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Abstract

The main purpose of this thesis is the analysis under several viewpoints both of the
Wright-Fisher diffusion with seed bank, introduced in [BGKWB16], and the two-island
diffusion, investigated e.g. in [KZH08] and [NG93]. The former simulates a population
in which some of the individuals can become inactive for long periods of time, like
seeds or dormant bacteria, while the latter is used to investigate the behavior of a split
population (e.g. geographically).
The main body of the thesis is composed of three parts. In the first one (Chapters
3 and 4), we make a comparison between the Wright-Fisher diffusion with seed bank
and the two-island diffusion from several viewpoints, including stationary distribution,
mixed moments and reversibility. In particular, we define the (strong) seed bank coa-
lescent and the structured coalescent respectively as the moment dual processes to the
Wright-Fisher diffusion with seed bank and the two-island diffusion. The main result
of the first part regards boundary behavior. In fact, we provide a complete boundary
classification of both processes, which is, as far as we know, a new result. The proof
involves one of two martingale-based reasonings, that is, McKean’s or Lyapunov’s ar-
gument.
In the second part of the thesis (Chapter 5), we tackle the issue of scaling limits. The
main result concerns the case of the seed bank diffusion under the additional assumption
that reproduction occurs on a faster time-scale than both dormancy and resuscitation:
if we speed up time in an appropriate way, we get a previously unknown scaling limit,
describing the genealogy under the aforementioned regime, that we call the ancient
ancestral lines process. This object is dual to a jump diffusion, and we make heavy use
of duality to establish a remarkable convergence of the rescaled diffusion processes to
the jump diffusion limit.
In the last part of this work (Chapter 6), we analyze several classical measures of
population structure to distinguish the patterns of genetic variability produced by our
models, with a focus on coalescent processes. In this case we are concerned not only
with the seed bank and the structured coalescent, but also with the standard Kingman
and with the so-called weak seed bank coalescent. Our main goal is to compare, with
respect to the neutral Kingman case, the different ways in which our measures react to
the presence of a seed bank and to the presence of population structure.
For this purpose, we first focus on the two-allele case, where we can derive exact likeli-
hoods for the full sample probabilities by means of recursive formulas.
Then, we briefly introduce sample heterozygosity, Wright’s FST and the expected site
frequency spectrum (SFS), classical measures for population structure that can be easily
computed under the aforementioned population models in the infinite sites case. Our
main tool in this chapter is phase-type distribution theory in general and the formulae
recently introduced by Hobolth et al. ([HSB19]) in particular.
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Zusammenfassung der Arbeit

In der vorliegenden Dissertation werden verschiedene Aspekte der Wright-Fisher-
Diffusion mit Seed-Bank und der Two-Island-Diffusion untersucht. Hierbei handelt es
sich um zwei Modelle aus der mathematischen Populationsdynamik. Die Wright-Fisher-
Diffusion mit Seed-Bank, eingeführt in der Arbeit von Blath, Gonzàlez Casanova, Kurt
und Wilke-Berenguer ([BGKWB16]), beschreibt die Evolution einer Bevölkerung, in der
einzelne Individuen langfristig inaktiv werden können. Klassische Beispiele hiervon sind
samentragende Pflanzen oder Bakterien. Die Two-Island-Diffusion (siehe z.B. [KZH08]
und [NG93]) modelliert hingegen die Genealogie einer räumlich geteilten Population.
Der Hauptteil dieser Dissertation besteht aus drei Teilen. Im ersten Teil (Kap. 3 und
4) wird die Wright-Fisher-Diffusion mit Seed-Bank mit der Two-Island-Diffusion in
mehrerer Hinsicht verglichen, einschließlich stationärer Verteilungen, gemischter Mo-
mente und Reversibilität. Insbesondere wird der (starke) Seed-Bank-Koaleszent und
der strukturierte Koaleszent als Momentenduale, respektiv der Wright-Fisher-Diffusion
mit Seed-Bank und der Two-Island-Diffusion, definiert. Im wichtigsten Satz dieses er-
sten Teiles geht es um das Verhalten an den Rändern, d. h. um die Frage, unter welchen
Bedingungen eine temporäre Extinktion eines Alleles vorliegt. Wir geben nämlich eine
vollständige Klassifizierung der Ränder für diese beiden Diffusionsprozesse an. Der Be-
weis dafür benutzt ein von zwei Martingalargumenten, die das McKean-Argument und
das Lyapunov-Argument genannt werden.
Der zweite Teil der Dissertation (Kapitel 5) setzt sich mit Skalierungslimiten ausein-
ander. Das wichtigste Ergebnis betrifft den Fall einer Seed-Bank-Diffusion, in der die
Fortpflanzung auf einer schnelleren Zeitskala geschieht als sowohl Dormanz als auch
Wiederbelebung. Falls wir in dem Fall auf eine beschleunigte Zeitskala übergehen, be-
kommen wir im Limes den sogenannten Ancient Ancestral Lines Process, der die Ge-
nealogie unter der gegebenen Skalierung beschreibt. Dieses Objekt ist dual zu einer
Diffusion mit Sprüngen, und wir machen regen Gebrauch von Dualitätsargumenten,
um eine beachtenswerte Koaleszenz der reeskalierten Diffusionsprozesse gegen dem Dif-
fusionslimes mit Sprüngen aufzubauen.
Im letzten Teil dieser Arbeit (Kapitel 6) werden mehrere klassische Populationsstruktur-
maße untersucht, wie Sample Heterozygosity, Wrights FST sowie das erwartete Allelen-
Frequenzspektrum (SFS), allesamt klassische Indikatoren, um die Struktur einer Popu-
lation zu messen. Unser Ziel ist es dabei, die Muster genetischer Variabilität, die durch
die besagten Modelle erzeugt werden, voneinander zu unterscheiden. Wir konzentrieren
uns dabei hauptsächlich auf die Koaleszentenprozesse. Neben dem Seed-Bank- und dem
strukturierten Koaleszenten beschäftigen wir uns mit dem klassischen Kingman- sowie
mit dem sogenannten schwachen Seed-Bank-Koaleszenten. Unser Hauptziel ist hier, den
Einfluss dieser Populationsstrukturmaße auf eine Seed-Bank bzw. eine Population mit
räumlicher Struktur zu untersuchen und mit dem neutralen Kingman-Fall zu verglei-
chen.
Für diesen Zweck konzentrieren wir uns zuerst auf Populationsmodelle mit einer end-
lichen Anzahl von Allelen, da in diesem Fall mit Hilfe von Rekursionsformeln exakte
Likelihoods für die Stichproben-Wahrscheinlichkeiten angegeben werden können. Die
Populationsstrukturmaße kann man hingegen auch im Falle unendlich vieler Allele für
die gegebenen Populationsmodelle berechnen. Unser wichtigstes Werkzeug besteht da-
bei aus Phase-Type-Verteilungen und insbesondere aus den Formeln, die im Artikel von
Hobolth et al. ([HSB19]) gegeben sind.
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Glossary

t Continuous time unit p.10
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(x, y) Starting points p.10
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c′ Usually, short for K · c p.11

A(1) Infinitesimal generator of (X,Y ) p.11

β Key parameter in the weak seed bank model p.14
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n Size of a sample; when applicable, n =
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n(i) p.14
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Px Probability measure p.19

S(·, ·) Duality function p.19

(σ(t), b(t))t≥0 Diffusion and drift terms of a diffusion process p.21
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P A set of polynomials p.29

r Reward function p.31

(∂, ∂) Death (=absorbing) state p.32

A(2) Infinitesimal generator of (N(t),M(t))t≥0 p.32

Mn̄ n̄-th mixed moment of (X,Y ), i.e. E[Xn1Y n2 ] p.36

aj , a
′
j , Dij Constants from the recursive formula p.36

µ Stationary distribution of (X,Y) p.37

P,G Projection- and Q-matrix for a nonstandard semigroup p.59

(Ñ(t), M̃(t))t≥0 Backwards-in-time ancient ancestral lines process p.60

(X̃(t), Ỹ (t))t≥0 Forwards-in-time ancient ancestral material process p.61

H Sample heterozygosity p.85

FST Wright’s measure of population structure p.89

Ti Waiting time p.92

F
(0)
ST Slatkin’s approximation for the FST p.95

(ζn1 , . . . , ζ
n
n−1) Site frequency spectrum p.98

TMRCA Time to most recent common ancestor p.99
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1 Introduction and basic models

This chapter is based on [K1] (Subchapter 2.1), [K2] (Subchapter 1) and [K3] (Sub-
chapters 2.2 and 3).

1.1 Motivation

For centuries, mathematics in general and the theory of probability in particular have
been used to model and understand real-world events which involve some form of
randomness. One of the areas where probability, in the form of stochastic models,
was introduced to this aim is population genetics, where the mathematical approach
allowed us to gain deep insights into evolutionary mechanisms. In this context, the
Wright-Fisher process is a widespread probabilistic model in mathematical population
genetics. It is defined as a Markov process which describes the relative frequency of
two competing alleles in a well-mixed, fixed-size, panmictic population developing in
discrete generations. The Wright-Fisher model played a core role in the history of
mathematical population genetics: since regarded as a sort of “toy model”, it has been
taken as the basis for more complex population models. The Wright-Fisher process
and generalizations have been thoroughly investigated, starting with the pioneering
work of Wright ([Wri31]) and Fisher ([Fis99]). A further important discovery was
that of the Wright-Fisher diffusion (see [Fel51, Kim55, Kim64]), a continuous-time,
continuous-state-space Markov process approximating the neutral allele frequencies in
a large haploid population on a macroscopic timescale.

Another milestone was the introduction of the Kingman coalescent ([Kin82a, Kin82b]),
defined as the partition-valued ancestral process describing the genealogy of a (present-
day) sample from the Wright-Fisher diffusion. This retrospective viewpoint, which
allows us to see the entire topic with a backwards-in-time approach (“Where did the
population come from?”), turned out to be very fruitful.

The introduction of population structure was a further important extension of the
modeling frame. Most real-life populations are not panmictic, but geographically
structured, as for example North Sea cod species (see [EW08]). This led to the
definition of the so-called structured coalescent ([Her94, Not90]) as a way of modeling
genetic frequency processes in a variety of cases, all involving some form of population
structure.

In fact, in the presence of population structure, e.g. in the guise of the two-island
model ([Wri31, Mor59]), many new effects appear. In particular, the genealogy of
a sample taken from the subdivided population may be described by a structured
coalescent instead of the classical Kingman coalescent, in which two lines may merge
only at times when both are in the same island. Yet, other qualitative features remain
unchanged, including the fact that the structured coalescent with two islands still
“comes down from infinity”, and that the Wright-Fisher diffusion with two islands
(without mutation) will eventually fixate. In this model, there seems to be no explicit
characterization of the stationary distribution, though recursion formulas may still be
found (see e.g. [NG93, FGH03, KZH08] for results in this direction).
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Another interesting feature that was implemented into the Wright-Fisher model was
the effect of latency or dormancy ([KKL01]). This means that we allow for the possi-
bility that some individuals of the population are in a latent or dormant state. Seed
banks, that is, reservoirs of dormant individuals that can potentially be resuscitated
in the future, are common in many communities of macroscopic (e.g. plants) and mi-
croscopic (e.g. bacteria) organisms. They increase the persistence of genotypes and
are important for the diversity and development of populations. In particular, micro-
bial dormancy is common in a range of ecosystems, and there is evidence that the
ecology and evolution of microbial communities are strongly influenced by seed bank
dynamics. It has been observed that more that 90% of microbial biomass in soils is
metabolically inactive; see [LJ11] and [SL18] for recent overviews on this subject.

In our models, this phenomenon is reflected in the possibility that the direct ancestor
of a current-time individual does not come from the previous generation, but can
instead be found several generations in the past. The distance is modeled by a random
variable with values in the natural numbers, the main cases being a random variable
with finite support (weak seed bank, see e.g. [KKL01]) or geometrically distributed of
order N (strong seed bank). Such scenarios with seed bank are less well analyzed, and
in fact only recently, in [BGKWB16], the Wright-Fisher diffusion with strong seed bank
and its dual, the seed bank coalescent, have been introduced as mathematical objects
(see also [LM15], in which the same dual has been obtained as scaling limit of the
genealogy in a metapopulation model with peripatric speciation). While at first glance
similar to the two-island model and the structured coalescent, the seed bank diffusion
and its dual exhibit some remarkable qualitative differences. For example, the seed
bank coalescent does not come down from infinity, and its expected time to the most
recent common ancestor is unbounded as the sample size increases (see [BGKWB16]
for details). One of the chief goals of this thesis is to extend the comparison between
these two models by looking at them through several lenses, with a specific focus on
boundary behavior; another one is to prove other key features of the relatively new
seed bank model, in particular regarding scaling limits.

In parallel to the introduction of new and increasingly complex extensions of the
Wright-Fisher model, several statistical tools have been introduced, especially mark-
ers allowing biologists to see quickly whether it makes sense to use one of our models
to predict the behavior of a real-world population whose data have been collected.
One of the simplest markers is sample heterozygosity, or SH for short, which gives us
the probability for two randomly sampled individuals to have different genes. Further
key measures of population structure are Wright’s FST , which gives us an index of
subpopulation differentiation, and the expected site frequency spectrum (SFS).
While some basic mathematical models have been derived and predict unique pat-
terns of genetic variability in idealized scenarios ([KKL01, LJ11, ZT12, BGE+15,
BGKWB16, dHP17]), statistical tools to infer the presence of ‘weak’ or ‘strong’ seed
banks are still largely missing. A basic statistical theory for seed banks, which is
able to analyze patterns of population structure and genetic variability, is still in its
infancy and further development is urgently needed. The third and last chief goal of
this work is to contribute to this development, computing FST , SH and the expected
SFS in some important cases.
It is worth pointing out that several tools from stochastics are needed. The most used

9



among them are: theory of stochastic differential equations (SDEs), in particular dif-
fusion equations; moment duality; diffusion limits; theory of continuous-time Markov
chains.

1.2 The basic models

As we already hinted at, there are two types of model: forwards-in-time and back-
wards-in-time. Those two classes of models are strongly linked via moment duality (see
Chapter 2). Forwards-in-time models are usually described through their generator
or as the diffusion process solving a system of SDEs, while backwards-in-time models
are described as continuous-time Markov chains with a finite or countable state space.

1.2.1 Forwards-in-time models

The seed bank diffusion (SBD). The Wright-Fisher diffusion with seed bank was
recently introduced in [BGKWB16] as the forwards-in-time scaling limit of a bi-allelic
Wright-Fisher model (with type space {a,A}) that describes a population where indi-
viduals may stay inactive in a dormant form such as seeds or spores (in the seed bank),
essentially “jumping” a significant (geometrically distributed) number of generations,
before rejoining the active population. For an active population of size N and a seed
bank size M = bN/Kc, K > 0, under the classical scaling of speeding up time by
a factor N the a-allele frequency process (XN (t))t≥0 in the active and (Y N (t))t≥0 in
the dormant population converge to the (unique strong) solution (X(t), Y (t))t≥0 of a
two-dimensional SDE. In [BGE+15] the model was extended to include mutation in
both the active and the dormant population in which case the limiting process is the
solution to the SDE given in Definition 1.1 below. Since the population model and
limiting result are completely analogous to the case without mutation we refrain from
details and instead refer to [BGKWB16], Section 2.

Definition 1.1 (Seed bank diffusion with mutation). Let (W (t))t≥0 be a standard
Brownian motion, u1, u2, u

′
1, u
′
2 be finite, non-negative constants and c,K finite, pos-

itive constants.

The Wright-Fisher diffusion with seed bank with parameters u1, u2, u
′
1, u
′
2, c,K, start-

ing in (x, y) ∈ [0, 1]2, is given by the [0, 1]2-valued continuous strong Markov process
(X(t), Y (t))t≥0 that is the unique strong solution of the initial value problem

dX(t) =
[
− u1X(t) + u2(1−X(t)) + c(Y (t)−X(t))

]
dt+

√
X(t)(1−X(t))dW (t),

dY (t) =
[
− u′1Y (t) + u′2(1− Y (t)) +Kc(X(t)− Y (t))

]
dt, (1)

with (X(0), Y (0)) = (x, y) ∈ [0, 1]2.

The fact that the initial value problem (1) admits a unique strong solution which is a
two dimensional continuous strong Markov diffusion is a standard application of the
theorem by Yamada and Watanabe ([YW71], Theorem 1) for 2-dimensional diffusions.

The first coordinate process (X(t))t≥0 can be interpreted as describing the fraction
of a-alleles in the limiting active population, while (Y (t))t≥0 gives the fraction of a-
alleles in the limiting dormant population, i.e. in the seed bank. The parameters
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u1, u2 describe the mutation rates from a to A, respectively from A to a, in the active
population, and u′1, u

′
2 the corresponding values in the seed bank. Note that the

mutation rates may differ for active and dormant individuals. K fixes the so-called
relative seed bank size (M = bN/Kc) and c is the rate of migration between the
active population and seed bank, i.e. initiation of dormancy and resuscitation. For
more details on the biological background see [BGKWB16] and [BGE+15].

The two-island diffusion (TID).

A natural extension of this model can be obtained by (potentially) adding noise in the
second coordinate. For parameters u1, u2, u

′
1, u
′
2, α, α

′ ≥ 0, c, c′ > 0 and independent
standard Brownian motions (W (t))t≥0, (W

′(t))t≥0 consider the initial value problem

dX(t) =
[
− u1X(t) + u2(1−X(t)) + c(Y (t)−X(t))

]
dt+ α

√
X(t)(1−X(t))dW (t),

dY (t) =
[
− u′1Y (t) + u′2(1− Y (t)) + c′(X(t)− Y (t))

]
dt+ α′

√
Y (t)(1− Y (t))dW ′(t),

(2)

with (X(0), Y (0)) = (x, y) ∈ [0, 1]2. Existence and uniqueness of the solution are again
standard with Theorem 3.2 in [SS80]. For α = 1, α′ = 0 and c′ = cK (K > 0; this
condition will be assumed in all models, unless stated otherwise) this is the seed bank
diffusion. For α′ > 0 we obtain the diffusion of Wright’s two-island model initially
introduced in [Wri31] and considered in this form for example in [KZH08].

Remark 1.2. (α)2 and (α′)2 are also called the relative coalescent rates in the 1st
and 2nd subpopulation, respectively. Therefore, it makes sense from the biological
point of view to see them as functions of the relative seed bank size K. In particular,
α′ ∼

√
K, while assuming α as constant, is consistent with previous literature (see

e.g. [Her94], Section 3.3.1). For the rest of the thesis, we will keep this relationship
between α′ and K in the background since we usually assume K as fixed anyway.
However, at all points in which we directly investigate dependence of any quantity in
function of K, we will assume α′ to be proportional to

√
K.

Remark 1.3. The infinitesimal generator of this process, which we will denote from
now on with A(1), was calculated in [BGKWB16]:

Lemma 1.4. The domain D(A(1)) contains C2([0, 1]2), the space of twice continuously
differentiable (and thus bounded) functions on the domain. Moreover, A(1) is given by

A(1)(f)(x, y) =
[
− u1x+ u2(1− x) + c(y − x)

]df(x, y)

dx

+
[
− u′1y + u′2(1− y) +Kc(x− y)

]df(x, y)

dy

+
α2

2
x(1− x)

d2f(x, y)

dx2
+

(α′)2

2
y(1− y)

d2f(x, y)

dy2
. (3)

Remark 1.5 (Extension to multiple seed banks). It is straightforward to extend the
system (1) to several (e.g. geographically) subdivided seed banks. This means that,
instead of having one single seed bank of relative sizes 1

K , we model k seed banks of
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Figure 1: Extension of the model to multiple seed banks (k = 5)

relative size 1
Ki
∈ (0,∞), i = 1, . . . , k, and an active population of relative size 1.

Moreover, we suppose that different seed banks may have different mutation and mi-
gration rates. We denote the frequency process for the active population by (X(t))t≥0

and for the i-th seed bank by (Yi(t))t≥0, i = 1, . . . , k. Similarly, we consider mutation
rates u1, u2 in the active population, ui1, ui2 in the i-th seed bank and migration rate
c1, . . . , ck, where ci is the rate for migration from the active population to the i-th
seed bank (see also figure 1). Then the seed bank diffusion with k seed banks is given
by the k + 1 interacting SDEs

dX(t) =
[
− u1X(t) + u2(1−X(t)) +

k∑
i=1

ci(Yi(t)−X(t))
]
dt

+
√
X(t)(1−X(t))dW (t),

dYi(t) =
[
− ui1Yi(t) + ui2(1− Yi(t)) +Kici(X(t)− Yi(t))

]
dt (4)

with initial value (X(0), Y1(0), . . . , Yk(0)) = (x, y1, . . . , yk) ∈ [0, 1]k+1. Note that the
only source of randomness is in the active population (X(t)) (see also Chapter 3.3).

One can also define an even wider class of models as a joint generalization of both
the island model and the seed bank model:
Imagine a population which is subdivided in l subpopulations. Every subpopulation
has mutation rates ui1 and ui2, i = 1, . . . , l, a coalescent-relative population size αi,
i = 1, . . . , n (which can be equal to 0 for some subpopulations, but not for all of them)
and, for every two subpopulations i and j, there is migration from subpopulation i
to subpopulation j with a relative migration rate cij . This results in the following
system of SDEs:

dXi(t) =
[
− ui1Xi(t) + ui2(1−Xi(t)) +

l∑
j=1,j 6=i

cij(Xj(t)−Xi(t))
]
dt

+ αi
√
Xi(t)(1−Xi(t))dWi(t), (5)

with initial value (X1(0), . . . , Xl(0)) = (x1, . . . , xl) ∈ [0, 1]l. Here, the Wi, i = 1, .., l
are independent Brownian motions. Of course, if l = 2 and α1 = 1, α2 = 0, we get

12



Figure 2: Joint generalization of the two models, as in Formula (5). Imagine X1-X3

as “active subpopulations" and X4-X6 as “dormant subpopulations". Then, α1, α2

and α3 are strictly positive, while α4, α5 and α6 are zero. Moreover, we can see in
the figure that some migration rates, like e.g. c4,6, are zero as well.

the seed bank diffusion.
Notice that den Hollander and Pederzani ([dHP17]) investigated these seed bank mod-
els on an infinite torus.

1.2.2 Backwards-in-time models

Kingman’s coalescent (K). The standard model of genetic ancestry in the absence
of a seed bank is the coalescent (or Kingman’s coalescent) [Kin82a], which describes
ancestries of samples of size n ∈ N from a large selectively neutral, panmictic popu-
lation of size N � n following e.g. a Wright-Fisher model. Measuring time in units
of N and tracing the ancestry of a sample of size n � N backwards in time results
in a coalescent process Πn as N → ∞. Formally, Πn is defined as a partition-valued
continuous-time Markov process starting at the trivial partition of {1, . . . , n}, i.e.
({{1}, {2}, . . . , {n}}) where any two blocks merge at rate 1. For many purposes, the
block-counting process, describing only the number of blocks independently of their
size, is sufficient. It is defined as the continuous-time Markov process on {1, . . . , n},
starting in n, jumping from k to k − 1 at rate

(
k
2

)
and getting absorbed in 1.

A rooted ancestral tree is formed once the most recent common ancestor of the
whole sample is reached. We denote this scenario by K. This model is currently the
standard null model in population genetics (see e.g. [Wak09] for an introduction) and
arises from a large class of population models.

13



‘Weak’ seed banks and delayed coalescents (W). The basic coalescent model
was extended in [KKL01] to incorporate a ‘weak’ seed bank effect. In this model, an
individual does not always inherit its genetic material from a parent in the previous
generation, but rather from a parent that was alive a random number of generations
ago. The random separation is assumed to be modeled by a bounded random variable
with mean β−1 for some β ∈ (0, 1]. Again, after measuring time in units of N and
tracing the ancestry of a sample of size n � N as above, it can be shown that the
genealogy is still given by a coalescent, but now each pair of lineages merges to a
common ancestor independently with rate β2, as opposed to 1. Thus, the effect of
the seed bank is to stretch the branches of the Kingman coalescent by a constant
factor [KKL01, BGKS13]. We call the corresponding coalescent a ‘delayed coalescent’
and denote this ‘weak’ seed bank scenario by W. It should be noted that the overall
topological tree structure is identical to that under Kingman’s coalescent. Thus, for
example, the normalized frequency spectrum of a sample in the infinitely many sites
model remains unchanged [BGE+15], and in fact the delayed coalescent with mean
delay β−1 and population-rescaled mutation rate u/2 > 0 is statistically identical to
Kingman’s coalescent with population-rescaled mutation rate u/(2β2). Nevertheless,
the seed bank does have potentially important consequences e.g. for the estimation of
effective population size and mutation rates in the presence of prior information, or
some other means of resolving the lack of identifiability.

‘Strong’ seed banks and the ‘seed bank coalescent’ (S). As in [BGKWB16],
we want to extend the Wright-Fisher framework to a model with a classical ‘active’
population of size N and a separate ‘seed bank’ of comparable size M := bN/Kc,
for some K > 0, allowing for ‘migration’ (of a fraction of c/N individuals) between
the two subpopulations. Considering samples of size n(1) � N and n(2) � N from
the active and dormant population, respectively, and again measuring time in units
of N as before, the genealogy is now described for N →∞ by the so-called seed bank
coalescent (without mutation) [BGKWB16], in which active lineages fall dormant at
rate c, and dormant lines resuscitate at rate cK. The seed bank coalescent is defined
through the following steps:

• Define the space of marked partitions P{p,s}n as follows: Pn being the set of
partitions of [n] := {1, 2, . . . , n}, n = n(1) + n(2), let |π| be the number of blocks of
the partition π for any π ∈ Pn. Then,

P{p,s}n :=
{

(ζ, u) : ζ ∈ Pn, u ∈ {p, s}|ζ|
}
.

That is, every block of the partition is endowed either with a p- or with an s-label.

• Considering two marked partitions π, π′ ∈ Pn, we say that π ≺p π′ if π′ can be
constructed by merging exactly two blocks of π carrying a p-label, and the resulting
block in π′ obtained from the merger again carries a p-label. Similarly, define π ≺s π′.
We use the notation π ./ π′ if π′ can be constructed by changing the label of precisely
one block of π.

• Define the seed bank n-coalescent (Z(t))t≥0 as a continuous-time Markov chain
on P{p,s}n with the Q-matrix given by
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Qπ,π′ =



1 if π ≺p π′,
c if π ./ π′, and a p has been replaced by an s,
Kc if π ./ π′, and an s has been replaced by a p,
0 else with π 6= π′,

−
∑

π′ 6=π Qπ,π′ if π = π′

and starting at {{1}p, . . . , {n(1)}p, {n(1) + 1}s, . . . , {n(1) + n(2)}s}. Notice that in the
seed bank n-coalescent, dormant lineages cannot merge.

• The seed-bank coalescent is then defined as the unique Markov process which,
for all n ∈ N, if started in (n(1), n(2)) with n = n(1)+n(2), is equal in finite-dimensional
distributions to the seed bank n-coalescent1.
Moreover, the block-counting process of the seed bank n-coalescent is given as follows:

Definition 1.6 (Block-counting process of the seed bank coalescent). Consider the
space E := N0 × N0 equipped with the discrete topology. Let c,K > 0. The block-
counting process of the seed bank coalescent (N(t),M(t))t≥0 is defined as the continu-
ous time Markov chain with values in E, started in (n(1), n(2)), with jump rates given
by:

N̄(n,m),(n̄,m̄) =


(
n
2

)
if n ≥ 1, (n̄, m̄) = (n− 1,m),

cn if n ≥ 1, (n̄, m̄) = (n− 1,m+ 1),

cKm if m ≥ 1, (n̄, m̄) = (n+ 1,m− 1),

for every (n,m) ∈ N0×N0 (with the convention
(

1
2

)
=
(

0
2

)
= 0) and zero otherwise off

the diagonal.

Thus, the properties of the ancestral process are drastically changed, and we speak
of a strong seed bank, denoting this scenario by S. The seed bank coalescent has a very
different site frequency spectrum compared to the classical (K) and weak seed bank
(W) scenarios [BGE+15].
See [BGE+15] for a full description of the modeling assumptions and the derivation
of the seed bank coalescent parameters c,K.

The coalescent process can be interpreted as follows. Lineages are labeled as
active (first component) or dormant (second component). Each pair of active lineages
merges to a common ancestor independently with rate 1, as before in the classical
Kingman coalescent, while dormant lineages are not allowed to merge. Further, each
active lineage becomes dormant independently with rate c > 0, and each dormant
lineage becomes active with rate Kc > 0. The parameter c describes the migration
rate between active and dormant populations, and K denotes the relative seed bank
size.

Difficulties arise when adding mutation to the model. We will discuss the details
in Chapter 3.

1The seed bank coalescent can be obtained via the projective limit of n-coalescents for n→∞.
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The two island model and the structured coalescent (TI). Having modeled
a strong seed bank as a separate population linked to the active one via migration,
it is natural to investigate its relation to Wright’s two island model [Her94, Wak09].
In the simplest case (which we assume throughout) there are two populations (1 and
2) of respective sizes N and M = bN/Kc, with a fixed fraction of bc/Nc individuals
migrating both from 1 to 2 and from 2 to 1 in every generation. With time measured
in units of N →∞ generations, considering sample sizes n(1) � N from island 1 and
n(2) � M from island 2, this model gives rise to a similar ancestral process as the
strong seed bank coalescent except that all pairs of lineages in subpopulation 2 may
also merge to a common ancestor independently with rate K, leading to the following
coalescent process, which we call the structured coalescent [Her94], describing the
ancestry of a geographically structured population with migration. This process is
also a continuous time Markov chain with values in Pn which is defined exactly like
the seed bank coalescent except for the following two differences:
• Qπ,π′ = α2 if π ≺p π′;
• Qπ,π′ = (α′)2 if π ≺s π′, that is, if π′ can be constructed by merging exactly two
blocks of π carrying an s-label, and the resulting block in π′ obtained from the merger
again carries an s-label.
Again, we can define a block-counting process with values in E := N0 ×N0 and jump
rates equal to

N̄(n,m),(n̄,m̄) =


α2
(
n
2

)
if (n̄, m̄) = (n− 1,m),

(α′)2
(
m
2

)
if (n̄, m̄) = (n,m− 1),

cn if (n̄, m̄) = (n− 1,m+ 1),

cKm if (n̄, m̄) = (n+ 1,m− 1),

for every (n,m) ∈ N0×N0 (with the convention
(

1
2

)
=
(

0
2

)
= 0) and zero otherwise off

the diagonal.
We denote this scenario by TI.

1.3 Models of mutation

We consider three popular models of genetic diversity and mutation: the infinite alleles
model (IAM), the finite alleles model (FAM) (which we will usually take to be the two
alleles model for brevity, but our results generalize to any finite number of alleles),
and the infinite sites model (ISM), each of which we outline below.

The infinite alleles model (IAM). Given a coalescent tree distributed according
to either K, W, S, or TI, a sample of genetic data from the infinite alleles model
is generated by assigning an arbitrary allele to the most recent common ancestor,
and simulating mutations along the branches of the coalescent tree with population-
rescaled mutation rate u > 0. Each mutation results in a new (parent-independent)
allele that has never existed in the population previously, and alleles are inherited
along lineages in the absence of mutation. In the cases K and W, a sample of size
n ∈ N is then described by a tuple of length n, k := (k1, . . . , kn), in which ki is the
number of lineages carrying allele i (in some fixed but arbitrary ordering of observed
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alleles). Note that k1 + . . . + kn = n, where the vector is padded with zero entries
if fewer than n distinct alleles are observed for notational convenience. In the cases
S and TI, we need to distinguish lineages from the two sub-populations (active and
dormant resp. two islands). We consider a sample of size n := n(1) +n(2) (where n(i) is
the sample size on subpopulation/island i) by the pair (k(1), k(2)), where both tuples
are of length n and k

(i)
j counts the number of j-alleles on island i. The (somewhat

outdated) infinite alleles model is appropriate when the data is uninformative enough
that it is possible to discern when two alleles are different, but no further information
is available, such as is the case for data obtained by electrophoresis [HL66].

The finite alleles model (FAM). Here, we consider a finite set of possible alleles,
which we identify with {1, . . . , d}. The type of the most recent common ancestor is
sampled from some probability mass function π = (π1, . . . , πd), which is usually the
stationary distribution, and mutations occur along the branches of the coalescent tree
at rate u as before. At a mutation event, a new allele is sampled from a d×d stochastic
matrix P , and alleles are inherited along branches in the absence of mutation as before.
Using similar notation as for the IAM, under S and TI, a sample of size n := n(1) +n(2)

is described by a pair (n(1),n(2)) of vectors of allele frequencies, now each of length
d. In this thesis, we usually take d = 2, and set u2 := uP12 as well as u1 := uP21

for notational brevity. We also fix (π1, π2) = (u2/(u1 + u2), u1/(u1 + u2)), which
corresponds to a population evolving at stationarity.

The finite alleles model is much richer than the infinite alleles model, but it is
also less tractable. The main difficulty is the possibility of back-mutations, which
are lineages that mutate and later revert back to their original allele via a reverse
mutation. A compromise between these two extremes is the infinite sites model, often
suitable to treat real DNA sequence data.

The infinite sites model (ISM). In this model we identify the ancestral locus
with the unit interval [0, 1]. Mutations, which continue to occur on the branches of
the coalescent tree with rate u, always occur at distinct locations, and are inherited
along the branches of the tree so that the allele of an individual is the list of all
mutations along its ancestral line. Thus, the whole history of mutations up to the
root is retained. Under S and TI, a sample of size n := n(1) + n(2) is specified by the
triple (t,n(1),n(2)), where t := (t1, . . . , tk) is the list of all observed alleles, and n(i)

j is
the observed frequency of allele tj on island i. In the simpler cases K and W, it suffices
to consider (t,n). For details on this parametrization of the infinite sites model and
its relation to coalescent models see e.g. [BB08].

Remark 1.7. In scenarios S and TI, the mutation rate is allowed to differ between
active and dormant lineages, and we denote the respective rates by u and u′ when
necessary. It is an open question whether mutations take place on dormant lineages
in nature, perhaps at a reduced rate [SL18].

It is well known that all four coalescent models are dual to their respective Wright-
Fisher diffusions, the exact form of which depends on the accompanying mutation
model. Using the notation from the previous subchapter, duals to scenarios K, W, and
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S can be recovered as special cases: for K we set α = 1 and c = 0, for W we take
α = β and c = 0, and for S we take α = 1 and α′ = 0. For scenarios K and W we only
consider the X(t)-coordinate, while in scenario S, the X(t)-coordinate corresponds to
the active population, while Y (t) is the seed bank.

1.4 Outline of the thesis

The rest of the thesis is organized as follows.
Chapter 2 presents some preliminaries. We summarize without proof the main math-
ematical tools we need, with a focus on moment duality, generators, polynomial dif-
fusions and phase-type distribution theory.
In Chapter 3, we have compiled some basic facts concerning the forwards-in-time dif-
fusion processes. In particular, we make sure that these admit a unique stationary
distribution characterized by its mixed moments, thus allowing us to directly refer to
those in the rest of the thesis.
Chapter 4 is devoted to the study of the topic of boundary behavior. Here, it is of
interest to know whether the diffusion process can reach the boundaries of the state
space in finite time with positive probability. Our main result, which is stated and
proved in subchapter 4.3, shows that this depends on the mutation rates and that the
critical value is 1/2 if α = 1.
In Chapter 5 we will be concerned with scaling limits. That is, we wish to investigate
what happens if the migration rate or the relative size of the seed bank goes to 0 or
infinity. We will first provide a detailed exposition and formalization of this problem.
In particular, we will see how a time-rescaling is always necessary. As a result, we will
introduce a new process called the ancient ancestral lines process as the “fast” limit
for the migration rate going to 0.
In Chapter 6 we proceed with the study of some measures of population structure.
In particular, we will introduce the sample heterozygosity H, Wright’s FST and the
expected site frequency spectrum (SFS). The tool we will mostly use for this aim
is phase-type distribution theory. We can show that both the FST and the expected,
non-normalized SFS can give us useful information for distinguishing between the
models S and TI.
As for prerequisites, the reader is expected to be familiar with basic stochastic cal-
culus, in particular with the concept of Markov process and stochastic differential
equations (SDEs). The standard stochastic analysis notation we will use is taken
from an excellent book on these topics, namely the one by Ethier and Kurtz ([EK86]).
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2 Methods

One of the peculiarities of diffusion processes is that they can be applied to a plethora
of real-life situations, from physics to biology and finance. Indeed, in this chapter
we present some mathematical methods that stem originally from other branches of
mathematics, but that can be applied to the analysis of the models presented in
Chapter 1 as well. The emerging results will then be used in the rest of this thesis.
We will look at (moment) duality, three arguments related to boundary behavior
(speed and scale and the McKean and Lyapunov arguments), polynomial diffusion
theory and phase-type distribution theory.
For every topic, we will see an application in an easy case. We will pick either the
one-dimensional Wright-Fisher diffusion (with mutation), defined as the [0, 1]-valued
Markov process (X(t))t≥0 which is the unique strong solution of the SDE

dX(t) = (−u1X(t) + u2(1−X(t)))dt+
√
X(t)(1−X(t))dW (t), u1, u2 ≥ 0.

Its generator, acting on continuous and twice differentiable functions on [0, 1], is

A(f)(x) = (−u1x+ u2(1− x))
∂f

∂x
+
x(1− x)

2

∂2f

∂x2
.

Alternatively, we will choose the standard Kingman coalescent defined in Chapter 1
(or its block-counting process).
A comprehensive outline of these topics, however, falls outside of the aim of this work;
therefore, we will confine ourselves to the results we use in the rest of the thesis. For
more details, we will provide key references at the appropriate places.

2.1 Duality

A convenient way to study the behavior of diffusions in population genetics has proven
to be the usage of duality for Markov processes. The concept of duality is defined as
follows (see e.g. [JK14]):

Definition 2.1. Let

X = (Ω1,F1, (X(t))t≥0, (Px)x∈E) and Y = (Ω2,F2, (Y (t))t≥0, (Py)y∈F )

be two Markov processes, taking values in two Polish state spaces E and F endowed
with Borel σ-algebras. Then, X and Y are dual to each other with respect to a
bounded, measurable function S : E × F → R if for all x ∈ E, y ∈ F and t ≥ 0,

Ey[S(x, Y (t))] = Ex[S(X(t), y)].

The art lies in finding the duality function that suits us best.

Some of the most used duality functions in the case E = F = R are:
• S(x, y) = 1lx≤y (Siegmund duality),
• S(x, y) = 1lx∧y=0 (coalescing dual for interacting particle systems),
• S(x, y) = xy (moment duality).
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In this thesis, we will use moment duality only, a key tool in diffusion theory which is
also used in the contexts of random walks ([HA07], [JK14]), queuing theory ([Asm08]),
and interacting particle systems ([Lig12]).

Example: 1-dimensional Wright-Fisher diffusion We can show that the
block-counting process of the Kingman coalescent is the (moment) dual of the Wright-
Fisher diffusion. The result is obtained by proving the assumptions of Proposition 1.2
in [JK14], from which we also take the notation, which we will state here:

Theorem 2.2. Let (Z1(t))t≥0, (Z2(t))t≥0 be Markov processes taking values in two
Polish state spaces E and F endowed with Borel σ-algebras, with generators G(1),G(2),
and let S, the real-valued duality function, be bounded and continuous. Define P and
P̄ as the semi-groups corresponding to G(1) and G(2), respectively. Then, if S(x, ·),
PtS(x, ·) ∈ D(G(2)) for all x and t ≥ 0 and S(·, y), P̄tS(·, y) ∈ D(G(1)) for all y and
t ≥ 0, and if

G(2)S(x, ·)(y) = G(1)S(·, y)(x)

for all x, y, then (Z1(t)) and (Z2(t)) are dual with respect to S.

In the case in which (Z1(t))t≥0 = (X(t))t≥0 is the Wright-Fisher diffusion with
mutation and (X2(t))t≥0 = (N(t))t≥0 the Kingman block-counting process started in
k ∈ N, we have:

G1(f)(x) = (−u1x+ u2(1− x))
∂V

∂x
+
x(1− x)

2

∂2f

∂x2
, f ∈ C2([0, 1]);

G2(f)(n) =

(
n

2

)
[f(n− 1)− f(n)]1ln≥2, f : {1, . . . , k} → R;

S(x, ·) : n→ xn ∈ D(G(2)); S(·, n) : x→ xn ∈ D(G(1));

PtS(x, ·) : n→ Ex[X(t)n] ∈ D(G(2)); P̄tS(·, n) : x→ En[xN(t)] ∈ D(G(1)),

where in the first two lines we used the formulae for the infinitesimal generator of a
diffusion process and a pure jump process, respectively. Moreover,

G2(S)(x, ·)(n) =

(
n

2

)
(xn−1 − xn)

=
n(n− 1)

2
xn−1(1− x)

=
x(1− x)

2
n(n− 1)xn−2

=
x(1− x)

2

∂2xn

∂x2

= G1(S)(·, n)(x),

(with the convention
(

1
2

)
=
(

0
2

)
= 0) which closes the example.

Similarly, we can prove that the block-counting process of the seed bank coa-
lescent is the (moment) dual of the seed bank diffusion (see [BGKWB16], Theorem
2.8); we will see that moment duality fits the bill in our case as well, linking to-
gether the forwards-in-time and the backwards-in-time two-island processes described
in Chapter 1.
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2.2 Boundary behavior arguments

In this subchapter, we ask ourselves the question whether it is possible to find a
necessary condition for the diffusion process not to reach a certain boundary in finite
time almost surely. This is formalized as follows: for any boundary2 B and stochastic
process X, define the first hitting time3

τXB := inf{t ≥ 0 | X(t) ∈ B}.

We say X will never hit B started from the interior, if

Pµ0
{
τXB <∞

}
= 0

for any initial distribution µ0 such that µ0(B) = 0. For the sake of simplicity, we will
call a boundary B accessible if for the relevant stochastic process, the statement that
it will never hit B started from the interior does not hold.

2.2.1 Speed and scale

For one-dimensional diffusions, the simplest method used in order to study their
boundary behavior (as well as many other quantities) is by using speed and scale
(see e.g. [Eth11]). This method relies on the fact that every one-dimensional diffusion
process can be transformed to a standard Brownian motion via a transformation of
the state space first and a time-change afterwards. This is synthesized in the following

Theorem 2.3. (taken from [Eth11], p.45-49, [EK86], Ch.8, Problem 4.1) Take an
interval [l, r], a drift function b ∈ C0([l, r]), (that is, continuous) and a diffusion
function σ2 ∈ C0([l, r]) with σ2 bounded from below on any compact interval I ⊆ (l, r)
by an εI > 0. Moreover, assume the SDE

dX(t) =
σ2(X(t))

2
dWt + b(X(t))dt

admits a unique strong solution X = (X(t))t≥0 which is a Markov process on [l, r].
Then, denoting the scale function by

S(x) :=

∫ x

x0

exp
(
−
∫ y

η

2b(z)

σ2(z)
dz
)

dy

and the speed measure by

M(x) :=

∫ x

x0

1

σ2(z)S′(z)
dz

(x0, η being any points in (l, r)) and defining

u(x) =

∫ x

x0

MdS and v(x) =

∫ x

x0

SdM,

X will hit the boundary b ∈ {l, r} started from the interior if and only if |u(b)| <∞.
2In this thesis, this term has no topological meaning; a boundary is simply a measurable set.
3This is also a stopping time provided the stochastic process has a.s. continuous paths and the

boundary set is either open or closed. Fortunately, all of the choices for X and B in this thesis satisfy
these basic properties.
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Example: 1-dimensional Wright-Fisher diffusion In our toy model, we can
prove that the boundary {0} is accessible for the 1-dimensional Wright-Fisher diffusion
process if and only if u2 <

1
2 : In the 1-dimensional Wright-Fisher diffusion process,

[l, r] = [0, 1], b(x) = −u1x+ u2(1− x) and σ2(x) = x(1− x),

both terms respecting the hypotheses. Assuming that u1, u2 > 0, we can calculate

s(y) = exp
(
−
∫ y

η

2b(z)

σ2(z)
dz
)

= exp
(
− 2

∫ y

η

−u1z + u2(1− z)

z(1− z)
dz
)

= (1− y)−2u1y−2u2(1− η)2u1η2u2 = C1(1− y)−2u1y−2u2 ,

C1 > 0 being a constant in y. Moreover,

m(z) :=
1

s(z)σ2(z)
=

(1− z)2u1−1z2u2−1

C1
.

Therefore, for any x0, y0 ∈ (0, 1),∫ x

x0

M(y)dS(y) =

∫ x

x0

∫ y

y0

m(z)dz s(y)dy

=

∫ x

x0

∫ y

y0

(1− z)2u1−1z2u2−1dz (1− y)−2u1y−2u2dy.

Denote
w(y) :=

∫ y

y0

(1− z)2u1−1z2u2−1dz.

Since ∫ 1

0
(1− z)2u1−1z2u2−1dz =

Γ(2u1)Γ(2u2)

Γ(2(u1 + u2))
,

w is a bounded function; moreover, it does not converge to 0 for y → 0. Therefore,
we get that ∣∣∣ ∫ 0

x0

M(y)dS(y)
∣∣∣ <∞ if and only if u2 < 1/2.

However, this approach cannot be used for the two-dimensional structured models
from Chapter 1, since there is in general no way to turn a two-dimensional diffusion
process into a Brownian motion by a change of time and space. Therefore, we have
to solve our problem by other means. Two possible approaches are the usage of
the McKean argument, which has as basic idea that a continuous martingale cannot
converge to infinity with positive probability because it has to oscillate constantly, and
using the so-called Lyapunov argument, which works with the infinitesimal generator.

2.2.2 The McKean argument

The McKean argument, introduced in 1969 ([McK69], p.47, Problem 7), is a tool
which is used in order to prove accessibility or inaccessibility of certain boundaries.
It is based on using continuous local martingales on random intervals and has been
used for multiple purposes ([Bru91], [MPS11], [FL16]). Let us show it applied to a
well-known example:
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Proposition 2.4. In the standard one-dimensional Wright-Fisher diffusion with mu-
tation and rescaled random genetic drift (i.e. the one defined as the unique strong
solution of the SDE

dX(t) = (−u1X(t) + u2(1−X(t)))dt+ α
√
X(t)(1−X(t))dW (t))

for an α > 0, the diffusion will never hit the boundary {0} started from the interior if
α2 ≤ 2u2.

Of course, this result can be proved using the method of scale function and speed
measure as before. However, we can also use a martingale argument (see, for example,
[Alf15], Exercise 1.2.18 or Exercise 6.1.3), which we will call the McKean argument.

Proof. We start by calculating the stochastic integral
∫ t

0
1

X(s)dX(s) for any t ∈ (0, τ0):

∫ t

0

1

X(s)
dX(s) =

∫ t

0

u2

X(s)
ds− (u1 + u2)

∫ t

0
ds+

∫ t

0
α

√
1−X(s)

X(s)
dW (s)

=

∫ t

0

u2

X(s)
ds− (u1 + u2)t+

∫ t

0
α

√
1−X(s)

X(s)
dW (s).

Define τ0 := inf{t ≥ 0 : X(t) = 0}. Now, we use the previous result to calculate
ln X(t)

X(0) , for any t < τ0, via the Ito formula4

ln
X(t)

X(0)
=

∫ t

0

1

X(s)
dX(s)−

∫ t

0

1

2X(s)2
d[X](s)

=

∫ t

0

u2

X(s)
ds− (u1 + u2)t+

∫ t

0
α

√
1−X(s)

X(s)
dW (s)

−
∫ t

0

α2X(s)(1−X(s))

2X(s)2
ds

=

∫ t

0

u2 − α2

2

X(s)
ds+ t

(α2

2
− u1 − u2

)
+

∫ t

0
α

√
1−X(s)

X(s)
dW (s).

Now, we assume that α2 ≤ 2u2 and remind that P{X(0) = 0} = 0. In this case, the
first term is non-negative, and by exponentiating we get the approximation

X(t) ≥ X(0) exp
((α2

2
− u1 − u2

)
t+M(t)

)
,

with

M(t) :=

∫ t

0
α

√
1−X(s)

X(s)
dW (s).

4The Ito formula can be used in this case even if the function x → log x is not from R to R. In
the step of the proof of the Ito formula where we approximate the integrand with polynomials on a
compact interval, we just use [1/M,M ] instead of [−M,M ] as usual. Doing the limit for M → ∞
gives us the validity of the formula on (0,+∞), which is enough because of the hypothesis t < τ0.
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We will now proceed by contradiction; thus, assume P{τ0 <∞} > 0. (M(t)) is a local
martingale on [0, τ0), since it is an integral of an adapted locally bounded process
against Brownian motion.

Thus, we have the equation

1l{τ0<∞}X(t ∧ τ0) ≥ X(0) exp
(1

2

(
α2 − 2(u1 + u2)

)
(t ∧ τ0) +M(t ∧ τ0)

)
1l{τ0<∞}.

For t→∞, the left-hand side will converge almost surely to 0 by definition of τ0 and
continuity of our process. Thus,

1

2

(
α2 − 2(u1 + u2)

)
(t ∧ τ0) +M(t ∧ τ0)→ −∞

for almost every path for which τ0 < ∞ as t → ∞. The only possibility for this is
that M(t ∧ τ0)→ −∞.

Because of this, we have that

1l{τ0<∞}M(t ∧ τ0)→ −∞1l{τ0<∞}

almost surely for t → ∞. But since (M(t ∧ τ0))t≥0 is a continuous local martingale
as well, by a corollary of Dambis-Dubins-Schwarz ([RY99], Prop. 1.8) it must either
have an almost sure finite limit or its limsup must be +∞ almost surely. But neither
is the case (with positive probability, it “stabilizes” at −∞ and its paths are thus
bounded from above), which is impossible. Thus, τ0 = ∞ a.s. and by symmetry
(notice that (1−X(t))t≥0 is a classical Wright-Fisher process as well, which represents
the frequency process of A-alleles), if α2 ≤ 2u1 and we start in (0,1), τ1 = ∞ a.s. as
well.

2.2.3 The Lyapunov argument

Another method for analyzing the behavior of a diffusion is the so-called Lyapunov
argument. While the McKean argument is based on a martingale obtained via the
usage of the Ito formula, the Lyapunov argument is based on the Dynkin formula
and on Foster-Lyapunov inequalities for the infinitesimal generator ([Kus67], [MT92],
[MT93]). The Lyapunov argument is usually used in order to see whether a stochastic
process will explode (that is, reach a point at infinity) in finite time, but can be
applied to our case without too many problems. More specifically, we can use two
results, called (CD0) and (CD1) in [MT93], where they are presented in the context
of respectively Theorem 2.1 and Theorem 3.1. Both of them can be applied to our
models using the following result.

Proposition 2.5. Let X = (X(t))t≥0 be a Borel right5 Markov process with values
in E ⊆ Rd endowed with a boundary B ⊆ E ∪ {∞}. Define {On : n ∈ Z+} as a fixed

5For the (quite technical) definition, see e.g. [Sha88]. For our aims, it is enough to know that all
strong Markov processes on a Borel space with a.s. cádlág paths and whose semigroup maps bounded
functions into bounded functions are Borel right processes; see [Mey66].
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family of open precompact sets with On ↑ E \ B. Moreover, the following hypotheses
hold:
a) X(0) = x ∈ E \B a.s.;
b) there exists a continuous function V : E\B → [0,+∞) for which, for every sequence
of points in E \B (xn) with xn → x ∈ B, V (xn)→∞;
c) for every n ∈ N, the Markov process restricted on On has a generator An for which
V ∈ D(An), An(V ) is a continuous function and

An(V )(x) ≤ CV (x) +D

for every x ∈ E \B and some constants (independent from n) C,D ≥ 0.
Then, X will never hit the boundary B started from the interior, i.e. τXB =∞ a.s.

Remark 2.6. • In ([MT93]), a V as in the definition is called a norm-like function.
• It is usually not hard to choose a fitting sequence of Ons. For example, if B ⊆ E,
we can choose

On = {x ∈ E : d(x,B) >
1

n
},

with d the Euclidean distance; for a boundary at ∞,

On = {x ∈ E : ||x|| < n}.

Proof. We prove the thesis similarly to the proof of result (CD0). For this aim, we
need to go through the following steps:

1) We remove B from our state space E. We then define a Markov process
(X̌(t))t≥0 with state space E \ B which has the same behavior as X when X is
in E \B, e.g. by defining

X̌(t) := X(t− γt); γt := sup{u ∈ [0, t] : X(u) ∈ B},

with the convention sup ∅ = 0.
2) We introduce the stopping time τ defined as the time when the process first enters
the boundary, that is,

τ := inf{t ∈ [0,∞) : X(t) ∈ B} = lim
n→∞

inf{t ∈ [0,∞) : X(t) /∈ On}

= lim
n→∞

inf{t ∈ [0,∞) : X̌(t) /∈ On}

by definition of limit and construction of X̌.

3) We define a sequence of stopping times

τm := inf{t ∈ [0,∞) : X̌(t) /∈ Om}.

Define Xm(t) := X(t ∧ τm), and notice that for the resulting stochastic process,
(Xm(t)) = (X̌m(t)) almost surely by construction (since the paths are almost surely
continuous, we will exit Om - and thus stop the process - before we enter B).
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4) Notice that, without loss of generality, D = 0; else define V̂ (x) = V (x) +D/C
(notice that V̂ is still norm-like) and proceed accordingly.

5) Define the weak6 extended generator7 G of a Markov process X as the operator
acting on all measurable functions h : E \B × (0,∞)→ R for which, for all
(x, t) ∈ E \B × (0,∞), the limit

G(X)(h)(x, t) := lim
ε→0

Ex[h(X(ε), t+ ε)]− h(x, t)

ε

exists pointwise, |G(X)(h)| is bounded on all compact sets and

lim
ε→0

Ex[G(X)(h)(X(ε), t+ ε)] = G(X)(h)(x, t).

6) Denote with Am the (standard) infinitesimal generator of Xm, and with Gm
the weak extended generator. Notice that Am(f) and Gm(h) are just restrictions of
A(f) and G(h), for any function f ∈ D(A) and h ∈ D(G).

7) Notice that V : E \ B → R+ has a restriction in the domain of Am for every
m, and that {V ≤ x} is a compact subset of E \B for every x ∈ (0,∞).

8) Apply Gm to
h(x, t) := V (x)e−Ct.

Then, we get

lim
ε→0

Ex[V (X(ε))e−C(t+ε)]− V (x)e−Ct

ε
= e−Ct lim

ε→0

(Ex[V (X(ε))e−Cε]− V (x)

ε

)
=e−Ct lim

ε→0

(Ex[V (X(ε))] + e−CεV (x)− e−CεV (x) + V (x)

ε

)
=e−Ct

(
lim
ε→0

e−Cε
Ex[V (X(ε))]− V (x)

ε
+ V (x) lim

ε→0

e−Cε − 1

ε

)
=e−Ct

(
Am(V )(x)− CV (x)

)
Moreover, using hypothesis c) and Step 4), we get that

Gm((h)(x, t)) = e−Ct(Am(V )(x)− CV (x)) ≤ 0.

9) Now, let tm := τm ∧ t be a bounded stopping time for any t > 0. Then, we can
use formula (8) in [MT93] (“Dynkin’s formula”), which states that

Ex[

∫ Tm

0
G(X)(f)(X(s), s) ds] = Ex[f(X(Tm), Tm)]− f(X(0), 0),

6In the sense of pointwise limit. See also [MT93], Formula 5.
7Usually the extended generator is described as the operator which, applied on a function h, yields

a function U with Ex[h(X(t), t)] = h(x, 0) + Ex[
∫ t

0
U(X(s), s) ds]. However, we wish to give a more

intuitive, even if slightly stronger, definition since it is enough in our case.
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where G is the extended generator of X, f is in the domain of G(X), Tm :=
min{τm,m, ζ} and ζ is a stopping time for X. This formula stems directly from
applying Doob’s optional stopping theorem to the martingale representation of the
extended generator (Formula 3 in [MT93])∫ t

0
G(X)(f)(X(s), s) ds = f(X(t), t)− f(X(0), 0)−Mf (t),

with (Mf (t))t≥0 a martingale. Applying Dynkin’s formula to our process with ζ = τ
and h = f yields

E[V (Xm(tm))e−Ctm ] = V (X(0)) + E
[ ∫ tm

0
Gm(h)(X(s), s)ds

]
≤ V (X(0))

(which is finite by hypothesis a)).

10) Define
M(t) := e−CtV (Xm(t))1lτm≥t.

We want to show that (M(t))t≥0 is a (FX(t))t≥0-supermartingale. The process is
bounded by

sup
x:d(x,B)≥1/m

V (x) <∞

(in the B ⊆ E case, and analogously else); moreover, the supermartingale property is
given by inspecting both terms in the expression (holding almost surely)

E[M(t)|FX(s)] = E[M(t)|FX(s)]1ls>τm + E[M(t)|FX(s)]1ls≤τm :

the first one is zero since M(t) = 0 for every t ≥ τm, and thus, for the same reason,
equal to M(s); for the second one, using the strong Markov property,

E[M(t)|FX(s)]1ls≤τm = e−CtEXm(s)[V (Xm(t− s))1lτm≥(t−s)]1ls≤τm

= e−CsEXm(s)

[
e−C(t−s)V (Xm(t− s))1lτm≥(t−s)

]
1ls≤τm

= e−CsEXm(s)

[
e−C((t−s)∧τm)V (Xm((t− s) ∧ τm))1lτm≥(t−s)

]
1ls≤τm

≤ e−CsEXm(s)

[
e−C((t−s)∧τm)V (Xm((t− s) ∧ τm))

]
1ls≤τm

≤ e−CsEXm(s)[V (Xm((t− s) ∧ τm)e−C((t−s)∧τm)]1ls≤τm

≤ e−CsV (Xm(s))1ls≤τm = M(s)1ls≤τm a. s.

having used step 9) in the second to last step.

11) Finally, using Doob’s maximal inequality and the monotone convergence the-
orem, for any a > 0:

P{supM(t) ≥ a} = P
{

sup
t<τm

V (X(t))e−Ct ≥ a
}
≤ V (X(0))

a

and in the limit,

P{sup
t<τ

V (X(t))e−Ct ≥ a} ≤ V (X(0))

a
.
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Thus, on the one hand,

V (X(0))

a
≥ P

{
sup
t<τ

V (X(t))e−Ct ≥ a
}
≥ P

{
sup
t<τ

V (X(t))e−Ct ≥ a, τ <∞
}
.

But on the other hand, {
sup
t<τ

V (X(t))e−Ct ≥ a
}
⊇ {τ <∞}

since
lim
t→τ

V (X(t))e−Ct =∞ on {τ <∞}.

Therefore,
V (X(0)) ≥ a P{τ <∞} for all a > 0.

This means that P{τ <∞} = 0, i.e. (V (X(t)))t≥0 cannot reach the boundary in finite
time with positive probability, which concludes our proof.

Notice that this algorithm works only in one direction; in the eventuality that our
process does reach the boundary (with positive probability), this has to be proved
by other means: see the following subchapter.

Example: 1-dimensional Wright-Fisher diffusion We can apply the Lya-
punov argument to our “toy model”, namely the one-dimensional Wright-Fisher diffu-
sion. This stochastic process has as state space [0, 1]. For simplicity, we just look at
boundary behavior at {0}. The generator of the diffusion, acting on twice differen-
tiable functions, is

A(f)(x) = (−u1x+ u2(1− x))
∂f

∂x
+
x(1− x)

2

∂2f

∂x2
.

Here, if we use the above algorithm, set On := ( 1
n , 1) and D(An) is the set of twice

differentiable functions from ( 1
n , 1) to R, which means that a function with a singular-

ity at 0 can still be in D(An). We use this to define V (x) := − log x. For this choice
of V , the sufficient condition for non-explosivity becomes

(u1 + u2 −
u2

x
) +

1− x
2x

≤ −C log x+D,

or, putting all constants together,

1
2 − u2

x
+ C log x ≤ D′.

This inequality holds for all x ∈ (0, 1] if and only if u2 ≥ 1/2, which matches with the
result obtained via scale function and speed measure.
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2.3 Polynomial Diffusion Theory

In order to treat the other direction of the boundary behavior problem, polynomial
diffusions come to our help. Polynomial diffusion theory was introduced by Wong
in 1964 ([Won64]) and developed in the context of financial mathematics in the last
decade. In particular, it can be used in several topics in finance including market
models for interest rates ([CKRT12], [LR14], [FL16], [LP17]). However, we will see
that the formulas fit our diffusion processes as well.
We define a polynomial diffusion (as in [FL16], see also the Remark after Definition
2.1 therein) as a diffusion process, taking values on a subset of Rn, of the form

dZ(t) = b(Z(t))dt+ σ(Z(t))dW (t),

where b consists of polynomials of degree at most 1, a := σσT of polynomials of degree
at most 2 and W is an n-dimensional standard Brownian motion.
It is now easy to see that the diffusion process on [0, 1]2 given by (2) is a polynomial
diffusion: it fits the bill with Z := (X,Y ),

b(x, y) :=

(
−u1x+ u2(1− x) + c(y − x)
−u′1y + u′2(1− y) + c′(x− y)

)
and σ(x, y) :=

(
α
√
x(1− x) 0

0 α′
√
y(1− y)

)
.

Now, define P = {x, 1 − x, y, 1 − y}, where we abuse notation using x for the map
(x, y) 7→ x, and similarly for the other polynomials. Then, the state space of our
diffusion can be defined by

[0, 1]2 = {x ∈ R2 : ∀p ∈ P p(x) ≥ 0}.

Hence we can make use of Theorem 5.7 in [FL16].

Theorem 2.7. Let X be a weak solution of the (multi-dimensional) stochastic differ-
ential equation

dX(t) = σ(X(t))dW (t) + b(X(t))dt.

Denote as A the generator of the related stochastic process and E its state space.
Suppose that

E = {x ∈ Rd| p(x) ≥ 0 ∀p ∈ P}

for a set of polynomials P. Moreover, suppose that

P{p(X(0), Y (0)) = 0} = 0 for all p ∈ P

and that ∫ t

0
1lp(X(s))=0 ds = 0, t ≥ 0, p ∈ P , a.s.

For every p ∈ P, consider a vector of polynomials h for which a∇p = hp with
a := σσT . Then:

(i) If there exists a neighborhood U of E ∩ {p = 0} such that

2A(p)− hT∇p ≥ 0 on E ∩ U,
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then p(X(t)) > 0 for all t > 0, a.s.

(ii) If
2A(p)− hT∇p = 0 on Rd ∩ {p = 0},

and additionally p changes sign on Rd, then p(X(t)) > 0 for all t > 0, a.s.

(iii) For any x̄ ∈ E ∩ {p = 0}, if

A(p)(x̄) ≥ 0 and 2A(p)(x̄)− hT (x̄)∇p(x̄) < 0,

then for any T > 0 there exists ε > 0 such that if ||X(0)− x̄|| < ε almost surely, then
p(X(t)) has zeroes in (0, T ] with positive probability.

Example: 1-dimensional Wright-Fisher diffusion The boundary behavior
problem for the classical Wright-Fisher diffusion can be fully solved using this theorem
as well. In that case,

b(x) = −u1x+ u2(1− x) and a(x) = x(1− x).

Moreover,
[0, 1] = {x ∈ R : ∀p ∈ P , p(x) ≥ 0} for P = {x, 1− x}.

We investigate the boundary behavior at 0 by picking p(x) = x. Then, the condition
2.7 is satisfied because of the absence of atoms at the boundaries for the stationary
distribution, which follows directly from ([Eth11], Example 3.25). And last, let us
note that the assumption that {t ≥ 0 | p(X(t), Y (t)) = 0} be a Lebesgue null set is
indeed not required when P{p(X(0), Y (0)) = 0} = 0, as can be easily seen from the
proof.
Moreover, h(x) = 1− x and thus,

2A(p)− hT∇p = −2u1x+ (1− x)(2u2 − 1).

This yields that:
i) 2A(p)− hT∇p is non-negative in a neighborhood of 0 if and only if u2 > 1/2;
ii) 2A(p)− hT∇p = 0 on {p = 0}, and p changes sign on [0, 1];
iii) A(p)(0) = u2 and 2A(p)− hT∇p(0) = 2u2 − 1.

Therefore, the diffusion process will not reach 0 in finite time a.s. if u2 ≥ 1/2;
however, if u2 < 1/2, the process will reach 0 in finite time with positive probability
if started close enough to 0.

2.4 Phase-type Distribution Theory

Phase-type distributions are a class of probability distributions introduced by Neuts
in 1975 ([Neu75b])8 and used both in the context of finance and of population genetics
by Bladt et al. ([Bla05], [HSB19]).
Using the notation from [HSB19], we have a Markov jump process (M(t))t≥0 with a
finite state space {x1, x2, . . . , xp+1}, where exactly one state xp+1 is absorbing, while

8This source is hard to find. See also ([Neu75a])
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all the others are transient. Therefore, the Q-matrix of the Markov chain must have
the form

Q =

[
S s
0 0

]
,

with S a p× p matrix and the vector s 6= 0.
Let π be an initial distribution, and assume that π({xp+1}) = 0. Then, if we define
τ as the (a.s. finite) absorption time in xp+1 of (M(t)) started in π, we say that τ is
phase-type distributed.
Moreover, the following results (Theorem 2.5 in the aforementioned paper and Theo-
rem 8.1.2 in [BN17] respectively) apply:
Let r : {x1, . . . , xp} → R+ be a so-called reward function. Then, for

Y :=

∫ τ

0
r(M(t))dt,

and any n ∈ N,
E[Y n] = π((−S)−1∆(r)))ne, (6)

where e is a vector of ones and ∆(r) is the diagonal matrix with diagonal entries
r := (r(x1), . . . , r(xp)). Furthermore, the Laplace transform of Y is given by

LY (u) := E[e−uY ] = π(∆(ur)− S)−1s. (7)

Example: 1-dimensional Kingman coalescent
If we take a sample of n = 3, the block-counting process of the Kingman coalescent is
defined as the continuous-time Markov chain M with state space {1, 2, 3}, M(0) = 3,
jumping from 3 to 2 at rate 3, from 2 to 1 at rate 1, and getting absorbed in 1.
From the definition, we see that the time to the most recent common ancestor τ is
phase-type distributed. Formally, 3, 2 and 1 take the roles respectively of x1, x2 and
x3, and in addition:

Q =

−3 3 0
0 −1 1
0 0 0

 , p = 2, S =

[
−3 3
0 −1

]
, s =

[
0
1

]
, π = (1, 0), r = (1, 1).

Thus, equations (6) and (7) can be applied here: the moments of τ are equal to9

E[τn] = (1, 0)

([
1
3 1
0 1

])n [
1
1

]
.

And finally, its Laplace transform is equal to

Lτ (u) := E[e−uτ ] = π
1

(u+ 1)(u+ 3)

[
u+ 1 3

0 u+ 3

]
s =

3

(u+ 1)(u+ 3)
.

9Of course, the specific formulas for pure-death processes in [HSB19] could have been used here
as well, but we have refrained from it for illustrative purposes.
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3 Basic results for the Wright-Fisher diffusion with two
subpopulations

The aim of this chapter is to provide a solid foundation for all the results that will
come afterwards. First, we want to show that the stationary distribution of the
Wright-Fisher diffusion with two subpopulations is unique and can be characterized
by the means of mixed moments. Moreover, in this Chapter we will also give two
basic results. First, we will see a possible transformation of the system of two SDE’s
characterizing the seed bank diffusion into a system composed of a stochastic delay
differential equation for X and an equation which gives Y in function of X. Then, we
will see that none of the diffusion processes presented in the thesis is reversible.
This chapter is based on [K1].

3.1 Moment dual of the seed bank diffusion with mutation

The moment dual of the seed bank diffusion (without mutation) (N(t),M(t))t≥0 has
already been introduced in Chapter 1. If we want to introduce mutation to the model,
difficulties might arise. However, there is more than one way of incorporating this
mechanism into a dual. We comment on this as well as on the motivation behind our
strategy – adding a death state (∂, ∂) to the state-space – below, but let us formally
introduce our dual first.

Definition 3.1 (Moment dual of the diffusion (2)). Consider the space
E := N0 × N0 ∪ {(∂, ∂)} equipped with the discrete topology. Let
u1, u2, u

′
1, u
′
2, α, α

′ ≥ 0, c, c′ > 0. Define (N(t),M(t))t≥0 to be the continuous time
Markov chain with values in E with conservative generator A(2) given by:

A(2)
(n,m),(n̄,m̄) =



α2
(
n
2

)
+ nu2 if (n̄, m̄) = (n− 1,m),

(α′)2
(
m
2

)
+mu

′
2 if (n̄, m̄) = (n,m− 1),

nu1 +mu
′
1 if (n̄, m̄) = (∂, ∂),

cn if (n̄, m̄) = (n− 1,m+ 1),

c′m if (n̄, m̄) = (n+ 1,m− 1),

for every (n,m) ∈ N0 × N0 (with the convention
(

1
m

)
=
(

0
m

)
= 0 for all m) and zero

otherwise off the diagonal, started in (n(1), n(2)) ∈ E.
We will call this process the moment dual of the diffusion (2).

The name of the process will be justified in Lemma 3.2 below. This dual arises
in the context of sampling duality. See [GS18] for a thorough introduction to the
concept. It is based on the idea that the question “What is the probability of sampling
n individuals of type a at time t, if the frequency of type a is x at time 0?” can be
answered in two ways: One, looking forward in time at the diffusion which will give
precisely the frequency of type a individuals at time t, but also two, tracing back the
genealogy to the number of ancestors of the sample present at time 0 and using the
frequency x. It is precisely in this latter question that one realizes the need of an
artificial death state. In order for all n individuals in the sample to be of type a at
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Figure 3: The coalescent corresponding to the process defined in Definition 3.1. The
dashed and black lines correspond to the two islands respectively. When a forward-
mutation of type A 7→ a occurs, the line is ended, since it ensures all its leaves to be
of type a. A forward-mutation of type a 7→ A renders it impossible to have all leaves
of type a and the process jumps to the death state.

time t it is imperative that we do not encounter a mutation from type a to A in the
forward sense, i.e. a mutation from A to a in the coalescent time, on their ancestral
lines. Hence, the process (N(t),M(t))t≥0 is killed off as soon as this happens, since
the probability for the sample to be of type a only is now 0. At the same time, if we
encounter a mutation of type A to a in the forward sense, i.e. a mutation from type a
to A tracing backwards, we are assured all descendants of that line are of type a with
probability 1 and we can stop tracing it, whence the process is reduced by one line.
See Figure 3 for an illustration.

It is trivial to extend the dual process in Definition 3.1 to a general structured coa-
lescent. A structured-mutation moment dual is new in the literature, as far as we know.
These moment duals differ from the weighted moment dual for the Wright-Fisher dif-
fusion with mutation introduced in [EG09] and studied in [GJL16] and [EGT10].
The small difference between our construction for mutation and the construction in
[EG09], namely the addition of the extra state (∂, ∂), makes our dual compatible with
the presence of selection as in [KN97].

The following are straightforward, but important observations on the duals: Note
that in the case of u1 +u2 +u′1 +u′2 > 0, the moment dual of the general diffusion will
reach either {(0, 0)} or {(∂, ∂)} in finite time a.s. (for any starting point (n(1), n(2)) ∈
E), whereas for u1 + u2 + u′1 + u′2 = 0 it will reach the set {(1, 0), (0, 1)} in finite
time (P-a.s.) and then alternate between these two states. Furthermore observe that,
whenever the dual of the general diffusion is started in some (n(1), n(2)) ∈ E, it will
stay in {0, . . . , n(1) + n(2)} × {0, . . . , n(1) + n(2)} ∪ {(∂, ∂)}, hence the state space in
this case is, indeed, finite.

Lemma 3.2. Let S : [0, 1]2 × E → [0, 1] be defined as

S((x, y), (n,m)) := xnym1lN0×N0((n,m))

for any (x, y) ∈ [0, 1]2 and (n,m) ∈ E and let u1, u2, u
′
1, u
′
2, α, α

′ ≥ 0, c, c′ > 0. Then
for every (x, y) ∈ [0, 1]2, (n,m) ∈ E and for any t ≥ 0

Ex,y[S
(
(X(t), Y (t)), (n,m)

)
] = En,m[S

(
(x, y), (N(t),M(t))

)
],
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where (N(t),M(t))t≥0 is defined in Definition 3.1 and (X(t), Y (t))t≥0 is the solution
to the SDE in equation (2).

Proof. Since S : [0, 1]2 ×E → [0, 1] is continuous (in the product topology of [0, 1]2 ×
E), the result follows by proving the assumptions of Proposition 1.2 in [JK14] (see
Chapter 2.1): Recall the generator A(1) of (X(t), Y (t))t≥0 from (3) and observe that
for any bounded function h : E → R, the generator of (N(t),M(t))t≥0 is given by
A(2)h((∂, ∂)) = 0 and

A(2)h(n,m) =

[
α2

(
n

2

)
+ nu2

]
[h(n− 1,m)− h(n,m)]1lN(n)

+

[
(α′)2

(
m

2

)
+mu′2

]
[h(n,m− 1)− h(n,m)]1lN(m)

+ c[h(n− 1,m+ 1)− h(n,m)]1lN(n)

+ c′[h(n+ 1,m− 1)− h(n,m)]1lN(m)

+ [nu1 +mu′1][h(∂, ∂)− h(n,m)],

for any (n,m) ∈ N0×N0 with the convention that
(

1
2

)
= 0. Let P and P̄ be the semi-

groups corresponding to A(1) and A(2) respectively. Since (N(t) +M(t))t≥0 is mono-
tonically non-increasing, the assumptions that S

(
(x, y), (n,m)

)
, PtS

(
(x, y), (n,m)

)
are in the domain of A(2) and S

(
(x, y), (n,m)

)
, P̄tS

(
(x, y), (n,m)

)
are in the domain

of A(1) are readily verified.

As S((x, y), (∂, ∂)) = 0 for all (x, y) ∈ [0, 1]2, we immediately see

A(1)S
(
(x, y), (∂, ∂)

)
= 0 = A(2)S((x, y), (∂, ∂))

for any (x, y) ∈ [0, 1]2. Furthermore, if we fix (x, y) ∈ [0, 1]2 and (n,m) ∈ N0 × N0,

A(1)S
(
(x, y), (n,m)

)
= [−u1x+ u2(1− x) + c(y − x)]nxn−1ym

+
α2

2
x(1− x)n(n− 1)xn−2ym

+
[
−u′1y + u′2(1− y) + c′(x− y)

]
mxnym−1

+
(α′)2

2
y(1− y)m(m− 1)xnym−2

=
[
α2

(
n

2

)
+ nu2

][
xn−1ym − xnym

]
+
[
(α′)2

(
m

2

)
+mu′2

][
xnym−1 − xnym

]
+ c
[
xn−1ym+1 − xnym

]
+ c′

[
xn+1ym−1 − xnym

]
+ (nu1 +mu′1)[0− xnym]

= A(2)S
(

(x, y), (n,m)
)
.
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This duality now allows us to use the process (N(t),M(t))t≥0 to study the mixed
moments of (X(t), Y (t))t≥0 from which we can draw conclusions on the limiting be-
havior of the diffusions itself. The case with and without mutation differs strongly in
this behavior.

Lemma 3.3. In the absence of mutation, in the general diffusion given in (2) with
α = α′ = 1,

yc+ xc′

c+ c′
= lim

t→∞
En,m[xN(t)yM(t)] = lim

t→∞
Ex,y[X(t)nY (t)m]

for all (n,m) ∈ N0 × N0 \ {(0, 0)} and all (x, y) ∈ [0, 1]2. Moreover, (X(t), Y (t))t≥0

converges P-a.s. to a random variable (X∞, Y∞) with values in [0, 1]2 whose distribu-
tion is given by

yc+ xc′

c+ c′
δ(1,1) +

(1− y)c+ (1− x)c′

c+ c′
δ(0,0)

Proof. Proof almost identical to those of Proposition 2.9 and Corollary 2.10 in
[BGKWB16].

Note that this is in line with the results for the one-dimensional Wright-Fisher
diffusion. In particular, the two-island diffusion without mutation will fixate in finite
time at one of the corner points (0, 0) or (1, 1), which means extinction of either of
the two alleles.

Proposition 3.4. Let u1, u2, u
′
1, u
′
2, α, α

′ ≥ 0, c, c′ > 0 and assume that at least one
mutation rate among u1, u2, u

′
1, u
′
2 is non-zero. Then, for every (n,m) ∈ N0×N0 and

for every (x, y) ∈ [0, 1]2

lim
t→∞

Ex,y[X(t)nY (t)m] = Pn,m
{

lim
t→∞

(N(t),M(t)) = (0, 0)
}
.

Proof. Fix (x, y) ∈ [0, 1]2 and (n,m) ∈ N0 × N0. Then

lim
t→∞

Ex,y[X(t)nY (t)m] = lim
t→∞

Ex,y
[
X(t)nY (t)m1lN0×N0(n,m)︸ ︷︷ ︸

=S((X(t),Y (t)),(n,m))

]
= lim

t→∞
En,m

[
xN(t)yM(t)1lN0×N0(N(t),M(t))

]
= En,m

[
lim
t→∞

xN(t)yM(t)1lN0×N0(N(t),M(t))
]

= Pn,m
{

lim
t→∞

(N(t),M(t)) = (0, 0)
}
,

where the last three equalities follow from the duality in Lemma 3.2, bounded conver-
gence and the fact that (N(t),M(t))t≥0 is absorbed in (0, 0) or (∂, ∂) in finite time
P-a.s., respectively. (We use the convention that 00 = 1.)
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3.2 Recursive Formula for the mixed moments in stationarity

In this subchapter, we want to tackle the problem of characterizing the stationary
distribution µ of our diffusion. We will see that it exists and is unique, except in
pathological cases. Unfortunately, we cannot calculate the stationary distribution
explicitly, but the following results show that we can characterize it by means of
mixed moments:

Lemma 3.5. For l ∈ N, let (X(t))t≥0 be the solution of (5) for some fixed parameters.
Denote

Mn := lim
t→∞

E
[ l∏
i=1

(Xi(t))
ni
]

for all n = (n1, . . . , nl) ∈ Nn. Using an argument similar to the one used in Lemma
3.3 or in Proposition 3.4, one can easily ensure that this limit exists for all choices of
parameters and starting distributions. Define (N(t))t≥0 = (N1(t), . . . , Nl(t))t≥0 as the
multi-dimensional moment dual with mutation of (X(t))t≥0, defined analogously as in
the previous subchapter. Let N̄n be the rate at which the process (N(t))t≥0 leaves the
starting state n. That is,

N̄n =

l∑
i=1

ni
[
ui +

∑
j 6=i

cij
]

+

l∑
i=1

(
ni

2

)
(αi)2

with ui := ui1 + ui2 and the convention
(

1
m

)
=
(

0
m

)
= 0 for all m. Then the following

recursion holds:

Mn =
1

N̄n

[ l∑
i=1

ni
[
ui2Mn−ei +

∑
j 6=i

cijMn−ei+ej
]

+
l∑

i=1

(
ni

2

)
(αi)2Mn−ei

]
. (8)

Proof. Consider the process (N(t))t≥0 with starting condition N(0) = n and let τ =
inf{t > 0 : N(t) 6= n}. For any n ∈ E such that n /∈ {(0, 0, ..., 0), (∂, . . . , ∂)}, τ is an
almost surely finite stopping time. Then we can apply Proposition 3.4 and write

Mn =Pn
{

lim
t→∞

N(t) = (0, 0, . . . , 0)
}

=
∑
m∈E

Pn
{

lim
t→∞

N(t) = (0, 0, ..., 0)|N(τ) = m
}
Pn{N(τ) = m}

=
∑
m∈E

MmPn{N(τ) = m}.

Writing explicitly the values of Pn{N(τ) = m} leads to the statement.

Remark 3.6. In the case of the two-island diffusion (2), we can write the recursive
formula in a nicer way:

Lemma 3.7. Assume u1 +u2 +u′1 +u′2 > 0. Let (X1, X2) = (X,Y ), which is defined
as the solution to (2) from Chapter 2. Then M0,0 = 1 and the following recursion
holds for all (n,m) ∈ N0 × N0 \ {(0, 0)}:

Mn,m =
1

Dn,m

(
anMn−1,m + a′mMn,m−1 + cnMn−1,m+1 + c′mMn+1,m−1

)
, (9)
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where

an := α2

(
n

2

)
+ nu2,

a′m := (α′)2

(
m

2

)
+mu′2, and

Dn,m := α2

(
n

2

)
+ (α′)2

(
m

2

)
+ (u2 + u1)n+ (u′1 + u′2)m+ cn+ c′m,

with the convention that c′ = Kc,
(

1
2

)
= 0, and M−1,k = Mk,−1 = 0 for any k ∈ N.

An interesting application of our moment duality formula is the characterization
of the long term behavior of (X(t), Y (t))t≥0 in the neutral case:

Proposition 3.8. Let u1, u2, u
′
1, u
′
2, α, α

′ ≥ 0, c, c′ > 0. Assume u1 +u2 +u′1 +u′2 > 0
in (2). Then the diffusion is ergodic in the sense that

Px,y {(X(t), Y (t)) ∈ · } w−−→ µ, for t→∞,

with µ the unique invariant distribution and for all starting points (x, y) ∈ [0, 1]2,
where w−−→ denotes weak convergence of measures. Furthermore µ is characterized by

∀n,m ∈ N0 :

∫
[0,1]2

xnymdµ(x, y) = Mn,m. (10)

Proof. The unique solvability of the moment problem on [0, 1]2 yields existence of a
unique distribution µ such that (10) which in particular implies

1 = M0,0 =

∫
[0,1]2

x0y0dµ(x, y) = µ([0, 1]2).

From the definition of the Mn,m, n,m ∈ N0, we know that

lim
t→∞

∫
[0,1]2

p(x, y)dPx̄,ȳ {(X(t), Y (t)) ∈ · }

= lim
t→∞

Ex̄,ȳ[p(X(t), Y (t))] =

∫
[0,1]2

p(x, y)dµ(x, y)

for any polynomial p on [0, 1]2 (and any (x̄, ȳ) ∈ [0, 1]2). Since the polynomials are
dense in the set of continuous (and bounded) functions on [0, 1]2 we can conclude that

Px,y {(X(t), Y (t)) ∈ · } w−−→ µ.

In the case where we have multiple islands (Equation (5) in Subchapter 1.2.1), we
can give an alternative proof of the general result on stationary distributions which is
based on matrix theory:

37



Proposition 3.9. Suppose that it is possible to go from any island to any other island
in finite time with positive probability, i.e. that all islands are connected. Then:
1) The seed bank diffusion admits a unique stationary distribution µ if at least one
mutation rate among the ui1’s and the ui2’s is non-zero.
2) In case there is purely directional mutation (that is, either all the ui1’s or all the
ui2’s are zero), the Dirac delta in the corresponding absorbing point10 is the unique
stationary distribution.
3) If all mutation rates are zero, for every γ ∈ [0, 1] there is a stationary distribution
given by γδ(1,1,...,1) + (1− γ)δ(0,0,...,0).

Proof. First, we can suppose, without loss of generality, that at least one coalescent-
relative population size αi is non-zero. (Else, no coalescence would be possible.)
The strategy of the proof is as follows: first, we show that all the Mn̄s are uniquely
determined. Given this, the uniqueness of the stationary distribution follows from
Hausdorff’s moment problem.
First of all, observe that the recursive formula gives Mn̄ as a function of the Mn̄−ei ’s
and the Mn̄+ei−ej ’s only. From now on, let us denote by En̄ the equation which is
obtained by plugging n̄ into the recursive formula. Our strategy is then to calculate
the Mn̄’s starting from those for which |n̄| :=

∑
i ni = 1. This is obtained first by

solving the equation system made out of

E(1,0,...,0), E(0,1,...,0), . . . , E(0,...,0,1)

and then continuing in the same fashion for |n̄| = 2, 3, . . . until desired. That is,
in the k-th step of the algorithm, we set up the equation system Pk made of all En̄
with |n̄| = k. Notice that by then, the Mn̄−ei ’s will be already known (provided the
recursion is closed). Hence, the number of unknowns of Pk is equal to its number of
equations, namely the cardinality of the set of all n̄ for which11 |n̄| = k.
Therefore, we just have to prove that, for every natural number k, Pk admits a unique
solution. Since the number of equations and unknowns of Pk is the same, it has a
unique solution if and only if the coefficient matrix, which we will denote by W k, is
invertible. The matrix W k is given by

W k
n̄,m̄ =


N̄n̄ for n̄ = m̄,
−cij for n̄− ei + ej = m̄,

0 else
(11)

with the convention
(

1
m

)
=
(

0
m

)
= 0 for all m. Of course, every row of the matrix

‘stands for’ exactly one vector of length n adding up to k.
Observe that all rows of W k are weakly dominant12, since

N̄n̄ −
∑
i,j

cij =
∑
i

niui +
∑
i

(
ni

2

)
αi ≥ 0.

10That is, (1, 1, . . . 1) if all ui1’s are zero and (0, 0, . . . 0) if all ui2’s are zero.
11Using a “balls into boxes argument”, we can find out that this system in made of

(
k+n−1

k

)
equations

12We recall that the k-th row of a square matrix Mij is called weakly dominant if |Mkk| ≥∑
j 6=k |Mkj | and strictly dominant if the corresponding strict inequality holds; the matrix itself is

weakly/strictly dominant if all of its rows are weakly/strictly dominant.
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From now on, we suppose without loss of generality that α1 6= 0.
Now we want to know under which conditions W k has at least one strictly dominant
row. This is the case when k > 1, because then in the row linked to the equation
Eke1(= E(k,0,...,0)), (

n1

2

)
α1 =

(
k

2

)
α1 > 0.

Moreover, this is the case if there is mutation: if, for instance, ui 6= 0, then in the row
linked to the equation Ekei , ∑

i

niui = kui > 0.

However, if k = 1 and ui = 0 for all i, then ni is always either 0 or 1 and thus by
convention

(
ni

2

)
= 0. This means that all rows of W 1 are zero-sum, since

∑
i

niui +
∑
i

(
ni

2

)
αi = 0.

These remarks allow us to prove all three parts of the theorem:

1) Let at least one mutation rate uij (i ∈ {1, . . . , n}, j ∈ {1, 2}) be non-zero,
which ensures the presence of strictly dominant rows. Then, we can use a corollary of
the Levy-Desplanques theorem ([JH85], Theorem 6.2.27) which says that in a weakly
dominant irreducible matrix with at least one strictly dominant row the determinant
is non-zero. But the matrix is irreducible since we have supposed that all islands are
connected, which concludes the first part of our proof.

2) For the one-directional mutation case, the fact that there is a single stationary
distribution holds due to part 1 of the proof. Moreover, it is the Dirac delta in one
absorbing point, as we can show:
Suppose ui2 = 0 for all i’s. Given the uniqueness of the solution in our case and the
fact that the diffusion is concentrated in [0, 1]n, it is enough to prove that the recursive
formula for k = 1 is satisfied if Mei = 0 for all i’s. In our case, the recursive formula
is:

Mei(u
i +
∑
j 6=i

cij) =
∑
j 6=i

cijMej ,

and Mei = 0 for all i’s is a (and therefore the only) solution. If ui1 = 0 for all i’s, then
ui2 = ui and the recursive formula says

Mei(u
i +
∑
j 6=i

cij) =
∑
j 6=i

cijMej + ui,

which has as a solution Mei = 1 for all i’s.
3) This is proved in much the same way as Lemma 3.3.
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3.3 A stochastic delay differential equation

Note that the only source of randomness in the two-dimensional system (1) and also
in its generalization to many seed banks (4) is the one-dimensional Brownian motion
(W (t))t≥0 driving the fluctuations in the active population. This, together with the
special form of the seed bank(s), allows us to reformulate this system as an essen-
tially one-dimensional stochastic delay differential equation. Recall the notation from
Remark 1.5 and abbreviate, for convenience, ui := ui1 + ui2, i ∈ {1, . . . , k}.

Proposition 3.10. The solution to (4) with initial values x, y1, . . . , yk ∈ [0, 1] is
a.s. equal to the solution of the unique strong solution of system of stochastic delay
differential equations

dX(t) =
k∑
i=1

ci

(
yie
−(ui+Kici)t +

∫ t

0
e−(ui+Kici)(t−s)(ui2 +KiciX(s))ds−X(t)

)
dt

+
[
− u1X(t) + u2(1−X(t))

]
dt+

√
X(t)(1−X(t))dW (t),

dYi(t) =

(
− yi(ui +Kici)e

−(ui+Kici)t

− (ui +Kici)

∫ t

0
e−(ui+Kici)(t−s)(ui2 +KiciX(s))ds+ ui2 +KiciX(t)

)
dt,

(12)

for i ∈ {1, . . . , k} with the same initial condition.

Proof of Proposition 3.10. Let (X(t), Y1(t), . . . , Yk(t))t≥0 be the unique strong solu-
tion of (4). Recall e.g. from [RY99, Proposition 3.1] that for continuous semi-
martingales Z,W , we have the integration by parts formula,∫ t

0
W (s)dZ(s) = W (t)Z(t)− Z(0)W (0)−

∫ t

0
Z(s)dW (s)− 〈Z,W 〉(t),

where 〈·, ·〉 denotes the covariance process and t ≥ 0. Note that for every differentiable
deterministic function f , since 〈Z, f〉 ≡ 0, this reduces to

f(t)Yi(t)− f(0)Yi(0) =

∫ t

0
f(s)dYi(s) +

∫ t

0
f ′(s)Yi(s)ds.

Substituting the expression for dYi(t) from (4), we obtain that

f(t)Yi(t)− f(0)Yi(0) =

∫ t

0
f(s)

[
− ui1Yi(s) + ui2(1− Yi(s)) +Kici(X(s)− Yi(s))

]
ds

+

∫ t

0
f ′(s)Yi(s)ds. (13)

Letting f(t) := e(ui+Kici)t, t ≥ 0, equation (13) simplifies to

f(t)Yi(t)− f(0)Yi(0) =

∫ t

0
e(ui+Kici)s(KiciX(s) + ui2)ds.
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This can be rewritten given the initial value yi = Yi(0) as

e(ui+Kici)tYi(t) = yi +

∫ t

0
e(ui+Kici)s(KiciX(s) + ui2)ds.

By dividing on both sides by e(ui+Kici)t we finally get

Yi(t) = yie
−(ui+Kici)t +

∫ t

0
e(ui+Kici)(s−t)(KiciX(s) + ui2)ds. (14)

Plugging this into the first line of the system in (4) proves that the unique strong solu-
tion of (4) is a strong solution to (12). On the converse, let (X(t), Y1(t), . . . , Yk(t))t≥0

now be a solution to (12). (We already know that there exists at least one.) Using
(14) we immediately see that (X(t))t≥0 solves the first equation in (4). Likewise,
using (14) in the right-hand side of the last k equations in (12), we obtain the last k
equations of (4). Since (4) has a unique solution, this must then hold for (12), too,
and the two solutions coincide P-almost surely.

Note that the the first equation in (12) does not depend on Yi, i = 1, . . . , k, and
that the latter equations for the Yi are in turn deterministic functions of X, so that
the system of SDDEs is essentially one-dimensional.

Remark 3.11. Let us consider an interesting special case of the above result to
reveal its structure: It is an immediate corollary from the above that the seed bank
diffusion solving (1) with parameters c = 1, K = 1, u1 = u2 = u′1 = u′2 = 0, started
in X(0) = x = y = Y (0) ∈ [0, 1] is a.s. equal to the unique strong solution of the
stochastic delay differential equations

dX(t) =

(
xe−t +

∫ t

0
e−(t−s)X(s)ds−X(t)

)
dt+

√
X(t)(1−X(t))dW (t),

dY (t) =

(
− ye−t −

∫ t

0
e−(t−s)X(s)ds+X(t)

)
dt, (15)

with the same initial condition. This now provides an elegant interpretation of the
delay in the SDDE induced by the seed bank. Indeed, it shows that the type (a or A)
of any “infinitesimal” resuscitated individual, is determined by the active population
present an exponentially distributed time ago (with a cutoff at time 0), which the
individual spent dormant in the seed bank. The net effect is positive if the frequency
of a-alleles at that time was higher than the current frequency, and negative if it was
lower. This is the forward-in-time equivalent of the model for seed banks or dormancy
in the coalescent context as formulated in [KKL01], where the seed bank is modeled
by having individuals first choose a generation in the past according to some measure
µ and then choosing their ancestor uniformly among the individuals present in that
generation. The seed bank model given in [BGKWB16] is obtained when µ is chosen
to be geometric, i.e. memoryless, like the exponential distribution. This indicates that
a forward-in-time model for more general dormancy models is to be searched among
SDDEs rather than among SDEs.

Such a reformulation is of course not feasible for the two island model, which is
driven by two independent sources of noise.
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3.4 Non-reversibility

Given the existence of an invariant distribution, the question of reversibility arises
naturally. The classical Wright-Fisher frequency process is reversible. However, the
diffusion process of the two-island model is not, as shown in [KZH08] (Theorem 4). It
turns out, that the seed bank diffusion with mutation (1) is not reversible in general,
either:

Proposition 3.12. If c, u1, u2 6= 0 and u′1 = u1, u′2 = u2, then the seed bank diffusion
process is not reversible.

Proof. We recall that a process (X,Y ) with stationary distribution µ is called re-
versible if for all f, g ∈ D(A),

Eµ[f((X,Y )(·))Ag((X,Y )(·))] = Eµ[g((X,Y )(·))Af((X,Y )(·))].

where A is defined as the generator of the process. We recall that the generator of
the seed bank diffusion is equal to

A(1)(f)(x, y) = [u2 − (c+ u1 + u2)x+ cy]
∂

∂x
f(x, y)

+[u1 − (Kc+ u1 + u2)y +Kcx]
∂

∂y
f(x, y) +

x(1− x)

2

∂2

∂x2
f(x, y),

and that its domain D(A(1)) contains C2([0, 1]2), the space of twice differentiable
functions. Assuming, by contradiction, that the process is reversible and plugging in
f(x, y) = x and g(x, y) = y, we get

u2Eµ[X − Y ] + cEµ[−(K − 1)XY − Y 2 +KX2] = 0.

But using the recursive formula (9) from Chapter 3.2, from which we take the notation,
we get13:
• by solving the equation system{

M1,0 = 1
D1,0

(
a1 + cM1,0

)
M0,1 = 1

D0,1

(
a′1 + cKM0,1

)
,

that the first term is 0;
• by solving the equation system

M2,0 = 1
D2,0

(
a2M1,0 + 2cM1,1

)
M1,1 = 1

D1,1

(
a1M0,1 + a′1M1,0 + cM0,2 +KcM2,0

)
M0,2 = 1

D0,2

(
a′2M0,1 + 2KcM1,1

)
,

that M20 > M11 > M02, which ensures that

(K − 1)M11 +M02 < (K − 1)M11 +M11 = KM11 < KM20

and, as a consequence, that the second term is always positive. This contradicts our
hypothesis.

13We omit the details since this method of calculating the mixed moments at stationarity recursively
will be thoroughly explained in Chapter 6.
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4 Boundary behavior

In this chapter, we investigate the boundary behavior of the seed bank and the two
island diffusion.
Just like there seems to be no explicit characterization of the stationary distribution
for the diffusion models introduced in Chapter 1, a full boundary classification was
still lacking. In this case, the standard Feller approach via speed measure and scale
function (see Chapter 2) breaks down, since the two island model leads to a two-
dimensional diffusion.
First, we give two straightforward results. The first one concerns the presence of
atoms at the boundaries in the stationary distribution, ensuring there are none. The
second one gives us a partial boundary classification by means of comparisons with
stochastic processes where one coordinate is defined as constant.
Then, we move on towards our main result, which gives a full classification of all
boundaries. It can be proved in two possible ways: one, using a technique called McK-
ean’s argument, which is based on the martingale convergence theorem on stochas-
tic intervals and is suitable also in multi-dimensional settings. Two, adapting Lya-
punov’s argument, which uses the infinitesimal generator of a stochastic process to
infer whether it can reach the boundary in finite time, to our case, where we have
a compact state space. Either of these two arguments gives a necessary condition
for any boundary not being reached in finite time almost surely. The corresponding
sufficient condition, which completes our analysis of both models, is proved using a
result from the theory of polynomial diffusions which we already stated in Chapter 2.
This chapter is based on [K1] (Subchapters 1-3).

4.1 Atoms on the boundaries

We begin the observation that in the presence of mutation the marginals of the sta-
tionary distribution µ of the general diffusion (2) have no atoms at the boundaries,
extending the analogous observations made for the two-island model in [KZH08] with
use of the same argument.

Proposition 4.1. Let (X(t), Y (t))t≥0 be the solution to (2). Assume

u1u2u
′
1u
′
2 > 0

and recall that µ denotes the unique invariant distribution of (X(t), Y (t))t≥0. Then,
for any t > 0, we have

Pµ {X(t) ∈ {0, 1}} = Pµ {Y (t) ∈ {0, 1}} = 0.

Proof. For convenience, we only prove the statement for the seed bank diffusion with
u1 = u′1 and u2 = u′2; the generic proof is almost the same. Notice that, by construc-
tion of µ (see (10)) and since it is the invariant measure of (X(t), Y (t))t≥0

Mn,m = Eµ[Xn(t)Y m(t)]
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for any t ≥ 0. Recall the recursion from Lemma 3.7 for m = 0:

Mn,0 =
1

Dn,0
(anMn−1,0 + cnMn−1,1) ≤Mn−1,0

an + cn

Dn,0
,

since Mn,m+1 ≤Mn,m for any n,m ∈ N0. Iterating this observation yields

Mn,0 ≤M0,0︸︷︷︸
=1

n∏
k=1

ak + ck

Dk,0
=

n∏
k=1

α2
(
k
2

)
+ ku2 + ck

α2
(
k
2

)
+ (u2 + u1)k + ck

.

Since we assumed in particular that u1 > 0, one can check that Mn,0 → 0 for n→∞
which in turn implies

Pµ {X(t) = 1} = 0.

The other three cases are analogous.

4.2 Results via comparison

Differences between the seed bank diffusion and the two island model become imme-
diately visible with respect to accessibility of boundary points and absorption in finite
time. This correspondence remains in the following, more detailed description of the
boundary behavior of the seed bank diffusion as in (1). With the help of the defini-
tions from Chapter 2.2, we can state the next result, giving an incomplete boundary
classification:

Proposition 4.2.
In the seed bank diffusion model (1):
a) If u2 >

1
2 , then X will never hit 0 started from the interior. If u2 + c < 1

2 , the
boundary 0 is accessible for X.
b) If u1 >

1
2 , then X will never hit 1 started from the interior. If u1 + c < 1

2 , the
boundary 1 is accessible for X.
c) Y will never hit 1 and 0 from the interior.

The intermediate case remains - for now - open.

Proof. a)-b) Let us consider the system of SDE’s

dX1(t) =
[
− u1X1(t) + u2(1−X1(t)) + c(X2(t)−X1(t))

]
dt

+
√
X1(t)(1−X1(t))dW (t),

X2(t) ≡ 0. (16)

with (X1(0), X2(0)) = (X(0), Y (0)). Then we have (obviously) that X2(t) ≤ Y (t) for
all t ≥ 0 and, applying the Ikeda-Watanabe Theorem (Theorem 43 in [RW00]) on the
first SDE and using the fact that, according to the Yamada-Watanabe theorem our
SDE admits a unique strong solution (so that we can use the same noise), we get that
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X1 ≤ X a.s.
But we can also write the first SDE as

dX1(t) =
[
− (u1 + c)X1(t) + u2(1−X1(t))

]
dt+

√
X1(t)(1−X1(t))dW (t),

and this is the SDE linked to the Wright-Fisher diffusion with mutation (and param-
eters u1 + c and u2). Therefore, if the boundary {0} is not accessible for X1, the same
holds for X. In Chapter 2, we found out that the lower boundary is not accessible if
u2 >

1
2 . Moreover, we can say that if the boundary {0} is accessible for X1, then it is

accessible for X as well; this happens when u1 + c < 1
2 .

To find a similar result for the boundary {1}, the proof works in the same way; consider
the system of SDEs

dY1(t) =
[
− u1Y1(t) + u2(1− Y1(t)) + c(Y2(t)− Y1(t))

]
dt

+
√
Y1(t)(1− Y1(t))dW (t),

Y2(t) ≡ 1. (17)

Then the same machinery works (obviously with inverted inequalities) and the first
SDE can be written as

dY1(t) =
[
− u1Y1(t) + (u2 + c)(1− Y1(t))

]
dt+

√
Y1(t)(1− Y1(t))dW (t),

which is the SDE linked to the Wright-Fisher diffusion with mutation (and parameters
u1 and u2 + c). Therefore, if the boundary {1} is not accessible for Y1, the same holds
for X; this is the case when u1 >

1
2 . As in the previous case, from the analysis of this

SDE we conclude also that the boundary {1} is accessible if u2 + c < 1
2 .

c) The system of SDEs which has to be considered in this case is

dZ2(t) =
[
− u′1Z2(t) + u′2(1− Z2(t)) +Kc(Z1(t)− Z2(t))

]
dt

Z1(t) ≡ 0. (18)

The first one can be written as

dZ2(t) =
[
− (u′1 +Kc)Z2(t) + u′2(1− Z2(t))

]
dt.

The stationary distribution of this ODE is simply a Dirac delta in its mean, which is
equal to

u′2
u′1 + u′2 +Kc

.

Therefore, for every (non-zero) choice of parameters, by comparison we find out that
the boundary {0} is not accessible for Y. If, on the other side, Z1(t) ≡ 1, the first SDE
becomes

dZ2(t) =
[
− u′1Z2(t) + (u′2 +Kc)(1− Z2(t))

]
dt,

and all the previous considerations hold again, the mean being now equal to

u′2 +Kc

u′1 + u′2 +Kc
.
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4.3 Main Results

The previous subchapter illustrates that actually, each of the parameters u1, u2, u
′
1, u
′
2

is responsible for the value of exactly one of the probabilities in Proposition 4.1. We
will see that this principle still holds true for the main result. We will use the notation
introduced in the statement of Theorem 2.7.

Theorem 4.3. Let (X(t), Y (t))t≥0 be the solution to (2) with u1, u2, u
′
1, u
′
2, α, α

′ ≥ 0,
c, c′ > 0. Moreover, assume that for the starting distribution µ0,

Pµ0
{

(X(0), Y (0)) ∈ (0, 1)2
}

= 1.

Then,

(i) X will never hit 0 started from the interior if and only if 2u2 ≥ α2.

(ii) X will never hit 1 started from the interior if and only if 2u1 ≥ α2.

(iii) Y will never hit 0 started from the interior if and only if 2u′2 ≥ (α′)2.

(iv) Y will never hit 1 started from the interior if and only if 2u′1 ≥ (α′)2.

Remark 4.4 (Strategy of the proof). We will actually prove a slightly stronger state-
ment for the ‘only if’ direction. We state the true statement for the case of (i):

Let 2u2 < α2. Then, for any s > 0 there exists an ε > 0 such that

P {‖(X(0), Y (0))− (0, 0)‖ < ε} = 1 ⇒ P
{
τX0 ≤ s

}
> 0,

where τX0 is equal to the first hitting time in {0}× [0, 1] and as such a “τXB ” as defined
at the beginning of Subchapter 2.2.

One direction of this result can be obtained by viewing our diffusion in the con-
text of polynomial diffusions, which we introduced in Chapter 2.3, and using the
result shown there. The other direction will be proved with the help of the McKean
argument, which we have shown in subchapter 2.2.

Proof of Theorem 4.3. and begin with a short observation helpful for both parts of
the proof.

Take p ∈ P := {(x, y) 7→ x, (x, y) 7→ 1− x, (x, y) 7→ y, (x, y) 7→ 1− y}. Define

τp := inf{t ≥ 0 | p(X(t), Y (t)) = 0}.

Note that each of the τp is a τXB as well, hence, we want to prove that Pµ0 {τp <∞}
is either zero or strictly positive, depending on the parameters.
Let p0(x, y) := x ∈ P . For hp0(x, y) := (α2(1− x), 0)T we have

a∇p0(x, y) =

(
α2x(1− x) 0

0 (α′)2y(1− y)

)(
1
0

)
= x

(
α2(1− x)

0

)
= p0(x, y)hp0(x, y).
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Similarly, let p1(x, y) := 1− x ∈ P . For hp1(x, y) := (−α2x, 0)T we have

a∇p1(x, y) =

(
α2x(1− x) 0

0 (α′)2y(1− y)

)(
−1
0

)
= (1− x)

(
−α2x

0

)
= p1(x, y)hp1(x, y).

Part 1: We begin proving the ‘only if’ statements, as they rely on Theorem 2.7. Let
z̄ := (0, 0) ∈ {p0 = 0}. Then

A(1)p0(z̄) = u2 ≥ 0

and

2A(1)p0(z̄)− hp0(z̄)T∇p0(z̄) = 2u2 − α2 < 0

where the latter holds if and only if 2u2 < α2. Hence the ‘only if’ in (i) follows by
Theorem 2.7.

In the same way, let z̄ := (1, 1) ∈ {p1 = 0}. Then

A(1)p(z̄) = u1 ≥ 0

and

2A(1)p(z̄)− hp(z̄)T∇p(z̄) = 2u1 − α2 < 0

and again, the latter holds if and only if 2u1 < α2. Therefore, the ‘only if’ in (ii)
follows from Theorem 2.7 as well.

The analogous statements in (iii) and (iv) hold by symmetry.

Part 2: We now turn to the proof of the ‘if’ statements, which is more involved
and uses a type of McKean’s argument as in [MPS11], Section 4.1, as it follows closely
the proof of Proposition 2.2 in [LP17].
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Itō’s formula applied to the function r(x) := log(p(x)) gives us for any t < τp:

log p(X(t), Y (t)) = log p(X(0), Y (0))

+

∫ t

0
∂1(log(p(X(s), Y (s)))dX(s) +

∫ t

0
∂2(log(p(X(s), Y (s)))dY (s)

+
1

2

∫ t

0
∂2

1(log(p(X(s), Y (s)))d[X](s) +

∫ t

0
∂1∂2(log(p(X(s), Y (s)))d[X,Y ](s)

+
1

2

∫ t

0
∂2

2(log(p(X(s), Y (s)))d[Y ](s)

= log p(X(0), Y (0)) +

∫ t

0

∂1p(X(s), Y (s))

p(X(s), Y (s))
dX(s) +

∫ t

0

∂2p(X(s), Y (s))

p(X(s), Y (s))
dY (s)

+
1

2

∫ t

0

∂2
1p(X(s), Y (s))− (∂1p(X(s), Y (s)))2

(p(X(s), Y (s))2
d[X](s)

+
1

2

∫ t

0

∂2
2p(X(s), Y (s))− (∂2p(X(s), Y (s)))2

(p(X(s), Y (s))2
d[Y ](s)

+
1

2

∫ t

0

∂1∂2p(X(s), Y (s)) · p(X(s), Y (s))

(p(X(s), Y (s))2
d[X,Y ](s)

− 1

2

∫ t

0

∂1p(X(s), Y (s))∂2p(X(s), Y (s))

(p(X(s), Y (s))2
d[X,Y ](s).

Now, we can plug in dX(s) and dY (s) from the SDE’s (1). Moreover, for a multi-
dimensional diffusion, the equation d[X](t) = σ2(t)dt ([KS98], Proposition 3.2.17)
holds, which in our case translates to(

d[X](t) d[X,Y ](t)
d[X,Y ](t) d[Y ](t)

)
=

(
α2X(t)(1−X(t)) 0

0 α′2Y (t)(1− Y (t))

)
dt.

So, we get

log p(X(t), Y (t)) = log p(X(0), Y (0))

+

∫ t

0

∂1p(X(s), Y (s))(−u1X(s) + u2(1−X(s)) + c(Y (s)−X(s)))

p(X(s), Y (s))
ds

+

∫ t

0

∂1p(X(s), Y (s))(α2X(s)(1−X(s)))

p(X(s), Y (s))
dW1(s)

+

∫ t

0

∂2p(X(s), Y (s))(−u′1Y (s) + u′2(1− Y (s)) +Kc(X(s)− Y (s)))

p(X(s), Y (s))
ds

+

∫ t

0

∂2p(X(s), Y (s))(α′2Y (s)(1− Y (s)))

p(X(s), Y (s))
dW2(s)

+
1

2

∫ t

0

∂2
1p(X(s), Y (s))(α2X(s)(1−X(s)))

(p(X(s), Y (s)))2
ds
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− 1

2

∫ t

0

(∂1p(X(s), Y (s))2(α2X(s)(1−X(s)))

(p(X(s), Y (s)))2
ds

+
1

2

∫ t

0

∂2
2p(X(s), Y (s))(α′2Y (s)(1− Y (s)))

(p(X(s), Y (s)))2
ds

− 1

2

∫ t

0

(∂2p(X(s), Y (s))2(α′2Y (s)(1− Y (s)))

(p(X(s), Y (s)))2
ds

We can see that the sum of the even-numbered lines yields∫ t

0

A(1)p(X(s), Y (s)

p(X(s), Y (s))
ds, 14

where A(1) is the generator of the seed bank diffusion, by its definition.
Moreover, we can see that

(∂1p(X(s), Y (s))2(α2X(s)(1−X(s))) + (∂2p(X(s), Y (s))2(α′
2
Y (s)(1− Y (s))) =(

∂1p(X(s), Y (s)), ∂2p(X(s), Y (s))
)(α2X(s)(1−X(s)) 0

0 α′2Y (s)(1− Y (s))

)
×

×
(
∂1p(X(s), Y (s))
∂2p(X(s), Y (s))

)
= ∇pTa∇p

and

∂1p(X(s), Y (s)α2X(s)(1−X(s))dW (s) + ∂2p(X(s), Y (s)α′
2
Y (s)(1− Y (s))dW ′(s) =(

∂1p(X(s), Y (s)), ∂2p(X(s), Y (s))
)(α2X(s)(1−X(s)) 0

0 α′2Y (s)(1− Y (s))

)
×

×
(
dW (s)
dW ′(s)

)
= ∇pTσ2dW2(s),

where W2(s) is a 2-dimensional standard Brownian motion. In the end, this gives us

log p(X(t), Y (t)) = log p(X(0), Y (0))

+

∫ t

0

(
A(1)p(X(s), Y (s))

p(X(s), Y (s))
− 1

2

∇pTa∇p(X(s), Y (s))

p(X(s), Y (s))2

)
ds

+

∫ t

0

∇pTσ2(X(s), Y (s))

p(X(s), Y (s))
dW2(s)

and the identity a∇p = hpp yields

= log p(X(0), Y (0)) +

∫ t

0

2A(1)p(X(s), Y (s))−∇pThp(X(s), Y (s))

2p(X(s), Y (s))
ds

+

∫ t

0

∇pTσ2(X(s), Y (s))

p(X(s), Y (s))
dW2(s).

14This holds only because p is a linear function and thus its second derivative is zero.
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Suppose now, we find a constant κp > 0 such that

2A(1)p(x, y)− hTp∇p(x, y) ≥ −2κpp(x, y) for all (x, y) ∈ [0, 1]2. (19)

Then for M(t) := log p(X(t), Y (t))− log p(X(0), Y (0)) + κpt, we have

M(t) ≥M(0) +

∫ t

0

∇pTσ2(X(s), Y (s))

p(X(s), Y (s))
dW2(s).

Since the right-hand side is a stochastic integral with respect to Brownian motion and
thus a local martingale, M is a local submartingale on [0, τp); since p is a bounded
function on [0, 1]2, M is also bounded from above on bounded time intervals. For
details concerning stochastic processes on stochastic intervals see for example [Mai77].

This implies, plugging in p(x, y) = x, that

logX(t) ≥ logX(0)− κpt+

∫ t

0
α2(1−X(s))dW (s).

Exponentiating, taking the minimum between t and τp and multiplying both sides
with 1l{τp<∞} yields

1l{τp<∞}X(t ∧ τp) ≥ exp(M(t ∧ τp)− κp(t ∧ τp))1l{τp<∞}.

Assume now that P{τp <∞} > 0. For t→∞, the left-hand side will converge almost
surely to 0 by definition of τp and continuity of our process. Thus,M(t∧τp)−κp(t∧τp)
must converge to −∞ for almost every path for which τp < ∞ as t → ∞. The only
possibility for this is that M(t ∧ τp)→ −∞.

Because of this, we have that

1l{τp<∞}M(t ∧ τp)→ −∞1l{τp<∞}

almost surely for t→ τp. But since (M(t∧ τp))t≥0 is a continuous local submartingale
as well, we can conclude, using the same method as in Proposition (2.2.2), that τp =∞
a.s. Therefore, the task left to do is to find suitable constants κp.

Recall p0(x, y) = x and the assumption in (i) that 2u2 − α2 ≥ 0. Set

κ0 := u1 + u2 + c− α2

2
> 0

(since c > 0) and observe that then

2A(1)p0(x, y)− hTp0
∇p0(x, y) = x(−2u1 − 2u2 − 2c+ α2) + y2c+ 2u2 − α2

≥ x(−2u1 − 2u2 − 2c+ α2) + 2u2 − α2

≥ −2κ0x = −2κp0(x, y) for all (x, y) ∈ [0, 1]2.

Hence (19) holds for p0 and since τp0 = τX0 , the proof of (i) is completed.

For (ii) we assumed 2u1 − α2 ≥ 0 and will use p1(x, y) = 1− x. Set

κ1 := u2 + c > 0,
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since then

2A(1)p1(x, y)− hTp1
∇p1(x, y) = x(2u1 + 2u2 + 2c− α2)− y2c− 2u2

≥ x(2u1 + 2u2 + 2c− α2)− 2c− 2u2

≥ −2κ1(1− x) = −2κ1p1(x, y) for all (x, y) ∈ [0, 1]2.

Again, (19) holds for p1 and the equality τp1 = τX1 completes the proof of (ii).

As before, the remaining statements follow by symmetry.

Remark 4.5. To prove that the first hitting time at the boundary is a.s. infinite given
the condition (19) we could also have used the submartingale convergence theorem in
[LR14] (Theorem 4.14), which says:

Proposition 4.6. Let τ̄ > 0 be a stopping time such that a non-decreasing sequence
of stopping times (τn) with τn < τ̄ for all n, a.s. on {τ̄ > 0} and τn → τ̄ almost
surely, exists. Let N be a local supermartingale on [0, τ̄) starting at 0 for which

sup
n
E[N−τn ] <∞.

Then, limt→τ̄ N(t) exists in R almost surely.15

We can use this theorem with τn := inf{t ≥ 0 : p(X(t), Y (t)) ≤ 1
n} ∧ s, τ̄= τp ∧ s

and N(t) = −M(s ∧ t) for any deterministic s > 0. Then:
• (τn) is a non-decreasing sequence of stopping times, converging almost surely to τ̄
because of the continuity of p,X and Y ;
• N is a stopped local supermartingale (starting at 0), and therefore a local super-
martingale too;
• N is bounded from below sinceM is bounded from above on bounded time intervals
([0, s] in this case).

Then, the assumption implies that limt→τpM(s ∧ t)) and hence also
limt→τp log p(X(s ∧ t), Y (s ∧ t)) exists in R almost surely. However, if it is possible
that s ≥ τp with positive probability, this would mean limt→τp log p(X(t), Y (t)) exists
and is finite, too, which contradicts the definition of τp and M (since p(X(t), Y (t))
can’t be bounded from below on a neighborhood of τp). So we get that s < τp Pµ0-a.s.
for any s ∈ R yielding τp =∞ as desired.

Remark 4.7. One could generalize the result to boundaries of more complex-shaped
sets. We just have to find a fitting bounded, non-negative function p whose zeros are
the set we want to know whether we can reach in finite time.

4.4 Lyapunov argument: applications

Another method for analyzing the boundary behavior of a diffusion is based on Lya-
punov inequalities for the infinitesimal generator (see Chapter 2). Now, let us see how
this algorithm is concretely implemented, starting with a well-known case.

15The main problem with this approach is that the main reference is not peer-reviewed. The proof
however seems correct; the main idea is to use supermartingale convergence, with a similar statement
being given in [CFR14].
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4.4.1 Example I: seed bank diffusion

In the standard seed bank diffusion [1], the (two-dimensional) generator is

A(1)(f)(x1, x2) = (−u1x1 + u2(1− x1) + c(x2 − x1))
∂f

∂x1

+(−u′1x2 + u′2(1− x2) +Kc(x1 − x2))
∂f

∂x2
+
x1(1− x1)

2

∂2f

∂x1
2
.

We take the boundary {0} × [0, 1], which leads to On = ( 1
n , 1)× (0, 1); moreover,

we use logarithmic functions here as well by choosing V (x1, x2) := − log x1. Then,
calculating,

A(1)(V )(x1, x2) = u1 + u2 + c− 1

2
−
u2 + cx2 − 1

2

x1
≤ D +

u2 − 1
2

x1

for some constant D ≥ 0, and the non-explosivity condition holds if

u2 − 1
2

x1
≥ C log x1

for every x1 ∈ (0, 1) and for some constant C ≥ 0, which is the case if and only if
u2 ≥ 1/2, the same threshold we obtain by using the McKean argument. The same
result holds for the two-island model. Notice, however, that the absence of random
genetic drift in the second component reflects itself in the fact that with respect to the
boundaries [0, 1]×{0} and [0, 1]×{1}, the seed bank diffusion is always non-explosive,
as one can easily calculate in a similar way.

4.4.2 Example II: Wright-Fisher with nonstandard diffusion term

We can also analyze a case which is similar to the one-dimensional Wright-Fisher
diffusion, but where the random genetic drift term has an additional parameter p in
the exponent in the form

dX(t) = (X(t)(1−X(t)))
1
2

+pdW (t) + (−u1X(t) + u2(1−X(t)))dt.

We assume that p ∈ (0, 1
2 ], that is, the diffusion term is smaller than in the classical

Wright-Fisher process. This reflects itself in the generator

A(f)(x) = (−u1x+ u2(1− x))
∂f

∂x
+

(x(1− x))1+2p

2

∂2f

∂x2
.

We can prove then that the process is non-explosive by choosing the norm-like function
(see Subchapter 2.2.3) V : x→ 1

x :

A(V )(x) = −(−u1x+ u2(1− x))
1

x2
+ (x(1− x))2p+1 1

x3
,

and the non-explosivity condition is satisfied if (D = 0)

−(−u1x+ u2(1− x))
1

x
+

(x(1− x))2p+1

x2
≤ C ⇐ x2p − u2

x
≤ C,

which holds for any p, u2 > 0 and for C big enough.
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Remark 4.8. In particular, the above holds for the case p = 1/2, which is strongly
reminiscent of the Wright-Fisher diffusion with selection in fluctuating environment.
For more literature, see ([BEK18]).

4.4.3 Example III: multi-allele diffusion

Another example of interest is the multi-allele diffusion, as discussed by Etheridge
in ([Eth11], Lemma 4.1). Imagine we have one gene with N possible alleles in a
homogeneous population. Then, the (multi-dimensional) generator of the (N − 1)-
dimensional diffusion process is given by

A(f)(x1, . . . , xN−1) =

N−1∑
i=1

xi(1− xi)
2

∂2f

∂x2
i

−
∑
i<j

xixj
∂2f

∂xi∂xj

+
N−1∑
i=1

(
− xi

N∑
j=1

mij +
N−1∑
j=1

xjmji + (1−
N−1∑
k=1

xk)mNi

) ∂f
∂xi

,

with the process living on the simplex SN−1 := {(x1, . . . xN−1) ∈ [0, 1] :
∑
xi ∈ [0, 1]}

and mij denoting the mutation rate from allele i to allele j.
Here, we can consider two types of boundaries. The boundary we will take into
consideration first is {0} × SN−2 (i.e., this boundary is reached if the first allele
becomes temporarily extinct). Analogously to example I, we choose as limiting sets
On = {x ∈ SN−1 : x1 <

1
n}, and V (x1, . . . , xn) := − log x1 as the norm-like function.

Then,

A(V )(x1, . . . , xN−1) =
1− x1

2x1
−
(
− x1

∑
m1j +

N−1∑
j=2

xjmj1 + (1−
N−1∑
j=1

xj)mk1

) 1

x1
.

Summing up all constants into an unique constant D, we get

A(V )(x1, . . . , xN−1) = D +
1

x1

(1

2
−
N−1∑
j=2

xjmj1 − (1−
N−1∑
j=1

xj)mk1

)
Defining M := mini{mi1}, we get

A(V )(x1, . . . , xN−1) ≤ D +
1

x1

(1

2
−
N−1∑
j=2

xjM − (1−
N−1∑
j=2

xj)M
)

= D +
1

x1

(1

2
− (1− x1)M

)
= D′ +

1

x1

(1

2
−M

)
,

having changed the constant accordingly. Thus, the process does not hit the boundary
if M ≥ 1/2. This is both consistent with the two-allele case and reasonable, since the
drift due to mutation must be strong enough to tackle the random genetic drift, no
matter which point of the boundary the process is pushed towards (“a chain is just as
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strong as its weakest link”).
The second question we pose ourselves regards the absorption at any vertex of the
simplex, e.g. (0, 0, . . . , 0), which is equivalent to temporary fixation of an allele. In
this case, the norm-like function we choose is V (x) = − log

∑
xi, so that

A(V )(x1, . . . , xN−1)

=
1

2(
∑
xi)2

∑
i

xi(1− xi) +
1

(
∑
xi)2

∑
i<j

xixj −
1∑
xi

k∑
i=1

(−xi
∑
j

mij +
∑
j

xjmji).

The second and third terms are clearly bounded, so the critical condition is whether

1

2(
∑
xi)2

∑
i

xi(1− xi)−
1∑
xi

k∑
i=1

∑
j

xjmji

is bounded from above. We can write the term as

1

2(
∑
xi)2

∑
i

xi(1− xi)−
1∑
xi

k∑
i=1

k−1∑
j=1

xjmji −
1∑
xi

k∑
i=1

(1−
k−1∑
j=1

xj)mki,

and the second and fourth terms are again bounded, so the critical condition is whether

1

2(
∑
xi)2

∑
i

xi(1− xi)−
1∑
xi

k∑
i=1

mki ≤
1∑
xi

(1

2
−
∑

mki

)
is bounded from above, which holds if

∑
jmkj ≥ 1/2. This condition makes sense

since it is weaker than mkj ≥ 1/2 for every j - the condition which guarantees that
none of the boundaries containing the critical point are reached.

Of course, what is useful to show now is that the bounds we got with the Lyapunov
argument are strict. In order to prove this, we proceed in the same way as in the seed
bank example, i.e. by using polynomial diffusions. Taking

a(x1, . . . , xn) =


x1(1− x1) −x1x2 −x1x3 . . . −x1xn
−x1x2 x2(1− x2) −x2x3 . . . −x2xn
. . . . . . . . . . . . . . .
−x1xn −x2xn −x3xn . . . xn(1− xn)

 ,

we get that all entries of a are polynomials of degree 2 and that for the generator A

A(f)(x) :=
1

2
Tr(a∇2f) + bT∇f

for some vector of linear terms b, making the multi-allele diffusion process a polynomial
diffusion as well. Therefore, we just need to check the two conditions

Ap0(z̄) ≥ 0

and

2Ap0(z̄)− hp0(z̄)T∇p0(z̄) < 0,
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where p0 is a polynomial that is zero on the critical boundary and z̄ is any point on the
boundary itself. The first choices that come to mind are, for the first case (temporary
extinction),

p0(x1, . . . xn) = x1 and z̄ ∈ {(0, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 0, 1)};

for the second case (temporary fixation),

p0(x1, . . . xn) = x1 + x2 · · ·+ xn and z̄ = (0, 0, . . . , 0).

Let us start with the first case. Here,

a∇p0(x1, . . . xn) = (x1(1− x1),−x1x2,−x1x3, · · · − x1xn)T

= x1(1− x1,−x2, · · · − xn)T = p0hp0 .

Moreover,

A(p0)(z̄) = (−x1

n∑
j=1

m1j +

n−1∑
j=1

xjmj1 + (1−
n−1∑
k=1

xk)mn1(z̄),

which is equal to mn1 in the case z̄ = 0 and mk1 in the case z̄ = δk. Both are
non-negative, and in addition

hp0(z̄)T∇p0(z̄) = 1

for both choices of z̄, which yields as sufficient condition for reaching the boundary
with positive probability mk1 < 1/2 for any k ∈ {2, 3, . . . , n}. This result is exactly
the complement of what we computed using the Lyapunov argument.
In the second case,

a∇p0(x1, . . . xn)

=
(
x1(1− x1)− x1

∑
j 6=1

xj , x2(1− x2)− x2

∑
j 6=2

xj , . . . xn(1− xn)− xn
∑
j 6=n

xj

)T
,

and therefore
hp0 =

( x1∑
xi
− x1, . . . ,

xn∑
xi
− xn

)T
,

giving us
2A(p0)(z̄)− (hTp0

∇p0)(z̄) = 2
∑
i

mni − 1.

Therefore, the corner point (0, 0, . . . 0) will be reached in finite time with positive
probability if

∑
imni < 1/2, which again gives us a complementary result to the one

obtained with the Lyapunov argument. Thus, both boundary questions have been
answered in all cases.
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4.4.4 Example IV: branching processes

The last example concerns branching processes, as defined in [Wat69], Section 3. A
two-dimensional branching process with interaction is given by its generator, acting
on functions f ∈ C2([0,∞)2),

A(f)(x1, x2) = α2x1
∂2f

∂x2
1

+ β2x2
∂2f

∂x2
2

+ (ax1 + bx2)
∂f

∂x1
+ (cx1 + dx2)

∂f

∂x2
.

In the case where b = c = 0, this is the two-dimensional process introduced by Feller
in [Fel51] (Section 6) to describe a population with two competing alleles and no fixed
size (unlike e.g. the Wright-Fisher process), where the author remarks that the gene
frequency is not even a Markov process.
Here, the question we want to pose ourselves is whether the process will reach ∞ in
finite time (thus, a proper “explosion”), not 0. For this aim, we define On = [0, n)2

and V (x1, x2) := log(x1 + x2 + 1), yielding the result

A(V )(x1, x2) = − α2x1

(x1 + x2 + 1)2
− β2x2

(x1 + x2 + 1)2
+

(a+ c)x1 + (b+ d)x2

x1 + x2 + 1
.

But since all the terms are clearly bounded for x1 + x2 → ∞, the non-explosivity
criterion holds.

4.5 Discussion

In this chapter, we have completely solved our questions regarding the boundary
behavior problem by finding a necessary and sufficient condition. One inequality
could be proved using the polynomial diffusion method from Chapter 2.3, while the
other could be shown both with the McKean argument and the Lyapunov argument.
Since the first one works with the SDE representation and the second one with the
infinitesimal generator, both could be useful throughout future work. Overall, the
Lyapunov argument makes for smoother proofs and could therefore be preferred when
both methods are applicable.

Moreover, a generalization of the Lyapunov argument can be found in [SV07],
where a time component is added to the norm-like function. Using this trick, it is
possible to find a condition for the process to hit the boundary [Theorem 10.2.1]. The
case where the norm-like function is independent from time simply reduces to the
Lyapunov argument. Another important publication, giving a sort of a generalization
of the McKean argument, is given in [Ruf15], where a local martingale Z, taking
the place of the local martingale M we constructed throughout the proof, is given.
The main result is obtained applying Girsanov’s Theorem to the Radon-Nikodym
derivative of Z. For further information, we refer to the mentioned publication.
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5 Scaling Limits

5.1 Introduction

It has been reported that in various bacterial species, single individuals may stay
inactive for extremely long periods of time, several orders of magnitude longer than
the reproductive time ([LJ11], [ADLM99]). Further, it can be expected that in such
a scenario, one observes non-classical behavior of the genealogy over long time-scales
(e.g., ‘extinct’ types may be reintroduced after long time periods, though this should
happen rarely). These considerations motivate the investigation of the behavior of
the above system when migration between active and dormant states (rate c) and
reproduction (rate 1) happen on different time-scales.

A stochastic process with this characteristic is usually found as a so-called scaling
limit, i.e. by investigating convergence of Markov processes where both time and a
certain variable are rescaled fittingly.
In particular, scaling diffusion limits of certain processes, which are obtained by letting
the population size go to infinity and speeding up time accordingly, appear frequently
in population genetics (see [BGKWB16], [Eth11], [KZH08], [Möh98] for results related
to the context). However, in many of those cases the authors are concerned with the
limit of a sequence of discrete-time Markov chains, while the aim of this chapter is to
find the scaling limits of the continuous-time diffusion processes introduced in Chapter
1 for c → 0, c → ∞,K → 0,K → ∞, and α′ → 0. Interestingly, we will see that the
limit can be a jump diffusion. In this case, many classical results fail; instead, we refer
to a duality argument to establish convergence in finite-dimensional distributions.

To be more specific, our approach in order to obtain the scaling limit of the
seed bank diffusion processes (1) will be as follows. First, we take a sequence of
dual (block-counting) processes (as in Definition 1.6), which, as we already saw, are
continuous-time Markov chains, for c → 0 and time sped up accordingly. Then, we
will transform them to discrete-time Markov chains via a time-discretization and use
a theorem ([Möh98], Thm 1) giving convergence towards a time-continuous limiting
process. Then, we will show that this limiting process is also the limit of the original
(continuous-time) sequence, closing the proof of the convergence result for the dual
processes. Finally, we will show again, using a duality argument, that the diffusion
processes converge towards a two-dimensional Markov process with jumps in one co-
ordinate. Since the limit exhibits jumps (while the original diffusion processes, by
definition, have none), we cannot get any limits on the path space in the Skorohod
sense (at least respectively to the topologies J1 and J2), but only limits in finite-
dimensional distributions.
The chapter is organized as follows: after introducing the methods used, we derive
some scaling limits of the seed bank diffusion on different time-scales. The central
point will be defining a new ancestral process describing the genealogy in a ‘rare-
resuscitation’ regime and proving that this exact process is the scaling limit for c→ 0
and time sped up accordingly. This process is the result of a separation of time-scales
phenomenon, and we discuss the corresponding convergence result in detail.
This chapter is based on [K2].
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5.2 The ancient ancestral lines process as scaling limit

5.2.1 Intuition

When computing the scaling limit of the diffusion 1 for c → 0, it is easy to see
that interesting limits can only be expected when switching to a faster time-scale.
Indeed, if one just lets c → 0, then one obtains the trivial (and uninteresting) limit
where the active population is completely separate from the dormant population and
simply follows a classical Wright-Fisher diffusion. Hence we speed up time by a factor
1/c, as c → 0, and transition to the new time-scale, where now migration between
states happens at rate 1 while reproduction happens ‘instantaneously’. While such a
separation of time-scales can be expected to lead to an interesting process, the naïve
scaling limit

dX(t) = (Y (t)−X(t))dt+ “∞”
√
X(t)(1−X(t))dW (t),

dY (t) = K(X(t)− Y (t))dt, (20)

of course does not make sense (observe the “∞”) in front of the diffusion coefficient
due to speeding up time).

Intuitively, fast reproduction should drive the process immediately towards the
boundaries, and only rarely should one switch from 0 to 1 or vice versa due to immi-
gration. Yet, it is not completely obvious how to make this idea rigorous. Fortunately,
we can use duality here. We have seen in Chapter 1 that the moment dual of the seed
bank diffusion without mutation is defined as the continuous-time Markov chain with
values in E = N0 × N0 characterized by the rates N̄(n,m),(n̄,m̄) given by:

N̄(n,m),(n̄,m̄) =


(
n
2

)
if (n̄, m̄) = (n− 1,m),

cn if (n̄, m̄) = (n− 1,m+ 1),

cKm if (n̄, m̄) = (n+ 1,m− 1),

(21)

(with the convention
(

1
m

)
=
(

0
m

)
= 0 for all m), when (n̄, m̄), (n,m) ∈ N0 × N0 and

zero otherwise off the diagonal.

In Subchapter 2.1, we saw that this continuous Markov chain process satisfies the
moment duality

E(x,y)

[
X(t)nY (t)m

]
= E(n,m)

[
xN(t)yM(t)

]
(22)

for every t > 0, for every (x, y) ∈ [0, 1] and for every n,m ∈ N0.

In other words, the distribution of the seed bank diffusion at any time t is uniquely
determined by the moment dual at said time. It is thus a natural idea to investigate
the scaling limit of the moment dual under the same scaling assumption, which is
potentially easier to get than the one for the original diffusion, and hope to obtain a
well-defined limit which still provides information about the scaling limit of the original
diffusion. Still, we encounter technical challenges since the limiting objects might not
have standard semi-groups. Indeed, when speeding up time in the continuous-time
Markov chain, some transition rates diverge to ∞, thus obstructing direct Q-matrix
computations and producing states that are vacated immediately. This phenomenon
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Active lines

Dormant lines

Past Future

Figure 4: For minuscule migration rate c, coalescent events occur rapidly in compari-
son to migration events as depicted above. As a result, passing to the limit on a scale
that normalizes the migration rates, means coalescence events occur instantaneously
and any randomness lies in the migration events.

is frequently observed when dealing with “separation-of-time-scales phenomena”(cf. for
example [Wak09, Chapter 6]) and can in the best case scenario still lead to a scaling
limit with “degenerate” (non-standard) transition semigroup of the form

PeGt, t ≥ 0,

where P is a projection to a subspace of the original state space as a result of “imme-
diately vacated states” and G a “classical” conservative Q-matrix. For discrete-time
Markov chains, this situation was considered e.g. in [Möh98] and also [BBE13]; see
further [MN16]. Since this might be of general interest, we give, a detailed “recipe”
for such proofs for continuous-time Markov chains in Chapter 5.3.

Subsequently, we apply this strategy to our model in Chapter 5.4 and obtain the
following results: Recall that we are interested in the (very) long term effect of a seed
bank in which individuals change their state rarely. Heuristically, this means that the
switch between active and inactive takes a long time to happen as depicted in Figure 4.
In this setting, the time that any pair of active lines needs to find a common ancestor
becomes negligible compared with the time that an ancestral line takes to change its
state. The consequence of this is that, in the scaling limit, two active ancestral lines
coalesce instantaneously while each line changes of state after a random time of order
one, as described by the ancient ancestral lines process :

5.2.2 Definitions

Definition 5.1. [The ancient ancestral lines process] Let (n0,m0) ∈ N0 × N0. The
ancient ancestral lines process is the continuous-time Markov chain (Ñ(t), M̃(t))t≥0
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with initial value (Ñ(0), M̃(0)) = (n0,m0), taking values in the state space

E(n0,m0) := {0, . . . , n0 +m0}2,

with transition matrix

Π(t) := PetG, t > 0

and Π(0) is the identity on E. Here, P is a projection given by

P(n,m),(n̄,m̄) :=


1, if n̄ = 1, n ≥ 1, m̄ = m,

1, if n̄ = n = 0, m̄ = m,

0, otherwise,
(23)

for all sensible (n,m), (n̄, m̄) ∈ E(n0.m0) and G is a matrix of the form

G(n,m),(n̄,m̄) :=



Km, if n̄ = 1, n ≥ 0, m̄ = m− 1,

1, if n̄ = 0, n ≥ 1, m̄ = m+ 1,

−1−Km, if n̄ = 1, n ≥ 1, m̄ = m,

−Km, if n̄ = n = 0, m̄ = m,

0, otherwise.

The projection acts for any t > 0, hence this process ‘immediately’ takes values in
the smaller space {0, 1}×{0, . . . ,m0 +1}. The first two rates given in the definition of
G correspond to the events of resuscitation with immediate coalescence and dormancy.
Note that G is, however, not a Q-matrix: for any n̄ ≥ 2 its negative values are off the
diagonal.

Using the techniques of Chapter 5.3, we prove that the ancient ancestral lines
process arises as the scaling limit of the block-counting process of the seed bank
coalescent.

5.2.3 Main convergence results

Theorem 5.2. Denote by (N c(t),M c(t))t≥0 the block counting process of the seed
bank coalescent as defined in Definition 1.6 with migration rate c > 0 and assume that
it starts in some (n0,m0) ∈ N× N, P-a.s.

Furthermore let (Ñ(t), M̃(t)))t≥0 be the ancient ancestral lines process from Defi-
nition 5.1 with the same initial condition. Then, for any sequence of migration rates
(cκ)κ∈N with cκ → 0 for κ→∞(

N cκ

(
1

cκ
t

)
,M cκ

(
1

cκ
t

))
t≥0

f.d.d.−−−→
(
Ñ(t), M̃(t)

)
t≥0

,

as κ→∞.
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Recall from (22) that for each fixed κ ∈ N the process (N cκ(t),M cκ(t))t≥0 is the
moment dual of the seed bank diffusion (Xcκ(t), Y cκ(t))t≥0, where again indicate the
value of the migration rate by the superscript cκ. As we will see in Chapter 5.4 this
moment duality is the key ingredient that allows to formalize the proof of convergence
of this sequence of diffusions and the existence of the limit as a Markov process, which
is not a diffusion and “essentially” has state space {0, 1}× [0, 1], as described in Figure
5.

Theorem 5.3. Let (Xc(t), Y c(t))t≥0 be the seed bank diffusion given in Definition 1.1
with migration rate c > 0. There exists a Markov process (X̃(t), Ỹ (t))t≥0 on [0, 1]2

such that for any sequence of migrations rates with cκ → 0 for κ→∞(
Xcκ

(
1

cκ
t

)
, Y cκ

(
1

cκ
t

))
t≥0

f.d.d.−−−→ (X̃(t), Ỹ (t))t≥0

as κ → ∞. Furthermore, (X̃(t), Ỹ (t))t≥0 is characterized as the moment dual of the
ancient ancestral lines process from Definition 5.1.

Much like its dual, the limit (X̃(t), Ỹ (t))t≥0 is “degenerate” in the sense that it
does not have a generator because of the discontinuity of its semi-group in t = 0.
However, as we will prove in Proposition 5.9, if started in {0, 1} × [0, 1] it coincides
in distribution with a jump-diffusion taking values in {0, 1} × [0, 1] whose generator
is given by

Ā(1)f(x, y) = y(f(1, y)− f(0, y))1l{0}(x) + (1− y)(f(0, y)− f(1, y))1l{1}(x)

+K(x− y)
∂f

∂y
(x, y).

In particular this means that the limit (X̃(t), Ỹ (t))t≥0 instantaneously jumps into the
smaller state space {0, 1} × [0, 1].

As in the case of the continuous-time Markov chains, we again state the general
result of translating the convergence through duality in Subchapter 5.4.2 and the
apply it with the ancient material scaling in Chapter 5.4.3.

Remark 5.4. Since we believe the methodology used to prove Theorems 5.2 and
5.3 can be applied in many situations, helping those interested in scaling limits of
Markov processes that experience a separation of scales, we have separated the general
methodology from the example of the ancient material scaling.

For continuous-time Markov chains, this is done in Chapter 5.3 with its key inno-
vation being Lemma 5.5.

If the processes of interest, on the other hand, are the moment duals of a se-
quence of continuous-time Markov chains, then the convergence in finite dimensional
distributions of one sequence of processes can be translated into convergence in finite
dimensional distributions for the other, propagating a separation of time-scales where
applicable. The strategy of proof is to use the commutative diagram depicted in Fig-
ure 6. This is the content of Theorem 5.6 in Chapter 5.4.2 and allows us to prove the
convergence of a family of diffusions into a non trivial, non diffusion Markov process.
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Active lines

Dormant lines

Past Future

Active linesActive linesActive linesActive linesActive lines

Figure 5: For minuscule migration rate c, most of the time, the active population will
be almost homogeneous, i.e. the frequency process of the active population will be very
close to one of its boundaries. However, the (rare) migration events of the opposite
type from the dormant population will prevent it from staying in that boundary. From
time to time, one of these migrations might lead to a change of the predominant type
in the active population. This sweep will be extremely fast (of order of the inverse
of c), and thus instantaneous in the limit. Due to the homogeneity of the active
population, the seed bank will mostly receive individuals of the type dominant in the
active population at that time and will thus evolve almost deterministically.

(Nc(  ), Mc(  ))t
c
_t

c
- (Xc(  ), Yc(  ))t

c
_ t

c
-Duality

(N(t), M(t))
~

(X(t), Y(t))
~~ ~

Duality

Figure 6: Commutative diagram summarizing the relations between the processes
considered. The moment duality of the prelimits and the limits is used to conclude
the convergence in f.d.d. on the right from the convergence of the processes on the
left.
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Once convergence of the finite dimensional distributions is established, it is natural
to wonder if it is possible to prove tightness, in order to obtain weak convergence over
the Skorohod space with the J1-topology. At first glance maybe surprisingly, it is not
hard to see that convergence in this sense cannot hold. To see this, observe that there
are jumps occurring at the events that happen instantaneously in the limit. In these
time-points the prelimiting processes visit a state outside the smaller state space of
the limit process. In the coalescent set-up, for example, if there is one active and one
dormant individual, in order to lose one block the discrete processes go from the state
(1, 1) to (2, 0) and then (1, 0) (in quick succession). On the other hand, the limiting
process goes directly from (1, 1) to (1, 0). Regardless of the time spent in the state
(2, 0) by the prelimiting processes approaching 0, this makes convergence in both the
Skorohod J1- and J2-topologies impossible. However, the set of such time-points has
Lebesgue measure equal to zero, whence convergence in the Meyer-Zheng topology
([Kur91], page 8) should hold.

5.3 Separation of time-scales phenomena for continuous-time
Markov chains - a strategy

As thoroughly motivated by the example of the ancient material scaling in the
introductory subchapter, as a first step, we consider scaling limits of continuous-
time Markov chains and extend the results for discrete-time Markov chains from
[BBE13, Möh98, MN16].

Given a sequence of continuous-time Markov chains (ξκ(t))t≥0, κ ∈ N with finite
state-space E (equipped with a metric d), we want to prove its convergence under
some time-rescaling (cκ)κ∈N to a limit (ξ(t))t≥0 for κ→∞.

The idea behind these proofs has three steps:

i) First, we consider time discretizations of the original continuous-time Markov
chains by considering the discrete-time Markov chains ηκ(i) := ξκ(i/aκ), i ∈ N0.
The non-negative sequence (aκ)κ∈N with aκ →∞, will be chosen to ensure the
distance between the discretizations and the original processes to be sufficiently
small.

ii) Secondly, we employ a generalization of Theorem 1 in [Möh98], namely Lemma
1.7 in [BBE13], to establish convergence of the discretized processes to the desired
continuous-time limit on the new time scale by speeding up the discretized
processes by bκ = aκ/cκ, that is, we establish the convergence (ηκ(bbκtc))t≥0 →
(ξ(t))t≥0 in finite dimensional distributions.

iii) Finally, we prove a continuity result to show that the original processes sped up
by the factor bκ/aκ, i.e. (ξκ(bκt/aκ))t≥0, converges to the same limit (ξ(t))t≥0

in finite dimensional distributions.

Since the strategy is not at all restricted to the specific examples we consider,
but might be of general interest, we will give the details together with the necessary
results here.
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Step i) Denote by Gκ the Q-matrix of (ξκ(t))t≥0 for each κ ∈ N. The rescaling
sequence (aκ)κ∈N needs to be chosen such that for qκ := maxe∈E

{
−Gκe,e

}
aκ →∞ and

qκ
aκ
→ 0, for κ→∞. (24)

Define the time discretizations

ηκ(i) := ξκ(i/aκ), i ∈ N0

of the original sequence of continuous-time Markov chains (ξκ(t))t≥0, κ ∈ N.
As we will see in the proof of Lemma 5.5 in Step iii), (24) will ensure the step-size

to be sufficiently fine for the probability of a jump of ξκ during one time-step of ηκ to
tend to 0.

Step ii) The next step is to apply the known convergence result for discrete-time
Markov chains from [BBE13] to the sequence ((ηκ)(i))i∈N0 , the assumptions of which
we summarize here for the reader’s convenience. Let Πκ be the transition matrix of
(ηκ(i))i∈N0 .

First, establish a suitable decomposition of Πκ: For the sequence (bκ)κ∈N with
bκ = aκ/cκ →∞ write

Πκ = Aκ +
Bκ
bκ

(25)

where Aκ is a stochastic matrix that contains only entries of order 1 and a−1
κ , and

Bκ contains only entries of order 1 and o(1). As we will see below, speeding up time
by the factor bκ leads in the limit to a separation of time-scales, where the entries in
Aκ give rise to a projection matrix P acting on the probability distributions on E,
effectively restricting the state space of the limiting continuous-time Markov chain to
a subspace of E, while the entries of Bκ yield the infinitesimal generator.

In order to prove this, first confirm that

lim
C→∞

lim
κ→∞

sup
r≥Caκ

‖(Aκ)r − P‖ = 0 (26)

for some matrix P . Here we equipped the matrices A = (A(e, ē))e,ē∈E on E with
the matrix norm ‖A‖ := maxe∈E

∑
ē∈E |A(e, ē)|. Note that given (26), the matrix P

is necessarily a projection on E, i.e. satisfies P 2 = P , as can be checked by a small
calculation. To see this, note that ||AN || ≤ 1 and consider

||P 2 − P || = ||(P − (AN )r + (AN )r)2 − P ||
≤ ||(P − (AN )r)2||+ 2||P − (AN )r|| ||(AN )r||+ ||(AN )2r − P ||

which can be made arbitrarily small by choosing r and N sufficiently large.
Secondly, require that the matrix limit with respect to the matrix norm

G := lim
κ→∞

PBκP exists. (27)

(of course, such G certainly exists if BN → B for some fixed matrix B). Since
E is assumed to be finite, convergence in matrix norm is equivalent to point-wise
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convergence. Then, by [BBE13, Lemma 1.7 and Remark 1.8], we obtain the following
convergence (with respect to the matrix norm):

lim
κ→∞

Πbtbκcκ = lim
κ→∞

(
Aκ +

Bκ
bκ

)btbκc
= PetG =: Π(t) for all t > 0. (28)

Note that since P = P 2, we have PG = GP = G and hence PetG = etGP =
P − I + etG for any t ≥ 0. In particular, (Π(t))t≥0 with Π(0) := IdE is a (non-
standard) semi-group and we denote by (ξ(t))t≥0 the continuous-time Markov chain
it generates.

If, last but not least, ηκ(0)
w−→ ξ(0), equation (28) implies

(ηκ(bbκtc))t≥0
f.d.d.−−−→ (ξ(t))t≥0, as κ→∞.

Here, f.d.d.−−−→ denotes convergence of the processes in finite dimensional distributions.

Step iii) Lastly, we prove that the conditions given in Step i) and ii) are sufficient
to also the convergence of original continuous-time Markov chains (ξκ(t))t≥0 to the
same limit (ξ(t))t≥0 on the faster time-scale bκ/aκ as well. This is summarized in the
following lemma.

Lemma 5.5. Let (ξκ(t))t≥0, κ ∈ N be a sequence of continuous-time Markov chains
with finite state space E (equipped with some metric d). Let (aκ)κ∈N and (bκ)κ∈N be
non-negative sequences such that aκ, bκ/aκ →∞.

Define the sequence of discrete-time Markov chains (ηκ(i))i∈N0 , κ ∈ N by

ηκ(i) := ξκ
(
i

aκ

)
, i ∈ N0.

Denote by Gκ the Q-matrix of (ξκ(t))t≥0 for each κ ∈ N and set
qκ := maxe∈E

{
−Gκe,e

}
. If

a) qκ
aκ
→ 0 and

b) (ηκ(bbκtc))t≥0
f.d.d.−−−→ (ξ(t))t≥0 as κ→∞, and

then also (
ξκ
(
bκ
aκ
t

))
t≥0

f.d.d.−−−→ (ξ(t))t≥0 as κ→∞.

Hence, if the conditions given in Step i) and ii) hold, then Lemma 5.5 will yield
the desired convergence.

Proof. Note that condition a) was chosen precisely such that

P
{

(ξκ(t))t≥0 has a jump in
(

0 ,
1

aκ

]}
≤ 1− exp

(
−qκ
aκ

)
→ 0, κ→∞. (29)
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Observe that for the distance between (ξκ(t))t≥0 and (ηκ(t))t≥0 at any time t ≥ 0 we
have

d

(
ξκ
(
bκt

aκ

)
, ηκ(bbκtc)

)
= d

(
ξκ
(
bκt

aκ

)
, ξκ

(
bbκtc
aκ

))
> 0

only if the process (ξκ(t))t≥0 has a jump in the interval
(
bbκtc
aκ

, bκtaκ

]
. Since its length

can be estimated through

0 ≤ bκt

aκ
− bbκtc

aκ
≤ 1

aκ

we can estimate the probability of this event with (29) and obtain

P
{
d

(
ξκ
(
bκt

aκ

)
, ηκ(bbκtc)

)
> 0

}
≤ 1− exp

(
−qκ
aκ

)
→ 0, κ→∞. (30)

In order to prove the convergence of the finite dimensional distributions, recall
that weak convergence of measures is equivalent to convergence in the Prohorov metric
(see, e.g. [Whi02], Section 3.2). Hence, assumption b) yields that for all time points
0 ≤ t0, . . . , tl < ∞, states e0, . . . , el ∈ E and any ε > 0 sufficiently small there exists
a κ̄ ∈ N such that for all κ ≥ κ̄:

P {ηκ (bbκt0c) = e0, . . . , η
κ (bbκtlc) = el} ≥ P {ξ(t0) = e0, . . . , ξ(tl) = el} −

ε

2
.

Combining this with (30) we see that for all time points 0 ≤ t0 ≤ . . . ≤ tl <∞, states
e0, . . . , el ∈ E and any ε > 0 sufficiently small there exists a κ̄ ∈ N such that for all
κ ≥ κ̄

P
{
ξκ
(
bκt0
aκ

)
= e0, . . . , ξ

κ

(
bκtl
aκ

)
= el

}
≥ P

{
ηκ(bbκt0c) = e0, . . . , η

κ(bbκtlc) = el,

d

(
ξκ
(
bκt0
aκ

)
, ηκ(bbκt0c)

)
= · · · = d

(
ξκ
(
bκtl
aκ

)
, ηκ(bbκtlc)

)
= 0

}
≥ P {ηκ(bbκt0c) = e0, . . . , η

κ(bbκtlc) = el} −
ε

2
≥ P {ξ(t0) = e0, . . . , ξ(tl) = el} − ε.

This implies the convergence of the finite dimensional distributions of
(
ξκ
(
bκ
aκ
t
))

t≥0

to the finite dimensional distributions of (ξ(t))t≥0 in the Prohorov metric and hence
weakly, which completes the proof.

5.4 Proof of the main results

5.4.1 Convergence of the coalescent processes

Let us apply these theoretical observations to the ancestral material scaling limit
to the block-counting process of the seed bank coalescent defined in Definition 1.6
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with vanishing migration rate c. If we simply let c → 0, the limiting object will be
a (block counting process of the) Kingman coalescent in the active population and
a constant population of dormant individuals. However, if we speed up time by a
factor 1/c → ∞, we obtain a new structure given in Definition 5.1, thus uncovering
a separation of time-scales phenomenon. While the exchange of ancestral lineages
between active and dormant states here becomes rare in the original timescale, in
the new timescale, this migration will still happen at rate 1 while coalescences in the
active population now occur almost instantaneously. Hence, in the limit, for each time
t > n, there will be at most one active line.

Theorem 5.2 establishes the ancient ancestral lines process as scaling limit in finite
dimensional distributions of the block-counting process of the seed bank coalescent.

Proof of 5.2. We prove the result using the machinery outlined in the previous chapter
with aκ := c−2

κ and bκ := c−3
κ . W.l.o.g. assume cκ ≤ 1, for all κ ∈ N.

Step i) In analogy to our previous notation abbreviate

(ξκ(t))t≥0 := (N cκ(t),M cκ(t))t≥0

and consider a discretized process with time steps of length a−1
κ = c2

κ by letting

ηκ(i) := ξκ(ic2
κ), i ∈ N0.

Recalling the rates of this processes as given in Definition 1.6

qκ := max
(n,m)∈E(n0,m0)

{
−Ācκ(n,m),(n,m)

}
≤
(
n0 +m0

2

)
+ cκ(n0 +m0) + cκK(n0 +m0)

whence (29) (and therefore (30)) hold as required.

Now, we claim that the transition probabilities of (ηκ(i))i∈N0 are

P{ηκ(1) = (n̄, m̄) | ηκ(0) = (n,m)}

= P
{

(N cκ(c2
κ),M cκ(c2

κ)) = (n̄, m̄) | (N cκ(0),M cκ(0)) = (n,m)
}

=



(
n
2

)
c2
κ + o(c3

κ), if n̄ = n− 1, m̄ = m,

cκnc
2
κ + o(c3

κ), if n̄ = n− 1, m̄ = m+ 1,

cκKmc
2
κ + o(c3

κ), if n̄ = n+ 1, m̄ = m− 1,

1−
(
n
2

)
c2
κ − cκnc2

κ − cκKmc2
κ + o(c3

κ), if n̄ = n, m̄ = m,

o(c3
κ), otherwise.

for any sensible (n,m), (n̄, m̄) ∈ E(n0,m0), recalling the convention of
(
n
2

)
= 0 for

n ≤ 1. This is proved as follows:

Proof. We first check that this discretisation is fine enough to guarantee that the prob-
ability of multiple jumps within the same discretisation period is sufficiently small.
Indeed, recall that a jump in the process ηκ occurs only when there is either a coales-
cence event in the active population, a migration event from active to dormant state
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(“dormancy”), or a migration event from dormant to active state (“resuscitation”).
Suppose ηκ is currently in state (n,m). The three events (coalescence, resuscitation
and dormancy) happen respectively with rate c2

κ

(
n
2

)
, c3
κKm and c3

κn. Hence, using
the Markov property, the waiting time T1 for first jump is exponential with total rate
c2
κ

(
n
2

)
+c3

κKm+c3
κn. Further, the time T2 for second event dominates an independent

exponential random variable with rate

c2
κ

((n+ 1

2

)
+ cκK(m+ 1) + cκ(n+ 1)

)
.

Hence, we obtain

P
{

two jumps within c2
κ time units

}
≤ P

{
T1 + T2 < c2

κ

}
≤ P

{
T1 < c2

κ, T2 < c2
κ

}
≤
(

1− exp
[((n

2

)
+ cκKm+ cκn

)
c2
κ

])
×
(

1− exp
[((n+ 1

2

)
+ cκK(m+ 1) + cκ(n+ 1)

)
c2
κ

])
.

Developing the result in powers of cκ yields(
n

2

)(
n+ 1

2

)
c4
κ + o(c4

κ).

Since n,m are trivially bounded by n0 + m0, we see that the time τcκ until at least
two jumps fall into a discretisation interval of length c2

κ dominates a geometric ran-
dom variable with success probability C(n0,m0)c4

κ + o(c4
κ) for some suitable constant

C(n0,m0), which proves the “otherwise” rates.
The other rates are then proved easily; for example,

P{ηκ(1) = (n− 1,m+ 1) | ηκ(0) = (n,m)}
= P{ηκ(T1) = (n− 1,m+ 1), T1 < 1, T2 > 1}+ o(c3

κ)

= P{ηκ(T1) = (n− 1,m+ 1)|T1 < 1, T2 > 1}P{T1 < 1, T2 > 1}+ o(c3
κ)

= P{ηκ(T1) = (n− 1,m+ 1)}
(
1− P{T1 > 1}+ o(c3

κ)
)

+ o(c3
κ)

=
cκn(

n
2

)
+ cκKm+ cκn

(
1− exp

(
c2
κ

((n
2

)
+ cκKm+ cκn

)))
+ o(c3

κ)

= c3
κn+ o(c3

κ).

Step ii) Therefore, if Πκ is defined as the transition matrix of (ηκ(i))i∈N0 , we
obtain the decomposition

Πκ = Aκ +
Bκ
bκ

with bκ = c−3
κ as defined above and

(Aκ)(n,m),(n̄,m̄) =


(
n
2

)
c2
κ, if n̄ = n− 1, m̄ = m,

1−
(
n
2

)
c2
κ, if n̄ = n, m̄ = m,

0, otherwise,
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and

(Bκ)(n,m),(n̄,m̄) =


n+ o(1), if n̄ = n− 1, m̄ = m+ 1,

Km+ o(1), if n̄ = n+ 1, m̄ = m− 1,

−n−Km+ o(1), if n̄ = n, m̄ = m,

o(1), otherwise.

(31)

In order to apply the convergence result, we first need to check condition (26) for
our set-up, which reads

lim
C→∞

lim
κ→∞

sup
r≥Cc−2

κ

‖(Aκ)r − P‖ = 0 (32)

for P given in (23). Note that Aκ is a stochastic matrix and denote by (Zκ(r))r∈N0

the Markov chain associated to it. This is a pure death process in the first component
and constant in the second. Then, by the definition of matrix norm, we get

‖(Aκ)r − P‖ = max
(n,m)∈E(n0,m0)

∑
(n̄,m̄)∈E(n0,m0)

|(Aκ)r(n,m),(n̄,m̄) − P(n,m),(n̄,m̄)|

= max
n≥1,m≥0

(
|(Aκ)r(n,m),(1,m) − 1|+

n∑
n̄=2

|(Aκ)r(n,m),(n̄,m) − 0|
)

= max
n≥1,m≥0

2
(

1− (Aκ)r(n,m),(1,m)

)
= 2 max

n≥1,m≥0
P
{
Zκ(r) 6= (1,m) | Zκ0 = (n,m)

}
.

Observe that for all n ≥ 2 (and all m ≥ 0)

Aκ(n,m),(n−1,m) =

(
n

2

)
c2
κ ≥ c2

κ.

Hence, since we start from n0 active individuals, the number of time-steps required
until full coalescence is dominated by the sum of n0−1 independent geometric random
variables γκ1 , . . . , γκn0−1 with success probability c2

κ. By Markov’s inequality, we get

sup
κ∈N

P
{
γκ1 + · · ·+ γκn0−1 ≥ Cc−2

κ

}
≤ c2

κ

C
E
[
γκ1 + · · ·+ γκn0−1

]
=

(n0 − 1)c2
κ

Cc2
κ

=
(n0 − 1)

C

and with it

lim
C→∞

lim
κ→∞

sup
r≥Cc−2

κ

‖(Aκ)r − P‖ ≤ lim
C→∞

lim
κ→∞

sup
r≥Cc−2

κ

(n0 − 1)

C
= 0

which gives (32). We are now left to establish the matrix-norm limit (27), that is,
show that

lim
N→∞

PBNP exists (33)

and coincides with the G in Definition 5.1. For this, notice that Bκ converges for
κ → ∞ uniformly and in the matrix norm (recalling that the state space E(n0,m0) is
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finite), and define

B(n,m),(n̄,m̄) := lim
κ→∞

(Bκ)(n,m),(n̄,m̄) =


n, if n̄ = n− 1, m̄ = m+ 1,

Km, if n̄ = n+ 1, m̄ = m− 1,

−n−Km, if n̄ = n, m̄ = m,

0, otherwise.

Through careful entry-by-entry calculations one confirms

G = PBP (34)

and thus (27). (Of course, this implies, as a consequence, that PG = GP = G, due
to the fact that P 2 = P .) As described in the previous chapter, [BBE13, Lemma 1.7
and Remark 1.8] then yields

lim
κ→∞

Πbtc
−3
κ c

κ = lim
κ→∞

(
Aκ + c3

κBκ
)btc−3

κ c = PetG =: Π(t) for all t > 0,

which given ηκ(0) = (N cκ(0),M cκ(0)) = (Ñ(0), M̃(0)) then implies

(ηκ(bc−3
κ tc))t≥0 → (Ñ(t), M̃(t))t≥0 in finite dimensional distributions, as κ→∞,

where (Ñ(t), M̃(t))t≥0 is the ancient ancestral lines process defined in Definition 5.1.

Step iii) Since we have proven the necessary assumptions in Step i) and ii), Lemma
5.5 implies

(
N cκ(c−1

κ t),M cκ(c−1
κ t)

)
t≥0

=

(
ξcκ
(
c−3
κ

c−2
κ
t

))
t≥0

−→
(
Ñ(t), M̃(t)

)
t≥0

in finite dimensional distributions for κ→∞ and the proof is complete.

We would now also like to observe similar scaling limits for the diffusion (1). As
we saw in the case of genealogies, rescaling time may lead to a limiting process that is
still Markovian, but whose semi-group is not standard. We can, however, use moment
duality to obtain this limit.

5.4.2 Convergence in finite dimensional distributions from duality

We here present a general result on how to obtain convergence in finite dimensional
distributions from moment duality and the analogous convergence of the dual process.
This result is independent of whether time is rescaled, too, or not. It is, however, of
particular interest in that case, since it might lead to limiting objects, that are rather
“ill-behaved” and we will see examples in Chapter 5.4.3 where the limit does not have
a generator, hence more standard ways of proving convergence through generator
convergence fail.

For any vectors n := (n1, . . . , nd) ∈ Nd0 and x := (x1, . . . , xd) ∈ [0, 1]d, define the
mixed-moment function m as m(x, n) := xn1

1 · · ·x
nd
d .
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Theorem 5.6. Let (φκ(t))t≥0, κ ∈ N0, be a sequence of Feller Markov processes taking
values in [0, 1]d (for some d ∈ N) and (ξκ(t))t≥0, κ ∈ N0, a sequence of Markov chains
with values in Nd0 such that they are pairwise moment duals, i.e.

∀κ ∈ N0 , ∀t ≥ 0 ∀x ∈ [0, 1]d, n ∈ Nd0 : En[m(x, ξκ(t))]] = Ex[m(φκ(t), n)].

As usual, Pn and Px denote the distributions for which ξ, resp. φ, start in n, resp. x.

If (ξκ)κ∈N0 converges to some Markov chain ξ in finite dimensional distributions,
then there exists a Markov process φ with values in [0, 1]d such that it is the limit in
finite dimensional distributions of (φκ)κ∈N0 and the moment dual to ξ, i.e.

∀t ≥ 0 ∀x ∈ [0, 1]d, n ∈ Nd0 : En[m(x, ξ(t))]] = Ex[m(φ(t), n)]. (35)

Remark 5.7. At a first glance one might suspect that this result should also hold in a
more general set-up as long as the duality function used yields convergence determining
families for the respective semi-groups. Indeed, most of the steps of the proof would
still go through. However, note that we did not assume existence of a Markovian limit
beforehand. For this we use the solvability of Hausdorff’s moment problem on [0, 1]d

[KS13], which is a match to the moment duality function in our theorem.

Proof. The proof can roughly be split into three steps: We first use duality to prove
the convergence of the one-dimensional distributions of (φκ)κ∈N0 . This, together with
the Markov property will give us the convergence of the finite dimensional distribu-
tions of (φκ)κ∈N0 to a family of limiting distributions. Then we prove consistency of
the respective limiting measures and hence by Kolmogorov’s Extension Theorem the
existence of a limiting process φ, which must then be Markovian.

Since the mixed-moment function m is continuous and bounded as a function on
Nd0, the convergence of the finite dimensional distributions of (ξκ)κ∈N and the assumed
moment duality yield

Ex[m(φκ(t), n)] = En[m(x, ξκ(t))]
κ→∞−−−→ En[m(x, ξ(t))] := γ(n, x, t) (36)

for any t ≥ 0, x ∈ [0, 1]d and n ∈ Nd0. The unique solvability of the Hausdorff
moment problem on [0, 1]d [KS13] then gives the existence of a distribution µx,t on
([0, 1],B([0, 1])) (where B is the Borel-σ-algebra) such that

γ(n, x, t) =

∫
[0,1]d

m(x̄, n)dµx,t(x̄).

Since the polynomials are dense in the continuous functions, (36) implies the con-
vergence of the one-dimensional distributions to (µx,t)t≥0 (for each starting point
x ∈ [0, 1]d).

To check the convergence in finite dimensional distributions, let Pκ be the proba-
bility transition function of φκ and recall that we assumed them to be Feller. For
0 ≤ t1 < . . . < tl <∞, x ∈ [0, 1]d and n1, . . . , nl ∈ [0, 1]d then observe

Ex[m(φκ(t1), n1) · · ·m(φκ(tl), nl)]

=

∫
[0,1]

∫
[0,1]
· · ·
∫

[0,1]
m(x̄1, n1) · · ·m(x̄l, nl)Pκ(x̄l−1, tl − tl−1, dx̄l) · · ·Pκ(x, t1, dx̄1)

κ→∞−−−→: γ(n1, . . . , nl, x, t1, . . . , tl). (37)
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The convergence (to some constant γ(n1, . . . , nl, x, t1, . . . , tl)) follows from the con-
vergence of the one-dimensional distributions if one observes using the Lebesgue con-
vergence theorem that weak convergence also implies the convergence of integrals
when the integrand itself converges to a continuous and bounded function. Since our
processes are Feller, we can iterate this argument and obtain the convergence above.

Again, by the unique solvability of the Hausdorff moment problem [KS13] we thus
obtain the existence of a measure µI,x on ([0, 1]I ,B([0, 1])⊗I) for any finite set of
indices I = {t1, . . . , tl} ⊂ [0,∞) and starting point x ∈ [0, 1]d and (37) implies the
convergence of the finite-dimensional distributions of (φκ)κ∈N to a respective µI,x.
Since these µI,x are the limits of a consistent family they are themselves consistent
and with Kolmogorov’s Extension Theorem there exists a unique measure µx on the
product-space ([0, 1][0,∞),B([0, 1])⊗[0,∞)) which is the distribution of the desired pro-
cess φ. Its Markovianity follows from the respective property of the (φκ)κ∈N0

The duality of φ and ξ follows from the duality of the prelimiting processes.

5.4.3 Convergence of the forwards-in-time processes

As an application of Theorem 5.6 we consider the diffusion (1) with the scaling regime
of Chapter 5.4, namely, when the migration rate c→ 0 while simultaneously speeding
up time by a factor 1/c→∞ and obtain Theorem 5.3 stating the convergence of the
rescaled diffusions to a Markovian limit (X̃(t), Ỹ (t))t≥0.

Proof of Theorem 5.3. Since the moment duality of the block-counting process of the
seed bank coalescent and the seed bank diffusion [BGKWB16, Thm. 2.8] holds for
every time t ≥ 0, it is preserved for the time-changed processes
(N cκ (t/cκ) ,M cκ (t/cκ))t≥0 and (Xcκ (t/cκ) , Y cκ (t/cκ))t≥0. Together with Theorem
5.2, all assumptions of Theorem 5.6 hold and we get the existence of a Markov process
(X̃(t), Ỹ (t))t≥0 that is the dual of (Ñ(t), M̃(t))t≥0. The uniqueness of the moment
dual of a Markov process proves that the limit does not depend on the choice of scaling
sequence (cκ)κ∈N0 .

Moment duality now allows us to translate our knowledge about the ancient ances-
tral lines process (Ñ(t), M̃(t))t≥0 (Definition 5.1) to (X̃(t), Ỹ (t))t≥0. More precisely,
since (35) holds in particular for t > 0, m = 0 and any n ≥ 1, x, y ∈ [0, 1] we see

Ex,y[X̃(t)n] = En,0[xÑ(t)yM̃(t)]

= xPn,0{Ñ(t) = 1, M̃(t) = 0}+ yPn,0{Ñ(t) = 0, M̃(t) = 1}
= x(PetG)(n,0),(1,0) + y(PetG)(n,0),(0,1) = x(etG)(1,0),(1,0) + y(etG)(1,0),(0,1).

We used the fact, that the first component of the ancient ancestral lines process
immediately takes values in {0, 1} in the second equality and the definition of the
projection in the last equality. Since the right-hand-side does not depend on n ≥ 1,
we can conclude that

X̃(t) ∈ {0, 1} Px,y-a.s. for any t > 0 and any (x, y) ∈ [0, 1]2. (38)
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This small observation has an important consequence: Much like in the case of
its dual (Ñ(t), M̃(t))t≥0, the transition function of the ancient ancestral lines process
(X̃(t), Ỹ (t))t≥0 is not right-continuous in 0 and therefore (X̃(t), Ỹ (t))t≥0 does not
have a classical generator.

Intuitively the reproduction mechanism (in the active population) acts so fast, that
fixation (or extinction) in the active population happens instantaneously. Whenever
there is an invasion from the seed bank of the type extinct in the active population,
its chances of fixating are proportional to the fraction of the type in the dormant
population. The limit is therefore a pure jump process in the active component that
moves between the states 0 and 1, while the seed bank component retains its classical
behavior. We can formalize this observation if we restrict the process to the smaller
state space {0, 1} × [0, 1], see Proposition 5.9 below.

Definition 5.8. Let (N̄(t), M̄(t))t≥0 be the Markov chain on {0, 1}×N0 given by the
(conservative) Q-matrix

Ḡ(n,m),(n̄,m̄) =


Km, if n̄ = 1, n ∈ {0, 1}, m̄ = m− 1,

1, if n̄ = 0, n = 1, m̄ = m+ 1,

−1−Km, if n̄ = n, m̄ = m,

0, otherwise.

for any (n,m), (n̄, m̄) ∈ {0, 1} × N0.

On the other hand, let (X̄(t), Ȳ (t))t≥0 be the Markov process on {0, 1} × [0, 1]
with generator

Ā(1)f(x, y) = y(f(1, y)− f(0, y))1l{0}(x) + (1− y)(f(0, y)− f(1, y))1l{1}(x)

+K(x− y)
∂f

∂y
(x, y).

Note that Ḡ given above is the restriction of G, the “generator” of (Ñ(t), M̃(t))t≥0

from Definition 5.1. Indeed, these processes are essentially the ancestral material
processes when started in the smaller state-space:

Proposition 5.9. The processes (N̄(t), M̄(t))t≥0 and (X̄(t), Ȳ (t))t≥0 from Definition
5.8 are moment duals, i.e.

∀t ≥ 0 ∀(x, y) ∈ [0, 1]2, (n,m) ∈ N2
0 : En,m

[
xN̄(t)yM̄(t)

]
= Ex,y

[
X̄(t)nȲ (t)

m]
. (39)

(N̄(t), M̄(t))t≥0 coincides in distribution with (Ñ(t), M̃(t))t≥0 if (both are) started in
the reduced state-space {0, 1} × N0.

Likewise, (X̄(t), Ȳ (t))t≥0 coincides in distribution with (X̃(t), Ỹ (t))t≥0 if (both
are) started in the reduced state-space {0, 1} × [0, 1].

Moment duality of the involved processes will be important for the proof of the
last statement.
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Duality

(N(t), M(t))
~

(X(t), Y(t))
~~ ~

Duality

(N(t), M(t)) (X(t), Y(t))
-- - -

= =?
Figure 7: Strategy of the proof of Proposition 5.9. The moment duality of
(Ñ(t), M̃(t))t≥0 and (X̃(t), Ỹ (t))t≥0 is consequence of Theorem 5.3. The semi-
groups of (Ñ(t), M̃(t))t≥0 and (N̄(t), M̄(t))t≥0 coincide when started in the reduced
state-space {0, 1} × N0. We prove the moment duality of (N̄(t), M̄(t))t≥0 and
(X̄(t), Ȳ (t))t≥0, which allows us to conclude, that the semigroups of (X̃(t), Ỹ (t))t≥0

and (X̄(t), Ȳ (t))t≥0 also agree when started in {0, 1} × [0, 1].

Proof. The duality of (N̄(t), M̄(t))t≥0 and (X̄(t), Ȳ (t))t≥0 can be proven through the
standard method of generator calculations: Applying Ā(1) to S((x, y), (n,m)) := xnym

for (n,m) ∈ {0, 1} × N0 and (x, y) ∈ {0, 1} × [0, 1], as a function in (x, y) yields

Ā(1)(S)((x, y), (n,m)) = y(ym − 0nym)1l{0}(x) + (1− y)(0nym − ym)1l{1}(x)

+K(x− y)xnmym−1

= −(x− y)(ym − 0nym)1l{0}(x) + (x− y)(0nym − ym)1l{1}(x)

+K(x− y)xnmym−1

= −n(x− y)ym +Km(x− y)xnym−1

= Kmxn+1ym−1 + (−Kmxn − nx)ym + nym+1

where we continue to use 00 = 1, the fact that n ∈ {0, 1} and simply sorted the terms
by powers of y for easier comparison in the last line.

On the other hand, if we apply A(1), the generator of the stochastic process having
Ḡ as Q-matrix, to S as a function in (n,m) ∈ {0, 1} ×N0, we get

A(1)(S)((x, y), (n,m)) = Km(xym−1 − xnym) + 1(ym+1 − xym)1l{1}(n)

= Km(xym−1 − xym) 1l{1}(n)︸ ︷︷ ︸
=n

+Km(xym−1 − ym) 1l{0}(n)︸ ︷︷ ︸
=1−n

+ 1(ym+1 − xym) 1l{1}(n)︸ ︷︷ ︸
=n

= Kmxym−1 + (−Kmnx−Km(1− n)− nx)ym + nym+1.

A close look noting that for our choices of variables we have xn+1 = x and nx+(1−n) =
xn shows that the two coincide. Since:
• the duality function S : [0, 1]2 × N2

0 → R, S(x, y, n,m) = xnym, is bounded and
continuous;
• the functions S(x, y, ·) and PtS(x, y, ·), that is, the functions (n,m) → xnym and
(n,m) → E(x,y)[X̄

n(t)Ȳ m(t)], are in the domain of A(1);
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• the functions S(·, n,m) and QtS(·, n,m), that is, the functions (x, y) → xnym and
(x, y)→ E(n,m)[x

N̄(t)yM̄(t)], are in the domain of Ā(2);
with (Pt)t≥0 and (Qt)t≥0 transition semigroups of (X̄, Ȳ ) and (N̄ , M̄) respectively,
[JK14, Prop. 1.2] concludes the proof of duality.

Let f̄ : {0, 1}×N0 → R and define f as f(n,m) := f̄(n,m) for (n,m) ∈ {0, 1}×N0

and 0 otherwise. Recall that PetG is the semi-group of (Ñ(t), M̃(t))t≥0 from Definition
5.1. Since G(n,m),(n̄,m̄) = Ḡ(n,m),(n̄,m̄) for any (n,m) ∈ {0, 1} × N0, we have

Gf(n,m) = Ḡf̄(n,m), (n,m) ∈ {0, 1} × N0.

As we also know that G = PBP from (34), it follows that

Gf(n,m) = PBPf(n,m) ∈ {0, 1} × N0

whence the semi-groups of (Ñ(t), M̃(t))t≥0 and (N̄(t), M̄(t))t≥0 coincide on such f
and the two processes are equal in distribution when started in (n,m) ∈ {0, 1} × N0,
as claimed.

This also implies

Ex,y
[
X̃(t)

n
Ỹ (t)

m
]

= En,m
[
xÑ(t)yM̃(t)

]
= En,m

[
xN̄(t)yM̄(t)

]
= Ex,y

[
X̄(t)

n
Ȳ (t)

m]
(40)

for all t ≥ 0 and all (x, y) ∈ {0, 1}× [0, 1] and (n,m) ∈ {0, 1}×N0, where we used the
dualities from Theorem 5.3 and Proposition 5.9 in the first, respectively last equality.

Recall from (38), that for any t > 0 we have (X̃(t), Ỹ (t)) ∈ {0, 1}× [0, 1], Px,y-a.s.,
(x, y) ∈ [0, 1]2. Since a distribution on {0, 1} × [0, 1] is uniquely determined by its
moments of order (n,m) ∈ {0, 1} × N0, (40) implies that (X̃(t), Ỹ (t)) ∼ (X̄(t), Ȳ (t))
for any t > 0 (when started in the same (x, y) ∈ {0, 1} × [0, 1]). Since they are both
Markovian, this implies that the distributions of (X̄(t), Ȳ (t))t≥0 and (X̃(t), Ỹ (t))t≥0

coincide when started in the reduced state-space {0, 1} × [0, 1].

5.5 Further scaling limits

5.5.1 Imbalanced island size

One can, of course, transfer the previous results from the seed bank directly to the
two-island model without mutation. From the similarity of the models it is clear that
here, too, scaling the migration rate to c → 0 while speeding up time by 1/c → ∞,
one will obtain a model with instantaneous coalescences in both islands similar to the
ancient ancestral lines process from Definition 5.1.

However, one could also consider a two-island model with different scalings of the
coalescence rates in the islands. We recall that the diffusion process related to the
two-island diffusion, describing the frequency process of allele a in the two-allele case,
is defined as the solution of the SDEs

dX(t) = c(Y (t)−X(t))dt+ α
√
X(t)(1−X(t))dW (t),

dY (t) = cK(X(t)− Y (t))dt+ α′
√
X(t)(1−X(t))dW ′(t), (41)
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The parameters α resp. α′ are associated to the notion of effective population size (cf.
[Wak09]) so a different scaling corresponds to a significant difference in population
size on the two islands. For this we will not only scale the migration rate c → 0 and
time as before, but in addition assume that the coalescence rate α′ > 0 in the second
island scales as c, i.e. α′/c→ 1. The result is a two-island model with instantaneous
coalescences in the first island, but otherwise ‘normal’ migration and coalescence be-
havior in the second. For more precision, let (n0,m0) ∈ N0 ×N0 and (Ñ(t), M̃(t))t≥0

be the continuous-time Markov chain with initial value (Ñ(0), M̃(0)) = (n0,m0), tak-
ing values in the state space E(n0,m0) := {0, . . . , n0 + m0}2, with transition matrix
Π(t) := PetG, for t > 0 and Π(0) equal to the identity on E, where P is given by (23)
as before and G is a Q-matrix of the form

G(n,m),(n̄,m̄) :=



Km+
(
m
2

)
, if n̄ = 1, n ≥ 1, m̄ = m− 1,

Km, if n̄ = 1, n = 0, m̄ = m− 1,(
m
2

)
, if n̄ = 0, n = 0, m̄ = m− 1,

1, if n̄ = 0, n ≥ 1, m̄ = m+ 1,

−
(
m
2

)
− 1−Km, if n̄ = 1, n ≥ 1, m̄ = m,

−
(
m
2

)
−Km, if n̄ = n = 0, m̄ = m,

0, otherwise.

where the first two rates given in the definition of G correspond to the events of
dormancy (potentially with immediate coalescence) and the fourth one corresponds
to resuscitation.

The following theorem establishes this Markov chain as scaling limit of a two-island
model.

Theorem 5.10. Denote by (N c,α′(t),M c,α′(t))t≥0 the block counting process of the
structured coalescent (without mutation) as defined in Definition 1.6 with migration
rate c > 0 and coalescence rate α′ > 0 in the second island. Assume that it starts in
some (n0,m0) ∈ N× N, P-a.s..

Furthermore let (Ñ(t), M̃(t)))t≥0 be as defined above with the same initial condi-
tion. Then, for any sequence of migration rates (cκ)κ∈N and any sequence of coales-
cence rates (α′κ)κ∈N with cκ → 0 and cκ/α′κ → 1 for κ→∞(

N cκ,α′κ

(
1

cκ
t

)
,M cκ,α′κ

(
1

cκ
t

))
t≥0

f.d.d.−−−→
(
Ñ(t), M̃(t)

)
t≥0

,

in finite dimensional distributions as κ→∞.

Proof. The proof is analogous to that of Theorem 5.2, whence we shorten it signif-
icantly. Consider, again, the sequences aκ := c−2

κ and bκ := c−3
κ . W.l.o.g. assume

cκ ≤ 1, for all κ ∈ N.
Step i) As before we abbreviate (ξκ(t))t≥0 := (N cκ,α′κ(t),M cκ,α′κ(t))t≥0 and con-

sider a discretized process with time steps of length a−1
κ = c2

κ by letting

ηκ(i) := ξκ(ic2
κ), i ∈ N0.
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Recalling the rates of this processes as given in Definition (1.6)

qκ := max
(n,m)∈E(n0,m0)

{
Acκ(n,m),(n,m)

}
≤ (α+ α′κ)

(
n0 +m0

2

)
+ cκ(n0 +m0) + cκK(n0 +m0)

whence (29) (and therefore (30)) hold as required.

Step ii) Let Πκ be the transition matrix of (ηκ(i))i∈N0 . One can calculate the
transition probabilities to obtain the decomposition

Πκ = Aκ +
Bκ
bκ

with bκ = c−3
κ , Aκ as in (5.4.1) and

(Bκ)(n,m),(n̄,m̄) =



(
m
2

)
+ o(1), if n̄ = n, m̄ = m− 1,

n+ o(1), if n̄ = n− 1, m̄ = m+ 1,

Km+ o(1), if n̄ = n+ 1, m̄ = m− 1,

−
(
m
2

)
− n−Km+ o(1), if n̄ = n, m̄ = m,

o(1), otherwise.

(42)

Since Aκ and P are the same as in the proof of Theorem 5.2, we already know that
(26) holds. Much like before, the matrix-norm limit (27) exists because Bκ converges
for κ→∞ uniformly and in the matrix norm to

B :=



(
m
2

)
, if n̄ = n, m̄ = m− 1,

n, if n̄ = n− 1, m̄ = m+ 1,

Km, if n̄ = n+ 1, m̄ = m− 1,

−
(
m
2

)
− n−Km, if n̄ = n, m̄ = m,

0, otherwise.

Through careful calculations one confirms G = PBP . [BBE13, Lemma 1.7 and Re-
mark 1.8] then yields

lim
κ→∞

Πbtc
−3
κ c

κ = lim
κ→∞

(
Aκ + c3

κBκ
)btc−3

κ c = PetG =: Π(t) for all t > 0,

which given ηκ(0) = (N cκ(0),M cκ(0)) = (Ñ(0), M̃(0)) then implies

(ηκ(bc−3
κ tc))t≥0

f.d.d.−−−→ (Ñ(t), M̃(t))t≥0 as κ→∞.

Step iii) Since we have proven the necessary assumptions in Step i) and ii), Lemma
5.5 implies(

N cκ,α′κ(c−1
κ t),M cκ,α′κ(c−1

κ t)
)
t≥0

=

(
ξcκ
(
c−3
κ

c−2
κ
t

))
t≥0

f.d.d.−−−→
(
Ñ(t), M̃(t)

)
t≥0

for κ→∞ and the proof is complete.
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Moreover, we have a forwards-in-time result as well:

Proposition 5.11. Denote by (Xc,α′(t), Y c,α′(t))t≥0 the two-island diffusion with mi-
gration rate c > 0 and island 2 of size α′ > 0 and assume that it starts in some
(x, y) ∈ [0, 1]2, P-a.s.. Then, the sequence (Xcκ,α′κ(t), Y cκ,α′κ(t))t≥0 will converge to
a Markovian degenerate limit coinciding in distribution with a Markov process with
generator

Ā(1)f(x, y) = y(f(1, y)− f(0, y))1l{0}(x) + (1− y)(f(0, y)− f(1, y))1l{1}(x)

+K(x− y)
∂f

∂y
(x, y) +

1

2
x(1− x)

∂2

∂x2
f(x, y)

whenever started in the smaller state-space {0, 1} × [0, 1].

The proof of this proposition is analogous to that of Theorem 5.3 as well and will
be omitted.

5.5.2 Other

There are several other possibilities to rescale the parameters of the process given in
Definition 1.6 in order to obtain sensible limits. In particular, there are many options
in which, in contrast to the previous two examples, time is not scaled. These scaling
regimes can also be treated rigorously with similar methods. However, we refrain from
providing full technical details, and conclude this chapter with a heuristic discussion
of some of these limits.

A) Instead of having the migration rate c→ 0 as in the previous chapter one can
also let c→∞, but without changing time.

This scenario was investigated for the two-island model (with parameters
α′ = α = K = 1, c = c′, and no mutation) by Nath and Griffiths in [NG93]. They
show that the rates of the block counting process converge to those of a time-changed
Kingman coalescent, where the time-change is given by a constant delay by a factor
κ = 1/2. This is rather intuitive: Two lines which switch at high (infinite) rate
between the two islands may merge only if both are in the same island simultaneously,
which happens roughly 50% of the time. A similar effect in the seed bank scenario
(α′ = 0, α = 1, and no mutation) was shown by Lambert and Ma (Theorem 3.2 in
[LM15]), where, for K = 1 the constant is κ = 1/4. Again, this follows the same
intuition as in the two-island case, since now coalescence is only possible in one of
the subpopulations, so roughly 25% of the time. The following result is just a simple
consequence of this Theorem.

Corollary 5.12. Denote by (N c(t),M c(t))t≥0 the block-counting process of the seed
bank coalescent (without mutation) with migration rate c > 0 (and relative seed bank
size K > 0) and by (K(t))t≥0 the block counting process of the standard Kingman
coalescent. Then, (

N c(t) +M c(t)
)
t≥0

w−→
(
K(κt)

)
t≥0

as c→∞, where κ = ( K
K+1)2.
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Proof. From [LM15, Thm. 3.2] we know that the processes
(
N c(t) + M c(t)

)
t≥0

con-
verge weakly to a coalescent with the following coalescence rates: If there are l indi-
viduals left, the next coalescence happens at rate

cl :=
l∑

j=2

j(j − 1)

2

(
l

j

)( K

1 +K

)j( 1

1 +K

)l−j
.

Note that if ξ denotes a binomial random variable with parameters l and K
1+K , this

can be rewritten as

cl =
1

2

(
E[ξ2]− E[ξ]

)
=

1

2

(
l
K

1 +K

1

1 +K
+ l2

(
K

1 +K

)2

− l K

1 +K

)

=
1

2

(
(l2 − l)

(
K

1 +K

)2
)

=

(
l

2

)(
K

1 +K

)2

=

(
l

2

)
κ,

which are the transition rates of the time-changed Kingman coalescent.

Note that in [LM15] the rates lack the factor 1/2. Their peripatric coalescent dif-
fers from the seed bank coalescent in that the rate for j lineages to coalesce is j(j−1)
instead of j(j − 1)/2 =

(
j
2

)
which originates in their usage of the Moran model in the

prelimit and the lack of a factor 2 in the time-rescaling. Hence, their Theorem 3.2
formulated for our seed bank coalescent has the additional factor 1/2.
For the diffusions, we get a Wright-Fisher diffusion with a prefactor in the first com-
ponent, while the second component satisfies Y (t) ≡ X(t). The limit is in finite-
dimensional distributions.

B) For the seed bank coalescent without mutation, the standard Kingman coa-
lescent (with no time-change) arises as scaling limit when K → ∞ (and all other
parameters - including time - are fixed). The intuition behind this fact is that as
K → ∞, lineages that become inactive resuscitate almost immediately since as the
seed bank gets very small, the migration rate from the seed bank cK goes to infinity.
So the overall effect of such a vanishing seed bank becomes negligible as lineages are
essentially always active and thus coalesce as usually for a Kingman coalescent: The
proof, which follows standard techniques, is omitted here.

For the diffusions, we get a Wright-Fisher diffusion in the first component, while
the second component satisfies Y (t) ≡ X(t) here as well. The limit is in finite-
dimensional distributions.

C) Again, consider the seed bank coalescent without mutation, but this time let
K → 0, i.e. the migration rate out of the seed bank cK → 0 (while all other parameters
including time are fixed). Here, heuristically, if a lineage becomes inactive, it will not
resuscitate for a very long time (large seed bank) and in the limit gets completely
stuck. The process thus converges to the coalescent with freeze introduced by Dong,
Gnedin and Pitman in [DGP07], which precisely describes this situation.

To prove this result it is enough to observe that the moment dual of (X(t), Y (t))t≥0

is precisely the block counting process of the coalescent with freeze (N(t),M(t))t≥0,
where M(t) is the number of ancestral lines that had been frozen until time t and
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N(t) is the number of (not frozen) ancestors at time t. The convergence of
(NK(t),MK(t))t≥0 follows a generator calculation, and the result is completed apply-
ing Theorem 5.6.

Regarding the limit of the diffusions, the first component is the well-known jump
diffusion, while the second component is constant: Y (t) ≡ Y (0) for all t ≥ 0. The
convergence here is weakly on the path space: Corollary 4.8.7 of [EK86] can be applied,
so that we get uniform bounds on the generator convergence.

D) Regarding the two-island model with α = 1 and no mutation, convergence to
the seed bank model (without mutation) holds for α′ → 0 (if all other parameters and
time are fixed). Intuitively, this follows because the rate of coalescence in one of the
two islands becomes negligible. The limit of the corresponding diffusion is obviously
the seed bank diffusion and we have weak convergence on the path space, with the
[EK86] condition easily checked.
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6 Measures of population structure

The aim of this chapter is to provide basic statistical theory to analyze patterns
of population structure and genetic variability produced by seed banks. We will
also provide tools for parameter estimation and model selection based on genetic
data. Notably, we will provide comparisons between patterns of variability under
seed banks, and classical models of population structure (as in [Her94]). Both model
classes predict similar patterns in diversity, and we will study the extent to which
sequence data can differentiate between them. This extends earlier studies ([TLL+11],
[BGE+15]), where seed banks were compared to classical, panmictic models. This
chapter is organized as follows. We consider several classical statistical quantities:
moments at stationarity (which give us a sampling formula), the sample heterozygosity
and Wright’s FST (as in [Wri49]), and the site frequency spectrum (normalized or
not). These measures are informative about the underlying coalescent scenario, and
suited to the different mutation models, to varying degrees. They also differ in the
extent to which they are tractable. The sample heterozygosity, Wright’s FST and
the (normalized) SFS discard statistical signal, but are readily computed (at least
numerically) in many settings. The likelihood function obtained from the sampling
distribution fully captures the statistical signal in a data set, but is available for
coalescent processes only via computationally intensive Monte Carlo schemes, as can
be seen in detail in [K3]. Our results clarify when computationally cheaper summary
statistics suffice to distinguish between models, and when the full likelihood is needed.
This chapter is based on [K3] (Subchapters 6.2, 6.4, 6.5, 6.7, 6.8).

6.1 Linear Algebra of moments

Since the sample heterozygosities in the two-allele model involve mixed moments in
stationarity, we must first derive closed-form formulas for those. The recursive formula
(9) introduced in Chapter 3, however, easily allows us to find the ((n+1)-dimensional)
column vectors Mn := (M0n,M1,n−1, . . . ,Mn0)T :

Theorem 6.1. Defining the (n+1)×(n+1) matrix Bn = (Bn)ij
16 and the (n+1)×n

matrix An = (An)ij by

(Bn)ij = −ciδi−1,j − c′(n− i)δi+1,j +Dj,n−jδij

and
(An)ij = aiδi−1,j + a′i+1δij ,

recalling from Chapter 3.2 that

an := α2

(
n

2

)
+ nu2,

a′m := (α′)2

(
m

2

)
+mu′2, and

Dn,m := α2

(
n

2

)
+ (α′)2

(
m

2

)
+ (u2 + u1)n+ (u′1 + u′2)m+ cn+ c′m,

16Here, all indices start at 0.
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(with the convention
(

1
m

)
=
(

0
m

)
= 0 for all m), we have that

Mn = B−1
n AnB

−1
n−1An−1 . . . B

−1
1 A1.

Proof. Because of the definition of Bn and of An and of Lemma 3.7, we know that

BnMn = AnMn−1.

Moreover, using a similar argument as in Theorem 3.9, all rows of Bn are strictly
dominant and therefore the matrix is invertible. Therefore, by recursion,

Mn = B−1
n AnB

−1
n−1An−1 . . . B

−1
1 A1.

From now on, we will assume c′ = Kc. We now give some examples for the
matrices Ai and Bi, in case S17 with u1 = u′1 and u2 = u′2:

B1 =

[
D01 −cK
−c D10

]
=

[
u′2 + u′1 +Kc −cK

−c u2 + u1 + c

]
, A1 =

[
a′1
a1

]

B2 =

D02 −2Kc 0
−c D11 −Kc
0 −2c D20

 , A2 =

a′2 0
a1 a′1
0 a2



B3 =


D03 −3Kc 0 0
−c D12 −2Kc 0
0 −2c D21 −Kc
0 0 −3c D30

 , A3 =


a′3 0 0
a1 a′2 0
0 a2 a′1
0 0 a3



B4 =


D04 −4Kc 0 0 0
−c D13 −3Kc 0 0
0 −2c D22 −2Kc 0
0 0 −3c D31 −Kc
0 0 0 −4c D40

 , A4 =


a′4 0 0 0
a1 a′3 0 0
0 a2 a′2 0
0 0 a3 a′1
0 0 0 a4


This yields, in the case S with u1 = u′1 and u2 = u′2, using the previous calculations,

the following M ’s:

MS
1 =

[ u2
u1+u2

u2
u1+u2

]′
,

and for the second order moments, assuming that c = K = 1,

MS
20 =

u2(4u21u2 + 8u1u
2
2 + 14u1u2 + 4u32 + 14u22 + 12u2 + 1)

(u1 + u2)(4u31 + 12u21u2 + 14u21 + 12u1u22 + 28u1u2 + 12u1 + 4u32 + 14u22 + 12u2 + 1)
,

MS
11 =

u2(4u21u2 + 8u1u
2
2 + 14u1u2 + u1 + 4u32 + 14u22 + 12u2 + 1)

(u1 + u2)(4u31 + 12u21u2 + 14u21 + 12u1u22 + 28u1u2 + 12u1 + 4u32 + 14u22 + 12u2 + 1)
,

MS
02 =

u2(4u21u2 + 2u21 + 8u1u
2
2 + 16u1u2 + 4u1 + 4u32 + 14u22 + 12u2 + 1)

(u1 + u2)(4u31 + 12u21u2 + 14u21 + 12u1u22 + 28u1u2 + 12u1 + 4u32 + 14u22 + 12u2 + 1)
.

17That is, in the strong seed bank case; see Subchapter 1.2.2
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In particular, M1 does not depend on c and K. Even more strikingly, if u1 = u′1
and u2 = u′2, M1 does not even depend on α and α′ and is thus equal in cases S and
TI. However, this is not true forM2, as it is easy to see by comparing the above results
with those from [KZH08] (Appendix C), which state that in the case with α = α′ = 1
and K = c = 1, u1 = u′1, u2 = u′2, we get

MTI
20 = MTI

02 =
u2(u1 + 5u2 + 2u1u2 + 1 + 2u2

2)

2u3
1 + 6u2

1u2 + 5u2
1 + 6u1u2

2 + 10u1u2 + u1 + 2u3
2 + 5u2

2 + u2
,

MTI
11 =

u2(5u2 + 2u1u2 + 1 + 2u2
2)

(u1 + u2)(2u2
1 + 4u2u2 + 5u1 + 2u2

2 + 5u2 + 1)
.

Remark 6.2. In the 2-allele case, we can apply the sampling formulas from [KZH08]
to the Wright-Fisher diffusion with two subpopulations (Formula 2).
Suppose the process (X(t), Y (t))t≥0 is in its stationary distribution. Take a random
sample of size n(1) from the active population and an independent random sample of
size n(2) from the dormant population. Denote the number of genes of the allelic type
of interest in the active and in the dormant individuals respectively by η and ν. Then,
the sampling formulas from [KZH08] (3.1) state that:

Eµ[ν] = n(2)M01,

Eµ[η] = n(1)M10,

Eµ[ν2] = n(2)M01 + n(2)(n(2) − 1)M02,

Eµ[η2] = n(1)M10 + n(1)(n(1) − 1)M20,

Eµ[νη] = n(1)n(2)M11,

and we know all those quantities from Theorem 6.1.

Therefore, we can calculate the means and variances of ν and η, plus their covari-
ance. Moreover, we can calculate the probability of a certain configuration (see also
pictures):

Pµ{ν = j, η = i} =

(
n(2)

i

)(
n(1)

j

)
Eµ
[
(X(t))i(1−X(t))n

(2)−i(Y (t))j(1− Y (t))n
(1)−j]

= (−1)n
(1)+n(2)−i−j

(
n(2)

i

)(
n(1)

j

)
×

×
n(1)−i∑
p=0

n(2)−j∑
q=0

(
n(1) − i

p

)(
n(2) − j

q

)
(−1)p+qMn(1)−p,n(2)−q.

This gives us the possibility to try a maximum likelihood approach for parameter
inference.
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Figure 8: Configuration probabilities in the seed bank model, for a sample of n(1) = 4
active and n(2) = 4 dormant and various choices of parameters.
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6.2 Sample Heterozygosity in stationarity

The sample heterozygosity H of a population is the probability of finding two different
alleles in a sample of size two from the population. In the presence of population
substructure, e.g. in the form of a seed bank or separate islands, one often considers
both the global resp. local sample heterozygosity, corresponding to samples taken from
the total population, resp. from a sub-population. While the sample heterozygosity
at stationarity (in the two-allele model with mutation) is well-studied for the Wright-
Fisher and the two-island model (see [Her94]), it is less well understood for seed banks.

For K and W, the sample heterozygosity is defined as

HK := 2Eµ
K

[X(1−X)],

HW := 2Eµ
W

[X(1−X)],

respectively, where Eµ denotes expectation with respect to the stationary measure µ,
and X is the X(t)-coordinate from the relative process at stationarity. Analogous
definitions hold for local sample heterozygosities under S and TI:

HS
X := 2Eµ

S

[X(1−X)],

HS
Y := 2Eµ

S

[Y (1− Y )],

HTI
X := 2Eµ

TI

[X(1−X)],

HTI
Y := 2Eµ

TI

[Y (1− Y )],

and global heterozygosities are defined as weighted averages. The weighting can be
done in several ways:
1) We choose the first individual at random, uniformly from the entire population.
The second one is chosen uniformly from the same subpopulation the first sampled
individual comes from.
2) We flip a fair coin. Depending on the result, we choose both individuals at random
from the X- or from the Y -subpopulation.
3) We sample two individuals at random, uniformly from the entire population. If the
sample is homogeneous, i.e. if the two individuals come from the same subpopulation,
we retain the sample. Else, we discard it and do the sampling again until we get an
homogeneous sample.
4) We simply pick two individuals randomly and uniformly from the entire population,
regardless of their subpopulations.
Notice that ways 1 to 3 coincide if K = 1, that is, if the two subpopulations have
the same size, and that, in ways 1 to 3, the sample cannot contain simultaneously
elements from the first and from the second subpopulation, while in way 4 it very well
can.
In this thesis, we will always choose the first way (when we want a subpopulation-
homogeneous sample) or the fourth (when we want to allow for the sample to come
from different subpopulations). The corresponding formulas for the global sample
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heterozygosity are then, for way 1,

KHS
X +HS

Y

K + 1
=

2K

K + 1
Eµ

S

[X(1−X)] +
2

K + 1
Eµ

S

[Y (1− Y )],

KHTI
X +HTI

Y

K + 1
=

2K

K + 1
Eµ

TI

[X(1−X)] +
2

K + 1
Eµ

TI

[Y (1− Y )],

and, for way 4,

HS :=
2K2

(K + 1)2
Eµ

S

[X(1−X)] +
2K

(K + 1)2
Eµ

S

[X(1− Y ) + Y (1−X)]

+
2

(K + 1)2
Eµ

S

[Y (1− Y )],

HTI :=
2K2

(K + 1)2
Eµ

TI

[X(1−X)] +
2K

(K + 1)2
Eµ

TI

[X(1− Y ) + Y (1−X)]

+
2

(K + 1)2
Eµ

TI

[Y (1− Y )].

We can compute these quantities by using the results from Theorem 6.1; of course,
here we are only interested in moments up to order two. Nevertheless, the resulting
expressions are complicated if we want to keep all parameters. For example, for S we
obtain

MS
1,0 =

cu′2 + u1u
′
2 + u2u

′
2 + c′u2

cu′1 + cu′2 + u1u′1 + u1u′2 + u2u′1 + u2u′2 + c′u1 + c′u2
,

MS
0,1 =

cu′2 + u′1u2 + u2u
′
2 + c′u2

cu′1 + cu′2 + u1u′1 + u1u′2 + u2u′1 + u2u′2 + c′u1 + c′u2
.

Expressing the sample heterozygosities in terms of these moments is now immedi-
ate:

Proposition 6.3. With the above notation, we have the representations

HS
X = 2(MS

1,0 −MS
2,0),

HS
Y = 2(MS

0,1 −MS
0,2),

HS =
2

(K + 1)2

(
(K2 +K)MS

1,0 + (K + 1)MS
0,1 − 2KMS

1,1 −K2MS
2,0 −MS

0,2

)
,

HTI
X = 2(MTI

1,0 −MTI
2,0),

HTI
Y = 2(MTI

0,1 −MTI
0,2),

HTI =
2

(K + 1)2

(
(K2 +K)MTI

1,0 + (K + 1)MTI
0,1 − 2KMTI

1,1 −K2MTI
2,0 −MTI

0,2

)
.

Remark 6.4. The result for the Kingman case is well known, see e.g. [Eth11]:

HK =
4u1u2

(u1 + u2)(1 + 2u1 + 2u2)
.

Moreover, the weak seed bank diffusion with parameter β > 0 and the one-dimensional
diffusion (X(t))t≥0 given as the unique strong solution of the SDE

dX(t) =
[
− u1X(t) + u2(1−X(t))

]
dt+ β

√
X(t)(1−X(t))dW (t)
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have the same stationary distribution. Thus, the SH at stationarity can be easily
computed in a similar way and

HW =
4u1u2

(u1 + u2)(β2 + 2u1 + 2u2)
.

Remark 6.5 (Scaling limit as K →∞). Note that for K →∞ (that is, the relative
seed bank resp. second island size approaches 0), we recover the classical heterozy-
gosities:

HS
X → HK,

HTI
X → HK.

This is consistent with the result in Corollary 5.12.

Example. Consider K = c = 1, u1 = u2 = u′1 = u′2 = 1/2, α = 1, and α′ = 0. Then
we obtain

HS =
14

31
≈ 0.4516 > HK =

1

3
.

This indicates that a strong seed bank introduces some amount of population struc-
ture, even at stationarity. In the two-island model with α = 1 we get, using the same
parameter values as before,

HTI =
13

32
≈ 0.4063,

slightly lower, which is consistent with the fact that genetic drift reduces variability.

6.3 Sample Heterozygosity decay

What differentiates K from W is the rate of decay of sample heterozygosity in the
absence of mutation. Likewise, we can investigate the effect of the presence of a seed
bank on the random genetic drift in the seed bank diffusion with the help of the
sample heterozygosity. In order to do so, let us now compute the decay of the sample
heterozygosity in the active population (which can be observed by biologists, unlike
the global sample heterozygosity) in the non-mutation case.

In this setting, sample heterozygosity is defined as

HI(t, x̄) := 2Ex̄[X(t)(1−X(t))],

for I ∈ {K, W, TI, S} and a process started in x̄ ∈ [0, 1] (cases K and W) or in x̄ ∈ [0, 1]2

(cases TI and S). Then, in K (given u1 = u2 = 0), we obtain (see e.g. ([Dur08]), p.8)

HK(t, x) = 2e−tx(1− x),

while in the case W, the mergers happen at rate 1
β2 . This makes the weak seed bank

coalescent a time-changed Kingman coalescent, and the sample heterozygosity at time
t > 0 will thus be

HW(t, x) = 2e−β
2tx(1− x).
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Thus, the action of genetic drift is delayed by a weak seed bank. For the cases TI and
S, suppose we have initial conditions (X(0), Y (0)) = (x0, y0) ∈ [0, 1]2 in

dX(t) =
[
c(Y (t)−X(t))

]
dt+ α

√
X(t)(1−X(t))dW (t),

dY (t) =
[
c′(X(t)− Y (t))

]
dt+ α′

√
Y (t)(1− Y (t))dW ′(t). (43)

Then, the sample heterozygosity at time 0 in the active population is

HA(0, (x0, y0)) := 2X(0)(1−X(0)) = 2x0(1− x0). (44)

As random genetic drift reduces genetic variability over time, we expect this to con-
verge to 0 just like in the cases K, W.

Proposition 6.6. In the absence of mutation, the sample heterozygosity in the active
population at time t > 0, HA(t, (x0, y0)), given that the frequency of an allele at time
0 is equal to x0 ∈ (0, 1) in the first subpopulation and to y0 ∈ (0, 1) in the second one,
is equal to:
a) in the seed bank model, defining

S =

−2Kc 2Kc 0
c c+Kc Kc
0 2c −2c− 1


and T (u) := exp(Su) (matrix exponential),

HS
A(t, (x0, y0)) = x0(1− x0)T (t)3,3 + (x0 + y0 − 2x0y0)T (t)3,2 + y0(1− y0)T (t)3,1;

b) in the two-island model with α = 1, α′ =
√
K, same as in (a) but with

S =

−2Kc−K 2Kc 0
c c+Kc Kc
0 2c −2c− 1

 .
Proof. a) It is clear that the sample heterozygosity at time 0 is given by
HS
A(0, (x0, y0)) = x0(1 − x0). In order to investigate the time evolution of HS

A for
the seed bank diffusion, we apply backwards-in-time arguments related to the seed
bank coalescent. Indeed, if we start with two sampled individuals at time t > 0, they
will have different alleles if and only if their ancestors at time 0 are different (i.e. their
lineages have not coalesced) and carry different alleles. In short,

HS
A(t, (x0, y0)) := E(x0,y0)[X(t)(1−X(t))]

= P{At}H̄(0, (x0, y0))

where At is the event that two different individuals at time t, both sampled from
the active population, have two different ancestors at time 0. H̄, meanwhile, is the
conditional probability that the two ancestors have different alleles given At. However,
this probability is tricky to compute since it depends on whether the ancestors at time
0 are active or not. Therefore, we have to decompose At as follows:

At = PP (t)∪̇PS(t)∪̇SS(t),
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where PP (t), PS(t) and SS(t) stand for the events that the ancestors (at time 0) of
our sample (picked at time t) are two active individuals, one active and one dormant,
and two dormant individuals, respectively (which of course are pairwise disjoint, and
all imply that no coalescence has taken place).
And moreover, on each of the three subsets of At, the distribution of H̄ is easily
computable. Denote with H̄1, H̄2 and H̄3 the conditional probabilities that the two
ancestors have different alleles given PP (t), PS(t) and SS(t), respectively. Then,

H̄1 = x0(1− x0); H̄2 = x0 + y0 − 2x0y0; H̄3 = y0(1− y0).

Applying the law of total probability, we get

P{At}H̄(0, (x0, y0)) = P{PP (t)}x0(1− x0) + P{PS(t)}(x0 + y0 − 2x0y0)

+ P{SS(t)}y0(1− y0).

Finally, the probabilities of the three subsets of At are computable via matrix expo-
nential:

P{PP (t)} = exp(Tt)(3,3); P{PS(t)} = exp(Tt)(3,2); P{SS(t)} = exp(Tt)(3,1),

which yields the thesis.
b) All previous considerations can be used for the two-island model with α = 1,
α′ =

√
K, by changing the transition matrix accordingly (see previous considerations).

However, the matrix exponentials are almost impossible to calculate while leaving
t as a parameter. Thus, we only present a plot of the sample heterozygosity in the
active population in function of t. (Figure 9) Heuristically, we see that the sample
heterozygosity in absence of mutation decays exponentially with parameter approxi-
mately 0.2 (seed bank) or 0.45 (two-island).

6.4 Wright’s FST

One of the most prominent statistics for the analysis of population structure is
Wright’s FST (see [Wri49]). It is defined as

FST :=
p0 − p̄
1− p̄

, (45)

where p̄ is the probability of identity of two randomly sampled genes from the whole
population [Her94, p.73], and p0 is the probability of identity of two randomly sam-
pled genes from a single subpopulation, itself randomly sampled with probabilities
proportional to subpopulation sizes (that is, using method (1) from subchapter 6.2).
The specifics of p0 and p̄ depend on the mutation model.

89



Figure 9: Sample heterozygosity at time t when x0 = y0 = 1/2, K = c = 1, for the
strong seed bank model (blue) and the two-island model (red)

Wright’s FST for the two-alleles model. A standard formulation of the FST
for the two-island model is obtained by expressing p0 and p̄ as functions of sample
heterozygosities:

F TI
ST :=

(K + 1)HTI −KHTI
X −HTI

Y

(K + 1)HTI
.

and analogously,

F S
ST :=

(K + 1)HS −KHS
X −HS

Y

(K + 1)HS

for the strong seed bank model. For example, for u1 = u2 = 0.5 = u′1 = u′2,
c = K = α = 1, the island model (α′ = 1) leads to a stronger differentiation than the
corresponding seed bank model (α′ = 0):

F S
ST =

1

28
< F TI

ST =
1

13
.

This indicates that strong seed banks introduce some population substructure, but
that the effect is stronger for the two island model. Intuitively, both subpopulations
undergoing genetic drift leads to behavior that is closer to two independent populations
than when genetic drift only takes place on one subpopulation.

It is also of interest to see how the FST depends on the model parameters. In
Figure 10, in the first plot we see the FST as a function of the migration rate c. It
approaches 0 as c → ∞ as expected, since this leads to a well-mixed population. A
similar result holds if the mutation rates are increased (second plot). Again, this is
consistent with the heuristic observation that a strong mutation rate which is equal in
both subpopulations further mixes the population. Moreover, from the first two fig-
ures we can infer that for equally-sized subpopulations, the presence of islands results
in an FST value which is approximately twice as high as under the seed bank regime.
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The third plot shows the dependence of FST on K. Under both S and TI, FST is
nearly 0 if the relative population size on either island is very small, resulting in a cor-
respondingly small probability of sampling individuals from the smaller subpopulation
both during homogeneous and during generic sampling.

Figure 10: FST under the two island (red) and strong seed bank models (green for
u′1 = u′2 = 0, blue for u1 = u2 = u′1 = u′2) in function of various parameters. Where
not specified, K = c = 1, u1 = u2 = u′1 = u′2 = 0.5.

The plots also show that the case when there is no mutation in the seed bank, i.e.
u′1 = u′2 = 0, is almost indistinguishable from the case with mutation. For example,
we have, provided u1 = u2 = 1/2,K = c = 1, F S

ST = 1
27 — a slightly stronger signal

than in the case with mutation.

Wright’s FST for the infinite alleles model. Every mutation leads to a new
allele under the infinite alleles model. Thus p0 and p̄ from (45) coincide with the
probabilities of identity by descent (IBD), by which we mean the probability that
the two ancestral lineages of the two genes have not been mutated since the time
of their most recent common ancestor, which has been expressed in a simple form
([Hud90], Section 4). Let T0 be the coalescence time of two ancestral lines from
the same subpopulation, randomly chosen according to its relative size. Given T0,
the probability of no mutations on each given line is e−uT0 . Since mutations arise
conditionally independently (given T0) we have

p0 = E[e−2uT0 ].
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A similar quantity has recently been investigated for S in [dHP17] in the case of a
finite population on a discrete torus. Similarly, we have

p̄ = E[e−2uT̄ ],

where T̄ is the coalescence time of two individuals sampled uniformly from the whole
population (see e.g. [Her94, p73f]). Hence,

FST =
p0 − p̄
1− p̄

=
E[e−2uT0 ]− E[e−2uT̄ ]

E[1− e−2uT̄ ]
.

These quantities can be calculated using the following two results:

Proposition 6.7. Consider a sample of size n = 2 from the seed bank coalescent.
Denote by T1, T2, and T3 the coalescence times of two lineages if both lines are initially
active (T1), one is active and the other dormant (T2), or both are dormant (T3). Then,
for any u > 0,

E
[
e−uT1

]
=

1

1 + 2c+ u(
1 +

2c2K(2Kc+ u)

(c+Kc+ u)(1 + 2c+ u)(2Kc+ u)− 2c2K(1 + 2u+ 2c(1 +K))

)
,

E
[
e−uT2

]
=

cK(2Kc+ u)

(c+Kc+ u)(1 + 2c+ u)(2Kc+ u)− 2c2K(1 + 2u+ 2c(1 +K))
,

E
[
e−uT3

]
=

2c2K2

(c+Kc+ u)(1 + 2c+ u)(2Kc+ u)− 2c2K(1 + 2u+ 2c(1 +K))
.

Proof. The proof is based on phase-type distribution theory; we will mainly use for-
mula (7) (see Chapter 2).
This formula fits the bill both for the seed bank and the two-island models. We fix p =
3, and associate the states {x1, . . . , x4} with “two lineages in the Y -subpopulation”,
“one lineage in X and one in Y ", “two lineages in the X-subpopulation", and “coales-
cence", respectively. For S we take

S =

−2Kc 2Kc 0
c −c−Kc Kc
0 2c −2c− 1

 , s =

0
0
1

 ,
and π = [0, 0, 1] if we start by sampling two active lineages, π = [0, 1, 0] if we sample
one active and one dormant lineage, and π = [1, 0, 0] for two dormant lineages.

Since we are looking for the entire time until coalescence, the reward function r
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will be constant and equal to 1. Thus, we get

E[e−uT1 ] =

0
0
1

(u 0 0
0 u 0
0 0 u

− S)−1
 0

0
−1

 ,
E[e−uT2 ] =

0
1
0

(u 0 0
0 u 0
0 0 u

− S)−1
 0

0
−1

 ,
E[e−uT3 ] =

1
0
0

(u 0 0
0 u 0
0 0 u

− S)−1
 0

0
−1

 .
Multiplying the matrices gives the claimed expressions.

All previous considerations can also be applied to the two-island model TI (see
again [Her94], Section 4.3.1). The interpretation of the initial distribution in the two-
island model with α = 1, α′ =

√
K is similar, and the full picture differs only slightly;

the only difference with respect to the seed bank case is that pairs of individuals may
coalesce in both subpopulations. Thus, we set

S =

−2Kc−K 2Kc 0
c −c−Kc Kc
0 2c −2c− 1

 , s =

K0
1

 .
Now we can prove the following result, giving us the relevant sample heterozygosities
in the infinitely many alleles case:

Proposition 6.8 (Sample heterozygosities in IAM). For the two-island model TI with
α = 1, α′ =

√
K and the seed bank model S, we have

HS
X = 1− E[e−2uT1 ],

HS
Y = 1− E[e−2uT3 ],

HS = 1− K2

(1 +K)2
E[e−2uT1 ]− 2K

(1 +K)2
E[e−2uT2 ]− 1

(1 +K)2
E[e−2uT3 ],

p0
S =

K

1 +K
E[e−2uT1 ] +

1

1 +K
E[e−2uT3 ],

HTI
X = 1− E[e−2uT1 ],

HTI
Y = 1− E[e−2uT3 ],

HTI = 1− K2

(1 +K)2
E[e−2uT1 ]− 2K

(1 +K)2
E[e−2uT2 ]− 1

(1 +K)2
E[e−2uT3 ],

p0
TI =

K

1 +K
E[e−2uT1 ] +

1

1 +K
E[e−2uT3 ],

where T1, T2, T3 are the coalescence times of a sample of two introduced in Proposition
6.7. Moreover, 1−HS = p̄S and 1−HTI = p̄TI.
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Proof. Both in the seed bank model and in the two-island model, using the previous
notation, we can use the formula of total probability to get that

E[e−uT0 ] =
K

1 +K
E[e−uT1 ] +

1

1 +K
E[e−uT3 ];

E[e−uT̄ ] =
K2

(1 +K)2
E[e−uT1 ] +

2K

(1 +K)2
E[e−uT2 ] +

1

(1 +K)2
E[e−uT3 ].

The rest of the thesis follows immediately from the definitions.

Plugging the formulas from Propositions 6.7 and 6.8 into the definition of FST
results in lengthy, but closed-form expressions. In Figure 11, we present simulations
comparing models and exploring how FST s depend on parameters. Notice that all
three plots are remarkably similar to those in the 2-allele case.
The same approach can be adapted to the case when mutation rates differ between
the two populations — we just need a different reward function.

Given a mutation rate u ≥ 0 among the active individuals and u′ = λu ≥ 0 among
the dormant ones, we now define

r(x1) = λ,

r(x2) =
1 + λ

2
,

r(x3) = 1,

reflecting the relative mutation rates. Repeating the computations above with this
choice of reward function will again yield closed-form expressions for FST .

For example, for u = 1/2, c = K = α = 1, the island model (α′ = 1) leads to a
stronger differentiation than the corresponding seed bank model (α′ = 0):

F S
ST =

5

113
< F TI

ST =
1

10
.

In the case where there is no mutation among the dormant individuals (λ = 0),
F S
ST = 1

21 . This indicates that also in this case, strong seed banks introduce some
amount of population substructure, and the effect is stronger for the two island model.
Intuitively, both subpopulations undergoing genetic drift leads to behavior that is
closer to two independent populations than when genetic drift only takes place on one
subpopulation.

Wright’s FST for the infinite sites model. The central difference between the
IAM and the ISM is that all previous mutations on a lineage remain observable in
the latter. However, this does not affect the probability of identity by descent of
two sampled individuals — they will still carry the same allele if and only if neither
ancestral line mutated during the time from their most recent common ancestor to
the present. Thus, sample heterozygosity H and FST under the ISM can be computed
in exactly the same way as in the IAM and we refer to the previous section for the
explicit formulas.
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Figure 11: FST under the two island (red) and strong seed bank models (green for
λ = 0, blue for λ = 1) in function of various parameters. Where not specified,
K = c = 1, u = 0.5.

6.5 Slatkin’s F 0
ST

In [Sla91], Slatkin suggests that FST can be approximated by its limit as the mutation
rate tends to 0; this approximation has the advantage that it can be computed using
de l’Hopital’s rule:

F 0
ST := lim

u→0
FST (u) =

E[T̄ − T0]

E[T̄ ]
.

These expected values are easily computed and independent of the mutation rate.
For example, in the seed bank case with λ = 1, we just need to apply Formula 6 from
Chapter 2.4 with reward vector (1, 1, 1) and initial conditions ( 1

1+K , 0,
K

1+K ) (used for
computing T0) and ( 1

(1+K)2 ,
2K

(1+K)2 ,
K2

(1+K)2 ) (for computing T̄ ) which gives us

E[T0] =
K

1 +K

( 1

K2
+

2

K
+ 1
)

+
1

1 +K

(1 + 2c+K

2cK2
+

1 + 2c

cK
+ 1
)
,

and

E[T̄ ] =
K2

(1 +K)2

( 1

K2
+

2

K
+ 1
)

+
1

(1 +K)2

(1 + 2c+K

2cK2
+

1 + 2c

cK
+ 1
)

+
2K

(1 +K)2

(1 + 2c

2cK2
+

1 + 2c

cK
+ 1
)
.
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We obtain the relatively simple explicit expression

F 0
ST =

K

2c+ 4K + 6cK + 6cK2 + 2cK3 + 1
,

compared with

FST = K(c+ u+ cK)(2c2K4 + 8c2K3 + 12c2K2 + 8c2K + 2c2

+ 3cK3u+ 9cK2u+ 4cK2 + 9cKu

+ 5cK + 3cu+ c+K2u2 + 2Ku2 + 2Ku+ u2 + u)−1

Remark 6.9. • Note that the F 0
ST , like the FST , tends to zero if K → 0, K →∞ or

c→∞, but not in the case c→ 0.

• Figure 12 shows the relative error when using the F 0
ST instead of the FST .

Figure 12: Error using the F 0
ST instead of the FST , under the two island (red) and

strong seed bank model with λ = 1 (blue), given K = c = 1.

As we can see, the validity of the F 0
ST as an approximation for Slatkin’s FST

depends highly on the effective value of u. In the neutral case (K = c = 1) the error
is 1.5% in the seed bank model and 2.2% in the 2-island model for a (low) value of
u = 0.1; for a (neutral) value of u = 0.5, the errors are respectively 8 and 11%; for a
high value of u = 2, the errors become 33 and 44% respectively. All in all, the F 0

ST

seems like a good approximation if u does not get too large.

• The Slatkin approximation is particularly useful in the two-island model, too. In
that case, as shown in [Her94](Section 4.2.7), denoting by S0 the number of nucleotide
differences between a pair of genes sampled randomly from the same subpopulation
and S the same number, but sampling from the entire population, we get

F
(0)
ST =

E[S − S0]

E[S]
,

implying that Slatkin’s approximation for FST can be estimated from DNA sequence
data.

96



6.6 Laplace and Fourier transforms

The introduction of phase-type distribution theory turned out to be revolutionary for
solving this kind of FST problems. The fact that this approach shortens the proofs,
sometimes drastically, is highlighted by the messiness of alternative proofs based upon
the Laplace and Fourier transforms, as we can see here. For simplicity, we state the
proof only in the case S where λ = 1.

Proof. Let T1, T2, and T3 be as before. Define W1,W2 and W3 to be the waiting
times until the first event in coalescent history of a sample of size two in the above
situations (this can be a coalescence or a migration event). By the properties of the
seed bank coalescent, the latter random variables are exponentially distributed with
respective expected values

E[W1] =
1

1 + 2c
, E[W2] =

1

c(1 +K)
, E[W3] =

1

2cK
,

since in the first scenario, there are two possible transitions: a coalescence happening
at rate 1, and a jump from active to dormant state a rate c for each of the two
lineages. The other expected values follow from similar considerations. Consequently,
the Laplace transforms of these random variables are given by

E
[
e−uW1

]
=

1 + 2c

1 + 2c+ u
; E
[
e−uW2

]
=

c(1 +K)

c(1 +K) + u
; E
[
e−uW3

]
=

2Kc

2Kc+ u
.

We now use these plus memorilessness to compute the Laplace transform of T1. To
this end, let C be the event that the first transition of the sample of size two is
a coalescence, and J be the event that the first event is a jump of an active to a
dormant lineage. Note that both C and J are independent of W1. We obtain, due to
lack of memory,

E
[
e−uT1

]
= E

[
e−uT11lC

]
+ E

[
e−uT11lJ

]
= E

[
e−uW1

]
P{C}+ E

[
e−u(W1+T2)

]
P{J}

= E
[
e−uW1 ]E

[ 2c

1 + 2c
e−uT2 +

1

1 + 2c

]
.

Proceeding in a similar fashion for T2 and T3, we obtain the system of equations
E
[
e−uT1

]
= E

[
e−uW1

]
E
[

2c
1+2ce

−uT2 + 1
1+2c

]
,

E
[
e−uT2

]
= E

[
e−uW2

]
E
[

K
1+K e

−uT1 + 1
1+K e

−uT3
]
,

E
[
e−uT3

]
= E

[
e−uW3

]
E
[
e−uT2

]
.

(46)

Inserting the first and the third equation into the second one and simplifying we get:

E
[
e−uT2

]
=

cK(2Kc+ u)

(c+Kc+ u)(1 + 2c+ u)(2Kc+ u)− 2c2K(1 + 2u+ 2c(1 +K))
.

Similarly, we get the other results from Proposition 6.7.
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Remark 6.10. We have computed the Laplace transforms of T1, T2, and T3. Similar
arguments also yield their Fourier transform E[e−2πiuT1 ]. By inverting the Laplace
transform, we get that the density of T1 is equal to

fT1
(s) =

−2c2esr2K2r1 + 2c2esr3K2r1 + 2c2esr1K2r2 − 2c2esr3K2r2 + cesr1r1r2 − cesr2r1r2
(r1 − r2)(r1 − r3)(r2 − r3)

+
3Kcesr1r1r2 − 3Kcesr2r1r2 + esr1r21r2 − esr2r1r22 − 2c2K2esr1r3

(r1 − r2)(r1 − r3)(r2 − r3)

+
2c2K2esr2r3 − cesr1r1r3

(r1 − r2)(r1 − r3)(r2 − r3)

+
cesr3r1r3 − 3Kcesr1r1r3 + 3Kcssr3r1r3 − esr1r21r3 + cesr2r2r3 − cesr3r2r3

(r1 − r2)(r1 − r3)(r2 − r3)

+
3cKesr2r2r3 − 3cKesr3r2r3 + esr2r22r3 + esr3r1r

2
3 − esr3r2r23

(r1 − r2)(r1 − r3)(r2 − r3)
,

where r1 ≤ r2 ≤ r3 are the three roots of the polynomial

P (x) = x3 + (3Kc+ 3c+ 1)x2 + (2K2c2 + 4Kc2 + 2c2 + 3Kc+ c)x+ 2c2K2.

6.7 The site frequency spectrum (SFS)

Since information about the past mutation history of lineages is retained in the ISM,
one may want to consider more informative summary statistics. One of the most
frequently used examples is the site frequency spectrum (SFS), which for a sample of
size n in the ISM is given by a vector (ζn1 , . . . , ζ

n
n−1), with ζni denoting the number

of sites at which the derived allele is observed i times. In the case where we do not
know which allele is ancestral and which is derived, the folded site frequency spectrum
(ηn1 , . . . , η

n
bn/2c) can be used instead, where ηni is the number of sites where the two

variants are observed with multiplicities i : n−i or n−i : i. The SFS is well understood
for the classical Kingman coalescent K, and thus also in the case W, since the weak
seed bank coalescent is just the Kingman multiplied by a constant ([ZT12], formula
1).

Now, as we will show, it is possible to compute the expected site frequency spec-
trum in some particular cases in scenarios K (for comparison), S and TI. For this pur-
pose, we first show an efficient way to compute mean times to the most recent common
ancestor using phase-type distribution theory. For this aim, for some n(1), n(2) ∈ N,
define E as the totally ordered set of configurations{

(n(1) + n(2), 0), (n(1) + n(2) − 1, 1), . . . , (0, n(1) + n(2)), (n(1) + n(2) − 1, 0), . . . ,

(0, n(1) + n(2) − 1), . . . , (2, 0), (1, 1), (0, 2), (∂, ∂)
}

(where we introduced the elements in increasing order), where (i, j) stands for “i ac-
tive and j dormant lineages" for all (i, j), except for (∂, ∂), which is a “death state"
corresponding to the presence of only one lineage, no matter whether active or dor-
mant. Moreover, define (Z(t))t≥0 as a continuous-time Markov chain on E, with the
Q-matrix given by
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Q(n,m),(n̄,m̄) =



(
n
2

)
if (n̄, m̄) = (n− 1,m), n+m 6= 2,

1 if n = 2, m = 0, n̄ = m̄ = ∂,

n if (n̄, m̄) = (n− 1,m+ 1),

Km if (n̄, m̄) = (n+ 1,m− 1),

0 if (n,m) = (∂, ∂),

−(
(
n
2

)
+ n+Km) if (n̄, m̄) = (n,m) 6= (∂, ∂),

0 else,
for any (n,m), (n̄, m̄) ∈ E, using the convention

(
1
2

)
=
(

0
2

)
= 0, and started in

(n(1), n(2)) ∈ E. Then, the following lemma holds:

Lemma 6.11. Take a sample of n(1) active and n(2) dormant individuals in S with
n(1) +n(2) ≥ 2. Define Tn

(1),n(2)

MRCA to be the time to the most recent common ancestor of
the sample, αn(1),n(2) as a vector of length |E| − 1 being 1 in its (n(2) + 1)-th entry18

and 0 else, Q̄ as the square matrix obtained by removing the last row and column of
Q19 and e as the vector of ones of length |E| − 1. Then,

E[Tn
(1),n(2)

MRCA ] = −αn(1),n(2)Q̄−1e.

Proof. Proof by direct application of formula (6) from Chapter 2.4 with the initial
condition π = αn(1),n(2) , the reward vector r = (1, 1, . . . , 1) and the reduced Q-matrix
S = Q̄.

In TI the same result holds with Q defined accordingly. E.g., for α = 1, α′ =
√
K

we get

Q(n,m),(n̄,m̄) =



(
n
2

)
if (n̄, m̄) = (n− 1,m), n+m 6= 2,

K
(
m
2

)
if (n̄, m̄) = (n,m− 1), n+m 6= 2,

1 if n = 2, m = 0, n̄ = m̄ = ∂,

K if m = 2, n = 0, n̄ = m̄ = ∂,

n if (n̄, m̄) = (n− 1,m+ 1),

Km if (n̄, m̄) = (n+ 1,m− 1),

0 if (n,m) = (∂, ∂),

−(K
(
m
2

)
+
(
n
2

)
+ n+Km) if (n̄, m̄) = (n,m) 6= (∂, ∂),

0 else.
In K, of course, we know from literature that E[TnMRCA] = 2(1− 1/n), from which we
can derive that for W,

E[TnMRCA] = 2β2(1− 1/n).

Remark 6.12. Figure 13 gives us the expected times to the most recent common
ancestor for a sample made of n active individuals for n from 2 to 15. The values for

18Corresponding to the state (n(1), n(2)) ∈ E. That is, the first entry if n(2) = 0, the second entry
if n(2) = 1, and so on.

19Corresponding to the state (∂, ∂) ∈ E.
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Figure 13: Expected times to the most recent common ancestor. u = 0.5; in the seed
bank and the 2-island case, c = K = 1.

n = 2 and n = 10 in the seed bank coalescent match with those obtained by Blath,
Eldon, González Casanova, Kurt and Wilke Berenguer ([BGE+15], Table 1); however,
while in that paper the values are obtained via simulations, our phase-type approach
gives us exact results.

Having computed the mean times to the TMRCA, we can now calculate the ex-
pected SFS. This can be done in several ways; we will show two of those. The first
algorithm we show is quite easy to apply in practice, but has somewhat restrictive
hypotheses on the sample:

Proposition 6.13. Suppose we are either in K, in TI or in S, with generic c and K
and all mutation rates equal to u > 0. Moreover, suppose we have a sample of total
size n ≥ 2. Additionally, in S and TI, suppose one of these cases holds:
• First case: in S, the sample is taken uniformly from active individuals; in TI, the
sample is taken uniformly from the first island;
• Second case: in S, the sample is taken uniformly from dormant individuals; in TI,
the sample is taken uniformly from the second island;
• Third case: the number of active individuals (in S) or individuals from the first
island (in TI) is given by a random variable B with B ∼ Bin(n, K

1+K ), resulting in a
randomly mixed sampling (the total size of the sample, n, still being fixed a priori).

Then, the recursive formula

E[ζn−1
l ] =

n− l
n
E[ζnl ] +

l + 1

n
E[ζnl+1], 1 ≤ l ≤ n− 2,

holds (in all three cases and all three models), which, along with the boundary condition

E[ζnn−1] = unE
[
Tn,0MRCA − T

n−1,0
MRCA

]
(S and TI, first case),

E[ζnn−1] = unE
[
T 0,n
MRCA − T

0,n−1
MRCA

]
,
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Figure 14: In the ancestral tree on the left, no anti-singletons are possible since the
last merger does not involve a block of size 1. In the ancestral tree on the right,
however, any mutation on the lineage marked in red will result in an anti-singleton.

(S and TI, second case),

E[ζnn−1] = u

n∑
x=0

(
n

x

)( K

K + 1

)x( 1

K + 1

)n−x
×

× E
[
nT x,n−x

MRCA − xT x−1,n−x
MRCA − (n− x)T x,n−x−1

MRCA

]

(S and TI, third case),

E[ζnn−1] = unE
[
Tn
MRCA − Tn−1

MRCA

]

(K), and the Lemma (which gives us the explicit T i,j
MRCA), gives us E[ζn1 , . . . , ζnn−1] in

closed form for any n.

Proof. We prove the statement for the cases K and S; the proof in the case TI is almost
the same.
First of all, we consider the anti-singletons, i.e. the sites where the original allele can
only be observed once in the sample. Consider their mean number τn in the case K

at first. Imagine the coalescent tree of our sample of size n and compare it to the
coalescent tree obtained by removing one of the n individuals. The TMRCA will be
different if and only if the last merger involved a block of size 1 containing exactly
the individual which we removed, an event which happens with a probability we will
denote with pn.

Secondly, a necessary condition for the presence of anti-singletons is that the last
merger (see picture) involves a block of size 1 (else it would be impossible to see a
mutation in all individuals save one). If we denote this event with A, then P{A} = npn
by symmetry. Finally, the mean number of anti-singletons given A is, by construction
of the infinite sites model, equal to the mutation rate times the difference of TMRCA

(that is, the time between the second-to-last and the last coalescences). These three
arguments produce the formula

τn = u E[Tn
MRCA − Tn−1

MRCA] n.

This algorithm can be extended to the case S by re-adjusting the formula to a sample
made of n(1) active and n(2) dormant individuals, with τn(1),n(2) the corresponding
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mean number of anti-singletons, which is then equal to

τn(1),n(2) = uE[nTn
(1),n(2)

MRCA − n
(1)Tn

(1)−1,n(2)

MRCA − n(2)Tn
(1),n(2)−1

MRCA ].

Now, we will use an argument introduced in [SKS16] (part of the proof of Lemma
1), which holds both for K and S. Take a sample of size n−1 and consider the number
of sites ζn−1

l where exactly l individuals exhibit a mutation with 1 ≤ l ≤ n − 2.
Assume our sample was obtained by taking n individuals first and then removing
(randomly and uniformly) one of them we will denote with I. Then, ζn−1

l is the sum
of the number of sites where there are l mutants (in the n-sample) and I is one of
them and the number of sites where there are l + 1 mutants (in the n-sample) and I
is not among them. Given the fact that the choice of I is clearly independent of the
number of mutants, we get for the corresponding expected values

E[ζn−1
l ] =

n− l
n
E[ζnl ] +

l + 1

n
E[ζnl+1].

However, notice that, by definition of anti-singleton, we have E[ζnn−1] = τn,0 (in the
first case, and similarly else). Therefore we can calculate E[ζij ] recursively using the
following algorithm:
1) n = 2.
2) Calculate E[ζnn−1] using the anti-singleton formula.
3) If applicable, calculate E[ζnn−2] from E[ζnn−1] and E[ζn−1

n−2 ] using the recursive formula
with l = n− 2.
4) Use the recursive formula to calculate E[ζnn−3], E[ζnn−4], . . . E[ζn1 ] as well.
5) If n < i, increase n by 1 and restart from step 2. Else, we are done.

Notice that the recursive formula has the drawback that it is not applicable when
the hypothesis 1 ≤ l ≤ n− 2 is not met. This is the main reason of the fact that we
cannot compute the expected SFS for all samples (in particular, if we have a sample
made of n(1) active and n(2) dormant individuals, where n(1) and n(2) are fixed and
none is equal to 0) using the method from the proposition.

Moreover, this method does not work in the case where the mutation rates of active
and dormant individuals are different. The reason for this is that here the average
number of anti-singletons also depends on whether immediately after the second-to-
last merger we have an active and a dormant individual or two active ones.
In these cases, we can use a different algorithm, which calculates the expected SFS by
considering the entire structured coalescent instead of just its block-counting process.

Remark 6.14. In [K3], a variant of this algorithm, which increases computational ef-
ficiency by simplifying the state space via a quotient, is shown. However, in this thesis
we will present the algorithm employing the full seed bank coalescent for instructive
purposes.

For a sample of n(1) active and n(2) dormant individuals with n(1) +n(2) = n, recall
the seed bank n-coalescent from Chapter 1 (that is, the coalescing process defined in
[BGKWB16]). Moreover, notice that even if |P{p,s}n |, the cardinality of P{p,s}n , can be
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difficult to calculate, it is clearly finite. Thus, we can define a bijective function (using
the notation [n] := {1, 2, . . . , n} for n ∈ N)

Ψ : [|P{p,s}n |]→ P{p,s}n ,

imposing Ψ(1) = {{1, . . . , n}p}, Ψ(2) = {{1, . . . , n}s}, a convention that we will use
later. Furthermore, define, for i, j ∈ [|P{p,s}n |], Qi,j := QΨ−1(i),Ψ−1(j), which induces a
matrix as well.

Proposition 6.15. Suppose we are in S, with generic c and K and mutation rates
equal to u > 0 among the active and λu ≥ 0 among the dormant individuals.

Then, if α is defined as the vector of length |P{p,s}n | − 2 with

α := 1lΨ−1({{1}p,...,{n(1)}p,{n(1)+1}s,...,{n(1)+n(2)}s}),

Q̄ as the square matrix of size |P{p,s}n |− 2 obtained by removing the first two rows and
columns of Q and r as the function from P{p,s}n to [0,∞) defined by

r(π) =


u if π has is a block of size n− 1 labeled p,
λu if π has is a block of size n− 1 labeled s,
0 else,

the following equation holds for the mean number of anti-singletons:

τn(1),n(2) = −αQ̄−1r.

Moreover, if we are in one of the three cases described in Proposition 6.13, we can
compute the entire expected SFS and we refer to the statement for the exact formulas.

Proof. Direct consequence of formula (7) from Chapter 2.4, where π = α, S = Q̄ and
r is the reward vector, and Proposition 6.13.

In TI the same result holds with Q defined accordingly. E.g., for α = 1, α′ =
√
K

we get

Qπ,π′ =



1 if π ≺p π′,
K if π ≺s π′,
c if π ./ π′, and a p has been replaced by an s,
Kc if π ./ π′, and an s has been replaced by a p,
0 else with π 6= π′,

−
∑

π′ 6=π Qπ,π′ if π = π′.

Proposition 6.16. Suppose we are in S, with generic c and K and mutation rates
equal to u > 0 among the active and λu ≥ 0 among the dormant individuals. For any
π ∈ P{p,s}n , define nj1(π) and nj2(π) as the number of blocks of π which are of size j and
have, respectively, the p-label or the s-label. That is, the number of p- or s- branches
with j descendants.
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Moreover, let α and Q̄ be defined as before, and, for any j ∈ {1, . . . , n(1)+n(2)−1},
define r(j) as the function from P{p,s}n to [0,∞) with

r(j)(π) := unj1(π) + λunj2(π).

Then,
E[ζn

(1),n(2)

j ] = −αQ̄−1r(j),

giving us the entire expected SFS in the case of a sample of exactly n(1) active and
n(2) dormant individuals.

Proof. We take into account the entire coalescent process. By definition, mutations

Figure 15: An ancestral tree. Any mutation on a red lineage results in a singleton, i.e.
the number of mutations on red lineages is equal to the first entry of the SFS. In the
same way, the number of mutations on purple/blue/green. . . lineages is respectively
equal to the second/third/fourth. . . entry of the SFS.

on branches with one descendant give rise to singletons in the SFS, while mutations
on branches with two or three descendants give rise to doubletons, tripletons and so
on (as seen in [HSB19], Algorithm 3.4; see picture). Therefore, ζn

(1),n(2)

j can be seen
as the number of all mutations on branches with j descendants, and as such, as the
sum of ζn

(1),n(2)(p)
j (number of all mutations on “p” branches with j descendants) and

ζ
n(1),n(2)(s)
j (same with “s” branches). If we denote with Zj the sum of the lengths of
all branches with j descendants20, then Zj = Zpj + Zsj , where Z

p
j is the sum of the

length of all branches with j descendants and a “p” label (where mutations happen at
rate u) and Zsj the same with “s” (where mutations happen at rate λu). Finally, for
the expected values,

E[ζn
(1),n(2)

j ] = E[ζ
n(1),n(2)(p)
j + ζ

n(1),n(2)(s)
j ] = E[uZpj + λuZsj ],

which, using formula (8) in [HSB19] with π = α the initial condition vector, S = Q̄
the reduced Q-matrix and r the reward vector, and taking account of the multiplicity
of the branches, yields the thesis.

20Notice that some of those branches might coexist at some time point, hence the multiplicity
adjustment at the end.
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Remark 6.17. It is exceedingly complicated to use this theorem in practice, because
the state space of our Markov chain (and thus, the dimension of Q̄) gets very big even
for small n (dim(Q̄)=20 for n = 3; 92 for n = 4). For n = 2 and n = 3, the results
match with those obtained with the recursive formula. This problem can be mostly
solved by reducing the state space via a quotient as in [K3], and we refer to the paper
for the description of the algorithm in full detail (Section 2.2). We will simply state
the equivalency relation ∼ inducing the quotient here:
We say that π ∼ π′ for π, π′ ∈ P{p,s}n if and only if for every n ∈ N, π and π′ have the
same amount of p-blocks and of s-blocks of size n. For example,

{{1}p, {2}p, {3}s, {4}s} ∼ {{1}s, {2}s, {3}p, {4}p},

since both labeled partitions have two p-blocks and two s-blocks of size one each;
however,

{{1}p, {2}p, {3}s, {4}s} � {{1, 2}p, {3}s, {4}s},

since the former has no p-block of size 2. The elements of P{p,s}n /∼ can then be
represented via vectors of length 2n (where n is of course the total sample size). In
such a vector v, the i-th entry v(i) gives us the number of p-blocks of size i for i ≤ n
and the number of s-blocks of size i−n for i > n. This quotientation reduces the size of
the state significantly: e.g. if n = 3, P{p,s}n /∼ has just 10 elements, of which two are in
the absorbing class, namely, in vector form, (0, 0, 0, 1, 0, 0, 0, 0) and (0, 0, 0, 0, 0, 0, 0, 1);
in the phase-type formalism, the matrix S is therefore only a 8× 8 matrix, compared
to 20 × 20 without the quotient. In the case of a sample of active individuals only,
this simplification allowed for the algorithm to be implemented; the resulting figures
match exactly the ones obtained via Proposition 6.13.

6.8 Expected normalized and normalized expected SFS

Another interesting quantity is the normalized expected site frequency spectrum
(NESFS) (Eζ̂n1 , . . . , E

ˆζnn−1), as introduced in [EBBF15] (p.13). It is defined by

Eζ̂ni :=
E[ζni ]∑n
l=2 lE[Tl]

,

Tl being the time during which there are l lineages, l = 2, 3, . . . n. In other words,∑n
l=2 lE[Tl] is the average tree length.21 The name stems from the fact that the

NESFS is a first-order approximation of the expected value of the normalized SFS,
which is defined ([EBBF15], p.9) as

ζ̂ni :=
ζni

ζn1 + · · ·+ ζnn
.

The distribution of the resulting random vector is very insensitive to the mutation
rate, provided it is not too small, facilitating practical inference when the mutation
rate is unknown [EBBF15, Supporting Information, pages SI12 – SI13].

21The expected value of Tl can be computed using Formula (6) from Chapter 2.4 with an appro-
priate reward function.
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Figure 16 provide two illustrations on the expected SFS, with and without nor-
malization. Throughout, we set K = c = u = 1, and fix a sample size of n = 15. Blue
bars correspond to S, green to TI with α = α′ = 1, and yellow to K for comparison.

Figure 16: Expected SFS when sampling is purely from the active population.

It is noteworthy that the magnitude of entries in the SFS varies dramatically
between the three models, while S and TI have very similar normalized spectra. The
implication is that all three models are straightforward to tell apart if the population-
rescaled mutation rate is known, but that a larger sample, or a more informative
summary statistic, is needed to distinguish S from TI when it is unknown.

6.9 Quasi-stationarity and the Yaglom limit

Let us consider a sample of two in the general case. As we have noticed during the
calculations of the FST , we can see the behavior of the two individuals as a Markov
chain (M(t)), with the state space formed by “two lineages in the Y -subpopulation”,
“one lineage in X and one in Y ", “two lineages in the X-subpopulation", and “co-
alescence", respectively associated to the abbreviations {x1, . . . , x4}. This Markov
chain has a unique absorbing state, namely the coalescence state; from this we can
ask ourselves the question: does a limit for the probabilities P{M(t) = i|M(t) 6= 0},
i.e. the probability to be in state i at time t conditioned on non-coalescence by that
time, exist for t → ∞? The answer, as we will see, is yes, although the closed-form
formula for the distribution (which we will call, from now on, the quasi-stationary
distribution, see [MV12]) is very complicated.
First, let’s formalize our thoughts by using the definitions from ([MV12]) (Definitions
1 and 2):

Definition 6.18. If we have a stochastic process (M(t))t≥0 with state space E and set
of transient states E∗, we say (M(t)) has a Yaglom limit if there exists a probability
measure µ on E∗ such that, for any x ∈ E∗ and any measurable set A ⊂ E∗,

lim
t→∞

Px{M(t) ∈ A|M(t) ∈ E∗} = µ(A).

If the previous equation holds for any t > 0 (not just in the limit) provided the starting
distribution is µ, µ is called a quasi-stationary distribution as well.
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Using Theorem 7 in ([MV12]) and imposing E = {x1, x2, x3, x4}, we can prove
that our Markov chain admits a unique quasi-stationary distribution, which coincides
with the Yaglom limit. Moreover, the limit distribution is the unique positive left
eigenvector of the Q-matrix of the Markov chain restricted to E∗ = {x1, x2, x3}, the
Q-matrix being equal to

S =

−2Kc 2Kc 0
c c+Kc Kc
0 2c −2c− 1


in the seed bank model and equal to

S =

−2Kc−K 2Kc 0
c c+Kc Kc
0 2c −2c− 1


in the standard two-island model (α = 1, α′ =

√
K).

However, as in subchapter 6.3, the computation of the matrix exponentials turns out
to be messy. Therefore, we will just give a numerical example here. In the case
K = c = 1, we get approximately

(0, 289; 0, 524; 0, 186) and (0, 219; 0, 562; 0, 219)

as the quasi-stationary distributions on {x1, x2, x3}. Notice how the distribution in
the seed bank model drifts away from the state “two active individuals”, which com-
municates with the absorbing state, and how the distribution in the two-island model
is symmetrical, as we would expect it to be.

6.10 Discussion

While in the two-subpopulation case, the FST is useless in order to infer on the
presence of weak seed banks, this is not the case for both the strong seed bank and
the two-island scenarios. In fact, the FST in the two-island case is approximately twice
as big as in the seed bank case, given all other parameters stay the same. However,
it is nearly impossible, given the FST , to infer whether there is mutation among
the dormant individuals. Similar results occur in the infinitely many alleles and the
infinitely many sites model.

Regarding the SFS, the normalized site frequency spectrum in the ISM is also of
little use for distinguishing between the strong seed bank and two-island scenarios.
However, the Kingman scenario exhibits a lighter tail and more singletons on average.
In contrast, if we have the entire SFS, the three models will differ remarkably.
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7 Conclusion

7.1 Conclusions

In this thesis, we addressed the problem of examining many different extensions of the
Wright-Fisher diffusion, all exhibiting some form of population structure. Both the
case where all subpopulations exhibit the same reproductive mechanisms and the case
where some of the subpopulations consist entirely of dormant individuals remaining
inactive until resuscitation have been thoroughly examined.

In the first chapter, background regarding the population structures and the muta-
tion models, was presented, while in the second one some tools helping us throughout
the thesis were outlined. In the third chapter, the first basic results, ensuring the
platform we work on is stable, were provided. In particular, we focused on uniqueness
of the stationary distribution and its characterization via mixed moments.

After that, we moved to the main focus of the thesis, which is analyzing similarities
and differences between the two-island and the seed bank models. This was mainly
done in chapters 4 and 5. The first one tackled the several different ways to handle
the boundary behavior problem: if we have two competing alleles, will one of them go
temporarily extinct in finite time with positive probability? We saw that, while the
speed and scale approach is not applicable here and simple comparisons do not give a
sharp bound, both the Lyapunov and the McKean argument combined with a theorem
from polynomial diffusions entirely solve our problem; the critical value is 1/2 (in the
case α = 1). Moreover, Chapter 5 approached the interesting topic of scaling limits.
We saw that the time rescaling is crucial here and that our main allies in this chapter
are represented by Möhle’s Lemma for the convergence of the coalescent processes
and duality for convergence of the diffusion processes. Our contribution was adapting
this tool to our purposes in order compute a scaling limit of continuous-time Markov
processes. Even more interesting was the fact that in one case, the scaling limit we
got was an entirely new, non-trivial diffusion process with jumps.

From a practical point of view, our thesis’ main aim was to discuss several popular
summary statistics (“measures of population structure”) of some population genetic
models (mainly, the seed bank and the two-island diffusion), both in the finite-allele
and the infinite-allele case. This was done in order to distinguish the patterns of ge-
netic variability produced by those models, and was the main aim of Chapter 6. In
particular, the sample heterozygosity, the FST , which is a measure of how the popula-
tion differs between subpopulations, and the site frequency spectrum were taken into
consideration. Most relevantly, results showed that both the FST and the expected
SFS can be used to distinguish between the seed bank and two-island scenarios. More-
over, the latter, along with the nSFS, can be used in order to differentiate those two
from a population where the seed bank is weak or even non-existent (Kingman sce-
nario).

7.2 Future Work

Despite many topics regarding structured extensions of the Wright-Fisher diffusion
having been tackled in this thesis, many more have been left for the future.

108



For example, this thesis mainly focused on the seed bank model and the two island
model. Other diffusion models with a geographical structure have only been taken
into consideration sparingly. For example, nothing was said about models exhibiting
large reproductive events, i.e. individuals giving birth to a positive fraction of the
population. This reflects itself in the fact that the diffusion process exhibits jumps
here and is the go-to model in the study of genetic patterns of Atlantic cod [EW08].

Regarding the mutation models, an interesting example we did not investigate is
the so-called infinitely many genes model [BP14, BHP12]. In this model, reproduction
is given by Wright-Fisher diffusion-like dynamics. However, each of the individuals
carries a set of genes. These sets can be different between the individuals, do not have
to be of the same cardinality and only contain genes which don’t influence the fitness
of the individual (in particular, they can be lost without problems). Every offspring
can lose each of its parent’s genes, or gain a new gene for its set, which has never been
seen before and which does not override any of the existing ones.

If we only look at topics that were thoroughly handled within the thesis, the
easiest possibility for future work is, in our opinion, Chapter 6.3, since there are many
ideas that could be exploited to try to compute, or at least approximate, the matrix
exponential. We think that it should be doable to prove that the sample heterozygosity
decay in absence of mutation is exponential with parameter 1/5 (in case S), as the
plots and simulations strongly suggest. Another topic it would be very interesting to
work on is applying the Lyapunov argument to a broader class of Markov processes,
since it gave good results (often even reaching the optimal bound) when used hitherto.
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