of the mapping
y 7→ Tanh (βPy) , y ∈ [−1, 1]d (7.1.3)where Tanh (y) := (tanh y1, tanh y2, . . . , tanh yd).An important result in Koh and Piasko [KP89℄ desribes the so-alled�symmetri solutions of order n� of this equation for n > 0 (the ase n = 0orresponds to the trivial solution y = 0).A symmetri solution of order n an be obtained by making the Ansatz

Py = anv
(n) and

v(n) :=
∑

α cαbα, cα ∈ {−1, 0, 1} , |c|2 = n. (7.1.4)This Ansatz leads to the following equation for an :

an = 2−n+1
∑

0≤m<n/2

(
n
m

)
n − 2m

n
tanh [(n − 2m)βan] . (7.1.5)
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For β ≤ 1, it is easy to see that equation (7.1.2) admits only the trivialsolution, and that fβ takes its minimum value for y = 0. This minimumturns into a loal maximum as β is inreased past its ritial value β = 1,and the remaining 3M−1 symmetri solutions bifurate away from the origin.De�nition 7.1 Let f ∈ C2
(
Rd
) be given. We all a ritial point of fquadrati i� det∇2f 6= 0. Otherwise it is alled degenerate. A quadratiritial point of f , say x, is a k-saddle, i� ∇2f (x) has exatly k negativeeigenvalues. We say, the funtion f is at x in k diretions unstable and in

d− k diretions stable. The d× d matrix ∇2f (x) is said to have signature k.Theorem 7.2 (Koh, Piasko) (a) Let β > 1 and n ∈ N be given, thenequation (7.1.5) has a unique positive solution an ≡ an (β). Furthermore, if
v(n) satis�es (7.1.4) and y(n) ∈ Rd is de�ned by

y
(n)
k := tanh

[
βanv

(n)
]
, 1 ≤ k ≤ d , (7.1.6)

then the funtion fβ has a ritial point at y(n).(b) Let 1 < β < 1+(9d + 500M 8)
−1 and y ∈ Rd. If fβ has a ritial pointat y, then y is a symmetri solution of some order n ≤ p. In partiular,if y is a loal minimum of fβ, then y is a symmetri solution of order 1,and if y is a 1-saddle of fβ, then y is a symmetri solution of order 2.Proof. ad (a). This is Theorem 1.3, p. 907 in [KP89℄.ad (b). The �rst part is Theorem 1.4 (i), p. 908 in [KP89℄ and we onlyhave to show the seond. De�ne the map

Ωβ : [−1, 1]d → P
(
[−1, 1]d

) (7.1.7)
by

Ωβ (x) := PTanh (βPx) , x ∈ [−1, 1]d . (7.1.8)Denote by P1 and P3 the orthogonal projetions on Rd onto the subspaes
span {vn} and span {bµ | 〈vn, b

µ〉 = 0}, respetively and let P2 := P −P1−P3.It has been shown in [KP89℄, that the linearisation of Ωβ at the point z(n) :=
an (β) vn has the following spetral representation

DΩβ

(
z(n)
)

= (sn + (n − 1) rn) P1 + (sn − rn) P2 + snP3. (7.1.9)115



Here, sn and rn are given by the equations
sn = β − β

1

d

∑

k

tanh2
(
βz

(n)
k

) (7.1.10)
rn = −β

1

d
cµcν

∑

k

tanh2
(
βz

(n)
k

)
bµ
kb

ν
k, (7.1.11)

where µ 6= ν are arbitrary numbers between one and M suh that cµcν 6= 0.Sine sn + (n − 1) rn < 1, DΩβ an have an eigenvalue greater one only if
sn − rn > 1.As Koh and Piasko[KP89℄ pointed out (ompare formula (3.5) on p.917), we obtain

∇2fβ

(
Tanh

(
βz(n)

))
=

1

dβ

(
1l − βPTanh′ (βz(n)

)) (
Tanh′ (βz(n)

)
·
)−1

,(7.1.12)where Tanh′ (βz(n)
)
· denotes the diagonal matrix with entries given by thevetor. Sine it is a positive de�nite matrix the signature of the matrix

∇2fβ

(
Tanh

(
βz(n)

)) (7.1.13)oinides with the signature of (1l − βPTanh′ (βz(n)
)) .If sn − rn < 1, we know that all eigenvalues of ∇2gβ are positive and zis a minimum and for sn − rn > 1, we obtain at least dim

(
P2R

d
) negativeeigenvalues. Therefore only the points y(2) an be 1-saddles.For n = 2, we obtain s2 = β

(
1 − 1

2
m∗2) and r2 = −1

2
m∗2. Hene,

s2 − r2 = β > 1. Let βs denote the unique solution of the equation
β =

2

2 − m∗ (β)2 . (7.1.14)
Then the eigenvalue sn gets bigger than 1 at βs. Therefore y(2) is a 1-saddleof fβ only in the temperature interval (1, βs). �

Corollary 7.3 Let 1 < β < 1 + (9d + 500M 8)
−1. We de�ne a vertex-set

V := {−M, . . . ,M} \ {0} (7.1.15)and an edgeset
E := {{µ, ν} ∈ V × V |µ /∈ {ν,−ν}} . (7.1.16)116



We denote m±µ := ±m∗ (β) bµ and sµ,±ν := 1
2
m∗ (bµ ± bν). Then

MN := {mµ |µ ∈ V } (7.1.17)is the set of loal minima of fβ and
SN := {sµν | {µ, ν} ∈ E} (7.1.18)is the set of 1-saddles of fβ.In the following we will use another result of Koh and Piasko [KP89℄, p.919, namelyProposition 7.4 Let I = {1, 2, . . . , p} and for every subset J ⊂ I de�ne
bJ
k :=

∏
µ∈J bµ

k , 1 ≤ k ≤ d, (7.1.19)where the value of an empty produt is de�ned to be 1. Then the set {bJ : J ⊂ I
}is an orthogonal basis for Rd.We introdue some abbreviations: denote

γ1 :=
1

β (1 − m∗2)
, (7.1.20)

γ2 :=
1

β
, (7.1.21)

γ3 :=
1

2

(
γ1 + γ2 − 1 +

√
1 + (γ1 − γ2)

2

)
, (7.1.22)

γ4 :=
1

2

(
γ1 + γ2 − 1 −

√
1 + (γ1 − γ2)

2

)
. (7.1.23)For J ⊂ I ≡ {1, . . . ,M} de�ne uJ ∈ Rd by

uJ = bJ (1 + bµbν) (7.1.24)and
ũJ := bJ (1 − bµbν) (7.1.25)and the mixtures

vα :=
1

γ1 − γ3

uα +
1

γ2 − γ3

ũα (7.1.26)and
ṽα :=

1

γ1 − γ4

uα +
1

γ2 − γ4

ũα. (7.1.27)Now we an formulate 117



Proposition 7.5 (a) The points mµ are minima for all β > 1 and the Hes-sian d∇2fβ (mµ) has eigenvetors bα with eigenvalue γ1 − 1 for 1 ≤ α ≤ Mand eigenvetors bJ with eigenvalue γ1, where J ⊂ {1, . . . ,M} suh that
|J | 6= 1.(b) The points sµν are 1-saddles for 1 < β < βs, where βs is the uniquesolution of the equation β = 2

2−m∗(β)2
. The orresponding eigenvalues of theHessian d∇2fβ (sµν) areeigenvalue multipliity eigenvetor

γ1
1
2
d − M + 1 uJ for |J | 6= 1

γ2
1
2
d − M + 1 ũJ for |J | , |J \ {µ, ν}| 6= 1

γ3 M − 2 vα for α /∈ {µ, ν}
γ4 M − 2 ṽα for α /∈ {µ, ν}

γ1 − 1 1 bµ + bν

γ2 − 1 1 bµ − bν

Proof. We use the representation (7.1.12) of ∇2fβ at a symmetri solution.For the symmetri solution of order 1, we have simply
Tanh′ (βz(1)

)
· =

(
1 − m∗2) 1l. (7.1.28)Therefore {bJ

}
J⊂{1,...,M} is a basis of eigenvetors for (PTanh′ (βz(1)

)
·) witheigenvalues λJ = 1−m∗2 if |J | = 1 and λJ = 0 if |J | 6= 1. This leads to part(a).ad (b). We onsider without restrition of generality z(2) = 1

2
m∗ (b1 + b2).The matrix (Tanh′ (βz(2)

)
·
) has the representation

(
Tanh′ (βz(2)

)
·
)

=

(
1 − 1

2
m∗2

)
1l − 1

2
m∗ (b{1,2}·

)
. (7.1.29)

Hene, we have a onnetion between pairs of vetors (u, v) like (1, b12) and
(b13, b23) that are related by v = ub{1,2}, as well as u = vb{1,2}.We de�ne

aα := bαb{1,2} +
m∗2

2 − m∗2 bα. (7.1.30)The representation (7.1.29) yields a basis of eigenvetors of (PTanh′ (βz(2)
)
·),namely (b1 − b2) with eigenvalue 1, (b1 + b2) with eigenvalue (1 − m∗2), as118



well as (M − 2) eigenvetors bα with eigenvalue (1 − 1
2
m∗2) and aα witheigenvalue 0, for all α ∈ {3, . . . ,M}. Moreover, there are (d − 2M + 2)eigenvetors of the form bJ where |J | , |J \ {1, 2}| 6= 1. All of these haveeigenvalue 0.Due to equation (7.1.29) the matrix (Tanh′ (βz(2)

)
·
) has for this basisof eigenvetors a blok diagonal representation, namely two single valuedentries, 1 and (1 − m∗2), assoiated to b1 − b2 and b1 + b2. Then, for α ∈

{3, . . . ,M}, assoiated to (bα, aα) there are bloks of the form
(

2−2m∗2+m∗4

2−m∗2 −1
2
m∗2

−2m∗2(1−m∗2)
(2−m∗2)2

2(1−m∗2)
2−m∗2

)
, (7.1.31)

followed by (1
2
d − M + 1

) bloks of form
(

1 − 1
2
m∗2 −1

2
m∗2

−1
2
m∗2 1 − 1

2
m∗2

)
, (7.1.32)

whih are assoiated to pairs (bJ , bJb{1,2}), where |J | , |J \ {1, 2}| 6= 1. Diago-nalising the inverted bloks multiplied from the left with the assoiated 2×2bloks of the diagonal matrix 1
β

(
1 − βPTanh′ (βz(2)

)) leads to the statementof the proposition. �

7.2 Preise ritial points and barrier
Theorem 7.6 Denote γ1 ≡ 1

β(1−m∗2)
, a1 ≡ m∗

γ1−1
and a2 ≡ 1

2
m∗β

1−β(1− 1
2
m∗2)

.Then for all ξ ∈ Ξ and N ≥ N0[ξ], the funtion fβ,λ has 2M deepest minima,namely
m±µ = ±m∗

(
bµ +

a1√
N

∑

α

Aµα
N bα

)
+ O

(
ln N

N

)
. (7.2.1)
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For 1 < β < 1+(9d + 500M 8)
−1 it has exatly ((2M

2

)
− M

) 1-saddles, namely
sµ,±ν := sµ,±ν

(
1 ∓ 2a1a2

1√
N

Aµν
N

)
+ (7.2.2)

+a2
1√
N

(
1l − S

2

µ,±ν

)∑

α

(Aµ,α
N ± Aν,α

N ) bα +

+O
(

lnN

N

)

for µ 6= ν ∈ {1, . . . ,M} and s−µ,±ν := −sµ,∓ν. Here, Sµ,±ν denotes thediagonal matrix with entries given by the vetor sµ,±ν.The proof of this theorem will be given in setion 9. Very similar results asin Theorem 7.6 are already known, ompare for the preise loation of theminimising order parameters e.g. [Gen96℄, Theorem. 1.1, p. 246.In the next proposition we give an expliit estimate of the random heightsof these minima and 1-saddles. We de�ne the following onstants:
k0 := a1

(
1

2β
ln

1 + m∗

1 − m∗ − 1

2
m∗ (γ1 + 2)

)
, (7.2.3)

k1 := a1

(
m∗γ1 −

1

4β
ln

1 + m∗

1 − m∗

)
− 1

2β
I (m∗) , (7.2.4)

k2 :=
(
1 − m∗2) a2

(
1

4
m∗ (γ1 + 2) − 1

4β
ln

1 + m∗

1 − m∗

)
, (7.2.5)

k3 := m∗a1a2

(
1

4
m∗ (γ1 + 2) +

1

4β
ln

1 + m∗

1 − m∗

)
. (7.2.6)Here, we have used the onstants γ1, a1, a2 as in Theorem 7.6. Observe that

k0 ∈
(
−1

2
, 3

4

) and k1 ∈ (0, 1) and k2, k3 have a singularity at βs, whih is theunique solution of β = 2
2−m∗(β)2

.We denote the free energy of the Curie-Weiss model by
fCW (β) :=

1

2
m∗2 − 1

β
I (m∗) . (7.2.7)Proposition 7.7 For all ξ ∈ Ξ and N ≥ N0[ξ], the expliit representationof fβ,λ at the minima and the saddle points is given by

fβ,λ (±mµ)

= −fCW (β) +
k0

N

(
A2

N

)µ,µ
+ O

(
ln N√

N

)3 (7.2.8)
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and
fβ,λ (sµν)

= −1

2
fCW (β) − k1√

N
Aµ,ν

N +

−k2

N

∑

α

(Aαµ
N + Aαν

N )
2 − k3

N
(Aµν

N )
2
+ O

(
ln N√

N

)3

. (7.2.9)
To obtain fβ,λ (sµ,−ν) we have to substitute Aαν

N by −Aαν
N for all α ∈ 1, . . . ,Min equation (7.2.9).Remark 7.8 Let gN be a random walk in A , the spae of symmetri M×Mmatries with vanishing diagonal as introdued in Proposition 6.11(b). Sinewe an approximate AN by gN we see that the height of the minima of HNvaries only of order O (1) times a hi-square (with M degrees of freedom)distributed random variable. The height of the saddles �utuates of order

O
(√

N
) times a normal random variable plus terms of higher order.
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8 Struture of the ground states
8.1 Eyring-Kramers formulaIn this subsetion we put together the ingredients to arrive at an Eyring-Kramers formula for the Hop�eld model. We onsider the (random) set ofdeepest minima of fβ,λ by

MN := {mµ |µ ∈ V } . (8.1.1)We will use the following Theorem of Lidskii (ompare Kato [Kat76℄,Theorem. 6.10, p. 126).Proposition 8.1 [Lidskii, 1950℄ Let A and B be symmetri d × d-matriesand C = B − A. Denote respetively by αk, βk and γk, k ∈ {1, . . . , d} therepeated eigenvalues of A,B and C. Then the d-dimensional numerial vetor
(β1 − α1, . . . , βd − αd) lies in the onvex hull of the vetors obtained from
(γ1, . . . , γd) by all possible permutations of its elements.Moreover, we need the followingDe�nition 8.2 Consider δ ∈ (0, 1

2
. Denote E :=

{
{µ, ν} ∈ V × V |µ 6= ν

}.We de�ne a random set of �good� numbers
Jδ :=

{
n ∈ N | min

a 6=b∈E

(
Aa

n − Ab
n

)
≥ n− 1

2
+δ

}
. (8.1.2)

As we have seen in Proposition 6.11 () we an think of the omponents of
AN (up to the symmetry) to be independent random walk, hene a numberis not good if two of them ome to lose together. The next lemma showsthat almost surely the most n ∈ N are �good�.Lemma 8.3 We de�ne

Z ′
δ :=

{
ξ ∈ Ξ

∣∣ lim
N↑∞

1

N

N∑

n=1

1 (n ∈ Jδ) = 1

}
. (8.1.3)

Then P (Z ′
δ) = 1. 122



Proof. We de�ne ηab =
(
ηab

i

)
i∈N

by ηab
i := 1√

N

(
ξa1
i ξa2

i − ξb1
i ξb2

i

) for a =

{a1, a2} and b = {b1, b2}. Then ηab is a sequene of entered i.i.d. randomvariables with �nite variane and Sab
n = 1√

N

∑n
i=1 ηab

i their normalised partialsum and Sab
n = Aa

n − Ab
n. Apparently {Sab

n

}
a,b∈E

are identially distributed;let Sn be another random variable with the same distribution. Then
P

(
min
a,b∈E

Sab
n ≥ n− 1

2
+δ

)
≤
(

M

2

)
P
(
Sn ≥ n− 1

2
+δ
)

. (8.1.4)
Therefore we an use Lemma 3, in [Kül97℄, p. 1279. �We want to ontrol the expeted time ζN,β needs to get from one minimumin MN to another one. Sine ζN,β is for eah realisation of the patterns areversible Markov hain on a (ompat) subset of a lattie we an apply theEyring-Kramers formula in the form proved in Theorem 5.21 of part II.We inorporate the notions of De�nition 4.3 of part II. In partiular,we denote the ommuniation height between two subsets I, J ⊂ MN by
f̂β,λ (I, J). The assoiated set of relevant saddle points is named SN (I, J).Reall the notion of valley of De�nition 4.4 of part II. Finally the barrierbetween m ∈ MN \ I and I is de�ned as

bN (m, I) := β(f̂β,λ (m, I) − fβ,λ(m). (8.1.5)
Theorem 8.4 We assume 1 < β < 1 + (9d + 500M 8)

−1. Choose δ ∈ (0, 1
2
)and assume ξ ∈ Z ′

δ and N ≥ N0[ξ], as well as N ∈ Jδ. Let I and Jbe disjoint subsets of MN . Assume cN,k ≡ 1, i.e. we onsider (Glauber)Metropolis dynamis for the original Hop�eld Markov hain.If s ∈ SN(I, J) is a relevant saddle point between I and J we obtain
cap (I, J) = k4|SN (I, J)|N (d−2)/2̺N,β(s) ×

×
(
1 + O

(√
ln3 N/

√
N
))

, (8.1.6)
where

k4 :=

√
β − 1 (1 − m∗2)

d/4
(2πβd)d/2

π
√

1 − β (1 − m∗2)
(
1 − β

(
1 − 1

2
m∗2

))(M−2)/2
. (8.1.7)
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Starting in m ∈ MN \I the expeted (quenhed) hitting time of J satis�es
Em (τI) =

k5N

|SN (m,J)|
∑

n∈VJ (m)

exp(NbN(n, J)) ×

×
(
1 + O

(√
ln3 N/

√
N
))

, (8.1.8)where
k5 :=

π (1 − m∗2)
d/4

√
β − 1

√
1 − β

(
1 − 1

2
m∗2

)

(
1 − β

(
1 − 1

2
m∗2)

1 − β (1 − m∗2)

)(M−1)/2

. (8.1.9)
Remark 8.5 (a) If we do not speialise to the Metropolis dynamis, we haveto multiply k4 by √

βd|γ|
β − 1

, (8.1.10)where γ is the unique negative eigenvalue of the matrix
(
ai

(
∇2fβ

)
ij

) (8.1.11)with
ak :=

{
(1 − m∗) cN,k (s) for k ∈ Uµν ,
cN,k (s) for k /∈ Uµν .

(8.1.12)Here, Uµν := {k ∈ {1, . . . , d} | bµ
k = bν

k}.
k5 has to be divided by the same quantity.Whenever cN,k (x) depends only on π (x) and xk, this will yield , up to aonstant fator, again the result (8.1.6).(b) The validity of this theorem ould possibly be extended to β ∈ (1, βs),where βs is the unique solution of the equation β = 2

2−m∗(β)2
. Outside thisinterval the points {±sµ,±ν} are no longer andidates for the relevant saddlepoints and therefore there has to be others, whih however are unknown upto now.Proof. We hoose ǫ := 1

N
and Fǫ := βfβ,λ as well as F := βfβ. Proposition6.9 shows that ondition sF1 is satis�ed and F2 holds sine the statespaeis relatively ompat and fβ is ontinuous. Sine

β ∈
(
1, 1 +

(
9d + 500M 8

)−1
)

, (8.1.13)
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Theorem 7.2 implies that there are only �nitely many andidates for essentialsaddle points of fβ,λ. Therefore onditions S1-S3 of setion 5 of part II aresatis�ed. Assumption D assures that onditions D1 and D2 of hapter 5 ofpart II are satis�ed.Hene we an apply Theorem 5.7 to estimate the apaity. This yieldsfor cap(I, J) up to multipliative errors (1 + O
(√

ln3 N/
√

N
)) the value

(2πβN)(d/2−1) |γ|√
|det∇2fβ,λ(s)|

̺N,β(s), (8.1.14)
where γ is the unique negative eigenvalue of L−2pN (s) · ∇2fβ,λ (s).Moreover, Proposition 7.7 shows that the �utuations of the minima aresmall ompared to the �utuations of the 1-saddles. Sine we assumed that
N ∈ Jδ we see that the additional ondition of Theorem 5.21 is satis�ed. Thisyields for Em

(
τMN\m

) up to multipliative errors (1 + O
(√

ln3 N/
√

N
))

the value
π

2βN |γ|

√
|det∇2fβ,λ (s)|√
det∇2fβ,λ (m)

∑

n∈VJ (m)

exp (NbN(n, J)) . (8.1.15)
Now we show that we an estimate the prefator expliitly. From Propo-sition 6.2 we obtain

pN,k (s)

=
ℓk

2N
cN,k (s)


(1 − sk) ∧

(
1 + sk +

2

ℓk

) ̺
(
s + 2

ℓk
ek

)

̺ (s)


 .(8.1.16)

Sine cN,k is Lipshitz, this shows that also pN,k is Lipshitz ontinuous. Therepresentation (6.3.2) of ℓ yields:
ℓk =

N

d

(
1 +

1√
N

λk

)

=
N

d

(
1 + O

(√
ln N√
N

))
. (8.1.17)

Theorem 7.6 yields s = s
(
1 + O

(
ln N/

√
N
)). Therefore

(1 − sk) ∧
(

1 + sk +
2

ℓk

)
= (1 − |sk|)

(
1 + O

(
ln N√

N

))
. (8.1.18)
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Sine fβ,λ ∈ C∞ (R) and ∇fβ,λ (s) = 0 we obtain
fβ,λ

(
s +

2

ℓk

ek

)
= fβ,λ (s) + O

(
N−2

)
. (8.1.19)Hene,

̺

(
s +

2

ℓk
ek

)
= ̺ (s)

(
1 + O

(
N−1

))
. (8.1.20)Altogether we obtain

pk (s) =
1

2d
ak

(
1 + O

(
lnN√

N

)) (8.1.21)
where a ∈ Rd is de�ned by 8.1.12.With the formula (9.0.2) for the Hessian of fβ,λ we obtain, sine ξ ∈ Ξand N ≥ N0[ξ]

∇2fβ,λ (s) = ∇2fβ (s)

(
1 + O

(√
lnN√
N

))
. (8.1.22)

Now we apply the Theorem of Lidskii (Proposition 8.1). Therefore the de-viation of the eigenvalues of ∇2fβ,λ (s) ompared with the eigenvalues of
∇2fβ (sµν) are of order O

(
ln N/

√
N
). In the same way we an relatethe eigenvalues of ∇2fβ,λ (mµ) to ∇2fβ (mµ) and of L−2pN (s) · ∇2fβ,λ (s)to d

2N2

(
ai (∇2fβ (s))ij

).In the ase of the Metropolis algorithm (6.2.20), we have cN,k (x) ≡ 1.The only (normed) eigenvetor with negative eigenvalue of ∇2fβ (s) is v :=
1√
2d

(bµ − bν) and hene vk = 0 for k ∈ Uµν (ompare Proposition 7.5). There-fore using (8.1.12) the unique negative eigenvalue of d
2N2

(
ai (∇2fβ (s))ij

) is
(
− (β−1)

2N2β

) and the assoiated eigenvetor is v.If cN,k (x) depends only on ̺ (x) and xk then ak is onstant for k /∈ Uµν .Therefore, up to a onstant fator, the result of Theorem 8.4 holds also inthese ases.The remaining part of the prefator in (8.1.15) an be approximated usingthe estimate (8.1.22) and the Theorem of Lidskii by
|det∇2fβ,λ (s)|
det∇2fβ,λ (m)

=
|det∇2fβ,λ (s)|
det∇2fβ,λ (m)

(
1 + O

(√
ln N√
N

))
. (8.1.23)
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This does not depend any more on µ or ν and we obtain from Proposition7.5 the following expliit form: Denote c ≡ γ3γ4

γ1γ2
= 1 − β

(
1 − 1

2
m∗2), then

|det∇2fβ (sµ,ν)|
det∇2fβ (mµ)

=
(γ1γ2)

d/2−M+1 (γ3γ4)
M−2 (γ1 − 1) (1 − γ2)

γd−M
1 (γ1 − 1)M

= (βγ1)
−d/2

(
cγ1

γ1 − 1

)M−1
1 − γ2

cγ2

=
(β − 1) (1 − m∗2)

d/2

1 − β
(
1 − 1

2
m∗2)

(
1 − β

(
1 − 1

2
m∗2)

1 − β (1 − m∗2)

)M−1

. (8.1.24)
The prefator for the apaity an be estimated analogously. �

Remark 8.6 If ζN,β has the transition probability matrix qN de�ned by(6.2.28), we reeive
gk (x) =

ℓk

4N
(1 − xk)

(
1 + tanh

βd

N

(
(PLx)k +

M

d

))
. (8.1.25)

For x = sµν + O
(

ln N√
N

) this equals (sine ξ ∈ Ξ)
d

N
(PLx)k =

(
P

(
1 +

1√
N

Λ

)
x

)

k

= sµν + O (δ) . (8.1.26)
Therefore cN,k (x) ≡ 1

2
. Hene the expeted value of the hitting time is 2times the value of (8.4).

Proposition 8.7 Denote by v := mµ − sµν. Then for all 0 < t < 1

∇fβ (sµν + tv) ⇈ v, (8.1.27)i.e. the gradient of fβ points along the onneting line between sµν and mµtowards mµ. 127



Proof. We diretly ompute the gradient of fβ using the de�nition of m∗.We obtain
∂kfβ (sµν + tv)

=
1

β
artanh (sµν + tv) − P (sµν + tv)k

=

(
1

βm∗artanh (m∗ (1 − t)) − (1 − t)

)
v. (8.1.28)

The last identity follows, sine
sµν,k + tvk =

{
m∗bµ

k , k ∈ U
m∗ (1 − t) bµ

k , k /∈ U,
(8.1.29)

where U := {k ∈ {1, . . . , d} | bµ
k = bν

k}. Moreover, again with the de�nitionof m∗ follows for all t ∈ (0, 1)

a (t) ≡ 1

βm∗artanh (m∗ (1 − t)) − (1 − t) > 0. (8.1.30)
Hene

∇fβ (sµν + tv) = a (t) v. (8.1.31)
�

8.2 Random graphsIn this setion we estimate the ommuniation height between two minima of
fβ,λ. Theorem 7.7 gives an expliit expression for the height of the 1-saddles
(sµ,ν). We see that for large N their order statisti is given by the orderstatisti of the standard Gaussians (gµν

N ) onstruted in Proposition 6.11.To give deterministi bounds for the ommuniation height we onsiderthe undireted weighted graph (V,E, g) with V,E as introdued in Corollary7.3. The weights are de�ned by
g (µ, ν) := sign(µ)sign(ν)g

|µ||ν|
N for µ, ν ∈ E, (8.2.1)re�eting the struture of the heights of the 1-saddles, fβ,λ (sµν).128



Let Tmin a minimal spanning tree of (V,E, g). We de�ne the unique set
T min := {t ∈ E | t ∈ Tmin or − t ∈ Tmin} . (8.2.2)Apparently set of essential saddle points is then

Eǫ = {sµν |µ, ν ∈ T }. (8.2.3)Taking into aount the symmetry of the weights g (µ, ν) it is enough toonsider a simpler graph to estimate the ommuniation heights. We identify
µ and −µ and assoiate the weight |g (µ, ν)| to the edge {µ, ν}. Then we getthe vertex set

V = {1, . . . ,M} (8.2.4)and the edgeset
E =

{
{µ, ν} ∈ V × V |µ 6= ν

}
. (8.2.5)Now let us introdue some notions of random graph theory, see e.g.[Bol01℄. Let p ∈ (0, 1) be given. G (n, p) is the set of all graphs G with

n verties suh that eah possible edge has independent probability p to bein G. In other words, if G is a graph with m edges, then
Pp(G) = pm (1 − p)(

n
2)−m . (8.2.6)We write Pp and Ep to emphasise that the probability and expetation aretaken in G (n, p).We will use the following theorem proved by Erdös and Rényi in 1959. Itgives a threshold value for the probability p(n) suh that asymptotially for

n → ∞ almost all graphs out of G (n, p(n)) are onneted.Theorem 8.8 (Erdös and Rényi) Let c ∈ R be �xed and
p (n) :=

1

n
(log n + c + o (1)) . (8.2.7)

Let G ∈ G (n, p (n)) be a random graph. Then
Pp(n) (G is onneted) → exp

(
−e−c

) (8.2.8)for n → ∞. 129



The proof of this theorem an be found in Bollobas [Bol01℄, Theorem 7.3, p.164.We onsider again the weighted graph (V ,E, g
). By regarding only theedges with height bigger or equal to a given number xM , we obtain a randomgraph. This graph is an element of G (M,p (M)) with p (M) := P (|g| ≥ xM).All edges assoiated to essential saddle points are inluded in the maximalspanning tree of (V ,E, |gN |

). Hene we are searhing for the minimal p (M)suh that asymptotially a.s. all the graphs in G (M,p (M)) are onneted.Theorem 8.9 Let ξ ∈ Ξ and N ≥ N0[ξ] and assume 1 < β < 1+(9d + 500M 8)
−1.Then asymptotially almost surely (for M → ∞), the ommuniation heightbetween two elements of MN , say m and n, an be estimated by

f̂β,λ(m,n) ≤ 1

2
fCW (β) − k1√

N

√
2 lnM. (8.2.9)

Proof. Proposition 7.7 yields an estimate of fβ,λ(s{µν}), whih involvesthe standard Gaussian random variable |gµ,ν
N | for {µ, ν} ∈ E. Theorem8.8 implies that a random graph, GM,p(M) with edge probability p (M) :=

P (|g| ≥ xM) is almost surely for M → ∞ a onneted graph, if
p (M) =

1

M
(ln M + c (M)) , (8.2.10)

where c (M) → ∞ for M → ∞. Sine we have for x > 0 the bound (ompare[Fel66℄, p. 175)
P (|g| ≥ x) ≥

(
1

x
− 1

x3

)√
2

π
exp

(
−1

2
x2

)
, (8.2.11)

we obtain for M > 20 that
xM =

√
ln

2M 2

π
− 3 ln2

2M 2

π
+ o (1) . (8.2.12)

satis�es ondition (8.2.10). Hene almost surely for M ↑ ∞ every essentialsaddle point satis�es the inequality (8.2.9).We prove now that this result holds also for the original graph (V,E, gN ).Let G be a subgraph of (V,E, gN ) that leads to a onneted subgraph G of
(V ,E, |g|). By de�nition G = G1∪G2 suh that {m,n} ∈ G1 i� {−m,−n} ∈130



G2. Now every edge that does not belong to the maximal spanning tree of
(V ,E, |g|) has equal probability to onnet either two verties out of thesame subgraph or a vertex of G1 with one of G2. Hene the probability that
G1 and G2 are not onneted is 1 −

(
1
2

)n( 1
2

ln n−1), whih onverges to zeroexponentielly fast. �

8.3 Low lying eigenvalues of the generatorIn this setion we onsider the generator of the Markov hain ζN,β that isde�ned by LN,β := pN,β−1. We abbreviate L ≡ LN,β. Due to the reversibilityof ζN,β, L is a negative operator in ℓ2 (̺), i.e. it is symmetri and has onlynegative eigenvalues. By 'low lying' eigenvalues of L we mean eigenvalueswith small absolute value.Let D ⊂ XN . We say that λ ∈ C is an eigenvalue of the Dirihlet operator
LD if the equation

{
Lf (x) = λf (x) , x ∈ Dc,

f (x) = 0, x ∈ D
(8.3.1)has a non-zero solution fD,λ. The solution fD,λ is alled eigenfuntion of LD.Let λD denote the smallest eigenvalue of LD.We assume again 1 < β < 1 + (9d + 500M 8)

−1. The validity of thestatements in this setion ould possibly be extended to β ∈ (1, βs), where
βs is the unique solution of the equation β = 2

2−m∗(β)2
.Sine MN is the omplete set of loal minimal of HN on XN,β and hasonstant ardinality |MN | = 2M , we know that ζN,β behaves metastablewith respet to MN (in the sense of De�nition 4.5 of part II, see Example4.10). It is already known that therefore −L has 2M eigenvalues that areexponentially small in N , and all other eigenvalues are at most polynomiallysmall in N , see e.g. [BEGK02℄, Theorem 1.3, p. 222.There exists a lassial bound for the low lying eigenvalues of the Gener-ator of a di�usion proess proved by Donsker and Varadhan in 1976 [DV76℄.By analogue arguments it an be proved (see [BEGK02℄, Lemma 4.2, p. 236)Proposition 8.10 For every nonempty subset J ⊂ MN we have

λJ ≥
(

sup
x/∈J

Ex (τJ)

)−1

. (8.3.2)
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We will show that the low lying eigenvalues of L have indeed a similar stru-ture.We de�ne the entrane time of ζN,β into the set A as
σA := min {t ≥ 0 | ζN,β (t) ∈ A} . (8.3.3)Observe that σA di�ers from the hitting time τA sine it takes the value 0 if

ζN,β (0) ∈ A.As we have seen in Proposition 3.4 of part II the equilibrium potential of
ζN,β with respet to disjoint subsets A,B ⊂ XN satis�es

hA,B (x) = Px (σA < σB) for all x ∈ XN . (8.3.4)We use the abbreviation
hµ := hmµ,MN\mµ

for all µ ∈ V. (8.3.5)Now we an state the ruial proposition that allows us to ontrol the lowlying eigenvalues of L :Proposition 8.11 ([Bovier, Gayrard, Klein℄) Assume that ζN,β is κ-metastablewith respet to MN . Let λ be one of the 2M smallest eigenvalues of −L, thenthere exists an eigenvalue γ of the 2M×2M -matrix K ≡ KN,β whose elementsare given by
Kµν = −

〈hµ, Lhν〉̺
‖hµ‖̺ ‖hν‖̺

(8.3.6)
suh that λ = γ (1 + O (κ)). We all K the apaity matrix of ζN,β.Proof. The proof an be found in [Bov04℄ Theorem 5.1, p. 36. Comparealso Setion 4 of [BGK05℄. �

Remark 8.12 (a) To motivate the name, reall that the apaity between
mµ and MN \ mµ is given by cap (mµ,MN \ mµ) = −〈hµ, Lhµ〉̺.(b) The row sum of denominators of K is zero, i.e.

∑

ν∈V

〈hµ, Lhν〉̺ = 0. (8.3.7)
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This follows, sine L is a linear operator, for all x ∈ XN

∑

ν∈V

hν (x) =
∑

ν∈V

Px (τmν
≤ τMN

) = 1 (8.3.8)
and L1 = 0.Due to the symmetry under total spin �ip and the unusually small �u-tuations of the heights of the minima in MN we annot diretly use theresults of [BEGK02℄ or [BGK05℄, but we an apply similar methods. Let
{λ0, . . . , λ2M−1} with 0 = λ0 ≤ . . . ≤ λ2M−1 be the smallest eigenvalues ofthe generator −LN,β of the Hop�eld model.Proposition 8.13 We assume 1 < β < 1 + (9d + 500M 8)

−1. Choose δ ∈(
0, 1

2

) and assume ξ ∈ Z ′
δ and N ≥ N0[ξ], as well as N ∈ Jδ. We de�ne

{µ, ν} ∈ E to be suh that
Aµν

N = −max
a∈E

|Aa
N | . (8.3.9)Then the two largest eigenvalues of K are equal, i.e.

λ2M−1 = λ2M−2 (8.3.10)and there exists a onstant c suh that their value an be estimated as
(
Emµ

(
τMN\mµ

)−1
+ Emµ

(
τMN\mν

)−1
)(

1 + O
(
e−cNδ

))
. (8.3.11)All other eigenvalues of K satisfy

λ ≤ 2Me−cN−δ

λ2M−1. (8.3.12)Remark 8.14 This yields together with Theorem 8.4 an expliit formula for
λ2M−1 with multipliative errors (1 + O

(√
ln3 N/

√
N
)).Proof. Reall that

Emµ

(
τMN\mµ

)
=

̺ (hµ)

cap (mµ,MN \ mµ)
. (8.3.13)

First we investigate the quantities ‖hµ‖̺. We an approximate, as in theproof of Theorem 5.21 of part II,
‖hµ‖2

̺ = k5N
d/2̺ (mµ)

(
1 + O

(
lnN√

N

))
, (8.3.14)
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where
k5 : = (2π)d/2 /

√
det∇2fβ (mµ)

= (2πdβ)d/2 (1 − m∗2)
d/2

(1 − β (1 − m∗2))M/2
. (8.3.15)

Therefore Theorem 7.7 implies
‖hµ‖̺

‖hν‖̺

= exp
{
k0β

((
g2

N

)µµ −
(
g2

N

)νν)}×

×
(

1 + O
(

ln3 N√
N

))
. (8.3.16)Sine gN ∈ AM and

{gµν
N } ∼ N0,1 ∀ {µ, ν} ∈ E, (8.3.17)the quotient ‖hµ‖̺

‖hν‖̺
is of order O (1) for N → ∞ (and M �nite).Due to the assumptions ξ ∈ Z ′

δ and N /∈ Jδ, we have
Aµν

N ≥ Aab
N + N− 1

2
+δ for all 1 ≤ a < b ≤ M. (8.3.18)In the following we use a modi�ation of the argument for the proof of Propo-sition 7.12 and Theorem 7.13 in [Bov04℄. We denote

Gµν := {µ, ν}2 ∪ {−µ,−ν}2 . (8.3.19)Now, we investigate the matrix K̂ given by
K̂xy :=

{
Kxy, {x, y} ∈ Gµν

0, else.
(8.3.20)

Thereafter we show that the apaity matrix K is a perturbation of K̂.We laim that the non-zero part of K̂ has the struture
(
K̂xy

)
{x,y}∈{µ,ν}2

= AKµµ

(
1 + O

(
e−cNδ

))
, (8.3.21)where we have denoted

A :=

(
1 −a
−a a2

) with a :=
‖hµ‖̺

‖hν‖̺

. (8.3.22)
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Due to the spin-�ip symmetry
(
K̂xy

)
{x,y}∈{−µ,−ν}2

=
(
K̂xy

)
{x,y}∈{µ,ν}2

. (8.3.23)
Equality (8.3.21) holds true, beause the property (8.3.9) of {µ, ν} yields thefollowing identity between sets of relevant saddle points

SN (mµ,MN \ mµ) = SN (mν ,MN \ mν) = {sµν} . (8.3.24)Moreover, VMN\{mµ,mν} ({mµ,mν}) ontains no other minima.We distinguish three ases:1. Assume x ∈ A (mµ) ∪ A (mν) and fβ,λ (x) ≤ fβ,λ (sµν) + δ√
N
. Then weobtain

Px

(
τ{mµ,mν} ≤ τMN

)
= 1 −O

(
e−cNδ

)
. (8.3.25)Therefore

hµ (x) = Px

(
τmµ

< τmν
| τ{mµ,mν} ≤ τMN

)
×

×
(
1 + O

(
e−cNδ

))

= 1 − Px

(
τmν

< τmµ
| τ{mµ,mν} ≤ τMN

)
×

×
(
1 + O

(
e−cNδ

))

= (1 − hν (x))
(
1 + O

(
e−cNδ

))
. (8.3.26)

2. Assume x /∈ A (mµ) ∪ A (mν) and fβ,λ (x) ≤ fβ,λ (sµν) + δ√
N
. Then weobtain

hµ (x) = O
(
e−cNδ

)
= hν (x) . (8.3.27)

3. For x suh that fβ,λ (x) > fβ,λ (sµν) + δ√
N
we obtain

̺ (x) < exp
(
−βNfβ,λ (sµν) − δ

√
N
)

. (8.3.28)
Sine L1 = 0 we onlude

〈hν , Lhµ〉̺ = −〈hµ, Lhµ〉̺
(
1 + O

(
e−cNδ

)) (8.3.29)
135



and hene Kµν = −aKµµ

(
1 + O

(
e−cNδ

)). Moreover,
〈hν , Lhν〉̺ = 〈hµ, Lhµ〉̺

(
1 + O

(
e−cNδ

)) (8.3.30)
and hene Kνν = aKµµ

(
1 + O

(
e−cNδ

)) and we have proved the representa-tion (8.3.21).We an say even more, sine with Remark8.12 ∑ν∈V 〈hµ, Lhν〉 = 0 andtherefore in partiular
Kαβ = KµµO

((
e−cNδ

))
∀ {α, β} ∈ {±µ,±ν}2 \ Gµν . (8.3.31)The eigenvalues of A of (8.3.22) are 0 and (1 + a2). Therefore the largesteigenvalue of K̂ is

λ̂ = Kµµ

(
1 +

‖hµ‖2
̺

‖hν‖2
̺

)(
1 + O

(
e−cNδ

)) (8.3.32)
and it has multipliity two.Now, we laim that K is a perturbation of K̂. For this purpose we write

K = K̂ + Ǩ (8.3.33)To justify the laim we estimate the norm of Ǩ. We take as matrix norm theEulidean norm in R4M2. We observe
Kxx =

cap (mx,MN \ mx)

‖hx‖2
̺

. (8.3.34)
Therefore with Theorem 8.4 we obtain for all N ≥ N0[ξ]

Kµµ ≥ ecNδ

max
x∈V \{±µ,±ν}

Kxx. (8.3.35)
For x 6= y we obtain like in [Bov04℄ by the Cauhy-Shwarz inequality that
K2

xy ≤ KxxKyy. This and the estimate in (8.3.31) implies
∥∥Ǩ
∥∥ ≤ 2Me−cNδ

max (Kµµ,Kνν) . (8.3.36)With the result (8.3.36) follows that the biggest eigenvalue of K and K̂ o-inide up to multipliative errors (1 + O
(
e−cNδ

)). �
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We reall that we have introdued the minimal spanning tree Tmin of theweighted graph (V,E, g) in the last setion.We enumerate the edges of this tree Tmin by (t1, . . . , t2M−1) suh that
g (t2M−1) ≤ g (t2M−2) ≤ . . . ≤ g (t1) < 0. Notie that (up to the order andsometimes hoie of equally weighted edges) the onstrution with Kruskal'salgorithm starts with t2M−1 and adds along our enumeration edges to thespanning tree until it ends with t1. Let IT ⊂ {1, . . . , 2M − 1} denote the setof indies suh that g (ti) < g (ti−1).Theorem 8.15 We assume 1 < β < 1 + (9d + 500M 8)

−1. Choose δ ∈ (0, 1
2
)and assume ξ ∈ Z ′

δ and N ≥ N0[ξ], as well as N ∈ Jδ.Then there exists an inreasing sequene (Mi+1 | i ∈ IT ) of metastable setsof ζN,β. Let {λ0, . . . , λ2M−1} with 0 = λ0 ≤ . . . ≤ λ2M−1 be the smallesteigenvalues of the generator −LN,β of the transformed Markov hain ζN,β.We de�ne
S∗

i := arg min
{m,n}∈Mi×Mi

(
f̂β,λ (m,n)

)
. (8.3.37)Denote for m ∈ Mi

γm,i :=
(
Em

(
τMi\m

))−1
. (8.3.38)We distinguish three ases:

• Assume S∗
i = {{m,n} , {−m,−n}}, then
λi−1 = λi = (γm,i + γn,i)

(
1 + O

(
e−cNδ

))
. (8.3.39)

• Assume S∗
i = {{m,n} , {−m,n}}, then

λi = (2γm,i + γn,i)
(
1 + O

(
e−cNδ

)) (8.3.40)and
λi−1 = γm,i

(
1 + O

(
e−cNδ

))
. (8.3.41)

• Assume S∗
i = {m,n}, then

λi = (γm,i + γn,i)
(
1 + O

(
e−cNδ

))
. (8.3.42)

Remark 8.16 Combined with Theorem 8.4 this implies expliit estimatesprovided we know (Ti)1≤i<2M . 137



Proof. For the proof we redue step by step the ardinality of the set
M2M ≡ MN that is by de�nition desribed by the vertex-set of Tmin.We use now Proposition 4.6 of part II to �nd indutively smaller andsmaller metastable sets Mi of the Markov hain ζN,β. We de�ne K(2M) ≡ Kand K(i) to be the apaity matrix of Mi.Assume we have already onstruted Mi and the assoiated apaity ma-trix is K(i). As in De�nition 4.4 of part II, we de�ne the valley Vn (m) asthe onneted omponent of the set {x ∈ XN,β | fβ,λ (x) < f̂β,λ (m,n)

} thatontains m.Assume {m,n} ∈ S∗
i , then from De�nition 8.3.37 follows that the onlyelement of Mi that is ontained in Vn (m) is m itself. Analogously Vm (n)ontains only n. Therefore we an onlude that

sαβ ∈ SN (m,n) , (8.3.43)where {α, β} are minimiser of
min

µ : mµ ∈ Vn (m) ∩MN

ν : mν ∈ Vm (n) ∩MN

〈ξµ, ξν〉 . (8.3.44)
• If S∗

i = {{m,n} , {−m,−n}} (this has to be the ase for M2M), where
̺ (m) ≤ ̺ (n), we put Mi−2 := Mi \ {m,−m}. Observe that in thisase there is no metastable set of ζN,β with (i − 1) elements.

• If S∗
i = {m,n} , where ̺ (m) ≤ ̺ (n), we have tie edges and we put

Mi−1 = Mi \ m. Observe that in partiular n may be equal to −m inthis ase.
• And third, if S∗

i = {{m,n} , {−m,n}}, we distinguish two ases. If
̺ (m) ≤ ̺ (n), we put again Mi−2 := Mi \ {m,−m}. If on the otherhand ̺ (n) ≤ ̺ (m), we put Mi−2 := Mi \ {m,n}.

Hene Mi ontains exatly i points. Assume Mi = {m1, . . . ,mi} and denote
hi,x := hmx,Mi\mx

. Then
K(i)

xy =
〈hi,x, Lhi,y〉

‖hi,x‖̺ ‖hi,y‖̺

. (8.3.45)
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We abbreviate c ≡ ‖hi,1‖̺

‖hi,2‖̺

. We show now that analogously to the proof ofProposition 8.13 we an treat K(i) as a perturbation of a simpler matrix. Thismatrix depends now on the struture of Ti. In all three ases the estimateof the smallness of this perturbation is shown exatly as in the proof ofProposition 8.13.
• Assume S∗

i = {{m1,m2, } , {−m1,−m2}}, possibly by renumbering theelements of Mi. Then we an desribe K(i) as a perturbation of thematrix K(V ) given by
K(V )

xy :=

{
Kxy, {x, y} ∈ {1, 2}2 ∪ {−1,−2}2

0, else.
(8.3.46)

Moreover, this matrix has the following struture:
(
K(U)

xy

)
{x,y}∈{1,2}2 = K11A

(
1 + O

(
e−cNδ

))
, (8.3.47)where we denoted

A :=

(
1 −c
−c c2

)
. (8.3.48)Due to the spin-�ip symmetry

(
K(V )

xy

)
{x,y}∈{−1,−2}2 =

(
K(V )

xy

)
{x,y}∈{1,2}2 . (8.3.49)The eigenvalues of A are {0, (1 + c2)} and therefore the largest eigen-value of K(V ) has multipliity two and is, up to multipliative errors(

1 + O
(
e−cNδ

)), equal to
cap (m1,m2)

(
1

‖hi,1‖2
̺

+
1

‖hi,2‖2
̺

)
. (8.3.50)

• Assume S∗
i = {m1,m2}, again by renumbering the elements of Mi.Then we an desribe Ki as a perturbation of the matrix K(U) given by

K(U)
xy :=

{
Kxy, {x, y} ∈ {1, 2}2

0, else.
(8.3.51)

Moreover, this matrix has the following struture:
(
K(U)

xy

)
{x,y}∈{1,2}2 = K11A

(
1 + O

(
e−cNδ

)) (8.3.52)
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with A de�ned in (8.3.48). Therefore the unique largest eigenvalue of
K(U) is, up to multipliative errors (1 + O

(
e−cNδ

)), equal to
cap (m1,m2)

(
1

‖hi,1‖2
̺

+
1

‖hi,2‖2
̺

)
. (8.3.53)

Observe that (only) in this ase the set of relevant saddle points between
m1 and m2 ontains two elements.

• The last possible ase is S∗
i = {{m1,m2} , {−m1,m2}}. Hene we andesribe Ki as a perturbation of the matrix K(W ) given by

K(W )
xy :=

{
Kxy, {x, y} ∈ {1, 2}2 ∪ {−1, 2}2

0, else.
(8.3.54)

Moreover this matrix has the following struture:
(
K(W )

xy

)
{x,y}∈{1,2,−1}2 = K11C

(
1 + O

(
e−cNδ

))
, (8.3.55)where we have, due to the spin �ip symmetry,

C :=




1 −c 0
−c 2c2 −c
0 −c 1


 . (8.3.56)

The eigenvalues of C are {0, 1, 1 + 2c2} and therefore the two largesteigenvalues of K(W ) are, up to multipliative errors (1 + O
(
e−cNδ

)),equal to
cap (m1,m2)

(
1

‖hi,1‖2
̺

+
2

‖hi,2‖2
̺

) (8.3.57)
and

cap (m1,m2)

‖hi,1‖2
̺

. (8.3.58)
This proves the theorem. �
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9 Some proofsFrom now on we leave out the N -dependene of AN and write A ≡ AN .We will frequently need the �rst and seond derivative of fβ,λ. We use I ′ (y) =
artanh (y) and I ′′ (y) = 1

1−y2 . Thus
∂

∂yk
fβ,λ (y) =

(
1 +

1√
N

λk

)
×

×
(

1

β
artanh (yk) −

∑

j

Pkj

(
1 +

1√
N

λj

)
yj

) (9.0.1)
and

∂2

∂yj∂yk

fβ,λ (y) =

(
1 +

1√
N

λj

)
×

×
(

1

β
(
1 − y2

j

)δjk − Pjk

(
1 +

1√
N

λk

))
. (9.0.2)

9.1 Preise loation of ritial pointsThis subsetion ontains the proof of Theorem 7.6.We onsider ξ ∈ Ξ and N ≥ N0[ξ]. Due to the uniform onvergene of
fβ,λ to fβ (proved in Proposition 6.9) the luster points of a sequene (m(N)

)of global minima of fβ,λ has to be ontained in the set M of global minima of
fβ. Therefore we an divide a given sequene into subsequenes that onvergeto a global minimum of fβ. We show that if m(N) onverges for N → ∞ to
m±µ then it is unique and has the form m±µ given in Theorem 7.6.Note that this follows already from the general theorem of Bovier andGayrard [BG98℄, Theorem 6.2, p. 40, sine here their βc (2) = 1.Assume that y ∈ PRd is a ritial point of fβ. Now we perform theAnsatz y := y + 1√

N
κ to �nd a ritial point of fβ,λ. Here κ ≡ κN is anarbitrary random variable suh that |κ| = o

(√
N
).

y is a ritial point of fβ,λ i�
d

dyk

fβ,λ (y)
!
= 0. (9.1.1)
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Using (9.0.1) this is equivalent to
1

β
Artanh

(
y +

1√
N

κ

)
= P

(
1l +

1√
N

Λ

)(
y +

1√
N

κ

)
. (9.1.2)

We were allowed to anel the ommon fator (1 + 1√
N

λk

), sine ξ ∈ Ξ and
N ≥ N0[ξ]. We use now a Taylor expansion for artanh(y + 1√

N
κ
) andarrive at

1

β
artanh (yk) +

1

β (1 − y2
k)

1√
N

κk + O
(

1

N
|κ|2
)

= yk +
1√
N

∑

α

〈bα,Λy〉 bα
k +

1√
N

P

(
1l +

1√
N

Λ

)
κk. (9.1.3)

Using that y is a ritial point of fβ leads us to
κk = β

(
1 − y2

k

)∑

α

(
rα +

〈
bα,

(
1l +

1√
N

Λ

)
κ

〉)
bα
k + O

(
1

N
|κ|2
)

,(9.1.4)where we denoted rα := 〈bα,Λy〉. Now we multiply this equation with
bσ
k

(
1 +

1√
N

λk

) (9.1.5)
and sum over all k ∈ {1, . . . , d}. This yields the matrix equation for t ∈ RMwith tα :=

〈
bα,
(
1l + 1√

N
Λ
)

κ
〉. Moreover, t is of the same order as κ andtherefore we obtain

{
κk = β (1 − y2

k)
∑

α (rα + tα) bα
k + O

(
1
N
|t|2
)
,

t = G (r + t) + O
(

1
N
|t|2
)
,

(9.1.6)
where G is the M × M matrix with

Gσα = β

〈
bσ,
(
1l − (y·)2)

(
1l +

1√
N

Λ

)
bα

〉
. (9.1.7)

Here, y· denotes the diagonal matrix with entries y. To evaluate this further,we have to use spei� information about the point y.142



MinimaFix a µ ∈ {1, . . . ,M}. We will alulate the preise loation of the minima,hene y = m∗bµ. Denote again γ1 := 1
β(1−m∗2)

. We �nd r = m∗Aµ with
Aµ ≡ (Aµ,1, . . . , Aµ,p) and

G = β
(
1 − m∗2)

(
1l +

1√
N

A

)
. (9.1.8)

Therefore equation (9.1.6) equals
γ1t =

(
1l +

1√
N

A

)
(t + r) + O

(
1

N
|t|2
)

⇔
(

1l − â√
N

A

)
t = â

(
1l +

1√
N

A

)
r + O

(
1

N
|t|2
)

, (9.1.9)
where â ≡ 1

γ1−1
. The matrix (1l − â√

N
A
) is invertible, sine ξ ∈ Ξ and

N ≥ N0[ξ], and therefore
⇔ t = â

(
1l − â√

N
A

)−1(
1l +

1√
N

A

)
r + O

(
1

N
|t|2
)

= â
∞∑

n=0

(
â√
N

A

)n(
1l +

1√
N

A

)
r + O

(
1

N
|t|2
)

= âm∗Aµ + O
(

ln N√
N

)
. (9.1.10)

The last equation uses rα = m∗Aµ,α = O
(√

lnN
) for ξ ∈ Ξ and N ≥ N0[ξ].Inserting this in equation (9.1.6) gives us diretly the orretion κ for theminima mµ :

κk =
m∗

γ1

(1 + â)
∑

α

Aµ,αbα
k + O

(
lnN√

N

) (9.1.11)
or equivalently

κk =
m∗

γ1 − 1

∑

α

Aµ,α
N bα

k + O
(

ln N√
N

)
. (9.1.12)
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Saddle pointsLet ξ ∈ Ξ and N ≥ N0[ξ] [ξ]. To show that the essential saddle points of fβ,λare small deviations of the essential saddles of fβ, we use again the uniformonvergene of Proposition 6.9: Let m(N), n(N) ∈ MN . Let γ be an optimalpath of fβ. Then γ an be uniformly approximated by paths γN in XN andtherefore by de�nition the ommuniation height f̂β,λ

(
m(N), n(N)

) onvergesto f̂β (m,n). Let SN (m,n) be the set of all relevant saddle points between mand n in XN . Then eah sequene in SN

(
m(N), n(N)

) has a subsequene thatonverges to an element of S (m,n), the relevant saddles in [−1, 1]d. Now weshow that ∣∣SN
(
m(N), n(N)

)∣∣ = |S (m,n)|.We use the abbreviation s := sµ,ν .Lemma 9.1 We de�ne the diagonal matrix S with elements Skk := sk. Thenthe following properties hold:1. S2s = m∗2s.2. 〈bα, S2bβ
〉

= 1
2
m∗2 (δα,β ± δ{α,β},{µ,ν}

).Proof. ad 1. We have sk = m∗bµ
k1bµ

k
=bν

k
. Therefore

S2sk = (sk)
3 = m∗3bµ

k1eµ
k
=eν

k

= m∗2sk. (9.1.13)ad 2. This follows diretly from
S2

k = s2
k =

1

2
m∗2 (1 ± bµ

kb
ν
k) . (9.1.14)

�We want to use again equation (9.1.6), now with y := sµ,ν . Let B bethe M × M matrix with Bσα = Aσα − m∗2 1
d
〈bσα,Λbµν〉. We reeive rα =

1
2
m∗ (V αµ + V αν) and with the help of Lemma 9.1 for σ 6= µ, ν

Gσα =

(
1 − 1

2
m∗2

)
δσα + Bσα. (9.1.15)Thus equation (9.1.6) takes for σ 6= µ, ν now the shape

tσ = β

((
1 − 1

2
m∗2

)
1l +

1√
N

B

)
(r + t)σ . (9.1.16)
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With c := β

1−β(1− 1
2
m∗2)

this is equivalent to
(

1l − c√
N

B

)
tσ = c

((
1 − 1

2
m∗2

)
1l +

1√
N

B

)
rσ. (9.1.17)

The matrix (1l − c√
N

B
) is invertible for ξ ∈ Ξ and N ≥ N0[ξ], and thus

tσ = c

(
1l − c√

N
B

)−1((
1 − 1

2
m∗2

)
1l +

1√
N

B

)
rσ

= c
∞∑

n=0

(
c√
N

B

)n((
1 − 1

2
m∗2

)
1l +

1√
N

B

)
rσ

= c

(
1 − 1

2
m∗2

)
rσ + O

(
ln N√

N

)
. (9.1.18)

We have used Bσα = O
(√

ln N
) and rα = O

(√
ln N

) from Proposition 6.7.For σ = µ we get
tµ = β

((
1 − 1

2
m∗2

)
1l +

1√
N

B

)
(r + t)µ −

−1

2
m∗2β (rν + tν) (9.1.19)and analogues for σ = ν

tν = β

((
1 − 1

2
m∗2

)
1l +

1√
N

B

)
(r + t)ν −

−1

2
m∗2β (rµ + tµ) . (9.1.20)Sine rµ = rν , we obtain

tµ − tν = β

(
1l +

1√
N

B

)
(tµ − tν) = 0, (9.1.21)

beause β
(
1 + 1√

N
A
)
6= 1 for N large. Thus we an dedue

tµ = β

((
1 − m∗2) 1l +

1√
N

B

)
(r + t)µ (9.1.22)
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and, analogues to the derivation of (9.1.18), we obtain
tµ =

1

γ1 − 1
rµ + O

(
ln N√

N

)
. (9.1.23)With Equation (9.1.6) and c

(
1 − 1

2
m∗2)+ 1 = c

β
we onlude

κk = β
(
1 − s2

k

)∑

α

(tα + rα) bα
k + O

(
1

N
‖ǫ‖2

)

=
(
1 − s2

k

)∑

α

(
c1{µ,ν}c (α) +

βγ1

γ1 − 1
1{µ,ν} (α)

)
rαbα

k +

+O
(

ln N√
N

)
. (9.1.24)We will use that β γ1

γ1−1
− c = −1

2
m∗2 âc

1−m∗2 and S2s = m∗2s to derive from(9.1.24) another representation of ǫ:
ǫk = c

[
(
1 − s2

k

)∑

α

rαbα
k − m∗ârµsk

]
+ O

(
ln N√

N

)

=
m∗c

2

(
(
1 − s2

k

)∑

α

(Aµ,α
N + Aν,α

N ) bα
k − 2m∗âAµ,ν

N sk

)
+

+O
(

ln N√
N

)
. (9.1.25)

9.2 Preise height of the minima and 1-saddlesWe prove now Proposition 7.7 about the preise height of the minima {mµ}1≤µ≤Mand the 1-saddles {sµ,ν}1≤µ,ν≤M between them.Proof. We use the Taylor expansion of the logarithm to estimate the Cramérentropy term, de�ned in (6.3.4), and obtain for v = O
(√

ln N
)

:

I

(
u +

1√
N

v

)

=
1

2
ln
(
1 − u2

)
+

1

2

(
u +

1√
N

v

)
ln

1 + u

1 − u
+

+
1

2N

1

1 − u2
v2 + O

(
ln N

N

)3/2

. (9.2.1)
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Now, we evaluate the funtion fβ,λ de�ned in (6.3.10) at a point z := x +
1√
N

y ∈ Br (x) with r = k ln N√
N

:

fβ,λ (z)

=
1

2βd

d∑

k=1

(
1 +

1√
N

λk

)
×

×
(

ln
(
1 − x2

k

)
+ zk ln

1 + xk

1 − xk

+
1

N

1

1 − x2
k

y2
k

)
−

− 1

2d

∣∣∣∣P
(

1l +
1√
N

Λ

)
z

∣∣∣∣
2

+ O
(

lnN

N

)3/2

. (9.2.2)
9.2.1 Minima.We denote a ≡ m∗

γ1−1
. First we onsider the minimum mµ, in other words weput x ≡ m∗bµ and y ≡ a

∑
α Aµαbα and use equation (9.2.2). In the followingwe use trae (Λ) = 0 and

ln
1 + m∗bµ

k

1 − m∗bµ
k

= bµ
k ln

1 + m∗

1 − m∗ . (9.2.3)Hene equation (9.2.2) simpli�es to
fβ,λ (mµ)

=
1

2β
ln
(
1 − m∗2)+

γ1

2dN
〈y, y〉 +

+
1

2β
ln

1 + m∗

1 − m∗opµµ − 1

2

∑

α

(
opµα

)2
+ O

(
lnN

N

)3/2

. (9.2.4)
Here, we used the overlap parameter at the minimum opµα := 1

N
〈bα, Lmµ〉.We obtain

opµα =
1

d

〈
bα,

(
1l +

1√
N

Λ

)(
m∗bµ +

a√
N

∑

β

Aµβbβ

)〉

= m∗δµα +
1√
N

(m∗ + a) Aµα +
a

N

(
A2
)µα

. (9.2.5)Therefore
opµµ = m∗ +

a

N

(
A2
)µµ (9.2.6)
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and
∑

α

(
opµα

)2 − m∗2

=
1

N

[
(m∗ + a)2 + 2m∗a

] (
A2
)µµ

+ O
(

lnN

N

)3/2

. (9.2.7)
To ompute (9.2.4), we need moreover

〈y, y〉 = a2d
(
V 2
)µµ

. (9.2.8)Altogether this leads us to
fβ,λ (mµ)

=

(
1

β
I (m∗) − 1

2
m∗2

)
+

+
1

N

(
a

2β
ln

1 + m∗

1 − m∗ − 1

2
m∗ (3a + m∗)

)(
A2
)µµ

+ O
(

ln N

N

)3/2

.(9.2.9)
Now f : A → R+ with f (a) = (a2)

µν is Lipshitz-ontinuous with respet tothe matrix norm ‖·‖2 de�ned by
‖a‖2

2 := max
µ

∑

ν

(aµν)2 . (9.2.10)
To see this onsider

∣∣(b2
)µν −

(
a2
)µν∣∣ =

∣∣∣∣∣
∑

α

bµαbνα − aµαaνα

∣∣∣∣∣

≤
∣∣∣max

α
{aµα, bµα}

∣∣∣
∣∣∣∣∣
∑

α

bνα − aνα

∣∣∣∣∣
≤

(
‖a‖2

s + ‖b − a‖2
s

)
‖b − a‖2

s . (9.2.11)Therefore with the law of the iterated logarithm and the strong approxi-mation property of Proposition 6.11 (a) and (b), we an replae (A2)
µµ by

(g2
N )

µµ. 148



Saddle Points.Without loss of generality we onsider the ase s = 1
2
m∗ (bµ + bν). De-note vα := Aµ,α + Aν,α as an abbreviation. We will use here a ≡ m∗

γ1−1and k ≡ 1
2

βm∗

1−β(1− 1
2
m∗2)

. We start with equation (9.2.2) putting x ≡ s withperturbation y ≡ k (1 − S2)
∑

α vαbα − akvµs from Proposition 7.6. We willuse
ln
(
1 − (sk)

2) =
1

m∗2s2
k ln
(
1 − m∗2) (9.2.12)and

ln
1 + sk

1 − sk
=

1

m∗ sk ln
1 + m∗

1 − m∗ . (9.2.13)Then we obtain
fβ,λ (sµ,ν)

=
1

2βm∗2d
ln
(
1 − m∗2)

〈
s,

(
1l +

1√
N

Λ

)
s

〉
+

+
1

4β
ln

1 + m∗

1 − m∗
(
opµ + opν

)
+

+
1

N

1

βd

〈
y,
(
1l − S2

)−1
y
〉
− 1

2

∑

α

(opα)2 + O
(

lnN

N

)3/2

.(9.2.14)
We used here the overlap parameter opα := 1

N
〈bα, Lsµ,ν〉. We obtain

opα =
1

d

〈
bα,

(
1l +

1√
N

Λ

)(
s +

1√
N

y

)〉

=
1

2
m∗
(

1 − 1√
N

akvµ

)(
δαµ + δαν +

1√
N

vα

)
+

+
k√
N

[
vα − 1

2
m∗2 (vα + vµ (δα,ν + δα,µ))

]
+

+

(
1 − 1

2
m∗2

)
k

N

∑

β

vβAβα −

−m∗2k

2dN

∑

β

vβ

〈
bαβ,Λbµν

〉
. (9.2.15)
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This is valid, beause
〈

bα,

(
1l +

1√
N

Λ

)
s

〉

=
1

2
m∗d

(
δαµ + δαν +

1√
N

vα

) (9.2.16)
and, with the help of Lemma 9.1,

〈
bα,

(
1l +

1√
N

Λ

)(
1l − S2

)
bβ

〉

= d

(
δα,β +

1√
N

Aαβ

)
− 1

2
m∗2d

(
δαβ + δ{α,β},{µ,ν}

)

− m∗2

2
√

N

(
dAαβ +

〈
bαβ,Λbµν

〉)
. (9.2.17)

We obtain from (9.2.15) using vµ = vν

∑

α

(opα)2

=
1

4
m∗2

(
2

(
1 − 2√

N
akvµ

)
+

1√
N

4vµ

)
+

+
mk√

N

((
1 − 1

2
m∗2

)
2vµ − 1

2
m∗22vµ

)
+

+
m∗2

4N

(
2a2k2v2

µ − 8akv2
µ +

∑

α

vα

)
−

−m∗k2a

N
vµ

((
1 − 1

2
m∗2

)
2vµ − m∗2vµ

)
+

+
m∗k

N

((
1 − 1

2
m∗2

)∑

α

v2
α − m∗2v2

µ

)
+

+
k2

N

((
1 − 1

2
m∗2

)2∑

α

v2
α +

1

2
m∗4v2

µ − 2m∗2
(

1 − 1

2
m∗2

)
v2

µ

)
+

+
m∗k

N

((
1 − 1

2
m∗2

)∑

α

v2
α − 1

2
m∗2

∑

α

v2
α

)
. (9.2.18)
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This an be simpli�ed to
∑

α

(opα)2

=
1

2
m∗2 +

m∗aγ1√
N

vµ +

+
k

N

(
k

β2
+ m∗ (1 − m∗2)

)∑

α

v2
α +

+
m∗2ak

N

(
1

2
γ2

1ak − 2kγ1

m∗β
− 1

)
v2

µ + O
(

ln N

N

)3/2

. (9.2.19)
As other ingredients we need

opµ + opν = m∗
(

1 − 1√
N

akvµ

)(
1 +

1√
N

vµ

)
+

+
2k√
N

(
1 − m∗2) vµ +

+
k

N

∑

β

v2
β − m∗2k

N

∑

β

v2
β

= m∗ +
2k√
N

(
1 − m∗2 +

1

2
m∗a +

m∗

2k

)
vµ

+
m∗ak

N
v2

µ +
k

N

(
1 − m∗2)∑

α

v2
α (9.2.20)

and
〈
y,
(
1l − S2

)−1
y
〉

= k2

〈
∑

α

vα

(
1l − S2

)
bα − avµs,

∑

β

vβbβ − a

1 − m∗2vµs

〉

= k2
∑

α,β

vβvα

〈(
1l − S2

)
bα, bβ

〉
+ k2 a2

1 − m∗2v2
µ 〈s, s〉 −

−ak2
∑

α

vαvµ

(
1

1 − m∗2
〈(

1l − S2
)
bα, s

〉
+ 〈bα, s〉

)
. (9.2.21)
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With Lemma 9.1 we obtain
〈
y,
(
1l − S2

)−1
y
〉

=

(
1 − 1

2
m∗2

)
k2d

∑

α

v2
α − m∗2k2dv2

µ +
1

2
m∗2k2 a2

1 − m∗2dv2
µ −

−2m∗k2adv2
µ

=

(
1 − 1

2
m∗2

)
k2d

∑

α

v2
α − 1

4
(2k + βa) aγ1m

∗2dv2
µ. (9.2.22)

Putting this together leads to
fβ,λ (s + ǫ)

=
1

2

(
1

β
I (m∗) − 1

2
m∗2

)
+

+
1√
N

Aµν
N

(
1

2β
I (m∗) +

a

4β
ln

1 + m∗

1 − m∗ − 1

2
m∗γ1a

)
+

+
k

N

(
1 − m∗2)

(
1

4β
ln

1 + m∗

1 − m∗ − 1

4
m∗ (γ1 + 2)

)∑

α

v2
α −

−m∗ak

N

(
1

4β
ln

1 + m∗

1 − m∗ +
1

4
m∗ (γ1 + 2)

)
v2

µ

+O
(

ln N

N

)3/2

. (9.2.23)
By the inequality (9.2.11) and the strong approximation property of Propo-sition 6.11, we an asymptotially replae Aµν by gµν

N . So we are done. �
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Appendix A
Approximation of Gaussian sumsvia integrals
Let H be a positive de�nite d×d matrix. Then we an evaluate the assoiatedGaussian integral by

∫

Rd

exp

(
−1

2
ǫ 〈x,Hx〉

)
dx =

(2π)d/2

√
det H

ǫ−d/2. (A.0.1)
We show now that Gaussian sums an be approximated by these integrals ina very preise way.Proposition A.1 Let (Hǫ)ǫ∈(0,1) be a family of positive de�nite d×d-matries.We assume there exists κ > 0, independent of ǫ, suh that

‖Hǫx‖ ≥ κ ‖x‖ for all x ∈ Rd. (A.0.2)Then the related Gaussian sum an be approximated by a Gaussian integral,that means we have
∑

k∈Zd

exp

(
−1

2
ǫ 〈k,Hǫk〉

)
=

(2π)d/2

√
det Hǫ

ǫ−d/2
(
1 + O

(√
ǫ
))

. (A.0.3)
Proof. Denote

sd :=
∑

x∈Zd

φǫ (x) (A.0.4)
We prove the result by indution over the dimension n.153



1. Fixing the indution at n = 1: We obtain by approximating the Gaus-sian integral via step funtions from below and above using monotoniity
∞∑

k=1

φǫ (k) ≤
∫ ∞

0

φǫ (x) dx ≤
∞∑

k=0

φǫ (k) . (A.0.5)Thus we have
s1 − 1 ≤

∫

R

e−
1
2
ǫHǫx2

dx ≤ s1 + 1. (A.0.6)Sine we have assumed that the spetrum of Hǫ is uniformly bounded frombelow (A.0.2), we obtain
s1 =

√
2π

ǫHǫ

(
1 + O

(√
ǫ
))

. (A.0.7)2. Indution step {1, . . . , n} → n+1: By approximating again the Gaus-sian integral via step funtions from below and above and using monotoniity,we obtain ∑

k∈Nn+1

φǫ (k) ≤
∫

R
n+1
+

φǫ (x) dx ≤
∑

k∈N
n+1
0

φǫ (k) . (A.0.8)
Let K ⊂ {1, . . . , n} and de�ne An,K := {x ∈ Zn |xk = 0 for k ∈ K}. Denotefor Hǫ ∈ Rn×n by H

(K)
ǫ the (n − |K|) × (n − |K|)-matrix that arises bydropping the jth row and olumn of Hǫ for all j ∈ K. We use now thefat, that the projetion of a normal density on Rn+1 onto a k-dimensionalsubspae is again a normal density, i.e.
∑

x∈An,K

exp

(
−1

2
ǫ 〈x,Hǫx〉

)

=
∑

x∈Zn−|K|

exp

(
−1

2
ǫ
〈
x,H(K)

ǫ x
〉)

. (A.0.9)
Sine we know from the indution hypothesis sk = O

(
ǫ−k/2

) for k ≤ n, weobtain with the inlusion-exlusion priniple
sn+1 =

∫

Rn+1

e−
1
2
ǫ〈x,Hǫx〉 + O

(
ǫ−n/2

)

=
(2π)(n+1)/2

√
det Hǫ

ǫ−(n+1)/2
(
1 + O

(√
ǫ
))

. (A.0.10)Hene, we have shown the proposition. �
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Appendix B
Estimation of sums by theLaplae-method
Let a ∈ Rd and b > 0. The Gaussian integral

I (a, b) :=

∫ ∞

0

exp

(
−ax − 1

2
ǫbx2

)
dx (B.0.1)

an be evaluated by a quadrati ompletion
I (a, b) =

√
2π

ǫb
exp

(
a2

2ǫb

)(
1 − N0,1

(
a√
ǫb

))
. (B.0.2)

Here N0,1 denotes the standard normal distribution funtion.Now, we distinguish two di�erent asymptoti behaviours. For notationalonveniene we leave out the dependene of a and b on ǫ.(a) Assume there exists a onstant β > 0 suh that a/
√

ǫb = O
(
ǫβ
).Then we obtain

I (a, b) =

√
π

2

1√
ǫb

(
1 + O

(
ǫβ
))

. (B.0.3)This holds sine
N0,1

(
a√
ǫb

)
=

1

2
+

1√
2π

∫ a/
√

ǫb

0

e−
1
2
x2

dx

=
1

2
+ O

(
ǫβ
)
. (B.0.4)
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(b) Assume there exists a onstant γ ∈
(
0, 1

2

] suh that √ǫb/a = O (ǫγ).Then we obtain
I (a, b) =

1

a

(
1 + O

(
ǫ2γ
))

. (B.0.5)
This holds sine

1 − N0,1

(
a√
ǫb

)
=

1√
2π

∫ ∞

a/
√

ǫb

e−
1
2
x2

dx

=
1

a

√
ǫb

2π
exp

(
a2

2ǫb

)(
1 + O

(
ǫ2γ
))

. (B.0.6)
For a proof of this see e.g. [Fe℄, p. 175.We will show now that exponential sums have a very similar behaviour.Proposition B.1 Let Λ be an open interval that ontains 0. We onsidera family (fǫ)ǫ∈(0,1) with fǫ ∈ C3 (Λ, R). De�ne the one sided lattie Nǫ :=
Λ ∩ ǫN0 and assume fǫ has exponentially tight level sets on Nǫ, i.e.

∑

x∈Nǫ:fǫ(x)≥a

exp (−fǫ (x) /ǫ) ≤ cae
a/ǫ. (B.0.7)

We distinguish two ases:(a) Assume there exists onstants c, β > 0 suh that limǫ↓0 f ′′
ǫ (0) ≥ c and

f ′
ǫ (0) = O

(
ǫ

1
2
+β
). Moreover, assume there exists a > 0 small, suh that forall δ > 0 small enough

fǫ (x) ≥ fǫ (0) + aδ2 for all x ≥ δ. (B.0.8)Then we obtain
∑

x∈Nǫ

exp (−fǫ (x) /ǫ)

=

√
π√

2ǫf ′′
ǫ (0)

exp (−fǫ (0) /ǫ)
(
1 + O

(
ǫβ |ln ǫ|3

))
, (B.0.9)

where β := 1
2
∧ β. 156



(b) Assume there exists γ ∈
(
0, 1

2

] and c > 0, independent of ǫ, suh that
limǫ↓0

(
f ′

ǫ (0) /ǫ
1
2
−γ
)
≥ c. Assume there exists a > 0 small, suh that for all

δ small enough
fǫ (x) ≥ fǫ (0) + aδ for all x ≥ δ. (B.0.10)Then we obtain

∑

t∈Nǫ

exp (−fǫ (ǫt) /ǫ)

=
1

(1 − e−f ′
ǫ(0))

exp (−fǫ (0) /ǫ) (1 + O (ǫγ)) . (B.0.11)
In the ase limǫ↓0 f ′

ǫ (0) ≥ c, (i.e. γ = 1
2
) we get the more preise estimate

∑

x∈Nǫ

exp (−fǫ (x) /ǫ)

=

(
1

1 − e−f ′
ǫ(0)

− 1

2
ǫf ′′

ǫ (0)
e−f ′

ǫ(0)
(
1 + e−f ′

ǫ(0)
)

(1 − e−f ′
ǫ(0))

3

)
×

× exp (−fǫ (0) /ǫ)
(
1 + O

(
ǫ3/2
))

. (B.0.12)
Proof. ad (a). We hoose δ ≡ δ (ǫ) :=

√
kǫ |ln ǫ| with k onstant. The sum(B.0.29) an be written as

∑

x∈Nǫ

e−fǫ(x)/ǫ = e−fǫ(0)/ǫ(
∑

x<δ

e−(fǫ(x)−fǫ(0))/ǫ +
∑

x≥δ

e−(fǫ(x)−fǫ(0))/ǫ). (B.0.13)
The sums on the right hand side ontains, of ourse, also only x ∈ Nǫ. Withthe help of (B.0.8) and the exponentially small level sets of fǫ (assumptionF3), the seond sum of (B.0.13) is bounded by caδ2ǫ−de−aδ2/ǫ = cǫǫ

ka−d <
√

ǫfor k large enough. As we will see this summand is negligible.We abbreviate a ≡ f ′
ǫ (0) and b = f ′′

ǫ (0). Then we approximate fǫ by aTaylor series of seond order around 0:
fǫ (ǫt) − fǫ (0) = ǫat +

1

2
ǫ2bt2 + O

(
(ǫt)3) . (B.0.14)
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Inserting this into the �rst sum of (B.0.13), we obtain
∑

t∈N0,t<δ/ǫ

exp (−fǫ (ǫt) + fǫ (0)) /ǫ

=
∑

t<δ/ǫ

exp

(
−at − 1

2
ǫbt2 + O

(
ǫ2t3
))

=
∑

t<δ/ǫ

exp

(
−at − 1

2
ǫbt2
)(

1 + O
(
δ3/ǫ

))
. (B.0.15)

Notie that remainder of the sum satis�es
∑

t≥δ/ǫ

exp

(
−at − 1

2
ǫbt2
)

=
∞∑

t=0

exp

(
−a (t + ⌈δ/ǫ⌉) − 1

2
ǫb (t + ⌈δ/ǫ⌉)2

)

≤ ǫ
1
2
ck

∞∑

t=0

exp

(
−at − 1

2
ǫbt2
)

, (B.0.16)
whih is negligible ompared to the last sum for k > 1

c
. Therefore

∑

t<⌊δ/ǫ⌋
exp (−fǫ (ǫt) + fǫ (0)) /ǫ

=
∞∑

t=0

(
exp

(
−at − 1

2
ǫbt2
))(

1 + O
(
δ3/ǫ

)) (B.0.17)
We approximate now this sum by an integral. Due to the monotoniity of(
−at − 1

2
ǫbt2
) on (0,∞) we have

∞∑

t=0

(
exp

(
−at − 1

2
ǫbt2
))

≤
∫ ∞

0

exp

(
−ax − 1

2
ǫbx2

)
dx

≤
∞∑

t=1

(
exp

(
−at − 1

2
ǫbt2
))

. (B.0.18)
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Therefore ∞∑

t=0

exp

(
−at − 1

2
ǫbt2
)

= I (a, b) + O (1) . (B.0.19)with the Gaussian integral I de�ned in (B.0.1).Sine a = O
(
ǫβ
√

ǫb
) we obtain as in (B.0.3)

I (aǫ, b) =

√
π

2

1√
ǫb

(
1 + O

(
ǫβ
))

. (B.0.20)Altogether we obtain for ν small enough
∑

t<δ/ǫ

exp (−fǫ (ǫt) + fǫ (0)) /ǫ =

√
π

2

1√
ǫf ′′

ǫ (0)

(
1 + O

(
ǫβ |ln ǫ|3

)) (B.0.21)
with β = min

{
1
2
, β
}.ad (b). The sum (B.0.29) an be written as

∑

x∈Nǫ

e−fǫ(x)/ǫ = e−fǫ(0)/ǫ


∑

t<κ/ǫ

e−(fǫ(ǫt)−fǫ(0))/ǫ +
∑

t≥κ/ǫ

e−(fǫ(ǫt)−fǫ(0))/ǫ


 .(B.0.22)With the help of (B.0.10) and the exponentially small level sets of fǫ (as-sumption F3), the seond sum of (B.0.22) is bounded by cκe

−cκ/ǫ. We hoose
κ ≡ κǫ = ǫ1−α with α > 0 small, hene this summand is exponentially small.We abbreviate a ≡ f ′

ǫ (0). Then we approximate fǫ by a Taylor series ofseond order around 0:
fǫ (ǫt) − fǫ (0) = ǫat + O

(
(ǫt)2) . (B.0.23)Inserting this into the �rst sum of (B.0.22), we obtain

∑

t<κ/ǫ

exp (−fǫ (ǫt) + fǫ (0)) /ǫ

=
∑

t<κ/ǫ

exp (−at)
(
1 + O

(
ǫ1−2α

))
. (B.0.24)

Notie that remainder of the sum satis�es∑

t≥κ/ǫ

exp (−at)

= exp
(
−
⌈
ǫ−α
⌉
a
) ∞∑

t=0

exp (−at) , (B.0.25)
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whih is asymptotially exponentially smaller than this last sum for α > 1
2
−γ.Therefore

∑

t<κ/ǫ

exp (−fǫ (ǫt) + fǫ (0)) /ǫ

=
∞∑

t=0

(exp (−a))t (1 + O
(
ǫ1−2α

))

=
1

1 − e−a

(
1 + O

(
ǫ1−2α

))
. (B.0.26)

Hene we obtain for α = 1
2
(1 − γ) the desired estimate.In the ase γ = 1

2
we obtain

⌊κ/ǫ⌋∑

t=0

exp (−fǫ (ǫt) + fǫ (0)) /ǫ

=
∞∑

t=0

exp (−f ′
ǫ (0))

t

(
1 − 1

2
ǫf ′′

ǫ (0) t2
)(

1 + O
(
ǫ2−4α

))

=

(
1

1 − e−f ′
ǫ(0)

− 1

2
ǫf ′′

ǫ (0)
e−f ′

ǫ(0)
(
1 + e−f ′

ǫ(0)
)

(1 − e−f ′
ǫ(0))

3

)
(
1 + O

(
ǫ2−4α

))
.(B.0.27)

The last step follows from
∞∑

t=0

t2eat =
d2

da2

∞∑

t=0

eat. (B.0.28)
Hene we obtain for α = 1

8
the assertion.

�Now we want to estimate sums in Zd of the form
∑

x∈Zd

exp (fǫ (ǫx) /ǫ) as N → ∞. (B.0.29)
For v = {v1, . . . , vd} ∈ Rd, we introdue as usual the norm ‖·‖∞ by

‖v‖∞ := max
i∈{1,...,d}

|vi| . (B.0.30)
160



Proposition B.2 Consider a family (fǫ)ǫ∈(0,1) with fǫ ∈ C3
(
Rd
). We as-sume fǫ has exponentially small level sets, i.e.

∑

x∈ǫZd:fǫ(x)≥a

exp (−fǫ (x) /ǫ) ≤ cae
a/ǫ. (B.0.31)

Assume that (fǫ) onverges uniformly on Λ to a funtion f ∈ C3 (Λ). Weassume that f has only �nitely many ritial points. Moreover, we assumethat f and fǫ have a unique global minimum at 0 and ∇2f (0) and (∇2fǫ (0))are positive de�nite matries suh that
lim
ǫ↓0

∇2fǫ (0) = ∇2f (0) . (B.0.32)Then we obtain
∑

x∈ǫZd

exp (−fǫ (x) /ǫ) = ǫ−d

∫

Rd

exp (−fǫ (x) /ǫ) dx ×

×
(
1 + O

(√
ǫ |ln ǫ|3/2

))
.In partiular

∑

x∈ǫZd

exp (−fǫ (x) /ǫ) = ǫ−d/2 (2π)d/2

√
det∇2fǫ (0)

exp (−fǫ (0) /ǫ) ×

= ×
(
1 + O

(√
ǫ |ln ǫ|3/2

))
. (B.0.33)Proof. Let δ :=

√
kǫ |ln ǫ| with k > 0 onstant. The sum (B.0.29) an bewritten as

∑

x∈ǫZd

e−fǫ(x)/ǫ = e−fǫ(0)/ǫ(
∑

‖x‖∞<δ

e−(fǫ(x)−fǫ(0))/ǫ +
∑

‖x‖∞≥δ

e−(fǫ(x)−fǫ(0))/ǫ).(B.0.34)The sums on the right hand side ontains, of ourse, also only x ∈ ǫZd.Sine 0 is the unique global minimum of fǫ and ∇2fǫ (0) is positive de�-nite, there exists a > 0 suh that for all δ > 0 small enough we have
fǫ (x) ≥ fǫ (0) + aδ2 for all ‖x‖∞ ≥ δ. (B.0.35)With the help of (B.0.8) and the exponentially small level sets of fǫ (B.0.31),the seond sum of (B.0.34) is bounded by caδ2e−aδ2/ǫ. Inserting δ =

√
kǫ |ln ǫ|161



we obtain cǫǫ
ak <

√
ǫ for k large enough. As we will see, this summand anbe negleted.We denote Hǫ ≡ ∇2fǫ (0). To estimate the �rst sum in (B.0.34), we usethe seond order Taylor series

fǫ (ǫk) − fǫ (0) =
1

2
ǫ2 〈k,Hǫk〉 + O

(
‖ǫk‖3

∞
)
. (B.0.36)Inserting this yields

∑

k∈Zd:‖k‖∞<δ/ǫ

exp [− (fǫ (ǫk) − fǫ (0)) /ǫ]

=
∑

k:‖k‖∞<δ/ǫ

exp

(
−1

2
ǫ 〈k,Hǫk〉 + O

(
δ3/ǫ

))

=
∑

k:‖k‖∞<δ/ǫ

exp

(
−1

2
ǫ 〈k,Hǫk〉

)(
1 + O

(√
ǫ |ln ǫ|3/2

))

=
∑

k∈Zd

exp

(
−1

2
ǫ 〈k,Hǫk〉

)(
1 + O

(√
ǫ |ln ǫ|3/2

))
. (B.0.37)

To obtain the last equality notie that
∑

k:‖k‖∞≥δ/ǫ

exp

(
−1

2
ǫ 〈k,Hǫk〉

)

≤ exp

(
−1

2
ǫ−2νλ

)∑

k∈Zd

exp

(
−1

2
ǫ 〈k,Hǫk〉

)
, (B.0.38)

where λ denotes the smallest eigenvalue of Hǫ.Sine ∇2f (0) and (∇2fǫ (0)) are positive de�nite matries and (B.0.32),we an apply Proposition A.1 and obtain
∑

x∈ǫZd

ef(x)/ǫ = ǫ−d/2 (2π)d/2

√
|det Hǫ|

exp (fǫ (0) /ǫ) × (B.0.39)
×
(
1 + O

(√
ǫ |ln ǫ|3/2

))
. (B.0.40)
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