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ZusammenfassungDiese Dissertation behandelt das metastabile Verhalten von Markov Ket-ten mit abzählbarem diskreten Zustandsraum. Im ersten Teil betra
hten wirMarkov Ketten, die reversibel bezügli
h eines vorgegebenen Wahrs
heinli
h-keitsmaÿes πǫ sind. Der (kleine) Parameter ǫ ∈ (0, 1) erlaubt es uns, imRahmen des potentialtheoretis
hen Ansatzes von Bovier, E
kho�, Gayrardund Klein Metastabilität rigoros zu de�nieren und na
hzuweisen. Der wi
h-tigste Begri� in diesem Ansatz ist die (Newtons
he) Kapazität einer MarkovKette. In einem ersten S
hritt zeigen wir subexponentielle Abs
hätzungendieser Gröÿe unter sehr allgemeinen Bedingungen.Das Hauptergebnis des ersten Teils liefert eine genaue Asymptotik derKapazität unter restriktiveren Bedingungen an die Markov Kette und ihr re-versibles Maÿ. Unter zu Hilfenahme bereits bekannter Ergebnisse können wirdaraus die Eyring-Kramers Formel herleiten, die die Asymptotik bestimmtererwarteter Eintrittszeiten der Markov Kette angibt.Im zweiten Teil werden diese Resultate auf das Hop�eld Modell mit einerfesten Anzahl M von gelernten Mustern angewandt. Für die Komponentendieser Muster wählen wir unabhängige und glei
hverteilte Zufallsvariablen.Wir mö
hten das Verhalten für groÿe Anzahlen N von Neuronen bes
hreiben.Dabei modellieren wir die Dynamik mittels einer Markov Kette vom GlauberTyp, die reversibel bezügli
h des Gibbsmaÿes des Hop�eld Modells ist.Dur
h die Einführung von Blo
kspinvariablen erhalten wir eine MarkovKette ζN auf einer Teilmenge eines 2M -dimensionalen Gitters. Für ζN könnenwir eine metastabile Menge bestehend aus 2M Punkten angeben, wobei jederPunkt zu Kon�gurationen in der Nähe eines der Muster oder seines Negativsgehört.Wir zeigen, dass für Übergänge zwis
hen diesen metastabilen Punktendie Eyring-Kramers Formel gilt. Die asymptotis
h erwarteten Eintrittszeitenkönnen hierbei explizit angegeben werden, da wir in einem (sehr kleinen)Temperaturintervall alle essentiellen Sattelpunkte genau bestimmen können.Diese Punkte bleiben Kandidaten für die essentiellen Sattelpunkte bis zueinem bestimmten Temperatur-S
hwellenwert.Mit den glei
hen Eins
hränkungen an die Temperatur können wir s
hlieÿ-li
h die genaue Struktur und Gröÿe der kleinsten Eigenwerte des Generatorsvon ζN bestimmen. Aufgrund der Spin-Flip Symmetrie und der anomal klei-nen S
hwankungen der Grundzustände des Hop�eld Models muss die TälerStruktur des transformierten Hamiltonians berü
ksi
htigt werden.





SummaryThis thesis is 
on
erned with the metastable behaviour of time homoge-neous Markov 
hains evolving on a dis
rete 
ountable set. In the �rst part,we 
onsider Markov 
hains that are reversible with respe
t to a given prob-ability measure πǫ. The small parameter ǫ ∈ (0, 1) allows us to investigatemetastability rigorously in the sense of the potential theoreti
 approa
h dueto Bovier, E
kho�, Gayrard and Klein. The main notion in this approa
h isthe 
apa
ity of a Markov 
hain. We are able to show subexponential boundson this quantity under very general assumptions and for a big 
lass of dis
rete
ountable sets.The main theorem in the �rst part yields, under more restri
tive 
on-ditions, pre
ise asymptoti
s of the 
apa
ity with multipli
ative errors thattend to one. As a 
onsequen
e we 
an prove the Eyring-Kramers formulaproviding sharp estimates for 
ertain expe
ted hitting times of our Markov
hain. They exhibit the same form as in the 
ase of a di�usion with smallnoise intensity on a subset of Rd.In the se
ond part we apply our results to the Hop�eld model with a �xednumber, say M , of random patterns. We are interested in the behaviour for alarge number, N , of neurons. The dynami
s are modelled by a Markov 
hainof Glauber type on the set of all 
on�gurations, {−1, 1}N , whi
h is reversiblewith respe
t to the Gibbs measure asso
iated to the Hop�eld Hamiltonian.With the help of a lumping pro
edure, we obtain a random Markov 
hain ζNon a subset of a latti
e with dimension 2M . We 
an 
onstru
t a metastableset of ζN 
onsisting of 2M points that 
orrespond to 
on�gurations near oneof the patterns or its negative.Then we establish the Eyring-Kramers formula for transitions betweenthese metastable points. We obtain a 
ompletely expli
it expression sin
e we
an estimate pre
isely the (random) position and height of the relevant saddlepoints. However, this holds only in a very small intervall of the temperature,and it is an open question whether this result may be extended up to a
ertain temperature threshold. For temperatures that are even lower we aresure that the behaviour 
hanges.With the same restri
tions on the temperature we are able to unravel thestru
ture of the low lying eigenvalues of the generator of ζN . Due to the spin�ip symmetry and the anomalously small random �u
tuations of the groundstates we have to take into a

ount the valley stru
ture of the transformedHamiltonian.
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Part I
Introdu
tion
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1 Metastability of Markov 
hains
This work is 
on
erned with the metastable behaviour of time homoge-neous Markov 
hains, ζ = (ζn)n∈N0

, evolving on a dis
rete 
ountable set Y .We 
all Y the state spa
e of ζ. Assume ζ is irredu
ible; then it is positivere
urrent if and only if there exists a stationary probability distribution, π.In this 
ase it is 
alled ergodi
. It then follows that π is unique and positive.1 Assume now that ζ is ergodi
. Then for any f : Y → R su
h that
π (|f |) < ∞ (1.0.1)and for any initial distribution µ, the pathwise ergodi
 theorem states that

lim
n→∞

1

n

n∑

k=0

f (ζk) = π (f) . (1.0.2)
One says that the Markov 
hain ζ 
onverges to its equilibrium π. The mainquestion we are 
onfronted with is how long does this take and how does theMarkov 
hain pro
eed in order to approa
h the equilibrium.We will be investigating Markov 
hains that need an exponentially longtime, measured on a 
ertain s
ale, to 
ome 
lose to the equilibrium. For �nite
hains, the time 
an be measured on the s
ale of |Y |, the number of states,in general we will be using the inverse of a small parameter ǫ.One of the main motivations behind su
h studies 
omes from the attemptto understand phenomena of non-equilibrium thermodynami
s for (disor-dered) intera
ting parti
le systems: Consider an intera
ting parti
le systemwith N parti
les, whose equilibrium is des
ribed by the asso
iated (random)Gibbs measure on an asymptoti
ally (for N → ∞) in�nite dimensional spa
e
SN . For S = {−1, 1} one has an intera
ting spin system. In order to ob-serve how this system 
onverges to equilibrium, we introdu
e a parti
ularkind of dynami
s, namely a dis
rete time Markov 
hain that �ips at mostone spin per time step. As we shall see in part III, in the important 
aseof the Hop�eld model, one 
an use symmetries to map this Markov 
hain toanother Markov 
hain on a subset of a �nite dimensional latti
e and applyour results.1See e.g. Brémaud, [Bré99℄ Theorem 3.1, p. 104 and, for the next statement, Theorem4.1, p. 111. 5



1.1 General methodsDe�ne the hitting time of a subset A ⊂ Y to be
τA := inf {n > 0 | ζn ∈ A} . (1.1.1)To get a hold on the evolution of our Markov 
hain we isolate 
ertain 
hara
-teristi
 points of the state spa
e Y and give pre
ise estimates of the expe
tedhitting times of these points. Working with points is 
ertainly only possiblein a spa
e having at most 
ountably many elements.Let us say a word about the methods we are using. At the heart ofour treatment lies the Diri
hlet prin
iple and a sto
hasti
 representation of
ertain harmoni
 fun
tions. We will brie�y introdu
e these 
on
epts now:Denote by Pµ the law of ζ with µ as starting distribution. If ζ starts atpoint x ∈ Y , we also write Px. Let p be the transition probability of ζ and

L := p−1l the generator of ζ. Let A and B be disjoint 
ompa
t subsets of Y .The equilibrium potential hA,B : Y → [0, 1] of ζ is de�ned to be the uniquebounded solution of the Diri
hlet problem




Lh = 0 on (A ∪ B)c ,
h = 1 on A,
h = 0 on B.

(1.1.2)
We also say that hA,B is harmoni
 on Y \(A ∪ B) with respe
t to L. It is wellknown (see e.g. [Bré99℄, Theorem 2.1, p. 181) that hA,B has the sto
hasti
representation

hA,B (x) = Px (τA < τB) for all x ∈ Y \ (A ∪ B) . (1.1.3)The quadrati
 form asso
iated with L, namely
Φ (h) := −〈h, Lh〉π , (1.1.4)is 
alled Diri
hlet form. We now 
onsider the spa
e of l2 (π)-fun
tions havingthe same boundary 
onditions as hA,B, i.e.

HA,B :=
{
h ∈ l2 (π) | h|A = 0 and h|B = 1

}
. (1.1.5)Then the Diri
hlet prin
iple asserts that the in�mum of Φ under all fun
tionsof HA,B is attained by the equilibrium potential hA,B. The minimum valueis 
alled the (Newtonian) 
apa
ity between A and B,6



cap (A,B) := Φ (hA,B) . (1.1.6)This theorem is the analogue for reversible Markov 
hains of the 
lassi
alDiri
hlet prin
iple from potential theory, whi
h states the following: amongall 
ontinuously di�erentiable fun
tions h on a smooth bounded domain D ⊂
Rd taking spe
i�
 boundary values, the integral

∫

D

|∇h (x)|2 dx (1.1.7)is minimised by the harmoni
 fun
tions taking these boundary values. In thedis
rete setting, one 
an further show that
Px (τA < τx) =

cap (x,A)

π (x)
, (1.1.8)and this 
an be applied re
ursively together with the Diri
hlet prin
iple.Sin
e our te
hniques so mu
h depend on the Diri
hlet prin
iple, we haveto restri
t ourselves to reversible Markov 
hains.

1.2 De�ning metastabilityA fundamental property of the Markov 
hains we investigate is their so 
alledmetastability. First of all, let us give an informal des
ription of this phe-nomenon:A Markov 
hain is said to exhibit metastable behaviour if, �rstly, whenstarting in a 
ertain subset of initial 
onditions, the 
hain remains for a�long� time in a limited subset of the state spa
e. Se
ondly, this subspa
e hasnegligible measure in equilibrium. And thirdly, the transition to equilibriumor to another (larger) subspa
e o

urs in an abrupt fashion.Obviously metastability is a dynami
al phenomenon that 
an only beobserved on 
ertain times
ales. A dynami
al de�nition of metastability hasbeen suggested by Davies in [Dav82℄. The requirement that the pro
ess spenda large time in a restri
ted subset domain, implies that the 
hain relaxesto a pseudo-equilibrium state. Thus, in a metastable state, the values ofthe ma
ros
opi
 observables of interest will not show any systemati
 time-dependen
e, at least after some short initial transient e�e
t.Gaveau and S
hulman revealed in [GS98℄ the intimate relation betweenmetastable time s
ales and the low lying eigenvalues of the generator of a7



Markov 
hain. In a series of papers starting with [BEGK01℄ Bovier, E
k-ho�, Gayrard and Klein 
ould rigorously verify a very pre
ise form of thisrelation for reversible Markov 
hains and tra
e it ba
k to their de�nition ofmetastability. They developed the so 
alled potential theoreti
 approa
h tometastability.In order to 
ome to a pre
ise mathemati
al des
ription, we introdu
e asmall positive parameter ǫ, that enables us to zoom into this pi
ture andamplify the details we are interested in.We let Λ ⊂ Rd, whereas (Λǫ)0<ǫ<1 ⊂ Λ is a family of 
ountable dis
retesets. Let (ξǫ)0<ǫ<1 be a family of irredu
ible homogeneous Markov 
hains su
hthat ξǫ is positive re
urrent on Λǫ. Denote by Pµ the law of ξǫ 
onditioned tohave µ as starting distribution. If ξǫ starts in a point x ∈ Λǫ, we also write
Px. We denote the stationary distribution of ξǫ by πǫ. Su
h Markov 
hains
an be fully 
hara
terised by spe
ifying their transition matrix pǫ.In the following, we will often be dealing with probabilities like Px [τA < τx]whi
h we 
all es
ape probability from x to A.Following Bovier, E
kho�, Gayrard and Klein [BEGK02℄, we de�ne meta-stability in the following way:De�nition 1.1 (metastability) Let Mǫ be a �nite subset of Λǫ su
h that the
ardinality |Mǫ| is independent of ǫ. Let ρ : (0, 1) → (0, 1) be a monotonein
reasing fun
tion with limǫ↓0 ρ (ǫ) = 0.Then the family of Markov pro
esses (ξǫ)ǫ∈(0,1) is said to be ρ-metastablewith respe
t to (Mǫ), if

max
m∈Mǫ

Pm (τMǫ
< τm) ≤ ρ (ǫ) inf

x/∈Mǫ

Px (τMǫ
< τx) . (1.2.1)The elements of Mǫ are 
alled ρ-metastable points of (ξǫ).We say (ξǫ) is metastable with respe
t to (Mǫ) if there exists a fun
tion

ρ for whi
h (ξǫ) is ρ-metastable.This de�nition suggest a de
omposition of the state spa
e into a �nite 
ol-le
tion of subsets. We de�ne for ea
h point m ∈ Mǫ the domain of attra
tionof m by
A (m,Mǫ) :=

{
x ∈ Λǫ |Px (τm = τMǫ

) ≥ max
n∈Mǫ

Px (τn = τMǫ
)

}
. (1.2.2)In words, De�nition 1.1 states the following: The in�mum of the es
apeprobabilities from any point x ∈ M c

ǫ to Mǫ is mu
h bigger than the es
ape8



probability from a point, m, in Mǫ to another one. The fun
tion ρ in Def-inition 1.1 des
ribes the fa
tor, by whi
h the es
ape probabilities betweenmetastable points is smaller 
ompared to the es
ape probability of any pointwith respe
t to the set of metastable points.Therefore we have at least two di�erent time s
ales: One that measuresthe time required for a typi
al ex
ursion away from m that stays inside
A (m,Mǫ) and another one on whi
h we expe
t a 
hangeover to Mǫ \ m.This type of behaviour has been studied for a long time and is rigorouslytreated on the level of large deviations, in parti
ular in the book of Freidlinand Wentzell [FW84℄.The bene�t of De�nition 1.1 is that we only have to 
ontrol hitting timesof points or �nite sets of points on the state spa
e. In the analogues situationof a Di�usion in Rd, one 
an deal with small balls around these points (see[BEGK04℄).Observe that De�nition 1.1 does not determine a unique family (Mǫ)even for �xed ρ. Indeed, having isolated a very large set Mǫ, in many 
asesone 
an �nd a subset Nǫ ⊂ Mǫ su
h that the Markov 
hain also exhibitsa metastable behaviour with respe
t to Nǫ. We formulate this importantproperty of De�nition 1.1 inProposition 1.2 Assume we have 
hoose the set Mǫ su
h that

πǫ (m) = max
x∈A(m,Mǫ)

πǫ (x) . (1.2.3)
Let Iǫ be the set of all i ∈ Mǫ for whi
h there exists c > 0, independent of ǫ,su
h that

Pi (τMǫ
< τi) ≥ c max

m∈Mǫ

Pm (τMǫ
< τm) . (1.2.4)Then we 
an 
onstru
t a minimal set Jǫ ⊂ Iǫ su
h that (ξǫ) is metastablewith respe
t to M̂ǫ ≡ Mǫ \ Jǫ.We will use this redu
tion me
hanism in part III to �nd the low lying eigen-values for the generator. A similar argument has been used by Bovier et al.in [BEGK02℄.A striking example of the power of De�nition 1.1, and the asso
iatedpotential theoreti
 approa
h, is the re
ent work of Bovier, den Hollander andNardi [BdHN06℄, about the metastable behaviour of a latti
e gas subje
t toKawasaki dynami
s in two or three dimensions in the limit of low temperatureand low density. 9



1.3 Estimation of the 
apa
ityWe need to introdu
e some notions about the stru
tural properties of theequilibrium measure πǫ.De�nition 1.3 Sin
e πǫ is positive, we 
an de�ne the potential Fǫ : Λǫ →
R>0 by

Fǫ (x) := −ǫ ln πǫ (x) . (1.3.1)We now assume that (Fǫ) 
onverges uniformly to a unique 
ontinuousfun
tion F : Λ → R≥0, i.e. for all κ > 0 there exists ǫ0 > 0 su
h that for all
ǫ < ǫ0 we have

sup
x∈Λǫ

|Fǫ (x) − F (x)| < κ. (1.3.2)Moreover, we assume that F has 
ompa
t level sets, i.e.
{F ≤ b} ⊂⊂ Λ for all b ≥ 0. (1.3.3)Hen
e, for small ǫ the potential will be the essential obje
t, while the invariantmeasure degenerates in the limit.The key result that we prove for reversible Markov 
hains ξǫ on a uni-formly lo
ally �nite graph establishes a 
onne
tion between the dynami
albehaviour of the 
hain and the geometry of its potential F . Similar versionshave been shown e.g. in [BEGK01℄.To do this we des
ribe the geometry of F with the help of the followingnotions: A path γ is a �nite sequen
e (γ1, . . . , γk) of 
ommuni
ating points,i.e. pǫ (γi, γi+1) > 0 for all 1 ≤ i ≤ k − 1. We write x ∈ γ when γ visits thepoint x. Let A and B be disjoint 
ompa
t subsets of Λǫ. We denote by PA,Bthe set of paths starting in A and ending in B. We de�ne the 
ommuni
ationheight between A and B to be
F̂ǫ (A,B) := min

γ∈PA,B

max
x∈γ

Fǫ (x) . (1.3.4)
We denote the lower level set of F̂ǫ (A,B) by

Wǫ(A,B) :=
{

x ∈ Λǫ |Fǫ (x) < F̂ǫ (A,B)
}

. (1.3.5)Assume A ⊂ Wǫ(A,B). Then the 
onne
ted 
omponent of Wǫ(A,B) 
ontain-ing A is 
alled the valley of A with respe
t to B and is denoted by V
(ǫ)
B (A).Under a mild 
ondition on the transition probabilities pǫ (see se
tion II.4)we obtain then 10



Proposition 1.4 Let (ξǫ) be a family of ergodi
 and reversible Markov 
hains.Let A and B be disjoint 
ompa
t sets of Λǫ su
h that Fǫ (x) < F̂ǫ (A,B) forall x ∈ A.Then, under some regularity 
onditions there exist a 
onstants c1, c2 > 0su
h that
c1ǫ

d ≤ cap (A,B)

exp
(
−F̂ǫ (A,B) /ǫ

) ≤ c2ǫ
−d. (1.3.6)

This property shows already how the potential theoreti
 approa
h works:The 
apa
ity, whi
h gives us information about the generator of the Markov
hain ξǫ, and therefore about the dynami
s of our pro
ess, 
an be estimatedby quantities re�e
ting the geometry of the potential.For example given m ∈ Mǫ it always holds true that the valley of m withrespe
t fo Mǫ is a subset of the domain of attra
tion A (m,Mǫ).To further illustrate the usage of Proposition 1.4 let M be the set of alllo
al minima of F , and assume M 
onsists of �nitely many points. ThenProposition 1.4 implies that there exist subsets Mǫ of Λǫ with |Mǫ| = |M|and su
h that ξǫ is metastable with respe
t to (Mǫ). (See Example 4.10)Observe that we are not assuming that the limiting fun
tion F is di�er-entiable. Bovier and Faggionato used similar results to prove metastabilityin the sense of De�nition 1.1 for Sinai's random walk in a random potentialand gave pre
ise estimates for the asso
iated 
apa
ity [BF05℄.Let us now assume that Λǫ ≡ Λ ∩ ǫZd. Under some more restri
tiveassumptions on the potentials Fǫ, and assuming the limiting potential F isin C3 (Λ), we provide mat
hing upper and lower bounds of the 
apa
ity upto multipli
ative errors that tend to one. To state the result pre
isely wede�ne the set of optimal paths between two minima m,n ∈ Mǫ by
Om,n :=

{
γ ∈ Pm,n | max

x∈γ
Fǫ (x) = F̂ǫ (m,n)

}
. (1.3.7)

For simpli
ity, we assume here that there is a unique point, s ≡ s∗ (m,n),that is visited by all paths of Om,n. This point is 
alled the relevant saddlepoint between m and n. Our basi
 example for ξǫ is the Metropolis samplerof the measure πǫ. In this 
ase we have
pǫ (x, y) =





1
2d

min
(
1, πǫ(y)

πǫ(x)

) if y ∈ Nx,

1 −∑z∈Nx
pǫ (x, z) if y = x,

0 else. (1.3.8)
11



We then prove the followingTheorem 1.5 Let (ξǫ) be a family of ergodi
 Markov 
hains with reversiblemeasure πǫ. Let m,n ∈ Mǫ, and assume s ≡ s∗ǫ (m,n) is the unique relevantsaddle point between them. Then, under some regularity 
onditions,
cap (m,n) =

1

2d

(
2π

ǫ

)d/2−1
λd√

|det∇2Fǫ (s)|
×

× exp (−Fǫ (s) /ǫ)
(
1 + O

(√
ǫ |ln ǫ|3/2

))
, (1.3.9)where −λd is the unique negative eigenvalue of the Hessian matrix ∇2Fǫ (s)at the relevant saddle point.The general strategy to prove this result is the same as in [BEGK04℄: First,we will establish a dire
t 
onne
tion between return probabilities and the
apa
ity cap (A,B) between disjoint subsets A and B of Λǫ (see De�nition3.6), namely

cap (A,B) =
∑

x∈B

πǫ (x) Px (τA < τx) . (1.3.10)
To obtain estimates for the 
apa
ity, we then use the Diri
hlet prin
iple. Inthe reversible setting, one 
an rewrite the Diri
hlet form as a sum of positiveterms, and this in turn yields a priori bounds on the 
apa
ity.In a se
ond step, we use a renewal equation for ξǫ to obtain

hA,B (x) ≤ cap (x,A)

cap (x,B)
, (1.3.11)so that the a priori bounds for the 
apa
ity yield upper bounds for hA,B and

hB,A = 1 − hA,B. The form of these bounds suggests, as we will see, thatonly a neighbourhood of the relevant saddle points (see De�nition 4.3) needsto be investigated in detail. Just like in the 
ontinuous setting, a pre
iseupper bound for the 
apa
ity 
an be a
hieved by 
hoosing a fun
tion h+that is nearly optimal in a 
ertain neighbourhood of the relevant saddles andinserting it in the Diri
hlet form Φ. But the lower bound is more intri
ate.A spe
ial problem in the dis
rete setting is that the instable dire
tion of arelevant saddle need not to be one of the latti
e dire
tions. To over
ome thisdi�
ulty, we partition the latti
e in a neighbourhood of a relevant saddle intoparallel �strings�, ea
h string pointing in the right dire
tion and having somemi
ros
opi
 stru
ture. In parti
ular, these strings are in general non-disjoint.12



1.4 Expe
ted hitting timesExpe
ted hitting times are interesting quantities not only for themselves, butalso be
ause of their 
onne
tion to the eigenvalues of the generator of ξǫ, seee.g. [BEGK02℄. We will dis
uss this point in part III in the 
ontext of theHop�eld model.In [BEGK02℄ (Corollary 3.3, p.230) it has been shown that the expe
tedhitting times of reversible Markov 
hains 
an be expressed by quantities wealready know, namely
ExτA =

πǫ (hx,A)

cap (x,A)
. (1.4.1)In the 
ontext of a �nite state spa
e it was also established, (see [BEGK02℄,Theorem 3.5, p. 231) that if (ξǫ) is metastable with respe
t to Mǫ, then for

m ∈ Mǫ

EmτMǫ\m =
πǫ (Aǫ (m))

cap (m,Mǫ \ m)
(1 + O (ρ (ǫ) |Λǫ|)) . (1.4.2)Furthermore, a

ording to their Corollary 3.4 (p. 230) one has

Ex (τMǫ
) ≤ |Λǫ|

aǫ
, (1.4.3)

where
aǫ := inf

x∈Eǫ\Mǫ

Px (τMǫ
< τx) . (1.4.4)By using formula (1.4.2) for the expe
ted hitting time, one obains that afamily of reversible Markov 
hains (ξǫ) on a �nite state spa
e is ρ-metastablewith respe
t to Mǫ i�

inf
m∈Mǫ

Em

(
τMǫ\m

)
≥ 1

ρ (ǫ)
sup

x∈Λǫ\Mǫ

Ex (τMǫ
) , (1.4.5)

where
ρ (ǫ) = ρ (ǫ) |Λǫ|

πǫ (m)

πǫ (Aǫ (m))
. (1.4.6)Observe that (1.4.5) is useless for 
ountable state spa
es Λǫ, sin
e then ρ (ǫ) =

∞. This 
an not be repaired easily, be
ause
sup

x∈Λǫ\Mǫ

Ex (τMǫ
) (1.4.7)

13




an also be in�nity in this 
ase.The main theorem of this part is the Eyring-Kramers formula, whi
h westate here only for the Metropolis algorithm and in the 
ase of a uniquerelevant saddle point, for simpli
ity.Theorem 1.6 (Eyring-Kramers formula) Let m ∈ Mǫ and assume s is theunique relevant saddle point between m and Mǫ \ m. Denote by −λ̂d theunique negative eigenvalue of p (s) · ∇2Fǫ (s). Then for ξǫ starting in m, theexpe
ted time needed to rea
h another point of Mǫ is given by
Em

(
τMǫ\m

)
=

2π

ǫ

1

λ̂d

√
|det∇2Fǫ (s)|
|det∇2Fǫ (m)| exp {(Fǫ (s) − Fǫ (m)) /ǫ} ×

×
(
1 + O

(√
ǫ |ln ǫ|3/2

))
. (1.4.8)We are left with theOpen Question How 
ould these expe
ted hitting times be given pre
iseestimates in the 
ase of a non-reversible Markov 
hain?

1.5 The pathwise approa
hIn the re
ent treatise �Large Deviations and Metastability� by Enzo Olivieriand Maria Eulalia Vares, [OV05℄, metastability is dis
ussed in great detailfrom the point of view of a pathwise approa
h. Let us transfer in our settingthe two asymptoti
 properties of Metastability whi
h are emphasised in thisbook.A point m ∈ Λǫ is 
alled metastable in the sense of Olivieri and Vares i�the following two properties hold:1. Unpredi
tability of the tunneling time.Assume ξǫ starts in m. Then τMǫ\m is 
alled unpredi
table if it 
on-verges in distribution to an exponential random variable, i.e.
τMǫ\m

Em

(
τMǫ\m

) D→ E for ǫ ↓ 0, (1.5.1)
where E is a unit mean exponential random variable.14



2. Thermalisation.Let s, t ∈ N0. We de�ne the empiri
al average measure of ξǫ betweenthe times s and s + t as
µs,t :=

1

t

s+t∑

k=s+1

δξǫ
k
. (1.5.2)

Hen
e µs,t (B) is the fra
tion of time ξǫ spends in B ⊂ Λǫ between time
s and s + t. Let V := V

(ǫ)
Mǫ\m (m) be the valley of m with respe
t to

Mǫ \ m.Let ξǫ again start at m. We say ξǫ thermalises at m if there exists a de-terministi
 time s
ale tǫ su
h that limǫ↓0 tǫ = ∞, but tǫ = o (Em (τ∂+V ))and for every open set B ⊂ Rd 
ontaining m and every κ > 0

lim
ǫ↓0

Pm

(
τ∂+V > tǫ and sup

s<τ∂+V −tǫ

µs,tǫ (B) > 1 − κ

)
= 1. (1.5.3)

Bovier, E
kho�, Gayrard and Klein showed indeed that the unpredi
tability
an be seen as a 
onsequen
e of De�nition 1.1, see [BEGK02℄, Theorem 1.3(iv), p. 223.Here we show:Theorem 1.7 Let (ξǫ) be a family of ergodi
 and reversible Markov 
hains.Let Mǫ be the set of lo
al minima of Fǫ. Assume that Mǫ is a �nite setand |Mǫ| is independent of ǫ. Choose m ∈ Mǫ and let V := V
(ǫ)
Mǫ\m (m)be the valley of m with respe
t to Mǫ \ m. Assume ξǫ starts at m, then itthermalises at m.It should be possible to show thermalisation for more general sets. Thereforewe haveOpen Question Show the thermalisation property for a general metastableset in the sense of De�nition 1.1.At least up to now, De�nition 1.1 
an des
ribe more general situations. Itfo
uses not only on a single metastable state and the ensuing transition toequilibrium, but des
ribes a 
onsistent set of metastable points. Moreover,it seems to be easier to 
he
k the 
riterion of De�nition 1.1 than the ther-malisation property mentioned in the pathwise approa
h.
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2 Metastability in the Hop�eld model
2.1 The Hop�eld modelIn the se
ond part of this work, we apply the general results on metastabilityof 
ountable Markov 
hains to investigate the metastable behaviour of theHop�eld model.A famous interpretation of the Hop�eld model is to view it as a model fora neural network. Basi
ally we mean by a neural network model a labeledand possibly oriented graph Γ = (Λ, E) together with a set S with at leasttwo elements; Λ is the set of neurons and E the set of synapses 
onne
tingthese neurons. The a
tivity of ea
h of the neurons is des
ribed by a variable
σi taking its values in S, for all i ∈ Λ). We will model the dynami
s of thisnetwork by a Markov 
hain σG = {σG (t)}t∈N0

on SΛ.One of the most important advan
es due to Hop�eld ([Hop82℄) has beento understand that these dynami
s 
orrespond to a Hamiltonian HN . As-sume the information to be stored is en
oded in so-
alled patterns ξµ, µ ∈
{1, . . . ,M (N)}, ea
h of the ξµ itself being a sequen
e of ξµ

i ∈ S for i ∈
{1, . . . , N}. To make the neural net 
apable of adapting to di�erent sequen
esof patterns, we have to introdu
e a set of variables Jij for all {i, j} ∈ E 
alledthe synapti
 e�
a
y and des
ribing the strength of intera
tion between theneurons at sites i and j. It is 
ommonly assumed that the variable Jij is mea-surable with respe
t to the set {ξµ

i , ξµ
j |µ ∈ {1, . . . ,M (N)}

}. This is then
alled lo
ality of the weights Jij. The asso
iated Hamiltonian HN is givenby
HN (σ) := −1

2

∑

{i,j}∈E

Jijσiσj. (2.1.1)
The Hop�eld model ([Hop82℄) is among the most 
lassi
al and best under-stood models of neural network. Although originally introdu
ed by Pasturand Figotin, [FP77℄, as a simpli�ed model of a spin glass, this model earnedmu
h of its su

ess through its reinterpretation as an auto-asso
iative mem-ory by Hop�eld and may therefore by right be 
alled the Hop�eld model. Herethe graph G is the 
omplete graph KN on the vertex set Λ = {1, . . . , N} and

S = {−1,+1} 
orresponds to a neuron being swit
hed either 'on' or 'o�',16



and the weights Jij are given by 'Hebb's learning rule', i.e. by the formula
Jij :=

1

N

M(N)∑

µ=1

ξµ
i ξµ

j . (2.1.2)
Note that (2.1.1) may be rewritten in the 
onvenient form

HN [ξ] (σ) = − 1

2N

M(N)∑

µ=1

〈ξµ, σ〉2 . (2.1.3)
The s
alar produ
t 1

N
〈ξµ, σ〉 is the so 
alled overlap between ξµ and σ. Notethat this s
alar produ
t may be regarded as an index for how similar σ is toeither ξµ or −ξµ, be
ause its absolute value 
an be written as

1

N
|〈ξµ, ξν〉| = 1 − 2 min {dH (ξµ, ξν) , dH (ξµ,−ξν)} , (2.1.4)where dH is the normalised Hamming distan
e, namely

dH (σ, τ) =
1

N

N∑

i=1

1 (σi 6= τi) . (2.1.5)
At this point, one may noti
e the spin-�ip symmetry

HN (−σ) = HN (σ) , (2.1.6)showing that the Hop�eld model 
an not distinguish between a spin 
on�g-uration and its negative.Observe also that (2.1.3) makes it plausible that - at least for M (N) smallenough - the minima of HN are lo
ated 
lose to the patterns ξµ. (A
tuallythis is trivially ful�lled if the patterns are orthogonal, i.e. if 〈ξµ, ξν〉 = δµν).Let β ∈ R≥0 be a non negative parameter; in the 
ontext of statisti
alme
hani
s it plays the role of an inverse temperature. The Hamiltonian HNdetermines a �nite volume Gibbs measure πN ≡ πN,β [ξ] given by
πN (σ) :=

1

ZN,β

exp (−βHN (σ)) . (2.1.7)
Here, ZN,β ≡∑σ∈SN exp (−βHN (σ)), the partition fun
tion, is a normalisingfa
tor assuring that πN is a probability measure.17



From now on we will refer to the Hop�eld model as a Markov 
hain
σN,β ≡ (σN,β (t))t∈N0

on the 
on�guration spa
e SN that is reversible withrespe
t to the Gibbs measure πN . We 
onsider Glauber dynami
s, so thatduring ea
h time step at most one spin is �ipped.Now we 
hoose the 
omponents of the patterns, ξµ
i , uniformly at randomin {−1, 1} and independently of ea
h other. Of 
ourse, σN,β is then a Markov
hain with random rates. The dependen
e on

ξ ≡ (ξµ)1≤µ≤M (2.1.8)will be indi
ated expli
itly whenever we want to stress it. Otherwise, we willfrequently drop it to simplify the notation.There exists a threshold value for the number of patterns su
h that thememory works for low temperatures i.e. β > 1. The 
riti
al dependen
e is
M (N) ∼ αN with α ≈ 0, 138. (see e.g. [AGS85℄,[AGS87℄,[BG94℄).We assume M (N) ≡ M to be a �nite number, independent of N , andtherefore we are in the regime of perfe
t memory. We will analyse the longtime behaviour of σβ,N . As we will see this 
an be des
ribed in the generalframework of metastability.The following two papers have dealt with several aspe
ts of the problem.

• V.A. Malyshev, F.M. Spieksma �Dynami
s in Binary Neural Networkswith a Finite Number of Patterns� ([MS97℄) treats the 
ase of zero tem-perature, i.e. β = ∞. In this setting the phenomenon of metastabilitydoes not o

ur. If the pro
ess rea
hes one of the lo
al minima of the ef-fe
tive energy H̄, it stays there forever. The sto
hasti
 behaviour theyinvestigate is lo
alised at the boundaries of the domains of attra
tionof di�erent minima.
• In G. Biroli and R. Monasson, �Relationship between Long Time S
alesand the Stati
 Free-Energy in the Hop�eld Model�, ([BM98℄), 
ontraryto the announ
ement in the title, the authors do not really investigatethe long time behaviour of the Hop�eld model. They only show thatthe Hop�eld model behaves in the neighbourhood of a 
riti
al pointlike a quantum me
hani
al harmoni
 os
illator, i.e. that the e�e
tiveenergy 
an be approximated by a quadrati
 fun
tion near the 
riti
alpoints.We use the symmetry of the model to redu
e the dimension of the statespa
e from N to d ≡ 2M . This is done by a transformation invented by18



Grensing and Kühn [GK86℄ that lumps together 
ertain groups of spins. Therandomness of the pattern ξµ is then en
oded in the size ℓk ≡ N
d
(1 + 1√

N
λk)of these groups. In the following we restri
t ourselves to the set of patterns Ξsu
h that λk = O[lnN ] for all k. Observe that due to the law of the iteratedlogarithm Ξ has asymptoti
ally full measure. The transformed pro
ess is aMarkov 
hain, ζN,β, on the (random) d-dimensional latti
e LN,β = ×d

k=1
2
ℓk

Zinterse
ted with the hyper
ube [−1, 1]d. ζN,β is again reversible with respe
tto a Gibbs measure ̺N,β, whi
h is 
hara
terised by a modi�ed Hamiltonian
HN,β.We 
an think of ζβ,N as a pro
ess exploring a lands
ape given by therandom fun
tion fβ,λ that equals up to a 
onstant 1

N
HN,β. The groundstates 
orresponds in this pi
ture to the global minima of fβ,λ.Let {b1, . . . , bd} be an enumeration of all ve
tors in {−1, 1}M . Hen
e

bµ ∈ {−1, 1}d, and we denote b−µ := −bµ. Moreover, we introdu
e the graph
G = (V,E), where

V := {−M, . . . ,M} \ {0}and
E := {{µ, ν} ∈ V × V |µ /∈ {−ν, ν}} .Let m∗ denote the unique positive solution of the 'mean �eld equation'

m = tanh (βm) . (2.1.9)Similarly to e.g. Genz, ([Gen96℄), we show that for all β > 1 the globalminima of fβ,λ have positions that are small random perturbations of thepoints
mµ = m∗bµ for µ ∈ V. (2.1.10)Therefore the set of global minima of fβ,λ 
an be written as
MN := (mµ |µ ∈ V ) . (2.1.11)The minimum m±µ 
orresponds to a spin 
on�guration near the µ-th patternor its negative, −ξµ.We wil show that the Hop�eld model exhibits metastable behaviour.Therefore, as we saw in part II the long time evolution of ζN,β is 
ontrolledby the position and height of the so 
alled relevant saddle points between theminima. To determine them, we have to be very 
areful. In a quite smallinterval of the temperature, namely 1 < β < 1 + (9d + 500M 8)

−1, Ko
h19



and Piasko showed that the so 
alled �symmetri
 solutions� provide the only
riti
al points of the deterministi
 fun
tion fβ ≡ f
(N)
β,0 .Sin
e all these 
riti
al points are non degenerate (det∇2fβ (s) 6= 0), theonly 
andidates for relevant saddle points are the 
riti
al points of fβ with aHessian matrix with one negative and (d − 1) positive eigenvalues (1-saddles).We show that fβ,λ has a unique 
riti
al point in a small neighbourhood ofea
h 1-saddle of the symmetri
 solutions

sµ,ν =
1

2
m∗ (bµ + bν) for {µ, ν} ∈ E, (2.1.12)and these are the only 1-saddles. Hen
e the set of 1-saddles 
an be repre-sented by (

sµν

∣∣ {µ, ν} ∈ E
)
. (2.1.13)These points are 1-saddles for all 1 < β < βc, where βc ≈ 1.7 is the uniquepositive solution of β = 2

2−m∗(β)2
. This leads to the followingOpen Question (a) Is it true that for all 1 < β < βc the relevant saddlesbetween the global minima of fβ,λ, namely between the elements in

MN , are 
ontained in
(
sµν

∣∣ {µ, ν} ∈ E
)
? (2.1.14)(b) What are the relevant saddles between these global minima for

β ≥ βc?In 
ontrast to the heights of the lowest minima of fβ,λ the heights of the1-saddles perform random �u
tuations with an amplitude of order 1/
√

N .To give the pre
ise form of these �u
tuations, we denote the free energy ofthe Curie-Weiss model by
fCW (β) :=

1

2
m∗2 − 1

β
I (m∗) . (2.1.15)

We introdu
e the symmetri
 matrix AN given by
Aµν

N :=
1√
N

〈ξµ, ξν〉 for all µ 6= ν (2.1.16)
and Aµµ

N := 0. As Külske pointed out ([Kül97℄), the matrix AN has asymp-toti
ally standard normal entries outside the diagonal.20



Proposition 2.1 For all ξ ∈ Ξ and N ≥ N0 [ξ], we obtain
fβ,λ (m±µ)

= −fCW (β) +
k0

N

(
A2

N

)µ,µ
+ O

(
ln N√

N

)3 (2.1.17)and
fβ,λ (sµ,±ν)

= −1

2
fCW (β) ∓ k1√

N
Aµ,ν

N +

−k2

N

∑

α

(Aαµ
N ± Aαν

N )2 − k3

N
(Aµν

N )2 + O
(

ln N√
N

)3

. (2.1.18)
The 
onstants 
an be given expli
itly in terms of β,M and m∗.We now have all the ingredients enabling us to apply the Eyring-Kramersformula proved in part 1 in order to give a pre
ise estimate for the expe
tedtime needed by ζβ,N to 
hange over from one ground state to another one.In the 
ontext of a neural network we 
an say we are asso
iating anotherpattern to the one we remembered �rst. Despite the mean �eld nature of theHop�eld model and the i.i.d. 
hoi
e of the patterns, this will be for all ξ ∈ Ξand N ≥ N0 [ξ] uniquely determined.We state our result for the (random) Markov 
hain ζβ,N [ξ] on the 
ompa
tstate spa
e XN [ξ] ≡ [−1, 1]d ∩ LN [ξ].We assume that the values (Aµν

n )1≤µ<ν≤M are all su�
iently di�erent.Therefore we de�ne
JN,δ [ξ] :=

{
n ≤ N | min

a,b∈E

(
Aa

n − Ab
n

)
< n− 1

2
+δ

}
. (2.1.19)We 
an show that this set has 
ardinality

|JN,δ [ξ]| = o (N) for all ξ ∈ Z ′
δ. (2.1.20)We denote now

Jδ [ξ] :=

{
n ∈ N | min

a,b∈E

(
Aa

n − Ab
n

)
< n− 1

2
+δ

}
. (2.1.21)For simpli
ity we assume that the original Markov 
hain σN,β is the(Glauber) Metropolis algorithm for πN .21



Theorem 2.2 We assume 1 < β < 1 + (9d + 500M 8)
−1. Choose δ ∈ (0, 1

2
)and assume ξ ∈ Z ′

δ and N ≥ N0[ξ], as well as N ∈ Jδ. Let I and J bedisjoint subsets of MN .If s ∈ SN (I, J) is a relevant saddle point between I and J we obtain
cap (I, J) = k4|SN (I, J)|N (d−2)/2̺N,β(s) ×

×
(
1 + O

(√
ln3 N/

√
N
))

. (2.1.22)
Starting in m ∈ MN \I the expe
ted (quen
hed) hitting time of J satis�es

Em (τI) =
k5N

|SN (m,J)|
∑

n∈VJ (m)

exp(NbN(n, J)) ×

×
(
1 + O

(√
ln3 N/

√
N
))

, (2.1.23)where
bN(n, J) := β

(
f̂β,λ (n, I) − fβ,λ(n)

) (2.1.24)is the barrier between n and J . The 
onstants k4 and k5 
an be given expli
-itly.Of 
ourse, the assumption of independen
e of the pattern 
omponentsis only one possible 
hoi
e. Indeed, there are at least two sensible ways ofintrodu
ing 
orrelations among the patterns. One is to 
onsider spatial 
or-relation, i.e. to 
hoose the patterns 
orrelated in i but independent in µ,whi
h may be interesting when e.g. thinking about the patterns as images tobe stored. The other way is to 
hoose sequentially or semanti
ally 
orrelatedpatterns, whi
h means that the dependen
y now enters via µ only. This sit-uation might be useful as a very simple model for patterns with some sort of
ausal relations, as in the storage of �lms for example. The dependen
e 
anbe modelled e.g. via a Markov 
hain, i.e. in the 
ase of spatial 
orrelation,
ξµ
i+1 taking with probability p ∈ (0, 1) the same value as ξµ

i and with proba-bility (1 − p) the value of −ξµ
i . (See for example Löwe [Löw98℄). This leadstoOpen Question Is it possible to 
ompute the (Newtonian) 
apa
ity and theexpe
ted hitting times separating ground states in a Hop�eld modelwith spatially or semanti
ally 
orrelated patterns?
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2.2 Stru
ture of the ground statesWe 
an represent the stru
ture of fβ,λ (given by the minima and the 1-saddles) through a weighted graph (V,E,w). The weights are given by
wµ,ν = exp (−k1 〈ξµ, ξν〉) for all {µ, ν} ∈ E. (2.2.1)Due to the spin �ip symmetry, we obtain the same weights between thenegatives, −mµ, i.e. w−µ,−ν = wµν . The 
ross weights are given by w−µ,ν =

wµ,−ν = 1/wµν for µ 6= ν. There is no 
onne
tion between mµ and −mµ, i.e.
wµ,−µ = ∞.The form of these weights implies that it is mu
h easier to use severaledges (µ, ν) with smaller values of Aµν

N than one with a larger matrix entry.Consider the simpli�ed weighted graph (V ,E,w
), where we identify µand its negative −µ, i.e. the set of verti
es is V := {1, . . . ,M}, the edge setis E =

{
{µ, ν} ∈ V × V |µ 6= ν

}, and de�ne
wµν := min (wµν , wµ,−ν) for {µ, ν} ∈ E. (2.2.2)Hen
e we obtain

wµν = exp (−k1 |〈ξµ, ξν〉|) . (2.2.3)This graph indu
es a tree stru
ture appearing in the following way: Wearrange the edges linearly as (s1, s2, . . .) in su
h a way that
wsi

< wsi+1
for all 1 ≤ i ≤

(
M

2

)
. (2.2.4)

Now we start with M single verti
es and then merge together 
lasses ofverti
es a

ording to this order until all verti
es are in one 
lass. Using therepresentation (2.1.4), we see that the distan
e of two leaves in this tree, say
mµ and mν , is determined by the minimal number of spins one has to 
hangein ξµ in order to rea
h either ξν or −ξν .Sin
e every 
onne
ted graph in
ludes all edges 
orresponding to essentialsaddles, these are in
luded in parti
ular in the edgeset of the minimal 
on-ne
ted graph. We then apply a theorem of Erdös and Rényi from the theoryof random graphs to get the desired estimate.Theorem 2.3 Let ξ ∈ Ξ and N ≥ N0 [ξ], and assume 1 < β < 1 +
(9d + 500M 8)

−1. Then asymptoti
ally almost surely (for M → ∞), the 
om-muni
ation height between two disjoint subsets of MN , say I and J , 
an be23



estimated by
f̂β,λ(I, J) ≤ 1

2
fCW (β) − k1√

N

√
2 lnM. (2.2.5)

We now want to determine the low lying eigenvalues of the Hop�eldmodel. Let {λ0, . . . , λ2M−1} with 0 = λ0 ≤ . . . ≤ λ2M−1 be the small-est eigenvalues of the generator −LN,β [ξ] of the transformed Markov 
hain
ζN,β [ξ].Due to the symmetry under total spin �ip and the unusually small �u
tu-ations of the heights of the minima in MN , we 
annot dire
tly use the resultsof Bovier, E
kho�, Gayrard and Klein in [BEGK02℄, but we 
an apply similarmethods.The weighted graph stru
ture (V,E,w) governs the form of the smalleigenvalues of the generator L ≡ LN,β [ξ]. Let T = (t1, . . . , t2M−1) be aminimal spanning tree of (V,E,w) su
h that

wt2M−1 ≤ wt2M−2 ≤ . . . ≤ wt1 < 0.Noti
e that (up to the order and sometimes 
hoi
e of equally weighted edges)Kruskal's algorithm to 
onstru
t a minimal spanning tree starts with t2M−1and adds along our enumeration edges to the spanning tree until it ends with
t1. Let IT ⊂ {1, . . . , 2M − 1} denote the set of indi
es su
h that wti < wti−1 .Using the ex
eption set Jδ de�ned by equation (2.1.21) we obtainTheorem 2.4 Let ξ ∈ Z ′

δ and N ≥ N0 [ξ]. There exists an in
reasing se-quen
e (Mi | i ∈ IT ) of metastable sets of ζN,β. We de�ne
E∗

i = arg min
{m,n}∈Mi×Mi

(
f̂β,λ (m,n)

)
. (2.2.6)

Denote for all m ∈ Mi

γm,i = Em

(
τMi\m

)−1
. (2.2.7)We distinguish three 
ases:

• Assume E∗
i = {{m,n} , {−m,−n}}, then

λi−1 = λi = (γm,i + γn,i)
(
1 + O

(
e−δN

))
. (2.2.8)
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• Assume E∗
i = {{m,n} , {−m,n}}, then

λi = (2γm,i + γn,i)
(
1 + O

(
e−δN

)) (2.2.9)and
λi−1 = γm,i

(
1 + O

(
e−δN

))
. (2.2.10)

• Assume E∗
i = {m,n}, then

λi = (γm,i + γn,i)
(
1 + O

(
e−δN

))
. (2.2.11)

Together with Theorem 2.2 this yields expli
it estimates for the low lyingspe
trum of the generator of ζN,β.
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Part II
Metastability of Markov Chains
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3 Equilibrium potential and 
apa
ityThis se
tion des
ribes the potential theoreti
 approa
h to metastabilitydeveloped by Bovier, E
kho�, Gayrard and Klein. A review of this 
an also befound in [Bov04℄. We use this here mostly to introdu
e the notation. The po-tential theoreti
 approa
h works for ergodi
 Markov pro
esses on 
onne
tedlo
ally �nite graphs. The most results require a reversible pro
ess.A graph, Γ, 
onsists of a 
ountable dis
rete set, Y , that has no 
lusterpoints and a nonempty set, G ⊂ Y ×Y , of ordered pairs of points, su
h that
(x, y) ∈ G if and only if (y, x) ∈ G. Without restri
tion of generality weassume that all self edges (x, x) are in G. We say y is in the neighbourhoodof x, i.e. y ∈ Nx if (x, y) ∈ G and x 6= y. The family N = {Nx}x∈Y is 
alledthe neighbourhood system of Γ asso
iated to G. We say Γ is lo
ally �nite, ifthe number of neighbours of ea
h point is �nite, i.e. |Nx| < ∞ for all x ∈ Y .For A ⊂ Y we de�ne the external boundary to be

∂+A :=

(
⋃

s∈A

Ns

)
\ A (3.0.1)

and the internal boundary to be
∂−A := ∂+ (Ac) . (3.0.2)Here Ac denotes the 
omplement of A. De�ne moreover the thi
kened set
A+ := A ∪ ∂+A. (3.0.3)Let Γ = (Y,G) be a lo
ally �nite 
onne
ted graph and ζ ≡ (ζt)t∈T

ahomogeneous Markov pro
ess on Γ with time set T. We 
onsider the 
asesof 
ontinuous time set, i.e. T = R≥0 and of dis
rete time, i.e. T = N0. Inthe dis
rete time 
ase we 
all ζ a Markov 
hain. Here, ζ is 
hara
terisedby the starting distribution and the transition probability, p. By ζ being aMarkov pro
ess on Γ we mean that p (x, y) > 0 if and only if (x, y) ∈ G. For
ontinuous time a Markov pro
ess on Γ has the property (ξt, ξt−) ∈ G for all
t ∈ R≥0.We assume that ζ is ergodi
. Hen
e the whole spa
e Y is a positivere
urrent 
lass of ζ and there exists a unique invariant probability measure
π. For x ∈ Y we denote by Px the law of ζ with starting point x and by Exthe asso
iated expe
tation. Sin
e some statements of this se
tion do not usereversibility, we indi
ate the pla
es where it enters.29



De�nition 3.1 We 
all a homogeneous Markov pro
ess, ζ, with 
ontinu-ous time set regular i� it is stable, 
onservative and nonexplosive, i.e. itsin�nitesimal generator, L, is of the form
Lf (x) =

∑

y∈Nx

L (x, y) (f (y) − f (x)) (3.0.4)
with non negative �nite rates (L (x, y))x6=y and ζ has a.s. only �nitely manyjumps in a �nite interval of time. The waiting time of ζ at a point x ∈ Y isan exponential distributed random variable with parameter

r (x) :=
∑

y∈Nx

L (x, y) . (3.0.5)
Remark 3.2 The Criterion of Reuter says that a stable and 
onservativegenerator L is nonexplosive i� it admits no non-negative bounded eigenve
-tors with positive eigenvalue (see [Bré99℄, Theorem 4.4, p. 351).The embedded Markov 
hain forgets about the waiting times of ζ and noti
esonly the jumps while taking the number of jumps as time. We de�neDe�nition 3.3 Let ζ be a regular Markov pro
ess with 
ontinuous timeparameter and generator L. We denote r (x) := −L (x, x). The embeddedMarkov 
hain is de�ned to have the same starting distribution and a transi-tion matrix, p de�ned by

p (x, y) :=
L (x, y)

r (x)
for y ∈ Nx (3.0.6)

and zero otherwise.Therefore the generator of the embedded Markov 
hain, L(d), has the form
L(d) (x, y) =

1

r (x)
L (x, y) . (3.0.7)

For the asso
iated invariant probability measure, π(d) we obtain
π(d) (x) =

r (x) π (x)∑
z∈Y r (z)π (z)

. (3.0.8)
30



3.1 The equilibrium potentialWe only 
onsider the dis
rete time setting, i.e. T = N0 and will use theembedded Markov 
hain in the 
ase of 
ontinuous time (see De�nition 3.3).Given two disjoint subsets A and B of Y and x ∈ Y , what 
an we sayabout the properties of
Px (τA < τB)? (3.1.1)To answer this question we useProposition 3.4 Let Γ = (Y,G) be a lo
ally �nite graph, D ( Y a (nonempty)
onne
ted set and L the generator of an ergodi
 Markov 
hain ζ on Γ. Sup-pose f : ∂+D → R and g : D → R are bounded fun
tions. If h is a boundedsolution of the Diri
hlet-Poisson problem

{
−Lh = g on D,

h = f on ∂+D,
(3.1.2)

then τ := τ∂+D is P -a.s. �nite and
h (x) = Ex (f (ξτ )) + Ex

[
τ−1∑

n=0

g (ξn)

] (3.1.3)
for all x ∈ D.Proof. Due to the ergodi
ity of ζ we have for every x ∈ Y that Exτx =

1
π(x)

< ∞. Due to the irredu
ibility also τ is almost surely �nite independentof the starting point x ∈ D. Now we 
an apply Theorem 2.1, p. 181 inBrémaud [Bré99℄. �Now we look, more spe
i�
ally, atDe�nition 3.5 Let L be the generator of the ergodi
 Markov 
hain ζ. Theequilibrium potential hA,B : Y → [0, 1] of ζ is de�ned to be the uniquebounded solution of the boundary value problem




Lh = 0 on (A ∪ B)c ,
h = 1 on A,
h = 0 on B.

(3.1.4)
We also say that hA,B is harmoni
 on Y \ (A ∪ B) with respe
t to L.31



Then Proposition 3.4 tells us that
hA,B (x) = Px (τA < τB) for all x ∈ Y \ (A ∪ B) . (3.1.5)To treat the 
ase when the starting point of ζ lies inside A ∪ B, we usethe following reasoning to �nd an equation for Px (τA < τB). The �rst stepof ζ leads either to B, and the event {τA < τB} fails to happen, or to A, inwhi
h 
ase the event happens, or to another point y /∈ A ∪ B, in whi
h 
asethe event happens with probability Py (τA < τB). Thus for all x ∈ Y

Px [τA < τB] =
∑

y∈A

p (x, y) +
∑

y/∈A∪B

p (x, y) Py [τA < τB] .

= phA,B (x) = LhA,B (x) + 1A (x) , (3.1.6)sin
e hA,B|A∪B = 1A.In the 
ase of 
ontinuous time we use the embedded Markov 
hain, thathas a transition probability matrix given in De�nition 3.3. Therefore weobtain
Px (τA < τB) = phA,B (x) =

1

r (x)
LhA,B (x) + 1A (x) . (3.1.7)

This result suggests to introdu
e the following notion that originates fromthe theory of ele
tromagnetism.De�nition 3.6 Let A and B be disjoint subsets of Y and L the generatorof a Markov pro
ess ζ on Y . We 
all eA,B := LhA,B the equilibrium measurefor the 
apa
itor A,B.Now we 
an answer the question of the beginning of this se
tion. Namely wehave proved the followingProposition 3.7 Let L be the generator of the ergodi
 Markov 
hain ζ. Inthe 
ase of 
ontinuous time we de�ne r (x) ≡ −L (x, x), whereas in the 
aseof dis
rete time we put r (x) ≡ 1. Then we 
an 
on
lude that (3.1.1) 
an bewritten in the form
Px [τA < τB] =





hA,B (x) , x ∈ Y \ (A ∪ B) ,
1 + 1

r(x)
eA,B (x) , x ∈ A,

1
r(x)

eA,B (x) , x ∈ B.
(3.1.8)
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The next de�nition introdu
es the essential obje
t that will allow us to es-timate the 
apa
ity. In parti
ular, it will allow us to treat simultaneouslyMarkov pro
esses with dis
rete and 
ontinuous time set T.
De�nition 3.8 The Diri
hlet form Φ asso
iated to a reversible Markov pro-
ess ζ with generator L and invariant measure π on the graph Γ is de�nedas

Φ (h) := −〈h, Lh〉π (3.1.9)for all h ∈ l2 (π).
Remark 3.9 (a) In our setting ζ is assumed to have an invariant probabilitymeasure and we will use this to obtain a unique Diri
hlet form.(b) Φ has the alternative representation in terms of the 
ondu
tan
e ma-trix C (see Remark 3.17)

Φ (h) =
1

2

∑

(x,y)∈G∗

Cxy (h (x) − h (y))2 (3.1.10)
This 
an be seen by using equation (3.2.4) for the generator of ζ. Thereforethe symmetry of C implies

Φ (h) =
∑

x∈Y

h2 (x)
∑

y∈Nx

Cxy −
∑

(x,y)∈G∗

h (x)Cxyh (y)

=
1

2

∑

(x,y)∈G∗

Cxy (h (x) − h (y))2 . (3.1.11)
(
) For an arbitrary subset H of G∗, the Diri
hlet form restri
ted to H isde�ned by

ΦH (h) :=
1

2

∑

(x,y)∈H

Cxy (h (x) − h (y))2 . (3.1.12)
The following variational representation of the 
apa
ity in terms of theDiri
hlet form of ζ will turn out to be of fundamental importan
e. The reasonis that it exhibits the monotoni
ity properties of the 
apa
ity. This �Diri
hletprin
iple� 
an be found for example in the book of Liggett ([Lig85℄, p. 99,Theorem 6.1). 33



Theorem 3.10 (Diri
hlet prin
iple) Let ζ be an irredu
ible Markov 
hainthat is reversible with respe
t to the positive probability measure π. Let Φ bethe asso
iated Diri
hlet form. We 
onsider two disjoint subsets of Y , A and
B. Let HA,B denote the spa
e of fun
tions

HA,B :=
{
h ∈ l2 (π) | h|A = 0 and h|B = 1

}
. (3.1.13)Then the equilibrium potential is the unique minimiser of Φ inside HA,B, i.e.

Φ (hA,B) = inf
h∈HA,B

Φ (h) . (3.1.14)
Remark 3.11 Doyle [Doy89℄ gives an analogous variational prin
iple in thenon-reversible 
ase. Consider the fun
tion spa
e

GA,B ≡
{
g ∈ l2 (π)

∣∣ g|A∪B = 0
}

. (3.1.15)Then
〈
h∗

A,B, LhA,B

〉
π

= inf
h∈HA,B

sup
g∈GA,B

〈h − g, L (h + g)〉π . (3.1.16)
Here h∗

A,B is the equilibrium potential for the reversed Markov 
hain ζ∗ thathas transition probability
p∗ (x, y) :=

π (y)

π (x)
p (y, x) . (3.1.17)

With the properties of the equilibrium potential follows
〈
h∗

A,B, LhA,B

〉
π

= Φ (hA,B) . (3.1.18)Unfortunately the variational representation (3.1.16) has not the same mono-toni
ity properties as the Diri
hlet prin
iple.The Diri
hlet prin
iple motivates the followingDe�nition 3.12 The (Newtonian) 
apa
ity of A and B with respe
t to ζ isde�ned as
cap (A,B) := Φ (hA,B) . (3.1.19)
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Remark 3.13 (a) Observe that the 
apa
ity is symmetri
, sin
e hB,A =
1− hA,B and L1 = 0. Due to the properties of the equilibrium potential andDe�nition 3.6 of the equilibrium measure, eA,B, we 
an also write

cap (A,B) = −〈1A, eA,B〉π . (3.1.20)(b) In 
ontrast to the equilibrium measure, the 
apa
ity of the embeddedMarkov 
hain of a 
ontinuous time pro
ess ζ is the same as for ζ. This isimplied by the representations (3.0.7) and (3.0.8) for the generator and theinvariant measure of the embedded 
hain.(
) The representation (3.1.20) together with the identity (3.1.8) impliesthat
cap (A,B) =

∑

x∈B

π(d) (x) Px (τA < τB) , (3.1.21)
where π(d) is the reversible measure of the embedded Markov 
hain, see equa-tion (3.0.8). Of 
ourse the embedded Markov 
hain of a Markov 
hain ζ isthe 
hain itself.In the spe
ial 
ase B = {x} we obtain therefore

Px (τA < τx) =
cap (x,A)

π(d) (x)
. (3.1.22)The next proposition follows dire
tly from Corollary 1.6 of [BEGK01℄. Itshows that the equilibrium potential 
an be approximated by 
apa
ities.Together with the Diri
hlet prin
iple this proposition will provide us a wayto improve rough estimates on the 
apa
ity.Proposition 3.14 [BEGK01℄ For A,B ⊂ Y , disjoint, x /∈ A ∪ B and ζreversible, we obtain

hA,B (x) ≤ cap (x,A)

cap (x,B)
. (3.1.23)Proof. Sin
e x /∈ A ∪ B we have hA,B (x) = Px [τA < τB]. If the pro
ess,started at a point x, wants to realise the event {τA < τB}, it may do so bygoing to A immediately and without returning to x again, or it may returnto x without either going to A or B. Clearly, on
e the pro
ess returns to xit is in the same position as at the starting time, and we 
an use the strongMarkov property. Formally:

Px [τA < τB] = Px [τA < τB∪x] + Px [(τx < τA∪B) ∧ (τA < τB)]

= Px [τA < τB∪x] + Px [τx < τA∪B] Px [τA < τB] .(3.1.24)35



This is 
alled a renewal equation. We 
an solve this equation for Px [τA < τB] :

Px [τA < τB] =
Px [τA < τB∪x]

1 − Px [τx < τA∪B]

=
Px [τA < τB∪x]

Px [τA∪B < τx]
. (3.1.25)By elementary monotoni
ity properties this representation yields the bound

Px [τA < τB] ≤ Px [τA < τx]

Px [τB < τx]
=

cap (x,A)

cap (x,B)
. (3.1.26)

�

3.2 Ele
tri
al networksIt will be 
onvenient for the following to use the language of ele
tri
al net-works. This subse
tion follows Doyle and Snell [DS84℄. We introdu
eDe�nition 3.15 Let Γ = (Y,G) be a lo
ally �nite 
onne
ted graph withedgeset G. We denote G∗ := {(x, y) ∈ G |x 6= y}, i.e. we leave out all self-edges. Let A and B be subsets of Y and C : G∗ → R>0 a positive symmetri
fun
tion, 
alled the 
ondu
tan
e matrix of Γ.(a) Let f : G∗ → R be a fun
tion and de�ne f : Y → R by f (x) :=∑
y∈Nx

f (x, y). f is 
alled a �ow from A to B and f (x) the net �ow out of
x, if1. (anti-symmetry) f (x, y) = −f (y, x),2. (Kir
hho�'s node law) f (x) = 0 for all x ∈ Y \ (A ∪ B).
f is 
alled unit �ow if additionally∑x∈A f (x) = 1.(b) An ele
tri
al network is a weighted graph (Γ, C).Remark 3.16 Given the values of a fun
tion h : Y → [0, 1] , 
alled voltage,on the sets A and B there exists a unique �ow i : G∗ → R from A to B,
alled 
urrent, su
h that �Ohm's law�

i (x, y) = Cxy (h (x) − h (y)) (3.2.1)is valid. This follows from Proposition 3.1.2.36



Proposition 3.17 (i) Let ζ = (ζt)t∈T
be a reversible ergodi
 Markov 
hainon a lo
ally �nite graph Γ = (Y,G). Put G∗ = {(x, y) ∈ G |x 6= y}. Then ζdetermines an ele
tri
al network (Γ, C) with 
ondu
tan
e matrix C : G∗ →

R>0 given by
Cxy := π (x) L (x, y) . (3.2.2)(ii) On the other hand a reversible ergodi
 Markov 
hain on Γ is determinedby its invariant probability measure π and an arbitrary 
ondu
tan
e matrix,

C : G∗ → R>0 su
h that
sup
x∈Y

c (x)

π (x)
< ∞, where c (x) :=

∑

y∈Nx

C (x, y) . (3.2.3)
Proof. ad (i). Suppose we are given the Markov 
hain ζ. Then the 
ondu
-tan
e matrix C given by (3.2.2) is indeed a symmetri
 fun
tion, be
ause ofthe reversibility of ζ. Let N = {Nx}x∈Y be the 
orresponding neighbourhoodsystem of G∗, i.e. y ∈ Nx i� (x, y) ∈ G∗. Then the generator of ζ 
an bewritten as

L (x, y) =





Cxy

π(x)
for y ∈ Nx,

−∑y∈Nx
L (x, y) for y = x,

0 else. (3.2.4)
Hen
e the Diri
hlet problem (3.1.4) is equivalent to





∑
y∈Nx

Cxy (h (y) − h (x)) = 0 for x ∈ Γ \ (A ∪ B) ,

h (x) = 1 for x ∈ A,
h (x) = 0 for x ∈ B.

(3.2.5)
Therefore the voltage is given by h (x) = Px (τA < τB) and i de�ned by (3.2.1)is a �ow.ad (ii). Given a 
ondu
tan
e matrix C and a probability measure π thatsatis�es 
ondition (3.2.3), we retrieve the transition matrix, p, of a reversibleMarkov 
hain ζ by setting Z := supx∈Y

c(x)
π(x)

and
p (x, y) :=





1
Z

Cxy

π(x)
for y ∈ Nx,

1 −∑y∈Nx
p (x, y) for y = x,

0 else. (3.2.6)
Obviously the reversible measure of ξ is indeed given by π. �
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Remark 3.18 The representation of the 
apa
ity via the Diri
hlet prin
iple(3.1.14) shows that 
ap (A,B) is the �e�e
tive 
ondu
tan
e� of the ele
tri
alnetwork (Γ, C) asso
iated to ξ, when we apply a voltage 1 between A and B,i.e. we set the boundary 
onditions h|A = 1 and h|B = 0. Compare [DS84℄,se
tion 3.5, page 63.Equivalently to the Diri
hlet prin
iple (3.1.14) there exists a variationalprin
iple for the 
urrent, 
alled Thompson's prin
iple: Denote
FA,B := {f : G → R | f unit �ow from A to B} (3.2.7)then

1

cap (A,B)
= inf

f∈FA,B

1

2

∑

x,y∈Y

1

Cxy

f (x, y)2 . (3.2.8)The unique minimiser of this problem is the 
urrent i, that satis�es Ohm'slaw (3.2.1). For a proof see [DS84℄, p. 63. We will use this prin
iple to obtainpre
ise estimates of the 
apa
ity in the 
ase of several relevant saddle points.Example 3.19 In the 
ase of a �nite one-dimensional graph Γ we 
an 
al
u-late the equilibrium potential and the 
apa
ity of a network (Γ, C) dire
tly.For Y = {0, 1, . . . , N} we denote Ck = C (k − 1, k) and obtain for x ∈ Y :
h0,N (x) =

(
x∑

k=1

1

Ck

)
/

(
N∑

k=1

1

Ck

)
. (3.2.9)

The 
apa
ity is given by
cap (0, N) =

N∑

k=1

Ck (h0,N (k − 1) − h0,N (k))2

=

(
N∑

k=1

Ck
1

C2
k

)
/

(
N∑

k=1

1

Ck

)2

= 1/

(
N∑

k=1

1

Ck

)
. (3.2.10)

3.3 Mean hitting timeDe�nition 3.20 We introdu
e the fun
tion wA,B : Y → R+ by setting
wA,B (x) =

{
ExτA1τA<τB

, x /∈ A ∪ B,
0 , x ∈ A ∪ B.

(3.3.1)
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If ζ is a 
ontinuous time pro
ess we 
onsider again the embedded 
hain withtransition probability given by p (x, y) := r(x,y)
r(x)

for y ∈ Nx and zero else. Fora dis
rete time Markov pro
ess ξ we put r (x) ≡ 1 for all x ∈ Y . Then obtainfor wA,B the following forward equation for x /∈ A ∪ B:
wA,B (x) = ExτA1τA<τB

=
1

r (x)
Px [τA < τB] +

∑

y/∈A∪B

p (x, y) wA,B (y)

=
1

r (x)
hA,B (x) + pwA,B (x) . (3.3.2)Therefore wA,B is a solution to the linear boundary problem

{
−Lw = hA,B on (A ∪ B)c ,

w = 0 on A ∪ B.
(3.3.3)Note that−L is a positive operator. Proposition 3.4 implies that this problemhas a unique solution.Let D be a subset of Y . De�ne the Green fun
tion, GD : D ×D → R, tobe the kernel of the inverse operator of −L on l2 (D,π). The Green fun
tion
ontains all information about the law of the Markov pro
ess ζ.We use the De�nition 3.5(a) of the equilibrium potential to represent theGreen fun
tion. Let C be another subset of Y , disjoint from D. Sin
e

hC,D = 0 on D and eC,D = 0 on (C ∪ D)c, we obtain
hC,D (x) = −GDceC,D (x)

= −
∑

y∈C

GDc (x, y) eC,D (y) . (3.3.4)
We will use now the reversibility of ξ, that means π (x) GD (x, y) = π (y) GD (y, x)and 
hoose C = {y}. Then we obtain

GDc (x, y) = −hy,D (x)

ey,D (y)
= −π (y) hx,D (y)

π (x) ex,D (x)

= π (y)
hx,D (y)

cap (x,D)
. (3.3.5)This means, we 
an in prin
iple determine the law of ζ 
ompletely, if weknow the 
apa
ity and the equilibrium potential.We summarise the results in the next Proposition that resembles Corol-lary 3.3 of [BEGK02℄ 39



Proposition 3.21 [BEGK02℄ The Diri
hlet Green fun
tion for any set D ⊂
Y 
an be represented in terms of the equilibrium potential and 
apa
ities as

GDc (x, y) = π (y)
hx,D (y)

cap (x,D)
. (3.3.6)

The mean hitting time of A ⊂ Y satis�es, for a starting point x /∈ A ∪ B,
ExτA1τA<τB

=
1

cap (x,A ∪ B)

∑

y∈(A∪B)c

π (y) hx,A∪B (y) hA,B (y) . (3.3.7)
Espe
ially for B = ∅ we obtain for all x /∈ A

ExτA =
1

cap (x,A)

∑

y∈Ac

π (y) hx,A (y) . (3.3.8)
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4 Metastability
Let Λ ⊂ Rd be open and 
onne
ted and 
onsider a family of 
ountabledis
rete sets, (Λǫ)0<ǫ<1 ⊂ Λ. We assume that Λǫ is equipped with a neigh-bourhood system Nǫ = {Nǫ,x}x∈Λǫ

, that makes it a 
onne
ted set. Moreover,assume there exists r > 0, independent of ǫ, su
h that the number of neigh-bours is uniformly bounded by r, i.e. |Nǫ,x| ≤ r for all x ∈ Λǫ. The asso
iated
r-uniformly lo
ally �nite graph is denoted by Γǫ = (Λǫ, Eǫ).Let (ξǫ)0<ǫ<1 be a family of ergodi
 time-homogeneous Markov 
hains on
Γǫ. Assume that ξǫ is reversible with respe
t to the probability distribution
πǫ. Let pǫ : Λǫ × Λǫ → [0, 1] the transition probability of ξǫ. Re
all that weassume that ξǫ only jumps between neighbours of Λǫ, i.e. pǫ (x, y) = 0 for all
y /∈ Nx ∪ x.Sin
e ξǫ is reversible, pǫ 
an always be written in the form

pǫ (x, y) = gǫ (x, y) min

(
1,

πǫ (y)

πǫ (x)

) (4.0.1)
with a non negative symmetri
 fun
tion gǫ : Λǫ × Λǫ → R≥0.We assumeC1 the fun
tion gǫ is on 
ompa
t sets uniformly bounded from below, i.e.for all K ⊂⊂ Λǫ there exists a 
onstant c > 0, independent of ǫ, su
hthat gǫ (x, y) ≥ c for all x ∈ K and y ∈ Nǫ,x.This assures in parti
ular that ξǫ 
an jump between any two neighbours of
Λǫ and is not restri
ted to some 
onne
ted subgraph.Example 4.1 Consider Λǫ ≡ Λ ∩ ǫZd. Let x and y be neighbours, i.e.
‖x − y‖ = ǫ.(a) For gǫ (x, y) := 1

2d
we obtain, of 
ourse, the Metropolis algorithm.(b) For

gǫ (x, y) :=
1

2d

πǫ (x) ∨ πǫ (y)

πǫ (x) + πǫ (y)
≥ 1

4d
, (4.0.2)we re
over the heat bath dynami
s, i.e.

pǫ (x, y) =
1

2d

πǫ (y)

πǫ (x) + πǫ (y)
. (4.0.3)

41



(
) For
gǫ (x, y) := fǫ (x, y)

√
πǫ (x) ∧ πǫ (y)

πǫ (x) ∨ πǫ (y)
≥ fǫ (x, y) , (4.0.4)where f is a non negative symmetri
 fun
tion that is uniformly bounded frombelow on 
ompa
t subsets of Λǫ × Λǫ, we re
over the dynami
s given by

pǫ (x, y) = fǫ (x, y)

√
πǫ (y)

πǫ (x)
. (4.0.5)

De�nition 4.2 We de�ne the potential of ξǫ to be the fun
tion Fǫ : Λǫ →
R>0 with

Fǫ (x) := −ǫ ln πǫ (x) . (4.0.6)The interesting 
ase for us o

urs when Fǫ has at least two lo
al minima.We assume thatF1 (Fǫ) 
onverges uniformly to a unique 
ontinuous fun
tion F : Λ → R≥0,i.e. for all κ > 0 there exists ǫ0 > 0 su
h that for all ǫ < ǫ0 we have
sup
x∈Λǫ

|Fǫ (x) − F (x)| < κ. (4.0.7)
F2 The fun
tion F has 
ompa
t lower level sets, i.e.

{F ≤ b} ⊂⊂ Λ for all b ≥ 0. (4.0.8)
The following de�nition of the so 
alled relevant saddle points between twosubsets A and B of Y will be essential for the dynami
s of the Markovpro
esses we 
onsider.De�nition 4.3 Consider an arbitrary fun
tion f : Y → R on a lo
ally �nitegraph (Y,G). Let A and B be disjoint subsets of Λǫ.(a) A path γ is a �nite sequen
e (γ1, . . . , γk) of 
ommuni
ating points, i.e.
(γi, γi+1) ∈ G for 1 ≤ i ≤ k − 1. We write x ∈ γ when γ visits the point x.We denote by PA,B the set of paths starting in A and ending in B.(b) The 
ommuni
ation height between A and B is

f̂(A,B) := min
γ∈PA,B

max
x∈γ

f(x). (4.0.9)
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Observe that the 
ommuni
ation height depends, of 
ourse, on the edgeset
G we have 
hosen.(
) We introdu
e the level set

G (A,B) :=
{

z ∈ Λǫ | f (z) = f̂ (A,B)
}

. (4.0.10)The set of optimal path is de�ned by
OA,B :=

{
γ ∈ PA,B | max

x∈γ
f (x) = f̂ (A,B)

}
. (4.0.11)A gate G (A,B) is a minimal subset of G (A,B) with the property that alloptimal paths interse
t G (A,B). That means for every H ( G (A,B) thereexists a path γ ∈ OA,B su
h that γ∩H = ∅. Note that G (A,B) is in generalnot unique. The set S (A,B) of relevant saddle points is the union over allgates G (A,B).The notion of 
ommuni
ation height between two sets leads a de
ompo-sition of the state spa
e into di�erent valleys, des
ribed by the followingDe�nition 4.4 Let A,B ⊂⊂ Λ be disjoint 
ompa
t sets.(a) We de�ne the lower level set

W (A,B) :=
{

x ∈ Λ |F (x) < F̂ (A,B)
}

. (4.0.12)We assume that A ⊂ W (A,B). We set VB (A), 
alled the valley of A withrespe
t to B, denotes the 
onne
ted 
omponent of W (A,B) 
ontaining A.(b) Let x ∈ Λ \ A. Then we de�ne the barrier between x and A by
B(x,A) := F̂ (x,A) − F (x). (4.0.13)

B(x,A) is the minimal height a path has to 
limb in order to 
onne
t x with
A. Analogously we de�ne Bǫ and V

(ǫ)
B (A) for Fǫ.

4.1 MetastabilityIn the following, we will often be dealing with probabilities like Px [τA < τx]whi
h we 
all es
ape probability from x to A.Following Bovier, E
kho�, Gayrard and Klein [BEGK02℄, we de�ne meta-stability in the following way: 43



De�nition 4.5 (metastability) Let Mǫ be a �nite subset of Λǫ su
h that the
ardinality |Mǫ| is independent of ǫ. Let ρ : (0, 1) → (0, 1) be a monotonein
reasing fun
tion with limǫ↓0 ρ (ǫ) = 0.Then the family of Markov pro
esses (ξǫ)ǫ∈(0,1) is said to be ρ-metastablewith respe
t to (Mǫ), if
max
m∈Mǫ

Pm (τMǫ
< τm) ≤ ρ (ǫ) inf

x/∈Mǫ

Px (τMǫ
< τx) . (4.1.1)The elements of Mǫ are 
alled ρ-metastable points of (ξǫ).We say (ξǫ) is metastable with respe
t to (Mǫ) if there exists a fun
tion

ρ for whi
h (ξǫ) is ρ-metastable.This de�nition suggest a de
omposition of the state spa
e into a �nite 
ol-le
tion of subsets. We de�ne for ea
h point m ∈ Mǫ the domain of attra
tionof m by
A (m,Mǫ) :=

{
x ∈ Λǫ |Px (τm = τMǫ

) ≥ max
n∈Mǫ

Px (τn = τMǫ
)

}
. (4.1.2)

It follows from De�nition 4.5 of metastability that for all m ∈ Mǫ

lim
ǫ↓0

Pm

(
τMǫ\m < τm

)
= 0. (4.1.3)

Hen
e, if there exists a limiting Markov 
hain, it is redu
ible with at least
|Mǫ| 
onne
ted 
omponents.In words, De�nition 4.5 states the following: The in�mum of the es
apeprobabilities from any point x ∈ M c

ǫ to Mǫ is mu
h bigger than the es
apeprobability from a point, m, in Mǫ to another one. The fun
tion ρ in Def-inition 4.5 des
ribes the fa
tor, by whi
h the es
ape probabilities betweenmetastable points is smaller 
ompared to the es
ape probability of any pointwith respe
t to the set of metastable points.Therefore we have at least two di�erent time s
ales: One that measuresthe time required for a typi
al ex
ursion away from m that stays inside
A (m,Mǫ) and another one on whi
h we expe
t a 
hangeover to Mǫ \ m.This type of behaviour has been studied for a long time and is rigorouslytreated on the level of large deviations, in parti
ular in the book of Freidlinand Wentzell [FW84℄.The bene�t of De�nition 4.5 is that we only have to 
ontrol hitting timesof points or �nite sets of points on the state spa
e. In the analogues situation44



of a Di�usion in Rd, one 
an deal with small balls around these points (see[BEGK04℄).Observe that De�nition 4.5 does not determine a unique family (Mǫ)even for �xed ρ. Indeed, having isolated a very large set Mǫ, in many 
asesone 
an �nd a subset Nǫ ⊂ Mǫ su
h that the Markov 
hain also exhibitsa metastable behaviour with respe
t to Nǫ. We formulate this importantproperty of De�nition 4.5 inProposition 4.6 Let Iǫ be the set of all i ∈ Mǫ su
h that there exists c,independent of ǫ, and
Pi (τMǫ

< τi) ≥ c max
m∈Mǫ

Pm (τMǫ
< τm) . (4.1.4)

Then we 
an 
onstru
t a minimal set Jǫ ⊂ Iǫ su
h that (ξǫ) is metastablewith respe
t to M̂ǫ ≡ Mǫ \ Jǫ.Proof. The de�nition of Iǫ in (4.1.4) implies that there exist a monotonede
reasing fun
tion, r : (0, 1) → [0, 1], with limǫ↓0 r (ǫ) = 0 su
h that for all
m ∈ Mǫ \ Iǫ

Pm (τMǫ
< τm) ≤ r (ǫ) max

x∈Mǫ

Px (τMǫ
< τx) . (4.1.5)So at �rst sight it might be possible just to leave out all elements of Iǫ from

Mǫ to get a new metastable set, but this is not possible if some or all relevantsaddle points 
onne
t members of Iǫ, i.e. there exists i, j ∈ Iǫ and
F̂ǫ (i,Mǫ \ i) = F̂ǫ (i, j) . (4.1.6)In this 
ase it may happen that by throwing away i and j there arises a valleyof arbitrary depth that is not any more represented by an element of Mǫ \ Iǫ.We 
onstru
t indu
tively the set Jǫ by putting J (0) ≡ ∅ and J (n+1) =

J (n) ∪ {j} if there exists j ∈ Iǫ \ J (n) and c > 0, independent of ǫ, su
h that
Pj

(
τMǫ\J(n) < τj

)
≥ c max

m∈Mǫ

Pm (τMǫ
< τm) . (4.1.7)

Otherwise put Jǫ ≡ J (n). Without loss of generality we assume that for all
i ∈ Jǫ

πǫ (i) = max
x∈V

M̂ǫ
(i)

πǫ (x) . (4.1.8)
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Let i ∈ Jǫ, then 
ertainly it holds true that
Pi

(
τ
M̂ǫ

< τi

)
≤ Pi (τMǫ

< τi)

≤ ρ (ǫ) inf
x/∈Mǫ

Px (τMǫ
< τx) . (4.1.9)Moreover, for all x /∈ Mǫ

Px (τMǫ
< τx) ≤

∑

i∈Jǫ

Px (τi < τx) + Px

(
τ
M̂ǫ

< τx

)
. (4.1.10)

We denote Aǫ (Jǫ) ≡ ∪i∈Iǫ
A (i,Mǫ). Then for all i ∈ Jǫ and x /∈ Aǫ (Jǫ) weknow

Px (τi < τx) ≤ Px

(
τ
M̂ǫ

< τx

)
. (4.1.11)Therefore we have shown up to now

max
i∈Jǫ

Pi

(
τ
M̂ǫ

< τi

)
≤ 2ρ (ǫ) inf

x/∈Mǫ∪Aǫ(Jǫ)
Px

(
τ
M̂ǫ

< τx

)
. (4.1.12)To pro
eed we use that

Px (τA < τx) =
cap (x,A)

πǫ (x)
. (4.1.13)Let i ∈ Jǫ, then 
ertainly,

F̂ǫ

(
x, M̂ǫ

)
= F̂ǫ

(
i, M̂ǫ

) for all x ∈ V
M̂ǫ

(i) . (4.1.14)
On the other hand for x ∈ A

(
i, M̂ǫ

)
\ V

M̂ǫ
(i) we obtain

F̂ǫ

(
x, M̂ǫ

)
= x. (4.1.15)

Therefore Proposition 4.8 tells us that for all i ∈ Jǫ and x ∈ A
(
i, M̂ǫ

) the
ondition (4.1.8) implies
Pi

(
τ
M̂ǫ

< τi

)
≤ inf

x∈A(i,Mǫ)
Px

(
τ
M̂ǫ

< τx

)
. (4.1.16)Therefore

min
i∈Jǫ

Pi

(
τ
M̂ǫ

< τi

)

≤ inf
x∈Aǫ(Jǫ)

Px

(
τ
M̂ǫ

< τx

)
. (4.1.17)
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We have shown
max
i∈Jǫ

Pi

(
τ
M̂ǫ

< τi

)
≤ 2ρ (ǫ) inf

x/∈Mǫ

Px

(
τ
M̂ǫ

< τx

)
. (4.1.18)

By 
onstru
tion of Jǫ there exists a monotone de
reasing fun
tion, ρ̂ : (0, 1) →
[0, 1], with limǫ↓0 ρ̂ (ǫ) = 0 su
h that

max
n∈M̂ǫ

Pn

(
τ
M̂ǫ

< τn

)
≤ ρ̂ (ǫ) min

i∈Jǫ

Pi

(
τ
M̂ǫ

< τi

)
. (4.1.19)

Hen
e,
max
n∈M̂ǫ

Pn

(
τ
M̂ǫ

< τn

)
≤ ρ̂ (ǫ) inf

x/∈M̂ǫ

Px

(
τ
M̂ǫ

< τx

) (4.1.20)holds true and we are done. �

Remark 4.7 Observe that if Iǫ 
ontains more than one point, then the smalleigenvalues of the generator −Lǫ of ξǫ depend on the stru
ture of this set.We will give a non trivial example in the 
ase of the Hop�eld model in partIII of this treatise.
4.2 A priori boundsIn this se
tion we will estimate 
apa
ities of ξǫ on a subexponential s
aleand then use Proposition 3.14 to give an a priori bound on the equilibriumpotential. We use the notions of the ele
tri
al network, (Γǫ, C

(ǫ)
), asso
iatedto ξǫ given in De�nition 3.15, see Proposition 3.17. We 
onsider only Markov
hains, i.e. Markov pro
esses with time set T = N0 in this se
tion. This
orresponds to the following property of the generator: ∑y∈Nx
L (x, y) ≤ 1for all x ∈ Λǫ. In the 
ase of 
ontinuous time one 
an think this as andes
ription of the embedded Markov 
hain.The following proposition will play a key r�le in our treatment.

Proposition 4.8 Let (ξǫ) be a family of positive re
urrent reversible Markov
hain that satis�es the 
onditions at the beginning of this se
tion, in parti
ularC1. Let A and B be disjoint 
ompa
t sets of Λǫ su
h that Fǫ (x) < F̂ǫ (A,B)for all x ∈ A. 47



Then there exist 
onstants c1, c2 > 0 su
h that
c1ǫ

d ≤ cap (A,B)

exp
(
−F̂ǫ (A,B) /ǫ

) ≤ c2ǫ
−d. (4.2.1)

Proof. lower bound of cap (A,B)The Diri
hlet prin
iple of Theorem 3.1.14 tells us
cap (A,B) = inf

h∈HA,B

Φ (h) = Φ (hA,B)

≥ Φγ (hA,B) ≥ inf
h∈HA,B

Φγ (h) (4.2.2)
for every subset γ ⊂ Λǫ su
h that γ ∩A and γ ∩B are not empty. We 
hoosenow for γ an optimal path, i.e. γ ∈ OA,B. Identify γ with a graph with edgesbetween nearest neighbours. By using the 
al
ulation in Remark 3.13(b), weobtain

inf
h∈HA,B

Φγ (h) = 1/


 ∑

(x,y)∈γ

1/C(ǫ)
xy


 . (4.2.3)

Sin
e γ is an optimal path we know γ ∈
{
Fǫ ≤ F̂ǫ (A,B)

} whi
h is a 
ompa
tset, be
ause of assumptions F1 and F2. Assumption C1 assures now theexisten
e of a 
onstant c > 0 su
h that we 
an estimate
Cxy ≥ c exp

(
−F̂ǫ (A,B) /ǫ

) for all x, y ∈ γ. (4.2.4)Therefore
inf

h∈HA,B

Φγ (h)

≥ c

|γ| exp
(
−F̂ǫ (A,B) /ǫ

)

≥ cǫdvol{F ≤ F̂ (A,B)
} exp

(
−F̂ǫ (A,B) /ǫ

)
. (4.2.5)

Note that vol({Fǫ ≤ F̂ǫ (A,B)
})

< ∞ follows from assumption F2.upper bound of 
ap (x,B) 48



Denote by Vǫ := V
(ǫ)
B (A) the valley of A with respe
t to B (see De�nition4.4(a)). We 
hoose a fun
tion h+ with h+ = 0 on Vǫ and h+ = 1 on V c

ǫ . Thenwe obtain, sin
e by reversibility C
(ǫ)
xy ≤ πǫ (x) ∧ πǫ (y) ,

cap (A,B) ≤ Φ
(
h+
)

=
∑

x∈∂−Vǫ

∑

y∈∂+Vǫ

C(ǫ)
xy

≤ r
∣∣∂−Vǫ

∣∣ exp
(
−F̂ǫ (A,B) /ǫ

)

≤ cvol (VB (A)) ǫ−d exp
(
−F̂ǫ (A,B) /ǫ

)
. (4.2.6)

�

Remark 4.9 Let x ∈ Λǫ and D ⊂ Λǫ \ x su
h that Fǫ (y) < F̂ǫ (x,D) for all
y ∈ D. Then we apply Proposition 4.8 with B 
ontaining only one point.With equation 3.1.22 we obtain that the es
ape probabilities are 
ontrolledon an exponential s
ale by the asso
iated barriers:

Px (τD < τx) ≤ c2ǫ
−d exp

[
−1

ǫ
Bǫ(x,D)

] (4.2.7)
and

Px (τD < τx) ≥ c1ǫ
d exp

[
−1

ǫ
Bǫ(x,D)

]
. (4.2.8)This implies that VMǫ\m (m) ⊂ Aǫ (m).Example 4.10 (a) Assume that the set M of lo
al minima of F 
onsists of�nitely many points. Denote κ := minm∈M B (m,M\ m). Then we 
an �nd�nite sets, Mǫ, of lo
al minima of Fǫ su
h that Mǫ → M with respe
t to theHausdor� distan
e of sets, |Mǫ| = |M| and

πǫ (m) = max
x∈VMǫ (m)

πǫ (x) (4.2.9)
for all m ∈ Mǫ. Let ρ (ǫ) := exp (−h/ǫ) with h < κ. Proposition 4.8 showsthat ξǫ is then ρ-metastable with respe
t to Mǫ, sin
e for m ∈ Mǫ

Pm

(
τMǫ\m < τm

)
≤ cǫ−d exp

(
−1

ǫ
Bǫ (m,Mǫ \ m)

)
. (4.2.10)
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Choose δ < 1
3
(κ − h). The uniform 
onvergen
e of Fǫ to F (assumption F)implies that there exists ǫ0 > 0 su
h that for all ǫ < ǫ0 we have

|Bǫ (m,Mǫ \ m) − Bǫ(m,M\ m)| < δ. (4.2.11)Hen
e
Pm

(
τMǫ\m < τm

)
≤ cǫ−d exp

(
−κ − δ

ǫ

)
. (4.2.12)Moreover, for x /∈ Mǫ there exists ǫ1 su
h that for all ǫ < ǫ1 we have

F̂ (x,Mǫ) − Fǫ (x) < κ − h − 2δ (4.2.13)and therefore
Px (τMǫ

< τx) ≥ c1ǫ
d exp

(
κ − h − 2δ

ǫ

)
. (4.2.14)

Hen
e for all ǫ < min (ǫ0, ǫ1) we obtain
max
m∈Mǫ

Pm

(
τMǫ\m < τm

)
≤ ρ (ǫ) inf

x/∈Mǫ

Px (τMǫ
< τx) , (4.2.15)

and therefore (ξǫ) is ρ-metastable with respe
t to Mǫ.(b) More generally, in the 
ase ρ (ǫ) = exp (k/ǫ) (with k > 0) a metastableset Mk has the following property: In ea
h valley of depth greater k exa
tlyone of the deepest minima of this valley is in Mk. In this 
ase we have
B (m,n) > k ∀m,n ∈ Mk. (4.2.16)Moreover, for all other points x /∈ Mk there has to be a point m ∈ Mk su
hthat B (x,m) < k. E�e
tively we only have a 
ondition for lo
al minima of

F that are outside of Mk, namely
B (x,Mk) < k ∀x ∈ M \Mk. (4.2.17)We have found a 
onne
tion between De�nition 4.5 of a metastable set andgeometri
 properties of the fun
tion Fǫ.To prove the pre
ise bounds on the 
apa
ity between minima, m and n, weneed the following 
orollary, whi
h will justify to restri
t our attention to aneighbourhood of the set Sǫ (m,n) of relevant saddle points.50



Corollary 4.11 (a) Let A and B be disjoint 
ompa
t sets of Λǫ su
h that
Fǫ (x) ≤ F̂ǫ (A,B) for all x ∈ A ∪ B. Then there exists c > 0 su
h that for
x /∈ A ∪ B

hA,B (x) ≤ cǫ−2d exp

{
−1

ǫ

(
F̂ǫ (x,A) − F̂ǫ (x,B)

)}
. (4.2.18)Proof. This follows from Proposition 3.14 
ombined with Proposition 4.8. �

4.3 Pathwise approa
hA point m ∈ Λǫ is 
alled metastable in the sense of Olivieri and Vares i� thefollowing two properties hold:1. �unpredi
tability of the tunneling time�.Assume ξǫ starts in m. Then τMǫ\m is 
alled unpredi
table if it 
on-verges in distribution to an exponential random variable, i.e.
τMǫ\m

Em

(
τMǫ\m

) D→ E for ǫ ↓ 0, (4.3.1)
where E is a unit mean exponential random variable.2. �thermalisation�.Let s, t ∈ N0. We de�ne the empiri
al average measure of ξǫ betweenthe times s and s + t as

µs,t :=
1

t

s+t∑

k=s+1

δξǫ
k
. (4.3.2)

Hen
e µs,t (B) is the fra
tion of time ξǫ spends in B ⊂ Λǫ between sand s + t. Let V := V
(ǫ)
Mǫ\m (m) be the valley of m with respe
t to

Mǫ \ m.Let ξǫ again start at m. We say ξǫ thermalises at m if there exists a de-terministi
 time s
ale tǫ su
h that limǫ↓0 tǫ = ∞, but tǫ = o (Em (τ∂+V ))and for every open set B ⊂ Rd 
ontaining m and every κ > 0

lim
ǫ↓0

Pm

(
τ∂+V > tǫ and sup

s<τ
∂+V

−tǫ

µs,tǫ (B) > 1 − κ

)
= 1. (4.3.3)
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The next proposition gives a rough estimate for the distribution fun
tion ofthe hitting time of the boundary of a valley.Proposition 4.12 Let Vǫ := V
(ǫ)
n (m) be the valley of m ∈ Mǫ with respe
tto another point n ∈ Mǫ. Then

Pm (τ∂+Vǫ
< t) ≤ cǫ−d ⌊t⌋ exp

(
−1

ǫ
Bǫ (m,n)

)
. (4.3.4)

Proof. We observe similar to Olivieri and Vares (see [OV05℄ Proposition4.7, p. 233) that for x ∈ ∂+Vǫ

Pm (τx < t) ≤
⌊t⌋∑

k=1

Pm (ξǫ
k = x)

=

⌊t⌋∑

k=1

1

πǫ (m)
Pπǫ

(ξǫ
0 = m, ξǫ

k = x)

≤
⌊t⌋∑

k=1

1

πǫ (m)
Pπǫ

(ξǫ
k = x)

= ⌊t⌋ πǫ (x)

πǫ (m)
. (4.3.5)

Therefore we obtain, sin
e ǫdvol (Vǫ) 
onverges to the volume of 
ompa
t set
Vn (m) ⊂ Λ,

Pm (τ∂+V < t) ≤ ⌊t⌋
πǫ (m)

∑

x∈∂+Vǫ

πǫ (x)

≤ ⌊t⌋
πǫ (m)

vol (Vn (m)) ǫ−d exp

(
−1

ǫ
F̂ǫ(m,n)

)
. (4.3.6)

�To prove the thermalisation of ξǫ in the valley of a metastable point
m ∈ Mǫ that 
ontains no more minima, we need moreover the followingLemma 4.13 Let Vǫ := V

(ǫ)
Mǫ\m (m) be the valley of m ∈ Mǫ with respe
t to

Mǫ \ m. Denote aǫ := exp (a/ǫ), where 0 < a < Bǫ (m,Mǫ \ m). Given52



κ ∈ (0, 1) and an open set, B, 
ontaining m, there exists cκ > 0 and ǫ0 su
hthat for all ǫ < ǫ0 and all integer t ≥ aǫ

sup
i∈V

Pi (µt (B) < 1 − κ) < exp

(
−cκ

t

aǫ

)
. (4.3.7)Proof. It su�
es to 
onsider the 
ase, where B is a small ball of radius

ρ > 0 around m. Denote the depth of B by
Fρ := inf

‖x−m‖=ρ
(F (x) − F (m)) , (4.3.8)

�x b < a ∧ Fρ and let bǫ := exp (b/ǫ). First we introdu
e
qǫ := sup

i∈V
Pi

(
τm >

√
bǫ

)
+ Pm (τ ρ < bǫ) (4.3.9)

with τ ρ := min
{

n ≥ 1 | ξǫ

k /∈ B
}. To see that qǫ → 0 in the limit of vanishing

ǫ, we use the Chebyshev inequality to estimate the �rst summand and obtain
Pi

(
τm >

√
bǫ

)
≤ 1√

bǫ

Ei (τm) . (4.3.10)
Moreover, we obtain with Corollary 4.11

∑

y∈Vǫ\i
πǫ (y) hi,m (y) ≤ kǫ−3dvol (V ) exp

(
−1

ǫ
F̂ǫ (m,Mǫ \ m)

)
. (4.3.11)

Therefore with Proposition 3.21 follows
Ei (τm) ≤ cǫ−4d. (4.3.12)With the same arguing as in Proposition 4.12, we obtain for the se
ondsummand of qǫ in (4.3.9):

Pm (τ ρ < bǫ) ≤ ⌊bǫ⌋ exp

(
−1

ǫ
Fρ

)
. (4.3.13)

Now we 
an pro
eed as Olivieri and Vares in the proof of their Lemma 4.11,p. 239 in [OV05℄. That means we �x ǫ0 su
h that bǫ/aǫ ≤ 1
2
κ and √

bǫ ≤ 1
4
κas well as qǫ ≤ 1

5
κ for all ǫ < ǫ0. 53



If ǫ < ǫ0 and t ≥ aǫ, due tobǫ/aǫ ≤ 1
2
κ we may write

Pi

(
1

t

t∑

k=1

1
(
ξ

ǫ

k ∈ B
)

< 1 − κ

)
≤ Pi

(
1

kǫaǫ

kǫaǫ∑

k=1

1
(
ξ

ǫ

k ∈ B
)

< 1 − κ

2

)

(4.3.14)where kǫ = ⌊t/aǫ⌋.For ea
h 1 ≤ k ≤ kǫ let us say that the time interval [(k − 1) aǫ, kaǫ) isgood if the pro
ess ξ
ǫ hits m before time (k − 1) aǫ +

√
aǫ and spends therest of this time interval inside B. Otherwise, it is 
alled bad. Let Yǫ,kbethe indi
ator fun
tion of the event {[(k − 1) aǫ, kaǫ) is bad} . Thus for any

i ∈ Vǫ

max
k∈{1,...,kǫ}

Pi

(
Yǫ,k = 1

∣∣Yǫ,1 = y1, . . . , Yǫ,k−1 = yk−1

)
≤ qǫ (4.3.15)for any 
hoi
e of y1, . . . , yk−1 ∈ {0, 1}. Sin
e qǫ ≤ 1

5
κ, performing su

essive
onditioning and applying (4.3.15) we obtain, for arbitrary λ > 0:

Ei

(
exp

(
λ

kǫ∑

k=1

Yǫ,k

))
≤
(
1 +

κ

5

(
eλ − 1

))kǫ

. (4.3.16)
Using (4.3.14) and (4.3.15) we see that

Pi (µt (B) < 1 − κ) ≤ Pi

(
1

kǫ

kǫ∑

k=1

Yǫ,k ≥ 1

4
κ

)
≤ e−kǫcκ (4.3.17)

for all ǫ < ǫ0, whi
h implies the lemma. At the last inequality we haveused the exponential Markov inequality and the pre
eding observation with
λ = λ (κ) > 0 small enough su
h that

1 +
1

5
κ
(
eλ − 1

)
< e

1
4
λκ. (4.3.18)

�Now we 
an showTheorem 4.14 Let (ξǫ) be a family of ergodi
 and reversible Markov 
hains.Let Mǫ be the set of lo
al minima of Fǫ. Assume that Mǫ is a �nite set and
|Mǫ| is independent of ǫ. Choose m ∈ Mǫ and let V := V

(ǫ)
Mǫ\m (m) be thevalley of m with respe
t to Mǫ\m. Assume ξǫ starts at m, then it thermalisesat m. 54



Proof. We pro
eed along the lines of the proof of Olivieri and Vares forthermalisation in the 
ase of the Curie-Weiss model. We introdu
e the equi-librium measure restri
ted to V by setting for all B ⊂ Λǫ

πǫ (B) :=
πǫ (B ∩ V )

πǫ (V )
. (4.3.19)

First we introdu
e of a restri
ted Markov 
hain, ξ
ǫ, that 
annot leave thevalley V . We determine ξ

ǫ by de�ning its transition probability matrix
pǫ (x, y) :=





pǫ (x, y) if x ∈ V, y ∈ Nx ∩ V
1 −∑z∈Nx∩V pǫ (x, z) if y = x ∈ V
0 else. (4.3.20)

The equilibrium measure for ξ
ǫ is apparently πǫ. We introdu
e the following
oupling between ξǫ and ξ

ǫ
: They both start in m and move together untilfor the �rst time ξǫ jumps out of V . Re
alling (4.3.20), at this step ξ

ǫ remainsat Σ and from then on they behave independently. Therefore τ ǫ = τǫ and
ξ

ǫ

t = ξǫ
t for all t ≤ τǫ. Therefore the probability in (4.3.3) 
an be rewritten as

Pm

(
sup

s<τ
∂+V

−tǫ

µs,tǫ (B) > 1 − κ and τ ∂+V > tǫ

)
, (4.3.21)

whi
h is bounded from below by
1 − Pm (τ∂+V ≤ tǫ) − Pm (Gǫ) . (4.3.22)Here,

Gǫ :=
⋃

l∈{0,...,Kǫ}

{
µltǫ,tǫ (B) > 1 − κ

2
and Kǫ ≥ 1

}
, (4.3.23)

where Kǫ := ⌊τ ∂−V /tǫ⌋.Now, for every kǫ ∈ N we obtain
Pm (Gǫ) ≤ Pm (Kǫ ≥ kǫ) + kǫ sup

i∈V
Pi

(
µ0,tǫ (B) > 1 − κ

2

)

≤ Pm (τ ∂+V ≥ kǫtǫ) + kǫ exp
(
−cκ

√
tǫ
)
. (4.3.24)For the last inequality we used Lemma 4.13. �
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5 Pre
ise estimates for 
apa
ities and
hitting times
5.1 Pre
ise estimates of the 
apa
ityWe restri
t ourselves now to the spa
es Λǫ ≡ Λ ∩ ǫZd. Moreover, from nowon we pose the following stronger assumption on the family of potentials (Fǫ)that sharpens assumption F1, namelysF1 We assume there exists fun
tions Fǫ : Λ → R>0 of 
lass C3 (Λ) su
hthat

πǫ (x) = e−Fǫ(x)/ǫ ∀x ∈ Λǫ. (5.1.1)and (Fǫ) 
onverges uniformly on Λ to a limiting fun
tion F : Λ → R≥0of 
lass C3 (Λ).Let M be the set of lo
al minima of F . A point s is 
alled a essential saddlepoint if there exist minima m,n ∈ M, su
h that s ∈ S (m,n). The set of allessential saddle points will be denoted by E . Analogously let Mǫ be the setof lo
al minima of Fǫ and Eǫ the set of essential saddle points of Fǫ.Remark 5.1 For all essential saddle points s ∈ Eǫ there exists ŝ ∈ Λ, su
hthat ∇Fǫ (ŝ) = 0 and ‖ŝ − s‖2 < ǫ. Without restri
tion of generality for all
s ∈ Eǫ we assume ∇Fǫ (s) = 0, that is s = ŝ.De�nition 5.2 Let f ∈ C2

(
Rd
) be given. We 
all a 
riti
al point of fquadrati
 i� det∇2f 6= 0. Otherwise it is 
alled degenerate. A quadrati

riti
al point of f , say x, is a k-saddle, i� ∇2f (x) has exa
tly k negativeeigenvalues. We say, the fun
tion f is at x in k dire
tions unstable and in

d − k dire
tions stable.To obtain pre
ise estimates of the 
apa
ity and related quantities, we willnow pose additional assumptions on the set of lo
al minima, Mǫ, of thefamily of potential (Fǫ)ǫ∈(0,1).We assumeS1 The fun
tions Fǫ and F have only �nitely many 
riti
al points.56



S2 All minima and all essential saddle points of Fǫ and F are quadrati

riti
al points. Moreover, ∇2Fǫ (xǫ) → ∇2F (x) i� xǫ → x for all
xǫ ∈ Mǫ ∪ Eǫ.S3 All metastable points and essential saddles are well in the interior of Λ,i.e. there exists κ > 0, su
h that for all x ∈ M∪ E the distan
e to theboundary of Λ ful�lls dist (x, Λc) > κ.Remark 5.3 (a) By enlarging the set Λ 
ondition S3 
an be always satis�ed.(b) Condition S2 implies that all essential saddle points are 1-saddles. Inparti
ular, it ex
ludes situations pres
ribed in [MNOS04℄, Se
tion 6.3. Theygive an example, where an unessential saddle point (with the same height)a�e
ts the prefa
tor of the 
apa
ity. This involves however essential saddlepoints s with det∇2F (s) = 0.We also need a to add another 
ondition on the transition probability, pǫ,of the Markov 
hain ξǫ, given in the form (4.0.1). We de�ne pi (x) :=

pǫ (x, x + ǫei) and g
(ǫ)
i (x) := gǫ (x, x + ǫei). Sin
e ξǫ is a reversible Markov
hain on a subset of the d-dimensional latti
e with transitions only betweennearest neighbours, all information are en
oded in (pi (x) |x ∈ Λǫ, 1 ≤ i ≤ d) .C2 We assume g

(ǫ)
i is uniformly Lips
hitz 
ontinuous on 
ompa
t subsets of

Λǫ, i.e. for all K ⊂⊂ Λǫ there exists a 
onstant L independent of ǫ su
hthat
∣∣∣g(ǫ)

i (x) − g
(ǫ)
i (y)

∣∣∣ ≤ L ‖x − y‖2 for all x, y ∈ K. (5.1.2)
We will �rst 
onsider the 
ase of a unique relevant saddle point, 
alled
s∗ǫ (m,n), between the metastable points m,n ∈ Mǫ. As the treatment of therough estimates indi
ates merely a neighbourhood of s∗ǫ (m,n) 
ontributes inleading order to the 
apa
ity between m and n.We will use the parameter δ to measure the size of the neighbourhood ofa relevant saddle point with vanishing gradient. We 
hoose

δ ≡ δ (ǫ) :=
√

kǫ |ln ǫ| (5.1.3)and with k ≥ 4d 
onstant. Whenever we use δ it will have this meaning.The following lemma gives an approximation of the 
ondu
tan
e matrix
C(ǫ) near a non degenerate 
riti
al point of Fǫ.57



Lemma 5.4 Let s be a quadrati
 
riti
al point of Fǫ. Consider the ball Br (s)around s with radius r = O (δ) . Then for all x ∈ Br (s) we obtain
C

(ǫ)
i (x) = pi (s) πǫ (x) (1 + O (δ)) . (5.1.4)Proof. By de�nition C

(ǫ)
i (x) = πǫ (x) pi (x). Sin
e x ∈ Br (s) we have

‖x − s‖2 = O (δ) . Sin
e g
(ǫ)
i is uniformly Lips
hitz 
ontinuous and uniformlybounded by a 
onstant from below on Br (s), we obtain

g
(ǫ)
i (x) = g

(s)
i (s) (1 + O (δ)) . (5.1.5)Sin
e Fǫ ∈ C3 (Λ) and ∇Fǫ (s) = 0 we obtain for x ∈ Br (s) that

πǫ (x + ǫei)

πǫ (x)
= 1 + O (δ) . (5.1.6)

Hen
e also pi (x) = pi (s) (1 + O (δ)) and the result follows. �As a lemma we show the 
ontinuous dependen
y of the 
apa
ity on (
onstant)boundary 
onditions.Lemma 5.5 Let Γ = (Y,G) be a 
ountable 
onne
ted graph and A,B ⊂ Ydisjoint subsets. Let a, b ∈ [0, 1] with a > b. We de�ne the fun
tion spa
es
HA,B := {h ∈ l2 (πǫ) | h|A = 1 and h|B = 0} (5.1.7)and
H̃A,B := {h ∈ l2 (πǫ) | h|A = a and h|B = b} . (5.1.8)De�ne c̃ap (A,B) := infh∈ eHA,B

Φ (h). Then the minimiser h̃A,B is of the form
h̃A,B = (a − b) hA,B + b.Proof. h̃A,B ful�lls the boundary value problem





Lh = 0 on Y \ (A ∪ B) ,
h = a on A,
h = b on B.

(5.1.9)
Sin
e this is a linear problem and L1 = 0, we are done. �
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Notation 5.6 For v ∈ Rd we de�ne v· to be the diagonal matrix with entries
(v·)ii := vi.Now we formulate the main theorem of this treatise. It gives a pre
ise esti-mation of the 
apa
ity between two minima of Fǫ. We formulate it here forthe 
ase of a unique relevant saddle point; for the 
ase of several relevantsaddles see Corollary 5.19.Theorem 5.7 Let ξǫ be a reversible and ergodi
 Markov 
hain su
h that theassumptions at the beginning of this se
tion are satis�ed. Let I, J ⊂ Mǫwith I ∩ J = ∅ and assume s ≡ s∗ǫ (I, J) is the unique relevant saddle pointbetween them. Then

cap (I, J) =

(
2π

ǫ

)d/2−1
λ̂d√

|det∇2Fǫ (s)|
exp (−Fǫ (s) /ǫ) ×

×
(
1 + O

(√
ǫ |ln ǫ|3/2

))
, (5.1.10)

where −λ̂d is the unique negative eigenvalue of the matrix given by
(pi (s) ∂i∂jFǫ (s)) . (5.1.11)To illustrate the general pro
edure we 
onsider �rst the spe
ial 
ase, wherethe orthonormal basis of eigenve
tors {b1, . . . , bd} of B ≡ ∇2Fǫ (s) equals the
anoni
al basis {e1, . . . , ed} of the latti
e Zd, i.e. without loss of generality

bi = ei for all i ∈ {1, . . . , d}. In this 
ase the geometry of the latti
e doesn't
ome into pi
ture, be
ause the pro
ess 
an take the dire
t way over therelevant saddle. This 
ase 
an be treated in the same way as the problem forthe fun
tion F in a 
ontinuous setting, 
ompare [BEGK04℄. Noti
e that inthis 
ase λ̂d (σ) = pd (s) λd.Without loss of generality we assume s = 0 and 〈m, ed〉 < 〈n, ed〉.
The lower bound.Denote

δi :=

⌊
1

ǫ

δ√
(d − 1) λi

⌋ for 1 ≤ i < d and δd :=

⌊
1

ǫ

1√
λd

δ

⌋
. (5.1.12)
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Figure 5.1.1: The di�erent neighbourhoods of the saddle for the lower (Uδ) andupper (Wδ) bound.
We de�ne index sets to designate the points of Λǫ in a neighbourhood of zero:

Rδ := ×d−1
i=1 {−δi,−δi + 1, . . . , δi} (5.1.13)and with a slight abuse of notation

2Tδ := {−2δd,−2δd + 1, . . . , 2δd − 1, 2δd} . (5.1.14)The asso
iated neighbourhood of s = 0 is
Uδ = ǫ (Rδ × 2Tδ) (5.1.15)We de�ne the boundary toward m respe
tively n by

∂mUδ = {(r,−2δd) | r ∈ Rδ} (5.1.16)and ∂nUδ = {(r, 2δd) | r ∈ Rδ}. Uδ is 
hosen in that way to se
ure that
Fǫ (x) < Fǫ (0) − δ2 (5.1.17)for x ∈ ∂mUδ ∪ ∂nUδ. 60



We de�ne for all r ∈ Rδ paths γr : 2Tδ → Uδ by
γr (t) := ǫted + ǫ

d−1∑

i=1

riei. (5.1.18)
Let (γr (2Tδ) , γ∗

r ) be the one dimensional graph asso
iated to γr with edgesbetween nearest neighbours. Note that while all points of Uδ are hit by apath, only the edges parallel to ed are in
luded in these paths. To leave outsome edges will only work in this 
ase, be
ause in general the pro
ess willuse all edges inside a suitable de�ned neighbourhood of the relevant saddle.We de�ne the fun
tion spa
es
HUδ

:= {f : Uδ → [0, 1] | f (z) = hn,m (z) if z ∈ ∂mUδ ∪ ∂nUδ} (5.1.19)and
Hr := {f : γr → [0, 1] | f (z) = hn,m (z) if z ∈ {(r,−2δd) , (r, 2δd)}} .(5.1.20)With the help of Lemma 5.5 and the representation (3.2.10) of the 
apa
ityof a one dimensional 
hain we obtain

inf
h∈Hn,m

Φ (h) = Φ (hn,m)

≥ ΦUδ
(hn,m) ≥ inf

h∈HUδ

ΦUδ
(h)

≥ inf
h∈HUδ

∑

r∈Rδ

Φγr
(h) =

∑

r∈Rδ

inf
h∈Hr

Φγr
(h)

=
∑

r∈Rδ

(hn,m (r, 2δd) − hn,m (r,−2δd))
2


1

2

∑

s∈γ∗
r

1/C(ǫ)
s




−1

.(5.1.21)
Now we use Corollary 4.11 and the inequality (5.1.17) to obtain a uniformbounds on the boundary. We obtain for x ∈ ∂mUδ

hn,m (x) ≤ cǫ−2d exp

(
−1

ǫ

(
F̂ǫ (x, n) − F̂ǫ (x,m)

))

= cǫ−2de−δ2/ǫ = O (ǫ) . (5.1.22)The last equation holds, sin
e δ =
√

kǫ |ln ǫ| with k ≥ 3d large enough. For
x ∈ ∂nUδ we obtain a uniform lower bound, namely

hn,m (x) = 1 − hm,n (x)

= 1 −O (ǫ) . (5.1.23)61



We denote by {λ1, . . . , λd−1,−λd} the eigenvalues of the Hessian ∇2Fǫ (0).Sin
e 0 is a 1-saddle of Fǫ we 
an 
hoose λi > 0 for all 1 ≤ i ≤ d andapproximate Fǫ inside Uδ by
Fǫ (x) = Fǫ (0) − 1

2
λdx

2
d +

1

2

d∑

i=1

λix
2
i + O

(
δ3
)
. (5.1.24)

Therefore we 
on
lude
inf

h∈Hn,m

Φ (h)

≥
∑

r∈Rδ


1

2

∑

s∈γ∗
r

1/C(ǫ)
s




−1

(1 + O (ǫ))

=

(
∑

r∈2Rδ

exp

(
−1

2
ǫ

d−1∑

i=1

λir
2
i

))
1

2

∑

s∈γ∗
0

1/C(ǫ)
s




−1

×

×
(
1 + O

(
δ3/ǫ

))
. (5.1.25)The last equation uses Lemma 5.4. As we will see in the estimation of theupper bound this inequality is enough to mat
h the asso
iated upper boundup to multipli
ative errors (1 + O (δ)).To evaluate these sums we use the quadrati
 approximation of Fǫ insideof UδThen we use Lemma 5.4 and obtain

C
(ǫ)
γ(t),γ(t+1) = pd (0) e−Fǫ(0)/ǫe

1
2
ǫλdt2

(
1 + O

(
δ3/ǫ

))
. (5.1.26)The resulting Gaussian sums 
an be approximated by integrals (see Propo-sition A.1 in the Appendix). First we 
onsider the sum over γ∗

0 and obtain
2δd−1∑

t=−2δd

exp

(
−1

2
ǫλdt

2

)

=

∫ 2δd−1

−2δd

e−
1
2
ǫλdt2dt

(
1 + O

(
δ3/ǫ

))

=
2√
ǫλd

∫ 2
√

k|ln ǫ|

0

e−
1
2
x2

dx
(
1 + O

(
δ3/ǫ

))

=

√
2π

ǫλd

(
1 + O

(
δ3/ǫ

))
. (5.1.27)
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The sum over 2Rδ 
an be approximated by an (d − 1)-dimensional Gaussiansum (see Proposition A.1 in the Appendix):
∑

r∈Rδ

exp

(
−1

2
ǫ

d−1∑

i=1

λir
2
i

)

=

∫ δd−1

−δd−1

. . .

∫ δ1

−δ1

e−
1
2
ǫ

P
i λir

2
i dr1 . . . drd−1 (1 + O (δ))

= 2d−1
d−1∏

i=1

∫ δi

0

e−
1
2
ǫλir2

i dri (1 + O (δ))

=
d−1∏

i=1

√
2π

ǫλi

(1 + O (δ)) (5.1.28)
with the same transformation as before. Putting the pie
es together weobtain

inf
h∈Hn,m

Φ (h)

=

(
2π

ǫ

)d/2−1
pd (0) λd√
λ1λ2 . . . λd

e−F (0)/ǫ
(
1 + O

(
δ3/ǫ

))
. (5.1.29)

The upper bound.To prove an upper bound use δi from (5.1.12) and de�ne
2Rδ := ×d−1

i=1 {−2δi,−2δi + 1, . . . , 2δi − 1, 2δi} (5.1.30)and
Tδ = {−δd, . . . , δd} . (5.1.31)Using these sets we put
Wδ := ǫ (2Rδ × Tδ) (5.1.32)and

∂mWδ := ǫ (2Rδ × {−δd}) and ∂nWδ := ǫ (2Rδ × {δd}) . (5.1.33)The remaining part of the inner boundary of Wδ is 
alled the 
entral boundary
∂cWδ, i.e.

∂cWδ := ∂−Wδ \ (∂mWδ ∪ ∂nWδ) . (5.1.34)63



The neighbourhood Wδ is 
hosen to se
ure that
Fǫ (x) > Fǫ (0) + δ2 (5.1.35)for all x ∈ ∂cWδ.We de�ne D̃m as the 
onne
ted 
omponent of

{
x ∈ Λǫ |Fǫ (x) ≤ Fǫ (0) + δ2

} (5.1.36)that 
ontains m. De�ne Dm := D̃m \ Wδ and Dn := D̃c
m \ Wδ.Now we 
hoose a fun
tion h+ to our 
onvenien
e. We make the 
hoi
e:

h+|Dm
= 0, h+|Dn

= 1. (5.1.37)By de�nition for all z ∈ Wδ there exist a unique r ∈ 2Rδ and t ∈ Tδ su
hthat
z = γr (t) := ǫ

(
d−1∑

i=1

riei + ted

)
. (5.1.38)

Given this, we de�ne on Wδ

h+ (γr (t)) :=

(
t−1∑

k=−δd

1/C
(ǫ)
γ0(k),γ0(k+1)

)
/


1

2

∑

s∈γ∗
0

1/C(ǫ)
s


 . (5.1.39)

Observe that this does not depend on r.We denote Σ− := ∂+Dm \W+
δ and Σ+ := ∂−Dm \W+

δ . Inserting h+ intothe Diri
hlet form, we obtain
Φ
(
h+
)

= ΦWδ

(
h+
)

+
∑

x∈Σ−

∑

y∈Σ+

C(ǫ)
x,y +

+
∑

x∈∂−Wδ

∑

y∈∂+Wδ

C(ǫ)
x,y

(
h+ (x) − h+ (y)

)2
. (5.1.40)

Sin
e we are in the 
ase of dis
rete time, we have C
(ǫ)
x,y ≤ πǫ (x) ∧ πǫ (y).Therefore

∑

x∈Σ−

∑

y∈Σ+

C(ǫ)
x,y ≤ d

∣∣Σ−∣∣ exp

(
−1

ǫ

(
Fǫ (s) + δ2

)) (5.1.41)
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and
∑

x∈∂−Wδ

∑

y∈∂+Wδ

C(ǫ)
x,y

(
h+ (x) − h+ (y)

)2 ≤ |∂cWδ| exp

(
−1

ǫ

(
Fǫ (s) + δ2

))
,(5.1.42)be
ause h+ = 0 on ∂mWδ and h+ = 1 on ∂nWδ.With the help of Lemma 5.4 the �rst term 
an be estimated as

ΦWδ

(
h+
)

=

(
∑

r∈2Rδ

δd−1∑

t=−δd

C
(ǫ)
γr(t),γr(t+1)

(
C

(ǫ)
γ0(t),γ0(t+1)

)−2
)

×

×


1

2

∑

s∈γ∗
0

1/C(ǫ)
s




−2

=

(
∑

r∈2Rδ

e−
1
2
ǫ

Pd−1
i=1 λir

2
i

)
1

2

∑

s∈γ∗
0

1/C(ǫ)
s




−1

(
1 + O

(
δ3/ǫ

))

= inf
h∈HA,B

Φ (h) (1 + O (δ)) . (5.1.43)
Sin
e δ =

√
kǫ |ln ǫ| with k ≥ 2d, the quantities in (5.1.41) and (5.1.42) areby a fa
tor ǫd smaller than the leading term.Remark 5.8 Observe that, provided we have good a priori bounds, we onlyneed one property of the 
ondu
tan
e matrix C(ǫ) to get mat
hing upper andlower bounds (with multipli
ative error tending to one), namely the existen
eof fun
tions Aǫ and Bǫ su
h that

C
(ǫ)
γr(t),γr(t+1) = Aǫ (t) Bǫ (r)

(
1 + O

(
δ3/ǫ

))
. (5.1.44)This means that we need approximately a separation of variables around therelevant saddle.

5.1.1 An asso
iated inverse problemTo prove Theorem 5.7 in the general 
ase, we will now formulate a 
orre-sponding inverse problem.
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De�nition 5.9 Let Γ = (Y,G) be a lo
ally �nite graph with positive sym-metri
 weights C : G → R>0 on its edges. Let R be some index set and
onsider for r ∈ R 
onne
ted subgraphs ηr = (Yr, Gr) of Γ with positivesymmetri
 weights C̃r : Gr → R>0. For 
onvenien
e we put C̃r|G\Gr
≡ 0.The family of {(ηr, C̃r

)
| r ∈ R

} is 
alled a �partition� of (Γ, C), if
∑

r∈R

C̃r (s) = Cs for all s ∈ G. (5.1.45)
Note that the Γr need not be disjoint.There are of 
ourse very many ways of partitioning a given weighted graph,but as we will see in the next Proposition, given the equilibrium potential
hA,B there exists parti
ular useful partitions.Let (ηr, C̃r

)
r∈R

be a partition of (Γ, C). We denote
Φ̃r (h) :=

1

2

∑

s∈Gr

C̃r (s) (h (s2) − h (s1))
2 , (5.1.46)

the Diri
hlet form on ηr.Proposition 5.10 Assume (ηr, C̃r

) is a partition of (Γ, C) that 
onne
ts Aand B, i.e.
|ηr ∩ A| = |ηr ∩ B| = 1 (5.1.47)for all r ∈ R. Then

cap (A,B) ≥
∑

r∈R

inf
h∈HA,B

Φ̃r (h) . (5.1.48)
If C̃r satis�es additionally Kir
hho�'s node law at ea
h �node� x ∈ ηr withvoltage hA,B, i.e. if

∑

y∈Nx

C̃r (x, y) (hA,B (x) − hA,B (y)) = 0. (5.1.49)
then we obtain

cap (A,B) =
∑

r∈R

inf
h∈HA,B

Φ̃r (h) . (5.1.50)
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Proof. Noti
e that due to 
ondition (5.1.45) of De�nition 5.9
cap (A,B) = inf

h∈HA,B

∑

r∈R

Φ̃r (h) . (5.1.51)
This implies the inequality (5.1.48), be
ause we are taking the in�mum overthe larger 
lass of fun
tions

H̃A,B =
{
h : {Yr}r∈R → [0, 1] |h|A = 1, h|B = 0

}
. (5.1.52)To prove equation 5.1.50, denote by h̃r : Yr → [0, 1] the minimiser of Φ̃r.The in�mum and the sum in (5.1.51) 
an obviously be ex
hanged if h̃r =

hA,B|ηr
. The variational problem (5.1.51) is equivalent to the linear problem(3.1.4) with generator L : G → [0, 1] given by L (x, y) := 1−Cxy/

∑
z∈Nx

Cxz.Thus we obtain




∑
z∈Nx

Cxz (h (z) − h (x)) = 0 for x ∈ Γ \ (A ∪ B) ,
h (x) = 1 for x ∈ A,
h (x) = 0 for x ∈ B.

(5.1.53)
But this means, that the 
apa
ity of A and B is given by (5.1.50), i� the
ondu
tan
e matri
es C̃r satis�es the Kir
hho� law for hA,B, i.e.

∑

y∈Nx

C̃r (x, y) (hA,B (y) − hA,B (x)) = 0 for x ∈ Yr \ (A ∪ B) . (5.1.54)
�

Solution to the inverse �at problemLet p = (p1, . . . , pd) ∈ Rd
>0 be given. We denote by q ∈ Rd

>0 the ve
torwith 
omponents qi := 1/
√

pi and by Q the asso
iated diagonal matrix withentries Qii = qi.We 
onsider the ele
tri
al network that 
onsists of the latti
e Yq :=
×d

i=1 (qiZ) with edges between pairs of nearest neighbours and the 
onstant
ondu
tan
e matri
e C given by
Ci (x) ≡ C (x, x + qiei) ≡ pi. (5.1.55)67



For this spe
ial 
hoi
e the equilibrium potential h0,a : Yq → [0, 1] is of thesimple form h0,a (x) = 〈a,x〉
‖a‖2 for any given dire
tion a ∈ Rd

>0.We 
onsider only those a su
h that v ≡ Q−1a ∈ Zd and
vd ≥ 1 and g
d (v1, . . . , vd) = 1. (5.1.56)Under these assumptions we 
an 
onstru
t expli
itly a partition of (Yq, p).De�nition 5.11 For simpli
ity we denote for any negative integer t the set

{t, . . . , 0} by {0, . . . , t}.(a) Let v = (v1, . . . , vd) ∈ Zd with properties (5.1.56). De�ne the element
E ⊂ Γ of size v and spa
ing q by

E := ×d−1
i=1 {0, qi, 2qi . . . , viqi} × {qd, 2qd . . . , vdqd} ∪ {0} (5.1.57)and identify E with the graph with edges between nearest neighbours x, y ∈

E. (b) We want to de�ne a family (Er,t) for all r, t ∈ Z. For t ∈ Z we de�nethe translated set E0,t by
E0,t := E + ta. (5.1.58)To de�ne the elements Er,0 we need to be more 
areful: Let Ha be thehyperplane orthogonal to a, that 
ontains the origin. The elements Er,0should as good as possible start from the hyperplane Ha. Hen
e we put for

r ∈ Zd−1

Er,0 := E0,t∗ +
d−1∑

i=1

riqiei (5.1.59)
with t∗ su
h that the interse
tion of Er,0 with Ha is non-empty. In thespe
ial 
ase, where x ∈ Zd ∩ Ha, there are possibly two elements E0,t and
E0,t+1 hitting that point. In this 
ase we will 
hoose the lower one.We now de�ne

Er,t := Er,0 + ta. (5.1.60)(
) We de�ne strings of elements by putting
Yr :=

⋃

t∈Z

Er,t. (5.1.61)
Let ηr be the 
onne
ted graph with vertexset Yr and edges between nearestneighbours.
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Figure 5.1.2: Two 
onne
ted elements.
Remark 5.12 The 
onstru
tion of the family (Er,t) implies that there existshifts sr,t : Y → Y su
h that Er,t = sr,t (E).Sin
e the element Et,r is a translation of E and the weightfun
tions Ciare 
onstant on Λǫ, it is enough to �nd a 
ondu
tan
e matrix C̃ that satis�esthe following equations: First the Kir
hho� equation

∑

y∈E

C̃ (x, y) (h0,a (y) − h0,a (x)) = 0 for x ∈ E \ {0, a} (5.1.62)
and for all i ∈ {0, . . . , d} and k ∈ {0, . . . , vd} the 
onsisten
y 
ondition:

∑

x:xd=kqd

C̃ (x, x + qiei) = pi. (5.1.63)
Observe that these 
onditions does not determine a unique 
ondu
tan
e ma-trix.We de�ne the asso
iated 
urrent, I, by Ohm's law, i.e.

I(x, y) := C̃ (x, y) (h0,a (y) − h0,a (x)) . (5.1.64)Then the two 
onditions (5.1.62) and (5.1.63) read respe
tively:
∑

y∈E

I (x, y) = 0 (5.1.65)
∑

x:xd=kqd

I (x, x + qiei) =
vi

‖a‖2 . (5.1.66)
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Figure 5.1.3: The pi
ture represents the 
urrent �ow on three sele
ted elementsin Z3, 6 lines symbolises one unit of the �ow.
Proposition 5.13 Let E be an element of size v and spa
ing q and h0,a (x) =
〈a,x〉
‖a‖2 . Then a 
ondu
tan
e matrix C̃ that satis�es 
onditions (5.1.62) and(5.1.63) is given by

C̃ (x, x + qiei) := piϕi (x) (5.1.67)for all x, x + qiei ∈ E.The fun
tion ϕ : E × {1, . . . , d} → [0, 1] has the form
ϕi (x) :=





1 − xd/ad for x = (0, 0, . . . , 0, xd) , i = d,
1/vi for x = (a1, . . . , ai−1, xi, 0, . . . , 0, xd) , i < d,
xd/ad for x = (a1, . . . , ad−1, xd) , i = d,
0 else, (5.1.68)for all (x, i) ∈ E × {1, . . . , d} su
h that x + qiei ∈ E. Otherwise ϕi (x) := 0.Proof. Insert C̃ into (5.1.62) and (5.1.63). �Now we de�ne �ows for shifted elements.De�nition 5.14 Let (Er,t) = (sr,t (E)) be a family of translated elementsand C̃ : E × {1, . . . , d} → [0, 1] as in Proposition 5.13.70



(a) De�ne C̃(r,t) : Er,t × {1, . . . , d} → [0, 1] by putting C̃
(r,t)
i (x) :=

C̃i

(
s−1

r,t (x)
).(b) We de�ne the 
apa
ity of an element by

cap
(
E, C̃

)
:= inf

h∈H0,a

∑

(x,y)∈E∗

C̃ (x, y) (h (x) − h (y))2 , (5.1.69)
where E∗ is the edgeset of E. Analogously cap

(
Er,t, C̃

) is de�ned with thehelp of sr,t.(b) Let n
(
E, C̃

) be the average number of strings inside a unit volumeon the hyperplane Ha (perpendi
ular to a).Proposition 5.15 Assume Ci (x) ≡ pi, and C̃i (x) = piϕi (x) as in Proposi-tion 5.13. Then one element has the 
apa
ity
cap

(
E, C̃

)
=

vd

‖a‖2 , (5.1.70)
and the average number of strings is

n
(
E, C̃

)
=

‖a‖
vd det Q

. (5.1.71)
Proof. Using De�nition (5.1.64) we obtain

cap
(
E, C̃

)
=

∑

x,y∈E

C̃ (x, y) (h0,a (y) − h0,a (x))2

=
∑

x,y∈E

I (x, y) (h0,a (y) − h0,a (x)) . (5.1.72)
Noti
e that I is a �ow in the sense of Doyle and Snell. Be
ause of the
onservation of energy prin
iple (see [DS84℄, se
tion 3.5, page 61) it follows

cap
(
E, C̃

)
= I0 (h0,a (a) − h0,a (0)) = I0,where I0 ≡

∑
y∈E I (0, y). Due to the geomtry of an element we obtain

cap
(
E, C̃

)
= I (0, qded) =

vd

‖a‖2 . (5.1.73)
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Ha

Figure 5.1.4: The pi
ture represents merely every fourth string of elements.
Now we 
al
ulate the average number of strings n

(
E, C̃

). All edges are
ompletely o

upied by the elements, sin
e ∑r∈R ϕ
(r,t)
i (x) = 1. A singleelement E uses the fra
tion ϕi (x) of an edge (x, x + qiei), hen
e we obtain

∑

x∈E

d∑

i=1

ϕi (x)

= ϕd (0) +

vd∑

k=1

d−1∑

i=1

vi−1∑

n=0

ϕi (a1, . . . , ai−1, nqi, 0, . . . , 0, kqd) +

+

vd−1∑

n=1

ϕd (0, . . . , 0, nqd) +

vd−1∑

n=1

ϕd (v1, . . . , vd−1, nqd)

= 1 + vd

d−1∑

i=1

vi
1

vi
+

vd−1∑

n=1

(
1 − n

vd

)
+

vd−1∑

n=1

n

vd

= 1 + (d − 1) vd + (vd − 1) = dvd (5.1.74)edges. Noti
e that a half open 
ube in Λq 
ontains d edges and has volume
det Q. Hen
e the e�e
tive volume of an element is vd det Q. Sin
e the lengthof an element in dire
tion a is ‖a‖ we obtain

n
(
E, C̃

)
=

‖a‖
vd det Q

. (5.1.75)
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Remark 5.16 Sin
e n (E,ϕ) is the average number of strings inside a united-
ube, we 
an rearrange the strings by small perturbations to have startingpoints inside the hyperplane Ha orthogonal to a on a 
ubi
 latti
e with sidelength s su
h that s(d−1) = 1/n (E,ϕ).
5.1.2 General proof of Theorem 5.7The 
ase of a unique relevant saddleProof. Without loss of generality we assume s∗ (m,n) = 0.Let {λ1, . . . , λd−1,−λd} be the eigenvalues of ∇2Fǫ (0) and {bk}1≤k≤d anorthonormal basis of eigenve
tors, su
h that bd belongs to the unique nega-tive eigenvalue −λd and 〈m, bd〉 < 0 < 〈n, bd〉. If bd 
oin
ides with a latti
edire
tion, say ed, the proof is simply is dis
rete version of the proof of The-orem 5.1 in [BEGK04℄. But in the general 
ase we have to use the partitionof the last subse
tion.Let q ∈ Rd the ve
tor with 
omponents

qi :=
1√

pi (0)
(5.1.76)

and Q be the diagonal matrix with entries Qii ≡ qi. We denote
Λq := Λ ∩ (×d

i=1(qiZ)). (5.1.77)During this proof we asso
iate to a given fun
tion fǫ : Λǫ → R, the trans-formed fun
tion f ǫ : Λq → R by de�ning
fǫ := fǫ ◦ ǫQ−1. (5.1.78)We denote by {λ̂1, . . . , λ̂d−1,−λ̂d

} the eigenvalues of
Bǫ := Q−1∇2Fǫ (0)Q−1. (5.1.79)Sin
e all eigenvalues of Q are positive, we 
an 
hoose λ̂i > 0 for all i ∈

{1, . . . , d}. Let {w1, . . . , wd} be an orthonormal basis of eigenve
tors of Bǫ,su
h that wd 
orresponds to the negative eigenvalue −λ̂d and 〈wd, bd〉 > 0.73



We will see, that wd points in the dire
tion, in whi
h the equilibrium potentialrises.Assume �rst Q−1wd ∈ Qd. Choose a ‖ wd with 〈a, wd〉 > 0 su
h that
v := Q−1a ∈ Zd and g
d (v1, . . . , vd) = 1. Without loss of generality vd ≥ 1.We transform the Diri
hlet form by a substitution y = 1

ǫ
Qx:

Φ (h) =
∑

x∈Λǫ

d∑

i=1

Cǫ,i (x) (h (x + ǫei) − h (x))2

=
∑

y∈Λσ

d∑

i=1

Cǫ,i (y)
(
h (y + qiei) − h (y)

)2

=: Φ
(
h
)
. (5.1.80)We will use the parameter δ to measure the size of the neighbourhood therelevant saddle point. We 
hoose

δ ≡ δ (ǫ) :=
√

kǫ |ln ǫ| (5.1.81)where k ≥ 3d 
onstant.
The lower boundWe de�ne the following neighbourhood of the saddle point:

Uδ :=

{
z ∈ Λσ | |〈z, wi〉| ≤

δ

ǫ
√

λ̂i

, |〈z, wd〉| ≤ 2
δ

ǫ
√

λ̂d

}
. (5.1.82)

We denote by ∂mUδ the fa
e of the Uδ, that lies entirely in the valley Vn (m)and analogously ∂nUδ the opposite fa
e. We will use the spa
e of fun
tions
HUδ

:=
{
f : Uδ → [0, 1] | f |∂nUδ∪∂mUδ

= hn,m

}
. (5.1.83)We obtain by 
utting all edges outside the neighbourhood Uδ and then withthe quadrati
 approximation (5.1.85)

Φ (hn,m) = Φ
(
hn,m

)

≥ ΦUδ

(
hn,m

)
≥ inf

h∈HUδ

ΦUδ
(h) . (5.1.84)
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Inside Uδ we 
an approximate Cǫ,i due to assumption C1, C2 and sF1 by
Cǫ,i (y) = pi (0) exp

(
−1

ǫ
Fǫ (0) − ǫ

2
〈y,Bǫy〉

)(
1 + O

(
δ3/ǫ

))
. (5.1.85)

Hen
e we have to investigate
k (ǫ) ≡ inf

h∈HUδ

∑

y∈Uδ

e−
ǫ
2
〈y,Bǫy〉

d∑

i=1

(
h (y + qiei) − h (y)

qi

)2

. (5.1.86)
We abbreviate fǫ (y) := e−

ǫ
2
〈y,Bǫy〉.We use now a partition of (Uδ, pi (0) fǫ) with boundary sets ∂mUδ and

∂nUδ in the sense of De�nition 5.9. This gives us in any 
ase a lower boundas we noti
ed in (5.1.48). To obtain a good bound we 
hoose the partitionof the �at 
ase and take as 
ondu
tan
e matrix C̃ǫ,i (x) := fǫ (x) c̃i (x). Here,
c̃i (x) ≡ ϕi (x) pi (0) and ϕ is given by 5.13. This gives us a good bound,be
ause in the neighbourhood of the saddle point the potential fǫ is nearly�at.Let E ⊂ Uδ be the elements of size v. We denote ℓ := n (E,ϕ)−1/(d−1)and denote

δi :=

⌊
1

ℓ

δ√
λi

⌋ for 1 ≤ i < d and δd :=

⌊
1

‖a‖
δ√
λ̂d

⌋ (5.1.87)
as well as

Rδ := ×d−1
i=1 {−δi + 1,−δi + 2, . . . , δi − 2, δi − 1} (5.1.88)and

2Tδ := {−2δd + 1,−2δd + 2, . . . , 2δd − 2, 2δd − 1} . (5.1.89)We de�ne Er,t like in De�nition 5.11. The strings (ηr, Gr) with edges betweennearest neighbours inside Uδ for r in a suitable neighbourhood of 0 are de�nedby
ηr :=

⋃

t∈2Tδ

Er,t. (5.1.90)
Let η̌r := {x ∈ ηr | 〈x, a〉 = min} be the starting point and
η̂r := {x ∈ ηr | 〈x, a〉 = max} the endpoint of the rth string. Observe that75



{η̌r, η̂r}r(ρ) ⊂ Uδ. Furthermore de�ne the sets η̂ :=
{
η̂r(ρ) | ρ ∈ Rδ

} and η̌ :={
η̌r(ρ) | ρ ∈ Rδ

}. We denote the Diri
hlet form of a single string by ηr

Φr (h) :=
∑

x∈ηr

fǫ (x)
d∑

i=1

c̃i (x) (h (x + qiei) − h (x))2 (5.1.91)
with ϕ de�ned in Proposition 5.13. We de�ne the fun
tion spa
e for a singlestring,

Hr := {h : ηr → [0, 1] | h (x) = hn,m (x) if x ∈ {η̌r, η̂r}} . (5.1.92)Moreover, put
ȟn,m := sup

{
hn,m (x) | x ∈ η̌

} (5.1.93)and ĥn,m := inf
{
hn,m (x) | x ∈ η̂

}.Proposition 5.10 yields
k (ǫ) ≥

∑

ρ∈Rδ

inf
h∈Hr(ρ)

Φr(ρ) (h) .

Sin
e we 
an 
al
ulate the 
apa
ity of a one dimensional 
hain, as in (3.2.10),we obtain with Lemma 5.5 that
k (ǫ) ≥

∑

ρ∈Rδ

(
hn,m

(
η̂r(ρ)

)
− hn,m

(
η̌r(ρ)

))2 ×

×
(
∑

t∈2Tδ

cap (Er,t, fǫc̃)
−1

)−1

≥ cap (E, c̃)
(
ĥn,m − ȟn,m

)2 ∑

ρ∈Rδ

(
∑

t∈2Tδ

max
y∈Er(ρ),t

fǫ (y)−1

)−1

.(5.1.94)
By 
onstru
tion of (ηr) we have for y ∈ η̌, using the de�nition of δi, (5.1.87),

ǫ2 〈y,Bǫy〉 = ǫ2

d−1∑

i=1

λ̂i 〈y, wi〉2 − ǫ2λ̂d 〈y, wd〉2

≤ δ2 − 4δ2 = −3δ2. (5.1.95)Moreover, it holds
s∗ (y,m) = y and s∗ (y, n) = 0.76



Hen
e Proposition 4.11 implies for y ∈ η̌

hn,m (y) ≤ cǫ−2d exp

(
−1

ǫ

(
F̂ǫ (y, n) − F̂ǫ (y,m)

))

= cǫ−2de−3δ2/ǫ (1 + O (δ)) = O (ǫ) . (5.1.96)The last equation holds, sin
e δ =
√

kǫ |ln ǫ| and k ≥ 3d . For y ∈ η̂ weobtain a uniform lower bound, namely
hn,m (y) = 1 − hm,n (y) = 1 + O (ǫ) . (5.1.97)Altogether we obtain
(
ĥn,m − ȟn,m

)2

= 1 + O (ǫ) . (5.1.98)Now we shift the strings ηr and rename them, su
h that Ẽρ,0 = τ
(
Er(ρ),t

)begins for all ρ ∈ Rδ at the point ℓ
∑d−1

i=1 ρiwi in the hyperplane Ha orthog-onal to a. The shifts τ 
an be 
hosen, su
h that their length is at most
max

{
ℓ
√

d, ‖a‖
}. The starting points of elements in the ρth string 
an nowbe parametrised by

zρ (t) = ta + ℓ
d−1∑

i=1

ρiwi (5.1.99)for t ∈ 2Tδ and ρ ∈ Rδ. Thus we have for y ∈ Er(ρ),t

|〈y,Bǫy〉 − 〈zρ (t) , Bǫzρ (t)〉| = O (1)Hen
e we obtain
k (ǫ) ≥ cap (E, c̃)

∑

ρ∈Rδ

(
∑

t∈2Tδ

exp
ǫ

2
〈zρ (t) , Bǫzρ (t)〉

)−1

×

× (1 + O (ǫ)) . (5.1.100)By 
onstru
tion zρ lies parallel to a, and thus we 
an separate the sums in tand r from (5.1.100) and obtain:
k (ǫ) ≥ cap (E, c̃)

(
∑

t∈2Tδ

exp
(
− ǫ

2
‖a‖2 λ̂dt

2
))−1

×

×
∑

ρ∈Rδ

exp

(
− ǫ

2
ℓ2

d−1∑

i=1

λ̂iρ
2
i

)
(1 + O (ǫ)) . (5.1.101)
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We approximate the Gaussian sums of (5.1.100) with Gaussian integrals (seeAppendix A). Hen
e we obtain
∑

t∈2Tδ

exp
(
− ǫ

2
‖a‖2 λ̂dt

2
)

=
1

‖a‖

√
2π

ǫλ̂d

(
1 + O

(√
ǫ
)) (5.1.102)

and
∑

ρ∈Rδ

exp

(
− ǫ

2
ℓ2

d−1∑

i=1

λ̂iρ
2
i

)
=

1

ℓd−1

d−1∏

i=1

√
2π

ǫλ̂i

(
1 + O

(√
ǫ
))

. (5.1.103)
The produ
t 
an be evaluated by using, that {wi}i is an orthonormal basisof eigenve
tors of B:

d−1∏

i=1

λ̂i = det
(
Q−1∇2Fǫ (0) Q−1

)
/λ̂d

= (det Q)−2 det∇2Fǫ (0) /λ̂d. (5.1.104)Inserting into (5.1.101), we obtain with Proposition 5.15:
k (ǫ) ≥

(
2π

ǫ

)d/2−1
λ̂d√

det∇2Fǫ (0)
×

×cap (E, c̃) n (E,ϕ) ‖a‖ det Q
(
1 + O

(√
ǫ
))

=

(
2π

ǫ

)d/2−1
λ̂d√

|det∇2Fǫ (0)|
(
1 + O

(√
ǫ
))

. (5.1.105)
Observe that the eigenvalues of Bǫ = Q−1∇2Fǫ (0) Q−1 
oin
ide with theeigenvalues of Q−2 (∇2Fǫ (0)).
The upper bound.We will dire
tly use the transformed Diri
hlet form Φ of equation (5.1.80).We denote, using δi from (5.1.87),

2Rδ := ×d−1
i=1 {−2δi,−2δi + 1, . . . , 2δi − 1, 2δi} (5.1.106)and
Tδ := {−δd,−δd + 1, . . . , δd − 1, δd} . (5.1.107)78



De�ne now the neighbourhood Wδ ⊂ Λσ of the saddle point by
Wδ :=

{
z ∈ Λσ | |〈z, wi〉| ≤ 2

δ

ǫ
√

λ̂i

, |〈z, wd〉| ≤
δ

ǫ
√

λ̂d

} (5.1.108)
and the slightly larger set̂

Wδ = {Er,t | Er,t ∩ Wδ 6= ∅} . (5.1.109)The neighbourhood Wδ is 
hosen to se
ure that
F ǫ (x) − F ǫ (0) > δ2 (5.1.110)for x ∈ ∂Wδ \ (∂mWδ ∪ ∂nWδ).We de�ne D̃m as the 
onne
ted 
omponent of

{
x ∈ Λǫ |F ǫ (x) ≤ F ǫ (0) + δ2

} (5.1.111)that 
ontains m. De�ne Dm := D̃m \ Wδ and Dn := D̃c
m \ Wδ. To prove anupper bound we just 
hoose a fun
tion h+ to our 
onvenien
e. We make the
hoi
e

h+|Dm
= 0, h+|Dn

= 1. (5.1.112)Up to now we didn't have to be very 
areful 
hoosing h+. But in a neigh-bourhood of the relevant saddle point of order O (δ) we have to approximatethe real equilibrium potential hn,m as good as possible. Surprisingly it suf-�
es, to take h+ 
onstant on hyperplanes perpendi
ular to a. We take nowa sum of resistan
es with value 1/ maxλ∈[j,j+1) {πǫ (λa)} plus a term for theremainder.We denote fǫ (x) ≡ exp (−ǫ 〈x,Bx〉 /2) for x ∈ Ŵδ and introdu
e asnormalisation
N :=

δd∑

t=−δd

(
max

λ∈[t,t+1)
fǫ (λa)

)−1

. (5.1.113)
Denote the orthogonal proje
tion onto the ve
tor a with Pra, i.e. Pra =
〈a, ·〉 a

‖a‖2 . Denote h0,a (x) = 〈a, x〉 / ‖a‖2 and h̃ (x) =
⌊
〈a, x〉 / ‖a‖2⌋. For

x ∈ Wδ we 
hoose:
h+ (x) :=

1

N


h0,a (x) − h̃ (x)

fǫ (Prax)
+

h̃(x)∑

j=−δd

min
λ∈[j,j+1)

(
1

fǫ (λa)

)
 (5.1.114)
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We estimate now di�eren
es of h+ between nearest neighbours: Let i ∈
{1, . . . , d}, then we obtain for x ∈ Wδ and if h̃ (x + qiei) = h̃ (x):

(
h+ ((x + qiei)) − h+ (x)

)
N

=
h0,a (x + qiei) − h̃ (y)

fǫ (Pra (x + ǫqiei))
− h0,a (x) − h̃ (y)

fǫ (Prax)

= qi
ai

‖a‖2

1

fǫ (Prax)

(
1 + O

(
ǫ2
)) (5.1.115)

If on the other hand h̃ (x + qiei) = h̃ (x) + 1 we obtain:
(
h+ (x + qiei) − h+ (x)

)
N

= min
λ∈[k(x),k(x)+1)

1

fǫ (λa)
+

+

(
h0,a (x + qiei) − h̃ (x) − 1

fǫ (Pra (x + qiei))

)
− h0,a (x) − h̃ (x)

fǫ (Prax)

= qi
ai

‖a‖2

1

fǫ (Prax)

(
1 + O

(
δ3/ǫ

))
. (5.1.116)Comparing (5.1.115) and (5.1.116), we see, that this hold independent of apossible jump of h̃.We denote Σ− := ∂+Dm \W+

δ and Σ+ := ∂−Dm \W+
δ . Inserting h+ intothe Diri
hlet form, we obtain

Φ
(
h+
)

= ΦWδ

(
h+
)

+
∑

x∈Σ−

∑

y∈Σ+

Cǫ (x, y) +

+
∑

x∈∂−Wδ

∑

y∈∂+Wδ

Cǫ (x, y)
(
h+ (x) − h+ (y)

)2
. (5.1.117)

Sin
e we are in the 
ase of dis
rete time, we have Cǫ (x, y) ≤ πǫ (x) ∧ πǫ (y).Therefore
∑

x∈Σ−

∑

y∈Σ+

Cǫ (x, y) ≤ d
∣∣Σ−∣∣ exp

(
−1

ǫ

(
Fǫ (0) + δ2

)) (5.1.118)
and ∑

x∈∂−Wδ

∑

y∈∂+Wδ

Cǫ (x, y)
(
h+ (x) − h+ (y)

)2

≤
∣∣∂+Wδ

∣∣ exp

(
−1

ǫ

(
Fǫ (0) + δ2

))
, (5.1.119)
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be
ause h+ = 0 on ∂−
mWδ and h+ = 1 on ∂−

n Wδ and the inequality (5.1.110).Sin
e F has 
ompa
t level sets and δ =
√

kǫ |ln ǫ|, these term are negligible.Now we estimate the �rst summand of (5.1.117). By a quadrati
 approx-imation inside Wδ we obtain
ΦWδ

(
h+
)

= K (ǫ) exp (−Fǫ (0) /ǫ)
(
1 + O

(
δ3/ǫ

))
, (5.1.120)where K (ǫ) is de�ned by

K (ǫ)

:=
∑

x∈Wδ

fǫ (x)
d∑

i=1

pi (0)
(
h+ (x + qiei) − h+ (x)

)2
. (5.1.121)

With (5.1.116) we 
an estimate
K (ǫ)

≤ (1 + O (δ))

‖a‖2 N2

∑

x∈Wδ

fǫ (x)

(
max

λ∈[k(x),k(x)+1)
{fǫ (λa)}

)−2

. (5.1.122)
The 
ru
ial point is that the sum over i ∈ {1, . . . , d} vanishes. We useProposition 5.13 and De�nition 5.14 to bring the non-disjoint sets Er,t intothe pi
ture. They provide for every i ∈ {1, . . . , d} and z ∈ Wδ:

∑

y∈Er,t:yd=zd

ϕ
(r,t)
i (y) =

∑

Es,u∋z

ϕ
(s,u)
i (z) = 1. (5.1.123)

Therefore we 
an pro
eed like
∑

x∈Wδ

fǫ (x)

(
max

λ∈[k(x),k(x)+1)
{fǫ (λa)}

)−2

≤
∑

Er,t∈Ŵδ

∑

x∈Er,t

fǫ (x)
d∑

i=1

ϕ
(r,t)
i (x)

a2
i

‖a‖2 ×

×
(

max
λ∈[t,t+1)

{fǫ (λa)}
)−2 (

1 + O
(
δ3/ǫ

))

= ‖a‖2 cap (E, c̃)
∑

Er,t∈Ŵδ

max
x∈Er,t

fǫ (x) ×

×
(

max
λ∈[t,t+1)

{fǫ (λa)}
)−2 (

1 + O
(
δ3/ǫ

))
. (5.1.124)
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The last equation holds, be
ause De�nition 5.14(b) and Proposition 5.13provides
1

‖a‖4

∑

x∈Er,t

d∑

i=1

ϕ
(r,t)
i (x) a2

i = cap (E, c̃) . (5.1.125)
Inserting equation (5.1.124) into (5.1.122) provides with the help small shiftsof element to get the parametrisation (5.1.99):

K (ǫ) /cap (E, c̃)

≤
∑

Er,t∈Ŵδ

(
max
x∈Er,t

fǫ (x)

)(
max

λ∈[t,t+1)
fǫ (λa)

)−2

×

×
(
∑

t∈Tδ

(
max

λ∈[t,t+1)
fǫ (λa)

)−1
)−2 (

1 + O
(
δ3/ǫ

))

=
∑

ρ∈2Rδ

exp

(
− ǫ

2
ℓ2

d−1∑

i=1

λ̂iρ
2
i

)
×

×
(
∑

t∈Tδ

exp
(
− ǫ

2
‖a‖2 λ̂dt

2
))−1 (

1 + O
(
δ3/ǫ

))

≤ k (ǫ) /cap (E, c̃)
(
1 + O

(
δ3/ǫ

))
. (5.1.126)Therefore the upper bound 
oin
ides with the lower bound up to these error,and we are done. Sin
e the expressions for the upper and lower bound of

cap (m,n) agrees in this pre
ision before an expli
it evaluation of the sumsin (5.1.126), it should be possible to get the same result for more generalgraphs.
Non rational dire
tions.To prove the 
ase z ≡ Q−1wd /∈ Qd, we �rst observe that z is an elementof the one-dimensional eigenspa
e asso
iated to the negative eigenvalue, λd,of A := Q−1∇2Fǫ (0). Consider an in
reasing sequen
e zn ∈ Qd su
h that
‖zn − z‖2 < 1 and limn→∞ zn = z. Choose r ∈ R, su
h that Uδ∪Wδ ⊂ Br (0),the ‖·‖1-ball in Λq. Let Dv,w : Rd → Rd be the rotation from v to w, su
hthat Dv,w (x) = x for x ∈ Rd \ span (v, w).82



We de�ne gn ∈ C∞ (Rd
) with the following properties: gn is bije
tive and

gn (x) =

{
Dzn,z (x) for x ∈ Br (0) ,
x for x /∈ Br+1 (0) .

(5.1.127)Consider now the sequen
e of fun
tions Fǫ,n := Fǫ ◦ gn. Then
Q−1∇2Fǫ,n (0) = DT

zn,zADzn,z (5.1.128)has an eigenve
tor DT
zn,zz = zn ∈ Qd asso
iated to λd. By 
onstru
tion

Fǫ,n → Fǫ uniformly.We denote by πǫ,n the probability measure given by
πǫ,n (x) =

1

Zǫ,n
exp

(
−1

ǫ
Fǫ,n (x)

) (5.1.129)with normalisation Z =
∑

exp
(
−1

ǫ
Fǫ,n (x)

). We de�ne a Markov pro
ess
ξǫ,n by putting

pǫ,n (x, y) := gǫ (x, y) min

(
1,

πǫ,n (y)

πǫ,n (x)

)
. (5.1.130)Apparently ξǫ,n is reversible with respe
t to πǫ,n. Moreover, pǫ,n → pǫ inthe operator-norm asso
iated to l2 (πǫ). Sin
e a Markov 
hain is uniquelydetermined by its transition matrix and the sequen
e (Lǫ,n) is uniformlytight, we obtain (see e.g. Theorem 15.5 on p. 127 in Billingsley [Bil68℄) that

ξǫ,n → ξǫ in D ([0,∞),Λ).Therefore the sto
hasti
 representation of hA,B of Proposition 3.4 yields
hn

A,B → hA,B pointwise. We estimate
∥∥en

A,B − eA,B

∥∥
πǫ

=
∥∥Lǫ,nh

n
A,B − LǫhA,B

∥∥
πǫ

≤
∥∥Lǫ,n

(
hn

A,B − hA,B

)∥∥
πǫ

+ ‖(Lǫ,n − Lǫ) hA,B‖πǫ

≤ ‖Lǫ,n‖∞
∥∥(hn

A,B − hA,B

)∥∥
πǫ

+ ‖Lǫ,n − Lǫ‖∞ ‖hA,B‖πǫ
.(5.1.131)Here we used again the operator norm

‖L‖∞ := sup
h∈l2(πǫ)

‖Lh‖πe

‖h‖πe

. (5.1.132)
Therefore en

A,B → eA,B in l2 (πǫ) and the 
apa
ity of ξǫ is also the limit of the
apa
ities of the approximating Markov pro
esses ξǫ
n. �
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Remark 5.17 (Re
tangular latti
es) Consider the 
ase of a re
tangular lat-ti
e, i.e. Λǫr := Λ ∩
(
×d

i=1 (ǫriZ)
). This problem 
an be redu
ed to the onetreated before: Let τ ∈ Rd×d be the diagonal matrix with entries τii := riand put f̌ := f ◦ τ for every fun
tion f : Λǫr → R. Then the Diri
hlet form
an be transformed by a substitution y := τ−1x as follows:

ΦΓs
(h) =

∑

x∈Λǫr

d∑

i=1

Ci (x) (h (x + ǫriei) − h (x))2

=
∑

y∈Λǫ

d∑

i=1

Či (y)
(
ȟ (y + ǫei) − ȟ (y)

)2 (5.1.133)
We approximate Či in the neighbourhood of a relevant saddle s through

Či (y) = piπ̌ǫ (y) (1 + O (δ))

= pie
Fǫ(s)/ǫe〈y,τBτy〉 (1 + O (δ)) (5.1.134)with B := ∇2Fǫ (s). Now Theorem 5.7 yields that

cap (m,n) =

(
2π

ǫ

)d/2−1 |λr|√
|det∇2Fǫ (s)|

×

× exp (−Fǫ (s) /ǫ) (1 + O (δ)) , (5.1.135)where λr is the unique negative eigenvalue of τ 2p · (∇2Fǫ (s)).
Several relevant saddlesNow we treat the 
ase of �nitely many relevant saddle points, i.e.

Sǫ (m,M\ m) = {si | i ∈ J} , (5.1.136)where the 
ardinality |J | does not depend on ǫ. We show that the transitionover ea
h saddle point 
an be 
onsidered separately.In the following de�nition we use that we have only quadrati
 essentialsaddle points.De�nition 5.18 Let A and B ⊂ Λ be disjoint and 
ompa
t. Assume
|S(A,B)| ≥ 2. We 
all the relevant saddle points in S(A,B) serial if ev-ery optimal path γ ∈ O(A,B) visits all of them. The other extreme areparallel saddle points: We 
all a set of relevant saddle points parallel if thereis no optimal path that visits two of them.84



Corollary 5.19 Let ξǫ be a family of Markov 
hains that satis�es the as-sumptions of Theorem 5.7.(a) Then we obtain for parallel relevant saddle points
cap (m,M\ m) =

(
2π

ǫ

)d/2−1∑

i∈J

λ̂
(i)
d√

|det∇2Fǫ (si)|
e−

1
ǫ
F̂ǫ(m,Mǫ\m) ×

×(1 + O
(√

ǫ |ln ǫ|3/2
)
). (5.1.137)

(b) For serial relevant saddle points we obtain
cap (m,M\ m)

=

(
2π

ǫ

)d/2−1
[
∑

i∈J

√
|det∇2Fǫ (si)|

λ̂
(i)
d

]−1

e−
1
ǫ
F̂ǫ(m,Mǫ\m) ×

×(1 + O
(√

ǫ |ln ǫ|3/2
)
). (5.1.138)

Here, −λ̂
(i)
d is the unique negative eigenvalue of (pj (si) ∂j∂kFǫ (si))j,k.

Remark 5.20 Observe, that 
ase (b) 
an only o

ur, if the potential Fǫ haslo
al minima, that does not belong to Mǫ.In the general 
ase we have a graph stru
ture between the relevant saddlepoints. This 
an, as the 
ases of parallel and serial saddles, be treated likean ele
tri
al network, where we want to 
al
ulate the e�e
tive 
ondu
tan
e,given the 
ondu
tan
e of all edges.
Proof. The proof of Theorem 5.7 shows that under our assumptions theprefa
tor of the 
apa
ity is determined by a neighbourhood of the rele-vant saddle points of radius δ ≡

√
kǫ |ln ǫ| with k > 0 
onstant. Denoteby Ai :=

⋃
j∈J\i B

√
ǫ|ln ǫ| (si) the union of balls with radius √

ǫ |ln ǫ| around
Sǫ (m,Mǫ \ m) \ si for i ∈ J .ad (a). There exists disjoint optimal paths γi ∈ O(m,Mǫ \m), su
h that
si ∈ γj i� i = j and therefore the a priori bounds are valid and we 
an 
hoose85



neighbourhoods Ui := U
(i)
δ of si, su
h that

cap (m,Mǫ \ m) =
∑

i∈J

ΦUi

(
hm,Mǫ\m

)
(1 + O (δ))

=
∑

i∈J

inf
hi

ΦUi
(hi) (1 + O (δ))

= π (m)
∑

i∈J

Pm

(
τMǫ\m < τm∪Ai

)
(1 + O (δ)) .(5.1.139)

The expli
it form follows with Theorem 5.7. We 
an also apply the methodof the upper bound: then the neighbourhoods in the separatrix 
an be 
hosenseparately.ad (b). Denote n := |J |. We 
hoose an optimal path γ ∈ O(m,Mǫ \m).By de�nition γ visits all relevant saddle points between m and Mǫ \ m. Wearrange them as (si) a

ording to their appearan
e in γ. Now we de�ne
x0 = m and let xi be the �rst minimum γ visits between si and si+1 for
1 ≤ i ≤ n − 1. Moreover, let xn be the �rst minimum γ visits in Mǫ \ m.Denote by

Fi,j := {f : Gǫ → R | f unit �ow from xi to xj} , (5.1.140)
then it follows with Thompson's prin
iple (3.2.8):

1

cap (m,M\ m)
= inf

f∈F0,n

∑

x,y∈Λǫ

1

Cxy

f2
xy

= inf
f∈F0,n

n∑

i=1

∑

x,y∈Ui

1

Cxy

f2
xy

(
1 + O

(
δ3/ǫ

))

=
n∑

i=1

inf
fi∈Fi−1,i

∑

x,y∈Ui

1

Cxy

(fi)
2
xy

(
1 + O

(
δ3/ǫ

))

=
n∑

i=1

1

cap (xi−1, xi)

(
1 + O

(
δ3/ǫ

))
. (5.1.141)

The expli
it form follows again with Theorem 5.7. �
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5.2 Eyring-Kramers formulaWe will use now Proposition 3.21 to 
ompute mean hitting times. Startingfrom a minimum m ∈ Mǫ, the �rst quantity we are interested in is theexpe
ted time ξǫ needs to 
hange over to Mǫ \ m.To get expli
it formula we introdu
e another assumption on Fǫ, namelyF3 The fun
tion Fǫ has exponentially tight level sets, i.e. there exists ca > 0independent of ǫ and at most polynomial in a su
h that
∑

x∈Λǫ:Fǫ(x)≥a

exp

(
−1

ǫ
Fǫ (x)

)
≤ caǫ

−d exp
(
−a

ǫ

)
. (5.2.1)

We need this assumption to estimate integral by the Lapla
e method, seeAppendix, Proposition B.2.The main theorem in this se
tion isTheorem 5.21 (Eyring-Kramers formula) Let Mǫ be the set of lo
al min-ima of Fǫ. Let m ∈ Mǫ and I ⊂ Mǫ \ m su
h that for all n ∈ Mǫ \ (I ∪ m)the barriers satis�es
Bǫ(m,n) > Bǫ(n, I) (5.2.2)or
Bǫ(n,m) < Bǫ(n, I). (5.2.3)Then

Em (τI) = ǫ−d/2 (2π)d/2

cap (m, I)

∑

n∈VI(m)

1√
det (∇2F (n))

e−F (n)/ǫ ×

×(1 + O
(√

ǫ |ln ǫ|3/2
)
) (5.2.4)

The sum is meant to rea
h all n ∈ Mǫ \ I and in parti
ular in
ludes always
n = m.Proof. Proposition 3.21 yields in our setting

Em

(
τMǫ\m

)
=

1

cap (m,Mǫ \ m)

∑

y/∈Mǫ\m
πǫ (y) hm,Mǫ\m (y) . (5.2.5)
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The a priori estimates on the equilibrium potential hm,Mǫ\m, see Corol-lary 4.11, are qualitatively of the same form as in the 
ontinuous 
ase, see[BEGK04℄, Corollary 4.8, p. 414. Moreover, Proposition B.2 of the appendixreveals that also the Lapla
e asymptoti
s are, up to a fa
tor ǫ−d, the sameas in the 
ontinuous 
ase. Hen
e the proof is identi
al to the one of Theorem6.2, p. 420 in [BEGK04℄. Observe that the range of the sum in ([BEGK04℄)is
n : F̂ǫ (m,n) < F̂ (n, I) . (5.2.6)This is indeed the same as ours, sin
e if n satis�es (5.2.6) then m ∈ VI(n)and hen
e also n ∈ VI(m). �

5.3 The global pi
tureIn this se
tion we summarise the results of [BEGK01℄ and apply our morepre
ise estimates of the 
apa
ity. For the results on admissible transitions,we need the following stronger assumptions:T1 Given any two minima m,n ∈ Mǫ the set of relevant saddle points
Sǫ (m,n) 
ontains a unique element s∗ (m,n).T2 Fǫ 
an be represented as Fǫ = F0,ǫ + ǫF1,ǫ, where F1,ǫ is Lips
hitz and
F0,ǫ is twi
e Lips
hitz, i.e. for i ∈ {1, 2}

|Fi,ǫ (x) − Fi,ǫ (y)| ≤ C ‖x − y‖1 (5.3.1)and moreover
‖∇ǫF0,ǫ (x) −∇ǫF0,ǫ (y)‖∞ ≤ C ‖x − y‖1 , (5.3.2)where ‖x‖∞ = max1≤i≤d |xi| is the maximum norm in Rd.Notation 5.22 In 
ase assumption T1 holds and s ≡ s∗ (m,n), we denotethe valley V

(ǫ)
n (m) also by Vs (m).Assumption S2 yields that all essential saddle points are quadrati
. Therefore

Vs 
onsists of two 
omponents, that we denote by V ±
s with the understanding,that

inf
x∈V +

s

Fǫ (x) < inf
x∈V −

s

Fǫ (x) (5.3.3)
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holds.Under assumption of uniqueness of the relevant saddle points the stru
-ture of the lands
ape Fǫ is en
oded in a tree stru
ture, that we de�ne on theset Mǫ ∪ Eǫ. De�ne for any essential saddle s ∈ Eǫ the two �
hildren�
a±

s =

{
arg max {Fǫ (x) |x ∈ Eǫ ∩ V ±

s } for Eǫ ∩ V ±
s 6= ∅,

Mǫ ∩ V ±
s else. (5.3.4)

Note, that the set Mǫ ∩ V ±
s 
onsists of a single point, if Eǫ ∩ V ±

s = ∅. Nowdraw a link from any essential saddle to the two points a±
s . This produ
es a
onne
ted tree, Tǫ, with underlying set Eǫ ∪Mǫ having the property, that allleaves are lo
al minima, while all other points are essential saddle points.An alternative way to 
onstru
t this tree is by starting from below: Fromea
h lo
al minimum draw a link to the lowest essential saddles 
onne
tingit to other minima. Then from ea
h saddle point, that was rea
hed before,draw a line to the lowest saddle point above it, that 
onne
ts it to furtherminima. Continue until all minima are 
onne
ted. Sin
e we have assumedthat there is always a unique relevant saddle point between two minima, bothpro
edures give a unique answer. Denote by Ts,x the bran
h of Tǫ emanatingfrom s, that 
ontains x and by Ts the union of the two bran
hes emanatingfrom s.The tree Tǫ indu
es a natural hierar
hi
al distan
e between two points in

Eǫ ∪Mǫ, given by the length of the shortest path on Tǫ needed to join them.This distan
e en
odes the all information on the time s
ales of �exits� fromvalleys. What is missing, is how the pro
ess des
ends into a neighbouringvalley after su
h an exit. It turns out, that all we need to know in addition,is whi
h minimum the pro
ess visits �rst after 
rossing a saddle point. Ingeneral, the pro
ess has the option to visit various minima �rst with 
ertainprobabilities. We will here only refer to the 
ase, where Fǫ is su
h, that thereis always one minimum that is visited �rst with overwhelming probability.This situation is dis
ussed in [BG99℄ and they showed, that under 
onditionT one 
an 
onstru
t a 
ertain deterministi
 dynami
al system, whi
h sele
tsin every valley, Vs (x) a unique minimum, that is �rst visited after entering thevalley through the saddle point s. To make this more pre
isely, we introdu
ethe event
Tǫ (x, y) := {τy ≤ τ (Vs (x)c ∩Mǫ) and ξǫ

0 = x} , (5.3.5)where x, y ∈ M, s = s∗ (x, y) and Vs (x)c ≡ Λǫ \Vs (x). In words y is the �rstminimum outside the valley Vs (x), that the Markov pro
ess ξǫ is visiting.89



Bovier and Gayrard showed by using large deviation estimates on thepath spa
e (look [BEGK01℄, Prop 4.3, p. 125)Proposition 5.23 Let m,n ∈ Mǫ and s ≡ s∗ (m,n) their unique relevantsaddle. Assume T2 and that the probability for ξǫ when started in m to rea
ha δ-neighbourhood of the boundary of Λ in �nite time T is exponentially small.Then there exists a unique minimum x ∈ Vs (n) and α > 0, su
h that
Pm (Tǫ (m,x)) ≥ 1 − e−ǫ−α

. (5.3.6)This proposition motivates the followingDe�nition 5.24 A pair of minima (m,n) ⊂ Mǫ is 
alled 
onne
ted, if1. m is the deepest minimum in the valley Vs (m) for s = s∗ (m,n),2. n is the unique minimum in Vs (n), su
h that Pm (Tǫ (m,n)) ≥ 1 −
e−Kǫ/ǫ.In this 
ase the event Tǫ (x, y), de�ned by (5.3.5) is 
alled an admissibletransition. Note, that the number of points 
onne
ted to a spe
ial m ∈ Mǫis of 
ourse greater or equal to one and 
an be arbitrary large.As [BEGK01℄ pointed out, the rough estimate of Corollary 4.11 showsthat ea
h transition 
an be de
omposed into a sequen
e of admissible transi-tions. The time s
ale for the transition is determined by the �rst admissibletransition, be
ause this involves the relevant saddle point between the start-ing point and the end point.Another result we take from [BEGK01℄, Prop 5.5, p. 139, isProposition 5.25 Let s ∈ Eǫ and m ∈ Vs the deepest minimum of Vs (m) .Then for β < α,

Em (τm | τm < τ (Vs (m)c ∩Mǫ)) =
πǫ (Vs (m))

πǫ (m)

(
1 + O

(
e−ǫ−β

))
. (5.3.7)This shows, that the expe
ted re
urren
e time at m without leaving thevalley Vs (m) is up to exponentially small errors equal to the same timeof the restri
ted Markov 
hain ξ̃ǫ with state spa
e V ≡ Vs (m) ⊂ Λǫ andtransition probabilities

p̃ǫ (x, y) :=





pǫ (x, y) if x ∈ V, y ∈ Nx ∩ V
1 −∑z∈Nx∩V pǫ (x, z) if y = x ∈ V
0 else. (5.3.8)
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Let π̃ǫ be the invariant measure of ξ̃ǫ, then obviously
π̃ǫ (B) = πǫ (B ∩ V ) /πǫ (V ) . (5.3.9)Using the ergodi
 Theorem (see see [HLL03℄, Proposition 3.3.1, p. 44), weobtain
Ẽmτm =

1

π̃ǫ (m)
=

πǫ (V )

πǫ (m)
. (5.3.10)We have seen that ξǫ will 
hoose with overwhelming probability the wayover the relevant saddle point s∗ (m,n) to 
hange over to another minimum

n ∈ Mǫ. There is of 
ourse some probability, that it will take a 
ompletelydi�erent way. We will 
ompute the mean hitting time τn for ξǫ starting in mand 
onditioned that (m,n) is a pair of 
onne
ted minima.Theorem 5.26 Let m,n ∈ Mǫ and Bδ (m) the ball with radius δ around
m. Assume that (m,n) are 
onne
ted minima and there is a unique relevantsaddle point s = s∗ (m,n) between m and n. Assume, there exists c > 0small, su
h that for δ > 0 small enough

Fǫ (x) ≥ Fǫ (m) + cδ2 for all x ∈ Vs (m) \ Bδ (d) . (5.3.11)Then Pm (Tǫ (m,n)) 
onverges for ǫ ↓ 0 exponentially fast to one and theEyring-Kramers formula is valid, i.e.
Em (τn |Tǫ (m,n))

=
2π

ǫλ̂d (q)

√
|det∇2Fǫ (s)|√
det∇2Fǫ(m)

exp

(
1

ǫ
Bǫ (m,n)

)(
1 + O

(
δ3

ǫ

))
.(5.3.12)

Proof. Suppose ξǫ starts in x ∈ Λǫ. Let I ⊂ Λǫ and y /∈ I ∪ x. We willderive another renewal equation by splitting the events that ξǫ returns to xor goes dire
tly to y :

Ex (τy | τy < τI)

= Px (τI∪y < τx) Ex (τy | τy < τI∪x)

+Px (τx < τI∪y) (Ex (τx | τx < τI∪y) + Ex (τy | τy < τI)) . (5.3.13)Therefore
Ex (τy | τy < τI) =

Ex (τx | τx < τI∪y)

Px (τI∪y < τx)
Px (τx < τI∪y) +

+Ex (τy | τy < τI∪x) . (5.3.14)91



We will use this equation now for x = m, y = n and I = (Vs (m)c ∩Mǫ) \
n. Bovier et al. proved (
ompare their proof of Theorem 5.1, page 137 in[BEGK01℄), that in this 
ase equation 5.3.14 
an be estimated as

Em (τn | τn < τI) =
Em (τm | τm < τI∪n)

Pm (τI∪n < τm)

(
1 + O

(
e−ǫα))

. (5.3.15)
With the help of Proposition 5.25 and the de�nition of the 
apa
ity, we obtain

Em (τn | τn < τI) =
πǫ (Vs (m))

cap (m, I ∪ n)

(
1 + O

(
ǫ−κe−Kǫ/ǫ

))
. (5.3.16)

Sin
e we have assumed 
ondition (5.3.11), we 
an now dire
tly apply theLapla
e method, see Appendix, Proposition B.1, and obtain
∑

y∈Vs(m)

e−Fǫ(y) ≤
(
det∇2Fǫ (m)

)−1/2
(

2π

ǫ

)d/2

e−Fǫ(m)/ǫ
(
1 + O

(√
ǫ
))

.(5.3.17)The 
apa
ity cap (m, I ∪ n) 
an be estimate with Theorem 5.7, be
ause
s∗ (m, I ∪ n) = s∗ (m,n). Inserting these results into the formula for the
onditioned mean hitting time (5.2.5) yields the Eyring-Kramers formula forthe latti
e

Em (τn |Tǫ (m,n))

=
2π

ǫ

1

λ̂d (q)

√
|det∇2Fǫ (s)|√
|det∇2Fǫ (m)|

eBǫ(m,n)/ǫ

(
1 + O

(
δ3

ǫ

))
. (5.3.18)

�

5.4 Dis
rete approximation of SDELet Λ ⊂ Rd be an open 
onne
ted set. Let F ∈ C3 (Λ) with exponentiallytight level sets, i.e.
∫

x∈Λ:F (x)≥a

e−F (x)/ǫdx ≤ cae
−a/ǫ. (5.4.1)
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In the following, we will 
onstru
t the generator of a Markov pro
ess with
ontinuous time, that provides a dis
rete version of the sto
hasti
 di�erentialequation
dXt = ∇F (Xt) dt +

√
2ǫdBt. (5.4.2)Denote Λh := Λ∩hZd and let Γh = (Λh, Gh) be the graph with edges betweennearest neighbours. We 
hoose h small enough so that Λh is a 
onne
tedgraph. We de�ne on Γh:

∇hf (x) :=
1

h
√

2
(f (y) − f (x))y∈Nx

, (5.4.3)
divhZ (x) :=

1

h
√

2

∑

y∈Nx

(Z (x, y) − Z (y, x)) , (5.4.4)
∆hf (x) :=

1

h2

∑

y∈Nx

(f (y) − f (x)) . (5.4.5)
Note that with this de�nitions and the s
alar produ
ts

〈f, g〉 :=
∑

x∈Λh

f (x) g (x) (5.4.6)
on l2 (Λh) and

〈Y, Z〉 =
∑

x∈Λh

∑

y∈Nx

Y (x, y) Z (x, y) (5.4.7)
on l2 (Gh), the following relations are valid

〈∇hf, Z〉 = −〈f, divhZ〉 , (5.4.8)
〈∇hf,∇hf〉 = −〈f,∆hf〉 . (5.4.9)Now 
onsider the generator of the di�usion pro
ess Xǫ

t

L = ǫeF/ǫdiv
(
e−F/ǫ∇

)
. (5.4.10)It's dis
rete analogue on Λh is

Lh = ǫeF/ǫdivh

(
e−F/ǫ∇h

)
. (5.4.11)Therefore

Lhf (x) =
ǫ

2h2
eF (x)/ǫ

∑

y∈Nx

(
e−F (x)/ǫ + e−F (y)/ǫ

)
(f (y) − f (x))

=
ǫ

2h2

∑

y∈Nx

(
1 + e(F (x)−F (y))/ǫ

)
(f (y) − f (x)) . (5.4.12)
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This is the generator of a 
ontinuous time Markov pro
ess ζh with rates
rh (x, y) =

ǫ

2h2

(
1 + e(F (x)−F (y))/ǫ

) for y ∈ Nx, (5.4.13)
rǫ (x, x) = −∑y∈Nx

rǫ (x, y) and zero else. Therefore ζh is stable and 
onser-vative. The embedded Markov 
hain, ξh, has a transition matrix
pǫ (x, y) :=

rǫ (x, y)

|rǫ (x, x)| =
1 + e(F (x)−F (y))/ǫ

∑
z∈Nx

(1 + e(F (x)−F (z))/ǫ)
. (5.4.14)

ξǫ is irredu
ible and has reversible probability measure, νǫ, given by
νǫ (x) =

∑
y∈Nx

(
1 + e(F (x)−F (y))/ǫ

)

4d
∑

z∈Λh
e−F (z)/ǫ

e−F (x)/ǫ. (5.4.15)
Hen
e ξǫ is positive re
urrent. Therefore ζǫ is nonexplosive.The invariant probability measure of ζh is

πh (x) =
1

Zh

exp (−F (x) /ǫ) (5.4.16)
with normalisation fa
tor Zh :=

∑
x∈Λh

exp (−F (x) /ǫ).To show a 
onvergen
e result of ζh, we look at it as a pro
ess on theSkorohod spa
e D ([0,∞) ,Λ).
Theorem 5.27 The Markov pro
esses ζh given by Lh 
onverges in D ([0,∞) ,Λ)for h → 0 to the di�usion Xǫ on Λ with generator L .
Proof. First we show, that

Lhf (x) → L f (x) (5.4.17)94



for every f ∈ C2
b (Λ). Consider the following 
al
ulation

1

2h2

∑

y∈Nx

(
e−F (x)/ǫ + e−F (y)/ǫ

)
(f (y) − f (x))

=
1

2h2

d∑

i=1

e−F (x+hei)/ǫ (f (x + hei) − f (x)) −

−e−F (x)/ǫ (f (x) − f (x − hei)) +

+e−F (x)/ǫ (f (x + hei) − f (x)) −
−e−F (x−hei)/ǫ (f (x) − f (x − hei))

=
1

2h

d∑

i=1

e−F (x+hei)/ǫ∂if (x + hei) − e−F (x)/ǫ∂if (x)

+e−F (x)/ǫ∂if (x) − e−F (x−hei)/ǫ∂if (x − hei) + R (h)

→ div
(
e−F (x)/ǫ∇f (x)

) for h ↓ 0. (5.4.18)The 
orre
tion term R is de�ned by
R (h)

=
1

2h

d∑

i=1

e−F (x)/ǫ (∂if (x) − ∂if (x + (h − ξ1) ei)) +

+e−F (x+hei)/ǫ (∂if (x + (h − ξ1) ei) − ∂if (x + hei)) +

+e−F (x)/ǫ (∂if (x) − ∂if (x − (h − ξ2) ei)) +

+e−F (x−hei)/ǫ (∂if (x − hei) − ∂if (x − (h − ξ2) ei))

→ 0 for h ↓ 0. (5.4.19)Here the mean value theorem yields ξ1, ξ2 ∈ (0, h), i.e. small real numbers,going to 0 for h ↓ 0.We still have to show the tightness of (Ph)h∈(0,1), the laws of (ζh)h∈(0,1) in
D ([0,∞) ,Λ). To do this, we introdu
e its modulus of 
ontinuity, wζh

by
wζh

(δ) := sup
|s−t|<δ

‖ζh (s) − ζh (t)‖ . (5.4.20)
Now we use Theorem 15.5 on p. 127 of Billingsley [Bil68℄, that says
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Proposition 5.28 Suppose that for ea
h positive η, there exists an a ∈ Rsu
h that
Ph (|ζh (0)| > a) ≤ η, ∀h < 1. (5.4.21)Suppose further that, for ea
h positive κ and η, there exist a δ ∈ (0, 1), andan h0 ∈ (0, 1), su
h that
Ph (wζh

(δ) ≥ κ) ≤ η, ∀h ≤ h0. (5.4.22)Then (Ph)h∈(0,1) is tight, and, if P is the weak limit of a subsequen
e (Ph′),then P (C) = 1.To verify the 
onditions of Proposition 5.28 �rst noti
e, that the �rst 
ondi-tion is satis�ed if the pro
esses ζh are started in single points xh, su
h that
limh↓0 xh = x ∈ Λ. To show the se
ond 
ondition we assume κ < ǫ anddenote by σ1 the time of the �rst jump of ζh. Hen
e σ1 is a random variablewith exponential distribution and parameter rǫ (x) :=

∑
y∈Nx

rǫ (x, y), where
x denotes the starting point of ζh. We denote the transition probability of
ζh by ph, that means

ph (t, x, y) = Px (ζh (t) = y) . (5.4.23)We obtain for a �xed starting point x ∈ Λh :

Px

(
sup

s<t<s+δ
‖ζh (t) − ζh (s)‖ ≥ κ

)

≤ sup
s

∑

y∈Λh

Px (ζh (s) = y) Py (σ1 < δ)

= sup
s

∑

y∈Λh

ph (s, x, y)
(
1 − e−rǫ(y)δ

)
. (5.4.24)

Denote by A (x) := {y ∈ Λh | ∃z ∼ y, s.t. max {F (y) , F (z)} < F (x)}. Sin
e
F has exponentially tight level sets (5.4.1) A (x) is a 
ompa
t set. Moreoverwe obtain

ph (s, x, y) ≤ e−(F (y)−F (x))/ǫ for y /∈ A (x) , (5.4.25)sin
e the pro
ess has to 
limb onto the level F (y).
ζh is an irredu
ible time-
ontinuous Markov pro
ess. Hen
e a �xed start-ing point x and t > 0, ph (t, x, y) > 0 for all y ∈ Λh. Therefore the hdependen
e of ph has the form

ph (t, x, y) = hdg (t, x, y) (1 + o (1)) (5.4.26)96



to allow∑y∈Λh
ph (t, x, y) = 1. This yields up to multipli
ative errors (1 + o (1))in h :

Px

(
sup

s<t<s+δ
‖ζh (t) − ζh (s)‖ ≥ κ

)

≤ δ
∑

y∈A(x)

hdrǫ (y) +
∑

y∈A(x)c

hde−(F (y)−F (x))/ǫrǫ (y)

= δ
∑

y∈A(x)

∑

z∈Ny

hd
(
1 + e(F (y)−F (z))/ǫ

)
+

+eF (x)/ǫ
∑

y∈A(x)c

∑

z∈Ny

hd
(
e−F (y)/ǫ + e−F (z)/ǫ

)

≤ δ
(
2deF (x)/ǫhd |A (x)| + 4dcF (x)

)
, (5.4.27)where we have used again (5.4.1). �Now we 
onsider the 
ase h = ǫ.Corollary 5.29 (of Theorem 5.7 and Theorem 5.21) Assume F ∈ C3 (Λ)has exponentielly tight level sets and satis�es the 
onditions S1-S3. Let ζǫbe the 
ontinuous time Markov pro
ess with statespa
e Λǫ and generator Lǫgiven by (5.4.11). Let M be the set of lo
al mimima of F . Let I, J ⊂ Mǫwith I ∩ J = ∅ and assume s ≡ s∗ǫ (I, J) is the unique relevant saddle pointbetween them. Then the 
apa
ity of ζǫ is given by

cap (I, J) =

(
2π

ǫ

)d/2−1
λd√

|det∇2F (s)|
exp (−F (s) /ǫ)∑

x∈Λǫ
e−F (x)/ǫ

×

×
(
1 + O

(√
ǫ |ln ǫ|3/2

))
, (5.4.28)where −λd is the unique negative eigenvalue of ∇2F (s) .The expe
ted hitting times between lo
al minima are given by Theorem5.21.Proof. Let ξǫ be the embedded Markov 
hain of ζǫ, whose transition proba-bility is given by (5.4.14). We 
ompare it with the Metropolis Markov 
hainof πǫ, given in (5.4.16). The Metropolis algorithm has a transition matrix

pM
ǫ on the Λǫ with

pM
ǫ (x, y) =

1

2d
e−[F (y)−F (x)]+/ǫ for y ∈ Nx (5.4.29)
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and pM
ǫ (x, x) := 1 −∑y∈Nx

pM
ǫ (x, y) ≥ 0. The 
onne
tion to the pro
ess χǫis given by

pǫ (x, y) = gǫ (x, y) pM
ǫ (x, y) , (5.4.30)where gǫ is the symmetri
 fun
tion de�ned by

gǫ (x, y) = 2de[F (x)−F (y)]+/ǫ 1 + e(F (x)−F (y))/ǫ

∑
y∈Nx

(1 + e(F (x)−F (y))/ǫ)

=
2d
(
1 + e|F (y)−F (x)|/ǫ

)
∑

y∈Nx
(1 + e(F (x)−F (y))/ǫ)

. (5.4.31)
The fun
tion gi de�ned by gi (x) := gǫ (x, x + ǫei) is on K ⊂⊂ Λ boundedfrom below for ǫ small enough by

min
x∈K

1 + e|∂iF (x)|

1 + 2 maxd
j=1

(
e|∂jF (x)|) . (5.4.32)

Hen
e, 
ondition C1 is satis�ed. Moreover, 
ondition C2 is satis�ed, sin
e
gi is Lips
hitz 
ontinuous in a neighbourhood of a 
riti
al point s ∈ Λǫ. Weobtain

gi (s) = 2d
1 + e|F (s+ǫei)−F (s)|/ǫ

∑
z∈Ns

(1 + e(F (s)−F (z))/ǫ)

= 1 + O (ǫ) , (5.4.33)sin
e
F (s + ǫei) = F (s) +

1

2
ǫ2∂2

i F (s) . (5.4.34)Similarly the reversible probability measure νǫ of ξǫ given by
νǫ (x) =

∑
y∈Nx

(
1 + e(F (x)−F (y))/ǫ

)

4d
∑

z∈Λh
e−F (z)/ǫ

e−F (x)/ǫ (5.4.35)
satis�es

νǫ (s) =
e−F (s)/ǫ

∑
z∈Λh

e−F (z)/ǫ
(1 + O (ǫ)) . (5.4.36)Applying Theorem 5.7 yields formula (5.4.28) for the 
apa
ity cap (m,n).Apparently the 
onditions of Theorem 5.21 are also satis�ed. �
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Part III
Metastability in the Hop�eldmodel
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6 The Hop�eld model
6.1 The Hop�eld HamiltonianLet N be a natural number and 
onsider the vertexset

Λ := {1, . . . , N} . (6.1.1)Virtually all obje
ts we introdu
e will depend on N , so we will hide thisdependen
e in some 
ases. We 
all SN := {−1, 1}N the set of spin 
on�g-urations. Let {ξ1, . . . , ξM} be �xed spin 
on�gurations. We 
onsider theHop�eld Hamiltonian HN : SN → R≤0 given by
HN (σ) = − 1

2N

M∑

µ=1

〈ξµ, σ〉2 . (6.1.2)
Observe that several sites i ∈ Λ are subje
t to the same for
e

∂HN

∂σi

= − 1

N

M∑

µ=1

ξµ
i 〈ξµ, σ〉 . (6.1.3)

Therefore we 
an 
hange to a redu
ed representation of the Hop�eld model,in whi
h the independent degrees of freedom are d := 2M mean �eld variables.This transformation was �rst used by Grensing and Kühn in [GK86℄.Let {b1, . . . , bd} be a �xed enumeration of all ve
tors in {−1, 1}M . Any
hoi
e of M patterns 
an then be regarded as a map
ξ : i 7→ ξi ≡

(
ξ1
i , ξ

2
i , . . . , ξ

M
i

) (6.1.4)that asso
iates to ea
h site i ∈ Λ one of the ve
tors bk. Hen
e the map ξdetermines a partition of Λ into sets Λk given by
Λk := {i ∈ Λ | ξi = bk} . (6.1.5)We restri
t now the 
hoi
es of patterns su
h that ea
h Λk is non empty.Denote the number of sites in Λk by

ℓk := |Λk| , (6.1.6)101



therefore∑d
k=1 ℓk = N . Note that of 
ourse ℓk depends on N and ξ althoughthis is not indi
ated.Denote by LN := ×d

k=1

(
2
ℓk

Z
) the re
tangular latti
e with spa
ings 2/ℓk.We de�ne the set of mean �eld 
on�gurations to be

XN := [−1, 1]d ∩ LN (6.1.7)and the map XN : SN → XN by setting
XN,k (σ) :=

1

ℓk

∑

i∈Λk

σi. (6.1.8)
XN determines a partition of the spin 
on�guration spa
e SN into ξ depen-dent subsets SN (x) := X−1

N (x), indexed by x ∈ XN . We say that XN lumpstogether the sites in ea
h Λk. Noti
e, that XN maps the spa
e SN of asymp-toti
ally in�nite dimension to a subset of [−1, 1]d and therefore mean �eld
on�gurations are mu
h better to handle. Using the partition {Λk} of Λ, weobtain
〈ξµ, σ〉 =

d∑

k=1

∑

i∈Λk

ξµ
i σi

=

d∑

k=1

bµ
kℓkXN,k (σ) . (6.1.9)

Let L denote the diagonal matrix with entries Lkk := ℓk. We denote by Pthe orthogonal proje
tion of Rd onto the subspa
e spanned by the ve
tors{
b1, . . . , bM

}, i.e.
Pjk :=

1

d

M∑

µ=1

bµ
j b

µ
k . (6.1.10)

Then we may write
HN (σ) = − 1

2N

M∑

µ=1

〈bµ, LXN (σ)〉2

= − d

2N
|PLXN (σ)|2 . (6.1.11)
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Remark 6.1 We denote in this whole 
hapter the eu
lidean norm in any Rnby |·|.For any β ∈ R≥0 we de�ne the Gibbs measure π ≡ πN,β on the �nite set Λby setting:
π (σ) :=

1

ZN,β

e−βHN (σ). (6.1.12)Here, the partition fun
tion ZN,β :=
∑

σ∈S e−βHN (σ) is a normalising fa
tor.
6.2 Dynami
sTo model the dynami
s, we 
onstru
t a reversible Markov 
hain

σN,β = {σN,β (t)}t∈N0
(6.2.1)on SN . The kind of sto
hasti
 dynami
s we use is 
alled Glauber dynami
s,be
ause in ea
h time step only a single spin �ip o

urs. We denote by σi the
on�guration with spins

(
σi
)

j
=

{
σj for j 6= i,
−σj for j = i.

(6.2.2)In order to use the lumping pro
edure indu
ed by XN de�ned in (6.1.8),we 
hoose transition probabilities wN ≡ wN,β of the form
wN (σ, τ) :=





1
N

cN (XN (σ) , XN (τ)) min
(
1, π(τ)

π(σ)

)
, ‖τ − σ‖1 = 2,

1 −∑N
i=1 wN (σ, σi) , τ = σ,

0, else, (6.2.3)where cN : XN × XN → R≥0 is a symmetri
 fun
tion. Therefore σβ,N isreversible.We de�ne cN,k (x) := cN

(
x, x + 2

ℓk
ek

) for all 1 ≤ k ≤ d and assumeD there exists c > 0, independent of N , su
h that
cN,k (x) ≥ c (6.2.4)for all x ∈ ΛN and 1 ≤ k ≤ d. Moreover, we assume cN,k is Lips
hitz
ontinuous, more pre
isely there exists L > 0, independent of N , su
hthat

|cN,k (x) − cN,k (y)| ≤ L |x − y| for all x, y ∈ XN . (6.2.5)
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To lift σN,β onto the spa
e of mean �eld 
on�gurations, we de�ne a lineartransformation, AN , whi
h maps fun
tions on SN to fun
tions on XN by
(ANf) (x) :=

∑

σ∈SN (x)

f (σ) . (6.2.6)
Proposition 6.2 The 
hain ζN,β ≡ {ζN,β (t)}t∈N0

on the set XN of mean�eld 
on�gurations de�ned by ζN,β (t) := XN (σN,β (t)) is again a Markov
hain and has transition matrix, pN ≡ pN,β, given by
pN (x, y)

=





ℓk

2N
cN (x, y)

(
(1 − xk) ∧ (1 + yk)

̺(y)
̺(x)

)
, y = x + 2

ℓk
ek,

ℓk

2N
cN (x, y)

(
(1 + xk) ∧ (1 − yk)

̺(y)
̺(x)

)
, y = x − 2

ℓk
ek,

1 −∑y∈Nx
pN (x, y) , y = x,

0 else. (6.2.7)
ζN,β is reversible with respe
t to the new Gibbs measure ̺ ≡ ̺N,β that isdetermined by the Hamiltonian

HN,β (x) = − d

2N
|PLx|2 − 1

β
ln |SN (x)| . (6.2.8)

Remark 6.3 Observe that pN (x, y) > 0 for all nearest neighbours x, y. Toshow this, we assume without loss of generality that y = x + 2
ℓk

ek. Therefore
xk = yk − 2

ℓk
≤ 1− 2

ℓk
and hen
e (1 − xk) ≥ 2

ℓk
> 0. Analogously, 1 + yk ≥ 2

ℓkholds true.Proof. The Gibbs measure on XN is de�ned by
̺ (x) = (ANπ) (x) . (6.2.9)Sin
e π depends not on all information of σ but only on XN (σ) as we showedin (6.1.11), we 
an write with a slight abuse of notation

̺ (x) = |SN (x)| π (x) . (6.2.10)
̺ is the Gibbs distribution for the mean �eld Hamiltonian HN,β, given by

HN,β (x) = − d

2N
|PLx|2 − 1

β
ln |SN (x)| . (6.2.11)
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The matrix pN is de�ned by the equation pN (ANf) = AN (wNf). Inserting
x ∈ XN and putting f = 1SN (y) provides the form

pN (x, y) =
1

|SN (x)|
∑

σ∈SN (x)

∑

τ∈SN (y)

wN (σ, τ) . (6.2.12)
The Markov property holds, i� the probability to go from SN (x) to SN (y)does not depend on the starting point, i.e.

∑

τ∈SN (y)

wN (σ, τ) =
∑

τ∈SN (y)

wN (σ′, τ) (6.2.13)
for all σ, σ′ ∈ SN (x). To prove this, we show that the left hand side doesnot depend on σ. We denote the 
anoni
al basis of Rd by {e1, . . . , ed} andassume y = x + 2

ℓk
ek. If the mean �eld 
on�guration should in
rease in Λk,then the �ipped spin has to be a minus-spin. Hen
e
∑

τ∈SN

“
x+ 2

ℓk
ek

”
wN (σ, τ)

=
∑

i∈Λk

wN

(
σ, σi

)
δσi,−1

=
ℓk

2N
(1 − xk) cN (x, y)

(
1 ∧ |SN (x)| ̺ (y)

|SN (y)| ̺ (x)

)
. (6.2.14)

We used again that the Gibbs measure π (σ) depends only on X (σ), i.e.
π (σ) = ̺(XN (σ))

|S(XN (σ))| and the number of minus spins in Λk is 1
2
ℓk (1 − xk). For

y = x − 2
ℓk

ek we 
an derive analogously
∑

τ∈SN

“
x− 2

ℓk
ek

”
wN (σ, τ)

=
ℓk

2N
(1 + xk) cN (x, y)

(
1 ∧ |SN (x)| ̺ (y)

|SN (y)| ̺ (x)

)
. (6.2.15)

Sin
e these expressions does not depend on whi
h σ in SN (x) we have 
hosen,
ondition (6.2.13) is satis�ed and we obtain
pN (x, y) =

∑

τ∈S(y)

wN (σ, τ) for any σ ∈ SN (x) . (6.2.16)
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To simplify expression (6.2.14) we use
|SN (x)|∣∣∣SN

(
x + 2

ℓk
ek

)∣∣∣
=

(
ℓk

1
2
(ℓk + xkℓk)

)
/

(
ℓk

1
2
(ℓk + xkℓk + 2)

)

=
ℓk + xkℓk + 2

ℓk − xkℓk
=

1 +
(
xk + 2

ℓk

)

1 − xk
. (6.2.17)Plugging this into equations (6.2.14) and (6.2.15) we obtain the form givenin Proposition 6.2.The reversibility of pN with respe
t to ̺ follows dire
tly from equation(6.2.12):

̺ (x) pN (x, y) = π (x)
∑

σ∈SN (x)

∑

τ∈SN (y)

wN (σ, τ)

=
∑

σ∈SN (x)

∑

τ∈SN (y)

π (σ) wN (σ, τ)

=
∑

σ∈SN (x)

∑

τ∈SN (y)

π (τ) wN (τ, σ)

= ̺ (y) pN (y, x) . (6.2.18)We have used here again π (x) to denote π (σ) for any σ ∈ SN (x). �

Example 6.4 (a) As a parti
ular example we 
onsider the Metropolis sam-ple for the Gibbs distribution π

wN (σ, τ) :=





1
N

(
1 ∧ π(σi)

π(σ)

)
, τ = σi,

1 −∑N
i=1 wN (σ, σi) , τ = σ,

0 else. (6.2.19)
In this 
ase, the transition matrix pN of the Markov 
hain ζN,β on the mean�eld 
on�gurations has of 
ourse the form

pN (x, y) =





ℓd

2N

(
(1 − xk) ∧ (1 + yk)

̺(y)
̺(x)

)
, y = x + 2

ℓk
ek,

ℓd

2N

(
(1 + xk) ∧ (1 − yk)

̺(y)
̺(x)

)
, y = x − 2

ℓk
ek,

1 −∑y∈Nx
pN (x, y) , y = x,

0 else. (6.2.20)
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(b) Another interesting dynami
s use the �magneti
 �eld� h : SN → RNde�ned by
hi (σ) :=

1

N

∑

j( 6=i)

Jijσj =
1

N

M∑

µ=1

〈ξµ, σ〉 ξµ
i − M

N
σi. (6.2.21)

Like Biroli and Monasson, see [BM98℄, we de�ne a transition matrix, vN , onthe spin spa
e SN by
vN (σ, τ) :=





1
2N

(1 − σi tanh (βhi (σ))) , τ = σi,

1 −∑N
i=1 vN (σ, σi) , τ = σ,

0 else. . (6.2.22)
To prove that vN is reversible with respe
t to π of (6.1.12), we observe

hi

(
σi
)

= hi (σ) (6.2.23)and
HN

(
σi
)

= − 1

2N

M∑

µ=1

〈
ξµ, σi

〉2

= − 1

2N

M∑

µ=1

(〈ξµ, σ〉 − 2ξµ
i σi)

2

= HN (σ) +
2

N

M∑

µ=1

〈ξµ, σ〉 ξµ
i σi −

2M

N

= HN (σ) + 2hi (σ) σi. (6.2.24)by the de�nition in (6.2.21). We use 1 + tanh (x) = 2ex

ex+e−x and abbreviate
ai ≡ βhi (σ) σi. Then we obtain

πN,β (σ) vN

(
σ, σi

)
=

1

NZN,β

exp (−βHN (σ))
e−ai

eai + e−ai
. (6.2.25)

and
πN,β

(
σi
)
vN

(
σi, σ

)
=

1

NZN,β

exp (−βHN (σ) − 2ai)
eai

eai + e−ai
. (6.2.26)
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Hen
e we have proved equality.Analogously to proof of Proposition 6.2 we 
onstru
t a Markov 
hain ζN,βon the spa
e of mean �eld 
on�gurations XN , that is reversible with respe
tto ̺. We only have to 
he
k 
ondition (6.2.13) for vN . Assume y = x + 2
ℓk

ek,then for σ ∈ SN (x)

∑

τ∈SN (y)

vN (σ, τ)

=
∑

i∈Λk

vN

(
σ, σi

)
δσi,−1

=
ℓk

4N
(1 − xk)

(
1 + tanh β

d

N

(
(PLx)k +

M

d

))
. (6.2.27)

We have used the de�nition of h in (6.2.21). The last expression is indeed in-dependent of σ ∈ SN (x). This works analogously for y = x− 2
ℓk

ek. Thereforethe transition matrix, qN , of ζN,β is given by
qN

(
x, x +

2

ℓk

ek

)

=
ℓk

4N
(1 − xk)

(
1 + tanh β

d

N

(
(PLx)k +

M

d

)) (6.2.28)
and

qN

(
x, x − 2

ℓk
ek

)

=
ℓk

4N
(1 + xk)

(
1 − tanhβ

d

N

(
(PLx)k −

M

d

)) (6.2.29)
and the usual 
onditions qN (x, x) = 1 −∑y∼x qN (x, y) and qN (x, y) = 0 if
x and y are not equal or nearest neighbours.
6.3 Random patternsLet (Ω,F , P) be a probability spa
e. We 
hoose {ξµ

i }1≤µ≤M,i∈N
as a family ofmutually independent random variables that attain the values 1 and −1 withequal probability 1

2
. We 
ontinue to use the same letters for the obje
ts wehave de�ned. athough the most of them are of 
ourse now random variables.108



For example, (ℓk)1≤k≤d is a random ve
tor with a multinomial distributionwith parameters N and 1
d
. Its 
omponents are 
orrelated random variableswith mean value N

d
and 
ovarian
eCov (ℓk, ℓj) =

N

d2
(dδjk − 1) . (6.3.1)In order to dis
uss the N dependen
e of HN , let us now 
hange to normalisedvariables by writing ℓk in the form

ℓk :=
N

d

(
1 +

1√
N

λk

)
, (6.3.2)where λk are 
entered random variables and have 
ovarian
eCov (λk, λj) = dδjk − 1. (6.3.3)The range of λk is the set 1√

N
{−N,−N + d, . . . , (d − 1) N} ⊂ R. Certainly

λ depends on N , although this is not indi
ated.De�ne the Cramér entropy fun
tion I : [−1, 1] → R by
I (x) =

{
1
2
((1 + x) ln (1 + x) + (1 − x) ln (1 − x)) , x ∈ (−1, 1) ,

ln 2, x ∈ {−1, 1} .(6.3.4)and denote Λ := diag (λk), the diagonal d×d - matrix with entries Λkk = λk.De�nition 6.5 In this de�nition we stress the dependen
e of λ on N and ξ.To work on a 
ommon probability spa
e we de�ne
λN [ξ] := λN [(ξ1, . . . , ξN )] (6.3.5)for all ξ ∈

(
{−1, 1}M

)N. This 
an, of 
ourse, be done analogously for allquantities that depend on N and ξ.For ea
h N we de�ne
ΞN :=

{
ξ ∈

(
{−1, 1}M

)N ∣∣ |λN [ξ]| < 2
√

d log N

}
. (6.3.6)Moreover, denote

Ξ := lim inf
N→∞

ΞN , (6.3.7)i.e. Ξ is the spa
e of all ξ = (ξµ
i )1≤µ≤M,i∈N

su
h that there exists N0[ξ] andfor all N ≥ N0[ξ]

|λN [ξ]| ≤ 2
√

d log N. (6.3.8)
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Remark 6.6 Observe that for ξ ∈ Ξ and N ≥ N0[ξ] indeed all subsets Λk[ξ]are non empty.Part (a) of the next proposition resembles Lemma 2.2 of [Gen96℄, while part(b) is due to [KP89℄ (see equation (2.6) on p. 909).Proposition 6.7 (a) Ξ is a set of full measure, i.e. P (Ξ) = 1.(b) For ξ ∈ Ξ and N ≥ N0[ξ], the Hamiltonian HN,β 
an be written as
Hβ,N (x) = Nfβ,λ (x) − N

β
ln 2 + O (ln N) , (6.3.9)

where fβ,λ : [−1, 1]d → R is the fun
tion
fβ,λ (x) :=

1

βd

d∑

k=1

(
1 +

1√
N

λk

)
I (xk) −

1

2d

∣∣∣∣P
(

1l +
1√
N

Λ

)
x

∣∣∣∣
2

. (6.3.10)
Proof. ad (a). √

N
d

λ is the partial sum of the N 
entered i.i.d. ran-dom variables (1 (ξi = bk) − 1
d

)
k∈{1,...,d} with values in [−1, 1]d. Thereforethe statement follows from the Law of Iterated Logarithm for partial sumsof Rk-valued random variables, whose proof 
an be found more generally forBana
h spa
es in [LT91℄, Theorem 8.2 on p. 197.ad (b). With the help of Stirling's formula

log (n!) = n log n − n + log 2πn + O (1/12n) (6.3.11)we 
an approximate for a > 0 and −1 < b < 1:
(

a
1
2
a (1 + b)

)
= a ln 2 − aI (b) − 1

2
ln
(π

2
a
(
1 − b2

))
+

+O
(
a
(
1 − b2

))−1
. (6.3.12)Therefore

ln |SN (x)| =
d∑

k=1

(
ℓk

1
2
ℓk (1 + xk)

)

= N ln 2 − N

d

d∑

k=1

(
1 +

1√
N

λk

)
I (xk) +

+O (ln N) . (6.3.13)110



The last estimation holds, sin
e for ξ ∈ Ξ and N ≥ N0[ξ] we obtain
∣∣∣∣ln ℓk − ln

N

d

∣∣∣∣ =

∣∣∣∣ln
(

1 +
1√
N

λk

)∣∣∣∣

≤
∣∣∣∣∣ln
(

1 − 2

√
d ln N√

N

)∣∣∣∣∣ . (6.3.14)
This last expression 
onverges to zero for N → ∞. �

Remark 6.8 Note that the fun
tion fβ,λ depends only over terms λk√
N

on
λ and N . In parti
ular, fβ := fβ,0 depends neither on ξ nor N (ex
ept of
ourse if M would depend on N).Proposition 6.9 For ξ ∈ Ξ and N ≥ N0[ξ], the sequen
e of fun
tions fβ,λ
onverges for N → ∞ uniformly to the deterministi
 fun
tion fβ, i.e.

‖fβ,λ − fβ‖∞ ≤ 3
1 + β

β

√
d
ln N

N
. (6.3.15)

Proof. This is exa
tly the meaning of Proposition 2.3 in [KP89℄, p. 912with λKP := 1√
N

λ, δKP := 2
√

d ln N/
√

N , UN,δ := ΞN and ηKP := 0. To be
lear we indexed the quantities Ko
h and Piasko use with a KP . �We introdu
e the matrix AN that will be 
ru
ial to 
ontrol the random devi-ation of the minima and 1-saddles of fβ,λ 
ompared to the deterministi
 onesof fβ.De�nition 6.10 (a) Denote by AM the M (M − 1) /2 dimensional ve
torspa
e of symmetri
 M × M matri
es with vanishing diagonal.(b) De�ne AN ∈ AM by setting
Aµ,ν

N :=
1

d
〈bµ,Λbν〉 (6.3.16)

for all µ, ν ∈ {1, . . . ,M}.We prove some properties of AN in the next111



Proposition 6.11 (a) {Aµ,ν
N , µ < ν} are un
orrelated random variables withexpe
tation zero and varian
e one on (Ω,F , P). Alternatively AN 
an bewritten for µ 6= ν in the form
Aµ,ν

N =
1√
N

〈ξµ, ξν〉 . (6.3.17)
(b) For all ξ ∈ Ξ and N ≥ N0[ξ], we obtain for all x ∈ RM

|ANx| ≤ 2
√

p ln N |x| . (6.3.18)(
) There exists (γµ,α
n )1≤µ<α≤p;n∈N

i.i.d. one dimensional standard normaldistributed random variables on a 
ommon probability spa
e with ξ su
h that
|Aµ,α

N − gµ,α
N | = O

(
log N√

N

) (6.3.19)
almost surely, where

gµ,α
N =

1√
N

N∑

n=1

γµ,α
n (6.3.20)

for µ < α and gN ∈ AM .Remark 6.12 The matri
es (gN)N∈N

an be understood as a random walkin AM with time parameter N ∈ N that starts in zero and has i.i.d. Gaussianin
rements. For any N the M (M − 1) /2 independent 
omponents of gN areone dimensional standard Gaussians.Proof. ad (a). We have Aµ,µ

N = 1
d
tr (Λ) = 0. For α 6= µ and α 6= µ we obtainwith (6.3.3)

E [Aα,µ
N ] =

1

d

∑

k

bα
k bµ

kE [λk] = 0 (6.3.21)
and

E
[
Aα,µ

N Aα,µ
N

]
=

1

d2

∑

j,k

bα
j bµ

j E [λjλk] b
α
k bµ

k

=
1

d

〈
bαµ, bαµ

〉
− 1

d2
〈bα, bµ〉

〈
bα, bµ

〉

= δ{α,µ},{α,µ}. (6.3.22)112



In other words the {Aα,µ
N , α < µ} are un
orrelated random variables withexpe
tation zero and varian
e one.To prove the alternative representation for µ 6= ν, noti
e that

1√
N

∑

i∈Λ

ξµ
i ξν

i

=
1√
N

d∑

k=1

∑

i∈Λk

ξµ
i ξν

i

=
1√
N

d∑

k=1

bµ
kb

ν
kℓk =

1

d
〈bµ,Λbν〉 , (6.3.23)

be
ause of the orthogonality of bµ and bν .ad (b) This is Corollary 2.4 in [Gen96℄, p. 250, ex
ept that we haverelaxed iterated logarithm to a logarithm.ad (
) This property is adopted from Külske ([Kül97℄, p. 1286). It followsfrom a strong invarian
e prin
iple for partial sum pro
esses for Rk-valued in-dependent random variables, whose proof 
an be found in [Rio93℄, Cor. 4 onp. 1712. �
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7 Properties of the e�e
tive energyIn the following unlabelled sums with Latin index have range {1, . . . , d}and Greek index means range {1, . . . ,M}. We will always assume β > 1,whi
h means we are in the low temperature regime. Denote by m∗ ≡ m∗ (β)the unique positive solution of the trans
endental equation
m = tanh (βm) . (7.0.1)We use now that fβ,λ is a C∞-fun
tion from (−1, 1)d to R. Sin
e Eλ = 0 and

λ ful�lls a law of large numbers for N → ∞, we �rst dis
uss the deterministi
fun
tion fβ. Some of the proofs of the following statements are postponedto se
tion 9.
7.1 Criti
al points of fβUsing I ′ (y) = artanh (y) we obtain

d

dyk

fβ (y) =
1

βd
artanh (yk) −

1

d
(Py)k . (7.1.1)The zeros of this fun
tions are the solutions of the mean �eld equation

tanh [β (Py)k] = yk. (7.1.2)In other words we are sear
hing for �xed points of the mapping
y 7→ Tanh (βPy) , y ∈ [−1, 1]d (7.1.3)where Tanh (y) := (tanh y1, tanh y2, . . . , tanh yd).An important result in Ko
h and Piasko [KP89℄ des
ribes the so-
alled�symmetri
 solutions of order n� of this equation for n > 0 (the 
ase n = 0
orresponds to the trivial solution y = 0).A symmetri
 solution of order n 
an be obtained by making the Ansatz

Py = anv
(n) and

v(n) :=
∑

α cαbα, cα ∈ {−1, 0, 1} , |c|2 = n. (7.1.4)This Ansatz leads to the following equation for an :

an = 2−n+1
∑

0≤m<n/2

(
n
m

)
n − 2m

n
tanh [(n − 2m)βan] . (7.1.5)
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For β ≤ 1, it is easy to see that equation (7.1.2) admits only the trivialsolution, and that fβ takes its minimum value for y = 0. This minimumturns into a lo
al maximum as β is in
reased past its 
riti
al value β = 1,and the remaining 3M−1 symmetri
 solutions bifur
ate away from the origin.De�nition 7.1 Let f ∈ C2
(
Rd
) be given. We 
all a 
riti
al point of fquadrati
 i� det∇2f 6= 0. Otherwise it is 
alled degenerate. A quadrati

riti
al point of f , say x, is a k-saddle, i� ∇2f (x) has exa
tly k negativeeigenvalues. We say, the fun
tion f is at x in k dire
tions unstable and in

d− k dire
tions stable. The d× d matrix ∇2f (x) is said to have signature k.Theorem 7.2 (Ko
h, Piasko) (a) Let β > 1 and n ∈ N be given, thenequation (7.1.5) has a unique positive solution an ≡ an (β). Furthermore, if
v(n) satis�es (7.1.4) and y(n) ∈ Rd is de�ned by

y
(n)
k := tanh

[
βanv

(n)
]
, 1 ≤ k ≤ d , (7.1.6)

then the fun
tion fβ has a 
riti
al point at y(n).(b) Let 1 < β < 1+(9d + 500M 8)
−1 and y ∈ Rd. If fβ has a 
riti
al pointat y, then y is a symmetri
 solution of some order n ≤ p. In parti
ular,if y is a lo
al minimum of fβ, then y is a symmetri
 solution of order 1,and if y is a 1-saddle of fβ, then y is a symmetri
 solution of order 2.Proof. ad (a). This is Theorem 1.3, p. 907 in [KP89℄.ad (b). The �rst part is Theorem 1.4 (i), p. 908 in [KP89℄ and we onlyhave to show the se
ond. De�ne the map

Ωβ : [−1, 1]d → P
(
[−1, 1]d

) (7.1.7)
by

Ωβ (x) := PTanh (βPx) , x ∈ [−1, 1]d . (7.1.8)Denote by P1 and P3 the orthogonal proje
tions on Rd onto the subspa
es
span {vn} and span {bµ | 〈vn, b

µ〉 = 0}, respe
tively and let P2 := P −P1−P3.It has been shown in [KP89℄, that the linearisation of Ωβ at the point z(n) :=
an (β) vn has the following spe
tral representation

DΩβ

(
z(n)
)

= (sn + (n − 1) rn) P1 + (sn − rn) P2 + snP3. (7.1.9)115



Here, sn and rn are given by the equations
sn = β − β

1

d

∑

k

tanh2
(
βz

(n)
k

) (7.1.10)
rn = −β

1

d
cµcν

∑

k

tanh2
(
βz

(n)
k

)
bµ
kb

ν
k, (7.1.11)

where µ 6= ν are arbitrary numbers between one and M su
h that cµcν 6= 0.Sin
e sn + (n − 1) rn < 1, DΩβ 
an have an eigenvalue greater one only if
sn − rn > 1.As Ko
h and Piasko[KP89℄ pointed out (
ompare formula (3.5) on p.917), we obtain

∇2fβ

(
Tanh

(
βz(n)

))
=

1

dβ

(
1l − βPTanh′ (βz(n)

)) (
Tanh′ (βz(n)

)
·
)−1

,(7.1.12)where Tanh′ (βz(n)
)
· denotes the diagonal matrix with entries given by theve
tor. Sin
e it is a positive de�nite matrix the signature of the matrix

∇2fβ

(
Tanh

(
βz(n)

)) (7.1.13)
oin
ides with the signature of (1l − βPTanh′ (βz(n)
)) .If sn − rn < 1, we know that all eigenvalues of ∇2gβ are positive and zis a minimum and for sn − rn > 1, we obtain at least dim

(
P2R

d
) negativeeigenvalues. Therefore only the points y(2) 
an be 1-saddles.For n = 2, we obtain s2 = β

(
1 − 1

2
m∗2) and r2 = −1

2
m∗2. Hen
e,

s2 − r2 = β > 1. Let βs denote the unique solution of the equation
β =

2

2 − m∗ (β)2 . (7.1.14)
Then the eigenvalue sn gets bigger than 1 at βs. Therefore y(2) is a 1-saddleof fβ only in the temperature interval (1, βs). �

Corollary 7.3 Let 1 < β < 1 + (9d + 500M 8)
−1. We de�ne a vertex-set

V := {−M, . . . ,M} \ {0} (7.1.15)and an edgeset
E := {{µ, ν} ∈ V × V |µ /∈ {ν,−ν}} . (7.1.16)116



We denote m±µ := ±m∗ (β) bµ and sµ,±ν := 1
2
m∗ (bµ ± bν). Then

MN := {mµ |µ ∈ V } (7.1.17)is the set of lo
al minima of fβ and
SN := {sµν | {µ, ν} ∈ E} (7.1.18)is the set of 1-saddles of fβ.In the following we will use another result of Ko
h and Piasko [KP89℄, p.919, namelyProposition 7.4 Let I = {1, 2, . . . , p} and for every subset J ⊂ I de�ne
bJ
k :=

∏
µ∈J bµ

k , 1 ≤ k ≤ d, (7.1.19)where the value of an empty produ
t is de�ned to be 1. Then the set {bJ : J ⊂ I
}is an orthogonal basis for Rd.We introdu
e some abbreviations: denote

γ1 :=
1

β (1 − m∗2)
, (7.1.20)

γ2 :=
1

β
, (7.1.21)

γ3 :=
1

2

(
γ1 + γ2 − 1 +

√
1 + (γ1 − γ2)

2

)
, (7.1.22)

γ4 :=
1

2

(
γ1 + γ2 − 1 −

√
1 + (γ1 − γ2)

2

)
. (7.1.23)For J ⊂ I ≡ {1, . . . ,M} de�ne uJ ∈ Rd by

uJ = bJ (1 + bµbν) (7.1.24)and
ũJ := bJ (1 − bµbν) (7.1.25)and the mixtures

vα :=
1

γ1 − γ3

uα +
1

γ2 − γ3

ũα (7.1.26)and
ṽα :=

1

γ1 − γ4

uα +
1

γ2 − γ4

ũα. (7.1.27)Now we 
an formulate 117



Proposition 7.5 (a) The points mµ are minima for all β > 1 and the Hes-sian d∇2fβ (mµ) has eigenve
tors bα with eigenvalue γ1 − 1 for 1 ≤ α ≤ Mand eigenve
tors bJ with eigenvalue γ1, where J ⊂ {1, . . . ,M} su
h that
|J | 6= 1.(b) The points sµν are 1-saddles for 1 < β < βs, where βs is the uniquesolution of the equation β = 2

2−m∗(β)2
. The 
orresponding eigenvalues of theHessian d∇2fβ (sµν) areeigenvalue multipli
ity eigenve
tor

γ1
1
2
d − M + 1 uJ for |J | 6= 1

γ2
1
2
d − M + 1 ũJ for |J | , |J \ {µ, ν}| 6= 1

γ3 M − 2 vα for α /∈ {µ, ν}
γ4 M − 2 ṽα for α /∈ {µ, ν}

γ1 − 1 1 bµ + bν

γ2 − 1 1 bµ − bν

Proof. We use the representation (7.1.12) of ∇2fβ at a symmetri
 solution.For the symmetri
 solution of order 1, we have simply
Tanh′ (βz(1)

)
· =

(
1 − m∗2) 1l. (7.1.28)Therefore {bJ

}
J⊂{1,...,M} is a basis of eigenve
tors for (PTanh′ (βz(1)

)
·) witheigenvalues λJ = 1−m∗2 if |J | = 1 and λJ = 0 if |J | 6= 1. This leads to part(a).ad (b). We 
onsider without restri
tion of generality z(2) = 1

2
m∗ (b1 + b2).The matrix (Tanh′ (βz(2)

)
·
) has the representation

(
Tanh′ (βz(2)

)
·
)

=

(
1 − 1

2
m∗2

)
1l − 1

2
m∗ (b{1,2}·

)
. (7.1.29)

Hen
e, we have a 
onne
tion between pairs of ve
tors (u, v) like (1, b12) and
(b13, b23) that are related by v = ub{1,2}, as well as u = vb{1,2}.We de�ne

aα := bαb{1,2} +
m∗2

2 − m∗2 bα. (7.1.30)The representation (7.1.29) yields a basis of eigenve
tors of (PTanh′ (βz(2)
)
·),namely (b1 − b2) with eigenvalue 1, (b1 + b2) with eigenvalue (1 − m∗2), as118



well as (M − 2) eigenve
tors bα with eigenvalue (1 − 1
2
m∗2) and aα witheigenvalue 0, for all α ∈ {3, . . . ,M}. Moreover, there are (d − 2M + 2)eigenve
tors of the form bJ where |J | , |J \ {1, 2}| 6= 1. All of these haveeigenvalue 0.Due to equation (7.1.29) the matrix (Tanh′ (βz(2)

)
·
) has for this basisof eigenve
tors a blo
k diagonal representation, namely two single valuedentries, 1 and (1 − m∗2), asso
iated to b1 − b2 and b1 + b2. Then, for α ∈

{3, . . . ,M}, asso
iated to (bα, aα) there are blo
ks of the form
(

2−2m∗2+m∗4

2−m∗2 −1
2
m∗2

−2m∗2(1−m∗2)
(2−m∗2)2

2(1−m∗2)
2−m∗2

)
, (7.1.31)

followed by (1
2
d − M + 1

) blo
ks of form
(

1 − 1
2
m∗2 −1

2
m∗2

−1
2
m∗2 1 − 1

2
m∗2

)
, (7.1.32)

whi
h are asso
iated to pairs (bJ , bJb{1,2}), where |J | , |J \ {1, 2}| 6= 1. Diago-nalising the inverted blo
ks multiplied from the left with the asso
iated 2×2blo
ks of the diagonal matrix 1
β

(
1 − βPTanh′ (βz(2)

)) leads to the statementof the proposition. �

7.2 Pre
ise 
riti
al points and barrier
Theorem 7.6 Denote γ1 ≡ 1

β(1−m∗2)
, a1 ≡ m∗

γ1−1
and a2 ≡ 1

2
m∗β

1−β(1− 1
2
m∗2)

.Then for all ξ ∈ Ξ and N ≥ N0[ξ], the fun
tion fβ,λ has 2M deepest minima,namely
m±µ = ±m∗

(
bµ +

a1√
N

∑

α

Aµα
N bα

)
+ O

(
ln N

N

)
. (7.2.1)
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For 1 < β < 1+(9d + 500M 8)
−1 it has exa
tly ((2M

2

)
− M

) 1-saddles, namely
sµ,±ν := sµ,±ν

(
1 ∓ 2a1a2

1√
N

Aµν
N

)
+ (7.2.2)

+a2
1√
N

(
1l − S

2

µ,±ν

)∑

α

(Aµ,α
N ± Aν,α

N ) bα +

+O
(

lnN

N

)

for µ 6= ν ∈ {1, . . . ,M} and s−µ,±ν := −sµ,∓ν. Here, Sµ,±ν denotes thediagonal matrix with entries given by the ve
tor sµ,±ν.The proof of this theorem will be given in se
tion 9. Very similar results asin Theorem 7.6 are already known, 
ompare for the pre
ise lo
ation of theminimising order parameters e.g. [Gen96℄, Theorem. 1.1, p. 246.In the next proposition we give an expli
it estimate of the random heightsof these minima and 1-saddles. We de�ne the following 
onstants:
k0 := a1

(
1

2β
ln

1 + m∗

1 − m∗ − 1

2
m∗ (γ1 + 2)

)
, (7.2.3)

k1 := a1

(
m∗γ1 −

1

4β
ln

1 + m∗

1 − m∗

)
− 1

2β
I (m∗) , (7.2.4)

k2 :=
(
1 − m∗2) a2

(
1

4
m∗ (γ1 + 2) − 1

4β
ln

1 + m∗

1 − m∗

)
, (7.2.5)

k3 := m∗a1a2

(
1

4
m∗ (γ1 + 2) +

1

4β
ln

1 + m∗

1 − m∗

)
. (7.2.6)Here, we have used the 
onstants γ1, a1, a2 as in Theorem 7.6. Observe that

k0 ∈
(
−1

2
, 3

4

) and k1 ∈ (0, 1) and k2, k3 have a singularity at βs, whi
h is theunique solution of β = 2
2−m∗(β)2

.We denote the free energy of the Curie-Weiss model by
fCW (β) :=

1

2
m∗2 − 1

β
I (m∗) . (7.2.7)Proposition 7.7 For all ξ ∈ Ξ and N ≥ N0[ξ], the expli
it representationof fβ,λ at the minima and the saddle points is given by

fβ,λ (±mµ)

= −fCW (β) +
k0

N

(
A2

N

)µ,µ
+ O

(
ln N√

N

)3 (7.2.8)
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and
fβ,λ (sµν)

= −1

2
fCW (β) − k1√

N
Aµ,ν

N +

−k2

N

∑

α

(Aαµ
N + Aαν

N )
2 − k3

N
(Aµν

N )
2
+ O

(
ln N√

N

)3

. (7.2.9)
To obtain fβ,λ (sµ,−ν) we have to substitute Aαν

N by −Aαν
N for all α ∈ 1, . . . ,Min equation (7.2.9).Remark 7.8 Let gN be a random walk in A , the spa
e of symmetri
 M×Mmatri
es with vanishing diagonal as introdu
ed in Proposition 6.11(b). Sin
ewe 
an approximate AN by gN we see that the height of the minima of HNvaries only of order O (1) times a 
hi-square (with M degrees of freedom)distributed random variable. The height of the saddles �u
tuates of order

O
(√

N
) times a normal random variable plus terms of higher order.
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8 Stru
ture of the ground states
8.1 Eyring-Kramers formulaIn this subse
tion we put together the ingredients to arrive at an Eyring-Kramers formula for the Hop�eld model. We 
onsider the (random) set ofdeepest minima of fβ,λ by

MN := {mµ |µ ∈ V } . (8.1.1)We will use the following Theorem of Lidskii (
ompare Kato [Kat76℄,Theorem. 6.10, p. 126).Proposition 8.1 [Lidskii, 1950℄ Let A and B be symmetri
 d × d-matri
esand C = B − A. Denote respe
tively by αk, βk and γk, k ∈ {1, . . . , d} therepeated eigenvalues of A,B and C. Then the d-dimensional numeri
al ve
tor
(β1 − α1, . . . , βd − αd) lies in the 
onvex hull of the ve
tors obtained from
(γ1, . . . , γd) by all possible permutations of its elements.Moreover, we need the followingDe�nition 8.2 Consider δ ∈ (0, 1

2
. Denote E :=

{
{µ, ν} ∈ V × V |µ 6= ν

}.We de�ne a random set of �good� numbers
Jδ :=

{
n ∈ N | min

a 6=b∈E

(
Aa

n − Ab
n

)
≥ n− 1

2
+δ

}
. (8.1.2)

As we have seen in Proposition 6.11 (
) we 
an think of the 
omponents of
AN (up to the symmetry) to be independent random walk, hen
e a numberis not good if two of them 
ome to 
lose together. The next lemma showsthat almost surely the most n ∈ N are �good�.Lemma 8.3 We de�ne

Z ′
δ :=

{
ξ ∈ Ξ

∣∣ lim
N↑∞

1

N

N∑

n=1

1 (n ∈ Jδ) = 1

}
. (8.1.3)

Then P (Z ′
δ) = 1. 122



Proof. We de�ne ηab =
(
ηab

i

)
i∈N

by ηab
i := 1√

N

(
ξa1
i ξa2

i − ξb1
i ξb2

i

) for a =

{a1, a2} and b = {b1, b2}. Then ηab is a sequen
e of 
entered i.i.d. randomvariables with �nite varian
e and Sab
n = 1√

N

∑n
i=1 ηab

i their normalised partialsum and Sab
n = Aa

n − Ab
n. Apparently {Sab

n

}
a,b∈E

are identi
ally distributed;let Sn be another random variable with the same distribution. Then
P

(
min
a,b∈E

Sab
n ≥ n− 1

2
+δ

)
≤
(

M

2

)
P
(
Sn ≥ n− 1

2
+δ
)

. (8.1.4)
Therefore we 
an use Lemma 3, in [Kül97℄, p. 1279. �We want to 
ontrol the expe
ted time ζN,β needs to get from one minimumin MN to another one. Sin
e ζN,β is for ea
h realisation of the patterns areversible Markov 
hain on a (
ompa
t) subset of a latti
e we 
an apply theEyring-Kramers formula in the form proved in Theorem 5.21 of part II.We in
orporate the notions of De�nition 4.3 of part II. In parti
ular,we denote the 
ommuni
ation height between two subsets I, J ⊂ MN by
f̂β,λ (I, J). The asso
iated set of relevant saddle points is named SN (I, J).Re
all the notion of valley of De�nition 4.4 of part II. Finally the barrierbetween m ∈ MN \ I and I is de�ned as

bN (m, I) := β(f̂β,λ (m, I) − fβ,λ(m). (8.1.5)
Theorem 8.4 We assume 1 < β < 1 + (9d + 500M 8)

−1. Choose δ ∈ (0, 1
2
)and assume ξ ∈ Z ′

δ and N ≥ N0[ξ], as well as N ∈ Jδ. Let I and Jbe disjoint subsets of MN . Assume cN,k ≡ 1, i.e. we 
onsider (Glauber)Metropolis dynami
s for the original Hop�eld Markov 
hain.If s ∈ SN(I, J) is a relevant saddle point between I and J we obtain
cap (I, J) = k4|SN (I, J)|N (d−2)/2̺N,β(s) ×

×
(
1 + O

(√
ln3 N/

√
N
))

, (8.1.6)
where

k4 :=

√
β − 1 (1 − m∗2)

d/4
(2πβd)d/2

π
√

1 − β (1 − m∗2)
(
1 − β

(
1 − 1

2
m∗2

))(M−2)/2
. (8.1.7)
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Starting in m ∈ MN \I the expe
ted (quen
hed) hitting time of J satis�es
Em (τI) =

k5N

|SN (m,J)|
∑

n∈VJ (m)

exp(NbN(n, J)) ×

×
(
1 + O

(√
ln3 N/

√
N
))

, (8.1.8)where
k5 :=

π (1 − m∗2)
d/4

√
β − 1

√
1 − β

(
1 − 1

2
m∗2

)

(
1 − β

(
1 − 1

2
m∗2)

1 − β (1 − m∗2)

)(M−1)/2

. (8.1.9)
Remark 8.5 (a) If we do not spe
ialise to the Metropolis dynami
s, we haveto multiply k4 by √

βd|γ|
β − 1

, (8.1.10)where γ is the unique negative eigenvalue of the matrix
(
ai

(
∇2fβ

)
ij

) (8.1.11)with
ak :=

{
(1 − m∗) cN,k (s) for k ∈ Uµν ,
cN,k (s) for k /∈ Uµν .

(8.1.12)Here, Uµν := {k ∈ {1, . . . , d} | bµ
k = bν

k}.
k5 has to be divided by the same quantity.Whenever cN,k (x) depends only on π (x) and xk, this will yield , up to a
onstant fa
tor, again the result (8.1.6).(b) The validity of this theorem 
ould possibly be extended to β ∈ (1, βs),where βs is the unique solution of the equation β = 2

2−m∗(β)2
. Outside thisinterval the points {±sµ,±ν} are no longer 
andidates for the relevant saddlepoints and therefore there has to be others, whi
h however are unknown upto now.Proof. We 
hoose ǫ := 1

N
and Fǫ := βfβ,λ as well as F := βfβ. Proposition6.9 shows that 
ondition sF1 is satis�ed and F2 holds sin
e the statespa
eis relatively 
ompa
t and fβ is 
ontinuous. Sin
e

β ∈
(
1, 1 +

(
9d + 500M 8

)−1
)

, (8.1.13)
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Theorem 7.2 implies that there are only �nitely many 
andidates for essentialsaddle points of fβ,λ. Therefore 
onditions S1-S3 of se
tion 5 of part II aresatis�ed. Assumption D assures that 
onditions D1 and D2 of 
hapter 5 ofpart II are satis�ed.Hen
e we 
an apply Theorem 5.7 to estimate the 
apa
ity. This yieldsfor cap(I, J) up to multipli
ative errors (1 + O
(√

ln3 N/
√

N
)) the value

(2πβN)(d/2−1) |γ|√
|det∇2fβ,λ(s)|

̺N,β(s), (8.1.14)
where γ is the unique negative eigenvalue of L−2pN (s) · ∇2fβ,λ (s).Moreover, Proposition 7.7 shows that the �u
tuations of the minima aresmall 
ompared to the �u
tuations of the 1-saddles. Sin
e we assumed that
N ∈ Jδ we see that the additional 
ondition of Theorem 5.21 is satis�ed. Thisyields for Em

(
τMN\m

) up to multipli
ative errors (1 + O
(√

ln3 N/
√

N
))

the value
π

2βN |γ|

√
|det∇2fβ,λ (s)|√
det∇2fβ,λ (m)

∑

n∈VJ (m)

exp (NbN(n, J)) . (8.1.15)
Now we show that we 
an estimate the prefa
tor expli
itly. From Propo-sition 6.2 we obtain

pN,k (s)

=
ℓk

2N
cN,k (s)


(1 − sk) ∧

(
1 + sk +

2

ℓk

) ̺
(
s + 2

ℓk
ek

)

̺ (s)


 .(8.1.16)

Sin
e cN,k is Lips
hitz, this shows that also pN,k is Lips
hitz 
ontinuous. Therepresentation (6.3.2) of ℓ yields:
ℓk =

N

d

(
1 +

1√
N

λk

)

=
N

d

(
1 + O

(√
ln N√
N

))
. (8.1.17)

Theorem 7.6 yields s = s
(
1 + O

(
ln N/

√
N
)). Therefore

(1 − sk) ∧
(

1 + sk +
2

ℓk

)
= (1 − |sk|)

(
1 + O

(
ln N√

N

))
. (8.1.18)
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Sin
e fβ,λ ∈ C∞ (R) and ∇fβ,λ (s) = 0 we obtain
fβ,λ

(
s +

2

ℓk

ek

)
= fβ,λ (s) + O

(
N−2

)
. (8.1.19)Hen
e,

̺

(
s +

2

ℓk
ek

)
= ̺ (s)

(
1 + O

(
N−1

))
. (8.1.20)Altogether we obtain

pk (s) =
1

2d
ak

(
1 + O

(
lnN√

N

)) (8.1.21)
where a ∈ Rd is de�ned by 8.1.12.With the formula (9.0.2) for the Hessian of fβ,λ we obtain, sin
e ξ ∈ Ξand N ≥ N0[ξ]

∇2fβ,λ (s) = ∇2fβ (s)

(
1 + O

(√
lnN√
N

))
. (8.1.22)

Now we apply the Theorem of Lidskii (Proposition 8.1). Therefore the de-viation of the eigenvalues of ∇2fβ,λ (s) 
ompared with the eigenvalues of
∇2fβ (sµν) are of order O

(
ln N/

√
N
). In the same way we 
an relatethe eigenvalues of ∇2fβ,λ (mµ) to ∇2fβ (mµ) and of L−2pN (s) · ∇2fβ,λ (s)to d

2N2

(
ai (∇2fβ (s))ij

).In the 
ase of the Metropolis algorithm (6.2.20), we have cN,k (x) ≡ 1.The only (normed) eigenve
tor with negative eigenvalue of ∇2fβ (s) is v :=
1√
2d

(bµ − bν) and hen
e vk = 0 for k ∈ Uµν (
ompare Proposition 7.5). There-fore using (8.1.12) the unique negative eigenvalue of d
2N2

(
ai (∇2fβ (s))ij

) is
(
− (β−1)

2N2β

) and the asso
iated eigenve
tor is v.If cN,k (x) depends only on ̺ (x) and xk then ak is 
onstant for k /∈ Uµν .Therefore, up to a 
onstant fa
tor, the result of Theorem 8.4 holds also inthese 
ases.The remaining part of the prefa
tor in (8.1.15) 
an be approximated usingthe estimate (8.1.22) and the Theorem of Lidskii by
|det∇2fβ,λ (s)|
det∇2fβ,λ (m)

=
|det∇2fβ,λ (s)|
det∇2fβ,λ (m)

(
1 + O

(√
ln N√
N

))
. (8.1.23)
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This does not depend any more on µ or ν and we obtain from Proposition7.5 the following expli
it form: Denote c ≡ γ3γ4

γ1γ2
= 1 − β

(
1 − 1

2
m∗2), then

|det∇2fβ (sµ,ν)|
det∇2fβ (mµ)

=
(γ1γ2)

d/2−M+1 (γ3γ4)
M−2 (γ1 − 1) (1 − γ2)

γd−M
1 (γ1 − 1)M

= (βγ1)
−d/2

(
cγ1

γ1 − 1

)M−1
1 − γ2

cγ2

=
(β − 1) (1 − m∗2)

d/2

1 − β
(
1 − 1

2
m∗2)

(
1 − β

(
1 − 1

2
m∗2)

1 − β (1 − m∗2)

)M−1

. (8.1.24)
The prefa
tor for the 
apa
ity 
an be estimated analogously. �

Remark 8.6 If ζN,β has the transition probability matrix qN de�ned by(6.2.28), we re
eive
gk (x) =

ℓk

4N
(1 − xk)

(
1 + tanh

βd

N

(
(PLx)k +

M

d

))
. (8.1.25)

For x = sµν + O
(

ln N√
N

) this equals (sin
e ξ ∈ Ξ)
d

N
(PLx)k =

(
P

(
1 +

1√
N

Λ

)
x

)

k

= sµν + O (δ) . (8.1.26)
Therefore cN,k (x) ≡ 1

2
. Hen
e the expe
ted value of the hitting time is 2times the value of (8.4).

Proposition 8.7 Denote by v := mµ − sµν. Then for all 0 < t < 1

∇fβ (sµν + tv) ⇈ v, (8.1.27)i.e. the gradient of fβ points along the 
onne
ting line between sµν and mµtowards mµ. 127



Proof. We dire
tly 
ompute the gradient of fβ using the de�nition of m∗.We obtain
∂kfβ (sµν + tv)

=
1

β
artanh (sµν + tv) − P (sµν + tv)k

=

(
1

βm∗artanh (m∗ (1 − t)) − (1 − t)

)
v. (8.1.28)

The last identity follows, sin
e
sµν,k + tvk =

{
m∗bµ

k , k ∈ U
m∗ (1 − t) bµ

k , k /∈ U,
(8.1.29)

where U := {k ∈ {1, . . . , d} | bµ
k = bν

k}. Moreover, again with the de�nitionof m∗ follows for all t ∈ (0, 1)

a (t) ≡ 1

βm∗artanh (m∗ (1 − t)) − (1 − t) > 0. (8.1.30)
Hen
e

∇fβ (sµν + tv) = a (t) v. (8.1.31)
�

8.2 Random graphsIn this se
tion we estimate the 
ommuni
ation height between two minima of
fβ,λ. Theorem 7.7 gives an expli
it expression for the height of the 1-saddles
(sµ,ν). We see that for large N their order statisti
 is given by the orderstatisti
 of the standard Gaussians (gµν

N ) 
onstru
ted in Proposition 6.11.To give deterministi
 bounds for the 
ommuni
ation height we 
onsiderthe undire
ted weighted graph (V,E, g) with V,E as introdu
ed in Corollary7.3. The weights are de�ned by
g (µ, ν) := sign(µ)sign(ν)g

|µ||ν|
N for µ, ν ∈ E, (8.2.1)re�e
ting the stru
ture of the heights of the 1-saddles, fβ,λ (sµν).128



Let Tmin a minimal spanning tree of (V,E, g). We de�ne the unique set
T min := {t ∈ E | t ∈ Tmin or − t ∈ Tmin} . (8.2.2)Apparently set of essential saddle points is then

Eǫ = {sµν |µ, ν ∈ T }. (8.2.3)Taking into a

ount the symmetry of the weights g (µ, ν) it is enough to
onsider a simpler graph to estimate the 
ommuni
ation heights. We identify
µ and −µ and asso
iate the weight |g (µ, ν)| to the edge {µ, ν}. Then we getthe vertex set

V = {1, . . . ,M} (8.2.4)and the edgeset
E =

{
{µ, ν} ∈ V × V |µ 6= ν

}
. (8.2.5)Now let us introdu
e some notions of random graph theory, see e.g.[Bol01℄. Let p ∈ (0, 1) be given. G (n, p) is the set of all graphs G with

n verti
es su
h that ea
h possible edge has independent probability p to bein G. In other words, if G is a graph with m edges, then
Pp(G) = pm (1 − p)(

n
2)−m . (8.2.6)We write Pp and Ep to emphasise that the probability and expe
tation aretaken in G (n, p).We will use the following theorem proved by Erdös and Rényi in 1959. Itgives a threshold value for the probability p(n) su
h that asymptoti
ally for

n → ∞ almost all graphs out of G (n, p(n)) are 
onne
ted.Theorem 8.8 (Erdös and Rényi) Let c ∈ R be �xed and
p (n) :=

1

n
(log n + c + o (1)) . (8.2.7)

Let G ∈ G (n, p (n)) be a random graph. Then
Pp(n) (G is 
onne
ted) → exp

(
−e−c

) (8.2.8)for n → ∞. 129



The proof of this theorem 
an be found in Bollobas [Bol01℄, Theorem 7.3, p.164.We 
onsider again the weighted graph (V ,E, g
). By regarding only theedges with height bigger or equal to a given number xM , we obtain a randomgraph. This graph is an element of G (M,p (M)) with p (M) := P (|g| ≥ xM).All edges asso
iated to essential saddle points are in
luded in the maximalspanning tree of (V ,E, |gN |

). Hen
e we are sear
hing for the minimal p (M)su
h that asymptoti
ally a.s. all the graphs in G (M,p (M)) are 
onne
ted.Theorem 8.9 Let ξ ∈ Ξ and N ≥ N0[ξ] and assume 1 < β < 1+(9d + 500M 8)
−1.Then asymptoti
ally almost surely (for M → ∞), the 
ommuni
ation heightbetween two elements of MN , say m and n, 
an be estimated by

f̂β,λ(m,n) ≤ 1

2
fCW (β) − k1√

N

√
2 lnM. (8.2.9)

Proof. Proposition 7.7 yields an estimate of fβ,λ(s{µν}), whi
h involvesthe standard Gaussian random variable |gµ,ν
N | for {µ, ν} ∈ E. Theorem8.8 implies that a random graph, GM,p(M) with edge probability p (M) :=

P (|g| ≥ xM) is almost surely for M → ∞ a 
onne
ted graph, if
p (M) =

1

M
(ln M + c (M)) , (8.2.10)

where c (M) → ∞ for M → ∞. Sin
e we have for x > 0 the bound (
ompare[Fel66℄, p. 175)
P (|g| ≥ x) ≥

(
1

x
− 1

x3

)√
2

π
exp

(
−1

2
x2

)
, (8.2.11)

we obtain for M > 20 that
xM =

√
ln

2M 2

π
− 3 ln2

2M 2

π
+ o (1) . (8.2.12)

satis�es 
ondition (8.2.10). Hen
e almost surely for M ↑ ∞ every essentialsaddle point satis�es the inequality (8.2.9).We prove now that this result holds also for the original graph (V,E, gN ).Let G be a subgraph of (V,E, gN ) that leads to a 
onne
ted subgraph G of
(V ,E, |g|). By de�nition G = G1∪G2 su
h that {m,n} ∈ G1 i� {−m,−n} ∈130



G2. Now every edge that does not belong to the maximal spanning tree of
(V ,E, |g|) has equal probability to 
onne
t either two verti
es out of thesame subgraph or a vertex of G1 with one of G2. Hen
e the probability that
G1 and G2 are not 
onne
ted is 1 −

(
1
2

)n( 1
2

ln n−1), whi
h 
onverges to zeroexponentielly fast. �

8.3 Low lying eigenvalues of the generatorIn this se
tion we 
onsider the generator of the Markov 
hain ζN,β that isde�ned by LN,β := pN,β−1. We abbreviate L ≡ LN,β. Due to the reversibilityof ζN,β, L is a negative operator in ℓ2 (̺), i.e. it is symmetri
 and has onlynegative eigenvalues. By 'low lying' eigenvalues of L we mean eigenvalueswith small absolute value.Let D ⊂ XN . We say that λ ∈ C is an eigenvalue of the Diri
hlet operator
LD if the equation

{
Lf (x) = λf (x) , x ∈ Dc,

f (x) = 0, x ∈ D
(8.3.1)has a non-zero solution fD,λ. The solution fD,λ is 
alled eigenfun
tion of LD.Let λD denote the smallest eigenvalue of LD.We assume again 1 < β < 1 + (9d + 500M 8)

−1. The validity of thestatements in this se
tion 
ould possibly be extended to β ∈ (1, βs), where
βs is the unique solution of the equation β = 2

2−m∗(β)2
.Sin
e MN is the 
omplete set of lo
al minimal of HN on XN,β and has
onstant 
ardinality |MN | = 2M , we know that ζN,β behaves metastablewith respe
t to MN (in the sense of De�nition 4.5 of part II, see Example4.10). It is already known that therefore −L has 2M eigenvalues that areexponentially small in N , and all other eigenvalues are at most polynomiallysmall in N , see e.g. [BEGK02℄, Theorem 1.3, p. 222.There exists a 
lassi
al bound for the low lying eigenvalues of the Gener-ator of a di�usion pro
ess proved by Donsker and Varadhan in 1976 [DV76℄.By analogue arguments it 
an be proved (see [BEGK02℄, Lemma 4.2, p. 236)Proposition 8.10 For every nonempty subset J ⊂ MN we have

λJ ≥
(

sup
x/∈J

Ex (τJ)

)−1

. (8.3.2)
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We will show that the low lying eigenvalues of L have indeed a similar stru
-ture.We de�ne the entran
e time of ζN,β into the set A as
σA := min {t ≥ 0 | ζN,β (t) ∈ A} . (8.3.3)Observe that σA di�ers from the hitting time τA sin
e it takes the value 0 if

ζN,β (0) ∈ A.As we have seen in Proposition 3.4 of part II the equilibrium potential of
ζN,β with respe
t to disjoint subsets A,B ⊂ XN satis�es

hA,B (x) = Px (σA < σB) for all x ∈ XN . (8.3.4)We use the abbreviation
hµ := hmµ,MN\mµ

for all µ ∈ V. (8.3.5)Now we 
an state the 
ru
ial proposition that allows us to 
ontrol the lowlying eigenvalues of L :Proposition 8.11 ([Bovier, Gayrard, Klein℄) Assume that ζN,β is κ-metastablewith respe
t to MN . Let λ be one of the 2M smallest eigenvalues of −L, thenthere exists an eigenvalue γ of the 2M×2M -matrix K ≡ KN,β whose elementsare given by
Kµν = −

〈hµ, Lhν〉̺
‖hµ‖̺ ‖hν‖̺

(8.3.6)
su
h that λ = γ (1 + O (κ)). We 
all K the 
apa
ity matrix of ζN,β.Proof. The proof 
an be found in [Bov04℄ Theorem 5.1, p. 36. Comparealso Se
tion 4 of [BGK05℄. �

Remark 8.12 (a) To motivate the name, re
all that the 
apa
ity between
mµ and MN \ mµ is given by cap (mµ,MN \ mµ) = −〈hµ, Lhµ〉̺.(b) The row sum of denominators of K is zero, i.e.

∑

ν∈V

〈hµ, Lhν〉̺ = 0. (8.3.7)
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This follows, sin
e L is a linear operator, for all x ∈ XN

∑

ν∈V

hν (x) =
∑

ν∈V

Px (τmν
≤ τMN

) = 1 (8.3.8)
and L1 = 0.Due to the symmetry under total spin �ip and the unusually small �u
-tuations of the heights of the minima in MN we 
annot dire
tly use theresults of [BEGK02℄ or [BGK05℄, but we 
an apply similar methods. Let
{λ0, . . . , λ2M−1} with 0 = λ0 ≤ . . . ≤ λ2M−1 be the smallest eigenvalues ofthe generator −LN,β of the Hop�eld model.Proposition 8.13 We assume 1 < β < 1 + (9d + 500M 8)

−1. Choose δ ∈(
0, 1

2

) and assume ξ ∈ Z ′
δ and N ≥ N0[ξ], as well as N ∈ Jδ. We de�ne

{µ, ν} ∈ E to be su
h that
Aµν

N = −max
a∈E

|Aa
N | . (8.3.9)Then the two largest eigenvalues of K are equal, i.e.

λ2M−1 = λ2M−2 (8.3.10)and there exists a 
onstant c su
h that their value 
an be estimated as
(
Emµ

(
τMN\mµ

)−1
+ Emµ

(
τMN\mν

)−1
)(

1 + O
(
e−cNδ

))
. (8.3.11)All other eigenvalues of K satisfy

λ ≤ 2Me−cN−δ

λ2M−1. (8.3.12)Remark 8.14 This yields together with Theorem 8.4 an expli
it formula for
λ2M−1 with multipli
ative errors (1 + O

(√
ln3 N/

√
N
)).Proof. Re
all that

Emµ

(
τMN\mµ

)
=

̺ (hµ)

cap (mµ,MN \ mµ)
. (8.3.13)

First we investigate the quantities ‖hµ‖̺. We 
an approximate, as in theproof of Theorem 5.21 of part II,
‖hµ‖2

̺ = k5N
d/2̺ (mµ)

(
1 + O

(
lnN√

N

))
, (8.3.14)
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where
k5 : = (2π)d/2 /

√
det∇2fβ (mµ)

= (2πdβ)d/2 (1 − m∗2)
d/2

(1 − β (1 − m∗2))M/2
. (8.3.15)

Therefore Theorem 7.7 implies
‖hµ‖̺

‖hν‖̺

= exp
{
k0β

((
g2

N

)µµ −
(
g2

N

)νν)}×

×
(

1 + O
(

ln3 N√
N

))
. (8.3.16)Sin
e gN ∈ AM and

{gµν
N } ∼ N0,1 ∀ {µ, ν} ∈ E, (8.3.17)the quotient ‖hµ‖̺

‖hν‖̺
is of order O (1) for N → ∞ (and M �nite).Due to the assumptions ξ ∈ Z ′

δ and N /∈ Jδ, we have
Aµν

N ≥ Aab
N + N− 1

2
+δ for all 1 ≤ a < b ≤ M. (8.3.18)In the following we use a modi�
ation of the argument for the proof of Propo-sition 7.12 and Theorem 7.13 in [Bov04℄. We denote

Gµν := {µ, ν}2 ∪ {−µ,−ν}2 . (8.3.19)Now, we investigate the matrix K̂ given by
K̂xy :=

{
Kxy, {x, y} ∈ Gµν

0, else.
(8.3.20)

Thereafter we show that the 
apa
ity matrix K is a perturbation of K̂.We 
laim that the non-zero part of K̂ has the stru
ture
(
K̂xy

)
{x,y}∈{µ,ν}2

= AKµµ

(
1 + O

(
e−cNδ

))
, (8.3.21)where we have denoted

A :=

(
1 −a
−a a2

) with a :=
‖hµ‖̺

‖hν‖̺

. (8.3.22)
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Due to the spin-�ip symmetry
(
K̂xy

)
{x,y}∈{−µ,−ν}2

=
(
K̂xy

)
{x,y}∈{µ,ν}2

. (8.3.23)
Equality (8.3.21) holds true, be
ause the property (8.3.9) of {µ, ν} yields thefollowing identity between sets of relevant saddle points

SN (mµ,MN \ mµ) = SN (mν ,MN \ mν) = {sµν} . (8.3.24)Moreover, VMN\{mµ,mν} ({mµ,mν}) 
ontains no other minima.We distinguish three 
ases:1. Assume x ∈ A (mµ) ∪ A (mν) and fβ,λ (x) ≤ fβ,λ (sµν) + δ√
N
. Then weobtain

Px

(
τ{mµ,mν} ≤ τMN

)
= 1 −O

(
e−cNδ

)
. (8.3.25)Therefore

hµ (x) = Px

(
τmµ

< τmν
| τ{mµ,mν} ≤ τMN

)
×

×
(
1 + O

(
e−cNδ

))

= 1 − Px

(
τmν

< τmµ
| τ{mµ,mν} ≤ τMN

)
×

×
(
1 + O

(
e−cNδ

))

= (1 − hν (x))
(
1 + O

(
e−cNδ

))
. (8.3.26)

2. Assume x /∈ A (mµ) ∪ A (mν) and fβ,λ (x) ≤ fβ,λ (sµν) + δ√
N
. Then weobtain

hµ (x) = O
(
e−cNδ

)
= hν (x) . (8.3.27)

3. For x su
h that fβ,λ (x) > fβ,λ (sµν) + δ√
N
we obtain

̺ (x) < exp
(
−βNfβ,λ (sµν) − δ

√
N
)

. (8.3.28)
Sin
e L1 = 0 we 
on
lude

〈hν , Lhµ〉̺ = −〈hµ, Lhµ〉̺
(
1 + O

(
e−cNδ

)) (8.3.29)
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and hen
e Kµν = −aKµµ

(
1 + O

(
e−cNδ

)). Moreover,
〈hν , Lhν〉̺ = 〈hµ, Lhµ〉̺

(
1 + O

(
e−cNδ

)) (8.3.30)
and hen
e Kνν = aKµµ

(
1 + O

(
e−cNδ

)) and we have proved the representa-tion (8.3.21).We 
an say even more, sin
e with Remark8.12 ∑ν∈V 〈hµ, Lhν〉 = 0 andtherefore in parti
ular
Kαβ = KµµO

((
e−cNδ

))
∀ {α, β} ∈ {±µ,±ν}2 \ Gµν . (8.3.31)The eigenvalues of A of (8.3.22) are 0 and (1 + a2). Therefore the largesteigenvalue of K̂ is

λ̂ = Kµµ

(
1 +

‖hµ‖2
̺

‖hν‖2
̺

)(
1 + O

(
e−cNδ

)) (8.3.32)
and it has multipli
ity two.Now, we 
laim that K is a perturbation of K̂. For this purpose we write

K = K̂ + Ǩ (8.3.33)To justify the 
laim we estimate the norm of Ǩ. We take as matrix norm theEu
lidean norm in R4M2. We observe
Kxx =

cap (mx,MN \ mx)

‖hx‖2
̺

. (8.3.34)
Therefore with Theorem 8.4 we obtain for all N ≥ N0[ξ]

Kµµ ≥ ecNδ

max
x∈V \{±µ,±ν}

Kxx. (8.3.35)
For x 6= y we obtain like in [Bov04℄ by the Cau
hy-S
hwarz inequality that
K2

xy ≤ KxxKyy. This and the estimate in (8.3.31) implies
∥∥Ǩ
∥∥ ≤ 2Me−cNδ

max (Kµµ,Kνν) . (8.3.36)With the result (8.3.36) follows that the biggest eigenvalue of K and K̂ 
o-in
ide up to multipli
ative errors (1 + O
(
e−cNδ

)). �
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We re
all that we have introdu
ed the minimal spanning tree Tmin of theweighted graph (V,E, g) in the last se
tion.We enumerate the edges of this tree Tmin by (t1, . . . , t2M−1) su
h that
g (t2M−1) ≤ g (t2M−2) ≤ . . . ≤ g (t1) < 0. Noti
e that (up to the order andsometimes 
hoi
e of equally weighted edges) the 
onstru
tion with Kruskal'salgorithm starts with t2M−1 and adds along our enumeration edges to thespanning tree until it ends with t1. Let IT ⊂ {1, . . . , 2M − 1} denote the setof indi
es su
h that g (ti) < g (ti−1).Theorem 8.15 We assume 1 < β < 1 + (9d + 500M 8)

−1. Choose δ ∈ (0, 1
2
)and assume ξ ∈ Z ′

δ and N ≥ N0[ξ], as well as N ∈ Jδ.Then there exists an in
reasing sequen
e (Mi+1 | i ∈ IT ) of metastable setsof ζN,β. Let {λ0, . . . , λ2M−1} with 0 = λ0 ≤ . . . ≤ λ2M−1 be the smallesteigenvalues of the generator −LN,β of the transformed Markov 
hain ζN,β.We de�ne
S∗

i := arg min
{m,n}∈Mi×Mi

(
f̂β,λ (m,n)

)
. (8.3.37)Denote for m ∈ Mi

γm,i :=
(
Em

(
τMi\m

))−1
. (8.3.38)We distinguish three 
ases:

• Assume S∗
i = {{m,n} , {−m,−n}}, then
λi−1 = λi = (γm,i + γn,i)

(
1 + O

(
e−cNδ

))
. (8.3.39)

• Assume S∗
i = {{m,n} , {−m,n}}, then

λi = (2γm,i + γn,i)
(
1 + O

(
e−cNδ

)) (8.3.40)and
λi−1 = γm,i

(
1 + O

(
e−cNδ

))
. (8.3.41)

• Assume S∗
i = {m,n}, then

λi = (γm,i + γn,i)
(
1 + O

(
e−cNδ

))
. (8.3.42)

Remark 8.16 Combined with Theorem 8.4 this implies expli
it estimatesprovided we know (Ti)1≤i<2M . 137



Proof. For the proof we redu
e step by step the 
ardinality of the set
M2M ≡ MN that is by de�nition des
ribed by the vertex-set of Tmin.We use now Proposition 4.6 of part II to �nd indu
tively smaller andsmaller metastable sets Mi of the Markov 
hain ζN,β. We de�ne K(2M) ≡ Kand K(i) to be the 
apa
ity matrix of Mi.Assume we have already 
onstru
ted Mi and the asso
iated 
apa
ity ma-trix is K(i). As in De�nition 4.4 of part II, we de�ne the valley Vn (m) asthe 
onne
ted 
omponent of the set {x ∈ XN,β | fβ,λ (x) < f̂β,λ (m,n)

} that
ontains m.Assume {m,n} ∈ S∗
i , then from De�nition 8.3.37 follows that the onlyelement of Mi that is 
ontained in Vn (m) is m itself. Analogously Vm (n)
ontains only n. Therefore we 
an 
on
lude that

sαβ ∈ SN (m,n) , (8.3.43)where {α, β} are minimiser of
min

µ : mµ ∈ Vn (m) ∩MN

ν : mν ∈ Vm (n) ∩MN

〈ξµ, ξν〉 . (8.3.44)
• If S∗

i = {{m,n} , {−m,−n}} (this has to be the 
ase for M2M), where
̺ (m) ≤ ̺ (n), we put Mi−2 := Mi \ {m,−m}. Observe that in this
ase there is no metastable set of ζN,β with (i − 1) elements.

• If S∗
i = {m,n} , where ̺ (m) ≤ ̺ (n), we have tie edges and we put

Mi−1 = Mi \ m. Observe that in parti
ular n may be equal to −m inthis 
ase.
• And third, if S∗

i = {{m,n} , {−m,n}}, we distinguish two 
ases. If
̺ (m) ≤ ̺ (n), we put again Mi−2 := Mi \ {m,−m}. If on the otherhand ̺ (n) ≤ ̺ (m), we put Mi−2 := Mi \ {m,n}.

Hen
e Mi 
ontains exa
tly i points. Assume Mi = {m1, . . . ,mi} and denote
hi,x := hmx,Mi\mx

. Then
K(i)

xy =
〈hi,x, Lhi,y〉

‖hi,x‖̺ ‖hi,y‖̺

. (8.3.45)
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We abbreviate c ≡ ‖hi,1‖̺

‖hi,2‖̺

. We show now that analogously to the proof ofProposition 8.13 we 
an treat K(i) as a perturbation of a simpler matrix. Thismatrix depends now on the stru
ture of Ti. In all three 
ases the estimateof the smallness of this perturbation is shown exa
tly as in the proof ofProposition 8.13.
• Assume S∗

i = {{m1,m2, } , {−m1,−m2}}, possibly by renumbering theelements of Mi. Then we 
an des
ribe K(i) as a perturbation of thematrix K(V ) given by
K(V )

xy :=

{
Kxy, {x, y} ∈ {1, 2}2 ∪ {−1,−2}2

0, else.
(8.3.46)

Moreover, this matrix has the following stru
ture:
(
K(U)

xy

)
{x,y}∈{1,2}2 = K11A

(
1 + O

(
e−cNδ

))
, (8.3.47)where we denoted

A :=

(
1 −c
−c c2

)
. (8.3.48)Due to the spin-�ip symmetry

(
K(V )

xy

)
{x,y}∈{−1,−2}2 =

(
K(V )

xy

)
{x,y}∈{1,2}2 . (8.3.49)The eigenvalues of A are {0, (1 + c2)} and therefore the largest eigen-value of K(V ) has multipli
ity two and is, up to multipli
ative errors(

1 + O
(
e−cNδ

)), equal to
cap (m1,m2)

(
1

‖hi,1‖2
̺

+
1

‖hi,2‖2
̺

)
. (8.3.50)

• Assume S∗
i = {m1,m2}, again by renumbering the elements of Mi.Then we 
an des
ribe Ki as a perturbation of the matrix K(U) given by

K(U)
xy :=

{
Kxy, {x, y} ∈ {1, 2}2

0, else.
(8.3.51)

Moreover, this matrix has the following stru
ture:
(
K(U)

xy

)
{x,y}∈{1,2}2 = K11A

(
1 + O

(
e−cNδ

)) (8.3.52)
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with A de�ned in (8.3.48). Therefore the unique largest eigenvalue of
K(U) is, up to multipli
ative errors (1 + O

(
e−cNδ

)), equal to
cap (m1,m2)

(
1

‖hi,1‖2
̺

+
1

‖hi,2‖2
̺

)
. (8.3.53)

Observe that (only) in this 
ase the set of relevant saddle points between
m1 and m2 
ontains two elements.

• The last possible 
ase is S∗
i = {{m1,m2} , {−m1,m2}}. Hen
e we 
andes
ribe Ki as a perturbation of the matrix K(W ) given by

K(W )
xy :=

{
Kxy, {x, y} ∈ {1, 2}2 ∪ {−1, 2}2

0, else.
(8.3.54)

Moreover this matrix has the following stru
ture:
(
K(W )

xy

)
{x,y}∈{1,2,−1}2 = K11C

(
1 + O

(
e−cNδ

))
, (8.3.55)where we have, due to the spin �ip symmetry,

C :=




1 −c 0
−c 2c2 −c
0 −c 1


 . (8.3.56)

The eigenvalues of C are {0, 1, 1 + 2c2} and therefore the two largesteigenvalues of K(W ) are, up to multipli
ative errors (1 + O
(
e−cNδ

)),equal to
cap (m1,m2)

(
1

‖hi,1‖2
̺

+
2

‖hi,2‖2
̺

) (8.3.57)
and

cap (m1,m2)

‖hi,1‖2
̺

. (8.3.58)
This proves the theorem. �
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9 Some proofsFrom now on we leave out the N -dependen
e of AN and write A ≡ AN .We will frequently need the �rst and se
ond derivative of fβ,λ. We use I ′ (y) =
artanh (y) and I ′′ (y) = 1

1−y2 . Thus
∂

∂yk
fβ,λ (y) =

(
1 +

1√
N

λk

)
×

×
(

1

β
artanh (yk) −

∑

j

Pkj

(
1 +

1√
N

λj

)
yj

) (9.0.1)
and

∂2

∂yj∂yk

fβ,λ (y) =

(
1 +

1√
N

λj

)
×

×
(

1

β
(
1 − y2

j

)δjk − Pjk

(
1 +

1√
N

λk

))
. (9.0.2)

9.1 Pre
ise lo
ation of 
riti
al pointsThis subse
tion 
ontains the proof of Theorem 7.6.We 
onsider ξ ∈ Ξ and N ≥ N0[ξ]. Due to the uniform 
onvergen
e of
fβ,λ to fβ (proved in Proposition 6.9) the 
luster points of a sequen
e (m(N)

)of global minima of fβ,λ has to be 
ontained in the set M of global minima of
fβ. Therefore we 
an divide a given sequen
e into subsequen
es that 
onvergeto a global minimum of fβ. We show that if m(N) 
onverges for N → ∞ to
m±µ then it is unique and has the form m±µ given in Theorem 7.6.Note that this follows already from the general theorem of Bovier andGayrard [BG98℄, Theorem 6.2, p. 40, sin
e here their βc (2) = 1.Assume that y ∈ PRd is a 
riti
al point of fβ. Now we perform theAnsatz y := y + 1√

N
κ to �nd a 
riti
al point of fβ,λ. Here κ ≡ κN is anarbitrary random variable su
h that |κ| = o

(√
N
).

y is a 
riti
al point of fβ,λ i�
d

dyk

fβ,λ (y)
!
= 0. (9.1.1)
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Using (9.0.1) this is equivalent to
1

β
Artanh

(
y +

1√
N

κ

)
= P

(
1l +

1√
N

Λ

)(
y +

1√
N

κ

)
. (9.1.2)

We were allowed to 
an
el the 
ommon fa
tor (1 + 1√
N

λk

), sin
e ξ ∈ Ξ and
N ≥ N0[ξ]. We use now a Taylor expansion for ar
tanh(y + 1√

N
κ
) andarrive at

1

β
artanh (yk) +

1

β (1 − y2
k)

1√
N

κk + O
(

1

N
|κ|2
)

= yk +
1√
N

∑

α

〈bα,Λy〉 bα
k +

1√
N

P

(
1l +

1√
N

Λ

)
κk. (9.1.3)

Using that y is a 
riti
al point of fβ leads us to
κk = β

(
1 − y2

k

)∑

α

(
rα +

〈
bα,

(
1l +

1√
N

Λ

)
κ

〉)
bα
k + O

(
1

N
|κ|2
)

,(9.1.4)where we denoted rα := 〈bα,Λy〉. Now we multiply this equation with
bσ
k

(
1 +

1√
N

λk

) (9.1.5)
and sum over all k ∈ {1, . . . , d}. This yields the matrix equation for t ∈ RMwith tα :=

〈
bα,
(
1l + 1√

N
Λ
)

κ
〉. Moreover, t is of the same order as κ andtherefore we obtain

{
κk = β (1 − y2

k)
∑

α (rα + tα) bα
k + O

(
1
N
|t|2
)
,

t = G (r + t) + O
(

1
N
|t|2
)
,

(9.1.6)
where G is the M × M matrix with

Gσα = β

〈
bσ,
(
1l − (y·)2)

(
1l +

1√
N

Λ

)
bα

〉
. (9.1.7)

Here, y· denotes the diagonal matrix with entries y. To evaluate this further,we have to use spe
i�
 information about the point y.142



MinimaFix a µ ∈ {1, . . . ,M}. We will 
al
ulate the pre
ise lo
ation of the minima,hen
e y = m∗bµ. Denote again γ1 := 1
β(1−m∗2)

. We �nd r = m∗Aµ with
Aµ ≡ (Aµ,1, . . . , Aµ,p) and

G = β
(
1 − m∗2)

(
1l +

1√
N

A

)
. (9.1.8)

Therefore equation (9.1.6) equals
γ1t =

(
1l +

1√
N

A

)
(t + r) + O

(
1

N
|t|2
)

⇔
(

1l − â√
N

A

)
t = â

(
1l +

1√
N

A

)
r + O

(
1

N
|t|2
)

, (9.1.9)
where â ≡ 1

γ1−1
. The matrix (1l − â√

N
A
) is invertible, sin
e ξ ∈ Ξ and

N ≥ N0[ξ], and therefore
⇔ t = â

(
1l − â√

N
A

)−1(
1l +

1√
N

A

)
r + O

(
1

N
|t|2
)

= â
∞∑

n=0

(
â√
N

A

)n(
1l +

1√
N

A

)
r + O

(
1

N
|t|2
)

= âm∗Aµ + O
(

ln N√
N

)
. (9.1.10)

The last equation uses rα = m∗Aµ,α = O
(√

lnN
) for ξ ∈ Ξ and N ≥ N0[ξ].Inserting this in equation (9.1.6) gives us dire
tly the 
orre
tion κ for theminima mµ :

κk =
m∗

γ1

(1 + â)
∑

α

Aµ,αbα
k + O

(
lnN√

N

) (9.1.11)
or equivalently

κk =
m∗

γ1 − 1

∑

α

Aµ,α
N bα

k + O
(

ln N√
N

)
. (9.1.12)
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Saddle pointsLet ξ ∈ Ξ and N ≥ N0[ξ] [ξ]. To show that the essential saddle points of fβ,λare small deviations of the essential saddles of fβ, we use again the uniform
onvergen
e of Proposition 6.9: Let m(N), n(N) ∈ MN . Let γ be an optimalpath of fβ. Then γ 
an be uniformly approximated by paths γN in XN andtherefore by de�nition the 
ommuni
ation height f̂β,λ

(
m(N), n(N)

) 
onvergesto f̂β (m,n). Let SN (m,n) be the set of all relevant saddle points between mand n in XN . Then ea
h sequen
e in SN

(
m(N), n(N)

) has a subsequen
e that
onverges to an element of S (m,n), the relevant saddles in [−1, 1]d. Now weshow that ∣∣SN
(
m(N), n(N)

)∣∣ = |S (m,n)|.We use the abbreviation s := sµ,ν .Lemma 9.1 We de�ne the diagonal matrix S with elements Skk := sk. Thenthe following properties hold:1. S2s = m∗2s.2. 〈bα, S2bβ
〉

= 1
2
m∗2 (δα,β ± δ{α,β},{µ,ν}

).Proof. ad 1. We have sk = m∗bµ
k1bµ

k
=bν

k
. Therefore

S2sk = (sk)
3 = m∗3bµ

k1eµ
k
=eν

k

= m∗2sk. (9.1.13)ad 2. This follows dire
tly from
S2

k = s2
k =

1

2
m∗2 (1 ± bµ

kb
ν
k) . (9.1.14)

�We want to use again equation (9.1.6), now with y := sµ,ν . Let B bethe M × M matrix with Bσα = Aσα − m∗2 1
d
〈bσα,Λbµν〉. We re
eive rα =

1
2
m∗ (V αµ + V αν) and with the help of Lemma 9.1 for σ 6= µ, ν

Gσα =

(
1 − 1

2
m∗2

)
δσα + Bσα. (9.1.15)Thus equation (9.1.6) takes for σ 6= µ, ν now the shape

tσ = β

((
1 − 1

2
m∗2

)
1l +

1√
N

B

)
(r + t)σ . (9.1.16)
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With c := β

1−β(1− 1
2
m∗2)

this is equivalent to
(

1l − c√
N

B

)
tσ = c

((
1 − 1

2
m∗2

)
1l +

1√
N

B

)
rσ. (9.1.17)

The matrix (1l − c√
N

B
) is invertible for ξ ∈ Ξ and N ≥ N0[ξ], and thus

tσ = c

(
1l − c√

N
B

)−1((
1 − 1

2
m∗2

)
1l +

1√
N

B

)
rσ

= c
∞∑

n=0

(
c√
N

B

)n((
1 − 1

2
m∗2

)
1l +

1√
N

B

)
rσ

= c

(
1 − 1

2
m∗2

)
rσ + O

(
ln N√

N

)
. (9.1.18)

We have used Bσα = O
(√

ln N
) and rα = O

(√
ln N

) from Proposition 6.7.For σ = µ we get
tµ = β

((
1 − 1

2
m∗2

)
1l +

1√
N

B

)
(r + t)µ −

−1

2
m∗2β (rν + tν) (9.1.19)and analogues for σ = ν

tν = β

((
1 − 1

2
m∗2

)
1l +

1√
N

B

)
(r + t)ν −

−1

2
m∗2β (rµ + tµ) . (9.1.20)Sin
e rµ = rν , we obtain

tµ − tν = β

(
1l +

1√
N

B

)
(tµ − tν) = 0, (9.1.21)

be
ause β
(
1 + 1√

N
A
)
6= 1 for N large. Thus we 
an dedu
e

tµ = β

((
1 − m∗2) 1l +

1√
N

B

)
(r + t)µ (9.1.22)
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and, analogues to the derivation of (9.1.18), we obtain
tµ =

1

γ1 − 1
rµ + O

(
ln N√

N

)
. (9.1.23)With Equation (9.1.6) and c

(
1 − 1

2
m∗2)+ 1 = c

β
we 
on
lude

κk = β
(
1 − s2

k

)∑

α

(tα + rα) bα
k + O

(
1

N
‖ǫ‖2

)

=
(
1 − s2

k

)∑

α

(
c1{µ,ν}c (α) +

βγ1

γ1 − 1
1{µ,ν} (α)

)
rαbα

k +

+O
(

ln N√
N

)
. (9.1.24)We will use that β γ1

γ1−1
− c = −1

2
m∗2 âc

1−m∗2 and S2s = m∗2s to derive from(9.1.24) another representation of ǫ:
ǫk = c

[
(
1 − s2

k

)∑

α

rαbα
k − m∗ârµsk

]
+ O

(
ln N√

N

)

=
m∗c

2

(
(
1 − s2

k

)∑

α

(Aµ,α
N + Aν,α

N ) bα
k − 2m∗âAµ,ν

N sk

)
+

+O
(

ln N√
N

)
. (9.1.25)

9.2 Pre
ise height of the minima and 1-saddlesWe prove now Proposition 7.7 about the pre
ise height of the minima {mµ}1≤µ≤Mand the 1-saddles {sµ,ν}1≤µ,ν≤M between them.Proof. We use the Taylor expansion of the logarithm to estimate the Cramérentropy term, de�ned in (6.3.4), and obtain for v = O
(√

ln N
)

:

I

(
u +

1√
N

v

)

=
1

2
ln
(
1 − u2

)
+

1

2

(
u +

1√
N

v

)
ln

1 + u

1 − u
+

+
1

2N

1

1 − u2
v2 + O

(
ln N

N

)3/2

. (9.2.1)
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Now, we evaluate the fun
tion fβ,λ de�ned in (6.3.10) at a point z := x +
1√
N

y ∈ Br (x) with r = k ln N√
N

:

fβ,λ (z)

=
1

2βd

d∑

k=1

(
1 +

1√
N

λk

)
×

×
(

ln
(
1 − x2

k

)
+ zk ln

1 + xk

1 − xk

+
1

N

1

1 − x2
k

y2
k

)
−

− 1

2d

∣∣∣∣P
(

1l +
1√
N

Λ

)
z

∣∣∣∣
2

+ O
(

lnN

N

)3/2

. (9.2.2)
9.2.1 Minima.We denote a ≡ m∗

γ1−1
. First we 
onsider the minimum mµ, in other words weput x ≡ m∗bµ and y ≡ a

∑
α Aµαbα and use equation (9.2.2). In the followingwe use tra
e (Λ) = 0 and

ln
1 + m∗bµ

k

1 − m∗bµ
k

= bµ
k ln

1 + m∗

1 − m∗ . (9.2.3)Hen
e equation (9.2.2) simpli�es to
fβ,λ (mµ)

=
1

2β
ln
(
1 − m∗2)+

γ1

2dN
〈y, y〉 +

+
1

2β
ln

1 + m∗

1 − m∗opµµ − 1

2

∑

α

(
opµα

)2
+ O

(
lnN

N

)3/2

. (9.2.4)
Here, we used the overlap parameter at the minimum opµα := 1

N
〈bα, Lmµ〉.We obtain

opµα =
1

d

〈
bα,

(
1l +

1√
N

Λ

)(
m∗bµ +

a√
N

∑

β

Aµβbβ

)〉

= m∗δµα +
1√
N

(m∗ + a) Aµα +
a

N

(
A2
)µα

. (9.2.5)Therefore
opµµ = m∗ +

a

N

(
A2
)µµ (9.2.6)
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and
∑

α

(
opµα

)2 − m∗2

=
1

N

[
(m∗ + a)2 + 2m∗a

] (
A2
)µµ

+ O
(

lnN

N

)3/2

. (9.2.7)
To 
ompute (9.2.4), we need moreover

〈y, y〉 = a2d
(
V 2
)µµ

. (9.2.8)Altogether this leads us to
fβ,λ (mµ)

=

(
1

β
I (m∗) − 1

2
m∗2

)
+

+
1

N

(
a

2β
ln

1 + m∗

1 − m∗ − 1

2
m∗ (3a + m∗)

)(
A2
)µµ

+ O
(

ln N

N

)3/2

.(9.2.9)
Now f : A → R+ with f (a) = (a2)

µν is Lips
hitz-
ontinuous with respe
t tothe matrix norm ‖·‖2 de�ned by
‖a‖2

2 := max
µ

∑

ν

(aµν)2 . (9.2.10)
To see this 
onsider

∣∣(b2
)µν −

(
a2
)µν∣∣ =

∣∣∣∣∣
∑

α

bµαbνα − aµαaνα

∣∣∣∣∣

≤
∣∣∣max

α
{aµα, bµα}

∣∣∣
∣∣∣∣∣
∑

α

bνα − aνα

∣∣∣∣∣
≤

(
‖a‖2

s + ‖b − a‖2
s

)
‖b − a‖2

s . (9.2.11)Therefore with the law of the iterated logarithm and the strong approxi-mation property of Proposition 6.11 (a) and (b), we 
an repla
e (A2)
µµ by

(g2
N )

µµ. 148



Saddle Points.Without loss of generality we 
onsider the 
ase s = 1
2
m∗ (bµ + bν). De-note vα := Aµ,α + Aν,α as an abbreviation. We will use here a ≡ m∗

γ1−1and k ≡ 1
2

βm∗

1−β(1− 1
2
m∗2)

. We start with equation (9.2.2) putting x ≡ s withperturbation y ≡ k (1 − S2)
∑

α vαbα − akvµs from Proposition 7.6. We willuse
ln
(
1 − (sk)

2) =
1

m∗2s2
k ln
(
1 − m∗2) (9.2.12)and

ln
1 + sk

1 − sk
=

1

m∗ sk ln
1 + m∗

1 − m∗ . (9.2.13)Then we obtain
fβ,λ (sµ,ν)

=
1

2βm∗2d
ln
(
1 − m∗2)

〈
s,

(
1l +

1√
N

Λ

)
s

〉
+

+
1

4β
ln

1 + m∗

1 − m∗
(
opµ + opν

)
+

+
1

N

1

βd

〈
y,
(
1l − S2

)−1
y
〉
− 1

2

∑

α

(opα)2 + O
(

lnN

N

)3/2

.(9.2.14)
We used here the overlap parameter opα := 1

N
〈bα, Lsµ,ν〉. We obtain

opα =
1

d

〈
bα,

(
1l +

1√
N

Λ

)(
s +

1√
N

y

)〉

=
1

2
m∗
(

1 − 1√
N

akvµ

)(
δαµ + δαν +

1√
N

vα

)
+

+
k√
N

[
vα − 1

2
m∗2 (vα + vµ (δα,ν + δα,µ))

]
+

+

(
1 − 1

2
m∗2

)
k

N

∑

β

vβAβα −

−m∗2k

2dN

∑

β

vβ

〈
bαβ,Λbµν

〉
. (9.2.15)
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This is valid, be
ause
〈

bα,

(
1l +

1√
N

Λ

)
s

〉

=
1

2
m∗d

(
δαµ + δαν +

1√
N

vα

) (9.2.16)
and, with the help of Lemma 9.1,

〈
bα,

(
1l +

1√
N

Λ

)(
1l − S2

)
bβ

〉

= d

(
δα,β +

1√
N

Aαβ

)
− 1

2
m∗2d

(
δαβ + δ{α,β},{µ,ν}

)

− m∗2

2
√

N

(
dAαβ +

〈
bαβ,Λbµν

〉)
. (9.2.17)

We obtain from (9.2.15) using vµ = vν

∑

α

(opα)2

=
1

4
m∗2

(
2

(
1 − 2√

N
akvµ

)
+

1√
N

4vµ

)
+

+
mk√

N

((
1 − 1

2
m∗2

)
2vµ − 1

2
m∗22vµ

)
+

+
m∗2

4N

(
2a2k2v2

µ − 8akv2
µ +

∑

α

vα

)
−

−m∗k2a

N
vµ

((
1 − 1

2
m∗2

)
2vµ − m∗2vµ

)
+

+
m∗k

N

((
1 − 1

2
m∗2

)∑

α

v2
α − m∗2v2

µ

)
+

+
k2

N

((
1 − 1

2
m∗2

)2∑

α

v2
α +

1

2
m∗4v2

µ − 2m∗2
(

1 − 1

2
m∗2

)
v2

µ

)
+

+
m∗k

N

((
1 − 1

2
m∗2

)∑

α

v2
α − 1

2
m∗2

∑

α

v2
α

)
. (9.2.18)
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This 
an be simpli�ed to
∑

α

(opα)2

=
1

2
m∗2 +

m∗aγ1√
N

vµ +

+
k

N

(
k

β2
+ m∗ (1 − m∗2)

)∑

α

v2
α +

+
m∗2ak

N

(
1

2
γ2

1ak − 2kγ1

m∗β
− 1

)
v2

µ + O
(

ln N

N

)3/2

. (9.2.19)
As other ingredients we need

opµ + opν = m∗
(

1 − 1√
N

akvµ

)(
1 +

1√
N

vµ

)
+

+
2k√
N

(
1 − m∗2) vµ +

+
k

N

∑

β

v2
β − m∗2k

N

∑

β

v2
β

= m∗ +
2k√
N

(
1 − m∗2 +

1

2
m∗a +

m∗

2k

)
vµ

+
m∗ak

N
v2

µ +
k

N

(
1 − m∗2)∑

α

v2
α (9.2.20)

and
〈
y,
(
1l − S2

)−1
y
〉

= k2

〈
∑

α

vα

(
1l − S2

)
bα − avµs,

∑

β

vβbβ − a

1 − m∗2vµs

〉

= k2
∑

α,β

vβvα

〈(
1l − S2

)
bα, bβ

〉
+ k2 a2

1 − m∗2v2
µ 〈s, s〉 −

−ak2
∑

α

vαvµ

(
1

1 − m∗2
〈(

1l − S2
)
bα, s

〉
+ 〈bα, s〉

)
. (9.2.21)
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With Lemma 9.1 we obtain
〈
y,
(
1l − S2

)−1
y
〉

=

(
1 − 1

2
m∗2

)
k2d

∑

α

v2
α − m∗2k2dv2

µ +
1

2
m∗2k2 a2

1 − m∗2dv2
µ −

−2m∗k2adv2
µ

=

(
1 − 1

2
m∗2

)
k2d

∑

α

v2
α − 1

4
(2k + βa) aγ1m

∗2dv2
µ. (9.2.22)

Putting this together leads to
fβ,λ (s + ǫ)

=
1

2

(
1

β
I (m∗) − 1

2
m∗2

)
+

+
1√
N

Aµν
N

(
1

2β
I (m∗) +

a

4β
ln

1 + m∗

1 − m∗ − 1

2
m∗γ1a

)
+

+
k

N

(
1 − m∗2)

(
1

4β
ln

1 + m∗

1 − m∗ − 1

4
m∗ (γ1 + 2)

)∑

α

v2
α −

−m∗ak

N

(
1

4β
ln

1 + m∗

1 − m∗ +
1

4
m∗ (γ1 + 2)

)
v2

µ

+O
(

ln N

N

)3/2

. (9.2.23)
By the inequality (9.2.11) and the strong approximation property of Propo-sition 6.11, we 
an asymptoti
ally repla
e Aµν by gµν

N . So we are done. �
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Appendix A
Approximation of Gaussian sumsvia integrals
Let H be a positive de�nite d×d matrix. Then we 
an evaluate the asso
iatedGaussian integral by

∫

Rd

exp

(
−1

2
ǫ 〈x,Hx〉

)
dx =

(2π)d/2

√
det H

ǫ−d/2. (A.0.1)
We show now that Gaussian sums 
an be approximated by these integrals ina very pre
ise way.Proposition A.1 Let (Hǫ)ǫ∈(0,1) be a family of positive de�nite d×d-matri
es.We assume there exists κ > 0, independent of ǫ, su
h that

‖Hǫx‖ ≥ κ ‖x‖ for all x ∈ Rd. (A.0.2)Then the related Gaussian sum 
an be approximated by a Gaussian integral,that means we have
∑

k∈Zd

exp

(
−1

2
ǫ 〈k,Hǫk〉

)
=

(2π)d/2

√
det Hǫ

ǫ−d/2
(
1 + O

(√
ǫ
))

. (A.0.3)
Proof. Denote

sd :=
∑

x∈Zd

φǫ (x) (A.0.4)
We prove the result by indu
tion over the dimension n.153



1. Fixing the indu
tion at n = 1: We obtain by approximating the Gaus-sian integral via step fun
tions from below and above using monotoni
ity
∞∑

k=1

φǫ (k) ≤
∫ ∞

0

φǫ (x) dx ≤
∞∑

k=0

φǫ (k) . (A.0.5)Thus we have
s1 − 1 ≤

∫

R

e−
1
2
ǫHǫx2

dx ≤ s1 + 1. (A.0.6)Sin
e we have assumed that the spe
trum of Hǫ is uniformly bounded frombelow (A.0.2), we obtain
s1 =

√
2π

ǫHǫ

(
1 + O

(√
ǫ
))

. (A.0.7)2. Indu
tion step {1, . . . , n} → n+1: By approximating again the Gaus-sian integral via step fun
tions from below and above and using monotoni
ity,we obtain ∑

k∈Nn+1

φǫ (k) ≤
∫

R
n+1
+

φǫ (x) dx ≤
∑

k∈N
n+1
0

φǫ (k) . (A.0.8)
Let K ⊂ {1, . . . , n} and de�ne An,K := {x ∈ Zn |xk = 0 for k ∈ K}. Denotefor Hǫ ∈ Rn×n by H

(K)
ǫ the (n − |K|) × (n − |K|)-matrix that arises bydropping the jth row and 
olumn of Hǫ for all j ∈ K. We use now thefa
t, that the proje
tion of a normal density on Rn+1 onto a k-dimensionalsubspa
e is again a normal density, i.e.
∑

x∈An,K

exp

(
−1

2
ǫ 〈x,Hǫx〉

)

=
∑

x∈Zn−|K|

exp

(
−1

2
ǫ
〈
x,H(K)

ǫ x
〉)

. (A.0.9)
Sin
e we know from the indu
tion hypothesis sk = O

(
ǫ−k/2

) for k ≤ n, weobtain with the in
lusion-ex
lusion prin
iple
sn+1 =

∫

Rn+1

e−
1
2
ǫ〈x,Hǫx〉 + O

(
ǫ−n/2

)

=
(2π)(n+1)/2

√
det Hǫ

ǫ−(n+1)/2
(
1 + O

(√
ǫ
))

. (A.0.10)Hen
e, we have shown the proposition. �
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Appendix B
Estimation of sums by theLapla
e-method
Let a ∈ Rd and b > 0. The Gaussian integral

I (a, b) :=

∫ ∞

0

exp

(
−ax − 1

2
ǫbx2

)
dx (B.0.1)


an be evaluated by a quadrati
 
ompletion
I (a, b) =

√
2π

ǫb
exp

(
a2

2ǫb

)(
1 − N0,1

(
a√
ǫb

))
. (B.0.2)

Here N0,1 denotes the standard normal distribution fun
tion.Now, we distinguish two di�erent asymptoti
 behaviours. For notational
onvenien
e we leave out the dependen
e of a and b on ǫ.(a) Assume there exists a 
onstant β > 0 su
h that a/
√

ǫb = O
(
ǫβ
).Then we obtain

I (a, b) =

√
π

2

1√
ǫb

(
1 + O

(
ǫβ
))

. (B.0.3)This holds sin
e
N0,1

(
a√
ǫb

)
=

1

2
+

1√
2π

∫ a/
√

ǫb

0

e−
1
2
x2

dx

=
1

2
+ O

(
ǫβ
)
. (B.0.4)
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(b) Assume there exists a 
onstant γ ∈
(
0, 1

2

] su
h that √ǫb/a = O (ǫγ).Then we obtain
I (a, b) =

1

a

(
1 + O

(
ǫ2γ
))

. (B.0.5)
This holds sin
e

1 − N0,1

(
a√
ǫb

)
=

1√
2π

∫ ∞

a/
√

ǫb

e−
1
2
x2

dx

=
1

a

√
ǫb

2π
exp

(
a2

2ǫb

)(
1 + O

(
ǫ2γ
))

. (B.0.6)
For a proof of this see e.g. [Fe℄, p. 175.We will show now that exponential sums have a very similar behaviour.Proposition B.1 Let Λ be an open interval that 
ontains 0. We 
onsidera family (fǫ)ǫ∈(0,1) with fǫ ∈ C3 (Λ, R). De�ne the one sided latti
e Nǫ :=
Λ ∩ ǫN0 and assume fǫ has exponentially tight level sets on Nǫ, i.e.

∑

x∈Nǫ:fǫ(x)≥a

exp (−fǫ (x) /ǫ) ≤ cae
a/ǫ. (B.0.7)

We distinguish two 
ases:(a) Assume there exists 
onstants c, β > 0 su
h that limǫ↓0 f ′′
ǫ (0) ≥ c and

f ′
ǫ (0) = O

(
ǫ

1
2
+β
). Moreover, assume there exists a > 0 small, su
h that forall δ > 0 small enough

fǫ (x) ≥ fǫ (0) + aδ2 for all x ≥ δ. (B.0.8)Then we obtain
∑

x∈Nǫ

exp (−fǫ (x) /ǫ)

=

√
π√

2ǫf ′′
ǫ (0)

exp (−fǫ (0) /ǫ)
(
1 + O

(
ǫβ |ln ǫ|3

))
, (B.0.9)

where β := 1
2
∧ β. 156



(b) Assume there exists γ ∈
(
0, 1

2

] and c > 0, independent of ǫ, su
h that
limǫ↓0

(
f ′

ǫ (0) /ǫ
1
2
−γ
)
≥ c. Assume there exists a > 0 small, su
h that for all

δ small enough
fǫ (x) ≥ fǫ (0) + aδ for all x ≥ δ. (B.0.10)Then we obtain

∑

t∈Nǫ

exp (−fǫ (ǫt) /ǫ)

=
1

(1 − e−f ′
ǫ(0))

exp (−fǫ (0) /ǫ) (1 + O (ǫγ)) . (B.0.11)
In the 
ase limǫ↓0 f ′

ǫ (0) ≥ c, (i.e. γ = 1
2
) we get the more pre
ise estimate

∑

x∈Nǫ

exp (−fǫ (x) /ǫ)

=

(
1

1 − e−f ′
ǫ(0)

− 1

2
ǫf ′′

ǫ (0)
e−f ′

ǫ(0)
(
1 + e−f ′

ǫ(0)
)

(1 − e−f ′
ǫ(0))

3

)
×

× exp (−fǫ (0) /ǫ)
(
1 + O

(
ǫ3/2
))

. (B.0.12)
Proof. ad (a). We 
hoose δ ≡ δ (ǫ) :=

√
kǫ |ln ǫ| with k 
onstant. The sum(B.0.29) 
an be written as

∑

x∈Nǫ

e−fǫ(x)/ǫ = e−fǫ(0)/ǫ(
∑

x<δ

e−(fǫ(x)−fǫ(0))/ǫ +
∑

x≥δ

e−(fǫ(x)−fǫ(0))/ǫ). (B.0.13)
The sums on the right hand side 
ontains, of 
ourse, also only x ∈ Nǫ. Withthe help of (B.0.8) and the exponentially small level sets of fǫ (assumptionF3), the se
ond sum of (B.0.13) is bounded by caδ2ǫ−de−aδ2/ǫ = cǫǫ

ka−d <
√

ǫfor k large enough. As we will see this summand is negligible.We abbreviate a ≡ f ′
ǫ (0) and b = f ′′

ǫ (0). Then we approximate fǫ by aTaylor series of se
ond order around 0:
fǫ (ǫt) − fǫ (0) = ǫat +

1

2
ǫ2bt2 + O

(
(ǫt)3) . (B.0.14)
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Inserting this into the �rst sum of (B.0.13), we obtain
∑

t∈N0,t<δ/ǫ

exp (−fǫ (ǫt) + fǫ (0)) /ǫ

=
∑

t<δ/ǫ

exp

(
−at − 1

2
ǫbt2 + O

(
ǫ2t3
))

=
∑

t<δ/ǫ

exp

(
−at − 1

2
ǫbt2
)(

1 + O
(
δ3/ǫ

))
. (B.0.15)

Noti
e that remainder of the sum satis�es
∑

t≥δ/ǫ

exp

(
−at − 1

2
ǫbt2
)

=
∞∑

t=0

exp

(
−a (t + ⌈δ/ǫ⌉) − 1

2
ǫb (t + ⌈δ/ǫ⌉)2

)

≤ ǫ
1
2
ck

∞∑

t=0

exp

(
−at − 1

2
ǫbt2
)

, (B.0.16)
whi
h is negligible 
ompared to the last sum for k > 1

c
. Therefore

∑

t<⌊δ/ǫ⌋
exp (−fǫ (ǫt) + fǫ (0)) /ǫ

=
∞∑

t=0

(
exp

(
−at − 1

2
ǫbt2
))(

1 + O
(
δ3/ǫ

)) (B.0.17)
We approximate now this sum by an integral. Due to the monotoni
ity of(
−at − 1

2
ǫbt2
) on (0,∞) we have

∞∑

t=0

(
exp

(
−at − 1

2
ǫbt2
))

≤
∫ ∞

0

exp

(
−ax − 1

2
ǫbx2

)
dx

≤
∞∑

t=1

(
exp

(
−at − 1

2
ǫbt2
))

. (B.0.18)
158



Therefore ∞∑

t=0

exp

(
−at − 1

2
ǫbt2
)

= I (a, b) + O (1) . (B.0.19)with the Gaussian integral I de�ned in (B.0.1).Sin
e a = O
(
ǫβ
√

ǫb
) we obtain as in (B.0.3)

I (aǫ, b) =

√
π

2

1√
ǫb

(
1 + O

(
ǫβ
))

. (B.0.20)Altogether we obtain for ν small enough
∑

t<δ/ǫ

exp (−fǫ (ǫt) + fǫ (0)) /ǫ =

√
π

2

1√
ǫf ′′

ǫ (0)

(
1 + O

(
ǫβ |ln ǫ|3

)) (B.0.21)
with β = min

{
1
2
, β
}.ad (b). The sum (B.0.29) 
an be written as

∑

x∈Nǫ

e−fǫ(x)/ǫ = e−fǫ(0)/ǫ


∑

t<κ/ǫ

e−(fǫ(ǫt)−fǫ(0))/ǫ +
∑

t≥κ/ǫ

e−(fǫ(ǫt)−fǫ(0))/ǫ


 .(B.0.22)With the help of (B.0.10) and the exponentially small level sets of fǫ (as-sumption F3), the se
ond sum of (B.0.22) is bounded by cκe

−cκ/ǫ. We 
hoose
κ ≡ κǫ = ǫ1−α with α > 0 small, hen
e this summand is exponentially small.We abbreviate a ≡ f ′

ǫ (0). Then we approximate fǫ by a Taylor series ofse
ond order around 0:
fǫ (ǫt) − fǫ (0) = ǫat + O

(
(ǫt)2) . (B.0.23)Inserting this into the �rst sum of (B.0.22), we obtain

∑

t<κ/ǫ

exp (−fǫ (ǫt) + fǫ (0)) /ǫ

=
∑

t<κ/ǫ

exp (−at)
(
1 + O

(
ǫ1−2α

))
. (B.0.24)

Noti
e that remainder of the sum satis�es∑

t≥κ/ǫ

exp (−at)

= exp
(
−
⌈
ǫ−α
⌉
a
) ∞∑

t=0

exp (−at) , (B.0.25)
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whi
h is asymptoti
ally exponentially smaller than this last sum for α > 1
2
−γ.Therefore

∑

t<κ/ǫ

exp (−fǫ (ǫt) + fǫ (0)) /ǫ

=
∞∑

t=0

(exp (−a))t (1 + O
(
ǫ1−2α

))

=
1

1 − e−a

(
1 + O

(
ǫ1−2α

))
. (B.0.26)

Hen
e we obtain for α = 1
2
(1 − γ) the desired estimate.In the 
ase γ = 1

2
we obtain

⌊κ/ǫ⌋∑

t=0

exp (−fǫ (ǫt) + fǫ (0)) /ǫ

=
∞∑

t=0

exp (−f ′
ǫ (0))

t

(
1 − 1

2
ǫf ′′

ǫ (0) t2
)(

1 + O
(
ǫ2−4α

))

=

(
1

1 − e−f ′
ǫ(0)

− 1

2
ǫf ′′

ǫ (0)
e−f ′

ǫ(0)
(
1 + e−f ′

ǫ(0)
)

(1 − e−f ′
ǫ(0))

3

)
(
1 + O

(
ǫ2−4α

))
.(B.0.27)

The last step follows from
∞∑

t=0

t2eat =
d2

da2

∞∑

t=0

eat. (B.0.28)
Hen
e we obtain for α = 1

8
the assertion.

�Now we want to estimate sums in Zd of the form
∑

x∈Zd

exp (fǫ (ǫx) /ǫ) as N → ∞. (B.0.29)
For v = {v1, . . . , vd} ∈ Rd, we introdu
e as usual the norm ‖·‖∞ by

‖v‖∞ := max
i∈{1,...,d}

|vi| . (B.0.30)
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Proposition B.2 Consider a family (fǫ)ǫ∈(0,1) with fǫ ∈ C3
(
Rd
). We as-sume fǫ has exponentially small level sets, i.e.

∑

x∈ǫZd:fǫ(x)≥a

exp (−fǫ (x) /ǫ) ≤ cae
a/ǫ. (B.0.31)

Assume that (fǫ) 
onverges uniformly on Λ to a fun
tion f ∈ C3 (Λ). Weassume that f has only �nitely many 
riti
al points. Moreover, we assumethat f and fǫ have a unique global minimum at 0 and ∇2f (0) and (∇2fǫ (0))are positive de�nite matri
es su
h that
lim
ǫ↓0

∇2fǫ (0) = ∇2f (0) . (B.0.32)Then we obtain
∑

x∈ǫZd

exp (−fǫ (x) /ǫ) = ǫ−d

∫

Rd

exp (−fǫ (x) /ǫ) dx ×

×
(
1 + O

(√
ǫ |ln ǫ|3/2

))
.In parti
ular

∑

x∈ǫZd

exp (−fǫ (x) /ǫ) = ǫ−d/2 (2π)d/2

√
det∇2fǫ (0)

exp (−fǫ (0) /ǫ) ×

= ×
(
1 + O

(√
ǫ |ln ǫ|3/2

))
. (B.0.33)Proof. Let δ :=

√
kǫ |ln ǫ| with k > 0 
onstant. The sum (B.0.29) 
an bewritten as

∑

x∈ǫZd

e−fǫ(x)/ǫ = e−fǫ(0)/ǫ(
∑

‖x‖∞<δ

e−(fǫ(x)−fǫ(0))/ǫ +
∑

‖x‖∞≥δ

e−(fǫ(x)−fǫ(0))/ǫ).(B.0.34)The sums on the right hand side 
ontains, of 
ourse, also only x ∈ ǫZd.Sin
e 0 is the unique global minimum of fǫ and ∇2fǫ (0) is positive de�-nite, there exists a > 0 su
h that for all δ > 0 small enough we have
fǫ (x) ≥ fǫ (0) + aδ2 for all ‖x‖∞ ≥ δ. (B.0.35)With the help of (B.0.8) and the exponentially small level sets of fǫ (B.0.31),the se
ond sum of (B.0.34) is bounded by caδ2e−aδ2/ǫ. Inserting δ =

√
kǫ |ln ǫ|161



we obtain cǫǫ
ak <

√
ǫ for k large enough. As we will see, this summand 
anbe negle
ted.We denote Hǫ ≡ ∇2fǫ (0). To estimate the �rst sum in (B.0.34), we usethe se
ond order Taylor series

fǫ (ǫk) − fǫ (0) =
1

2
ǫ2 〈k,Hǫk〉 + O

(
‖ǫk‖3

∞
)
. (B.0.36)Inserting this yields

∑

k∈Zd:‖k‖∞<δ/ǫ

exp [− (fǫ (ǫk) − fǫ (0)) /ǫ]

=
∑

k:‖k‖∞<δ/ǫ

exp

(
−1

2
ǫ 〈k,Hǫk〉 + O

(
δ3/ǫ

))

=
∑

k:‖k‖∞<δ/ǫ

exp

(
−1

2
ǫ 〈k,Hǫk〉

)(
1 + O

(√
ǫ |ln ǫ|3/2

))

=
∑

k∈Zd

exp

(
−1

2
ǫ 〈k,Hǫk〉

)(
1 + O

(√
ǫ |ln ǫ|3/2

))
. (B.0.37)

To obtain the last equality noti
e that
∑

k:‖k‖∞≥δ/ǫ

exp

(
−1

2
ǫ 〈k,Hǫk〉

)

≤ exp

(
−1

2
ǫ−2νλ

)∑

k∈Zd

exp

(
−1

2
ǫ 〈k,Hǫk〉

)
, (B.0.38)

where λ denotes the smallest eigenvalue of Hǫ.Sin
e ∇2f (0) and (∇2fǫ (0)) are positive de�nite matri
es and (B.0.32),we 
an apply Proposition A.1 and obtain
∑

x∈ǫZd

ef(x)/ǫ = ǫ−d/2 (2π)d/2

√
|det Hǫ|

exp (fǫ (0) /ǫ) × (B.0.39)
×
(
1 + O

(√
ǫ |ln ǫ|3/2

))
. (B.0.40)
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