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Abstract
This thesis is devoted to the application and analysis of time integration schemes for differential-
algebraic equations (DAEs) stated in (abstract) Banach spaces. The existence, uniqueness, and
regularity of solutions of these so-called operator DAEs are analyzed with the help of temporal
discretization methods. The convergence behavior of the time-discrete approximations and their
convergence orders are addressed as well.

Besides being of interest as a generalization of the concept of DAEs to the infinite-dimensional
setting, operator DAEs are an abstract approach for the analysis of constrained partial differential
equations (PDEs) in their weak form. The constraints on the solution of the PDEs are possibly
given by spatial differential operators like the divergence-free condition on the velocity field in
the incompressible Navier-Stokes equations. Examples of constrained PDEs appear in all kinds
of physical fields such as fluid dynamics, thermodynamics, electrodynamics, mechanics, chemical
kinetics, as well as in multi-physical applications where different physical domains are coupled.

The first main results of this thesis cover the existence, uniqueness, and regularity of solutions of
semi-linear, semi-explicit operator DAEs. In this analysis, the challenges known for DAEs and PDEs
have to be tackled simultaneously. These include a limited set of feasible initial values, requirements
on the temporal and spatial regularity of the data, and a high sensitivity to perturbations. For
operator DAEs with time-independent operators, continuity results for the solutions in the data
are used to extend well-known existence, uniqueness, and regularity results to systems with less
regular or state-dependent right-hand sides. Similar results for operator DAEs with time-dependent
operators are derived by studying the convergence of time-discrete solutions obtained by the implicit
Euler method. In this study, time-varying inner products as well as time-dependent kernels of the
constraints operators complicate the analysis.

As the second main topic, the convergence of the temporal discretization of semi-explicit operator
DAEs by implicit, algebraically stable Runge-Kutta methods and explicit exponential integrators
is analyzed. As expected from the theory of DAEs and PDEs, the convergence properties depend
strongly on the assumed temporal and spatial regularity of the data, vary for the single variables, and
differ from finite-dimensional systems. For Runge-Kutta schemes, a regularization is introduced and
the strong convergence of the time-discrete approximations under minimal regularity assumptions
is proven. A convergence order of q + 1 and of q + 1/2 is shown for the state and the Lagrange
multiplier, respectively. Here, q denotes the stage order of the Runge-Kutta scheme. For explicit
exponential integrators, order conditions for methods up to order three are derived for the state of
semi-linear operator DAEs. In addition, an approximation of the Lagrange multiplier is introduced
whose convergence order is reduced by half an order. For both classes of integration schemes,
sufficient conditions are formulated which increase the convergence order. The results are supported
by numerical examples.
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Zusammenfassung
Diese Arbeit befasst sich mit der Anwendung von Zeitintegrationsverfahren auf differentiell-alge-
braische Gleichungen (DAEs), welche in (abstrakten) Banachräumen gestellt sind. Die Existenz,
Eindeutigkeit sowie die Glattheit der Lösungen von diesen sogenannten Operator-DAEs werden
mit Hilfe von Einschrittverfahren analysiert. Sowohl das Konvergenzverhalten der zeitdiskreten
Approximationen als auch deren Konvergenzordnung sind ebenfalls Untersuchungsschwerpunkt.

Operator-DAEs stellen eine Verallgemeinerung des DAE-Begriffs auf Systeme in unendlich-di-
mensionalen Vektorräumen dar. Dabei lassen sich mit ihnen partielle Differentialgleichungen mit
Nebenbedingung (PDAEs) untersuchen, die in ihrer schwachen Formulierung gestellt sind. Diese Ne-
benbedingungen an die Lösung von den partiellen Differentialgleichungen (PDEs) sind möglicherweise
durch Differentialoperatoren gegeben. Zum Beispiel wird in den inkompressiblen Navier-Stokes-
Gleichungen an das Geschwindigkeitsfeld gefordert, dass dessen Divergenz verschwindet. PDAEs
treten in vielen Anwendungsbereiche auf, wie zum Beispiel in der Fluiddynamik, Thermodynamik,
Elektrodynamik, Mechanik, chemischen Kinetik sowie in multiphysikalischen Anwendungen, in denen
verschiedene physikalische Domänen miteinander gekoppelt werden.

Die Existenz, Eindeutig und Glattheit von Lösungen von semi-linearen, semi-expliziten Operator-
DAEs sind die ersten Untersuchungsschwerpunkte dieser Arbeit. Dabei müssen die Herausforderungen,
die von DAEs und PDEs bekannt sind, gleichzeitig gemeistert werden. Diese Herausforderungen
umfassen unter anderem eine eingeschränkte Menge zulässiger Anfangswerte, Glattheitsanforderungen
an die Daten sowohl in der Zeit als auch im Ort, sowie eine starke Störungsempfindlichkeit. Für
Operator-DAEs mit zeitunabhängigen Operatoren wird die stetige Abhängigkeit der Lösungen
von den Daten genutzt, um wohlbekannte Existenz-, Eindeutigkeits- und Glattheitsresultate auf
Systeme mit schwächeren Voraussetzungen an die rechten Seiten oder mit zustandsabhängigen
rechten Seiten zu erweitern. Ähnliche Ergebnisse für Operator-DAEs mit zeitabhängigen Operatoren
werden mittels einer Konvergenzuntersuchung von zeitdiskreten Lösungen bewiesen. Die zeitdiskreten
Lösungen entspringen dabei der Diskretisierung durch das implizite Euler Verfahren. Zeitvariante
Skalarprodukte sowie zeitabhängige Kerne des Operators, der die algebraischen Nebenbedingungen
stellt, erschweren dabei die Untersuchung.

Die Konvergenz der zeitlichen Diskretisierung von semi-expliziten Operator-DAEs durch implizite,
algebraisch stabile Runge-Kutta-Verfahren sowie durch explizite, exponentielle Integratoren wird im
zweiten Hauptteil dieser Arbeit betrachtet. Wie von der Theorie der DAEs und PDEs zu erwarten
ist, hängen die Konvergenzeigenschaften stark von der zeitlichen und örtlichen Glattheit der Daten
ab, variieren für die einzelnen Zustandsvariablen und unterscheiden sich im Vergleich zu endlich-
dimensionalen Systemen. Für die Runge-Kutta-Methoden wird eine Regularisierung eingeführt und
die starke Konvergenz der zeitdiskreten Approximationen unter minimalen Annahmen an die Daten
bewiesen. Es wird gezeigt, dass die Konvergenzordnung gleich q + 1 für die Zustandsvariable ist
und für den Lagrange-Multiplikator q + 1/2 entspricht. Dabei bezeichnet q die Stufenordnung des
Runge-Kutta Verfahrens. Für die Anwendung von exponentiellen Integratoren auf semi-lineare
Operator-DAEs werden die Ordnungsbedingungen bis zur dritten Ordnung hergeleitet. Zusätzlich
wird eine Approximation des Lagrange-Multiplikators eingeführt, dessen Konvergenzordnung um
eine halbe Ordnung reduziert ist. Für beide Klassen von Integrationsverfahren werden hinreichende
Bedingungen formuliert, die die Konvergenzordnung verbessern. Numerische Beispiele illustrieren
die Ergebnisse.
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1. Introduction
Modern modular modeling packages, such as Modelica1, Matlab/Simulink2, and Simpack3,
allows one to describe complex dynamical systems by simply interconnecting smaller models,
facilitating rapid model development. The dynamical submodels together with interconnection
constraints, e.g., the Kirchhoff’s circuit laws [Kir45], lead to systems, which contain differential
equations and algebraic constraints, so-called differential-algebraic equations (DAEs). This modeling
approach simplifies the interconnection processes and preserves the system’s sparsity but comes at
the cost of analytical and numerical difficulties; see [AscP98; BreCP96; HaiLR89; HaiW96; KunM06;
LamMT13; Sim13].

If the submodels are given by partial differential equations (PDEs), then the resulting coupled
systems are mixtures of DAEs and PDEs, so-called constrained PDEs. Typical examples are flexible
multibody systems [Sim00; Sim13], circuit networks [Tis96; Tis03], or the gas transfer in pipeline
networks [EggKL+18; GruJH+14; JanT14]. For the latter two, the network structure describes the
interconnection where transmission lines or the propagation of pressure waves are modeled by PDEs
on the single edges [MagWT+00]. Outside of the interconnection context, constrained PDEs appear
in the description of fluid flow problems. Often, one assumes that a fluid is incompressible leading
to a divergence-free velocity field as constraint [EmmM13; Tem77]. Furthermore, constrained PDEs
are used for the analysis of PDEs with nontrivial boundary conditions like moving or dynamical
boundary conditions [Alt14; Alt19; HinPU+09].

It is well-known from the theory of DAEs that the combined presence of differential and algebraic
equations comes with several difficulties, e.g., initial values and solutions restricted to manifolds
as well as regularity conditions on inhomogeneities [KunM06; LamMT13; Rhe84]. In the temporal
discretization of DAEs, these difficulties translate into high sensitivity to perturbations, reduction
of convergence order, or even loss of convergence [HaiLR89; HaiW96; Pet82]. Here, constraints,
which are only apparent after manipulations with differentiation, must be treated with special care
[HaiW96; KunM06]. On the other hand, problems occurring in the analysis and simulation of PDEs
include restrictions on the spatial regularity of initial values and inhomogeneities as well as reduced
temporal convergence order in contrast to systems of finite dimensions [HocO10; OstR92; Tar06;
Zei90a]. Since constrained PDEs generalize the concept of DAEs and PDEs, they suffer from all the
difficulties mentioned above [Alt15; Deb04; EmmM13; LamMT13].

For the numerical simulation of constrained PDEs, one typically discretizes them first in space
and then in time or the other way around. The first approach, the so-called methods of lines [Sch91],
leads to finite-dimensional DAEs [Tem77; Tis03; Wei97]. Following the Rothe method [Rot30],
i.e., discretizing the constrained PDEs first in time, produces sequences of stationary but infinite-
dimensional problems; see [Alt15] and for the particular case of the incompressible Navier-Stokes
equations [Emm01]. This ansatz simplifies the analysis of adaptive strategies in space [SchB98]
and of temporal error bounds which are independent of the spatial mesh width [HocO10]. These
mesh-independent bounds are vital for the simulation of infinite-dimensional systems, since the
temporal convergence order differs in general for finite versus infinite-dimensional systems [HocO10;
OstR92]. If the spatial mesh gets finer, the temporal convergence behavior can fade to the one
for the infinite-dimensional system; cf. [ProR74]. Besides its application in the field of numeric,

1www.modelica.org
2www.mathworks.com
3www.simpack.com
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1. Introduction

the Rothe method is also applied for the investigation of solutions of dynamical systems [Emm04;
Rou13].

The Thesis
One aim of this thesis is the analysis of a specific class of constrained PDEs. The existence of
solutions of constrained PDEs with time-dependent coefficients is studied with the Rothe method
using the implicit Euler scheme. Uniqueness and regularity results of the solution are also stated.
Furthermore, the convergence behavior and the convergence order are investigated for the time-
discrete approximation of the constrained PDEs using implicit, algebraically stable Runge-Kutta
methods and explicit exponential integrators. In the study of well-posedness and the related
convergence analysis, great importance is attached not only to the state u but also to the Lagrange
multiplier λ; cf. (1.1). Here, the Lagrange multiplier measures an abstract force which is exerted on
the solution of the PDE such that it satisfies the constraints [Bra07].

Operator Differential-Algebraic Equations

While a well-developed theory for the solvability of DAEs and PDEs exists in the literature, see the
exemplary works, [HaiLR89; HaiW96; KunM06; LamMT13] and [Bra07; DauL92; Wlo87; Zei90a],
respectively, the theory for constrained PDEs, in contrast, is quite limited. Results are available
only for specific classes and mostly for systems with time-independent coefficients [Alt15; Deb04;
EmmM13; Hei14; LamMT13; LucSE99; Mar97]. To receive statements on constrained PDEs, one
promising approach is to mathematically interpret them as DAEs in Banach spaces, also referred to
as operator DAEs [Alt15; EmmM13]. In this thesis, we consider semi-linear operator DAEs with
semi-explicit structure, i.e., systems of the form

d
dt (Mu) +

(︁
A− 1

2
d
dtM

)︁
u − B∗λ= f, (1.1a)
Bu = g (1.1b)

with linear operators M, A, B and right-hand sides f = f(u) and g defined on appropriate Hilbert
spaces. Here, the time derivatives in (1.1a) should be understood in a distributional sense. The well-
posedness of operator DAEs of the form (1.1) with time-independent operators and state-independent
right-hand sides are well-studied; see [FavY99; Rei06; Sho10] for a semigroup ansatz and [Alt15;
EmmM13; Hei14; Zim15] for a variational approach as well as [DauL93; Tar06; Tem77] in the
context of fluid dynamics. On the other hand, a rigorous analysis for the operator DAEs (1.1) with
time-dependent operators is missing. In particular, for systems with a time-dependent operator B
there are only results known if the kernel of B is time-independent [AltH18], or for a specific choice
of B [Alt14]. For general operator DAEs (1.1) with state-dependent right-hand sides, no results are
known outside of the context of fluid dynamics [Tar06; Tem77].

Time-Integration Schemes

As for the well-posedness problem, numerical integration schemes are well-studied for DAEs and
PDEs, see [AscP98; BreCP96; HaiLR89; HaiW96; KunM06; LamMT13] and [Emm05; HocO10;
HunV03; LubO95a; LubO95b; Tho06], respectively, and the references therein. All these time-
stepping methods must respect the infinitely stiff nature of the problem arising either due to the
algebraic constraints or due to the spatial differential operators of DAEs and PDEs, respectively,
i.e., certain associated (operator) spectra have accumulation points at −∞ [BreCP96; OstR92].
Classical examples of such a family of methods are implicit Runge-Kutta schemes. Runge-Kutta
methods have been analyzed in the early work of Euler in the 18th century and are among the
best understood time-stepping methods [GonO99; HaiNW93; HaiW96]. Exponential integrators,
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on the other hand, are time-stepping methods based on the possibility to solve the linear part of
semi-linear systems in an exact manner [HocO10]. As a result, large time steps are possible even for
highly stiff systems, like stiff ordinary differential equations, PDEs, and DAEs of (differentiation)
index one [Cer60; HocLS98; HocO10; Law67]. In particular, these systems can be discretized by
explicit exponential integrators. For these integrators, all root-finding problems are linear and the
approximation requires in total a priori known number of evaluations of the nonlinear right-hand
side.

The literature on the temporal discretization of operator DAEs of the form (1.1) is quite limited. For
linear systems only the implicit Euler method [Alt15], splitting schemes [AltO17], and discontinuous
Galerkin methods [VouR19] have been studied. The analysis of the nonlinear case, on the other
hand, has been restricted to the incompressible Navier-Stokes equations, where results are known
for the implicit Euler scheme, the two-step BDF method [Emm00; Emm01] and exponential
integrators (without a convergence analysis) [EdwTF+94; KooBG18; New03]. However, studies on
the convergence behavior of the temporal discretization of (1.1) by general Runge-Kutta methods
and exponential integrators are not available.

It is worthy to mention that a standard spatial discretization of (1.1) by finite elements leads to
an index-2 DAE [Alt15]. This indicates that the temporally discretized operator DAE is sensitive to
perturbations of the discrete right-hand side g [Alt15; HaiLR89]. Therefore, the high index must
be considered in the construction of time-stepping methods by regularization techniques [AltH15;
HaiW96; VouR19], also called index reduction in the DAE case, or by exploiting the structure of the
system [AscP98].

Organization of This Thesis

This thesis is divided into three parts. In Part A, we introduce the essential mathematical concepts
needed in this thesis. As mentioned above, operator DAEs extend the framework of DAEs to
infinite-dimensional systems. Therefore, we properly define DAEs and the differentiation index. For
the infinite-dimensional part, we recall basic functional analytic concepts like Gelfand triples, inf-sup
stability, as well as real- and Banach space-valued functions and their generalized derivatives. These
concepts allow us to consider infinite-dimensional dynamical systems, including integral equations as
well as differential equations with or without constraints. Part A closes with the introduction of
one-step methods, which are later applied to operator DAEs, namely Runge-Kutta methods and
exponential integrators.

The existence of solutions for the operator DAE (1.1) is subject of Part B. At first, we study
systems of the form (1.1) with time-independent operators. We generalize known results by abstract
linear extensions and make statements on the existence, uniqueness, as well as the regularity of
solutions. This allows us to consider semi-linear systems where the right-hand side f depends not
only on time but also on the state u. Afterwards, we study operator DAEs (1.1) with time-dependent
operators. The analysis is split into three separate steps. In the first step we restrict our analysis
to time-dependent operators M and A. In the second step we allow A and B to change over time.
Both cases are analyzed by a discretization with the implicit Euler scheme. The investigation leads
to Hilbert spaces equipped with a time-dependent inner product induced by the operator M. We
investigate whether functions with a generalized derivative in these Hilbert spaces have a continuous
representative. In the case of a non-constant operator B, we study time-dependent direct sums in
Hilbert spaces. For this, we analyze a differential equation whose solution tracks the kernel of B over
time. In the last step, we discuss the uniqueness of solutions and combine the results to operator
DAEs (1.1) with time-dependent operators M, A, B, and state-dependent right-hand side f .

Part C is devoted to the temporal discretization of the operator DAE (1.1). We first consider
implicit, algebraically stable Runge-Kutta methods. Here, a regularization is introduced that
maintains the saddle-point structure of the original problem (1.1). Starting with the implicit
Euler scheme, we study the convergence of the time-discrete solution of the regularized system
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1. Introduction

under minimal assumptions on the data. We generalize the obtained results to algebraically and
L-stable Runge-Kutta methods and discuss the need of L-stability. The convergence order is studied
afterwards under the assumption of more regular solutions. In particular, we analyze the decrease
of the convergence rate of the Lagrange multiplier λ. The results are illustrated by means of two
numerical examples.

In the second half of Part C, we investigate semi-explicit time-stepping schemes for semi-linear
operator DAEs of the form (1.1), which are based on the idea of explicit exponential integrators.
The associated algorithms are illustrated for the exponential Euler scheme and the exponential
Runge schemes. We discuss how the solution can be approximated by linear, stationary and linear,
transient saddle-point problems with homogeneous right-hand sides by using the structure of (1.1).
Order conditions up to the order three are studied for explicit exponential integrators as well as the
positive effect of spatially more regular right-hand sides. Since only the state u is approximated by
the exponential integrators, we discuss the approximation of the Lagrange multiplier λ by a single
additional saddle-point problem. Finally, we make comments on efficient computation and present
numerical experiments for semi-linear systems, illustrating the convergence results obtained.
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Part A.

Preliminaries

The analytic and numerical treatment of constrained partial differential equations combines the
difficulties of partial differential equations (PDEs) and differential-algebraic equations (DAEs). Thus,
we need the knowledge of different mathematical disciplines to get to the heart of constrained PDEs
and their temporal discretization. In this part we provide the essential concepts.

In general, a system of equations, which combines differential and algebraic equations, suffers from
hidden constraints, consistency requirements for the initial conditions, and unexpected regularity
requirements [KunM06, Part I]. To understand these difficulties, we briefly review the theory of
finite-dimensional DAEs in Chapter 2. We recall the concept of the differentiation index for linear
DAEs and introduce so-called port-Hamiltonian descriptor systems as a special class of controlled
DAEs. On the other hand, the analysis of the infinite-dimensional behavior of (constrained) PDEs
requires several functional analytic concepts such as Gelfand triples, Sobolev spaces, and Bochner
spaces. We introduce these among basic features of operators and Banach spaces as well as
frequently used inequalities in Chapter 3. In Chapter 4 we consider dynamic infinite-dimensional
equations. Since the operators in these equations are possibly time-dependent, we consider Nemytskĭı
operators. Afterwards we consider integral equations as well as differential equations with bounded
and unbounded operators. We complete the chapter with a short introduction of operator DAEs,
which is the abstract framework we use for the analysis of constrained PDEs and their temporal
discretization. Later in Part C, we study Runge-Kutta methods and exponential integrators as
numerical integration schemes for operator DAEs. We introduce these two families of time-integration
schemes in Chapter 5.

Cor. 3.9 is a copy of [AltZ20, Lem. 3.1] and was shown by Robert Altmann. The author of this
thesis originally proved Lem. 3.5 and Th. 4.22 as [AltZ18b, Lem. 2.4] and [AltZ18a, Th. 3.5].
Notation In the whole thesis we use R for the set of real numbers, and R≥0 (R>0) for its subset
of non-negative (positive) real numbers. The set of non-negative (positive) integers is denoted by
N0 (N). For the restriction of f : X → Y to a subset Z ⊂ X, we write f

⃓⃓
Z

: Z ⊂ X → Y . For a
linear map A, its kernel and its image are denoted by kerA and imA, respectively.
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2. Linear Differential-Algebraic Equations
The most general form of a differential-algebraic equation (DAE) is F (t, x(t), ẋ(t)) = 0 [KunM06,
p. 7 f.] with a partial derivative ∂F

∂ẋ which possibly loses rank along a solution. Note that the
definition includes both under- and overdetermined systems. Typical examples for underdetermined
DAEs are control problems; see e.g. [PolW98]. Therein, state feedback or output control can be
used to get square systems, i.e., systems with the same number of equations and variables, without
changing some internal properties. For more details see [KunM06, Sec. 4.4]. On the other hand,
overdetermined DAEs with non-contradicting equations contain redundancies under some technical
assumptions [KunM06, p. 207 ff.]. These redundant equations can simply be removed without
altering the solution set. Thus, we assume that the systems are square. For the analysis of these
DAEs one usually linearizes around a trajectory; see e.g. [KunM06, Ch. 4]. This leads to DAEs of
the form

E(t)ẋ(t) +A(t)x(t) = f(t). (2.1)

Such linear DAEs are studied in this chapter.
We consider the DAE (2.1) on the compact interval [0, T ], T > 0. The state is given by

x : [0, T ]→ Rnx . We assume that the matrix-valued functions E,A : [0, T ]→ Rnx×nx as well as the
right-hand side f : [0, T ] → Rnx are sufficiently regular. Note that, if E is differentiable, we can
rewrite (2.1) with a leading d

dt (Ex). However, in contrast to ordinary differential equations (ODEs)
the matrix-valued function E is in general not pointwise invertible. This forces the state to stay on
a time-dependent manifold [Rhe84]. In particular, for an initial condition

x(0) = x0, (2.2)

the initial value x0 ∈ Rnx is restricted to be on this manifold at t = 0.
We call x a solution of (2.1) with initial condition (2.2) if x ∈ C1(0, T ;Rnx), the DAE (2.1) is

pointwise satisfied, and (2.2) is fulfilled as well. An initial value x0 is called consistent with (2.1), if
the associated initial value problem has at least one solution.

A special class of linear DAEs, which often appears in this thesis are linear semi-explicit DAEs of
the form

M(t)ẋ(t) + A(t)x(t) −BT (t)λ(t) = f(t), (2.3a)
B(t)x(t) = g(t). (2.3b)

The desired solution is (x, λ) : [0, T ] → Rnx × Rnλ , nλ ≤ nx, where we refer to λ as Lagrange
multiplier and to x as state. The right-hand sides f and g map into Rnx and Rnλ , respectively, and
the matrix-valued functions are well-sized.

Lemma 2.1 (Cf. [Zim15, Sec. 2.5.1]). Let A,M ∈ C1([0, T ],Rnx×nx), and B ∈ C2([0, T ],Rnλ×nx).
Suppose that M is pointwise invertible and BM−1BT as well. Assume that f ∈ C1([0, T ],Rnx)
and g ∈ C2([0, T ],Rnλ). Then the DAE (2.3) has a unique solution for every consistent initial
value x0, λ0, i.e., B(0)x0 = g(0) and (BM−1BT )(0)λ0 = (BM−1A− Ḃ)x0 + (ġ −BM−1f)(0). In
particular, the Lagrange multiplier λ is completely determined by

(BM−1BT )(t)λ(t) = (ġ − Ḃx+BM−1Ax−BM−1f)(t). (2.4)
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2.1. The Differentiation Index

Equation (2.4) is called a hidden constraint of the DAE (2.3) [KunM06, p. 201], since it is not
apparent in (2.3). Note that the initial value of the Lagrange multiplier λ is completely determined
by x0 and the right-hand sides. Thus, we only have freedom in the choice of the initial value x0.
More precisely, only the part in the kernel of B(0) is not predetermined by the constraint (2.3b).

The differentiability of all matrices and of the right-hand sides can be reduced by one in Lemma 2.1
if we expect from a solution that λ is only continuous. These assumptions can be even more weakened
if we consider solutions in Lebesgue spaces [Han89; KunMS+06].

The following two subsections introduce the differentiation index and port-Hamiltonian DAEs.

2.1. The Differentiation Index
The indices of a DAE give, on one hand, an insight in the analytic properties of the DAE, e.g., the
needed regularity of the data to be solvable. On the other hand, they play a fundamental role in
the numerical treatment of DAEs, see Section 5.1, and can be seen as a measure of difficulty of the
numerically solving [Meh15, p. 677]. We introduce for the DAE (2.1) the most common used index
of a DAE, the differentiation index.

Definition 2.2 (Differentiation Index; [KunM06, Def. 3.37]). For the DAE (2.1) let the inflated
pair Mℓ,Nℓ : [0, T ]→ R(ℓ+1)nx×(ℓ+1)nx be defined via

Mℓ :=

⎡⎢⎢⎢⎢⎢⎣
E

Ė +A E
Ë + 2Ȧ 2Ė +A E

... . . . . . .
E(ℓ) + ℓA(ℓ−1) · · · · · · ℓĖ +A E

⎤⎥⎥⎥⎥⎥⎦ , Nℓ :=

⎡⎢⎢⎢⎢⎢⎣
A 0 · · · 0
Ȧ 0 · · · 0
Ä 0 · · · 0
...

...
...

A(ℓ) 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦ ,

ℓ = 0, 1, . . . The differentiation index iν ∈ N0 of (2.1) is the smallest number, if it exists, for which Miν

has constant rank and is pointwise 1-full, i.e., for every t ∈ [0, T ] there exists a nonsingular matrix
Riν (t) ∈ R(iν +1)nx×(iν +1)nx such that

Riν
(t)Miν

(t) =
[︃
Inx

0
0 ∗

]︃
.

Here, Inx
denotes the identity matrix in Rnx×nx and ∗ a non-specified part.

Remark 2.3. Under the assumption of Lemma 2.1 on the matrix-valued functions M and B the
DAE (2.3) is of differentiation index iν = 2 [Hei14, Prop. 2.6 & Rem. 2.9]. In this thesis we also
consider semi-linear DAEs of the form (2.1) where f depends on u. This, however, does not change
the differentiation index under the assumptions made on M and B even if we have to consider
nonlinear DAEs; cf. [KunM06, Lem. 4.8 & p. 195 f.].

The differentiation index is the minimal number of differentiations such that by algebraic ma-
nipulation the so-called underlying ordinary differential equation (ODE) can be extracted. The
underlying ODE and the DAE (2.1) then share the same solutions for the set of consistent initial
values [KunM06, p. 115]. Note that, for the extraction of the underlying ODE the functions E,A,
and f have to be iν times differentiable. This is an upper bound on the necessary regularity in order
that (2.1) is solvable. The actual differentiability that is needed, can be smaller for parts of E, A,
and f ; see Lemma 2.1.

Besides the differentiation index, there exist other index concepts for DAEs. For over- and
underdetermined DAEs the strangeness-index is introduced in [KunM06, Ch. 3]. Beside control
problems, underdetermined DAEs appear in the spatial discretization of constrained PDEs where the
discretization should reflect that some infinite-dimensional variables are underdetermined like the
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2. Linear Differential-Algebraic Equations

pressure in the incompressible Navier-Stokes equations [Wei97]. The perturbation index [HaiLR89,
p. 459 ff.] measures the effect of perturbations of right-hand side f on the solution of (2.1) and
was extended to constrained PDEs in [AngR07; CamM99; LucSE99; RanA05]. However, it lacks a
rigorous definition for DAEs in general Banach spaces. The tractability index [LamMT13, Part I]
is connected to the structural decoupling of DAEs into so-called inherent ODEs and a triangular
subsystem where the solutions must be less regular. It is based on projections and can be extended
to DAEs in abstract spaces [Tis03]. Unfortunately, this index is not applicable for the abstract DAEs
considered here, since the embedding used here of the Banach space into its dual is not surjective;
see Section 3.1. For more index concepts we refer to [Meh15] and the references therein. For the
applications considered in this thesis, all these concepts are essentially equivalent.

In the following, whenever we refer to the index , this should be understood as the differentiation
index.

2.2. Port-Hamiltonian Differential-Algebraic Equations
In almost all applications, DAEs model physical systems. If these systems are network-based models
where the submodels are interconnected through exchange of energy, the DAEs can be expressed as
port-Hamiltonian differential-algebraic equations (pHDAEs). In this thesis, we concentrate on linear
pHDAEs of the form

Eẋ = (J −R)x+Gw, (2.5a)
y = GTx. (2.5b)

The matrix-valued functions satisfy E ∈ C1([0, T ],Rnx×nx) and J,R ∈ C([0, T ],Rnx×nx) and
G ∈ C([0, T ],Rnx×nu). We assume that E and R are pointwise symmetric positive semidefinite and
that J + JT = −Ė. The system’s internal energy is typically described by its quadratic Hamiltonian

H : C1([0, T ],Rnx)→ C1([0, T ],R), x ↦→ H(x) := 1
2x

TEx.

The so-called (external) port variables w, y : [0, T ]→ Rnu describe the system interaction with the
environment, in the sense that every solution of the pHDAE (2.5) satisfies

H(x(t))−H(x0) =
∫︂ t

0
−xTRx+ wT y ds ≤

∫︂ t

0
wT y ds, (2.6)

cf. [BeaMX+18, Th. 15]. Therefore, the change of the internal energy is bounded by the supplied
power wT y. The inequality (2.6) is called dissipation inequality. In a system theoretical language,
this proves that system (2.5) is passive with the Hamiltonian H as storage function, [SchJ14, Ch. 7],
as well as stable if E(t) is uniformly positive definite and w = 0 [MehM19, p. 6864].

The type of pHDAEs described in (2.5) is a special case of the port-Hamiltonian descriptor
systems in [BeaMX+18, Rem. 14]. For more general systems and more details on pHDAEs we refer
to [BeaMX+18; MehM19; SchJ14; SchM18] and the references therein.
Remark 2.4. There are a lot of attempts to generalize the port-Hamiltonian (pH) framework to
systems of infinite dimensions. An extension of pH systems to systems with distributed parameters
based on differential forms can be found in [SchJ14, Ch. 14]. In [JacZ12] pH systems for linear dynamic
PDEs on a one-dimensional spatial domain are introduced and analyzed with methods of semigroups.
The authors of [MehM19] extended pHDAE to systems with non-quadratic Hamiltonians. This
extension can also be considered in infinite-dimensions if the solution is smooth enough. Nonlinear,
unconstrained, infinite-dimensional pH systems without inputs are introduced in [Egg19] with
variational methods. In [MosZ18] the authors extend the idea of unconstrained pH systems to
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2.2. Port-Hamiltonian Differential-Algebraic Equations

infinite-dimensional systems where the internal energy as well as the system’s entropy are the
quantities considered, and such systems are studied with variational methods.
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3. Functional Analytic Tools
For the analysis of constrained PDEs, we need several functional analytic concepts. Starting with
Section 3.1, we introduce basic definitions and notations of Banach spaces and their operators. This
includes fundamental definitions such as right-inverses of inf-sup stable operators, Gelfand triples,
as well as weak and weak∗ convergence. After a summary of some frequently used inequalities in
Section 3.2, we introduce a weaker differentiation concept for real-valued functions in Section 3.3.
These generalized derivatives are connected to the weak formulation of (constrained) PDEs. The weak
formulation is the abstract framework, in which we analyze constrained PDEs. In particular, this
leads to functions with images in Banach spaces. These so-called abstract functions are introduced
in Section 3.4. A measure and an integral for these functions are defined. Based on this we introduce
generalized derivatives for abstract functions.

3.1. Banach and Hilbert Spaces and Their Operators
In the whole section, X and Y are real Banach spaces and H is a real Hilbert space. In the following,
the given definitions and results are taken from [Alt16] if no other reference is given.

Operators and the Dual Space A map A : X → Y is called an operator. A linear operator is
bounded or continuous if a constant c ∈ R≥0 exists such that ∥Ax∥Y ≤ c ∥x∥X for all x ∈ X . The
set L (X ,Y) of all bounded linear operators A : X → Y is a Banach space with respect to the norm

∥A∥L (X ,Y) := sup
x∈X \{0}

∥Ax∥Y

∥x∥X
.

In the following, we also denote the operator norm of A by CA. We set L (X ) := L (X ,X ). The
space X ∗ := L (X ,R) is denoted as the dual space of X . The bilinear map ⟨ ·, · ⟩X ∗,X : X ∗ ×X → R,
(f, x) ↦→ f(x) is called a duality pairing. In the following, we omit the subscripted specification if
the spaces are clear from the context. For a subset X1 ⊂ X , the annihilator of X1 is defined as the
subspace

X 0
1 :=

{︁
f ∈ X ∗ | ⟨f, x⟩ = 0 for all x ∈ X1

}︁
⊂ X ∗.

Lemma 3.1 (Continuous Linear Extension; see e.g. [Alt16, p. 160 f.]). Let X and Y be Banach
spaces. Suppose that Z ⊂ X is a dense subspace of X . Let A : Z → Y be linear and bounded, where Z
is equipped with ∥ · ∥X . Then there exist a unique extension A ∈ L (X ,Y) of A with A

⃓⃓
Z = A.

Projections and Embeddings An operator P ∈ L (X ) is called a projection onto X1 ⊂ X if
P2 = P and imP = X1. According to the closed complement theorem, see e.g. [Alt16, Th. 9.15], a
closed subspace X1 of X has a closed complement X2 if and only if there exists a projection P ∈ L (X )
onto X1 with kerP = im(idX −P) = X2. For a Hilbert space H, a projection P ∈ L (H) is
called orthogonal if kerP = (imP)⊥. Here, S⊥ := {h ∈ H | (h, s)H = 0 for all s ∈ S} ⊂ H is
the orthogonal complement of the set S ⊂ H. The property kerP = (imP)⊥ is equivalent to
(Ph1, h2)H = (h1,Ph2)H for all h1, h2 ∈ H.

We say X is continuously embedded in Y, if an injective mapping ι ∈ L (X ,Y) exists. We write
X ↪→ Y and denote CX ↪→Y := Cι. An element x ∈ X is identified as an element in Y via ιx. We
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3.1. Banach and Hilbert Spaces and Their Operators

omit the embedding ι in ιx if it is clear from the context. The embedding is dense, denoted as
X d
↪→ Y if im ι is dense in Y. If an isometric isomorphism from X to Y exists, we write X ∼= Y.

Lemma 3.2 ([BerL76, Lem. 2.3.1 & Th. 2.7.1]). Let the Banach spaces X and Y be contained in a
bigger linear Hausdorff space. Then

X ∩ Y and X + Y := {a = x+ y |x ∈ X , y ∈ Y}

are complete with respect to the norms

∥a∥X ∩Y := max(∥a∥X , ∥a∥Y) and ∥a∥X +Y := inf{∥x∥X + ∥y∥Y | a = x+ y, x ∈ X , y ∈ Y},

respectively. If X ∩Y is dense in X and Y, then we have (X ∩Y)∗ ∼= X ∗ +Y∗ and (X+Y)∗ ∼= X ∗∩Y∗.

Reflexivity, Riesz Isomorphism, and Adjoint Operator We call X reflexive if the embedding
X ↪→ (X ∗)∗ given by x ↦→ ⟨ ·, x ⟩X ∗,X is surjective. In particular, we obtain X ∼= (X ∗)∗. By the
following Riesz Representation Theorem 3.3 the identification H ∼= H∗ holds. Especially, every Hilbert
space is reflexive and H∗ is a Hilbert space with inner product (f1, f2)H∗ := (R−1

H f1,R−1
H f2)H.

Theorem 3.3 (Riesz Representation Theorem & Riesz Isomorphism; see e.g. [Alt16, Th. 6.1]). Let
H be a Hilbert space. Then the linear, bounded operator RH : H → H∗, h ↦→ (h, ·)H is an isometric
isomorphism.

For every operator A ∈ L (X ,Y) there exists a unique adjoint operator A∗ ∈ L (Y∗,X ∗) such
that ⟨ f,Ax ⟩Y∗,Y = ⟨A∗f, x ⟩X ∗,X for all x ∈ X , f ∈ Y∗. The map A ↦→ A∗ defines an isometric
embedding from L (X ,Y) to L (Y∗,X ∗). If Y is reflexive the adjoint operator A∗ of A ∈ L (X ,Y∗)
can be identified with an element of L (Y,X ∗). An operator A ∈ L (X ,X ∗) with reflexive X is
self-adjoint if A∗ = A and skew-adjoint if A∗ = −A. If H1 and H2 are Hilbert spaces, then every A ∈
L (H1,H2) has a unique Hilbert-adjoint AH ∈ L (H2,H1) such that (Ah1, h2)H2 = (AHh2, h1)H1

for all hi ∈ Hi, i = 1, 2. The Hilbert adjoint is given by AH = R−1
H1
A∗RH2 .

Elliptic and Inf-Sup Stable Operators An operator A ∈ L (X ,X ∗) is elliptic, if there exists
a constant µA ∈ R>0 with

⟨Ax, x ⟩X ∗,X ≥ µA ∥x∥2
X .

We call A ∈ L (X ,X ∗) elliptic on a subspace X1 of X if its restriction A
⃓⃓
X1

: X1 → X ∗ ⊂ X ∗
1 is

elliptic. If X is reflexive, then (·, ·)X := 1
2 ⟨ (A+A∗) ·, · ⟩ defines an inner product for every elliptic

operator A ∈ L (X ,X ∗) and X is a Hilbert space with this inner product. The induced norm is
denoted by ∥ · ∥A.

Theorem 3.4 (Lax-Milgram Theorem; see e.g. [Alt16, Th. 6.2]). Let H be a Hilbert space and
A ∈ L (H,H∗) be elliptic. Then A has an inverse A−1 ∈ L (H∗,H) with operator norm CA−1 ≤ µ−1

A .

Lemma 3.5. Let H1 be a closed subspace of the Hilbert space H. Suppose that A ∈ L (H,H∗) is
elliptic on H1 and define

H2 := {h ∈ H |Ah ∈ H0
1}. (3.1)

Then H2 is a closed subspace of H and we have the direct sum H = H1 ⊕H2.

Proof. By the linearity and continuity of A it follows that H2 is a closed subspace of H. The
definition of H2 and the ellipticity of A implies 0 = µ−1

A ⟨Ah, h ⟩ ≥ ∥h∥H for every h ∈ H1 ∩ H2
and therefore H1 ∩ H2 = {0}. It remains to show H ⊆ H1 ⊕ H2. Let h ∈ H be given. By the
Lax-Milgram Theorem 3.4 there exists a h1 ∈ H1 with Ah1 = Ah in H∗

1. We define h2 := h − h1
and observe Ah2 = Ah−Ah1 ∈ H0

1. Thus, h2 ∈ H2 and H ⊆ H1 ⊕H2.

11
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A generalization of ellipticity is inf-sup stability. An operator B ∈ L (X ,Y∗) fulfills such an
inf-sup or Ladyzhenskaya–Babuška–Brezzi (LBB) condition if a constant β ∈ R>0 exists such that

inf
y∈Y\{0}

sup
x∈X \{0}

⟨Bx, y⟩
∥x∥X ∥y∥Y

≥ β. (3.2)

In this thesis we consider inf-sup stable operators from a Hilbert space into another. In the following
we give implications of this assumptions.

Lemma 3.6 ([Bra07, Lem. III.4.2] & [Zim15, Rem. 3.5]). Let V and Q be real Hilbert spaces. Assume
that B ∈ L (V,Q∗) is inf-sup stable. Suppose that V0

ker is the annihilator of Vker := kerB and Vc is a
closed subspace of V and a complement of Vker.

Then the restricted operators B : Vc → Q∗ and B∗ : Q → V0
ker are isomorphisms with bounded

inverses. In particular, ∥B∗q∥V∗ ≥ β∥q∥Q for all q ∈ Q.

Definition 3.7 (Right Inverse of B and Left Inverse of B∗). Let the assumptions of Lemma 3.6 be
satisfied. We call the inverse of B ∈ L (Vc,Q∗) from Lemma 3.6 a right inverse of B and denote it
by B−

Vc
∈ L (Q∗,Vc) ⊂ L (Q∗,V). If Vc is defined as in equation (3.1) with respect to V0

ker and an
operator A ∈ L (V,V∗), which is elliptic on Vker, we write B−

A := B−
Vc

. If Vc = V⊥
ker we use B−

⊥ as
well. Further, the left inverse B−∗

left of B∗ is the inverse of B∗ ∈ L (Q,V0
ker) as defined in Lemma 3.6.

The notation B−
Vc

and B−∗
left as right and left inverse, respectively, is well-defined since by their

definitions we have BB−
Vc

= idQ∗ and B−∗
leftB∗ = idQ. In this thesis we write B− and skip the index if

the space Vc or the operator A can be chosen arbitrarily. We now show how B−
A can be computed.

Theorem 3.8 (Stationary Saddle Point Problem; [Bra07, Th. III.4.3]). Suppose that the assumptions
of Lemma 3.6 are satisfied and the operator A ∈ L (V,V∗) is elliptic on Vker. Then for every f ∈ V∗

and g ∈ Q∗ the system

Au − B∗λ = f in V∗, (3.3a)
Bu = g in Q∗ (3.3b)

has a unique solution (u, λ) ∈ V ×Q, which depends linearly and continuously on (f, g) with bounds

∥u∥V ≤
1
µA
∥f∥V∗ + 1

β

(︂
1 + CA

µA

)︂
∥g∥Q∗ , ∥λ∥Q ≤

1
β

(︂
1 + CA

µA

)︂
∥f∥V∗ + CA

β2

(︂
1 + CA

µA

)︂
∥g∥Q∗ .

Corollary 3.9 ([AltZ20, Lem. 3.1]). Let the assumptions of Theorem 3.8 be satisfied. Suppose
that Vc is defined as

Vc := {v ∈ V | Av ∈ V0
ker} (3.4)

and B−
A be the right inverse of B. Then, for every g ∈ Q∗ the term B−

Ag ∈ Vc is the part u of the
solution (u, λ) of (3.3) with the right-hand side (0, g).

Remark 3.10. If in addition to the assumptions of Corollary 3.9 the operator A is elliptic on whole V ,
then BA−1B∗ ∈ L (Q,Q∗) is elliptic as well, since

⟨ BA−1B∗q, q ⟩ = ⟨ B∗q,A−1B∗q ⟩
(4.5)
≥ µA

C2
A
∥B∗q∥2

V∗

Lem. 3.6
≥ µAβ2

C2
A
∥q∥2

Q

for every q ∈ Q. In particular, it follows by Corollary 3.9 that B−
A = A−1B∗(BA−1B∗)−1.

Remark 3.11. By the estimates in Theorem 3.8 the operator norm of B−
A is bounded by 1

β (1 + CA
µA

).
In particular, the calculation of B−

Ag may be ill-conditioned if β is small and the bound is sharp.
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Note that, for Vc = V⊥
ker the estimate ∥B−

⊥∥L (Q∗,V) = β−1 holds if the inf-sup condition (3.2) is
satisfied with an equal sign [Bra07, Lem. III.4.2.ii].

Separability and Gelfand Triple The space X is called separable if X contains a countable
dense subset. Every subspace of a separable space is separable. The space X is separable and
reflexive if and only if X ∗ is so [Bre10, Cor. 3.27]. Let a separable and reflexive Banach space V be
densely embedded in a Hilbert space H, then H is separable and H∗ is densely embedded in V∗,
[Zei90a, p. 417]. The embedding H∗ ↪→ V∗ is simply given by ⟨ f, v ⟩V∗,V = ⟨ f, v ⟩H∗,H for f ∈ H∗.

Definition 3.12 (Gelfand Triple; [Zei90a, Def. 23.11]). We say a separable, reflexive Banach space V
and a Hilbert space H form a Gelfand triple or evolution triple if

V d
↪→ H ∼= H∗ d

↪→ V∗. (3.5)

We use the shorthand V, H, V∗ for the Gelfand triple (3.5). The Hilbert space H is called pivot
space.

The Gelfand triple V, H, V∗ defines a continuous embedding of V in V∗ with v ↦→ ⟨ v, · ⟩V∗,V =
(v, ·)H. Note that, if V is a Hilbert space this is a second embedding of V in V∗ besides the Riesz
isomorphism. Then both embeddings do not coincide in general [Bre10, p. 137]. We also have to
pay attention to the identification of H∗ with H, which can lead to inaccuracy, in particular in the
context of differential equations; see [Sim10] and [Tar06, p. 121]. Therefore, we distinguish between
these two spaces if it is necessary.

Given a Gelfand triple V , H, V∗, the operator A ∈ L (V,V∗) satisfies a Gårding inequality if two
constants µA ∈ R>0 and κA ∈ R exist such that

⟨Av, v ⟩V∗,V ≥ µA ∥v∥2
V − κA ∥v∥2

H (3.6)

for all v ∈ V. In particular, the operator A+ κA idH ∈ L (V,V∗) is elliptic and thus V a Hilbert
space.

Strong, Weak, and Weak∗ Convergence A sequence {xn}n∈N ⊂ X converges (strongly) in X
if it converges to x ∈ X with respect to the norm in X . We write xn → x as n → ∞. The
sequence {xn}n∈N ⊂ X is called weakly convergent in X if a weak limit x ∈ X exists such that
limn→∞⟨ f, xn ⟩X ∗,X = ⟨ f, x ⟩X ∗,X for every f ∈ X ∗. We write xn ⇀ x as n → ∞. We say
{fn}n∈N ⊂ X ∗ converges weakly∗ in X ∗ to the weak∗ limit f ∈ X ∗ and write fn

∗
⇀ f as n→∞ if

limn→∞⟨ fn, x ⟩X ∗,X = ⟨ f, x ⟩X ∗,X for all x ∈ X .
The weak (weak∗) limit is unique, every weakly (weakly∗) convergent sequence is bounded, and

strong convergence implies weak (weak∗) convergence. If X is separable, then every bounded sequence
in X ∗ has a weak∗ convergence subsequence. If {xn}n∈N ⊂ X is bounded and X is reflexive, then the
sequence has a weakly convergent subsequence [Bre10, Th. 3.18]. Let {xn}n∈N ⊂ X be weakly and
{fn}n∈N ⊂ X ∗ strongly convergent (or respectively, strongly and weakly∗ convergent) with limits
x ∈ X and f ∈ X ∗, respectively. Then limn→∞⟨ fn, xn ⟩X ∗,X = ⟨ f, x ⟩X ∗,X . For every A ∈ L (X ,Y)
the weak convergence xn ⇀ x in X implies Axn ⇀ Ax in Y as n → ∞ [Zei90a, Prop. 21.28]. In
finite dimension strong, weak, and weak∗ convergence coincide.

3.2. Frequently Used Inequalities
In this section we summarize inequalities, which we frequently use to bound solutions of operator
equations as well as to estimate the errors of their approximations. We introduce therefore the

13



3. Functional Analytic Tools

notation
[1,∞] := [1,∞) ∪ {∞}.

Furthermore, q ∈ [1,∞] is called the conjugated index of p ∈ [1,∞] or we say p, q are conjugated
indices, if 1

p + 1
q = 1, where we define

1
∞

:= 0.

Lemma 3.13 (Young’s Inequality; see e.g. [Emm04, Th. A.1.1 & A.1.4]). Let a, b ≥ 0 and p, q ∈
(1,∞) be conjugated indices. Then the inequality

ab ≤ ap

p
+ bq

q
(3.7)

holds. Furthermore, for p = q = 2 and every ε > 0 we have the estimate

ab ≤ a2

2ε + εb2

2 . (3.8)

Lemma 3.14 (Hölder’s Inequality; see e.g. [Emm04, Th. A.1.7]). Let u ∈ Lp(a, b) and v ∈ Lq(a, b)
with p, q ∈ [1,∞] be conjugated indices. Then we have uv ∈ L1(a, b) with the estimate ∥uv∥L1(a,b) ≤
∥u∥Lp(a,b)∥v∥Lq(a,b).

The next inequality estimates a function if its current value is bounded by the integral over the
previous values.

Lemma 3.15 (Gronwall’s Lemma; see e.g. [Pac98, p.13 f.]). Suppose that u, f, g, h : [a, b]→ R are
Lebesgue-measurable and nonnegative as well as that hu, hf , and hg are Lebesgue-integrable. Let
the inequality

u(t) ≤ f(t) + g(t)
∫︂ t

a

h(s)u(s) ds

be satisfied for almost all t ∈ [a, b]. Then the estimate

u(t) ≤ f(t) + g(t)
∫︂ t

a

f(s)h(s) exp
(︂∫︂ t

s

h(η)g(η) dη
)︂

ds (3.9)

holds almost everywhere.

Remark 3.16 (Gronwall’s Lemma with Nondecreasing f). If in addition to Lemma 3.15 the function f
is continuous and nondecreasing, and g(t) ≡ 1, then the inequality (3.9) implies, cf. [Emm04,
Lem. 7.3.1], the estimate

u(t) ≤ f(t) exp
(︂∫︂ t

a

h(s) ds
)︂
. (3.10)

In this thesis, we sometimes estimate two functions f1, f2 : X → R≥0 with respect to each other
where scalar factors are not of interest. We therefore write f1(x) ≲ f2(x) as shorthand for the
inequality f1(x) ≤ Cf2(x) with a constant C ∈ R>0 independent of x ∈ X .

3.3. Sobolev Spaces
The modern theory of partial differential equations is based on the concepts of generalized derivatives;
see e.g. [Wlo87]. In the introduction of these derivatives, we use notions as measurable and integrable
in the sense of Lebesgue from measure theory.
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3.3. Sobolev Spaces

In the whole section Ω ⊂ Rd is a domain, i.e., an open, simply connected, and bounded set. We say
that Ω is a Lipschitz domain or has a Lipschitz boundary ∂Ω [Alt16, Sec. A8.2], if for every ξ ∈ ∂Ω
there exists a neighborhood U(ξ) ⊂ Rd, such that ∂Ω ∩ U(ξ) is a graph of a Lipschitz continuous
function with Ω ∩ U(ξ) lying on one side of this graph. The closure of Ω is denoted by Ω.

Let C∞
c (Ω) be the set of infinitely often differentiable functions with compact support. We call

a sequence {φn}n∈N ⊂ C∞
c (Ω) convergent in C∞

c (Ω) to φ ∈ C∞
c (Ω) if the support of every φn,

n = 1, 2, . . ., is contained in a compact subset of Ω and φ
(k)
n converges uniformly to φ(k) for every

k ∈ N0. This definition allows us to introduce distributions.
Definition 3.17 (Distribution; [Rou13, p. 10]). A linear function Ψ: C∞

c (Ω) → R is called a
distribution if for every convergent sequence {φn}n∈N ⊂ C∞

c (Ω) in C∞
c (Ω) with limit φ it follows

limn→∞ Ψ(φn) = Ψ(φ).
Every local integrable function u ∈ L1

loc(Ω) defines a distribution by Ψu(φ) =
∫︁

Ω u(ξ)φ(ξ) dξ
[Alt16, Ex. 5.18(2)]. The mapping u ↦→ Ψu is linear, one-to-one, and u is reconstructable from Ψu

[Alt16, Lem. 5.16]. A distribution Ψ is called regular if u ∈ L1
loc(Ω) exists such that Ψ = Ψu.

The set of regular distributions is a proper subspace [AdaF03, Rem. 1.59]. However, for a regular
distribution we identify Ψu with u. Since the distributions are based on smooth functions we can
define derivatives of arbitrary order for a function u ∈ L1

loc(Ω) in the distributional sense.
Definition 3.18 (Distributional and Generalized Derivative; [Rou13, p. 15]). Let Ω be a domain
and u ∈ L1

loc(Ω) be given. We define its distributional derivative Dαu with multi-index α ∈ Nd
0 and

|α| :=
∑︁d

k=1 αk as the distribution

Dαu(φ) = (−1)|α|
∫︂

Ω
u(ξ)Dαφ(ξ) dξ.

Here, Dα is short for ∂|α|

∂
α1
ξ1

...∂
αd
ξd

. If Dαu is regular, we call Dαu ∈ L1
loc(Ω) (after the reconstruction)

a generalized derivative of u of type Dα.
Remark 3.19. For d = 1 we write ∂ξ . . . ξ⏞ ⏟⏟ ⏞

k times

instead of D(k), k ∈ N.

The generalized derivative is unique in L1
loc(Ω) and if u ∈ Cm(Ω) then every classical partial

derivative coincides with the associated generalized derivative [Zei90a, Prop. 21.3]. For ei as the ith
canonical unit vector in Rd, i = 1, . . . , d, the d-tuple ∇u := (De1u, . . . ,Dedu) is called the gradient
of u and div u :=

∑︁d
i=1 D

eiui the divergence of u = [u1, . . . , ud]T . For functions with integrable
generalized derivatives we introduce the following spaces.
Definition 3.20 (Sobolev Space W k,p(Ω); [Rou13, p. 15]). Let Ω be a domain. For k ∈ N and
p ∈ [1,∞] we define the Sobolev space

W k,p(Ω) := {u ∈ Lp(Ω) |Dαu ∈ Lp(Ω) for all |α| ≤ k}.

Furthermore, W 0,p(Ω) := Lp(Ω), Hk(Ω) := W k,2(Ω), and W k,p(Ω;Rm) := [W k,p(Ω)]m.
The Sobolev spaces W k,p(Ω) equipped with the norm

∥u∥p
W k,p(Ω) :=

∑︂
|α|≤k

∥Dαu∥p
Lp(Ω) for p <∞ and ∥u∥W k,∞(Ω) := max

|α|≤k
∥Dαu∥L∞(Ω) (3.11)

are Banach spaces [Zei90a, p. 237 f.]. Especially, Hk(Ω) is a Hilbert space with the inner product

(u, v)Hk(Ω) =
∑︂

|α|≤k

(Dαu,Dαv)L2(Ω). (3.12)
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Along with its completeness and the embedding W k,p(Ω) ↪→ W k′,p′(Ω) for k′ ≤ k, p′ ≤ p, the
Sobolev space W k,p(Ω) inherits further properties from the associated Lebesgue space.

Theorem 3.21 (Separability and Reflexivity; [Alt16, Ex. 4.18(6) & 8.11(3)]). The space W k,p(Ω)
is separable if p ∈ [1,∞) and reflexive if p ∈ (1,∞).

Theorem 3.22 ([AdaF03, Th. 3.17, 3.22, & p. 83 f.]). Let k ∈ N0 and p ∈ [1,∞). Then the space
W k,p(Ω) ∩ C∞(Ω) is dense in W k,p(Ω). In particular, C∞(Ω) can be replaced by Ck(Ω). If Ω ⊂ Rd

is, in addition, a Lipschitz domain, then Ck(Ω) and C∞(Ω) are dense subspaces of W k,p(Ω).

The conclusions of Theorem 3.22 do not hold for p =∞ [AdaF03, Ex. 3.18]. However, for p <∞
Theorem 3.22 implies an alternative definition of W k,p(Ω) as the closure of W k,p(Ω) ∩ C∞(Ω) with
respect to the norms in (3.11). The closure of C∞

c (Ω) is of special interest. In the following we use
the notation clos∥·∥ as closure with respect to the norm ∥ · ∥.

Definition 3.23 (Sobolev Space W k,p
0 (Ω); [Rou13, p. 18]). Let Ω be a domain, k ∈ N0, and

p ∈ [1,∞). We define W k,p
0 (Ω) := clos∥·∥

W k,p(Ω)
C∞

c (Ω) and Hk
0 (Ω) := W k,2

0 (Ω).

The Sobolev space W k,p
0 (Ω) is a proper closed subspace of W k,p(Ω) if k > 0 and Ω has positive

measure; see Lemma 3.25. The non-negative function

∥u∥p

W k,p
0 (Ω)

=
∑︂

|α|=k

∥Dαu∥p
Lp(Ω) (3.13)

defines an equivalent norm to (3.11) in W k,p
0 (Ω) [GajGZ74, p. 31]. In particular, summing only over

all multi-indices with |α| = k in (3.12) defines an inner product in Hk
0 (Ω). The dual space of W k,p

0 (Ω)
is denoted by W−k,q(Ω) with p, q being conjugated indices [GajGZ74, Ch. II, Def. 1.20]. Analogously,
one defines H−k(Ω) := [Hk

0 (Ω)]∗. The Sobolev spaces with negative k can be understood as spaces
of special distributions [GajGZ74, Ch. II, Lem. 1.37 f.].

For a finer investigation, it is useful to consider Sobolev spaces with non-integer k, so-called
fractional Sobolev spaces; see [KufJF77, Ch. 6 & 8] and [AdaF03, Ch. 7]. One approach is the
Sobolev-Slobodeckĭı spaces [KufJF77, Def. 6.8.2], which are defined for k ∈ R>0 \N and p ∈ [1,∞) by

W k,p(Ω) :=

⎧⎨⎩u ∈W ⌊k⌋,p(Ω)

⃓⃓⃓⃓
⃓⃓ ∑︂

|α|=⌊k⌋

∫︂
Ω

∫︂
Ω

|Dαu(ξ)−Dαu(η)|p

∥ξ − η∥d+p(k−⌊k⌋)
Rd

dξ dη <∞

⎫⎬⎭ .

Here, ⌊k⌋ ∈ N0 denotes the integer part of k, i.e., k − 1 < ⌊k⌋ ≤ k. The Sobolev-Slobodeckĭı spaces
are Banach spaces with the norm

∥u∥p
W k,p(Ω) = ∥u∥p

W ⌊k⌋,p(Ω) +
∑︂

|α|=⌊k⌋

∫︂
Ω

∫︂
Ω

|Dαu(ξ)−Dαu(η)|p

∥ξ − η∥d+p(k−⌊k⌋)
Rd

dξ dη; (3.14)

see [KufJF77, Th. 6.8.4]. Analogously to the Sobolev spaces with non-negative integers, the closure
of C∞

c (Ω) with respect to the norm (3.14) is denoted by W k,p
0 (Ω). We set W−k,q(Ω) :=

[︁
W k,p

0 (Ω)
]︁∗

with p, q ∈ (1,∞) being conjugated indices. The Sobolev-Slobodeckĭı spaces with p = 2 are also
denoted by Hk(Ω) and Hk

0 (Ω), respectively.
For boundary value problems in a domain Ω with a Lipschitz boundary ∂Ω it is reasonable to ask

if, and in which sense, generalized differentiable functions can be restricted on the boundary ∂Ω.
Note that the boundary ∂Ω has measure zero in Rd and W k,p(Ω) is not embedded in C(Ω) in
general [AdaF03, Ex. 4.43]. However, for every function u from the dense subset C1(Ω) ⊂W 1,p(Ω),
p ∈ [1,∞), see Theorem 3.22, its restriction to ∂Ω is well-defined. With Lemma 3.1 this implies the
following.
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Theorem 3.24 (Trace Theorem; see e.g. [KufJF77, Th. 6.8.13 & Th. 6.9.2] & [Rou13, Th. 1.23]).
Let p ∈ [1,∞) and Ω be a Lipschitz domain. Then there exists exactly one continuous linear operator
tr : W 1,p(Ω)→W 1−1/p,p(∂Ω) with tru = u

⃓⃓
∂Ω for all u ∈ C1(Ω). The mapping tr has a right-inverse

in L (W 1−1/p,p(∂Ω),W 1,p(Ω)) for p > 1.

The space W 1−1/p,p(∂Ω) in Theorem 3.24 should be understood as a Sobolev space on a manifold
defined by local charts; see [KufJF77, Def. 6.8.6]. The operator tr is called the trace operator. We
also write u

⃓⃓
∂Ω instead of tru for u ∈ W 1,p(Ω) or omit tr if its clear that u is restricted to the

boundary ∂Ω.

Lemma 3.25 ([Alt16, Lem. A8.10]). Let Ω be a Lipschitz domain and p ∈ [1,∞). Then the kernel
of the trace operator with domain W 1,p(Ω) is W 1,p

0 (Ω).

For a relatively open subset Γ of ∂Ω with positive surface measure we define trΓ : u ↦→ (tru)
⃓⃓
Γ. In

this thesis we also consider the spaces

W 1,p
Γ (Ω) := ker trΓ ⊂W 1,p(Ω).

Equipped with the norm (3.13), they are Banach spaces for p ∈ [1,∞). The space H1
Γ(Ω) := W 1,2

Γ (Ω)
is a Hilbert space with the inner product defined as for H1

0 (Ω); cf. [Rou13, Th. 1.32]. If Ω
and Γ are Lipschitz domains, then trΓ ∈ L (W 1,p(Ω),W 1−1/p,p(Γ)) has a bounded right-inverse
tr−

Γ ∈ L (W 1−1/p,p(Γ),W 1,p(Ω)) [Wil19, Th. 4.2.4]. In particular,

H
1/2(Γ) = W

1/2,2(Γ)

is a Hilbert space with the inner product (w1, w2)H1/2(Γ) := (tr−
Γ w1, tr−

Γ w2)H1(Ω). Its induced norm
is equivalent to ∥ · ∥W 1/2,2(Γ); cf. [BreF91, p. 90]. Thus, trΓ ∈ L (H1(Ω), H1/2(Γ)) is inf-sup stable.
However, since C1(Γ) ↪→ H

1/2(Γ) is dense in L2(Γ) [KufJF77, Rem. 6.8.3], L2(Γ) is densely embedded
in H−1/2(Γ) := [H1/2(Γ)]∗ [Zei90a, Prop. 21.35(e)]. Especially, H−1/2(Γ) is separable and reflexive
and so H1/2(Γ) is as well. Note that, we set H−1/2(Γ) as the dual space of both H1/2(Γ) and H1/2

0 (Γ).
This, however, is well-defined since the spaces coincide [LioM72, Ch. 1, Th. 11.1].

In general, a function in H
1/2(Γ) cannot be extended by zero outside of Γ ⊂ ∂Ω to a function in

H
1/2(∂Ω) [BreF91, Rem. III.1.2]. The set of functions, where the extension is in H1/2(∂Ω), is denoted

as H1/2
00 (Γ). This space is not closed in H

1/2(Γ) [LioM72, Ch.1, Rem. 11.4 & Th. 11.7]. However, the
existence of a right-inverse tr− of the trace operator tr implies

H
1/2
00 (Γ) =

{︁
trΓ u

⃓⃓
u ∈ H1

∂Ω\Γ(Ω)
}︁
⊂ H1/2(Γ).

We define the inner product

(w1, w2)
H

1/2
00 (Γ) := (tr− w1, tr− w2)H1

∂Ω\Γ(Ω), (3.15)

where we extend wi, i = 1, 2, by zero outside of Γ ⊂ ∂Ω. Thus, H1/2
00 (Γ) is a Hilbert space. Its dual

space is denoted by H−1/2
00 (Γ).

3.4. Spaces of Abstract Functions
The analysis of (constrained) PDEs leads to time-dependent equations of abstract functions, i.e.,
functions of the form

u : [a, b]→ X (3.16)
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with a real Banach space X and −∞ < a < b < ∞. The space of all m-times continuously
differentiable abstract functions is denoted by Cm([a, b],X ). Equipped with the norm

∥u∥Cm([a,b],X ) :=
m∑︂

k=0
max

t∈[a,b]
∥u(k)(t)∥X

it is a Banach space, [Zei90a, Prop. 23.2(a)]. Here, u(k) denotes the kth derivative of u. We also
write C([a, b],X ) := C0([a, b],X ) for the space of continuous abstract functions. The set of infinitely
often differentiable functions with compact support is denoted by C∞

c (0, T ;X ).
As for Sobolev spaces, one can investigate generalized derivatives for abstract functions. Before

doing so we introduce the Bochner-integral.

3.4.1. Bochner Spaces
The measurability and integrability of abstract functions are strongly connected to the Lebesgue-
measure and integral. As for the Lebesgue-integral, we call an abstract function u : [a, b] → X a
simple function if finitely many xk ∈ X and pairwise disjoint Lebesgue-measurable sets Ek ⊂ [a, b],
k = 1, . . . ,m, exist such that u(t) =

∑︁m
k=1 xkχEk

(t). The map χEk
is the characteristic function

of Ek. The Bochner-integral of a simple function is defined by∫︂ b

a

u(t) dt =
∫︂ b

a

m∑︂
k=1

xkχEk
(t) dt :=

m∑︂
k=1

xkµ(Ek) ∈ X

with the Lebesgue-measure µ(Ek) of Ek.

Definition 3.26 (Bochner-Measurable; [KufJF77, p. 107]). An abstract function u : [a, b]→ X is
called Bochner-measurable if a sequence {un}n∈N of simple functions exists such that un(t)→ u(t)
in X as n→∞ at almost every time-point t ∈ [a, b].

For separable X it is enough for the definition of Bochner-measurable functions that the convergence
in Definition 3.26 is weak [Yos80, p. 131]. If a sequence {un}n∈N of Bochner-measurable functions
converges weakly at almost every time-point to u in X with X separable, then u is Bochner-measurable
[Emm04, Cor. 7.1.5]. Furthermore, t ↦→ ∥u(t)∥ is Lebesgue-measurable if u is Bochner-measurable
[Emm04, Lem. 7.1.10]. This allows the following definition of Bochner-integrable functions and the
Bochner-integral.

Definition 3.27 (Bochner-Integrable and Integral; [KufJF77, Def. 2.19.6]). Let u : [a, b] → X
be Bochner-measurable and the sequence {un}n∈N of simple functions converges at almost every
time-point t ∈ [a, b] to u in X . We call u Bochner-integrable if for every ε > 0 a N(ε) ∈ N exists,
such that

∫︁ b

a
∥un(t)− um(t)∥X dt < ε for all n,m > N(ε). The Bochner-integral of u then is defined

by ∫︂ b

a

u(t) dt := lim
n→∞

∫︂ b

a

un(t) dt ∈ X .

The convergence and the independence of the Bochner-integral on the chosen sequence is shown
in [KufJF77, Rem. 2.19.7]. Examples of Bochner-integrable functions are obviously simple functions
but also continuous abstract functions [GajGZ74, Ch. IV, Th. 1.9]. Furthermore, the Bochner-integral
is linear by its definition. We summarize properties of Bochner-integrable functions, which we use
frequently.

Theorem 3.28 (Bochner’s Theorem; see e.g. [KufJF77, Th. 2.19.8]). Let u : [a, b]→ X be Bochner-
measurable. Then u is Bochner-integrable if and only if [a, b]→ ∥u(·)∥X is Lebesgue-integrable.
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Lemma 3.29 ([KufJF77, Cor. 2.19.9]). Let u : [a, b]→ X be Bochner-integrable. Then the estimate
∥
∫︁ b

a
u(t) dt∥X ≤

∫︁ b

a
∥u(t)∥X dt holds.

Lemma 3.30 ([KufJF77, Cor. 2.19.11]). Let X ,Y be Banach spaces and A ∈ L (X ,Y). Suppose
that u : [a, b] → X is Bochner-integrable. Then Au : [a, b] → Y, t ↦→ (Au)(t) := Au(t) is Bochner-
integrable and for all a ≤ t1 < t2 ≤ b we have

A
∫︂ t2

t1

u(t) dt =
∫︂ t2

t1

Au(t) dt.

With Theorem 3.28 we can define Bochner-spaces for equivalence classes of Bochner-integrable
functions where the equivalence relation is given by u1 ∼ u2 if ∥u1 − u2∥X = 0 in L1(a, b).

Definition 3.31 (Bochner Space Lp(a, b;X ); [Emm04, Def. 7.1.22]). For p ∈ [1,∞] the Bochner
space Lp(a, b;X ) contains the equivalence classes of Bochner-integrable functions with

∥u∥Lp(a,b;X ) :=
⃦⃦
∥u(·)∥X

⃦⃦
Lp(a,b) <∞. (3.17)

Furthermore, we write u ∈ L1
loc(a, b;X ) if u ∈ L1(a′, b′;X ) for every a < a′ < b′ < b.

In this thesis we do not distinguish between u and its equivalence class. In following we summarize
some results about Bochner-spaces.

Theorem 3.32 ([Zei90a, Prop. 23.2] & [Emm04, Th. 7.1.23]). Let X ,Y be Banach spaces, p ∈ [1,∞],
and m ∈ N0. Suppose that Lp(a, b;X ) is equipped with the norm (3.17). Then the following holds.

i) Lp(a, b;X ) is a Banach space.
ii) If p ̸=∞, then Cm([a, b],X ) d

↪→ Lp(a, b;X ) and C∞([a, b],X ) is dense in Lp(a, b;X ).
iii) C([a, b],X ) is continuously embedded in L∞(a, b;X ).
iv) Let u ∈ Lp(a, b;X ) and f ∈ Lq(a, b;X ∗) with q ∈ [1,∞] as the conjugated index of p, then

t ↦→ ⟨ f(t), u(t) ⟩X ∗,X ∈ L1(a, b) and the Hölder’s inequality∫︂ b

a

⟨ f(t), u(t) ⟩X ∗,X dt ≤ ∥f∥Lq(a,b;X ∗)∥u∥Lp(a,b;X )

holds.
v) If X is reflexive or X ∗ is separable, then Lp(a, b;X ) is reflexive for p ∈ (1,∞) and Lp(a, b;X ∗)

is isometric isomorphic to (Lq(a, b;X ))∗ with p ∈ (1,∞], q ∈ [1,∞) conjugated indices.
vi) Lp(a, b;X ) is separable, if X is separable and p ̸=∞.

vii) If X is a Hilbert spaces, then L2(a, b;X ) is a Hilbert space with inner product

(u, v)L2(a,b;X ) =
∫︂ b

a

(u(t), v(t))X dt.

viii) If X ↪→ Y, then Lp(a, b;X ) ↪→ Lq(a, b;Y) for 1 ≤ q ≤ p ≤ ∞.

Remark 3.33. If X ↪→ Y is dense, then the embedding in viii) is dense; cf. [Zei90a, p. 442].
An additional property of Bochner spaces, which we need in the Parts B and C, is given in the

following lemma.

Lemma 3.34 (Convergence of Piecewise Mean; cf. [Tem77, Ch. III, Lem. 4.9]). Let u ∈ Lp(0, T ;X )
with p ∈ [1,∞). Define τ := T/N with N ∈ N, tn := τn with n = 0, . . . , N , and uτ : [0, T ]→ X with

uτ

⃓⃓
(tn−1,tn] ≡

1
τ

∫︂ tn

tn−1

u(t) dt.
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Then uτ ∈ Lp(0, T ;X ) and uτ converges strongly to u in Lp(0, T ;X ) as N tends to infinity.

3.4.2. Sobolev-Bochner Spaces
The generalized derivative for abstract functions is analogously defined to the real-valued case in
Section 3.3. Therefore, we consider for the open interval (a, b) the function space C∞

c (a, b) :=
C∞

c ((a, b)). We define distributions with values in X [GajGZ74, Sec. IV, Def. 1.9 & Rem. 1.12] as the
subset of linear functions Ψ: C∞

c (a, b)→ X , where {Ψ(φn)}n∈N has the weak limit Ψ(φ) in X for
every convergence sequence {φn}n∈N in C∞

c (a, b) with limit φ. A distribution Ψ with values in X is
called regular if u ∈ L1

loc(a, b;X ) exist such that Ψu(φ) :=
∫︁ b

a
u(t)φ(t) dt = Ψ(φ) for all φ ∈ C∞

c (a, b).
The mapping u ↦→ Ψu is one-to-one and u is reconstructable from Ψu [GajGZ74, Sec. IV Lem. 1.7].

Definition 3.35 (Derivative of Vector-Valued Functions; [Rou13, p.201]). For a given abstract
function u ∈ L1

loc(a, b;X ) we define its kth distributional derivative dku
dtk , k ∈ N0, as the distribution

dku

dtk (φ) = (−1)k

∫︂ b

a

u(t)φ(k)(t) dt

with values in X . If dku
dtk is regular we call dk

dtk u ∈ L1
loc(a, b;X ) (after the reconstruction) the kth

generalized derivative of u. We also write u̇ := d
dtu, ü := d2

dt2u, and u(k) := dku
dtk .

The kth generalized derivative is unique and coincides with the kth classical derivative of u, if it
exists [Zei90a, Ex. 23.16 & Prop. 23.18]. The following theorem gives alternative definitions of a
generalized derivative in L1(a, b;X ). For functions in L1

loc(a, b;X ) the statement should be read as
for all a′, b′ with a < a′ < b′ < b.

Theorem 3.36 ([Emm04, Th. 8.1.5]). Let u, v ∈ L1(a, b;X ). Then the following are equivalent.
i) The function v is the generalized derivative of u, i.e., u̇ = v.

ii) There exists u0 ∈ X such that u(t) = u0 +
∫︁ t

a
v(s) ds for almost all t ∈ [a, b].

iii) For every f ∈ X ∗, t ↦→ ⟨ f, u(t) ⟩ has the generalized derivative d
dt ⟨ f, u ⟩ = ⟨ f, v ⟩.

As in Section 3.3 we consider spaces of functions with generalized derivatives in Lp(a, b;X ).

Definition 3.37 (Sobolev-Bochner Space W k,p(a, b;X )). For a Banach space X we define the
Sobolev-Bochner space W k,p(a, b;X ), k ∈ N0, p ∈ [1,∞], as

W k,p(a, b;X ) := {u ∈ Lp(a, b;X ) |u(ℓ) ∈ Lp(a, b;X ), ℓ = 1, . . . , k}.

Furthermore, Hk(a, b;X ) denotes W k,2(a, b;X ).

We equip the Sobolev-Bochner space W k,p(a, b;X ) with the norm

∥u∥p
W k,p(a,b;X ) =

k∑︂
ℓ=0
∥u(ℓ)∥p

Lp(a,b;X ) for p <∞ and ∥u∥W k,∞(a,b;X ) = max
ℓ=0,...,k

∥u(ℓ)∥L∞(a,b;X ).

(3.18)
By Theorem 3.32 the space W k,p(a, b;X ) is a Banach space. In particular, Hk(a, b;X ) is a Hilbert
space, if X is one. The inner product is given by

(u, v)Hk(a,b;X ) =
k∑︂

ℓ=0

∫︂ b

a

(u(ℓ)(t), v(ℓ)(t))X dt.
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Theorem 3.38 ([Rou13, Lem. 7.1]). Suppose that X is a Banach space and p ∈ [1,∞]. Then
W 1,p(a, b;X ) ↪→ C([a, b],X ) holds with

CW 1,p(a,b;X )↪→C([a,b],X ) ≤ 21−1/p max
(︁
(b− a)−1/p, 2(b− a)1−1/p

)︁
.

Remark 3.39. If b − a ≥ 1/2, then the embedding constant in Theorem 3.38 is bounded by 2,
independent of p.

By [Wlo87, Th. 25.3] an embedding X ↪→ Y implies that distributions with values in X can be
included in the distributions with values in Y . Therefore, an abstract function with values in X may
have a generalized derivative in L1

loc(a, b;Y). We define the Sobolev Bochner space

W 1,p(a, b;X ,Y) := {u ∈ Lp(a, b;X ) | u̇ ∈ Lp(a, b;Y)}

with p ∈ [1,∞]. By [Rou13, p. 201], this space is complete with respect to the norm

∥u∥W 1,p(a,b;X ,Y) =
{︄(︁
∥u∥p

Lp(a,b;X ) + ∥u̇∥p
Lp(a,b;Y)

)︁1/p
, if p ∈ [1,∞),

max
(︁
∥u∥L∞(a,b;X ), ∥u̇∥L∞(a,b;Y)

)︁
, if p =∞.

Of special interest in this thesis is the space W 1,2(a, b;V,V∗), where the embedding V ↪→ V∗ is given
by a Gelfand triple V,H,V∗. The space W 1,2(a, b;V,V∗) then is a Hilbert space if V is one [Emm04,
p. 211]. Further, W 1,2(a, b;V,V∗) can be continuously embedded into the space of continuous
functions with images in H and for every u, v ∈W 1,2(a, b;V,V∗) the equality

(u(t2), v(t2))H − (u(t1), v(t1))H =
∫︂ t2

t1

⟨ u̇(s), v(s) ⟩V∗,V + ⟨ v̇(s), u(s) ⟩V∗,V ds (3.19)

holds for almost every a ≤ t1 < t2 ≤ b, [Zei90a, Prop. 23.23]. Since W 1,2(a, b;V,V∗) ↪→ L2(a, b;V) ∩
C([a, b],H), we can weaken the assumptions on the derivative of u by u̇ ∈ [L2(a, b;V)∩C([a, b],H)]∗ ⊂
L2(a, b;V∗) + L1(a, b;H∗), see Lemma 3.2, such that the duality pairs in (3.19) are still well-defined.
So, we consider the bigger space

W1(a, b;V,V∗) := {u ∈ L2(a, b;V) | u̇ ∈ L2(a, b;V∗) + L1(a, b;H∗)}. (3.20)

Theorem 3.40 (Continuous Embedding of W1(a, b;V,V∗); [DauL92, p. 521] & [Tar06, p.114 f.]). Let
the Banach space V be reflexive, and the Hilbert space H be separable. Assume that the Gelfand-triple
V,H,V∗ is given. Then W1(a, b;V,V∗) equipped with the norm

∥u∥W1(a,b;V,V∗) := ∥u∥L2(a,b;V) + ∥u̇∥L2(a,b;V∗)+L1(a,b;H∗),

is a Banach space. This space is continuously embedded in C([a, b],H). For every u, v ∈W1(a, b;V,V∗)
and almost every a ≤ t1 < t2 ≤ b we have

(u(t2), v(t2))H − (u(t1), v(t1))H =
∫︂ t2

t1

⟨ u̇(s), v(s) ⟩ + ⟨ v̇(s), u(s) ⟩ ds. (3.21)

In particular, d
dt∥u(t)∥2

H = 2⟨ u̇(t), u(t) ⟩ for every u ∈W1(a, b;V,V∗).

Remark 3.41. For u, v ∈ W1(a, b;V,V∗) ↪→ L2(a, b;V) ∩ C([a, b],H) the duality pairings in The-
orem 3.40 read as ⟨ u̇, v ⟩ = ⟨ u̇1, v ⟩V∗,V + ⟨ u̇2, v ⟩H∗,H with u̇ = u̇1 + u̇2, u̇1 ∈ L2(a, b;V∗) and
u̇2 ∈ L1(a, b;H∗).
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4. Dynamic Abstract Equations
In this chapter we consider dynamic equations with abstract functions as solution. This includes
(constrained) PDEs in their strong and weak form.

Before we study dynamic equations in Banach spaces we investigate the properties of the abstract
function t ↦→ a(t, u(t)) as the image of a function u : [0, T ]→ X under a map a : [0, T ]×X → Y with
X and Y be Banach spaces. This is done in Section 4.1. In particular, we analyze measurability,
integrability, and differentiability. Afterwards in Section 4.2 we consider integral equations as first
example of dynamic abstract equations. Besides being of interest on their own, integral equations
appear as reformulations of operator differential equations with bounded operators. Operator
differential equations with bounded and unbounded operators are subject of Section 4.3. We finish
this chapter with a short introduction to operator differential-algebraic equations in Section 4.4.

4.1. Nemytskĭı Mappings
For the analysis of dynamic equations in Banach spaces we consider the map

a : [0, T ]×X → Y . (4.1)

With the dynamic equations in mind, the map a can be a right-hand side, e.g., f in the operator
differential-algebraic equation (1.1), or is defined via a(t, x) = A(t)x with a one-parameter family
of linear operators A(t) : X → Y. The Nemytskĭı mapping Na [Rou13, p. 19] is the extension of
function a to abstract functions with range in X , i.e.,

Na : ([0, T ]→ X )→ ([0, T ]→ Y); u(·) ↦→ a(·, u(·)).

In the following we collect conditions on a, such that its corresponding Nemystkĭı map Na maps
Bochner-measurable (Bochner-integrable) to Bochner-measurable (Bochner-integrable) functions.

Definition 4.1 (Carathéodory Conditions; [GolKT92, p. 128]). A map a : [0, T ]×X → Y is said to
satisfy the Carathéodory conditions or is a Carathéodory mapping, if

i.) x ↦→ a(t, x) is a continuous function for almost all t ∈ [0, T ],
ii.) t ↦→ a(t, x) is a Bochner-measurable function for all x ∈ X .

Lemma 4.2 ([GolKT92, Rem. 1, Th. 1(ii)&(iv), 4, & 5]). Let the map a : [0, T ] × X → Y be
given. Then Na maps Bochner-measurable functions u : [0, T ]→ X to Bochner-measurable functions
Nau : [0, T ]→ Y, if a satisfies the Carathéodory conditions.

If in addition, for every c > 0 a function ka( · ; c) ∈ Lq(0, T ), q ∈ [1,∞], ka ≥ 0, exists such that

∥a(t, x)∥Y ≤ ka(t; c) (4.2)

is satisfied for all x ∈ X with ∥x∥X ≤ c at almost every time-point t ∈ [0, T ], then Na maps
continuously L∞(0, T ;X ) to Lq(0, T ;Y).

The condition (4.2) is necessary if X is separable, [GolKT92, Th. 3]. For sufficient and necessary
conditions thatNa maps Lp(0, T ;X ) into Lq(0, T ;Y) with arbitrary p, q ∈ [1,∞] we refer to [GolKT92,
Ch. 2]. In the remainder of this thesis, we do not distinguish between the map a and its corresponding
Nemytskĭı mapping Na.
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Let us now consider the special case a(t, x) ≡ A(t)x with a one-parameter family of bounded
linear operators A(t) ∈ L (X ,Y). Since A(t) : X → Y is linear and continuous for every t, the
first Carathéodory condition is satisfied for a(t, x). For the second condition we introduce different
notions of measurability for operator-valued functions.

Definition 4.3 (Measurable Operator-Valued Functions; [HilP57, p. 74]). An operator-valued
function A : [0, T ]→ L (X ,Y) is said to be

• uniformly measurable, if t ↦→ A(t) is Bochner-measurable in L (X ,Y).
• strongly measurable, if t ↦→ A(t)x is Bochner-measurable in Y for every x ∈ X .
• weakly measurable, if t ↦→ ⟨ f,A(t)x ⟩Y∗,Y is Lebesgue-measurable for every x ∈ X , f ∈ Y∗.

Example 4.4.
i) The operator-valued function δ : [0, T ] → L (C([0, T ],R),R), t ↦→ δt with δt[f ] := f(t) is

strongly measurable, but is not uniformly measurable [BlaN10, p. 66, Ex. 2].
ii) A weakly but not strongly measurable function is given by [0, T ] → L (R, L∞(0, T )) ∼=

L∞(0, T ), t ↦→ χ[0,t](·) with χ[0,t] as the characteristic function of [0, t]; see [Edg77, p. 672].

By Definition 4.1 the map a(t, x) = A(t)x is a Carathéodory mapping if and only if A : [0, T ]→
L (X,Y ) is strongly measurable. In the following theorem we give a connection between the different
definitions of measurability in Definition 4.3.

Theorem 4.5 ([HilP57, Th. 3.5.5]). Let A : [0, T ]→ L (X ,Y). Then A is strongly measurable if
and only if A is weakly measurable and t ↦→ A(t)x is almost separably-valued in Y for every x ∈ X ,
i.e., there exists a null set E0 ⊂ [0, T ] such that the image of A(·)x restricted to [0, T ]\E0 is separable
in Y. Furthermore, A is uniformly measurable if and only if A is weakly measurable and almost
separably-valued in L (X ,Y).

Remark 4.6.
i) Since L (R,Y) ∼= Y and L (X ,R) = X ∗, the space L (X ,Y) is separable, if X or Y is finite-

dimensional and Y or X ∗ is separable, respectively. In particular, the different concepts of
measurability in Definition 4.3 then coincide by Theorem 4.5.

ii) For infinite-dimensional X , Y the space L (X ,Y) is not separable, even if X and Y are separable
Hilbert spaces. To verify this, let xi, yj be orthonormal bases of X , Y, respectively, and
ℓ∞ := {{αn}n∈N ⊂ R | supn∈N |αn| <∞} be the set of bounded sequences in R. We consider
the linear, bounded, injective map G : ℓ∞ → L (X ,Y); (α1, α2, . . .) ↦→

∑︁∞
i=1 αi(xi, ·)X yi. One

can show that the image of G is closed in L (X ,Y) and that G has a bounded left inverse.
Since ℓ∞ is not separable [Alt16, Ex. 4.18(2)], the image of G is a non-separable subspace of
L (X ,Y). By [Alt16, Lem. 4.17(2)] this proves that L (X ,Y) is not separable.

The weak formulation of a (constrained) PDE is sometimes written with a time-dependent bounded
bilinear form abi : [0, T ]×X × Y → R; see e.g. [Emm04, Sec. 8.2]. By [Zei90a, Prop. 21.31(a)] there
is a pointwise bijective connection between the bilinear form abi and A : [0, T ] → L (X ,Y∗) with
abi(t, x, y) = ⟨A(t)x, y ⟩Y∗,Y for all t, x, y. If Y∗ is separable, then it is enough to consider A by
Theorem 4.5. The results of this section can then be translated to the bilinear form abi.

Let us consider a pointwise linear A that satisfies the uniform boundedness condition (4.2). We
define ka := ka( · ; 1). Then the estimate

∥A(t)x∥Y =
⃦⃦⃦⃦
A(t) x

∥x∥X

⃦⃦⃦⃦
Y
∥x∥X

(4.2)
≤ ka(t)∥x∥X (4.3)

holds for all x ∈ X \ {0}. For separable X an implication is given in the following lemma.

Lemma 4.7 ([BlaN10, Cor. 2.3 & Prop. 3.7]). Suppose X is separable. Let A : [0, T ]→ L (X ,Y) be
strongly measurable and satisfy the boundedness condition (4.3) for ka ∈ Lp(0, T ), p ∈ [1,∞]. Then
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t ↦→ ∥A(t)∥L (X ,Y) is an element of Lp(0, T ) with ∥A(·)∥L (X ,Y) ≤ ka at almost every time-point
t ∈ [0, T ].

As next step we consider the set of operator-valued functions, which satisfy (4.3). Since it is
enough for the analysis in this thesis, we assume that X is separable. We follow the notation
of [BlaN10].

Definition 4.8 (Space Lp[0, T ; L (X ,Y)]). Let X ,Y be Banach spaces and X be separable. The
abstract function A : [0, T ]→ L (X ,Y) belongs to the space Lp[0, T ; L (X ,Y)], p ∈ [1,∞], if A is
strongly measurable, t ↦→ ∥A(t)∥L (X ,Y) is measurable, and

∥A∥Lp[0,T ;L (X ,Y)] :=
⃦⃦
∥A(·)∥L (X ,Y)

⃦⃦
Lp(0,T ) <∞. (4.4)

The space Lp[0, T ; L (X ,Y)] is a Banach space with the norm defined in (4.4) [BlaN10, p. 74
& Prop. 3.7]. By the definition of the spaces, it follows Lp′ [0, T ; L (X ,Y)] ↪→ Lp[a, b; L (X ,Y)]
for 1 ≤ p ≤ p′ ≤ ∞ and 0 ≤ a < b ≤ T . Furthermore, one should not confuse the space
Lp[0, T ; L (X ,Y)] with the Bochner space Lp(0, T ; L (X ,Y)). For example, for δ from Example 4.4.i)
we have ∥δ(t)∥L (C([0,T ],R),R) ≡ 1. Especially, δ is an element of L∞[0, T ; L (C([0, T ],R),R)] but not
of L∞(0, T ; L (C([0, T ],R),R)), since δ is not uniformly measurable. In general, Lp(0, T ; L (X ,Y))
is a proper subspace of Lp[0, T ; L (X ,Y)]; see [BlaN10, p. 75]. Under the conditions of Remark 4.6.i)
both spaces coincide.

Next we summarize some properties of functions in Lp[0, T ; L (X ,Y)].

Lemma 4.9 ([BlaN10, Th. 3.6] & [GolKT92, Th. 1(ii) & (iv)]). Let A ∈ Lp[0, T ; L (X ,Y)],
p ∈ [1,∞]. Then the corresponding Nemytskĭı mapping is an element of L (Lq(0, T ;X ), Lr(0, T ;Y))
with q, r ∈ [1,∞] and 1

r −
1
q = 1

p .

Lemma 4.10. Let X1,X2,X3 be Banach spaces. Assume Ai ∈ Lpi [0, T ; L (Xi,Xi+1)] with pi ∈
[1,∞], i = 1, 2. Suppose 1

q = 1
p1

+ 1
p2

with q ∈ [1,∞]. Then the pointwise composition (A2A1)(t) =
A2(t)A1(t) is an element of Lq[0, T ; L (X1,X3)].

Proof. Since A1 and A2 are pointwise linear, so is A2A1. Let x ∈ X1 be arbitrary and consider
the constant function ux : [0, T ] → X1; t ↦→ x. Then ux ∈ L∞(0, T ;X1) and by Lemma 4.9 we
obtain A1ux ∈ Lp1(0, T ;X2) and A2A1ux ∈ Lq(0, T ;X3). In particular, t ↦→ A2(t)A1(t)ux(t) =
A2(t)A1(t)x is Bochner-measurable in X3 and hence A2A1 is strongly measurable. Furthermore,
kA2A1 := ∥A2(·)∥L (X2,X3)∥A1(·)∥L (X1,X2) is an element of Lq(0, T ) as product of a Lp1 and a
Lp2-function [Bre10, Ch. 4, Rem. 2] and satisfies (4.3) for A2A1. The assertion then follows by
Lemma 4.7.

For the later analysis we need a concept of derivatives for strongly measurable operator-valued
functions.

Definition 4.11 (Derivative of Operator-Valued Functions). Let X ,Y be Banach spaces and
A : [0, T ] → L (X ,Y) be strongly measurable. Assume that t ↦→ A(t)x has a kth generalized
derivative, k ∈ N0, for every x ∈ X . Then we define the kth derivative A(k) : [0, T ]→ L (X ,Y) of A
by A(k)(t)x := dk

dtk (A(t)x).

Lemma 4.12. The kth derivative A(k) of A defined as in Definition 4.11 is unique. If A has a kth
generalized derivative dk

dtkA in the sense of Definition 3.35, then A(k) = dk

dtkA.

Proof. This immediately follows by considering t ↦→ A(t)x for fixed but arbitrary x ∈ X .

Justified by Lemma 4.12 we also use the notation dk

dtkA := A(k), A(0) := A, Ȧ := A(1), and
Ä := A(2). Analogously to the Sobolev-Bochner spaces we introduce a space of strongly measurable
operator-valued functions with derivatives.
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Definition 4.13 (Space W k,p[0, T ; L (X ,Y)]). Let X ,Y be Banach spaces. We say that A : [0, T ]→
L (X ,Y) is an element of W k,p[0, T ; L (X ,Y)], k ∈ N0 and p ∈ [1,∞], if A(i) ∈ Lp[0, T ; L (X ,Y)]
for all i = 0, . . . , k. Further, we define Hk[0, T ; L (X ,Y)] := W k,2[0, T ; L (X ,Y)].

By the Definition 4.11 of the derivative, the operator-valued function A inherits properties of the
generalized differentiable function A(·)x.
Lemma 4.14. Let A ∈ W k,p[0, T ; L (X ,Y)], k ∈ N , p ∈ [1,∞]. Then A has a (k − 1) times
continuously differentiable representative.
Proof. For k = 1, the assertion holds, since ∥Ȧ(·)∥L (X ,Y) ∈ Lp(0, T ) and thus the term

sup
x∈X \{0}

∥A(t)x−A(s)x∥Y

∥x∥X
= sup

x∈X \{0}

1
∥x∥X

⃦⃦⃦⃦ ∫︂ t

s

Ȧ(η)x dη
⃦⃦⃦⃦

Y

(4.3)
≤
∫︂ max(s,t)

min(s,t)

⃦⃦
Ȧ(η)

⃦⃦
L (X ,Y) dη

vanishes as s→ t for almost all s, t ∈ [0, T ] by [KufJF77, Cor. 2.19.10]. Here, we used Theorem 3.36.ii).
The cases k > 1 follow by induction.

Lemma 4.15. Let X1,X2,X3 be Banach spaces. Suppose Ai ∈ W k,p[0, T ; L (Xi,Xi+1)], i = 1, 2,
and u ∈W k,p(0, T ;X1), k ∈ N. Then A1u ∈W k,p(0, T ;X2) and A2A1 ∈W k,p[0, T ; L (X1,X3)] with

dk

dtk (A1u) =
k∑︂

ℓ=0

(︃
k

ℓ

)︃
dℓ

dtℓA1
dk−ℓ

dtk−ℓ
u and dk

dtk (A2A1) =
k∑︂

ℓ=0

(︃
k

ℓ

)︃
dℓ

dtℓA2
dk−ℓ

dtk−ℓ
A1.

Proof. The assertion on A1u follows the lines of [Wlo87, Th. 27.1] where the case p =∞ is shown.
The assertion on A2A1 is a consequence of the first part of this lemma, Lemma 4.10, and 4.14.

We finish this section by investigating pointwise elliptic operator-valued functions.
Definition 4.16 (Uniformly Elliptic and Uniform Gårding Inequality). Let V be a Hilbert space
and A : [0, T ]→ L (V,V∗) be weakly measurable. We call A uniformly elliptic on V , if for all v ∈ V
the inequality ⟨A(t)v, v ⟩ ≥ µA∥v∥2

V holds at almost every time-point t ∈ [0, T ] with a constant
µA > 0. Given a Gelfand triple V,H,V∗, we say that A satisfies uniformly a Gårding inequality
on V, if a constant κA ∈ R exist, such that A+ κA idH is uniformly elliptic.
Lemma 4.17. Let A ∈W 1,p[0, T ; L (V,V∗)] be uniformly elliptic. Then A has a uniformly elliptic
pointwise inverse A−1 ∈W 1,p[0, T ; L (V∗,V)] with derivative d

dtA
−1 = −A−1ȦA−1.

Proof. Since A has a continuous representative by Lemma 4.14, we define pointwise A−1(t) :=
(A(t))−1. The inverse then satisfies the pointwise estimate ∥A−1(t)∥L (V∗,V) ≤ 1

µA
; cf. [Alt16, p. 166].

Furthermore, for every s, t ∈ [0, T ] we have

∥A−1(t)−A−1(s)∥L (V∗,V) =∥A−1(s)A(s)A−1(t)−A−1(s)A(t)A−1(t)∥L (V∗,V)

≤∥A−1(s)∥L (V∗,V)∥A(s)−A(t)∥L (V,V∗)∥A−1(t)∥L (V∗,V).

This shows the continuity of A−1 and in particular A−1 ∈ L∞[0, T ; L (X ,Y)]. For its derivative
we note that 0 = d

dtx = d
dt (AA−1x) = ȦA−1x + A d

dt (A−1x) for all x ∈ X . Therefore, d
dtA

−1 =
−A−1ȦA−1 ∈ Lp[0, T ; L (X ,Y)] holds by Lemma 4.10. To show that A−1 is uniformly elliptic we
observe 0 < µA ≤ ∥A(t)∥L (V,V∗) ≤ ∥A∥C([0,T ],L (V,V∗)). Therefore, the estimate

⟨ f,A−1(t)f ⟩ = ⟨A(t)A−1(t)f,A−1(t)f ⟩ ≥ µA∥A−1(t)f∥2
V ≥

µA

∥A∥2
C([0,T ],L (V,V∗))

∥A(t)A−1(t)f∥2
V∗

(4.5)

is well-defined for every f ∈ V∗ and at almost every time-point t ∈ [0, T ].

25



4. Dynamic Abstract Equations

4.2. Volterra Integral Equations of Second Kind
As the first example of a dynamic equation in a Banach space we investigate the Volterra integral
equation (of second kind)

u(t) = f(t) +A1(t)
∫︂ t

0
A2(s)u(s) ds (4.6)

on a bounded time interval [0, T ]. We call a Bochner-measurable function u : [0, T ]→ X a solution
of (4.6), if t → A2(t)u(t) is Bochner-integrable on [0, T ] and (4.6) is satisfied at almost every
time-point t ∈ [0, T ]. In the monographs [GriLS90; Lin85] integral equations in finite dimensional
spaces X ,Y are analyzed. For studies in infinite dimension we refer to [GajGZ74, Ch. V § 1] and
[Zei90b, Ch. 28]. However, these references do not include integral equations of the form (4.6). In
Subsection 4.3.1 we use them to investigate operator differential equations and in Chapter 7 to make
statements about the Lagrange multiplier of operator differential-algebraic equations.

Let p ∈ [1,∞] and X , Y be separable Banach spaces. We assume f ∈ Lp(0, T ;X ). The linear,
time-dependent operators A1 and A2 are elements of Lp[0, T ; L (Y,X )] and Lq[0, T ; L (X ,Y)],
respectively, with p and q being conjugated indices. For the analysis we write (4.6) in the compact
form

Φ[a,b] : ([a, b]→ X )→ ([a, b]→ X ), u ↦→ f + A[a,b]u (4.7)

with 0 ≤ a < b ≤ T and the integral part

(A[a,b]u)(t) = A1(t)
∫︂ t

a

A2(s)u(s) ds (4.8)

for almost every t ∈ [a, b]. With the definition of Φ[a,b] the stated integral equation (4.6) becomes
the fixed point problem u = Φ[0,T ]u. To investigate the fixed point problem, we summarize some
properties of Φ[a,b] and A[a,b] in the following lemma.

Lemma 4.18. Assume that f ∈ Lp(0, T ;X ), A1 ∈ Lp[0, T ; L (Y,X )], and A2 ∈ Lq[0, T ; L (X ,Y)]
are given with conjugated indices p and q. Let 0 ≤ a < b ≤ T and Φ[a,b] as well as A[a,b] be defined
as in (4.7) and (4.8), respectively. Then Φ[a,b] maps Lp(a, b;X ) Lipschitz continuously into itself
and A[a,b] is an element of L (Lp(a, b;X )) with⃦⃦

A[a,b]
⃦⃦

L (Lp(a,b;X )) ≤ ∥A1∥Lp[a,b;L (Y,X )]∥A2∥Lq [a,b;L (X ,Y)]. (4.9)

Proof. We only have to prove A[a,b] ∈ L (Lp(a, b;X )). The stated properties of Φ[a,b] then follow
immediately with f ∈ Lp(0, T ;X ). The linearity of A[a,b] follows by the linearity of A1, A2, and of
the integral. For p <∞ and u ∈ Lp(a, b;X ), we get the estimate

⃦⃦
A[a,b]u

⃦⃦p

Lp(a,b;X ) ≤
∫︂ b

a

(︃
∥A1(t)∥L (Y,X )

∫︂ t

a

∥A2(s)∥L (X ,Y)∥u(s)∥X ds
)︃p

dt

≤∥A1∥p
Lp[a,b;L (Y,X )]∥A2∥p

Lq [a,b;L (X ,Y)]∥u∥
p
Lp(a,b,X ),

where we used Hölder’s inequality in the last line. Analogously, one proves (4.9) for p =∞.

With Lemma 4.18 we can prove the solvability of the integral equation (4.6).

Theorem 4.19. Let the assumption of Lemma 4.18 be satisfied. Then the Volterra integral equa-
tion (4.6) has a unique solution x ∈ Lp(0, T ;X ), which depends linearly and continuously on f .

Proof. With the bound (4.9) of A[a,b], we find a partition of [0, T ], 0 = t0 < t1 < . . . < tN = T

with
⃦⃦
A[ti−1,ti]

⃦⃦
L (Lp(ti−1,ti;X )) ≤

1
2 . Therefore, Φ[ti−1,ti] is a contraction in Lp(ti−1, ti;X ), i.e.,
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4.3. Operator Differential Equations

a Lipschitz continuous function from Lp(ti−1, ti;X ) into itself with a Lipschitz constant smaller
than one. By the Banach fixed-point theorem [Zei86, Th. 1.A], the map Φ[0,t1] has a unique fixed-
point u1 ∈ Lp(0, t1;X ). In particular, u1 = limn→∞ Φn

[0,t1]f
⃓⃓
[0,t1] =

∑︁∞
k=0 Ak

[0,t1]f
⃓⃓
[0,t1]. Therefore,

we have
∥u1∥Lp(0,t1;X ) ≤

∞∑︂
k=0

⃦⃦
A[0,t1]

⃦⃦k

L (Lp(0,t1;X ))∥f∥Lp(0,t1;X ) ≤ 2∥f∥Lp(0,t1;X )

Iteratively one shows the existence of a unique solution ui on [ti−1, ti] by replacing f in the definition
of Φ[ti−1,ti] by f

⃓⃓
[ti−1,ti] +

∑︁i−1
k=1A1(·)

∫︁ tk

tk−1
A2(s)uk(s) ds ∈ Lp(ti−1, ti;X ). A solution of (4.6) then

is given by u ∈ Lp(0, T ;X ) with u|[ti−1,ti] = ui. The solution u is unique, since all u1, . . . , uN are.
The linearity of f ↦→ u follows immediately from the linearity of A[0,T ]. Furthermore, by (4.6)

and Gronwall’s Lemma 3.15 the estimate

∥u(t)∥X ≤ ∥f(t)∥X + ∥A1(t)∥L (Y,X )

∫︂ t

0
∥f∥X ∥A2∥L (X ,Y) exp

(︃∫︂ t

s

∥A1∥L (Y,X )∥A2∥L (X ,Y) dη
)︃

ds

is satisfied at almost every time-point t ∈ [0, T ]. For p = 1 or p =∞ it follows that ∥u∥Lp(0,T ;X ) is
bounded by(︂

1+∥A1∥Lp[0,T ;L (Y,X )]∥A2∥Lq [0,T ;L (X ,Y)] exp
(︁
∥A1∥Lp[0,T ;L (Y,X )]∥A2∥Lq [0,T ;L (X ,Y)]

)︁)︂
∥f∥Lp(0,T ;X )

(4.10)
from above. On the other hand, for p ∈ (1,∞) we obtain

∥u(t)∥p
X − 2p−1∥f(t)∥p

X

≤ 2p−1∥A1(t)∥p
L (Y,X )

(︃∫︂ t

0
∥f∥X ∥A2∥L (X ,Y) exp

(︃∫︂ t

s

∥A1∥L (Y,X )∥A2∥L (X ,Y) dη
)︃

ds
)︃p

≤ 2p−1∥A1(t)∥p
L (Y,X )

∫︂ t

0
∥f∥p

X ds
(︃∫︂ t

0
∥A2∥q

L (X ,Y) exp
(︄
q

∫︂ t

s

∥A1∥L (Y,X )∥A2∥L (X ,Y) dη
)︃

ds
)︃ p

q

by (a+b)p ≤ 2p−1(ap +bp) for all a, b ≥ 0, cf. [Emm04, Th. A.1.5], and Hölder’s inequality. Replacing
the limits s and t by 0 and T , respectively, and integrating from 0 to T leads to the bound (4.10)
for ∥u∥Lp(0,T ;X ) with the prefactor q

√
2.

4.3. Operator Differential Equations
We now investigate linear differential equations for abstract functions in Banach spaces,

u̇(t) +A(t)u(t) = f(t). (4.11)

Systems of the form (4.11) are called operator differential equations (operator ODEs), abstract
ODEs, Cauchy problems, or evolution equations in the literature. In contrast to ordinary differential
equations, operator ODEs are stated in general Banach spaces X – not necessarily finite-dimensional.
We assume that X is reflexive and separable.

In our analysis we consider (4.11) on a bounded time interval [0, T ]. The right-hand side f
maps [0, T ] to X and the operator A maps [0, T ]×X to X . In the following we distinguish between
the case that the linear operator A(t) : X → X is bounded for almost every t ∈ [0, T ] or not. This
means, the first Carathéodory condition is either satisfied or not; see Definition 4.1. We always
assume that the second Carathéodory condition is fulfilled. However, the two different cases lead to
different solution concepts as well as different functional analytic approaches.
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4.3.1. Bounded Operators
In this subsection we study the operator ODE (4.11) with A(t) ∈ L (X ) for almost all t ∈ [0, T ]. As
for ordinary differential equations, we need in addition to (4.11) an initial value u0 ∈ X . A solution
of the operator ODE (4.11) with an initial value u0 ∈ X is an abstract function u : [0, T ]→ X , which
solves the Volterra integral equation

u(t) = u0 +
∫︂ t

0
f(s)−A(s)u(s) ds. (4.12)

An existence analysis for finite-dimensional X can be found in [Hal80, Ch. I.5]. In [Zei86, Ch. 3]
systems with continuous data and general Banach spaces X are studied. For general Bochner-
integrable data we get the following result.

Theorem 4.20. Let f ∈ Lp(0, T ;X ), A ∈ Lp[0, T ; L (X )], and u0 ∈ X be given. Then the operator
ODE (4.11) has a unique solution u ∈W 1,p(0, T ;X ) with u(0) = u0. The solution map (f, u0) ↦→ u
is linear and bounded.

Proof. By Theorem 4.19, equation (4.12) has a unique solution u ∈ L∞(0, T ;X ) which depends linear-
ly and continuously on (f, u0). Its generalized derivative is f−Au ∈ Lp(0, T ;X ) by Theorem 3.36.

4.3.2. Unbounded Operators
Let us now consider the operator ODE (4.11) with an unbounded time-independent operator A. Such
systems appear, for example, in the investigation of PDEs. A classical prototype is the heat equation,
which describes the flow of heat in a homogeneous and isotropic medium in a domain Ω ⊂ Rd. With
homogeneous Dirichlet boundary conditions this parabolic PDE is given by

u̇(ξ, t)−∆u(ξ, t) = f(ξ, t) in Ω× (0, T ], (4.13a)
u(ξ, t) = 0 on ∂Ω× (0, T ]. (4.13b)

Note that the Laplace operator ∆ = div∇ is unbounded as an operator from L2(Ω) into itself. The
investigation of the solvability of the heat equation leads to the methods of semigroups or variational
methods. These approaches are the topics of the following two subsections.

4.3.2.1. The Method of Semigroups

We recall the basic definition and properties of semigroups for a Banach space X . The following
definitions and results are taken from [Paz83, Sec. 1.1 f., & 4.2 f.], if no other references are given.

A one-parameter family S(t) ∈ L (X ), t ∈ R≥0, is called a semigroup if S(0) = idX and
S(t1)S(t2) = S(t1 + t2) for every t1, t2 ≥ 0. A semigroup is strongly continuous if S(t)x is right-
continuous at t = 0 for every x ∈ X . Right-continuity at t = 0 implies the continuity of the map
t ↦→ S(t)x on R≥0 for every x ∈ X and the existence of constants m ≥ 1, ω ∈ R such that

∥S(t)∥L (X ) ≤ meωt. (4.14)

The linear operator A defined by

Ax := lim
t→0+

S(t)x−x
t for x ∈ D(A) :=

{︂
x ∈ X

⃓⃓⃓
lim

t→0+

S(t)x−x
t exists

}︂
⊂ X

is called the infinitesimal generator of the semigroup S(t) with domain D(A). If S(t) is strongly
continuous, then D(A) is dense in X and S(t) is uniquely determined by A.
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Example 4.21.
i) For a bounded operator A ∈ L (X ) the function t ↦→ etA :=

∑︁∞
k=0(tA)k/k! is well-defined and

a strongly continuous semigroup with infinitesimal generator A [EngN00, Ch. I, Prop. 3.5].
ii) The Laplace operator ∆ generates a strongly continuous semigroup S(t) ∈ L (L2(Ω)) with

D(∆) = {u ∈ H1
0 (Ω) |∆u ∈ L2(Ω)} for every domain Ω ⊂ Rd [DauL92, p. 328 f.], and with

D(∆) = H2(Ω) ∩H1
0 (Ω) if ∂Ω is smooth enough; cf. [Alt16, Rem. 6.9]. In particular, for the

unit interval Ω = (0, 1), the identity

(︁
S(t)u

)︁
(ξ) = 2

∞∑︂
k=1

e−k2π2t sin(kπξ)
∫︂ 1

0
sin(kπη)u(η) dη

holds [Olv14, p. 124 ff.].

Motivated by Example 4.21.i) we denote the strongly continuous semigroup S(t) with infinitesimal
generator A by etA. Let us now consider the initial value problem

u̇(t) = Au(t) + f(t), (4.15a)
u(0) = u0, (4.15b)

on t ∈ [0, T ]. We call u : [0, T ] → X a strong solution of (4.15) if u ∈ W 1,1(0, T ;X ), u(0) = u0
and (4.15a) is satisfied at almost every time-point t ∈ [0, T ]. Inspired by the well-known variation-
of-constants formula, see [Hal80, Eq. (4.14)], we weaken the assumptions on a solution and say that
u : [0, T ]→ X is a mild solution of (4.15) if

u(t) = etAu0 +
∫︂ t

0
e(t−s)Af(s) ds (4.16)

at almost every time-point t ∈ [0, T ]. If f ∈ L1(0, T ;X ) and u0 ∈ X , then the initial value
problem (4.15) has a unique weak solution. The weak solution is a strong solution, if u0 ∈ D(A)
and f ∈W 1,1(0, T ;X ) or f is Lipschitz continuous for reflexive X .

We call a strongly continuous semigroup etA analytic, [EngN00, Def. 4.5 & Th. 4.6], if a constant
M > 0 exists such that

∥tAetA∥L (X ) ≤M (4.17)

for all t > 0. The Laplace operator ∆ in Example 4.21.ii) generates an analytic semigroup, [DauL92,
p. 412 f.]. The property (4.17) implies that every mild solution u becomes more regular over time
in the sense that if f is Hölder continuous [Paz83, p. 112], then so is Au, u̇ ∈ C([ε, T ],X ), ε > 0,
with the same exponent. This property is sometimes called parabolic smoothing. In particular, the
parabolic smoothing holds for a vanishing right-hand side.

For an analysis of evolution equations (4.11) with time-dependent A and an approach close to
semigroups, we refer to [Paz83, Ch. 5].

4.3.2.2. Variational Method

Consider again the heat equation with homogeneous Dirichlet boundary condition (4.13) in a Lip-
schitz domain. We follow the steps of [Zei90a, Sec. 23.1] and multiply (4.13) by φ ∈ C∞

c (Ω), integrate
over the domain, and use Green’s formula [Rou13, Eq. (1.54)] to derive its weak formulation∫︂

Ω
f(ξ, t)φ(ξ) dξ =

∫︂
Ω
u̇(ξ, t)φ(ξ)−∆u(ξ, t)φ(ξ) dξ =

∫︂
Ω
u̇(ξ, t)φ(ξ) +∇u(ξ, t) · ∇φ(ξ) dξ. (4.18)
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For the functional analytic treatment of (4.18) we separate the spatial and temporal variable. This
allows us to write (4.18) as

(u̇(t), φ)L2(Ω) + a(u(t), φ) = (f(t), φ)L2(Ω) (4.19)

with u : [0, T ]→ H1
0 (Ω) and the bilinear form

a(v1, v2) :=
∫︂

Ω
∇v1(ξ) · ∇v2(ξ) dξ.

Note that we choose H1
0 (Ω) as the range of u to incorporate the boundary condition (4.13b). The real

bilinear form a is bounded in H1
0 (Ω). By [Zei90a, Prop. 21.31(a)] there is a one-to-one correspondence

between a and the operator A ∈ L (H1
0 (Ω), H−1(Ω)) with ⟨Av1, v2 ⟩ = a(v1, v2). Furthermore, the

assumptions on u̇ and f can be weakened to be elements of H−1(Ω). The weak formulation (4.18)
then can be written as an operator ODE (4.11) stated in H−1(Ω), where we have used that C∞

c (Ω)
is dense in H1

0 (Ω). Note that A is unbounded as an operator from L2(Ω) into itself.
The derivation of the weak formulation (4.11) requires, in a natural way, the three spaces H1

0 (Ω),
L2(Ω), and H−1(Ω), which form a Gelfand triple [Zei90a, Ex. 23.12]. In general, we study the
operator ODE (4.11) with respect to a general Gelfand triple V , H, V∗. In addition to the operator
ODE (4.11) we have the initial value

u(0) = u0 ∈ H. (4.20)

We call an abstract function u : [0, T ]→ V a weak solution of the operator ODE (4.11) with initial
value u0 [LioM72, p. 239] if the equality∫︂ T

0
−(u, v)H φ̇+ ⟨A, v ⟩V∗,V φ dt = (u0, v)H φ(0) +

∫︂ T

0
⟨ f, v ⟩V∗,V φ dt (4.21)

is satisfied for every v ∈ V and φ ∈ C∞([0, T ]) with φ(T ) = 0.
Note that a weak solution of (4.11) is called a very weak solution in the context of the associated

PDE [Rou13, p. 215]. Furthermore, the term weak solution is also used in the context of semigroups
and coincides with the mild solution; cf. [Paz83, p. 258 f.]. On the one hand, the mild solution is a
weaker solution concept than the weak solution in the variational setting. On the other hand, the
existence of a Gelfand triple V , H, V∗ allows more freedom in the choice of the right-hand side and
is connected to the Galerkin method and the finite element method [Zei90a, p. 405].

Theorem 4.22 (Theorem of Lions-Tartar I). Let A ∈ L (V,V∗) satisfy a Gårding inequality (3.6).
Assume that u0 ∈ H and f = f1 +f2 with f1 ∈ L2(0, T ;V∗) and f2 ∈ L1(0, T ;H∗). Then the operator
ODE (4.11) has a unique weak solution u ∈W1(0, T ;V,V∗), i.e.,

u ∈ C([0, T ],H) ∩ L2(0, T ;V) and u̇ ∈ L2(0, T ;V∗) + L1(0, T ;H∗),

with u(0) = u0. Furthermore, the map (f, u0) ↦→ u is linear and bounded with

∥u(t)∥2
H + µA

∫︂ t

0
∥u(s)∥2

V ds ≤ e2κAt

[︃(︂
∥u0∥2

H +
∫︂ t

0

1
µA
∥f1(s)∥2

V∗ ds
)︂1/2

+
∫︂ t

0
e−κAs∥f2(s)∥H∗ ds

]︃2
.

(4.22)

Proof. The existence of a unique solution and the continuous dependence on the data is proven
in [Tar06, Lem. 19.1] and [DauL92, Ch. XVIII. §3.5]. For the proof of the estimate (4.22), we test
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4.3. Operator Differential Equations

the operator ODE (4.11) with the solution u and integrate over [0, t]. Together with (3.6) this yields

∥u(t)∥2
H + µA

∫︂ t

0
∥u∥2

V ds ≤ ∥u0∥2
H +

∫︂ t

0

(︂
1

µA
∥f1∥2

V∗ + 2κA∥u∥2
H + 2∥f2∥H∗∥u∥H

)︂
ds. (4.23)

We set φ(t) := ∥u(t)∥2
H. Then for every s ∈ [0, t] the estimate (4.23) implies

φ(s) ≤ ψε(s) := cε +
∫︂ s

0

(︂
2κAφ(η) + 2∥f2(η)∥H∗

√︁
φ(η)

)︂
dη (4.24)

with the time-independent constant cε := ε + ∥u0∥2
H +

∫︁ t

0
1

µA
∥f1(η)∥2

V∗ dη > 0 and an arbitrary
constant ε > 0. Thus, the function ψε is positive and

√
ψε as well as its derivative

d
dt
√︁
ψε = ψ̇ε

2
√
ψε

= 1√
ψε

(︁
κAφ+ ∥f2∥H

√
φ
)︁
≤ κA

√︁
ψε + ∥f2∥H∗

are well-defined. A differential version of Gronwall’s lemma [Emm04, Lem. 7.3.2] implies

∥u(t)∥2
H + µA

∫︂ t

0
∥u(s)∥2

V ds
(4.24)
≤ ψε(t) ≤

(︃
√
cε +

∫︂ t

0
e−κAη ∥f2(s)∥H∗ ds

)︃2
e2κAt.

Letting ε go to zero proves the estimate (4.22).

Remark 4.23. The assumption on the right-hand side can be weakened, such that a third summand
f3 ∈ L2(0, T ;V) with f(t) ≡ f1(t) + f2(t) + d

dt tf3(t) exists; cf. [LioM72, Ch. 3 Th. 4.4]. The unique
solution u then has only a distributional derivative in general.
Remark 4.24. Under the assumptions of Theorem 4.22 on A the operator −A is an infinitesimal
generator of an analytic semigroup in H [DauL92, Ch. XVII.A. §.3 Th. 3 & §.6 Prop. 3]. In particular,
estimate (4.14) is satisfied with m = 1 and ω = κA; see [DauL92, p. 413].

The weak formulation of a parabolic PDE with time and state-independent coefficients satisfies the
assumptions of Theorem 4.22 [Zei90a, Ch. 23]. Therefore, we will denote the operator ODE (4.11)
also as a parabolic PDE under the assumptions of Theorem 4.22.

To get more regular solutions we can assume that the right-hand side is generalized differentiable,
see [Wlo87, Th. 27.2] and Section 6.2, or that A ∈ L (V,V∗) splits into A = A1 +A2 with A1 ∈
L (V,V∗) being self-adjoint and A2 ∈ L (V,H∗). Note that, if A satisfies a Gårding inequality (3.6),
then A1 is elliptic on V without loss of generality. This can be seen as follows: With the Gårding
constants µA and κA of A and CA2 the continuity constant of A2 from an arbitrary splitting of
A, we set ˜︁A1 := A1 +

(︂
κA + C2

A2
2µA

)︂
idH and ˜︁A2 := A2 −

(︂
κA + C2

A2
2µA

)︂
idH . Then the sum of the

self-adjoint ˜︁A1 ∈ L (V,V∗) and ˜︁A2 ∈ L (V,H∗) still equals A. Furthermore, ˜︁A1 satisfies

⟨ ˜︁A1v, v⟩ ≥ µA∥v∥2
V − κA∥v∥2

H − CA2∥v∥V∥v∥H +
(︃
κA +

C2
A2

2µA

)︃
∥v∥2

H
(3.8)
≥ µA

2 ∥v∥
2
V

for all v ∈ V. Hence, throughout this thesis we assume that, given the splitting A = A1 +A2 as
described above, A1 is elliptic on V. As a result, A1 induces an equivalent norm in V, i.e.,

µA1 ∥v∥2
V ≤ ∥v∥2

A1
≤ CA1 ∥v∥2

V . (4.25)

Theorem 4.25 (Theorem of Lions-Tartar II; [Tar06, Ch. 21] & [Zim15, Th. 3.16]). Suppose
that A ∈ L (V,V∗) satisfies a Gårding inequality (3.6) and A = A1 + A2 with A1 ∈ L (V,V∗)
being self-adjoint and elliptic and A2 ∈ L (V,H∗). Assume that u0 ∈ V and f ∈ L2(0, T ;H∗).
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4. Dynamic Abstract Equations

Then the operator ODE (4.11) has a unique weak solution u ∈ H1(0, T ;H) ∩ C([0, T ],V) with
Au ∈ L2(0, T ;H∗) ∩ C([0, T ],V∗) and u(0) = u0. The map (f, u0) ↦→ u is linear and bounded with∫︂ T

0
∥u̇(s)∥2

H ds+ ∥u(t)∥2
A1
≤ exp

(︃
2
C2

A2

µA1

t

)︃[︃
∥u0∥2

A1
+ 2

∫︂ t

0
∥f(s)∥2

H∗ ds
]︃
. (4.26)

Furthermore, the estimate (4.26) implies that Au ∈ L2(0, T ;H∗) is bounded in terms of the data.

Remark 4.26. Alternatively to (4.26), one can bound the solution in Theorem 4.25 via∫︂ t

0
∥u̇(s)∥2

H ds+ ∥u(t)∥2
A1
≤ ∥u0∥2

A1
+ 4CA2

µA
e2κAt∥u0∥2

H +
(︂

2 +
2C2

A2

κAµA
(e2κAt − 1)

)︂∫︂ t

0
∥f(s)∥2

H∗ ds.
(4.27)

The estimate is still valid for an elliptic A by setting κA = 0 with exp(2κAt)−1
κA

|κA=0 := 2t.
For the analysis of operator ODEs with a time-dependent operator A by variational methods we

refer to [DauL92, Ch. XVIII. § 3] and Section 7.1.

4.4. Operator Differential-Algebraic Equations
As DAEs are roughly speaking ODEs with additional algebraic restrictions, so-called constrained
PDEs or partial differential-algebraic equations (PDAE) are dynamic PDEs with additional con-
straints. These constraints are possibly given by spatial differential operators. The incompressible
Navier-Stokes equations [Tem77, p. 280], for example, force its velocity field u to be divergence-free,
i.e., div u = 0. The temporal derivative of the pressure does not appear at all.

As the weak formulation of PDEs leads to operator ODEs, see Subsection 4.3.2, PDAEs becomes
to so-called abstract DAEs, often referred as operator DAEs. In general, operator DAEs are operator
ODEs with additional constraints. These constraints force the solution to lie on a manifold of a
Banach space, e.g., the set of functions with vanishing divergence for the incompressible Navier-Stokes
equations. On the other hand, operator DAEs can also be characterized by the fact that their spatial
Galerkin discretization leads to a DAE; see [Alt15, Sec. 4.3].

Operator DAEs with time-independent operators are well-studied; see [FavY99; Rei06; Sho10] for a
semigroup ansatz and [Alt15; EmmM13; Hei14; Zim15] for a variational approach as well as [DauL93;
Tar06; Tem77] in the context of fluid dynamics. In this thesis we investigate semi-explicit operator
DAEs of the form

d
dt (Mu) + (A− 1

2Ṁ)u − B∗λ= f in V∗, (4.28a)
Bu = g in Q∗ (4.28b)

on a bounded time interval [0, T ], T > 0. The spaces V and Q are assumed to be reflexive and
separable Banach spaces. We suppose that a separable Hilbert space H exists, such that V, H, V∗

forms a Gelfand triple. Operator DAEs of the form (4.28) can be derived by considering operator
ODEs of the form d

dt (Mu) + (A− 1
2Ṁ)u = f in V∗ and introducing the constraint (4.28b) by the

Lagrange multiplier method [Ste08, Ch. 4.1.2]; see also [Alt15, Ch. 6]. Anyway, the operators are
possibly time-dependent with M(t) ∈ L (H,H∗), A(t) ∈ L (V,V∗), and B(t) ∈ L (V,Q∗). The
right-hand sides f and g are pointwise elements of V∗ and Q∗, respectively, at almost every time-point
t ∈ [0, T ]. Both functions are in general time-dependent, and f may also depend on the solution u
itself.

In the Parts B and C we assume that A (uniformly) satisfies a Gårding inequality (3.6) on the
pointwise kernel of B. Referring to the discussion of parabolic PDEs in Subsection 4.3.2.2, we will
then say that the operator DAE (4.28) is of parabolic type or is a constrained, parabolic PDE.
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4.4. Operator Differential-Algebraic Equations

In addition to the operator DAE (4.28) we assume that an initial condition

u(0) = u0 ∈ H (4.29)

is given. From the theory of DAEs it is known that by the constraint (4.28b) the initial value
cannot be arbitrary and must be consistent in some sense. However, since the domain of B(0)
is V, an evaluation of B(0) at the initial value u0 ∈ H is not well-defined in general. In Part B we
characterize the set of consistent initial values, which incorporate u0 ∈ H with a formal consistency
condition B(0)u0 = g(0). This is also discussed in [EmmM13, Rem. 3.1] and [AltH18, Cor. 3.5].
A solution (u, λ) then should satisfy the operator DAE (4.28) and the initial condition (4.29) in a
distributional sense; cf. [EmmM13, p. 462] and (4.21).

Definition 4.27 (Solution of Operator DAE (4.28)). We call a tuple (u, λ) of abstract functions
u : [0, T ] → V and λ : [0, T ] → Q a (weak) solution of the operator DAE (4.28) with initial condi-
tion (4.29) if an abstract function ΛB∗ : [0, T ] → V∗ with distributional derivative d

dtΛB∗ = B∗λ
exists such that the identity∫︂ T

0
−⟨Mu, v ⟩H∗,H φ̇+ ⟨ (A− 1

2Ṁ)u, v ⟩V∗,V φ+ ⟨ΛB∗ , v ⟩V∗,V φ̇+ ⟨ Bu, q ⟩Q∗,Q φ dt

= ⟨M(0)u0, v ⟩H∗,H φ(0) +
∫︂ T

0
⟨ f, v ⟩V∗,V φ+ ⟨ g, q ⟩Q∗,Q φ dt (4.30)

holds for every v ∈ V , q ∈ Q, and φ ∈ C∞([0, T ]) with φ(T ) = 0. All integrals in (4.30) are assumed
to be well-defined.

Note that, neither the derivative u̇ nor the Lagrange multiplier λ are required in (4.30). They
exist in general only as distributional derivatives [EmmM13, Sec. 3.2.1].
Remark 4.28 (Superposition Principle). Since the operators are pointwise linear the solutions of the
operator DAE (4.28) are linear in the data (f, g, u0), if f and g are independent of u and λ.
Remark 4.29. The operator DAE (4.28) can formally be rewritten as

Mu̇ + (A+ 1
2Ṁ)u− B∗λ = f in V∗, (4.31a)
Bu = g in Q∗. (4.31b)

For a uniformly elliptic A, system (4.31) is in the form of a pHDAE (2.5) in infinite dimensions with
the operator-valued functions

E =
[︃
M 0
0 0

]︃
, R =

[︃ 1
2 (A+A∗) 0

0 0

]︃
, J =

[︃ 1
2 (A∗ −A− Ṁ) B∗

−B 0

]︃
and the control given by the right-hand sides f , g. The system (4.31) also fits in the framework
of [MehM19, Def. 1] with the same R and J but without 1

2Ṁ. The so-called effort function and
time-flow function in the definition of pHDAE in [MehM19] is given by the state itself and by
( 1

2Ṁu, 0), respectively.
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5. Temporal Discretization

In this chapter, we introduce the two temporal integration schemes, which we are focusing on in
this thesis. The two families of iterative one-step methods are implicit Runge-Kutta methods and
explicit exponential integrators. Runge-Kutta methods are recapped with its application to DAEs in
Section 5.1. In Section 5.2 we study exponential integrators. Exponential integrators are used to
solve dynamical systems with a nonlinear right-hand side. The nonlinear part is approximated by
polynomials and the resulting system is solved exactly. These integrators are introduced by their
application to ODEs and PDEs.

In this thesis we focus on a uniform partition of the interval [0, T ] with step size τ = T/N . For a
given dynamical system with solution x, e.g., an ODE, a DAE, or a PDE, a numerical integration
scheme is said to be convergent of order p if xn as the approximation of x at timepoint tn = nτ ,
n = 1, . . . , N , satisfies

∥xn − x(tn)∥ ≲ τp + h.o.t.

The acronym h.o.t. stands for higher order terms and summarizes finitely many positive terms with
prefactors of τ raised to powers greater than p. The constant is independent of τ but may depend
on the system’s data and the interval length T .

5.1. Runge-Kutta Methods for DAEs

A Runge-Kutta method is defined by the Butcher tableau

c A
bT (5.1)

with b, c ∈ Rs and A ∈ Rs×s; cf. [KunM06, p. 225]. Here, s denotes the number of stages. We say
the Runge-Kutta method (5.1) has classical order p if it is convergent of order p when applied to
ODEs with smooth right-hand sides. It is well-known, see e.g. [HaiNW93, Ch. II, Th. 7.4], that a
Runge-Kutta method, which satisfies the assumptions

s∑︂
i=1

bick−1
i = 1

k
, k = 1, . . . , p,

s∑︂
j=1

Aijck−1
j = ck

i

k
, i = 1, . . . , s, k = 1, . . . , q,

s∑︂
i=1

bick−1
i Aij = bj

k
(1− ck

j ), j = 1, . . . , s, k = 1, . . . , r,

is of classical order p if p ≤ q + r + 1 and p ≤ 2q + 2. The integer q is called the stage order of the
Runge-Kutta method.

For the numerical treatment of DAEs it is necessary that A is invertible [KunM06, p. 256],
which implies that the method is implicit. Therefore, the limit of the stability function R(z) :=
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5.1. Runge-Kutta Methods for Differential-Algebraic Equations

1 + zbT (Is − zA)−1
1s [HaiW96, p. 40] as z →∞ is well-defined,

R(∞) := lim
z→∞

1 + zbT (Is − zA)−1
1s = 1− bT A−1

1s.

Here, 1s is given by
1s :=

[︁
1, . . . , 1

]︁T ∈ Rs.

Consider an initial value problem for a linear DAE with constant coefficients

Eẋ(t) +Ax(t) = f(t), x(0) = x0. (5.2)

We assume that the matrix pair (E,A) ∈ Rnx×nx × Rnx×nx is regular, i.e., λ ↦→ det(λE − A) ̸≡ 0,
x0 ∈ Rnx is consistent, the right-hand side f : [0, T ] → Rnx is sufficiently regular, and a unique
solution x ∈ C1([0, T ],Rnx) of (5.2) is given. With the Kronecker product [KunM06, p. 220] given
by ⊗, an implicit Runge-Kutta method with constant step size τ applied to DAE (5.2) leads to the
iteration scheme

xn = (1− bT A−1
1s)xn−1 + (bT A−1 ⊗ Inx)xn, (5.3a)

1
τ

(A−1 ⊗ E)(xn − 1s ⊗ xn−1) + (Is ⊗A)xn = fn. (5.3b)

The vector xn ∈ Rnx is an approximation of x at tn = nτ and xn ∈ Rs·nx are the so-called internal
stages. The right-hand side is defined by fn :=

[︁
f(tn−1 + τc1)T , . . . , f(tn−1 + τcs)T

]︁T ∈ Rs·nx .
The convergence order of the Runge-Kutta method (5.1) applied to the DAE (5.2) not only

depends on the method itself but also on the index of the DAE. It is well-known that a high index,
i.e., iν > 1, can reduce the convergence order or leads in the extreme to divergence; see e.g. [KunM06,
Th. 5.12], [HaiW96, p. 504], [HaiLR89, p. 18 f.] or for a special class of PDAEs [DebS05, Th. 7].
Therefore, one usually reduces the index of the considered DAE beforehand by constructing a DAE of
lower index with the same solution space; see [KunM06, Ch. 6] and [HaiW96, Sec. VII.2]. Note that,
the naive approach of differentiating the constraints leads to drift-off phenomena [HaiW96, p. 468 f.].
Appropriate index reduction actually reveals and introduces hidden constraints, e.g., equation (2.4)
for DAE (2.3), and thus increases the number of algebraic equations instead of differential equations;
cf. e.g. [KunM06, Ex. 6.17]. However, if, after a possible index reduction, the DAE (5.2) is of index
one, then there exist by [HaiW96, p 378] invertible matrices P,Q ∈ Rnx×nx such that[︃

Ẽ11 0
0 0

]︃ [︃ d
dt x̃1
d
dt x̃2

]︃
+
[︃
Ã11 Ã12
Ã21 Ã22

]︃ [︃
x̃1
x̃2

]︃
= PEQ d

dt (Q−1x) + PAQQ−1x = Pf =
[︃
f̃1
f̃2

]︃
(5.4)

with Q−1x = [x̃T
1 x̃T

2 ]T and Ẽ11, Ã22 be square and regular.
An important class of Runge-Kutta schemes in the numerical treatment of DAEs and operator

DAEs are stiffly accurate methods.

Definition 5.1 (Stiffly Accurate; [KunM06, p. 231]). A Runge-Kutta scheme with s stages and
Butcher tableau A, b, c is called stiffly accurate if b satisfies bT = eT

s A with es = [0, . . . , 0, 1]T ∈ Rs.

Example 5.2. A stiffly accurate Runge-Kutta method of second classical order and first stage order
with two stages is defined by the Butcher tableau

A =
[︃
−3.25 6.25
−0.25 1.25

]︃
, b =

[︃
−0.25

1.25

]︃
, c =

[︃
3
1

]︃
.

Another important class for (operator) DAEs are L-stable methods. For their definition, we call
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5. Temporal Discretization

a Runge-Kutta scheme A-stable [HaiW96, Ch. IV, Def. 3.3], if |R(z)| ≤ 1 holds for every complex
number z = a+ ib with a ≤ 0.

Definition 5.3 (L-Stable; [HaiW96, Ch. IV, Def. 3.7]). An A-stable Runge-Kutta method given by
the Butcher tableau (5.1) is L-stable, if R(∞) = 1− bT A−1

1s = 0.

Every A-stable, stiffly accurate scheme is L-stable, since

R(∞) = 1− bT A−1
1s = 1− eT

s 1s = 0.

As a consequence, stiff components of the dynamical system are numerically damped out fast,
[HaiW96, p. 44]. In particular, R(∞) = 0 implies that (1−bT A−1

1s)xn−1 vanishes in equation (5.3a).
Therefore, the values of the previous step are not needed for variables, which are in the kernel
of E. As an example, x̃2,0 is not needed for the numerical integration of the index-1 DAE (5.4).
Furthermore, for stiffly accurate Runge-Kutta methods the approximation xn is given by the last nx

entries of xn. Thus, the numerical approximation x̃1,n, x̃2,n of (5.4) satisfies all algebraic constraints,
i.e., Ã21x̃1,n + Ã22x̃2,n = f̃2(tn), for every n = 1, . . . , N , if cs =

∑︁s
j=1 Asj =

∑︁s
j=1 bj = 1.

We can now formulate a convergence result for the implicit Runge-Kutta methods applied to
linear DAEs of index 1.

Theorem 5.4 (Convergence Order for DAEs; [HaiW96, p. 380]). Suppose that the Runge-Kutta
method (5.1) has classical order p, stage order q, and an invertible matrix A. Consider the DAE (5.4)
with square and invertible matrices Ẽ11, Ã22. Assume that the initial value is consistent. Then the
global error satisfies

∥x̃1,n − x̃1(tn)∥ ≲ τp + h.o.t. and ∥x̃2,n − x̃2(tn)∥ ≲ τ k + h.o.t.

for n = 1, . . . , N , where
i) k = p if the method is stiffly accurate,

ii) k = min(p, q + 1) if R(∞) ∈ [−1, 1),
iii) k = min(p− 1, q) if R(∞) = 1.

The method is not convergent if |R(∞)| > 1.

In Chapter 8 we study the discretization of the operator DAE (4.28) with Runge-Kutta methods.
There, we assume that the operator A of (4.28) is elliptic on a subspace. It is crucial that the
ellipticity is preserved for the time discretized problem; see [LubO95b] for operator ODEs and
Example 8.20 for operator DAEs. Therefore, we consider a subclass of Runge-Kutta methods in this
thesis.

Definition 5.5 (Algebraically Stable; [HaiW96, Ch. IV, Def. 12.5]). A Runge-Kutta scheme
with Butcher tableau A, b, c is called algebraically stable if b has only non-negative entries and
BA + AT B− bbT is positive semidefinite with the diagonal matrix B ∈ Rs×s given by Bii = bi.

Theorem 5.6 ([HaiW96, Ch. IV, Th. 12.11]). Every algebraically stable Runge-Kutta method is
A-stable.

For the error analysis in Chapter 8 we make the following observation.

Lemma 5.7. Suppose the Runge-Kutta method with Butcher tableau (5.1) is algebraically stable and
A is invertible. Let x0 ∈ R and x ∈ Rs be arbitrary and x1 := (1− bT A−1

1s)x0 + bT A−1x. Then
we have

2xT BA−1(x− x01s) ≥ x2
1 − x2

0. (5.5)
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5.2. An Introduction to Exponential Integrators

Proof. Consider the matrix M := BA + AT B − bbT ∈ Rs×s. Since the Runge-Kutta method is
algebraically stable, M is positive semidefinite by definition and it follows

2xT BA−1(x− x01s)− x2
1 + x2

0

= 2xT BA−1(x− x01s) + 2bT A−1
1sx

2
0 − (bT A−1

1s)2x2
0

− 2x0(1− bT A−1
1s)bT A−1x− (bT A−1x)2

=xT A−T MA−1x− 2xT A−T MA−1
1sx0 + 1

T
s A−T MA−1

1sx
2
0

= (x− 1sx0)T A−T MA−1(x− 1sx0) ≥ 0.

5.2. An Introduction to Exponential Integrators
In this section we introduce exponential integrators and recall their basic properties when applied to
ODEs and PDEs of parabolic type. For more details we refer to [StrWP12, Ch. 11] and [HocO10].

5.2.1. Exponential Integrators for Ordinary Differential Equations
Exponential integrators were first introduced by Certaine in [Cer60] for the simulation of systems of
the form

ẋ(t) +Ax(t) = f(t, x(t)), x0 ∈ Rnx . (5.6)

For the matrix A ∈ Rnx×nx it is assumed that it possesses eigenvalues with large negative real
part. Such systems occur for example in the discretization of semi-linear parabolic PDEs [HaiW96,
Sec. IV.1]. Note that, because of their relatively small linear stability domain, most explicit methods
require very small step sizes for the simulation of (5.6); see [HaiW96, Sec. IV.2 & V.1] and [HunV03,
Ch. II, Sec. 1.4]. On the other hand, implicit methods are not preferable if the evaluation of the
nonlinearity f is expensive.

Exponential integrators are based on the variation-of-constants formula of the solution of (5.6),
see e.g. [Hal80, Eq. (4.14)], given by

x(t) = e−tAx0 +
∫︂ t

0
e−(t−s)Af(s, x(s)) ds. (5.7)

For the construction of exponential integrators for (5.6) we consider the recursively defined ϕ-functions
[StrWP12, Ch. 11.1]

ϕ0(z) := e z :=
∞∑︂

ℓ=0

zℓ

ℓ! , ϕk(z) := ϕk−1(z)− ϕk−1(0)
z

=
∞∑︂

ℓ=0

zℓ

(ℓ+ k)! , (5.8)

k = 1, 2, . . . Note that ϕk(A) is well-defined for every k ∈ N0 and matrix A ∈ Rnx×nx ; see [GolV96,
Th. 11.2.3]. The importance of the ϕ-functions comes from the fact that

ϕk(z) =
∫︂ 1

0
e(1−s)z sk−1

(k − 1)! ds,

k ≥ 1. As a consequence, the exact solution given in (5.7) with initial value x0 ∈ Rnx and polynomial
right-hand side f =

∑︁r
k=0

fk

k! t
k, r ∈ N0, with coefficients fk ∈ Rnx , k = 0, . . . , r, can be expressed in

terms of ϕk. More precisely, the solution of (5.6) then is

x(t) = e−tAx0 +
∫︂ t

0
e−(t−s)A

r∑︂
k=0

fk

k! s
k ds = ϕ0(−tA)x0 +

r∑︂
k=0

ϕk+1(−tA) fk t
k+1. (5.9)
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Remark 5.8. By the linearity of formula (5.9) in x0 and fk, the function t ↦→ ϕ0(−tA)x0 is the
solution of (5.6) with initial value x0 and homogeneous right-hand side, whereas t ↦→ tkϕk(−tA) fk

is the solution of (5.6) with vanishing initial value and monomial right-hand side fk

(k−1)! t
k−1, k ∈ N.

The main idea of exponential integrators is to replace the nonlinearity f in (5.6) by polynomials
designed from the previous approximation and internal stages. For example, considering the
interpolation polynomial of degree 0 by evaluating the nonlinearity only in the previous step, we
obtain the exponential Euler scheme,

xn+1 = e−τAxn + τϕ1(−τA)f(tn, xn).

For a general exponential integrator, the solution x(tn+1) of (5.6) is approximated by

xn+1 = e−τAxn + τ

s∑︂
i=1

bi(−τA)f(tn + ciτ,Xn,i) (5.10a)

with notes ci ∈ R≥0. For i = 1, . . . , s the internal stage Xn,i denotes an approximation of x(tn + ciτ)
and is given by

Xn,i = e−ciτAxn + τ
s∑︂

j=1
ai,j(−τA)f(tn + cjτ,Xn,j). (5.10b)

In this thesis, we assume that the functions bi(z) and ai,j(z) are linear combinations of ϕk(z) and

ϕk,i(z) := ϕk(ciz), (5.11)

k = 1, 2, . . ., i = 1, . . . , s. Like a Runge-Kutta method, the exponential integrator defined in (5.10)
is specified by the Butcher tableau

c A(z)
bT (z) =

c1 a1,1(z) . . . a1,s(z)
...

... . . . ...
cs as,1(z) . . . as,s(z)

b1(z) . . . bs(z)

. (5.12)

Note that A and b in (5.12) are function-valued.
In this thesis, we focus on explicit exponential integrators, i.e., c1 = 0 and ai,j = 0 if i ≤ j ≤ s.

They have the advantages that no nonlinear root finding problems have to be solved and the number
of evaluations of the nonlinearity f is known a priori.

For order conditions of explicit exponential integrators applied to ODEs we refer to [StrWP12,
Ch. 11.2].

5.2.2. Exponential Integrators for Partial Differential Equations
As a preparation for our investigation of exponential integrators for operator DAEs in Chapter 9, we
consider semi-linear systems

u̇(t) +Au(t) = f(t, u(t)) (5.13)

with A mapping linearly from an infinite dimensional Banach space X into itself. In Chapter 9 the
operator A is usually a (unbounded) differential operator. For a bounded operator A : X → X and
k ∈ N0 the notation ϕk(tA) given as an infinite sum (5.8) is well-defined [Alt16, Th. 5.9]. Therefore,
the derivation and interpretation of exponential integrators for bounded operators is similar to those
in Subsection 5.2.1. If −A : D(−A) ⊂ X → X is an unbounded differential operator, which generates
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a strongly continuous semigroup e−tA, we use the interpretation as in Remark 5.8.

Definition 5.9 (ϕ-Functions for Unbounded Operators). Let the linear operator −A : D(−A) ⊂
X → X generate a strongly continuous semigroup e−tA. We define the operator ϕ0(−tA) : X → X
as the semigroup e−tA for nonnegative times t ≥ 0.

For k ∈ N we set ϕk(−tA) : X → X to id /k!, if t = 0, and for t > 0 as the map from fk ∈ X to
u(t) t−k where u(t) is the mild solution of (5.13) with initial value u0 = 0 and monomial right-hand
side t→ fk

(k−1)! t
k−1.

We obtain the following major property for the corresponding ϕ-functions.

Theorem 5.10 (Properties of the ϕ-Functions; cf. [HocO10, Lem. 2.4]). Assume that the linear
operator −A is the infinitesimal generator of a strongly continuous semigroup e−tA. Then the
operators ϕk(−tA) from Definition 5.9 are elements of L (X ) for all k = 0, 1, . . . and t ≥ 0.

With the reinterpretation of the ϕ-functions, the solution formula for bounded operators (5.9)
directly translates to the operator ODE (4.11) with an unbounded A; cf. [HocO10]. Furthermore,
the approximation un+1 and the internal stages Un,i similar determined as in (5.10a) and (5.10b)
are well-defined.

For our investigation in Chapter 9 we take a deeper look at the norm of ϕk(−tA) in Theorem 5.10.
For this, let V, H, V∗ be a Gelfand triple and A be an element of L (V,V∗). We suppose that the
operator A satisfies a splitting as in Theorem 4.25. Further, we assume that A is elliptic. This
is reasonable, since by the assumed splitting A satisfies a Gårding inequality (3.6); see page 31.
Therefore, we can add the term κAu to both sides of the semi-linear operator ODE (5.13) such
that the new operator A+ κA idH is elliptic. Note that, −A then generates an analytic semigroup
in H, see Remark 4.24, and the function ϕk(−tA) : H → H are well-defined. In the estimate of the
norm of these functions, we distinguish between the domains H ∼= H∗ and V as well as between
the codomains H and V. Here, we use the parabolic smoothing of analytic semigroup e−tA; see
Subsection 4.3.2.1.

Lemma 5.11. Let A = A1+A2 ∈ L (V,V∗) be elliptic with a self-adjoint and elliptic A1 ∈ L (V,V∗)
and A2 ∈ L (V,H∗). Then for every k ∈ N and t ≥ 0 the estimates

a) ∥e−tA∥L (H) ≲ 1, b) ∥e−tA∥L (V) ≲ 1, c) ∥
√
te−tA∥L (H,V) ≲ 1 +

√
t,

d) ∥ϕk(−tA)∥L (H∗,H) ≲ 1, e) ∥ϕk(−tA)∥L (V) ≲ 1, f ) ∥
√
tϕk(−tA)∥L (H∗,V) ≲ 1 +

√
t

hold with generic constants independent of t.

Proof. By Definition 5.9 of the ϕ-functions, all estimates hold for t = 0 and we can consider t > 0.

Estimates for e−tA: By the definition of ϕ0, the function u(t) = e−tAu0 = ϕ0(−tA)u0 describes
the solution of

u̇(t) +Au(t) = 0 in V∗, u(0) = u0. (5.14)

Estimate a) then follows directly from (4.22) by setting κA to zero, since

max
u0∈H

∥e−tAu0∥2
H

∥u0∥2
H

= max
u0∈H

∥u(t)∥2
H

∥u0∥2
H

(4.22)
≤ max

u0∈H

∥u0∥2
H

∥u0∥2
H

= 1.

Analogously, one proves inequality b) with (4.27) and κA = 0. For the case c), i.e., ϕ0(−tA) : H → V ,
we observe

√
tu ∈ C([0, T ],V),

√
tu̇ ∈ L2(0, T ;H), and

√
tA1u ∈ L2(0, T ;H∗) by [Tar06, Lem. 21.1].

In particular,
(
√
tu̇,
√
tu̇)H + ⟨

√
tA1u,

√
tu̇ ⟩H∗,H = −⟨

√
tA2u,

√
tu̇ ⟩H∗,H (5.15)
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is well-defined in L1(0, T ). By [Zim15, Th. 3.20], this equality implies the estimate

∥
√
tu(t)∥2

A1
= lim

t0→0+
∥
√
tu(t)∥2

A1
− ∥
√
t0u(t0)∥2

A1

= lim
t0→0+

∫︂ t

t0

2⟨
√
sA1u(s),

√
su̇(s) ⟩H∗,H + ⟨A1u(s), u(s) ⟩V∗,V ds

(5.15)
≤

∫︂ t

0
C2

A2
s∥u(s)∥2

V + CA1∥u(s)∥2
V ds

(4.22)
≤

C2
A2
t+ CA1

µA
∥u0∥2

H,

which shows c) with (4.25) and
√
a+ b ≤

√
a+
√
b for a, b ≥ 0 [Emm04, Cor. A.1.2].

Estimates for ϕk(−tA), k ≥ 1: We fix t > 0 and consider u(t) = ϕk(−tA)fk = tkϕk(−tA)[fkt
−k]

as the solution of the associated operator ODE

u̇(s) +Au(s) = Fk(s) := sk−1 fk

tk(k − 1)! in V∗, u(0) = 0 (5.16)

at the time point s = t. Thus, by Remark 4.26 and κA = 0 we get

∥u(t)∥2
A1

(4.27)
≤

(︃
2 + t

2C2
A2

µA

)︃∫︂ t

0
∥Fk(s)∥2

H∗ ds =
(︃

2
t

+
2C2

A2

µA

)︃
∥fk∥2

H∗

((k − 1)!)2 .

This bound gives us the estimate f). Analogously, the bound d) is a direct consequence of Theo-
rem 4.22.

For ϕk as a map from V to V we note that u̇ satisfies the formal derivative of the operator
ODE (5.16) with initial value u̇0 = Fk(0) ∈ V ↪→ H [Emm04, Th. 8.5.1]. Hence, u̇ ∈ L2(0, T ;V)
and Au ∈ H1(0, T ;H∗) holds by Theorem 4.22 and 4.25. Therefore, we can test (5.16) with
Au̇ ∈ L2(0, T ;H∗) ↪→ L2(0, T ;V∗) by using that V is densely embedded in H∗. Then integration
over time leads to the estimate

µA

∫︂ t

0
∥u̇(s)∥2

V ds+ ∥Au(t)∥2
H∗ ≤

C2
A

µA

∫︂ t

0
∥fk(s)∥2

V ds = 1
t

C2
A

µA

∥fk∥2
V

((k − 1)!)2 . (5.17)

Note that this inequality bounds u̇ in L2(0, T ;V). Since u(0) = 0, we obtain ∥u(t)∥2
V ≤ t

∫︁ t

0 ∥u̇∥
2
V ds

by the Cauchy-Schwarz inequality. This estimate, together with (5.17), imply the estimate e).

Remark 5.12. In Chapter 9 we consider the case that V is a closed subspace of Vsup and that
an operator Asup ∈ L (Vsup,V∗

sup) exists with Asup
⃓⃓
V = A. With these additional conditions one

can enlarge the domain of estimate e) in Lemma 5.11 to Vsup, i.e., ∥ϕk(−tA)∥L (Vsup,V) ≲ 1 for
k ≥ 1. The associated proof follows the lines of Lemma 5.11 and estimate (5.17), where we use that
u̇ ∈W 1,2(0, T ;V,V∗) ↪→ L2(0, T ;V) ⊂ L2(0, T ;Vsup) implies Au̇ ∈ L2(0, T ;V∗

sup) ∩ L2(0, T ;H∗).
A proof of Lemma 5.11 based on the theory of semigroups can be found in [HocO05a, Ch. 3 f.].

Under this consideration, the estimates for the operators from H∗ to V in Lemma 5.11 and
Remark 5.12 are not obvious. Anyway, in addition to the estimates above, we need bounds
of the operator norm of ϕk(−tA) as function with codomain D(−A).

Lemma 5.13. Let the assumptions of Lemma 5.11 be satisfied. Then for every k ∈ N and t ≥ 0
the estimates ∥tAe−tA∥L (H,H∗) ≲ 1 and ∥tAϕk(−tA)∥L (H∗) ≲ 1 hold. Furthermore, we have
∥
√
tAe−tA∥L (V,H∗) ≲ 1 +

√
t. All generic constants are independent of t.

Proof. The estimates for t = 0 follow by Definition 5.9. Thus, we can consider t > 0.
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Estimates for e−tA: Let u(t) = e−tAu0 be the solution of (5.14) with initial value u0 ∈ H.
By [Emm04, Th. 8.5.3 f.] we have that v(t) := tu̇(t) ∈ W 1,2(0, T ;V,V∗) solves v̇ + Av = u̇ with
vanishing initial value. With the associated operator ODE (5.14) this leads to

∥tAu(t)∥2
H∗

(5.14)
= ∥tu̇(t)∥2

H = ∥v(t)∥2
H

(4.22)
≤ 1

µA

∫︂ t

0
∥u̇(s)∥2

V∗ ds
(5.14)
= C2

A
µA

∫︂ t

0
∥u(s)∥2

V ds
(4.22)
≤ C2

A
µ2

A
∥u0∥2

H.

For u0 ∈ V, we consider a sequence {u0,n}n∈N ⊂ V with Au0,n ∈ H∗ and u0,n → u0 in V as
n→∞. Such a sequence exists, since A is elliptic and we find arbitrarily close elements in H∗ for
Au0 ∈ V∗. Let un the solution of (5.14) with initial value u0,n and vn := tu̇n. Then the estimate∫︂ t

0
∥v̇n(s)∥2

H ds
(4.27)
≤

(︂
2 + 4

C2
A2

µA
t
)︂∫︂ t

0
∥u̇n∥2

H ds
(4.27)
≤ CA1

(︂
2 + 4

C2
A2

µA
t
)︂
∥u0,n∥2

V (5.18)

holds. This implies a bound for
tün(t) = v̇n(t)− u̇n(t) (5.19)

in L2(0, T ;H). Furthermore, u̇n satisfies the formal derivative of operator ODE (5.14) with initial
value u̇0,n = −Au0,n ∈ H∗ ∼= H [Emm04, Th. 8.5.1]. This implies

√
tu̇n(t) ∈ C([0, T ],V) and√

tün(t) ∈ L2(0, T ;H) by [Tar06, Lem. 21.1] and the estimate

∥
√
tu̇n(t)∥2

H = lim
t0→0+

∥
√
tu̇n(t)∥2

H − ∥
√
t0u̇n(t0)∥2

H

= lim
t0→0+

∫︂ t

t0

∥u̇n(s)∥2
H + 2(

√
sün(s),

√
su̇n(s))H ds

=
∫︂ t

0
∥u̇n(s)∥2

H + 2(sün(s), u̇n(s))H ds

(5.19)=
∫︂ t

0
2(v̇n(s), u̇n(s))H − ∥u̇n(s)∥2

H ds

(3.8)
≤
∫︂ t

0
∥v̇n(s)∥2

H ds
(5.18)
≤ CA1

(︂
2 + 4

C2
A2

µA
t
)︂
∥u0,n∥2

V (5.20)

holds. With the same steps, estimate (5.20) shows that {
√
tu̇n(t)}n∈N ⊂ C([0, T ],H) is a Cauchy

sequence. Its limit is given by
√
tu̇, since u̇n converges to u̇ in L2(0, T ;H) as n→∞ by Theorem 4.25.

The estimate for
√
tAe−tAu0 =

√
tAu(t) ∈ H∗ follows then by the limit of (5.20) for n → ∞ and√

tAu(t) = −
√
tu̇(t) ∈ C([0, T ],H∗) by (5.14).

Estimates for ϕk(−tA), k ≥ 1: Let t > 0 be fixed. We consider u(t) = ϕk(−tA)fk as the solution
of the operator ODE (5.16) at s = t. By [Emm04, Th. 8.5.1] the derivative of u satisfies the operator
ODE (4.11) with right-hand side d

dtFk ∈ L2(0, T ;H∗) and initial value u̇0 = Fk(0) ∈ H∗ ∼= H.
Therefore, the estimate

∥Au(t)∥H∗

(5.16)
= ∥u̇(t)∥H +∥Fk(t)∥H∗

(4.22)
≤ ∥Fk(0)∥H∗ +

∫︂ t

0
∥Ḟ k(s)∥H∗ ds+∥Fk(t)∥H∗ = 1

t

2∥fk∥H∗

(k − 1)!

holds. This finishes the proof.
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Part B.

Solutions of Operator
Differential-Algebraic Equations

In this part we analyze the existence and uniqueness of solutions of operator DAEs as well as their
regularity. Here, we focus on semi-explicit systems of the form

d
dt (Mu) + (A− 1

2Ṁ)u − B∗λ= f in V∗, (B.1a)
Bu = g in Q∗ (B.1b)

with solutions in the sense of Definition 4.27. As mentioned in Section 4.4, operator DAEs of
the form (B.1) are used to describe the weak formulation of constrained PDEs in an abstract
fashion. This type of equation appears among others in the field of fluid dynamics, thermodynamics,
electrodynamics, and chemical kinetics; see the examples in Chapter 6 and 7.

In Chapter 6 we investigate operator DAEs with time-independent operators A, B, and M. We
mainly extend known results, e.g., existence, uniqueness, and regularity of solutions, to systems with
more general right-hand sides. These results are used for the temporal discretization of (B.1) in
Part C. For the proofs of the extension results we use the continuity of the solution with respect to
the data. Furthermore, we specify the assumptions on the operators and on the right-hand sides
as well as characterize consistent initial values. These assumptions are transferred to systems with
time-dependent operators in Chapter 7. For the study of such operator DAEs we semi-discretize
the system in time. We use the implicit Euler scheme to get existence, uniqueness, and regularity
results by considering sequences of stationary solutions. Thereby, we investigate Gelfand triples
where the pivot space has a time-dependent inner product. We analyze the effect of this nonconstant
inner product on the embedding of generalized differentiable functions into the space of continuous
functions. Furthermore, time-dependent splittings of Hilbert spaces are studied as well.

Theorem 6.15, which can be found as Theorem 2.7 in [AltZ20], was originally proved by the author
of this thesis. All remaining results are unpublished work.
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6. Systems with Time-Independent
Operators

Semi-explicit operator DAEs with time-independent operators of the form

d
dt (Mu(t)) +Au(t) − B∗λ(t) = f(t, u(t)) in V∗, (6.1a)

Bu(t) = g(t) in Q∗, (6.1b)

with the initial condition

u(0) = u0 (6.1c)

are well-studied in the special case where the right hand side f is independent of u; see the references
in Section 4.4. In this chapter we summarize and extend these results. In particular, we investigate
the existence and uniqueness of solutions as well as their regularity and their continuous dependence
on the data.

We assume that V and Q are real separable Hilbert spaces. The operators in (6.1) are all
time-independent, linear, and continuous, i.e.,

A ∈ L (V,V∗), M∈ L (H,H∗), B ∈ L (V,Q∗).

Here, H denotes an additional real Hilbert space such that V , H, V∗ form a Gelfand triple. Since B
is continuous, its kernel is a closed subspace of V . We denote this subspace and its closure in H by

Vker := kerB and Hker := clos∥·∥H Vker,

respectively. By the assumption on V and H these spaces then form another Gelfand triple

Vker ↪→ Hker
∼= H∗

ker ↪→ V∗
ker.

Example 6.1 (Unsteady Stokes Equations). The weak formulation of the linear unsteady Stokes
equations with homogeneous Dirichlet boundary conditions can be written as an operator DAE
of the form (6.1). The unsteady Stokes equation characterizes the evolution of a Newtonian fluid
and is the linearization of incompressible Navier–Stokes equations around a vanishing velocity field
[Tem77, Ch. III, § 1]. The state u describes the velocity field of the fluid, whereas λ relates to a
relative pressure, which is assumed to have zero mean. For the application of the Stokes equation,
we consider the Hilbert spaces

V := [H1
0 (Ω)]d, H := [L2(Ω)]d, Q := L2(Ω)/R :=

{︁
p ∈ L2(Ω) |

∫︁
Ω p dξ = 0

}︁
.

Here, Ω ⊂ Rd denotes a bounded computational domain with Lipschitz boundary.
The operator A : V → V∗ corresponds to the Laplace operator in the weak formulation and is

defined by

⟨Au, v⟩ := µ

d∑︂
i=1

∫︂
Ω
∇ui · ∇vi dξ
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with the dynamic viscosity µ ∈ R>0. The operator B : V → Q∗ denotes the inf-sup stable divergence
operator [Bra07, Ch. III, Rem. 6.5]. Its dual B∗ : Q → V∗ is the gradient operator. The operator M
is induced by the componentwise inner product of L2(Ω) multiplied by the constant density ρ > 0.

The space Vker are the divergence-free functions of [H1
0 (Ω)]d. Its closure Hker is the subset of

functions in [L2(Ω)]d whose trace in normal direction and whose divergence vanish in the distributional
sense [Tem77, Ch. 1, Th 1.4].

Example 6.2 (Heat Equation with Boundary Control). The constraint (6.1b) may also be used
for boundary control [HinPU+09]. As a prototype we consider the heat equation (4.13a) with inho-
mogeneous Dirichlet boundary conditions. The spaces then are given by V := H1(Ω), H := L2(Ω),
and Q := H−1/2(Ω) with a Lipschitz domain Ω ⊂ Rd. The operator B is the trace operator, A
is the weak Laplacian as in Subsection 4.3.2.2, and M is induced by the inner product of L2(Ω).
Since C∞

c (Ω) is dense in H = L2(Ω), see [AdaF03, Cor. 2.39], the closure of Vker = H1
0 (Ω) equals H

itself.

In Section 6.1 we specify the assumptions on the operators and define consistent initial values.
Furthermore, we prove the existence and uniqueness of solutions of operator DAE (6.1) with right-
hand sides, which are independent of the solution. The regularity of these solutions is topic of
Section 6.2. In Section 6.3 we discuss whether and in which sense a controlled operator DAE implies
a dissipation inequality. Finally, in 6.4 we extend the results on the existence and uniqueness to
semi-linear systems, where f depends on time and on the solution u itself.

6.1. Existence and Uniqueness
In this section we study the solvability of the operator DAE (6.1) with a right-hand side f = f(t),
which is not dependent on the state u. We assume that B satisfies an inf-sup condition of the
form (3.2). By Lemma 3.6 the operator B then has a right inverse B−

Vc
for every closed complement

Vc of Vker in V . In [AltH18, Th. 3.4 & Cor. 3.5] the authors prove under some additional assumptions
that for a fixed Vc the condition

u0 ∈ Hker + B−
Vc
g(0) := {hker + B−

Vc
g(0) |hker ∈ Hker} ⊂ H (6.2)

on the initial value u0 and right-hand side g is necessary and sufficient for the existence of a solution.
For a given right-hand side g we state the following lemma for the initial value u0.

Lemma 6.3. Let V1
c and V2

c be complements of Vker in V and g0 ∈ Q∗. Suppose that h1 + B−
V1

c
g0 =

h2 + B−
V2

c
g0 is satisfied. Then h1 ∈ Hker if and only if h2 ∈ Hker.

Proof. Since h1 − h2 = B−
V2

c
g0 − B−

V1
c
g0 ∈ V with B(h1 − h2) = g0 − g0 = 0, we obtain h1 − h2 ∈

Vker ↪→ Hker.

Given the right-hand side g of (6.1b), Lemma 6.3 implies that the specific choice of Vc is irrelevant
in (6.2). Therefore, we do not fix the complement Vc in (6.2) and write in the following

u0 ∈ Hker + B−g(0) ⊂ H. (6.3)

Following [EmmM13] we call an initial value u0 consistent with respect to the operator DAE (6.1)
if u0 satisfies (6.3). If in addition u0 ∈ V holds, then (6.3) should be understood as u0 ∈ Vker +B−g(0)
and therefore Bu0 = g(0).
Remark 6.4. Since the spaces H and Hker in Example 6.2 are equal, every initial value u0 ∈ H is
consistent for the boundary controlled heat equation.
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Remark 6.5. With Lemma 9.22 a consistent initial value u0 can be characterized as an element
of the closure of V with respect to the norm (∥ · ∥2

H + ∥B · ∥2
Q∗)1/2. The initial value then satisfies

Bu0 = g(0) where B is the extension of B to this closure of V; see Subsection 9.3.2.2.
For the assumptions on the operators B and M let us recall the finite-dimensional DAE (2.3). To

be uniquely solvable it is necessary that the matrix B in (2.3) has full (column) rank; see Lemma 2.1.
This is equivalent to matrix B fulfilling an inf-sup stability condition of the form (3.2), since β > 0
is a lower bound for the smallest singular value [BreF91, Prop. II.3.1]. Hence, it is natural to assume
that the operator B in the operator DAE (6.1) satisfies an inf-sup condition. Furthermore, if B has
full rank in finite-dimensional DAE (2.3), then a sufficient condition for a unique solution of (2.3)
is by Lemma 2.1 that M is symmetric positive definite. Therefore, we assume for the operator
DAE (6.1) that M∈ L (H,H∗) is self-adjoint and elliptic.
Remark 6.6. If M ∈ L (H,H∗) is self-adjoint and elliptic, then the bilinear form ⟨M ·, · ⟩H∗,H is
an inner product in H. Its induced norm ∥ · ∥M is equivalent to ∥ · ∥H. Therefore, H equipped
with the inner product ⟨M ·, · ⟩H∗,H is a Hilbert space denoted by (H, ∥ · ∥M). The three spaces
V, (H, ∥·∥M),V∗ then form a Gelfand triple. The Riesz isomorphism in (H, ∥·∥M) is the operatorM;
see Theorem 3.3.

The existence of a right inverse of B by Lemma 3.6 implies that the dynamics of u in the
complement Vc is completely given by the constraint (6.1b). The remaining part of u, which maps
into Vker, has to be determined by the differential equation (6.1a). By the Theorem of Lions-
Tartar 4.22 the operator A must satisfy a Gårding inequality (3.6) on Vker. With these assumptions
on the operators we can prove the existence and uniqueness of a solution of (6.1). To do so, we
assume that the right-hand sides f and g satisfy assumptions adapted from Theorem 4.22.

Theorem 6.7 (Solutions of Operator DAEs). Suppose that A ∈ L (V,V∗) satisfies a Gårding
inequality on Vker, B ∈ L (V,Q∗) is inf-sup stable, and M∈ L (H,H∗) is self-adjoint and elliptic.
Let f = f1 + f2 with f1 ∈ L2(0, T ;V∗) and f2 ∈ L1(0, T ;H∗) and g ∈ W 1,1(0, T ;Q∗) be given.
Assume u0 ∈ Hker + B−g(0). Then the operator DAE (6.1) has a unique solution (u, λ), which
satisfies

u ∈ L2(0, T ;V) ∩ C([0, T ],H), λ = d
dt Λ for a Λ ∈ C([0, T ],Q) with Λ(0) = 0,

d
dt (Mu) ∈ L2(0, T ;V∗

ker) + L1(0, T ;H∗
ker), d

dt (Mu)− B∗λ ∈ L2(0, T ;V∗) + L1(0, T ;H∗),

and the initial condition u(0) = u0. The mapping of the data (f, g, u0) to (u,Λ) is linear and
continuous.

Proof. By Remark 6.6 we can assume without loss of generality that M = RH. Let uc := B−g ∈
W 1,1(0, T ;V), cf. [EmmM13, p. 463], and uker := u− uc. Then (u, λ) is a solution of the operator
DAE (6.1) if and only if (uker, λ) is a solution of the operator DAE (6.1) with right-hand sides
fker = f −Auc − u̇c, gker = 0 and initial value uker,0 := u0 − B−g(0). Theorem 3.3 from [EmmM13]
proves the existence, the uniqueness, and the continuous dependence on the data (fker, 0, uker,0) of
(uker,Λ). The assertion of this theorem follows then by u = uc + uker.

6.2. Regularity of Solutions
Theorem 6.7 shows the existence of a unique solution of the operator DAE (6.1), where the Lagrange
multiplier λ exists only in a distributional sense. For a regular λ, Lemma 3.6 and (6.1a) imply that
the existence of a Bochner-integrable Lagrange multiplier is equivalent to Mu having a generalized
derivative with images in V∗; cf. [Zim15, Sec. 3.1.2]. Note that the norm of V∗

ker is weaker than the
norm of V∗.
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In this section we investigate conditions such that u̇ ∈ L2(0, T ;H), which implies d
dt (Mu) =

Mu̇ ∈ L2(0, T ;H∗). For this we assume that the right-hand sides f and g are more regular as stated
in Theorem 6.7 or that A can be split similarly to the assumption in Theorem 4.25. We discuss these
two approaches in the following two paragraphs. In both cases we need that the initial value u0 is
an element of V and satisfies the consistency condition Bu0 = g(0).

Regular Right-Hand Sides As a first approach we formally differentiate the operator DAE (6.1)
and consider the needed assumptions on the data for a solution. Obviously, the right-hand sides
must be one times more differentiable than stated in Theorem 6.7. The possible initial value w0 of u̇
has to satisfy w0 ∈ Hker + B−ġ(0) by the algebraic constraint (6.1b) and

⟨Mw0, vker ⟩H∗,H = ⟨ f(0)−Au0, vker ⟩V∗,V (6.4)

for all vker ∈ Vker by the differential equation (6.1a); cf. [Wlo87, Sec. 27] and [Zim15, Sec. 3.1.2.1].

Theorem 6.8 (Regular Solutions of Operator DAEs I). Let the assumptions of Theorem 6.7 on
the operators be satisfied. Assume that f ∈ H1(0, T ;V∗) + W 1,1(0, T ;H∗), g ∈ W 2,1(0, T ;Q∗),
and u0 ∈ V with Bu0 = g(0). Suppose that a w0 ∈ Hker + B−ġ(0) exists, which satisfies (6.4). Then
the solution of the operator DAE (6.1) satisfies

u ∈ H1(0, T ;V) ∩ C1([0, T ],H), λ ∈ C([0, T ],Q).

The solution (u, λ) depends linearly and continuously on the data (f, g, u0, w0).

Proof. Let (u, λ) and (w, µ) be the solution of (6.1) with data (f, g, u0) and (ḟ , ġ, w0), respectively.
We prove u̇ = w. For this we use an arbitrary direct sum V = Vker ⊕ Vc with associated splittings
u = uker + uc and w = wker + wc. We note u̇c = d

dt (B−
Vc
g) = B−

Vc
ġ = wc. For the part in Vker we

consider the function
vker(t) := uker(0) +

∫︂ t

0
wker(s) ds− uker(t). (6.5)

Then vker vanishes at the initial time-point t = 0 and satisfies the operator ODE

d
dt (Mvker) +Avker

(6.5)= Mwker − d
dt (Muker) +A(uker(0) +

∫︂ t

0
wker ds− uker)

(6.1a)= Auker(0) +Mwker,0 +
∫︂ t

0
ḟ −AB−

Vc
ġ −MB−

Vc
g̈ ds− f +AB−

Vc
g +MB−

Vc
ġ

= Auker(0) +Mwker,0 − f(0) +AB−
Vc
g(0) +MB−

Vc
ġ(0) (6.4)= 0

in V∗
ker. This equivalent to vker fulfilling the operator DAE (6.1) with homogeneous data. So, vker = 0

by Theorem 6.7. Theorem 3.36 then implies u̇ker = wker in V∗ and therefore u̇ = w. The continuous
dependence of u = u0 +

∫︁ ·
0 w(s) ds on the data follows by the continuity of (ḟ , ġ, w0) ↦→ w; see

Theorem 6.7. The assertion on λ follows by

λ
(6.1a)= B−∗

left(f − d
dt (Mu)−Au) = B−∗

left(f −Mw −Au).

Operator A with a Special Splitting As a second approach for a more regular solution of (6.1)
we adapt Theorem 4.25 to operator DAEs. For this we assume that A is the sum of an elliptic,
self-adjoint operator and an operator with codomain H∗. Since the part uc is determined by B−g and
only uker by an operator ODE in V∗

ker, see e.g. [EmmM13, Th. 3.3], we can restrict the assumption
on A to the space Vker.

47



6. Systems with Time-Independent Operators

Theorem 6.9 (Regular Solutions of Operator DAEs II; [Tar06, Ch. 21] & [Zim15, Sec. 3.1.2.2]). In
addition to the assumptions of Theorem 6.7 on the operators, let A = A1 +A2 with A1 ∈ L (V,V∗) be
self-adjoint and elliptic on Vker and A2 ∈ L (V,H∗). Assume that f ∈ L2(0, T ;H∗), g ∈ H1(0, T ;Q∗),
and u0 ∈ V with Bu0 = g(0). Then the operator DAE (6.1) with initial value u0 has a unique solution

u ∈ C([0, T ],V) ∩H1(0, T ;H), λ ∈ L2(0, T ;Q)

with u(0) = u0. The solution depends linearly and continuously on the data.

Remark 6.10. The assumptions of Theorem 6.9 can be weakened in the sense that f ∈ L2(0, T ;H∗) +
W 1,1(0, T ;V∗) and an operator A3 ∈ L (H,V∗) exists such that A =

∑︁3
i=1Ai. The operators A1

and A2 still satisfy the assumption of Theorem 6.9. The spaces of the unique solution u and λ
stay the same and the mapping (f, g, u0) ↦→ (u, λ) is linear and continuous. For an associated
proof, one considers two sequences {fn}n∈N ⊂ H1(0, T ;H∗) and {u0,n} ⊂ V. The sequences are
constructed such that fn → f in L2(0, T ;H∗) +W 1,1(0, T ;V∗), cf. Remark 3.33, as well as u0,n → u0
in V, Bu0,n = g(0), and Au0,n ∈ H∗

ker; cf. Lemma 6.11. Note that the statements i) Av ∈ H∗
ker, ii)

(κ id +A)v ∈ H∗
ker for all κ ∈ R, and iii) (κ id +A)v ∈ H∗

ker for a κ ∈ R are equivalent. The assertion
follows then by the limit behavior of the sequence of solutions (un, λn) and Theorem 6.8, 6.9, and
Lemma 3.1.

6.3. Dissipation Inequality
In this section we analyze the operator DAE (6.1) in a port-Hamiltonian setting similar to the one
we introduced for descriptor systems in Section 2.2. Here, the control is given by the functions
wi : [0, T ] → Wi with reflexive Banach spaces Wi, i = 1, 2. Given the operators D1 ∈ L (W1,V∗)
and D2 ∈ L (W2,Q∗) we consider the controlled operator DAE

d
dt (Mu) + (J +R)u− B∗λ = D1ω1 in V∗, (6.6a)

Bu = D2ω2 in Q∗, (6.6b)
D∗

1u = y1 in W∗
1 , (6.6c)

D∗
2λ = y2 in W∗

2 . (6.6d)

The additional functions y1 : [0, T ]→ V and y2 : [0, T ]→ Q are the system’s outputs. We assume
that the operator J ∈ L (V,V∗) is skew-adjoint and that R ∈ L (V,V∗) is self-adjoint, elliptic
on Vker, and satisfies ⟨Rv, v ⟩ ≥ 0 for all v ∈ V .

In the setting of the operator DAE (6.1) we have A = J + R, f = D1ω1, and g = D2ω2. By
Theorem 6.7 the controlled operator DAE (6.6) then has a unique solution (u, λ) for every ω1 ∈
L2(0, T ;W1), ω2 ∈ H1(0, T ;W2) and consistent initial value u0 ∈ Hker+B−D2ω2(0). For this solution
we want to study a dissipation inequality similar to (2.6) with respect to the Hamiltonian defined
by (u, λ) ↦→ 1

2∥u∥
2
M. In the case of the operator DAE (6.1), the right-hand side of the dissipation

inequality (2.6) is not well-defined, since λ and therefore also y2 exist only in a distributional sense.
To interpret the integral of ⟨ y2, w2 ⟩ in (2.6) we consider a sequence of more regular solutions. To
do so, we need the following lemma.

Lemma 6.11. Assume that ω1 ∈ L2(0, T ;W1), ω2 ∈ H1(0, T ;W2), and u0 ∈ Hker+B−D2ω2(0) ⊂ H
are given. Let A ∈ L (V,V∗) be elliptic on Vker.

Then there exist sequences {ω1,n}n∈N ⊂ C∞
c ([0, T ],W1), {ω2,n}n∈N ⊂ C∞([0, T ],W2) with

ω2,n(0) = ω2(0) and ω̇2,n ∈ C∞
c ([0, T ],W2), as well as {u0,n}n∈N ⊂ V with Bu0,n = D2ω2(0),

and Au0,n ∈ H∗
ker, such that

lim
n→∞

(ω1,n, ω2,n, u0,n) = (ω1, ω2, u0) in L2(0, T ;W1)×H1(0, T ;W2)×H.
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Proof. Since C∞
c is dense in L2, cf. [GajGZ74, Ch. II, § 1, Lem. 1.20 & Ch. IV, § 1, Lem. 1.13], we

find sequences {ω1,n}n∈N ⊂ C∞
C ([0, T ],W1) and {ω′

2,n}n∈N ⊂ C∞
C ([0, T ],W2) with

∥ω1 − ω1,n∥L2(0,T ;W1) <
1
n and ∥ω̇2 − ω′

2,n∥L2(0,T ;W2) <
1
n .

We set ω2,n(t) := ω2(0) +
∫︁ t

0 ω
′
2,n ds. Then the inequality ∥ω2 − ω2,n∥H1(0,T ;W2) <

1
n

√︂
1 + T 2

2 holds.

For the construction of u0,n, we define u0,ker := u0 − B−D2ω2(0) ∈ Hker. Since Vker is dense
in Hker and H∗

ker in V∗
ker, we find u′

0,ker,n ∈ Vker and fn ∈ H∗
ker with

∥u0,ker − u′
0,ker,n∥Hker <

1
n and ∥fn −Au′

0,ker,n∥V∗
ker
< 1

n .

Finally, u0,n := A
⃓⃓−1
Vker

fn + B−D2ω2(0) ∈ V satisfies the identities Bu0,n = D2ω2(0), Au0,n = fn in
H∗

ker, as well as (with µA as the ellipticity constant of A
⃓⃓
Vker

) the estimate

∥u0 − u0,n∥H =
⃦⃦
u0,ker −A

⃓⃓−1
Vker

fn

⃦⃦
Hker

≤∥u0,ker − u′
0,ker,n∥Hker + CVker↪→Hker

µA
∥fn −Au′

0,ker,n∥V∗
ker

≤
(︂

1 + CVker↪→Hker

µA

)︂ 1
n
.

Lemma 6.12 (Dissipation Inequality). Let B be inf-sup stable, M∈ L (H,H∗) be self-adjoint as
well as elliptic. Assume that J ∈ L (V,V∗) is skew-adjoint, i.e., J = −J ∗, R ∈ L (V,V∗) with
R = R∗ is elliptic on Vker, and satisfies ⟨Rv, v ⟩ ≥ 0 for all v ∈ V. Suppose that ω1 ∈ L2(0, T ;W1),
ω2 ∈ H1(0, T ;W2), and u0 ∈ Hker + B−D2ω2(0) are given. Let (u, λ) be the solution of (6.6) given
by Theorem 6.7 and Y2 := D∗

2Λ. Define∫︂ t

0
⟨ y2, ω2 ⟩ ds := −

∫︂ t

0
⟨Y2, ω̇2 ⟩ ds+ ⟨Y2(t), ω2(t) ⟩. (6.7)

Then we have

1
2∥u(t)∥2

M − 1
2∥u0∥2

M =
∫︂ t

0
−⟨Ru, u ⟩ + ⟨ y1, ω1 ⟩ + ⟨ y2, ω2 ⟩ ds ≤

∫︂ t

0
⟨ y1, ω1 ⟩ + ⟨ y2, ω2 ⟩ ds. (6.8)

Proof. Consider the sequences {ω1,n}n∈N ⊂ C∞
c ([0, T ],W1), {ω2,n}n∈N ⊂ C∞([0, T ],W2), and

{u0,n}n∈N ⊂ V as stated in Lemma 6.11 with A = J +R. Then for every n ∈ N we have a solution
(un, λn, y1,n, y2,n) of (6.6) with λn ∈ C([0, T ],Q) and y2,n ∈ C([0, T ],W2) by Theorem 6.8. Since the
solution of (6.6) is continuous with respect to the data, un converges to u in L2(0, T ;V)∩C([0, T ],H)
and

∫︁ ·
0 λn ds to Λ in C([0, T ],Q). In particular, we have

y1,n = D∗
1un → D∗

1u = y1 and Y2,n = D∗
2

∫︂ ·

0
λn(s) ds→ D∗

2Λ = Y2

in L2(0, T ;W∗
1 ) and in C([0, T ],W∗

2 ) as n→∞, respectively. Therefore, we get

1
2∥u(t)∥2

M − 1
2∥u0∥2

M = lim
n→∞

1
2∥un(t)∥2

M − 1
2∥u0,n∥2

M

(6.6a)= lim
n→∞

∫︂ t

0
⟨−Run + B∗λn +D1ω1,n, un ⟩ ds

49



6. Systems with Time-Independent Operators

(6.6c)= lim
n→∞

∫︂ t

0
⟨−Run, un ⟩ + ⟨ y1,n, ω1,n ⟩ + ⟨D2ω2,n, λn ⟩ ds

(6.6d)= lim
n→∞

∫︂ t

0
⟨−Run, un ⟩ + ⟨ y1,n, ω1,n ⟩ + ⟨ y2,n, ω2,n ⟩ ds

= lim
n→∞

∫︂ t

0
⟨−Run, un ⟩ + ⟨ y1,n, ω1,n ⟩ − ⟨Y2,n, ω̇2,n ⟩ ds+ ⟨Y2,n(t), ω2,n(t) ⟩

=
∫︂ t

0
⟨−Ru, u ⟩ + ⟨ y1, ω1 ⟩ − ⟨Y2, ω̇2 ⟩ ds+ ⟨Y2(t), ω2(t) ⟩.

6.4. semi-linear Systems
This section is devoted to the extension of our analysis of the semi-explicit linear operator DAE (6.1)
to semi-linear systems. The investigated system has still linear constraints, but a nonlinearity
appears in the low-order terms of the dynamic equation. Thus, we consider the following semi-linear
operator DAE: find u : [0, T ]→ V and λ : [0, T ]→ Q such that

u̇(t) + Au(t) − B∗λ(t) = f(t, u) in V∗, (6.9a)
Bu(t) = g(t) in Q∗. (6.9b)

Example 6.13 (Dynamical Boundary Conditions). The (weak) formulation of semi-linear parabolic
equations with dynamical boundary conditions [SprW10] fits into the given framework. As a
prototype consider

u̇−∆u = fΩ in Ω, (6.10a)
µu̇− β∆Γu+ ∂nu+ αu = fΓ on Γ ⊂ ∂Ω, (6.10b)

u = 0 on ∂Ω \ Γ (6.10c)

with constants µ, κ > 0, β ≥ 0, the Laplace-Beltrami operator ∆Γ, see [GilT01, Ch. 16.1], and the
normal derivative ∂n on Γ. Equation (6.10b) describes a heat source on the boundary Γ; see [Gol06].
Then the reformulation of (6.10) as a coupled system with the dummy variable p = u|Γ has in its weak
form the operator DAE structure (6.9); cf. [Alt19]. We choose H := L2(Ω)× L2(Γ), Q := H

−1/2
00 (Γ),

and V depending on β as V := H1(Ω) ×H1/2
00 (Γ) for β = 0 or V := H1(Ω) ×H1

0 (Γ) if β > 0. The
constraint is given by 0 = B(u, p) = u|Γ − p, where B is inf-sup stable [Alt19, Lem. 2 & 5]. The
operators A and M are the weak versions of the associated operators.

We emphasize that PDEs with dynamical boundary conditions may have nonlinear reaction
terms also on the boundary. Examples include the Allen-Cahn equation [ColF15b; GalG08], the
Cahn-Hillard equation [ColF15a; Gal07], and the Caginalp equation [ChiFP06].

Example 6.14 (semi-linear Reaction–Diffusion–Advection Equations). The weak formulations
of semi-linear reaction–diffusion–advection equations with boundary control can be modeled as
semi-linear operator DAEs (6.9); cf. Example 6.2. Examples include the conduction of heat with
chemical reactions [CarJ96, Sec. 1.6.II], the flow of electrons and holes in semiconductors [Van50,
Sec. 2.2], and chemical reactions in a catalyst pellet [Gav68, Sec. 2.1]. For more examples see [Hen81,
Ch. 2] and the references therein.

In this section we are interested in solutions u, which are continuous with images in V . Following
Theorem 6.9, we restrict the analysis of (6.9) to operator DAEs with an operator A = A1 + A2
where A1 ∈ L (V,V∗) is self-adjoint and elliptic on Vker and A2 ∈ L (V,H∗). Furthermore, we
choose M to be the Riesz isomorphism in H. This can be extended to a general self-adjoint, elliptic
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operator M ∈ L (H,H∗) by interpreting M as the underlying inner product in H. The operator
B ∈ L (V,Q∗) is inf-sup stable.

The nonlinearity f maps from [0, T ]×V toH∗. In order to transfer the results of Theorem 6.9 to the
semi-linear operator DAE (6.9) we need to consider the Nemytskĭı map Nf induced by f , which maps
abstract measurable functions u : [0, T ]→ V to abstract measurable functions f( · , u( · )) : [0, T ]→ H∗.
For this, we need the classical Carathéodory conditions of Definition 4.1. Furthermore, we need a
growth condition such that Nf maps C([0, T ],V) to L2(0, T ;H∗); cf. Theorem 6.9. We assume in
the following that there exists a function k ∈ L2(0, T ) such that

∥f(t, v)∥H∗ ≤ k(t)(1 + ∥v∥V) (6.11)

for all v ∈ V and almost all t ∈ [0, T ]. We emphasize that (6.11) is sufficient but not necessary for f
to induce a Nemytskĭı map; cf. [GolKT92, Th. 1(ii)] and Remark 6.17. A last crucial point for the
existence of a solution is that f is locally Lipschitz continuous. This means that for every v ∈ V an
open ball Br(v) ⊆ V with center v and radius r = r(v) > 0 as well as a constant L = L(v) ≥ 0 exist,
such that

∥f(t, v1)− f(t, v2)∥H∗ ≤ L ∥v1 − v2∥V (6.12)

for all v1, v2 ∈ Br(v) and almost every t ∈ [0, T ]. We use these conditions to prove the existence and
uniqueness of a global solution of (6.9).

Theorem 6.15 (Existence of Solutions for Semi-Linear Operator DAEs). Assume that A ∈ L (V,V∗)
can be split into A = A1 + A2 with A1 ∈ L (V,V∗) self-adjoint and elliptic on Vker and A2 ∈
L (V,H∗). Let B ∈ L (V,Q∗) be inf-sup stable. Further, suppose that g ∈ H1(0, T ;Q∗) and
that f : [0, T ] × V → H∗ satisfies the Carathéodory conditions as in Definition 4.1, the growth
condition (6.11), and is locally Lipschitz continuous (6.12). Then for every consistent initial value
u0 ∈ V, i.e., Bu0 = g(0), the semi-linear operator DAE (6.9) has a unique solution

u ∈ C([0, T ],V) ∩H1(0, T ;H), λ ∈ L2(0, T ;Q)

with u(0) = u0.

Proof. Without loss of generality, we assume that A = A1 and A2 = 0. Otherwise, we redefine
f(t, v) ← f(t, v) − A2v, leading to an update of the involved constant L ← L + CA2 and k(t) ←
k(t) + CA2 but leaving the radius r of the local Lipschitz condition (6.12) unchanged.

To prove the assertion, we follow the steps of [Paz83, Ch. 6.3]. Let t′ ∈ (0, T ] be arbitrary
but fixed. With (6.11) we note that the Nemyskii map induced by f maps C([0, t′],V) into
L2(0, t′;H∗); see Lemma 4.2. Therefore, the solution map S[0,t′] : C([0, t′],V)→ C([0, t′],V), which
maps y ∈ C([0, t′],V) to the solution of

u̇(t) + Au(t) − B∗λ(t) = f(t, y(t)) in V∗, (6.13a)
Bu(t) = g(t) in Q∗ (6.13b)

with initial value u0, is well-defined by Theorem 6.9. To find a solution to (6.9) we have to look for
a fixed point of S[0,t′] and show that the interval of existence [0, t′] can be extended to [0, T ].

Let ũ ∈ C([0, T ],V) be the solution of the operator DAE (6.9) for f ≡ 0 and initial value u0. With
r = r(u0), L = L(u0), and the ellipticity constant µA of A restricted to Vker we choose t1 ∈ (0, T ]
such that

∥ũ(t)− u0∥V ≤
r

2 , (6.14a)∫︂ t

0
|k|2 ds ≤ µAr

2

4 (1 + r + ∥u0∥V)2 , (6.14b)
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L2t1 < µA, (6.14c)∫︂ t

0

3
µA
|k|2(1 + ∥ũ∥2

V) ds ≤ r2

4 · exp
(︁
− 3

µA

∫︂ t

0
|k|2 ds

)︁
(6.14d)

for all t ∈ [0, t1]. This is well-defined, since ũ − u0 and the integrals in (6.14b) and (6.14d) are
continuous functions in t, which vanish for t = 0. We define

D :=
{︁
y ∈ C([0, t1],V) | ∥y − ũ∥C([0,t1],V) ≤ r/2

}︁
and consider y1, y2 ∈ D. By (6.14a) we have ∥yi − u0∥C([0,t1],V) ≤ r. Using that ũ and S[0,t1]yi

satisfy the constraint (6.13b), we obtain the estimate

µA ∥(S[0,t1]yi − ˜︁u)(t)∥2
V

(4.26)
≤

∫︂ t

0
∥f(s, yi(s))∥2

H∗ ds
(6.11)
≤
∫︂ t

0
|k(s)|2

(︁
1 + ∥yi(s)− u0∥V + ∥u0∥V

)︁2 ds

≤
(︁
1 + r + ∥u0∥V

)︁2
∫︂ t

0
|k(s)|2 ds, (6.15)

which implies with (6.14b) that S[0,t1] maps D into itself. Further, we have

µA ∥(S[0,t1]y1 − S[0,t1]y2)(t)∥2
V

(4.26)
≤

∫︂ t

0
∥f(s, y1(s))− f(s, y2(s))∥2

H∗ ds
(6.12)
≤ L2t1∥y1 − y2∥2

C([0,t1],V)

for all t ≤ t1. This, together with the previous estimates (6.14c) and (6.15) shows that S[0,t1] is a
contraction on D, i.e., a Lipschitz continuous function from D into itself with a Lipschitz constant
smaller than one. Hence, there exists a unique fixed point u ∈ D ⊂ C([0, t1],V) of S[0,t1] by the
Banach fixed point theorem [Zei86, Th. 1.A]. On the other hand, for every fixed point u⋆ = S[0,t1]u

⋆

in C([0, t1],V), we have the estimate

µA ∥(u⋆ − ˜︁u)(t)∥2
V = µA ∥(S[0,t1]u

⋆ − ˜︁u)(t)∥2
V ≤

∫︂ t

0
|k(s)|2

(︁
1 + ∥(u⋆ − ũ)(s)∥V + ∥ũ(s)∥V

)︁2 ds.

Using (a+ b+ c)2 ≤ 3 (a2 + b2 + c2) and Gronwall’s inequality (3.10) it follows

∥(u⋆ − ˜︁u)(t)∥2
V ≤

∫︂ t

0

3
µA
|k(s)|2

(︁
1 + ∥ũ(s)∥2

V
)︁

ds · exp
(︂

3
µA

∫︂ t

0
|k(s)|2 ds

)︂
(6.16)

for every t ≤ t1. Because of (6.14d), this shows that u⋆ is an element of D and thus, u⋆ = u.
By considering problem (6.9) iteratively from [ti−1, T ], t0 := 0, to [ti, T ] with consistent initial

value u0 = u(ti), we can extend u uniquely on an interval I with u ∈ C(I;V) and u = S[0,t′]u
for every t′ ∈ I. Note that either I = [0, T ] or I = [0, Tf) with Tf ≤ T . The second case is
only possible if ∥u(t)∥V is unbounded near Tf, otherwise we can extend u to Tf and start at Tf
again; see also [Zim15, Th. 3.20]. But, since the estimate (6.16) also holds for u = u⋆ and
t < Tf, we have that limt→T −

f
∥u(t)∥V ≤ limt→T −

f
∥u(t)− ũ(t)∥V + ∥ũ(t)∥V is bounded. Therefore,

u = S[0,T ]u ∈ C([0, T ],V). Finally, the stated spaces for u and λ follow by Theorem 6.9 with
right-hand sides f = f( · , u( · )), g, and initial value u0 ∈ V .

Remark 6.16. In the proof of Theorem 6.15 we follow the steps of [Paz83, Ch. 6.3]. The assumptions
considered in [Paz83, Ch. 6.3], however, are stronger than the one in Theorem 6.15. If these
additional assumptions are satisfied, then the existence and uniqueness of a solution to (6.9)
follows directly by Theorem 6.9, [Paz83, Ch. 6, Th. 3.1 & 3.3], and the fact that every self-
adjoint, elliptic operator A ∈ L (V,V∗) has a unique invertible square root A1/2 ∈ L (V,H) with
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t

u

•u(tℓ)

◦ ◦ ◦

r(u(tℓ))/2

r(u(tℓ))/2

Stℓ
Stℓ

•u(s)
×
v

• u(t2)

St2St2

• u(t1)

St1

Figure 6.1.: Illustration of the proof of Lemma 6.18, where ℓ = 3 and ru = r(u(t2)).

⟨Av1, v2⟩ = (A1/2v1,A1/2v2)H for all v1, v2 ∈ V. This can be proven by interpreting −A as an
(unbounded) operator A: D(A) ⊂ H → H with domain D(A) := {A−1h |h ∈ H∗ ∼= H} ⊂ V ↪→ H
and the results of [BirS87, Ch. 6, Th. 4 & Ch. 10, Th. 1] and [Paz83, Ch. 2, Th. 6.8].
Remark 6.17. It is possible to weaken the assumption (6.11) in Theorem 6.15 to ∥f(t, v)∥H∗ ≤
k(t)(1 + ∥v∥p

V) for an arbitrary p > 1. Under this assumption one can show the existence of a unique
solution of (6.9), which may only exist locally.

As a next step we show that the unique solution of (6.9) depends continuously on the initial
value u0 and on the right-hand side g. For the associated proof we need the following lemma.

Lemma 6.18. Let f satisfy the assumptions of Theorem 6.15 and let u ∈ C([0, T ],V) be arbitrary.
Then there exists a radius ru > 0 and a Lipschitz constant Lu ∈ [0,∞), both depending on the
function u, such that (6.12) holds for all v1, v2 ∈ Bru(u(s)) with L = Lu and arbitrary s ∈ [0, T ].

Proof. The proof is constructive and its main idea is illustrated in Figure 6.1.
We extend u to a function on R by setting u(t) to u(0) if t < 0 and to u(T ) if t > T . Furthermore,

we define for every t ∈ [0, T ] the set

St :=
{︃
s ∈ R

⃓⃓⃓⃓
∥u(t)− u(s)∥V <

r(u(t))
2

}︃
⊆ R

with the local radius r > 0. Since t ∈ St and St is open by the continuity of u, the set {St}t∈[0,T ] is
a open cover of the compact interval [0, T ]. Thus, there exist finitely many time points ti ∈ [0, T ],
i = 1, . . . , N , such that

⋃︁N
i=1 Sti

⊇ [0, T ]. We define

ru := min
i=1,...,N

r(u(ti))
2 and Lu := max

i=1,...,N
L(u(ti)).

Let now s ∈ [0, T ] be arbitrary. By the construction of the sets Sti
there exists an ℓ ∈ {1, . . . , N}

with s ∈ Stℓ
. Then, for every v ∈ Bru

(u(s)) we have

∥v − u(tℓ)∥V ≤ ∥v − u(s)∥V + ∥u(s)− u(tℓ)∥V < ru + r(u(tℓ))
2 ≤ r(u(tℓ)),

which shows Bru
(u(s)) ⊆ Br(u(tℓ))(u(tℓ)). Finally, for every v1, v2 ∈ Bru

(u(s)) this implies

∥f(t, v1)− f(t, v2)∥H∗

(6.12)
≤ L(u(tℓ)) ∥v1 − v2∥V ≤ Lu ∥v1 − v2∥V .
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The existence of the uniform radius ru and Lipschitz constant Lu is one of the key ingredients
in the proof of the convergence order of the exponential integrator schemes in Chapter 9. It is
also helpful to prove the continuity of the mapping from the data to the solution of the semi-linear
operator DAE (6.9).

Theorem 6.19 (Continuous Dependence on Data for Semi-Linear Operator DAEs). Let the as-
sumption of Theorem 6.15 be satisfied. Then the mapping from the data u0 ∈ V and g ∈ H1(0, T ;Q∗)
with Bu0 = g(0) to the solution (u, λ) of (6.9) is continuous.

Proof. Let ru and Lu be the uniform radius and Lipschitz constant of Lemma 6.18. We consider an
arbitrary sequence {(u0,n, gn)}n∈N ⊆ V ×H1(0, T ;Q∗) of consistent initial values and right-hand
sides, which converges to (u0, g) in V × H1(0, T ;Q∗). The associated solutions of the operator
DAE (6.9) are (un, λn) and (u, λ), respectively. We show ∆un := u − un → 0 in C([0, T ],V) as
n→∞. This is sufficient, since for big enough n ∈ N we have ∥∆un∥C([0,T ],V) ≤ ru such that∫︂ T

0
∥f(t, u(t))− f(t, un(t))∥2

H∗ dt ≤
∫︂ T

0
L2

u∥∆un(t)∥2
V dt ≤ L2

uT∥∆un∥2
C([0,T ],V) → 0

as n→∞. The continuity follows then by Theorem 6.9.
To prove ∆un → 0, we define for arbitrary but fixed n the strictly monotonically increasing

function Rn ∈ C([0, T ]) by

Rn(t) = ∥B−
A1

∆gn∥C([0,t],V) +
[︃
CA1

µA1

(︂
∥∆u0,n∥V + ∥B−

A1
∆gn(0)∥V

)︂2

+ 3
µA1

∫︂ t

0
(Lu + CA2)2∥B−

A1
∆gn(s)∥2

V + ∥B−
A1

d
ds ∆gn(s)∥2

H∗ ds
]︃1/2

exp
(︃

3(Lu + CA2)2

2µA1

t

)︃
,

where ∆u0,n and ∆gn are defined analogously to ∆un. Since ∆u0,n and ∆gn are zero-sequences in V
and H1(0, T ;Q∗), respectively, Rn(T ) vanishes as n→∞. Therefore, we find an N ∈ N such that
Rn(T ) < ru for all n ≥ N . We want to prove ∥∆un(t)∥V < ru for all n ≥ N . Let us assume that
this is not true for an n ≥ N . Then by the continuity of ∆un there exists a smallest t∗ ∈ [0, T ] such
that ∥∆un(t∗)∥V = ru. On the one hand, t∗ ̸= 0 holds by Rn(0) ≤ Rn(T ) < ru and µA1 ≤ CA1 , and
therefore the difference of the initial values ∆u0,n is smaller than ru. On the other hand, one has

µA1∥∆un,ker(t)∥2
V

(4.26)
≤ CA1∥∆un,ker(0)∥2

V +
∫︂ t

0
∥f(s, u(s))− f(s, un(s))−A2∆un − B−

A1
d
ds ∆gn(s)∥2

H∗ ds

(6.12)
≤ CA1(∥∆u0,n∥V + ∥B−

A1
∆gn(0)∥V)2

+ 3
∫︂ t

0
(Lu + CA2)2∥∆un,ker(s)∥2

V + (Lu + CA2)2∥B−
A1

∆gn(s)∥2
V + ∥B−

A1
d
ds ∆gn(s)∥2

H∗ ds

for all t ∈ [0, t∗]. By Gronwall’s inequality (3.10), it follows

ru = ∥∆un(t∗)∥V ≤ ∥B−
A1
g(t∗)∥V + ∥∆un,ker(t∗)∥V ≤ Rn(t∗) ≤ Rn(T ) < ru.

This is a contradiction. Therefore, ∥∆un(t)∥V < ru for all t ∈ [0, T ] and n ≥ N . With the same
estimate as before, one has ∥∆un(t)∥V ≤ Rn(t). The proof is finished by taking the limit

lim
n→0

max
t∈[0,T ]

∥∆un(t)∥V ≤ lim
n→0

max
t∈[0,T ]

Rn(t) ≤ lim
n→0

Rn(T ) = 0.
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7. Systems with Time-Dependent
Operators

In this chapter we generalize the existence, uniqueness, and regularity results of the previous
Chapter 6, to the case where the operators M, A, and B in the operator DAE (B.1) depend on time.
We therefore consider the operator DAE

d
dt (M(t)u(t)) + (A(t)− 1

2Ṁ(t))u(t) − B∗(t)λ(t) = f(t) in V∗, (7.1a)
B(t)u(t) = g(t) in Q∗ (7.1b)

with operator-valued functions M : [0, T ] → L (H,H∗), A : [0, T ] → L (V,V∗), and B : [0, T ] →
L (V,Q∗). The initial value is given by u0. The definition of a solution is given in Definition 4.27.

In the analysis of the operator DAE (7.1) we restrict ourselves to A ∈ L∞[0, T ; L (V,V∗)]. The
operator-valued functions B and M have derivatives in the sense of Definition 4.11. In the following,
we assume that B ∈ H1[0, T ; L (V,Q∗)] and M ∈ H1[0, T ; L (H,H∗)]. The function B satisfies
uniformly an inf-sup condition of the form (3.2). Inspired by the results of Chapter 6 we assume in
the following that the operator A satisfies uniformly a Gårding inequality (3.6) on kerB(t), i.e., the
inequality

⟨A(t)vker, vker ⟩ ≥ µA∥vker∥2
V − κA∥vker∥2

H (7.2)

holds for every vker ∈ kerB(t) at almost every time-point t ∈ [0, T ]. Note that the kernel of B may
depend on time, whereas µA > 0 and κA ∈ R are constant. In addition, we assume that M is
uniformly elliptic on H.
Remark 7.1. Without loss of generality we can assume that A is uniformly elliptic on kerB(t), i.e.,
κA = 0 in (7.2). To verify the validity of this assumption, suppose that A only satisfies uniformly
a Gårding inequality on kerB(t) and that M is uniformly elliptic on H. Then (u, λ) is a solution
of the operator DAE (7.1) if and only if the transformed tuple (˜︁u(t), ˜︁λ(t)) = exp(− κA

µM
t)(u(t), λ(t))

fulfills

d
dt (M˜︁u) +

(︁
A+ κA

µM
M− 1

2Ṁ
)︁˜︁u− B∗˜︁λ = e

− κA
µM

t
f in V∗,

B˜︁u = e
− κA

µM
t
g in Q∗

with initial value ˜︁u0 = u0. The operator ˜︁A(t) ≡ A(t) + κA
µM
M(t) ∈ L (V,V∗) is uniformly elliptic

on kerB(t), since for all vker ∈ kerB(t) and at almost every time-point t ∈ [0, T ] it satisfies

⟨ ˜︁A(t)vker, vker ⟩ ≥ µA∥vker∥2
V − κA∥vker∥2

H + κA
µM

µM∥vker∥2
H = µA∥vker∥2

V .

In comparison to Chapter 6, we make the more restrictive assumptions f ∈ L2(0, T ;V∗) and
g ∈ H1(0, T ;V∗) on the right-hand sides of the operator DAE (7.1). The case f ∈ L2(0, T ;V∗) +
L1(0, T ;H∗) and g ∈W 1,1(0, T ;V∗) similar to Chapter 6 is discussed in the separate Remarks 7.15,
7.46, and in Theorem 7.21. In any case, the initial value u0 is consistent, i.e., u0 ∈ closH(kerB(0)) +
B−(0)g(0) ⊂ H. In particular, for time-independent B the consistency condition reads u0 ∈
Hker + B−g(0) as usual. We summarize these assumptions.
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Assumption 7.2 (Operators, Right-Hand Sides, and Initial Value of Operator DAE (7.1)).
i) The operator-valued function B ∈ H1[0, T ; L (V,Q∗)] is uniformly inf-sup stable.
ii) We assume that M ∈ H1[0, T ; L (H,H∗)] is uniformly elliptic with constant µM > 0 and

that A(t) with A ∈ L∞[0, T ; L (V,V∗)] is elliptic on kerB(t) with a uniform constant µA > 0
at almost every time-point t ∈ [0, T ].

iii) The right-hand sides satisfy f ∈ L2(0, T ;V∗) and g ∈ H1(0, T ;Q∗).
iv) The initial value u0 fulfills u0 ∈ closH(kerB(0)) + B−(0)g(0) ⊂ H.

Example 7.3 (Linearized Navier–Stokes Equations). The linearization of the incompressible Navier-
Stokes equations around a prescribed vector field v∞ : [0, T ] × Ω → Rd in its weak form is an
operator DAE of the form (7.1); cf. [EmmM13, Eq. (3)]. The spaces V, H, and Q as well as
the time-independent operators M and B are the same as for the unsteady Stokes equation; see
Example 6.1. For regular v∞ the operator A : [0, T ]→ L (V,V∗) is given by

⟨A(t)u, v⟩ :=
d∑︂

i=1

∫︂
Ω
µ∇ui · ∇vi + vi(v∞(t) · ∇ui) + vi(u · ∇v∞,i(t)) dx.

Example 7.4 (Dynamical Boundary Condition with Non-Constant Relaxation Time). The weak
formulation of the heat equation with dynamic boundary conditions and a non-constant relaxation
time σ(t) on the boundary leads to an operator DAE (7.1) with a time-dependent operator M(t) =
σ(t)RL2(∂Ω); see [KovL17, Sec. 2.2.2] and Example 6.13.
Example 7.5. Consider the PDE

u̇(ξ, t) + ∂ξξξξu(ξ, t) = f(ξ, t) in Ω× (0, T ] (7.3)

with the domain Ω = (0, 1) and vanishing Dirichlet and Neumann boundary conditions, i.e.,
u(0, t) = u(1, t) = 0 and ∂ξu(0, t) = ∂ξu(1, t) = 0. In addition, u should satisfy u(Φ(t), t) = g(t) with
functions Φ, g ∈ H1(0, T ), where 0 < Φ(t) < 1. By applying Green’s formula [Rou13, Eq. (1.54)] twice
and the Lagrange multiplier method [Ste08, Ch. 4.2.1] we derive the weak formulation of (7.3), which
is in the from of the operator DAE (7.1). The associated spaces are V = H2

0(0, 1), H = L2(0, 1), and
Q = R. The operator A ∈ L (V,V∗) given by ⟨Au, v ⟩ = (u, v)H2

0 (0,1) =
(︁
∂ξξu, ∂ξξv

)︁
L2(0,1) is elliptic,

see Section 3.3, and M = RL2(0,1). Furthermore, B ∈ H1[0, T ; L (V,Q∗)] with B(t)v = v(Φ(t)) and
derivative Ḃ(t)v = ∂ξv(Φ(t))Φ̇(t) is well-defined by [Bre10, Th. 8.8] and the assumptions on Φ. For
its uniform inf-sup stability we set vt(ξ) = ξ2(1−ξ)2

Φ2(t)(1−Φ(t))2 ∈ H2
0 (0, 1) for fixed t ∈ [0, T ]. For every

α ∈ R \ {0} we then have

sup
v∈H2

0 (0,1)\{0}

α · B(t)v
∥v∥H2

0 (0,1)|α|
≥ α2

∥αvt∥H2
0 (0,1)|α|

≥
√

5
2 min

t∈[0,T ]
Φ2(t)(1− Φ(t))2 > 0.

Note that Φ is a continuous function [Bre10, Th. 8.8] with 0 < Φ(t) < 1 by assumption.
Linear time-dependent operators B occur by the linearization of PDEs with nonlinear constraints,

e.g., the nonlinear boundary condition in the Stefan problem [DiPVY15, Sec. 2]. However, for
systems of the form (7.1) with a time-dependent operator B there are only few results known.
The paper [AltH18] is devoted to systems with M as the constant Riesz isomorphism in H and
a time-dependent B with a constant kernel. Hyperbolic PDEs with moving Dirichlet boundary
conditions are studied in [Alt14]. Here, roughly speaking, the operator B(t) is given by the trace
operator restricted to a time-dependent part of the boundary Γ(t) ⊂ ∂Ω. This operator, however,
does not satisfy Assumption 7.2.i).

The analysis of operator DAEs (7.1) where only A is time-dependent is a straightforward gen-
eralization of the results of Chapter 6. We consider this case together with nonautonomous M in
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Section 7.1. A time-dependent M can be interpreted as a nonautonomous inner product in H; cf.
Remark 6.6. In Section 7.2 we analyze operator DAEs with a time-dependent B. In particular, we
investigate nonautonomous splittings of V in Section 7.2.1. Finally in Section 7.3, we combine the
results of the sections 7.1 and 7.2 and make statements on operator DAEs of the form (7.1) where
all operators, namely M, A, and B, are dependent on time.

7.1. Time-Dependent Inner Products of the Pivot Space and
Operators A

In this section we investigate the operator DAE

d
dt (M(t)u(t)) + (A(t)− 1

2Ṁ(t))u(t) − B∗λ(t) = f(t) in V∗, (7.4a)
Bu(t) = g(t) in Q∗. (7.4b)

We emphasize that A and M are time-dependent operators, but B is constant in time. We assume
that B ∈ L (V,Q∗) is inf-sup stable and that Assumptions 7.2.ii)–iv) are satisfied. The existence of
solutions of (7.4) to a given consistent initial value

u0 ∈ Hker + B−g(0)

is analyzed in the first part 7.1.1 of this section. For the analysis we discretize the operator DAE (7.4)
in time by the implicit Euler method. We consider the weak/weak∗ limits of sequences of time-discrete
solution given by the Euler scheme. The uniqueness of the solution is topic of Subsection 7.1.2.
For this, we need to generalize the continuous embedding of W 1,2(a, b;V,V∗) in C([0, T ],H), see
Theorem 3.40, to the case of time-dependent inner products in H. This is investigated in 7.1.2.1.
Solutions under weaker assumptions on the right-hand sides f and g are analyzed in Subsection 7.1.3.
There, we use continuity results of the solution on the data. This section finishes with comments on
the regularity of the solution in 7.1.4, where we consider analogous cases to the ones in Section 6.2.

7.1.1. Existence Results
Let us consider the operator DAE (7.4). As in the case of autonomous operators in Chapter 6, we
split the possible solution u into two parts and set u = uker + uc. The first part uker is a function
mapping into Vker = kerB and uc satisfies Buc = g for almost all t ∈ [0, T ]. There are many possible
choices for uc, e.g.,

uc = B−
⊥g ∈ H

1(0, T ;V⊥
ker); (7.5)

see Definition 3.7 and Assumption 7.2.iii). Later in Subsection 7.1.4 we choose uc depending on A
in order to improve the regularity of the solution u as in Section 6.2. This, however, requires a
smoother A in time. Therefore, we use (7.5) for now.

Using the splitting u = uker + uc = uker + B−
⊥g in (7.4), we get for uker the operator DAE

d
dt (M(t)uker(t)) + (A(t)− 1

2Ṁ(t))uker(t) − B∗λ(t) = fker(t) in V∗, (7.6a)
Buker(t) = 0 in Q∗ (7.6b)

with the right-hand side
fker := f − (A+ 1

2Ṁ)uc −Mu̇c. (7.7)

By Lemma 4.15 and Assumptions 7.2.ii) and iii) the function fker is an element of L2(0, T ;V∗). In
the following we study the operator DAE (7.6). The associated initial value uker,0 = u0 − B−

⊥g(0)
is an element of Hker by Assumption 7.2.iv). Note that we could consider equation (7.6a) tested
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only with functions in Vker. This would lead to an operator ODE with a time-dependent inner
product of the pivot space Hker; cf. Remark 6.6. However, having the analysis of operator DAEs
with time-dependent B in Section 7.2 in mind we directly consider system (7.6).

7.1.1.1. Rothe Method

To analyze the existence of solutions (uker, λ) of (7.6), we use the Rothe method [Rot30] consisting
in semi-discretization in time. We take an equidistant partition of the interval [0, T ] with step size
τ = T/N > 0, N ∈ N, and discretize the operator DAE (7.6) formally with a Runge-Kutta method.
This leads to stationary problems for the discrete time points tn := nτ , n = 1, . . . , N . We work with
an arbitrary monotonically decreasing zero-sequence of step sizes {τk}k∈N ⊂ R>0. In the following
we omit the index k and write τ → 0 instead of limk→∞ τk = 0.

In the whole of Chapter 7 we use for the Rothe method the implicit Euler scheme. Applied to (7.6)
this leads to a stationary saddle point problem for every discrete time point tn given by

Dτ (Muker)n + (An − 1
2DτMn)uker,n − B∗λn = fker,n in V∗, (7.8a)

Buker,n = 0 in Q∗ (7.8b)

with n = 1, . . . , N . The terms Dτ (Muker)n and DτMn denote the discrete derivatives

Dτ (Muker)n = Mnuker,n −Mn−1uker,n−1

τ
and DτMn = Mn −Mn−1

τ
,

respectively, with the pointwise evaluation Mn := M(tn), n = 0, . . . , N . This is well-defined by
Assumption 7.2.ii) and Lemma 4.14. Since A ∈ L∞[0, T ; L (V,V∗)] and fker ∈ L2(0, T ;V∗) are not
continuous in general, they cannot be pointwise evaluated. Instead we use their mean over the
interval [tn−1, tn], i.e.,

fker,n := 1
τ

∫︂ tn

tn−1

fker(s) ds ∈ V∗ and Anv := 1
τ

∫︂ tn

tn−1

A(s)v ds (7.9)

for all v ∈ V. Note that An : V → V∗ is linear by the pointwise linearity of A and of the integral,
and bounded by

∥Anv∥V∗ ≤ 1
τ

∫︂ tn

tn−1

∥A(s)∥L (V,V∗)∥v∥V ds ≤ ∥A∥L∞[0,T ;L (V,V∗)]∥v∥V . (7.10)

Furthermore, the operator An is still elliptic on Vker, since for every vker ∈ Vker we have

⟨Anvker, vker ⟩ = 1
τ

∫︂ tn

tn−1

⟨A(s)vker, vker ⟩ ds ≥ 1
τ

∫︂ tn

tn−1

µA∥vker∥2
V ds = µA∥vker∥2

V . (7.11)

Remark 7.6. Under spatial discretization the operator DAE (7.6) becomes an index-2 DAE; see
Chapter 2 and [Alt15, Sec. 8.2]. This leads in general to numerical difficulties for the temporally
discretized DAE; see Section 5.1 for the finite-dimensional case as well as [Alt15, Sec. 6.1.3]
for the temporally semi-discretized operator DAE (7.4). Under the assumption of consistent
initial values, these difficulties, however, come from the inexact approximation of the hidden
constraints; cf. [HaiLR89, p. 33]. Since the right-hand side of the constraint (7.6b) is homogeneous,
its numerical derivative is exact, and no instabilities occur. A possible treatment of operator DAEs
with inhomogeneous constraints is discussed in Section 8.1.
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Remark 7.7. By the definition of DτMn, for every h ∈ H we have

DτMnh = 1
τ

(︁
M(tn)h−M(tn−1)h

)︁
= 1
τ

∫︂ tn

tn−1

Ṁ(s)h ds. (7.12)

The existence and uniqueness of a solution (uker,n, λn) of (7.8) is discussed in the following lemma.

Lemma 7.8 (Solvability of Stationary System). Let uker,n−1 ∈ Hker and fker,n ∈ V∗ be given.
Assume that Mn,Mn−1 ∈ L (H,H∗) are elliptic. Suppose that An ∈ L (V,V∗) is elliptic on Vker
and B ∈ L (V,Q∗) is inf-sup stable. Then the stationary saddle point problem (7.8) has a unique
solution (uker,n, λn) ∈ Vker ×Q, which depends linearly and continuously on fker,n and uker,n−1.

Proof. Since An is elliptic on Vker so is 1
τMn + An − 1

2DτMn = An + 1
2τ (Mn +Mn−1). The

assertion then follows by Theorem 3.8 and equation (7.8b).

By Lemma 7.8 the stationary saddle point problem (7.8) generates for a given initial value
uker,0 ∈ Hker a sequence of solutions uker,n ∈ Vker and λn ∈ Q for the time points tn, n = 1, . . . , N .
In the following lemma we bound the elements of this sequence in terms of fker and uker,0.

Theorem 7.9 (Bound for the Discrete Solutions). Let uker,0 ∈ Hker be given. Suppose that
B ∈ L (V,Q∗) is inf-sup stable and that Assumptions 7.2.ii) and iii) are satisfied. Let fker be defined
by (7.7). Let Mn :=M(tn) as well as An and fker,n be defined as in (7.9). Then the sequentially
defined unique solution (uker,n, λn) ∈ Vker ×Q, n = 1, . . . , N , of (7.6) satisfies

∥uker,n∥2
Mn

+
n∑︂

k=1
∥uker,k − uker,k−1∥2

Mk−1
+ µA

n∑︂
k=1

τ∥uker,k∥2
V ≤M2(uker,0, fker) (7.13)

with the constant M(uker,0, fker) =
√︂
∥uker,0∥2

M0
+ 1

µA
∥fker∥2

L2(0,T ;V∗). Furthermore, the discrete
derivative Dτ (Muker)n satisfies

n∑︂
k=1

τ∥Dτ (Muker)k∥2
V∗

ker

≤ 3
(︁
µA + 1

µA
∥A∥2

L∞[0,T ;L (V,V∗)] + C2
H∗↪→V∗

4µM
∥Ṁ∥2

L2[0,T ;L (H,H∗)]
)︁
M2(uker,0, fker). (7.14)

Proof. As first step we note that the equality

2⟨Mn h−Mn−1 h̄, h ⟩ − ⟨ (Mn −Mn−1)h, h ⟩
= ⟨Mn h, h ⟩ − ⟨Mn−1 h̄, h̄ ⟩ + ⟨Mn−1(h− h̄), h− h̄ ⟩

=
⃦⃦
h
⃦⃦2

Mn
−
⃦⃦
h̄
⃦⃦2

Mn−1
+
⃦⃦
h− h̄

⃦⃦2
Mn−1

(7.15)

holds for every h, h̄ ∈ H. Testing (7.6a) with τuker,n then leads to

1
2
(︁
∥uker,n∥2

Mn
− ∥uker,n−1∥2

Mn−1

)︁
+ 1

2∥uker,n − uker,n−1∥2
Mn−1

+ τµA∥uker,n∥2
V

(7.15)
≤ τ⟨Dτ (Muker)n + (An − 1

2DτMn)uker,n, uker,n ⟩
(7.6a)= τ⟨ fker,n, uker,n ⟩

(3.8)
≤ τ

2µA
∥fker,n∥2

V∗ + τ
µA

2 ∥uker,n∥2
V .
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uker,n−2

uker,n−1

uker,n

uker,n+1

tn−2 tn−1 tn tn+1

Figure 7.1.: Piecewise functions uker,τ (solid) and ˆ︁uker,τ (dashed) defined by uker,n, n = 0, . . . , N .

Summing this inequality from k = 1 to n implies (7.13), since by the Cauchy-Schwarz inequality we
have

τ

n∑︂
k=1
∥fker,k∥2

V∗
(7.9)= 1

τ

n∑︂
k=1
∥
∫︂ tk

tk−1

fker(s) ds∥2
V∗ ≤

n∑︂
k=1

∫︂ tk

tk−1

∥fker(s)∥2
V∗ ds ≤

∫︂ T

0
∥fker(s)∥2

V∗ ds.

Further, we note that B∗λn ∈ V0
ker vanishes if we consider (7.6a) as an equation in V∗

ker. Inequal-
ity (7.14) then follows by (7.13), Young’s inequality (3.8), and

∥Dτ (Muker)n∥V∗
ker

≤ ∥fker,n∥V∗ + ∥(An − 1
2DτMn)uker,n∥V∗

(7.12)= ∥fker,n∥V∗ + 1
τ

⃦⃦⃦ ∫︂ tn

tn−1

(A(s)− 1
2Ṁ(s))uker,n ds

⃦⃦⃦
V∗

(7.16)

≤ ∥fker,n∥V∗ + ∥A∥L∞[tn−1,tn;L (V,V∗)]∥uker,n∥V + CH∗↪→V∗

2
√
τ
∥Ṁ∥L2[tn−1,tn;L (H,H∗)]∥uker,n∥H.

Remark 7.10. Equality (7.15) also holds for arbitrary self-adjoint, elliptic operators K1,K2 ∈
L (X ,X ∗) instead of Mn,Mn−1. Especially, for K = K1 = K2 and x, x̄ ∈ X equation (7.15)
becomes

2⟨K(x− x̄), x ⟩ = ∥x∥2
K − ∥x̄∥2

K + ∥x− x̄∥2
K. (7.17)

7.1.1.2. Convergence of Temporal Discrete Solutions

Given the sequence of the discrete solutions (uker,n, λn) ∈ Vker × Q, n = 1, . . . , N of (7.8) from
Lemma 7.9, we build functions over the whole interval [0, T ] and show that they converge to a
solution of (7.4). More precisely, we define the piecewise constant function uker,τ : [0, T ]→ Vker and
the piecewise linear function ˆ︁uker,τ : [0, T ]→ Hker by

uker,τ (t) :=
{︄
uker,1, if t = 0,
uker,n, if t ∈ (tn−1, tn],

ˆ︁uker,τ (t) :=
{︄
uker,0, if t = 0,
uker,n +Dτuker,n(t− tn), if t ∈ (tn−1, tn].

(7.18)

A sketch of uker,τ and ˆ︁uker,τ is given in Figure 7.1. Analogously, we define the piecewise constant
function λτ for the Lagrange multiplier λ via λn. The starting value λτ (0) can be chosen arbitrarily,
since we will study the convergence in spaces of Bochner-integrable functions and the initial time-
point is a null set. In the same manner we define piecewise constant functions associated to the
right-hand side fker and the operator A denoted by fker,τ and Aτ , respectively. At last, we define
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the piecewise linear functions

ˆ︂Mτ (t) :=
{︄
M0, if t = 0,
Mn +DτMn(t− tn), if t ∈ (tn−1, tn],

(7.19a)

ˆ︃Muker,τ (t) :=
{︄
M0uker,0, if t = 0,
Mnuker,n +Dτ (Muker)n(t− tn), if t ∈ (tn−1, tn].

(7.19b)

Note that, in the interest of readability we write ˆ︃Muker,τ for the piecewise linear function defined
by Mnuker,n instead of ( ˆ︂Muker)τ . Furthermore, we denote the generalized time derivative ofˆ︃Muker,τ by d

dt
ˆ︃Muker,τ , which is piecewise constant with value Dτ (Muker)n at (tn−1, tn], n =

1, . . . , N . Analogously, we use the notation d
dt
ˆ︂Mτ and d

dtˆ︁uker,τ . With this the temporally discretized
system (7.8) can be reformulated as

d
dt
ˆ︃Muker,τ + (Aτ − 1

2
d
dt
ˆ︂Mτ )uker,τ − B∗λτ = fker,τ in V∗, (7.20a)
Buker,τ = 0 in Q∗. (7.20b)

The main goal of this section is to prove that the piecewise defined functions converge to a solution
of the operator DAE (7.6) as τ → 0. At first we show that uker,τ and ˆ︁uker,τ have the same weak
limit as τ tends to zero.

Lemma 7.11. Let the assumptions of Theorem 7.9 be satisfied. Then there exists a function
uker ∈ L2(0, T ;Vker) ∩ L∞(0, T ;Hker) and a subsequence τ ′ of τ such that as τ ′ → 0 we have

uker,τ ′ ⇀ uker in L2(0, T ;V), uker,τ ′ , ˆ︁uker,τ ′
∗
⇀ uker in L∞(0, T ;H), (7.21a)ˆ︂Mτ ′uker,τ ′ , ˆ︂Mτ ′ˆ︁uker,τ ′ ,ˆ︃Muker,τ ′

∗
⇀Muker in L∞(0, T ;H∗). (7.21b)

Proof. By Theorem 7.9 the function uker,τ is bounded by cM := cM(uker,0, fker) in L∞(0, T ;H)
and L2(0, T ;V) with c2 = 1/µM and c2 = 1/µA, respectively, independently by τ . For a bound for the
piecewise linear function ˆ︁uker,τ , we note
√
µM∥ˆ︁uker,τ (t)∥H =

√
µM
τ ∥uker,n−1(tn−t)+uker,n(t−tn−1)∥H ≤ ∥uker,n−1∥Mn−1 +∥uker,n∥Mn ≤ 2M

in [tn−1, tn]. Therefore, the weak limits (7.21a) follow by the same arguments as in [Emm04,
Th. 8.3.8]. Since Vker is closed in V and uker,τ (t) ∈ Vker for almost all t ∈ [0, T ], the limit uker is
pointwise an element of Vker at almost every time-point [Trö10, Th. 2.11].

Since the operator M can be identified as an operator from L (Lp(0, T ;H), Lp(0, T ;H∗)), p ∈
[1,∞], by Lemma 4.9, the functions Muker,τ ′ ,Mˆ︁uker,τ ′ converge in a weak∗ sense to Muker in
L∞(0, T ;H∗) as τ ′ → 0; cf. [Zei90a, Prop. 21.28]. By the continuity of M, see Lemma 4.14, we haveˆ︂Mτ →M in C([0, T ],L (H,H∗)) as τ → 0. This implies

ˆ︂Mτ ′uker,τ ′ = (ˆ︂Mτ ′ −M)uker,τ ′ +Muker,τ ′
∗
⇀Muker in L∞(0, T ;H∗)

as τ ′ → 0 and analogously for ˆ︂Mτ ′ˆ︁uker,τ ′ . For ˆ︃Muker,τ ′ we observe

µM max
t∈[0,T ]

∥ˆ︃Muker,τ (t)−M(t)ˆ︁uker,τ (t)∥2
H∗

= µM max
n=1,...,N

max
t∈[tn−1,tn]

⃦⃦
(Mn −M(t))uker,n

(t−tn−1)
τ + (Mn−1 −M(t))uker,n−1

(tn−t)
τ

⃦⃦2
H∗
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≤ 2µM max
n=1,...,N

max
t∈[tn−1,tn]

⃦⃦⃦ ∫︂ tn

t

Ṁ(s)uker,n ds
⃦⃦⃦2

H∗

(t−tn−1)2

τ2 +
⃦⃦⃦ ∫︂ t

tn−1

Ṁ(s)uker,n−1 ds
⃦⃦⃦2

H∗

(tn−t)2

τ2

(7.13)
≤ τ

8
27

∫︂ T

0
∥Ṁ∥2

L (H,H∗) dsM2(uker,0, fker)→ 0

as τ → 0. Therefore, ˆ︃Muker,τ ′ and Mˆ︁uker,τ ′ have the same weak∗ limit in L∞(0, T ;H∗).

In the next step of the proof that the piecewisely defined functions converge to a solution of (7.6)
we investigate the limiting behavior of the derivative d

dt
ˆ︃Muker,τ .

Lemma 7.12. Suppose that the assumptions of Theorem 7.9 are satisfied. Let uker be the function
and τ ′ be the subsequence of τ introduced in Lemma 7.11. ThenMuker ∈ H1(0, T ;V∗

ker)∩L∞(0, T ;H∗)
with (Muker)(0) =M(0)uker,0 in V∗

ker holds. Further, as τ ′ → 0 we have

d
dt
ˆ︃Muker,τ ′ ⇀ d

dt (Muker) in L2(0, T ;V∗
ker).

Proof. By Theorem 7.9 the estimate

∥ d
dt
ˆ︃Muker,τ∥2

L2(0,T ;V∗
ker) =

N∑︂
k=1

∫︂ tk

tk−1

∥Dτ (Muker)k∥2
V∗

ker
ds

(7.14)
≲ M2(uker,0, fker)

holds with a constant independent of τ . Therefore, there exists a subsequence τ ′′ of τ ′ such that
d
dt
ˆ︃Muker,τ ′′ converges weakly to a w in L2(0, T ;V∗

ker). Proposition 23.19 in [Zei90a] then shows
that Muker has a generalized derivative in L2(0, T ;V∗

ker) given by w. Since the derivative is unique,
d
dt
ˆ︃Muker,τ ′ converges weakly to d

dt (Muker) for the whole sequence τ ′ [GajGZ74, Ch. 1, Lem. 5.4].
In addition, for every vker ∈ Vker the equality

⟨ (Muker)(0), T vker ⟩ =
∫︂ T

0
− d

dt ⟨Muker, (T − t)vker ⟩ dt

=
∫︂ T

0
⟨Muker, vker ⟩ − ⟨ d

dt (Muker), (T − t)vker ⟩ dt

= lim
τ ′→0

∫︂ T

0
⟨ˆ︃Muker,τ ′ , vker ⟩ − ⟨ d

dt
ˆ︃Muker,τ ′ , (T − t)vker ⟩ dt

= lim
τ ′→0
⟨M0uker,0, T vker ⟩ = ⟨M(0)uker,0, T vker ⟩

holds. Since T ̸= 0, this shows (Muker)(0) =M(0)uker,0 in V∗
ker.

As our last preparatory step, we consider the approximations of the operators A and Ṁ.

Lemma 7.13. Let the assumptions of Theorem 7.9 be satisfied. Suppose that uker is the same
function and τ ′ is the same subsequence of τ as in Lemma 7.12. Then as τ ′ → 0, we have

Aτ ′uker,τ ′ ⇀ Auker in L2(0, T ;V∗) and
(︁ d

dt
ˆ︂Mτ ′

)︁
uker,τ ′ ⇀ Ṁuker in L2(0, T ;H∗).

Proof. Note that both limits are well-defined by Lemma 4.9.
Let us first consider Aτuker,τ . By the estimates (7.10) and (7.13) the function Aτuker,τ is

bounded in L2(0, T ;V∗) independently of τ . With [Yos80, Sec. V.1, Th. 3] it then is enough to
show ⟨Aτ ′uker,τ ′ , φ ⟩ → ⟨Auker, φ ⟩ as τ ′ → 0 for every element φ of a dense subset of L2(0, T ;V).
We consider the set of polynomials φ : [0, T ] → V, φ(t) =

∑︁r
k=0 vkt

k with r ∈ N0 and vk ∈ V
for k = 0, . . . , r, which is dense in L2(0, T ;V); see [Zei90a, Prop. 23.2.d]. Let φ be an arbitrary
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polynomial of degree r with monomial terms φk(t) := vkt
k, vk ∈ V and k = 0, . . . , r. Then the

identity

⟨Aτuker,τ , φk ⟩ =
∫︂ T

0
⟨Aτ (s)uker,τ (s), vsk ⟩ ds =

∫︂ T

0
⟨A∗

τ (s)vsk, uker,τ (s) ⟩ ds = ⟨A∗
τφk, uker,τ ⟩

holds for every φk. We note that A∗
τvk = (A∗vk)τ is the piecewise constant function correspond-

ing to A∗vk ∈ L2(0, T ;V∗), analogously to the way fker,τ corresponds to fker; see (7.9). By
Lemma 3.34, the function A∗

τvk = (A∗vk)τ converges strongly to A∗vk in L2(0, T ;V∗) as τ → 0.
Hence, limτ→0A∗

τφk = A∗φk in L2(0, T ;V∗). Since A∗
τ ′φk converges strongly and uker,τ ′ weakly as

τ ′ → 0, the limit

⟨Aτ ′uker,τ ′ , φ ⟩ =
r∑︂

k=0
⟨Aτ ′uker,τ ′ , φk ⟩ =

r∑︂
k=0
⟨A∗

τ ′φk, uker,τ ′ ⟩ →
r∑︂

k=0
⟨A∗φk, uker ⟩ = ⟨Auker, φ ⟩

holds as τ ′ → 0. This implies the asserted weak convergence of Aτ ′uker,τ ′ .
Analogously, one proves the weak limit of

(︁ d
dt
ˆ︂Mτ

)︁
uker,τ , where its boundedness is given by

∫︂ T

0
∥
(︁ d

dt
ˆ︂Mτ

)︁
uker,τ∥2

H∗ ds (7.12)= 1
τ2

N∑︂
n=1

∫︂ tn

tn−1

∥
∫︂ tn

tn−1

Ṁuker,n ds∥2
H∗ dt

≤
N∑︂

n=1

∫︂ tn

tn−1

∥Ṁ∥2
L (H,H∗) ds∥uker,n∥2

H

(7.13)
≤ 1

µM
∥Ṁ∥2

L2[0,T ;L (H,H∗)]M
2(uker,0, fker).

We can now prove the existence of a solution of the operator DAE (7.4).

Theorem 7.14 (Existence of a Solution). Let B ∈ L (V,Q∗) satisfy an inf-sup condition (3.2) and
let Assumptions 7.2.ii) and 7.2.iii) be fulfilled. Suppose that Assumption 7.2.iv) is satisfied, i.e.,
u0 ∈ Hker + B−g(0). Then the operator DAE (7.4) has at least one solution (u, λ), which satisfies

a) u ∈ L2(0, T ;V) ∩ L∞(0, T ;H), b) λ = d
dt Λ for an Λ ∈ L∞(0, T ;Q),

c) d
dt (Mu) ∈ L2(0, T ;V∗

ker), d) d
dt (Mu)− B∗λ ∈ L2(0, T ;V∗).

Proof. Let uc ∈ H1(0, T ;V⊥
ker) be defined as in (7.5) and uker ∈ L2(0, T ;Vker) ∩ L∞(0, T ;Hker) be

the weak limit mentioned in Lemma 7.11 with initial value uker,0 = u0 − uc(0) ∈ Hker. Then
u := uc +uker satisfies a) and c) by the embeddings V ↪→ H, H∗ ↪→ V∗

ker, Theorem 3.38, Lemmas 4.15,
7.11, and 7.12.

For the Lagrange multiplier λ we investigate λτ . We consider the integration

I : L1(0, T ;X )→ L∞(0, T ;X ), x ↦→
(︃
t ↦→

∫︂ t

0
x(s) ds

)︃
. (7.22)

Since I is linear and bounded we have the weak∗ limit

I(B∗λτ ′) (7.20a)= ˆ︃Muker,τ ′ −M(0)uker,0 + I(Aτ ′uker,τ ′)− 1
2I( d

dt
ˆ︂Mτ ′uker,τ ′)− I(fker,τ ′)

∗
⇀ Muker −M(0)uker,0 + I((A− 1

2Ṁ)uker)− I(fker)
(7.7)= Mu−M(0)u0 + I((A− 1

2Ṁ)u)− I(f) =: ΛB∗
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in L∞(0, T ;V∗) as τ ′ → 0. Here, we have used Lemmas 7.11, 7.13, and fker,τ → fker in L2(0, T ;V∗)
as τ → 0 by Lemma 3.34. By Lemma 3.30 the identity I(B∗λτ ′) = B∗Iλτ ′ holds, which implies
ΛB∗(t) ∈ V0

ker for almost every t [Trö10, Th. 2.11]. Therefore, Λ := B−∗
leftΛB∗ ∈ L∞(0, T ;Q) is well-

defined with B−∗
left as the left-inverse of B∗; see Lemma 3.6. In particular, Iλτ ′

∗
⇀ Λ in L∞(0, T ;Q)

as τ ′ → 0.
We have to show that (u, λ) with λ = d

dt Λ is a solution of (7.4). For this, we note that by (7.5),
(7.7), and (7.20a), for every v ∈ V , φ ∈ C∞([0, T ]) with φ(T ) = 0 we have

0 =
∫︂ T

0
⟨ d

dt
ˆ︃Muker,τ ′ + d

dt (Muc) + (Aτ ′ − 1
2

d
dt
ˆ︂Mτ ′)uker,τ ′ + (A− 1

2Ṁ)uc, v ⟩φ

+ ⟨−B∗λτ − fker,τ ′ + fker − f, v ⟩φ ds

=
∫︂ T

0
⟨ (Aτ ′ − 1

2
d
dt
ˆ︂Mτ ′)uker,τ ′ + (A− 1

2Ṁ)uc − fker,τ ′ + fker − f, v ⟩φ

− ⟨ˆ︃Muker,τ ′ +Muc − B∗Iλτ ′ , v ⟩φ̇ds+ ⟨M0uker,0 +M(0)uc(0), v ⟩φ(0)

→
∫︂ T

0
⟨ (A− 1

2Ṁ)u− f, v ⟩φ− ⟨Mu− B∗Λ, v ⟩φ̇ds+ ⟨M(0)u0, v ⟩φ(0) (7.23)

as τ ′ → 0 using Lemmas 3.34, 7.11, and 7.13. For every q ∈ Q and φ as for (7.23) we observe∫︂ T

0
⟨ Bu, q ⟩φ ds =

∫︂ T

0
⟨ Buker + Buc, q ⟩φ ds =

∫︂ T

0
⟨ Buc, q ⟩φ ds (7.5)=

∫︂ T

0
⟨ g, q ⟩φ ds (7.24)

by Lemma 7.11. The equations (7.23) and (7.24) prove that (u, λ) with λ as the distributional
derivative of Λ is a solution of the operator DAE (7.4). In particular, b) is satisfied by the choice
of λ.

Finally, equation (7.23) with φ ∈ C∞
c (0, T ) implies that Mu− B∗˜︁λ has a generalized derivative

in L2(0, T ;V∗). This proves assertion d).

Remark 7.15. The existence of a solution can be proven under the weaker assumptions M ∈
W 1,1[0, T ; L (H,H∗)], f ∈ L2(0, T ;V∗) + L1(0, T ;H∗), and g ∈ W 1,1(0, T ;Q∗). The spaces of c)
and d) then change to L2(0, T ;V∗

ker) + L1(0, T ;H∗
ker) and L2(0, T ;V∗) + L1(0, T ;H∗), respectively;

see also Theorem 7.21.

7.1.2. Uniqueness Results
Theorem 7.14 proves the existence of a solution (u, λ) of the operator DAE (7.4). In this subsection
we investigate its uniqueness. In the case where operator M is time-independent, the usual proof is
based on the embedding of generalized differentiable functions in the space of continuous functions;
see e.g. [DauL92, Sec. XVIII.3, Th. 1] and [DauL93, Sec. XIX.2, Th. 1]. Therefore, we generalize
W 1,2(0, T ;V,V∗) ↪→ C([0, T ],H) for a time-dependent inner product of the pivot space H induced
by M in Subsection 7.1.2.1. With this generalization we prove the uniqueness of the solution (u, λ)
of the operator DAE (7.4) in Subsection 7.1.2.2.

7.1.2.1. W 1,2-Functions with Nonautonomous Inner Product

Since the operatorM is time-dependent in (7.4), the inner product m(t, h1, h2) = ⟨M(t)h1, h2 ⟩H∗,H
of the pivot space H is time-dependent as well. In order to analyze the uniqueness of the solution,
we need an embedding similar to W 1,2(0, T ;V,V∗) ↪→ C([0, T ],H) with a nonconstant inner product
in H. We slightly generalize a result from [Str66].
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Theorem 7.16. Let X ,Y be Banach spaces and X be reflexive. Assume that X and Y are contained
in a linear space and that X ∩ Y is dense in X and Y. Suppose that a Banach space Z exists such
that Z and Z∗ are dense in L1(0, T ;Y) and L1(0, T ;Y∗), respectively, with continuous inclusions.
Let for every f ∈ Z∗ and z ∈ Z, the duality pairing ⟨ f, z ⟩Y∗,Y be integrable. Suppose that Z is
closed under multiplications with real-valued step functions and that translations in t are continuous
for elements in Z, where the functions are extended by zero outside of [0, T ].

Let K ∈ H1[0, T ; L (X ,X ∗)] be pointwise self-adjoint and uniformly elliptic. Suppose that w ∈
L∞(0, T ;X ) fulfills ẇ ∈ Z and Kw ∈ Z∗. Then w ∈ C([0, T ],X ) and for all t ∈ [0, T ] we have

⟨Kw,w ⟩X ∗,X
⃓⃓t
0 =

∫︂ t

0
⟨ K̇(s)w(s), w(s) ⟩X ∗,X + 2⟨K(s)w(s), ẇ(s) ⟩Y∗,Y ds. (7.25)

Proof. The case with K ∈ W 1,∞[0, T ; L (X ,X ∗)] is proven in [Str66, Th. 3.1 & Th. 3.2]. An
adaptation of the proof of [Str66, Th. 3.1] shows the assertion. Here, we use that for every
p ∈ [1,∞) and w ∈ Lp(0, T ;X ) (extended by zero outside of [0, T ]) the sequence of convolutions
{φε ∗w}ε∈R>0 with mollifiers {φε}ε∈R>0 , i.e., nonnegative C∞

c (R)-functions with supp(φε) ⊂ [−ε, ε]
and

∫︁
R φε dt = 1, converges strongly to w in Lp(0, T ;X ) as ε→ 0 [KufJF77, Sec. 2.5].

Remark 7.17. If two function w1, w2 satisfy the assumptions of Theorem 7.16, then they satisfy

2⟨Kw1, w2 ⟩
⃓⃓t
0 =

(︁
⟨K(w1 + w2), w1 + w2 ⟩ − ⟨Kw1, w1 ⟩ − ⟨Kw2, w2 ⟩

)︁⃓⃓t
0

(7.25)=
∫︂ t

0
⟨ K̇w1, w2 ⟩ + ⟨ K̇w2, w1 ⟩ + 2⟨Kw1, ẇ2 ⟩ + 2⟨Kw2, ẇ1 ⟩ ds.

Theorem 7.16 implies the generalization of W 1,2(0, T ;V,V∗) ↪→ C([0, T ],H).

Theorem 7.18. Let V,H,V∗ be a Gelfand triple. Suppose thatM∈ H1[0, T ; L (H,H∗)] is pointwise
self-adjoint and uniformly elliptic. Assume that u ∈ L2(0, T ;V) ∩ L∞(0, T ;H) fulfills d

dt (Mu) ∈
L2(0, T ;V∗). Then u ∈ C([0, T ],H) and for all t ∈ [0, T ] we have

⟨M(t)u(t), u(t) ⟩ − ⟨M(0)u(0), u(0) ⟩ =
∫︂ t

0
2⟨ d

dt (M(s)u(s)), u(s) ⟩ − ⟨ Ṁ(s)u(s), u(s) ⟩ ds.

Proof. With the notation of Theorem 7.16 we choose X = H∗, Y = V∗, K =M−1, Z = L2(0, T ;V∗),
and w =Mu ∈ L∞(0, T ;H∗). The continuity under translation for every element in Z is proven
in [GajGZ74, Ch. 4, Lem. 1.5] and C([0, T ],V∗) ↪→ Z is dense in L1(0, T ;V∗) = L1(0, T ;Y) by
Theorem 3.32. Analogously, the embedding Z∗ ↪→ L1(0, T ;V) = L1(0, T ;Y) holds. The assumptions
of Theorem 7.16 are then fulfilled by Kw = M−1Mu = u and since M−1 ∈ H1[0, T ; L (H∗,H)]
is uniformly elliptic by Lemma 4.17. Therefore, w = Mu is continuous with images in H∗ by
Theorem 7.16. This implies u =M−1w ∈ C([0, T ],H) and

⟨Mu, u ⟩
⃓⃓t
0

(7.25)=
∫︂ t

0
⟨ d

dt

(︁
M−1(s)

)︁
M(s)u(s),M(s)u(s) ⟩ + 2⟨M−1(s)M(s)u(s), d

dt (M(s)u(s)) ⟩ ds

=
∫︂ t

0
−⟨Ṁ(s)u(s), u(s) ⟩ + 2⟨u(s), d

dt (M(s)u(s)) ⟩ ds,

where we used Lemma 4.17 and M∗ =M.

7.1.2.2. Uniqueness of the Solution and Continuity in the Data

With Theorem 7.18 we are able to prove the uniqueness of the solution of the operator DAE (7.4).
For the estimate of the solution we use the shortened notation ∥ · ∥C for ∥ · ∥C([0,T ],X ), where the
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Banach space X is clear by the argument. Analogously, we use a shortened notation for the norms
of H1(0, T ;X ), L∞[0, T ; L (X ,X ∗)], and L2[0, T ; L (X ,X ∗)].

Theorem 7.19 (Uniqueness of the Solution). Let the assumptions of Theorem 7.14 be satisfied.
Then there exists only one solution (u, λ) of the operator DAE (7.4), which fulfills the condition a)
and b) in Theorem 7.14. In addition to the stated spaces in Theorem 7.14, the solution satisfies
u ∈ C([0, T ],H) with u(0) = u0 and Λ ∈ C([0, T ],Q) with Λ(0) = 0 where λ = d

dt Λ in a distributional
sense. The bounds

∥u∥2
L2(0,T ;V) ≤

2∥M∥C

µA
∥u0∥2

H + 4
µ2

A
∥f∥2

L2 + 1
β2

(︂
1 + 4 ˜︁C

µA

)︂
∥g∥2

H1 (7.26a)

∥u∥2
C([0,T ],H) ≤

4∥M∥C

µM
∥u0∥2

H + 8
µAµM

∥f∥2
L2 + 1

β2

(︂4C2
V↪→H max(1, 4T 2)

T
+ 8 ˜︁C
µM

)︂
∥g∥2

H1 (7.26b)

∥Λ∥2
C([0,T ],Q) ≤

5
β2

(︂
∥M∥2

CC
2
V↪→H

(︁
∥u∥2

C([0,T ],H) + ∥u0∥2
H
)︁

+ T
(︁
∥A∥2

L∞∥u∥L2(0,T ;V) (7.26c)

+ 1
4C

2
V↪→H∥Ṁ∥2

L2∥u∥2
C([0,T ],H) + ∥f∥2

L2

)︁)︂
hold with the constant ˜︁C := ∥A∥2

L∞
µA

+ ∥M∥2
C C4

V↪→H
µA

+
(︂
∥M∥C + ∥Ṁ∥2

L2 C2
V↪→H

2µA

)︂
C2

V↪→H max(1,4T 2)
T . In

particular, the solution operator

S : {(f, g, u0) ∈ L2(0, T ;V∗)×H1(0, T ;Q∗)×H |u0 − B−g(0) ∈ Hker}
→ L2(0, T ;V) ∩ C([0, T ],H)× C([0, T ],Q), (f, g, u0) ↦→ (u,Λ)

is linear and continuous.

Proof. Theorem 7.14 proves the existence of at least one solution (u, λ). Let now (u, λ) be an
arbitrary solution, which satisfies condition a) of Theorem 7.14, i.e., u ∈ L2(0, T ;V) ∩ L∞(0, T ;H).
We split u into uker ∈ L2(0, T ;Vker) and uc ∈ L2(0, T ;V⊥

ker). This is well-defined, since Vker is a
closed subspace of V . The algebraic constraint (7.4b) then implies uc = B−

⊥Bu = B−
⊥g. Especially, uc

is an element of H1(0, T ;V⊥
ker) ↪→ C([0, T ],H) with bounds

∥u(k)
c ∥L2(0,T ;V) ≤

1
β
∥g(k)∥L2(0,T ;V), ∥uc∥C([0,T ],H) ≤

√
2CV↪→H

β

max(1, 2T )√
T

∥g∥H1(0,T ;V), (7.27)

k = 0, 1, by Theorem 3.38 and [Bra07, Lem. III.4.2.b]. The part uker ∈ L2(0, T ;Vker)∩L∞(0, T ;Hker)
satisfies by Definition 4.27 of a solution the equality

0 =
∫︂ T

0
⟨ (A− 1

2Ṁ)u− f, vker ⟩φ− ⟨Mu, vker ⟩φ̇ds

=
∫︂ T

0
⟨ (A− 1

2Ṁ)u− f + d
dt (Muc), vker ⟩φ− ⟨Muker, vker ⟩φ̇ds (7.28)

for every vker ∈ Vker and φ ∈ C∞
c (0, T ), where we used∫︂ T

0
⟨ΛB∗ , vker ⟩φ̇ds = −

∫︂ T

0
⟨ B∗λ, vker ⟩φ ds = −

∫︂ T

0
⟨ Bvker, λ ⟩φ ds =

∫︂ T

0
⟨ Bvker,Λ ⟩φ̇ds = 0.

(7.29)
Equation (7.28) implies that Muker ∈ L2(0, T ;H∗

ker) has the derivative f − (A− 1
2Ṁ)u− d

dt (Muc)
in L2(0, T ;V∗

ker). Therefore, the assumptions of Theorem 7.18 are satisfied for uker with the Gelfand
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triple Vker,Hker,V∗
ker. Theorem 7.18 then implies uker ∈ C([0, T ],Vker) and

1
2∥uker(t)∥2

M(t) − 1
2∥uker(0)∥2

M(0) + µA

∫︂ t

0
∥uker∥2

V ds

≤
∫︂ t

0
⟨ d

dt (Muker) + (A− 1
2Ṁ)uker, uker ⟩ ds

(7.4a)=
∫︂ t

0
⟨ f − (A− 1

2Ṁ)uc − d
dt (Muc), uker ⟩ ds

(3.8)
≤

∫︂ t

0

1
2µA
∥f − (A+ 1

2Ṁ)B−g −MB−ġ∥2
V∗ + µA

2 ∥uker∥2
V ds. (7.30)

Further, the identity uker(0) = u0 − B−
⊥g(0) ∈ Hker holds, since for every vker ∈ Vker and φ ∈

C∞([0, T ]) with φ(T ) = 0 we have

0 (4.30)=
∫︂ T

0
⟨ (A− 1

2Ṁ)u− f, vker ⟩φ− ⟨Mu, vker ⟩φ̇ds+ ⟨M(0)u0, vker ⟩φ(0)

=
∫︂ T

0
⟨ (A− 1

2Ṁ)u− f + d
dt (Mu)⏞ ⏟⏟ ⏞

=0 in V∗
ker

, vker ⟩φ ds+ ⟨M(0)(u0 − uc(0)− uker(0)), vker ⟩φ(0).

The estimates (7.26a) and (7.26b) then follow from ∥uker(0)∥H ≤ ∥u0∥H + ∥B−
⊥g(0)∥H, (7.27),

and (7.30). In particular, these bounds imply u = 0 for a solution for the operator DAE (7.4) with
homogeneous initial value and right-hand sides. The uniqueness of the solution u then follows by
the superposition principle 4.28.

For the Lagrange multiplier λ we use the integration operator I as in (7.22). By (4.30) the equality

0 =
∫︂ T

0
⟨ If − I((A− 1

2Ṁ)u)−Mu+ ΛB∗ , v ⟩φ̇ds− ⟨M(0)u0, v ⟩φ(0)

holds for every v ∈ V and φ ∈ C∞([0, T ]) with φ(T ) = 0. This implies that a constant c ∈ V∗ exists
such that c = If − I((A− 1

2Ṁ)u)−Mu+ ΛB∗ at almost every time-point t ∈ [0, T ]; see [Emm04,
Cor. 8.1.4]. By choosing φ(t) = (T − t)/T we obtain ⟨M(0)u0, v ⟩ =

∫︁ T

0 ⟨ c, v ⟩φ̇ds = −⟨ c, v ⟩.
Together this implies

ΛB∗ =Mu−M(0)u0 + I((A− 1
2Ṁ)u)− If ∈ C([0, T ],V∗) (7.31)

with ΛB∗(0) = 0. Note that this shows the uniqueness of ΛB∗ . By (7.29) we have Λ = B−∗
leftΛB∗ .

Therefore, Λ is unique, continuous, and vanishes at the initial time-point, and its distributional
derivative λ is unique as well. Estimate (7.26c) follows from (7.31).

The estimates (7.26) show the boundedness of S. Its linearity follows by Remark 4.28.

Remark 7.20. Since the solution of the operator DAE (7.4) is unique, every sequence – not only its
subsequence – converges entirely to its weak/weak∗ limit described in Lemmas 7.11–7.13 [GajGZ74,
Ch. I, Lem. 5.4].

7.1.3. Generalizations
In Chapter 6 we have proved the existence of a solution of the operator DAE (6.1) with time-
independent operators for right-hand sides f ∈ L2(0, T ;V∗) + L1(0, T ;H∗) and g ∈W 1,1(0, T ;Q∗).
This holds also if M and A are nonconstant.
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Theorem 7.21 (Existence and Uniqueness of Solutions II). Let B ∈ L (V,Q∗) satisfy an inf-
sup condition (3.2), Assumption 7.2.ii) be fulfilled, and f ∈ L2(0, T ;V∗) + L1(0, T ;H∗) and g ∈
W 1,1(0, T ;Q∗). Suppose that u0 is consistent in the sense of Assumption 7.2.iv). Then the operator
DAE (7.4) has a unique solution (u, λ), which satisfies

a) u∈L2(0, T ;V) ∩ C([0, T ],H), b) λ = d
dt Λ for an Λ ∈ C([0, T ],Q),

c) d
dt (Mu)∈L2(0, T ;V∗

ker) + L1(0, T ;H∗
ker), d) d

dt (Mu)− B∗λ ∈ L2(0, T ;V∗) + L1(0, T ;H∗).

Further, the solution fulfills u(0) = u0, Λ(0) = 0 and depends linearly and continuously on the
data (f, g, u0).

Proof. As in proof of Theorems 7.14 and 7.19, we define uc := B−
⊥g ∈ W 1,1(0, T ;Vc) and consider

uker = u− uc with a possible solution u. We note that (u, λ) solves the operator DAE (7.4) with
initial value u0 and right-hand sides f , g, if and only if (uker, λ) solves the operator DAE (7.6) with
initial value uker,0 := u0 − uc(0) ∈ Hker and right-hand side fker as defined in equation (7.7).

By assumptions, there exists f1 ∈ L2(0, T ;V∗) and f2 ∈ L1(0, T ;H∗) such that f = f1 + f2.
Therefore, we can split fker into

f
[1]
ker := f1 −AB−

⊥g −
1
2ṀB

−
⊥g ∈ L

2(0, T ;V∗) and f
[2]
ker := f2 −MB−

⊥ ġ ∈ L
1(0, T ;H∗).

By Theorem 7.14 and 7.19 there exists a unique solution (u[1]
ker, λ

[1]) to the data (f [1]
ker, 0, uker,0)

of (7.4), which satisfies a)–d).
By the superposition principle, see Remark 4.28, it is enough to prove the assertion for the

operator DAE (7.6) with right-hand sides fker = f
[2]
ker, g = 0, and a vanishing initial value. Then

by Theorem 3.32.ii) there exists a sequence {f [2]
ker,n}n∈N ⊂ C([0, T ],H∗), which converges to f [2]

ker in
L1(0, T ;H∗) as n→∞. By Theorem 3.32.viii), 7.14, and 7.19 the operator DAE (7.6) has a unique
solution (u[2]

ker,n, λ
[2]
n ) for every f [2]

ker,n, which satisfies

µM

2 ∥u
[2]
ker,n(t)∥2

H + µA

∫︂ t

0
∥u[2]

ker,n∥
2
V ds ≤

∫︂ t

0
⟨ f [2]

ker,n, u
[2]
ker,n ⟩ ds ≤

∫︂ t

0
∥f [2]

ker,n∥H∗∥u[2]
ker,n∥H ds;

cf. estimate (7.30). Following the lines of Theorem 4.22 one has

µM∥u[2]
ker,n∥

2
C([0,T ],H) + µA∥u[2]

ker,n∥
2
L2(0,T ;V) ≤ 1

µM
∥f [2]

ker,n∥
2
L1(0,T ;H∗).

Similarly as in the proof of Theorem 7.19, one shows that Λ[2]
n is bounded as in the estimate (7.26c)

with C2
V↪→H∥f

[2]
ker,n∥2

L1(0,T ;H∗) instead of T∥f [2]
ker,n∥2

L2(0,T ;V∗). Note that the estimates for u
[2]
ker,n

and Λ[2]
n also hold for the differences u[2]

ker,n − u
[2]
ker,m and Λ[2]

n − Λ[2]
m , respectively, with right-hand

side f [2]
ker,n − f

[2]
ker,m. Therefore, {u[2]

ker,n}n∈N and {Λ[2]
n }n∈N are Cauchy sequences in L2(0, T ;Vker) ∩

C([0, T ],Hker) and C([0, T ],Q), respectively. Let u[2]
ker and Λ[2] be their limits. Then we have

u
[2]
ker(0) = limn→∞ u

[2]
ker,n(0) = 0, Λ[2](0) = limn→∞ Λ[2]

n (0) = 0, and the equality

0 = lim
n→∞

∫︂ T

0
⟨ B∗Λ[2]

n −Mu
[2]
ker,n, v ⟩φ̇+ ⟨ (A− 1

2Ṁ)u[2]
ker,n − f

[2]
ker,n, v ⟩φ+ ⟨ Bu[2]

ker,n, q ⟩φ dt

=
∫︂ T

0
⟨ B∗Λ[2] −Mu

[2]
ker, v ⟩φ̇+ ⟨ (A− 1

2Ṁ)u[2]
ker − f

[2]
ker, v ⟩φ+ ⟨ Bu[2]

ker, q ⟩φ dt

is satisfied for every v ∈ V, q ∈ Q, and φ ∈ C∞([0, T ]) with φ(T ) = 0. This shows that (u[2]
ker, λ

[2])
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solves the operator DAE (7.4) with data (f [2]
ker, 0, 0) where λ[2] = d

dt Λ[2] in the distributional sense.
The estimates for u[2]

ker,n and Λ[2]
n also hold in the limit. By the superposition principle this shows

the uniqueness of (u[2]
ker, λ

[2]). The assertions c) and d) follow by (7.6a).

For later analysis we need another generalization where we introduce an additional operator.

Lemma 7.22. Let the assumptions of Theorem 7.21 be satisfied. Suppose that the operator-valued
function AH ∈ L2[0, T ; L (H,H∗)] fulfills ⟨AH(t)h, h ⟩ ≥ κ∥h∥2

H at almost every time-point t ∈ [0, T ]
with a uniform constant κ ∈ R. Then the operator DAE

d
dt (M(t)u(t)) + (A(t) +AH(t)− 1

2Ṁ(t))u(t) − B∗λ(t) = f(t) in V∗,

Bu(t) = g(t) in Q∗

has a unique solution (u, λ), which satisfies the assertions a)–d) and the initial conditions from
Theorem 7.21. The solution map (f, g, u0) ↦→ (u,Λ) is linear and continuous.

Proof. With the trick of Remark 7.1 we can assume κ = 0 without loss of generality. Then the
proof follows the lines of Theorems 7.14, 7.19, and 7.21. Therein, the temporal discretization
of AH is given by its means, cf. (7.9), and the bound (7.14) of Dτ (Muker)n has the additional term
C2

H∗↪→V∗
4µM

∥AH∥2
L2[0,T ;L (H,H∗)]M

2(uker,0, fker); cf. estimate (7.16).

7.1.4. Regularity of Solutions
In comparison to Theorem 7.14, Theorem 7.21 proves the existence and uniqueness of a solution
under mildly weaker assumptions on the right-hand side. In this subsection we consider the regularity
of the solution under stronger assumptions on the data and the operators. For this we adapt the
two cases from Section 6.2.

For the first approach we look at the operator DAE and the initial value, which are formally
satisfied by the generalized time derivative of (u, λ). Instead of the operator DAE (7.4) we therefore
consider its reformulation (4.31). If we denote the formal derivative of (u, λ) by (w, µ), this ansatz
leads to the operator DAE

d
dt (M(t)w(t)) + (A(t) + 1

2Ṁ(t))w(t)− B∗µ(t) = ḟ(t)− (Ȧ(t) + 1
2M̈(t))u(t) in V∗, (7.32a)

Bw(t) = ġ(t) in Q∗. (7.32b)

By condition (7.32b) the initial value w0 of w must be an element of Hker+B−ġ(0) ⊂ H. Furthermore,
since w0 is formally the value of u̇ at t = 0, the initial value w0 has to satisfy

⟨M(0)w0, vker ⟩H∗,H = ⟨ f(0)− (A(0) + 1
2Ṁ(0))u0, vker ⟩V∗,V (7.33)

for all vker ∈ Vker; cf. Section 6.2.

Theorem 7.23 (Regularity of Solutions I). Let B ∈ L (V,Q∗) satisfy an inf-sup condition (3.2),
A ∈W 1,∞[0, T ; L (V,V∗)] be uniformly elliptic on Vker, and M∈ H2[0, T ; L (H,H∗)] be pointwise
self-adjoint and uniformly elliptic. Suppose that the right-hand sides fulfill f ∈ H1(0, T ;V∗) +
W 1,1(0, T ;H∗) and g ∈W 2,1(0, T ;Q∗). Assume that u0 ∈ V is consistent, i.e., Bu0 = g(0), and that
a w0 ∈ Hker + B−ġ(0) exists which satisfies (7.33). Then the solution of the operator DAE (7.4)
fulfills

u ∈ H1(0, T ;V) ∩ C1([0, T ],H), λ ∈ C([0, T ],Q).

The solution (u, λ) depends linearly and continuously on the data (f, g, u0, w0).
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Proof. We note that A+ 3
2Ṁ satisfies uniformly a Gårding inequality on Vker, since

⟨ (A(t) + 3
2Ṁ(t))vker, vker ⟩ ≥ µA∥vker∥2

V − 3
2∥Ṁ∥C([0,T ],L (H,H∗))∥vker∥2

H

for all vker ∈ Vker at almost every time-point t ∈ [0, T ]. Further, (Ȧ + 1
2M̈)u is an element of

L2(0, T ;V∗) + L1(0, T ;H∗) by Theorem 7.21 and Lemma 4.9. By Remark 7.1 and Theorem 7.21
the operator DAE (7.4) with initial value w0 has a unique solution (w, µ) satisfying a) and d) from
Theorem 7.21.

We follow the steps of the proof of Theorem 6.8 and show u̇ = w. For this we split u = uker +uc =
uker + B−

Vc
g and w = wker + wc = wker + B−

Vc
ġ with an arbitrary direct sum V = Vker ⊕ Vc. Then

u̇c = d
dt (B−

Vc
g) = B−

Vc
ġ = wc. For the part in Vker we consider

vker := uker,0 +
∫︂ ·

0
wker ds− uker ∈ L2(0, T ;Vker) ∩ C([0, T ],Hker) (7.34)

with uker,0 = u0 − B−
Vc
g(0) ∈ Vker. With wker,0 = w0 − B−

Vc
ġ(0) ∈ Hker the following equation holds

in V∗
ker:

d
dt (Mvker) + (A− 1

2Ṁ)vker

(7.34)= Ṁuker,0 + Ṁ
∫︂ ·

0
wker ds+Mwker − d

dt (Muker) + (A− 1
2Ṁ)(uker,0 +

∫︂ ·

0
wker ds− uker)

= (A+ 1
2Ṁ)

(︂
uker,0 +

∫︂ ·

0
wker ds

)︂
+M(0)wker,0 +

∫︂ ·

0

d
ds (Mwker) ds− d

dt (Muker)− (A− 1
2Ṁ)uker

(7.32)= (A+ 1
2Ṁ)uker,0 + (A+ 1

2Ṁ)
∫︂ ·

0
wker ds+M(0)wker,0

+
∫︂ ·

0
ḟ − (Ȧ+ 1

2M̈)u− d
dt (Mwc)− (A+ 1

2Ṁ)w ds− f + d
dt (Muc) + (A− 1

2Ṁ)uc

(7.33)= (A+ 1
2Ṁ)uker,0 − (A(0) + 1

2Ṁ(0))u0 + (A+ 1
2Ṁ)

∫︂ ·

0
wker ds

−
∫︂ ·

0
(Ȧ+ 1

2M̈)u+ (A+ 1
2Ṁ)w ds−Mwc + d

dt (Muc) + (A− 1
2Ṁ)uc

= (A+ 1
2Ṁ)uker,0 − (A(0) + 1

2Ṁ(0))uker,0 + (A+ 1
2Ṁ)

∫︂ ·

0
wker ds

−
∫︂ ·

0
(Ȧ+ 1

2M̈)u+ (A+ 1
2Ṁ)w ds+ (A+ 1

2Ṁ)uc − (A(0) + 1
2Ṁ(0))uc(0)

=
∫︂ ·

0
(Ȧ+ 1

2M̈)(uker,0 +
∫︂ s

0
wker dη − u)− (A+ 1

2Ṁ)wc + d
ds ((A+ 1

2Ṁ)uc) ds

(7.34)=
∫︂ ·

0
(Ȧ+ 1

2M̈)vker ds.

Therefore, vker satisfies the operator DAE (7.6) with right-hand side
∫︁ ·

0(Ȧ+ 1
2M̈)vker ds and initial

value vker(0) = 0, which directly follows from (7.34). Especially, we get the bound

∥vker∥2
C([0,t],H) +

∫︂ t

0
∥vker∥2

V ds

(7.26)
≤ 8µA + 4µM

µ2
AµM

∫︂ t

0

⃦⃦⃦⃦ ∫︂ s

0
(Ȧ+ 1

2M̈)vker dη
⃦⃦⃦⃦2

V∗
ds
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≤ 8µA + 4µM

µ2
AµM

∫︂ t

0
2s
∫︂ s

0
∥Ȧvker∥2

V∗ dη + 1
2

⃦⃦⃦⃦ ∫︂ s

0
M̈vker dη

⃦⃦⃦⃦2

V∗
ds

≤ 8µA + 4µM

µ2
AµM

max
(︂

2T∥Ȧ∥2
L∞ ,

C2
V↪→H
2 ∥M̈∥2

L1

)︂∫︂ t

0
∥vker∥2

C([0,s],H) +
∫︂ s

0
∥vker∥2

V dη ds

with the abbreviations L∞ and L1 for L∞[0, T ; L (V,V∗)] and L1[0, T ; L (H,H∗)], respectively.
Gronwall’s Lemma 3.15 then implies ∥vker∥2

C([0,t],H) +
∫︁ t

0 ∥vker∥2
V ds ≤ 0 for all t ∈ [0, T ]. Therefore,

vker = 0, which proves u̇ker = wker by (7.34) and so u̇ = w. The continuous dependence of
u(t) = u0 +

∫︁ t

0 w(s) ds on the data follows by the continuity of (ḟ − (Ȧ+ 1
2M̈)u, ġ, w0) ↦→ w; see

Remark 7.1 and Theorem 7.21. Finally, the assertion on λ holds because

λ
(7.4a)= B−∗

left(f − d
dt (Mu)− (A− 1

2Ṁ)u) = B−∗
left(f − (A+ 1

2Ṁ)u−Mw) ∈ C([0, T ],Q).

For the second approach we assume that A can be split into time-dependent operators A1 and A2
similar as in Theorem 6.9. The associated proof needs a specific splitting of the solution u = uker +uc
such that uker(t) ∈ Vker and A1(t)uc(t) ∈ V0

ker at almost every time-point t ∈ [0, T ]. This kind of
time-dependent splittings of V are studied in Subsection 7.2.1. In particular, we prove there that uc
inherits the smoothness of A1, g, and B. Therefore, A1 must be differentiable.

Theorem 7.24 (Regularity of Solutions II). Let B ∈ L (V,Q∗) satisfy an inf-sup condition (3.2)
and Assumptions 7.2.ii), 7.2.iii) as well as f ∈ L2(0, T ;H∗) be fulfilled. Suppose that A = A1 +A2
where A1 ∈ W 1,∞[0, T ; L (V,V∗)] is pointwise self-adjoint and uniformly elliptic on Vker and
A2 ∈ L∞[0, T ; L (V,H∗)]. Assume that u0 ∈ V is consistent, i.e., Bu0 = g(0). Then the solution of
the operator DAE (7.4) satisfies

u ∈ C([0, T ],V) ∩H1(0, T ;H), λ ∈ L2(0, T ;Q).

The map (f, g, u0) ↦→ (u, λ) is linear and continuous.

Proof. In order to avoid confusion with the temporal discretization, we use in this proof the
notation A[1] and A[2] instead of A1 and A2, respectively. We split the solution u into uker + uc.
For the part uc we consider the time-dependent saddle point problem

A[1](t)uc(t) − B∗ν(t) = 0 in V∗, (7.35a)
Buc(t) = g(t) in Q∗. (7.35b)

Theorem 7.27 and Lemma 4.15 then guarantee a unique solution uc ∈ H1(0, T ;V) with

∥uc∥2
H1(0,T ;V) ≲ ∥g∥

2
H1(0,T ;Q∗).

Here, the constant dependent on A[1] and B. By (7.4) and (7.35b) the part uker satisfies the operator
DAE (7.6) with right-hand side fker as in (7.7). Note that we have

fker = f − (A+ 1
2Ṁ)uc −Mu̇c = f − (A[2] + 1

2Ṁ)uc −Mu̇c ∈ L2(0, T ;H∗
ker),

since the equality A[1](t)uc(t) = B∗ν(t) ∈ V0
ker is satisfied by (7.35a) at almost every time-point

t ∈ [0, T ]. To prove the assertion we consider again the discretization (7.8) of (7.6). Instead of An

as integral mean, cf. (7.9), we define An := A[1]
n +A[2]

n where A[1]
n := A[1](tn) and A[2]

n is the mean
of A[2] over [tn−1, tn]. Note that by the continuity of A[1] the operator An satisfies

⟨Anvker, vker ⟩
(7.11)
≥ µA∥vker∥2

V + 1
τ ⟨ (
∫︁ tn

tn−1
A[1](tn)−A[1](s) ds)vker, vker ⟩ ≥ µA

2 ∥vker∥2
V

71



7. Systems with Time-Dependent Operators

for all vker ∈ Vker, if τ is small enough. Furthermore, by the continuity of A[1] the piecewise constant
operator-valued function A[1]

τ defined by A[1]
τ (t) ≡ A[1]

n on [tn−1, tn) converges strongly to A[1] in
L∞(0, T ; L (V,V∗)) as τ → 0. Therefore, the results of Subsection 7.1.1 still hold for τ small enough
and µA/2 instead of µA.

Since uker,0 = u0 − uc(0) ∈ Vker, the discrete difference Dτuker,n := 1
τ (uker,n − uker,n−1) is an

element of Vker by Lemma 7.8 for every n = 1, . . . , N . Therefore, we can test equation (7.8a) with
τDτuker,n = uker,n − uker,n−1, which leads to

2τ
n∑︂

k=1
∥Dτuker,k∥2

Mk−1
+ ∥uker,n∥2

A[1]
n
− ∥uker,0∥2

A[1]
1

+ τ

n∑︂
k=1
∥uker,k − uker,k−1∥2

A[1]
k

+
n∑︂

k=1
τ⟨DτMkuker,k, Dτuker,k ⟩ +

n−1∑︂
k=1
∥uker,k∥2

A[1]
k

− ∥uker,k∥2
A[1]

k+1

(7.17)= 2
n∑︂

k=1
⟨Mk−1Dτuker,k + 1

2DτMkuker,k +A[1]
k uker,k, τDτuker,k ⟩

= 2
n∑︂

k=1
⟨Dτ (Muker)k − 1

2DτMkuker,k +A[1]
k uker,k, τDτuker,k ⟩

(7.8a)= 2
n∑︂

k=1
τ⟨ fker,τ −A[2]

k uker,k, Dτuker,k ⟩

(3.8)
≤

n∑︂
k=1

4τ
µM
∥fker,k∥2

H∗
ker

+
n∑︂

k=1

4τ
µM
∥A[2]

k uker,k∥2
H∗ +

n∑︂
k=1

τµM

2 ∥Dτuker,k∥2
H

(7.9)
≤

n∑︂
k=1

∫︂ tk

tk−1

4
µM
∥fker∥H∗

ker
ds+

n∑︂
k=1

∫︂ tk

tk−1

4
µM
∥A[2]

k uker,k∥2
H∗ ds+

n∑︂
k=1

τµM

2 ∥Dτuker,k∥2
H (7.36)

≤ 4
µM

∫︂ T

0
∥fker∥2

H∗
ker

ds+ 4
µM
∥A[2]∥2

L∞[0,T ;L (V,H∗)]

n∑︂
k=1

τ∥uker,k∥2
V +

n∑︂
k=1

τµM

2 ∥Dτuker,k∥2
H.

Further, we observe with M := M(uker,0, fker) from Theorem 7.9 that the first sum in the second
line of (7.36) is bounded by

−
n∑︂

k=1
τ⟨DτMkuker,k, Dτuker,k ⟩

(3.8)
≤

n∑︂
k=1

τµM

2 ∥Dτuker,k∥2
H + τ

2µM
∥DτMkuker,k∥2

H∗

(7.12)
≤

n∑︂
k=1

τµM

2 ∥Dτuker,k∥2
H + 1

2µMτ

⃦⃦⃦⃦ ∫︂ tk

tk−1

Ṁ ds
⃦⃦⃦⃦2

L (H,H∗)
∥uker,k∥2

H

≤
n∑︂

k=1

τµM

2 ∥Dτuker,k∥2
H + 1

2µM

∫︂ tn

0
∥Ṁ∥2

L (H,H∗) ds max
k=1,...,n

∥uker,k∥2
H

(7.13)
≤

n∑︂
k=1

τµM

2 ∥Dτuker,k∥2
H + 1

2µ2
M
∥Ṁ∥2

L2[0,T ;L (H,H∗)]M
2 (7.37)
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and the second sum is bounded by

n−1∑︂
k=1
∥uker,k∥2

A[1]
k+1
− ∥uker,k∥2

A[1]
k

=
n−1∑︂
k=1
⟨ (A[1](tk+1)−A[1](tk))uker,k, uker,k ⟩

(7.12)
≤

n−1∑︂
k=1

τ∥ d
dtA

[1]∥L∞[0,T ;L (V,V∗)]∥uker,k∥2
V

(7.13)
≤ 2

µA
∥ d

dtA
[1]∥L∞[0,T ;L (V,V∗)]M

2. (7.38)

Theorem 7.9, the uniform ellipticity of M and A[1], and the estimates (7.36)–(7.38) then imply
n∑︂

k=1
τ∥Dτuker,k∥2

H + ∥uker,n∥2
V +

n∑︂
k=1

τ∥uker,k − uker,k−1∥2
V ≲ ∥uker,0∥2

V +
∫︂ T

0
∥fker∥2

H∗
ker

ds+M2

(7.39)

for all n = 1, . . . , N independently of τ , if τ is small enough. In particular, this shows that d
dtˆ︁uker,τ

and uker,τ are bounded in L2(0, T ;H) and, respectively, L∞(0, T ;V) independent of τ and therefore
weakly and, respectively, weakly∗ convergent. By Lemma 7.11, an argument similar as in the proof
of Lemma 7.12, and the uniqueness of the solution uker we get

uker,τ
∗
⇀ uker in L∞(0, T ;V), d

dtˆ︁uker,τ ⇀ u̇ker in L2(0, T ;H)

as τ → 0. Theorem 7.16 with the choices X = Vker, Y = Hker, K = A, Z = L2(0, T ;Vker), and
uker = w then implies uker ∈ C([0, T ],Vker) and

µM

∫︂ t

0
∥u̇ker∥2

H ds+ µA[1]∥uker(t)∥2
V

≤
∫︂ t

0
2⟨Mu̇ker, u̇ker ⟩ ds+ ⟨A[1](t)uker(t), uker(t) ⟩ − µM

∫︂ t

0
∥u̇ker∥2

H ds

(7.25)= ∥uker,0∥2
A[1](0) + 2

∫︂ t

0
⟨Mu̇ker +A[1]uker, u̇ker ⟩ + ⟨ d

dtA
[1]uker, uker ⟩ ds− µM

∫︂ t

0
∥u̇ker∥2

H ds

(7.6a)= ∥uker,0∥2
A[1](0) + 2

∫︂ t

0
⟨ fker − (A[2] − 1

2Ṁ)uker, u̇ker ⟩ + ⟨ d
dtA

[1]uker, uker ⟩ ds− µM

∫︂ t

0
∥u̇ker∥2

H ds

(3.8)
≤ ∥uker,0∥2

A[1](0) + 3
µM

∫︂ t

0
∥fker∥2

H∗
ker

ds+ 3
4µM

∥Ṁ∥2
L2[0,T ;L (H,H∗)] max

s∈[0,t]
∥uker∥2

H

+
(︂ 3
µM
∥A[2]∥2

L∞[0,t;L (V,H∗)] + ∥ d
dtA

[1]∥L∞[0,t;L (V,V∗)]

)︂∫︂ t

0
∥uker∥2

V ds.

Since the right-hand side of the previous estimate is bounded by Theorem 7.19, the linear mapping
(fker, uker,0) ↦→ uker is continuous and so is (f, g, u0) ↦→ u as well. The assertion on λ follows by

λ
(7.4a)= B−∗

left(f − d
dt (Mu)− (A− 1

2Ṁ)u) = B−∗
left(f −Mu̇− (A+ 1

2Ṁ)u) ∈ L2(0, T ;Q).

Remark 7.25. The assumption of Theorem 7.24 can be weakened to f = f1 +f2 with f1 ∈ L2(0, T ;H∗)
and f2 ∈W 1,1(0, T ;V∗). The idea of the associated proof is the same as in Remark 6.10.

Remark 7.26. The results of Theorem 7.24 can be extended to semi-linear operator DAEs (7.4) with
a nonlinear f : [0, T ] × V → H∗. The right-hand side f should satisfy the same assumption as in
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Section 6.4; see page 51. The existence and uniqueness of the solution as well as the continuous
dependence on the data (g, u0) follows along the lines of Theorem 6.15 and 6.19.

7.2. Constraints with Time-Dependent Operators
After considering in Section 7.1 operator DAEs with a constant operator B, we now investigate
systems with a time-dependent B : [0, T ] → L (V,Q∗). We assume that B ∈ H1[0, T ; L (V,Q∗)]
is uniformly inf-sup stable, i.e., Assumption 7.2.i) is satisfied. To concentrate on the difficulties,
which come with a time-dependent operator B, we restrict the analysis to operator DAEs (7.1) with
M(t) ≡ RH, i.e.,

u̇(t) + A(t)u(t)− B∗(t)λ(t) = f(t) in V∗, (7.40a)
B(t)u(t) = g(t) in Q∗. (7.40b)

All results obtained in this section hold also for the operator DAEs (7.1) if M satisfies Assump-
tion 7.2.ii); see Section 7.3.

Since B is time-dependent, its pointwise kernel is in general not constant. In particular, the
usual splitting V = Vker ⊕ Vc with Vker = kerB changes over time. Therefore, we investigate
time-dependent splittings of V in Subsection 7.2.1. Especially, we define an operator-valued function
W : [0, T ] → L (V), which maps kerB(0) to kerB(t). With this map we derive the existence of a
solution of the operator DAE (7.40) via a temporal discretization by the implicit Euler scheme in
Subsection 7.2.2. Since Vker is time-dependent, Theorem 7.18, which implied the uniqueness of the
solution in Section 7.1, is not applicable for the operator DAE (7.40). In Subsection 7.2.3 we discuss
additional assumptions which guarantee unique solutions.

7.2.1. Dynamical Splitting
In this subsection we consider splittings of V = Vker⊕Vc where Vker and Vc depend on time. We assume
that the space Vker is the pointwise kernel of a uniform inf-sup stable B ∈ W 1,p[0, T ; L (V,Q∗)],
p ∈ [1,∞]. Note that the analysis of (7.40) requires only the case p = 2. However, the investigation
for general p needs no additional effort.

By the assumptions on B and Lemma 4.14, the operator-valued function B has a continuous
representative. Therefore,

Vker(t) := kerB(t) (7.41)

is well-defined at almost every time-point t ∈ [0, T ]. Its pointwise dual space and orthogonal
complement are denoted by

V∗
ker(t) := (Vker(t))∗ and V⊥

ker(t) := (Vker(t))⊥,

respectively. In addition to the operator B, we assume that an operator A ∈W 1,p[0, T ; L (V,V∗)]
exists which is uniformly eliptic on Vker. This implies that

Vc(t) := {v ∈ V | ⟨A(t)v, vker ⟩ = 0 for all vker ∈ Vker(t)} (7.42)

is well-defined at almost every time-point t ∈ [0, T ]. Lemma 3.5 then shows V = Vker(t)⊕ Vc(t) at
almost every time-point t ∈ [0, T ]. Moreover, the mappings t ↦→ Vker(t) and t ↦→ Vc(t) inherit in
some sense the regularity of A and B; see Theorem 7.31.

In this subsection, we will show that the assumptions made on the operators A and B imply the
existence of a pointwise right-inverse B−

A of B with imB−
A(t) = Vc(t) for almost all t ∈ [0, T ]. Such

a right-inverse was already used in the proof of Theorem 7.24. Furthermore, we analyze how Vker
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and Vc change with respect to time. The starting point of our investigation is the saddle-point
problem induced by A and B.

Theorem 7.27 (Time-Dependent Saddle Point Problem). Let p ∈ [1,∞]. Assume that B ∈
W 1,p[0, T ; L (V,Q∗)], p ∈ [1,∞], satisfies uniformly an inf-sup condition (3.2). Suppose that Vker(t)
is defined as in (7.41), A ∈ W 1,p[0, T ; L (V,V∗)], and A(t) is elliptic on Vker(t) at almost every
time-point t ∈ [0, T ] with a uniform ellipticity constant. Then the saddle point problem

A(t)xt − B∗(t)νt = f in V∗, (7.43a)
B(t)xt = g in Q∗ (7.43b)

is uniquely solvable at almost every time-point t ∈ [0, T ] for every f ∈ V∗ and g ∈ Q∗. Its
pointwise solution operator S with S(t) : V∗ × Q∗ → V × Q, (f, g) ↦→ (xt, νt) is an element of
W 1,p[0, T ; L (V∗ ×Q∗,V ×Q)].

Proof. By Lemma 4.14 we can consider the continuous representatives of A and B. Then the
pointwise linear solution operator S of (7.43) is well-defined and the solution (xt, νt) satisfies
∥xt∥V , ∥νt∥Q ≲ ∥f∥V∗ + ∥g∥Q∗ with a constant which can be bounded independently of t; see
Theorem 3.8. Let (xs, νs), (xt, νt) be the solutions of (7.43) for arbitrary but fixed f , g at the
time-points s, t ∈ [0, T ], respectively. The differences ∆x := xt − xs and ∆ν := νt − νs then solve

A(t)∆x − B∗(t)∆ν = (A(s)−A(t))xs − (B∗(s)− B∗(t))νs in V∗,

B(t)∆x = (B(s)− B(t))xs in Q∗.

Therefore, we get the estimate

∥(S(t)− S(s))(f, g)∥V×Q ≲ ∥∆x∥V + ∥∆ν∥Q

≲ ∥A(t)−A(s)∥L (V,V∗)∥xs∥V + ∥B(t)− B(s)∥L (V,Q∗)
(︁
∥xs∥V + ∥νs∥Q

)︁
≲
(︁
∥A(t)−A(s)∥L (V,V∗) + ∥B(t)− B(s)∥L (V,Q∗)

)︁(︁
∥f∥V∗ + ∥g∥Q∗

)︁
.

Considering the supremum on the unit circle of V∗ ×Q∗ shows S ∈ C([0, T ],L (V∗ ×Q∗,V ×Q)),
because A and B are continuous. In particular, x : t ↦→ xt and ν : t ↦→ νt are continuous functions
with images in V and Q, respectively. Furthermore, their formal derivatives satisfy

A(t)ẋ(t) − B∗(t)ν̇(t) = − Ȧ(t)x(t) + Ḃ∗(t)ν(t) in V∗,

B(t)ẋ(t) = − Ḃ(t)x(t) in Q∗,

by (7.43) and Lemma 4.15. The right-hand sides are elements of Lp(0, T ;V∗) and Lp(0, T ;Q∗),
respectively, and therefore (ẋ, ν̇) ∈ Lp(0, T ;V ×Q) by Lemma 4.9, since S is continuous. Therefore,
Ṡ is strongly measurable with bound

∥Ṡ(t)(f, g)∥V×Q ≲ ∥ẋ(t)∥+ ∥ν̇(t)∥Q ≲ ∥Ȧ(t)∥L (V,V∗)∥x(t)∥V + ∥Ḃ(t)∥L (V,Q∗)
(︁
∥x(t)∥V + ∥ν(t)∥Q

)︁
≲
(︁
∥Ȧ(t)∥L (V,V∗) + ∥Ḃ(t)∥L (V,Q∗)

)︁(︁
∥f∥V∗ + ∥g∥Q∗

)︁
.

In particular, Ṡ satisfies the boundedness condition (4.3). Lemma 4.7 finishes the proof.

With the saddle-point problem (7.43) we calculate a right-inverse of B with images in Vc.

Lemma 7.28 (Time-Dependent Right-Inverse). Let the assumptions of Theorem 7.27 be satisfied.
Suppose that Vker and Vc are defined as in (7.41) and (7.42), respectively.

Then B has a pointwise right-inverse B−
A ∈W 1,p[0, T ; L (Q∗,V)] with B−

A(t)g ∈ Vc(t) for every g ∈
Q∗ at almost every time-point t ∈ [0, T ]. Furthermore, the time-dependent projection PA : [0, T ]→
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L (V) with imPA(t) = Vker(t) and kerPA(t) = Vc(t) at almost every time-point t ∈ [0, T ] is an
element of W 1,p[0, T ; L (V)].

Proof. By Corollary 3.9 we have that B−
A(t)g is the restriction of S(0, g) from Theorem 7.27 on xt.

Therefore, B−
A ∈ W 1,p[0, T ; L (Q∗,V)] follows by Theorem 7.27 and Lemma 4.15. The pointwise

projection with the stated image and kernel is given by

PA(t) := idV −B−
A(t)B(t), (7.44)

see e.g. [AltH18, Lem. 3.1 & Rem. 3.3]. Lemma 4.15 then implies PA ∈W 1,p[0, T ; L (V)].

Remark 7.29. If, in addition to the assumptions of Lemma 7.28, the operator-valued function A is uni-
formly elliptic on whole V , then the right-inverse is given by B−

A(t) ≡ A−1(t)B∗(t)(B(t)A−1(t)B∗(t))−1;
see Remark 3.10. Especially, by Lemma 4.15 and Lemma 4.17 its derivative is given by

d
dtB

−
A =−A−1ȦB−

A +A−1Ḃ∗(BA−1B∗)−1 − B−
A

d
dt

(︁
BA−1B∗)︁(BA−1B∗)−1

=− B−
AḂB

−
A + (idV −B−

AB)A−1Ḃ∗(BA−1B∗)−1 − (idV −B−
AB)A−1ȦB−

A.

In Subsection 7.2.2 we transform the operator DAE (7.40) to a system where the kernel of B is
constant. Especially, the derivative of B−

A becomes simpler, if the spaces Vker = kerB and Vc are
time-independent.

Lemma 7.30. Suppose that the assumptions of Lemma 7.28 are satisfied. In addition, let Vker
and Vc be time-independent. Then the generalized derivative of B−

A is given by −B−
AḂB

−
A.

Proof. Let v ∈ V be arbitrary. Since Vker and Vc are constant and v = vker + vc with vker ∈ Vker,
vc ∈ Vc is unique, vker = PA(t)v is time-independent. Therefore, ṖA = 0 and

0 = −ṖAB−
A

(7.44)=
(︁ d

dt (B−
A)B + B−

AḂ
)︁
B−

A = d
dtB

−
A + B−

AḂB
−
A.

We now show the existence of a differentiable operator-valued function, which describe the evolution
of the spaces Vker and Vc over time.

Theorem 7.31 (Tracking of Vker and Vc over Time). Let the assumption of Theorem 7.27 be
satisfied. Then there exists an operator-valued function W ∈W 1,p[0, T ; L (V)], which is pointwise
bijective at almost every time-point t ∈ [0, T ] and satisfies

W(t)Vker(0) := imW(t)
⃓⃓
Vker(0) = Vker(t) and W(t)Vc(0) := imW(t)

⃓⃓
Vc(0) = Vc(t).

Further, the pointwise inverse W−1 is an element of W 1,p[0, T ; L (V)].

Proof. The idea of the proof is based on [KunM06, p. 80]. Let v0 ∈ V be arbitrary and v ∈
W 1,p(0, T ;V) be the unique solution of the operator ODE

v̇(t) = (ṖAPA − PAṖA)(t)v(t), v(0) = v0; (7.45)

see Theorem 4.20 and Lemma 7.28. We define the operator-valued function W via

W : [0, T ]→ L (V) with W(t)v0 = v(t). (7.46)

By v ∈W 1,p(0, T ;V) and (7.45) the function W is an element of W 1,p[0, T ; L (V)] with derivative
Ẇ = (ṖAPA−PAṖA)W . We show that W(t) is bijective. Note that this is obvious for W(0) = idV .
For an arbitrary but fixed t′ ∈ (0, T ], we consider the uniquely solvable operator ODE

d
dsw(s) = −(ṖAPA − PAṖA)(t′ − s)w(s), w(0) = w0 ∈ V , (7.47)
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s ∈ [0, t′] and define ˜︂Wt′ ∈ L (V) via ˜︂Wt′w0 = w(t′). Then t ↦→ w(t′ − t) with t ∈ [0, t′] satisfies

d
dtw(t′ − t) = − d

dsw(t′ − t) (7.47)= (ṖAPA − PAṖA)(t)w(t′ − t).

Thus, it solves (7.45) with initial value w(t′). Since the solution of (7.45) is unique, we have w0 =
w(t′ − t′) =W(t′)w(t′) =W(t′)˜︂Wt′w0 for every w0 ∈ V. Analogously, one shows v0 = ˜︂Wt′W(t)v0
for arbitrary v0 ∈ V. Therefore, W(t′)˜︂Wt′ = ˜︂Wt′W(t′) = idV . Since t′ ∈ (0, T ] was arbitrary this
proves that W is pointwise bijective with pointwise inverse W−1(t) := (W(t))−1 = ˜︂Wt for t > 0 and
W−1(0) = idV . By the operator ODE (7.47) and Theorem 4.20 the pointwise inverse W−1(t) is
bounded independently of t in terms of PA. The assertion W−1 ∈W 1,p[0, T ; L (V)] then follows by
the steps of the proof of Lemma 4.17.

For the tracking of Vker(t) we note PAṖAPA = d
dt (P3

A − P2
A) = d

dt (PA − PA) = 0. In particular,
this implies

d
dt (PAW) = d

dt (P2
AW) = (ṖAPA + PAṖA)W + PAẆ

(7.45)= ṖAPAW = (ṖAPA − PAṖA)PAW.

Therefore, for every v0 ∈ V the function t ↦→ PA(t)W(t)v0 solves (7.45) with the initial value
PA(0)W(0)v0 = PA(0)v0. The same holds for t ↦→ W(t)PA(0)v0. Since the solution of (7.45) is
unique, we have PA(t)W(t) =W(t)PA(0) and therefore

Vker(t) = imPA(t) = imPA(t)W(t) = imW(t)PA(0) =W(t)Vker(0).

Analogously, one proves Vc(t) = im idV −PA(t) =W(t)Vc(0).

Remark 7.32. The function W is the fundamental solution of the operator ODE (7.45).
For the analysis of the operator DAE (7.40) we use primarily the pointwise orthogonal decomposi-

tion
V = Vker(t)⊕ V⊥

ker(t).

The associated pointwise right inverse B−
⊥ of B is then defined by the saddle point problem (7.43)

where A is the time-independent Riesz isomorphism RV ∈ L (V,V∗). Since RV is constant,
B ∈W 1,p[0, T ; L (V,Q∗)] is sufficient for the existence of the right inverse B−

⊥ ∈W 1,p[0, T ; L (Q∗,V)]
with derivative

d
dtB

−
⊥ = −B−

⊥ḂB
−
⊥ + (idV −B−

⊥B)R−1
V (B−

⊥Ḃ)∗RVB−
⊥, (7.48)

see Lemma 7.28 and Remark 7.29. For the derivation of (7.48) we have used that RV is self-adjoint
by the symmetry of the inner product (·, ·)V . Formula (7.48) then is the infinite dimensional
variant of [GolP73, Eq. (4.12)]. Anyway, the pointwise orthogonal projection (7.44) is denoted
by P⊥ ∈ W 1,p[0, T ; L (V)]. Since P⊥(t) is an orthogonal projection, W(t) from Theorem 7.31 is
unitary.

Lemma 7.33. Let B ∈W 1,p[0, T ; L (V,Q∗)], p ∈ [1,∞], satisfy uniformly an inf-sup condition (3.2).
Let W be the fundamental solution of the operator ODE (7.45) with the orthogonal projection P⊥.
Then W ∈W 1,p[0, T ; L (V,Q∗)] satisfies W(t)Vker(0) = Vker(t) and W(t)V⊥

ker(0) = V⊥
ker(t). Further-

more, W is pointwise unitary and its pointwise inverse is given by its pointwise Hilbert space-adjoint
WH = R−1

V W∗RV .

Proof. The regularity and the tracking property for the spaces Vker(t) and V⊥
ker(t) follow by the

proof of Theorem 7.31. For the inverse of W, we note that the equality P⊥ = PH
⊥ = R−1

V P∗
⊥RV

holds by [Alt16, p. 302], since P⊥ is pointwise an orthogonal projection. This then implies

d
dt (W

HW) = R−1
V W

∗(P∗
⊥Ṗ

∗
⊥ − Ṗ

∗
⊥P∗

⊥)RVW +WHẆ =WH(P⊥Ṗ⊥ − Ṗ⊥P⊥)W +WHẆ (7.45)= 0.
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Therefore, WH(t)W(t) =WH(0)W(0) = R−1
V RV = idV and for every v ∈ V we obtain

∥W(t)v∥2
V = (W(t)v,W(t)v)V = (WH(t)W(t)v, v)V = (v, v)V = ∥v∥2

V .

7.2.2. Existence Results
In this subsection we analyze the existence of solutions of the operator DAE (7.40) under Assump-
tions 7.2.i)–iv). For this we construct a solution by using the time-dependent splitting

V = Vker(t)⊕ V⊥
ker(t)

and similar steps as in Subsection 7.1.1. The pointwise closure of Vker in H is denoted by Hker, i.e.,

Hker(t) := clos∥·∥H Vker(t).

Let W be the operator-valued function defined in Lemma 7.33. By Assumption 7.2.i) the map W
is pointwise unitary and an element of H1[0, T ; L (V)]. We set

˜︁B := BW , ˜︁A :=W∗AW , ˜︁f :=W∗f. (7.49)

For a possible solution u of (7.40) we define ˜︁u =W−1u =WHu such that the tuple (˜︁u, λ) solves

W∗(t) d
dt (W(t)˜︁u(t)) + ˜︁A(t)˜︁u(t)− ˜︁B∗(t)λ(t) = ˜︁f(t) in V∗, (7.50a)˜︁B(t)˜︁u(t) = g(t) in Q∗, (7.50b)

if and only if (u, λ) solves the operator DAE (7.40). For the initial value we choose ˜︁u0 = u0 ∈ H.
This is well-defined, since W(0) = idV ∈ L (V) can be extended to idH.

By Theorem 7.31 and Lemma 4.15, the operator-valued function ˜︁B = BW is an element of
H1[0, T ; L (V,Q∗)]. Its pointwise kernel is time-invariant, since ker ˜︁B(t) =W−1(t)Vker(t) = Vker(0),
and ˜︁B is uniformly inf-sup stable by

inf
q∈Q\{0}

sup
v∈V\{0}

⟨ ˜︁B(t)v, q⟩
∥v∥V∥q∥Q

= inf
q∈Q\{0}

sup
v∈V\{0}

⟨B(t)W(t)v, q⟩
∥W(t)v∥V∥q∥Q

= inf
q∈Q\{0}

sup
v∈V\{0}

⟨B(t)v, q⟩
∥v∥V∥q∥Q

≥ β > 0,

where we have used that W is pointwise unitary. Lemma 7.28 then implies that ˜︁B has a right-inverse˜︁B−
⊥ ∈ H1[0, T ; L (Q∗,V)] with im ˜︁B−

⊥(t) = V⊥
ker(0). In particular, one shows with Theorem 7.31 that

W ˜︁B−
⊥ = B−

⊥. (7.51)

Remark 7.34. Because of the time-invariance of the kernel of ˜︁B, the DAE formulation with the
transformation W is more favorable than the one without. For finite dimensional DAEs of the
form (2.3) with a matrix-valued function B stability properties may not be preserved under temporal
discretization – even after an index reduction – if the kernel of B changes too fast for the temporal
step size [KunM07]. A possibility to overcome this issue is a smooth transformation, which eliminates
the time-changing kernel [KunM07, p. 409]. This is in our case the purpose of W.

Following the ideas of Subsection 7.1.1 we split ˜︁u into ˜︁uker + ˜︁uc with ˜︁uker : [0, T ]→ Vker(0) and˜︁uc : [0, T ]→ V⊥
ker(0). The function ˜︁uc is defined via

˜︁uc := ˜︁B−
⊥g ∈ H

1(0, T ;Vc(0)) ⊂ H1(0, T ;V), (7.52)

where its generalized derivative is given by ˜︁u̇c = d
dt ( ˜︁B−

⊥)g+ ˜︁B−
⊥ ġ; see Lemma 4.15. For the remaining
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part of the solution of (7.50), i.e., ˜︁uker = ˜︁u− ˜︁uc and λ, we consider the operator DAE

W∗(t) d
dt (W(t)˜︁uker(t)) + ˜︁A(t)˜︁uker(t)− ˜︁B∗(t)λ(t) = ˜︁fker(t) in V∗, (7.53a)˜︁B(t)˜︁uker(t) = 0 in Q∗, (7.53b)

with the right-hand side

˜︁fker := ˜︁f − ˜︁A˜︁uc −W∗ d
dt (W˜︁uc) ∈ L2(0, T ;V∗). (7.54)

The associated initial value is given as ˜︁uker,0 = ˜︁u0 − ˜︁B−
⊥(0)g(0) = u0 − B−

⊥(0)g(0) ∈ Hker(0) by
Assumption 7.2.iv).
Remark 7.35. Instead of (7.50) one can also investigate directly the operator DAE (7.40). The
possible solution u then can be split into uc = B−

⊥g and uker as a solution of the operator DAE (7.6),
where B is also time-dependent. In this case, a restriction of the differential equation (7.6a) to
test functions with images in Vker leads to an operator ODE with an evolving test space, since
Vker is time-dependent. Such a type of differential equation also occurs for parabolic PDEs with
time-dependent domains; see e.g. [AlpES15; BonG01].

For the construction of a solution (˜︁uker, λ) we discretize (7.53) with the implicit Euler scheme.
The pointwise evaluation of the operator ˜︁B is denoted by ˜︁Bn := ˜︁B(tn) and analogously for Wn,
n = 0, . . . , N . The values ˜︁fker,n and ˜︁An are defined by the integral means of ˜︁fker and ˜︁A over the
interval [tn−1, tn], respectively; cf. (7.9). The time-discrete system then reads

W∗
nDτ (W˜︁uker)n + ˜︁An˜︁uker,n − ˜︁B∗

nλn = ˜︁fker,n in V∗, (7.55a)˜︁Bn˜︁uker,n = 0 in Q∗, (7.55b)

with the discrete derivative Dτ (W˜︁uker)n = (Wn˜︁uker,n −Wn−1˜︁uker,n−1)/τ and n = 1, . . . , N . Follow-
ing Subsection 7.1.1, we show that the system (7.55) is uniquely solvable and bound its solutions.
Lemma 7.36. Let Assumptions 7.2.i)–iv) be satisfied. Suppose that W is defined as in Lemma 7.33,˜︁B, ˜︁A as in (7.49), and ˜︁fker as in (7.54). Assume that Wn and ˜︁Bn are defined by pointwise evaluation
as well as ˜︁fker,n and ˜︁An by integral means. Let ˜︁uker,0 := u0 − B−

⊥(0)g(0) ∈ Hker(0).
Then there exists a unique sequence of solutions {(˜︁uker,n, λn)}n=1,...,N ⊂ Vker(0) ×Q of (7.55),

which satisfies the bounds

∥Wn˜︁uker,n∥2
H +

n∑︂
k=1
∥Wk˜︁uker,k −Wk−1˜︁uker,k−1∥2

H + µA

n∑︂
k=1

τ∥˜︁uker,k∥2
V ≤M2(˜︁uker,0, ˜︁fker), (7.56a)

n∑︂
k=1

τ∥W∗
kDτ (W˜︁uker)k∥2

V∗
ker(0) ≤ 2

(︁
1 + 1

µA
∥A∥2

L∞[0,T ;L (V,V∗)]
)︁
M2(˜︁uker,0, ˜︁fker) (7.56b)

with the constant M(˜︁uker,0, ˜︁fker) :=
√︂
∥˜︁uker,0∥2

H + 1
µA

∫︁ T

0 ∥ ˜︁fker∥2
V∗ ds.

Proof. Because W0 = W(0) = idV can be extended to idH, the expression W0˜︁uker,0 = ˜︁uker,0 is
well-defined for ˜︁uker,0 ∈ Hker(0). Furthermore, Assumption 7.2.ii), W(t)Vker(0) = Vker(t), and the
pointwise unitarity of W imply

1
τ (Wnvker,Wnvker) + ⟨ ˜︁Anvker, vker ⟩ = 1

τ
∥Wnvker∥2

H + 1
τ

∫︂ tn

tn−1

⟨A(s)W(s)vker,W(s)vker ⟩ ds

≥ 1
τ
∥Wnvker∥2

H + 1
τ

∫︂ tn

tn−1

µA∥W(s)vker∥2
V ds
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=µA∥vker∥2
V + 1

τ
∥Wnvker∥2

H ≥ µA∥vker∥2
V

for every vker ∈ Vker(0) and n = 1, . . . , N . The existence and the uniqueness of the sequence of
solution then follows iteratively by Theorem 3.8. In particular, ˜︁uker,n ∈ ker ˜︁Bn = Vker(0) holds by
(7.55b), n = 1, . . . , N . Following the lines of Theorem 7.9, testing (7.55a) with τ˜︁uker,n ∈ Vker(0)
implies (7.56a) andW∗

nDτ (W˜︁uker)n = ˜︁fker,n− ˜︁An˜︁uker,n in Vker(0)∗ leads to the estimate (7.56b).

Remark 7.37. Since W(t) is unitary and W(0) = idV , we have M(˜︁uker,0, ˜︁fker) = M(uker,0, fker).

With the solution sequence of Lemma 7.36 we define time-continuous functions. The piecewise
constant function ˜︁uker,τ is defined as uker,τ in (7.18) and the piecewise linear function ˆ︃W˜︁uker,τ asˆ︃Muker,τ in (7.19b), i.e.,

˜︁uker,τ (t) :=
{︄˜︁uker,1, if t = 0,˜︁uker,n, if t ∈ (tn−1, tn],

ˆ︃W˜︁uker,τ (t) :=
{︄
W0˜︁uker,0, if t = 0,
Wn˜︁uker,n +Dτ (W˜︁uker)n(t− tn), if t ∈ (tn−1, tn].

We write again ˆ︃W˜︁uker,τ instead of ( ˆ︂W˜︁uker)τ in interest of readability. Note that W0˜︁uker,0 := ˜︁uker,0 ∈
Hker(0). Analogously to the piecewise constant functions in Subsection 7.1.1.2, we define λτ , ˜︁fker,τ ,˜︁Aτ , ˜︁Bτ , and Wτ . With these definitions, the system (7.55) can be rewritten as

W∗
τ

d
dt
ˆ︃W˜︁uker,τ + ˜︁Aτ ˜︁uker,τ − ˜︁B∗

τλτ = ˜︁fker,τ in V∗, (7.57a)˜︁Bτ ˜︁uker,τ = 0 in Q∗. (7.57b)

Similarly to the bounds (7.13) and (7.14), the inequalities (7.56a) and (7.56b) imply weak and
weak∗ convergence. We analyze them in the following lemmas.

Lemma 7.38. Let the assumptions of Lemma 7.36 be satisfied. Then there exists a function˜︁uker ∈ L2(0, T ;Vker(0)) with W˜︁uker ∈ L∞(0, T ;H) and a subsequence of τ denoted by τ ′, such that

˜︁uker,τ ′ ⇀ ˜︁uker in L2(0, T ;V),

Wτ ′˜︁uker,τ ′ ,ˆ︃W˜︁uker,τ ′
∗
⇀ W˜︁uker in L∞(0, T ;H),

ˆ︃W˜︁uker,τ ′ ⇀ W˜︁uker in L2(0, T ;H),˜︁Aτ ′˜︁uker,τ ′ ⇀ ˜︁A˜︁uker in L2(0, T ;V∗)

as τ ′ → 0.

Proof. By the estimate (7.56a) the function ˜︁uker,τ is bounded by µ−1/2
A M(˜︁uker,0, ˜︁fker) in L2(0, T ;V)

independently of τ . Therefore, there exists a subsequence τ ′ of τ such that ˜︁uker,τ ′ converges weakly
to a function ˜︁uker in L2(0, T ;V) as τ ′ → 0. By the arguments of the proof of Lemma 7.11 we
have ˜︁uker ∈ L2(0, T ;Vker(0)) and Wτ ′˜︁uker,τ ′ ⇀ W˜︁uker in L2(0, T ;V) as τ ′ → 0; cf. (7.11). On the
other hand, the estimate (7.56a) shows also that the sequence Wτ ˜︁uker,τ is bounded in L∞(0, T ;H)
independently of τ . By [Emm04, Cor. 8.1.11] there exists then a subsequence of τ ′ denoted by τ ′ as
well, such that Wτ ′˜︁uker,τ ′

∗
⇀W˜︁uker in L∞(0, T ;H) as τ ′ → 0.

For the piecewise linear function ˆ︃W˜︁uker,τ we note

⃦⃦
Wτ ˜︁uker,τ −ˆ︃W˜︁uker,τ

⃦⃦2
L2(0,T ;H) =

N∑︂
n=1
∥Dτ (W˜︁uker)n∥2

H

∫︂ tn

tn−1

(t− tn)2 dt
(7.56a)
≤ τ

3M
2(˜︁uker,0, ˜︁fker)→ 0

80



7.2. Constraints with Time-Dependent Operators

as τ → 0. This shows that ˆ︃W˜︁uker,τ ′ converges weakly in L2(0, T ;H) as τ ′ → 0. Since L2(0, T ;H∗)
is dense in L1(0, T ;H∗) and ˆ︃W˜︁uker,τ is bounded independently of τ in L∞(0, T ;H) by⃦⃦ˆ︃W˜︁uker,τ

⃦⃦2
L∞(0,T ;H) = max

n=1,...,N
max

t∈[tn−1,tn]
∥Wn˜︁uker,n +Dτ (W˜︁uker)n(t− tn)∥2

H

≤ max
n=1,...,N

2∥Wn˜︁uker,n∥2
H + 2τ2∥Dτ (W˜︁uker)n∥2

H
(7.56a)
≤ 2M(˜︁uker,0, ˜︁fker),

its weak∗ convergence in L∞(0, T ;H) follows by [Yos80, Sec. V.1, Th. 3]. Finally, the weak
convergence of ˜︁Aτ ′˜︁uker,τ ′ can be proven with the same steps as in the proof of Lemma 7.13.

Lemma 7.39. Let the assumption of Lemma 7.36 be satisfied. Suppose that the function ˜︁uker and
the subsequence τ ′ of τ are the same as in Lemma 7.38. Then the function W∗W˜︁uker has a derivative
in L2(0, T ;V∗

ker(0)) with

W∗
τ

d
dt
ˆ︃W˜︁uker,τ ′ ⇀ d

dt (W∗W˜︁uker)− Ẇ
∗W˜︁uker in L2(0, T ;V∗

ker(0))

as τ ′ → 0. Furthermore, (W∗W˜︁uker)(0) = ˜︁uker,0 holds in V∗
ker(0).

Proof. By the estimate (7.56b) the function W∗
τ

d
dt
ˆ︃W˜︁uker,τ is bounded in L2(0, T ;V∗

ker(0)) indepen-
dently of τ . Therefore, there exists a subsequence τ ′′ of τ ′ such that W∗

τ ′′
d
dt
ˆ︃W˜︁uker,τ ′′ converges

weakly to a ˜︁w in L2(0, T ;V∗
ker(0)) as τ ′′ → 0. For the generalized derivative of W∗W˜︁uker, we prove

d
dt (W∗W˜︁uker) = ˜︁w + Ẇ∗W˜︁uker ∈ L2(0, T ;V∗

ker(0)). (7.58)

Note that the right hand side of (7.58) is well-defined by W˜︁uker ∈ L∞(0, T ;H) ↪→ L∞(0, T ;V∗) and
Lemma 4.9. Let now vker ∈ Vker(0) and φ ∈ C∞

c (0, T ) be arbitrary. On the one hand it then holds∫︂ T

0
⟨ (W∗

τ ′′ −W∗) d
dt
ˆ︃W˜︁uker,τ ′′ , vker ⟩φ ds

=
∫︂ T

0
⟨W∗

τ ′′
d
dt
ˆ︃W˜︁uker,τ ′′ , vker ⟩φ+ ⟨ Ẇ∗ˆ︃W˜︁uker,τ ′′ , vker ⟩φ+ ⟨W∗ˆ︃W˜︁uker,τ ′′ , vker ⟩φ̇ds

=
∫︂ T

0
⟨W∗

τ ′′
d
dt
ˆ︃W˜︁uker,τ ′′ , vker ⟩φ+ (ˆ︃W˜︁uker,τ ′′ , Ẇvker)Hφ+ (ˆ︃W˜︁uker,τ ′′ ,Wvker)Hφ̇ds

→
∫︂ T

0
⟨ ˜︁w + Ẇ∗W˜︁uker, vker ⟩φ ds+

∫︂ T

0
⟨W∗W˜︁uker, vker ⟩φ̇ds (7.59)

as τ ′′ → 0 by the weak convergences of Lemma 7.38. On the other hand, we have

∥⟨ (W∗
τ −W∗) d

dt
ˆ︃W˜︁uker,τ , vker ⟩φ∥2

L1(0,T )

≤ C2
V↪→H∥φ∥2

C(0,T )

∫︂ T

0
∥ d

dt
ˆ︃W˜︁uker,τ∥2

H ds
∫︂ T

0
∥(Wτ −W)vker∥2

V ds

= C2
V↪→H∥φ∥2

C(0,T )

N∑︂
n=1

τ∥Dτ (W˜︁uker)n∥2
H

N∑︂
n=1

∫︂ tn

tn−1

⃦⃦⃦ ∫︂ tn

s

Ẇvker dη
⃦⃦⃦2

V
ds

(7.56a)
≤ τ−1M(˜︁uker,0, ˜︁fker)C2

V↪→H∥φ∥2
C(0,T )∥vker∥2

V

N∑︂
n=1

∫︂ tn

tn−1

(tn − s)
∫︂ tn

s

∥Ẇ∥2
L (V) dη ds

≤ τ

2M(˜︁uker,0, ˜︁fker)C2
V↪→H∥φ∥2

C(0,T )∥vker∥2
V

∫︂ T

0
∥Ẇ∥2

L (V) ds→ 0 (7.60)
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as τ → 0. Then (7.59) and (7.60) prove

0 =
∫︂ T

0
⟨ ˜︁w + Ẇ∗W˜︁uker, vker ⟩φ ds+

∫︂ T

0
⟨W∗W˜︁uker, vker ⟩φ̇ds,

which is equivalent to (7.58). The uniqueness of the derivative proves the weak convergence for the
whole sequence τ ′ [GajGZ74, Ch. 1, Lem. 5.4]. Finally, the assertion on the initial value is proven
by the arguments of Lemma 7.12 and the fact that for every vker ∈ Vker(0) we have

⟨ (W∗W˜︁uker)(0), T vker ⟩
(7.58)=

∫︂ T

0
⟨W∗W˜︁uker, vker ⟩ − ⟨ ˜︁w − Ẇ∗W˜︁uker, (T − t)vker ⟩ dt

= lim
τ ′→0

∫︂ T

0
⟨W∗ˆ︃W˜︁uker,τ ′ , vker ⟩ − ⟨W∗

τ ′
d
dt
ˆ︃W˜︁uker,τ ′ − Ẇ∗ˆ︃W˜︁uker,τ ′ , (T − t)vker ⟩ dt

(7.60)= lim
τ ′→0

∫︂ T

0
− d

dt ⟨ˆ︃W˜︁uker,τ ′ , (T − t)Wvker ⟩ dt = ⟨ ˜︁uker,0, T vker ⟩.

Remark 7.40. By (7.58) it formally holds ˜︁w = W∗ d
dt (W˜︁uker). Since (Wuker)(t) ∈ Vker(t), its

derivative would satisfy d
dt (W˜︁uker)(t) ∈ V∗

ker(t) at almost every time-point t ∈ [0, T ]. Note that
there is in general no Banach space, which contains V∗

ker(t) for all t ∈ [0, T ]. However, one can
prove at least that w := P∗

⊥(W∗)−1 ˜︁w ∈ L2(0, T ;V∗) satisfies ∥w(t)∥V∗ = ∥w(t)∥V∗
ker(t) as well as∫︁ T

0 ⟨w, vker ⟩ ds =
∫︁ T

0 ⟨W˜︁uker, v̇ker ⟩ ds for every vker ∈ H1(0, T ;V) with vker(0) = vker(T ) = 0 and
vker(t) ∈ Vker(t).

With the two previous lemmas we can now prove the existence of a solution of the operator
DAE (7.50) and therefor of (7.40) as well.

Theorem 7.41 (Existence of Solutions). Suppose that M = RV and that Assumptions 7.2.i)–iii)
are satisfied. Let Assumption 7.2.iv) be fulfilled, i.e., u0 ∈ Hker(0) + B−(0)g(0). Then the operator
DAE (7.40) has at least one solution (u, λ) with

a) u ∈ L2(0, T ;V) ∩ L∞(0, T ;H), b) B∗λ = d
dt ΛB∗ for an ΛB∗ ∈ L∞(0, T ;V∗),

c) P∗
⊥u̇ ∈ L2(0, T ;V∗), d) u̇− B∗λ ∈ L2(0, T ;V∗).

Proof. We define ˜︁uc as in (7.52) and ˜︁uker as in Lemmas 7.38 and 7.39 with the initial value˜︁uker,0 = u0 − ˜︁uc(0) = u0 − B−
⊥(0)g(0) ∈ Hker(0). Then u := W˜︁uc +W˜︁uker satisfies a) and c) by

Lemma 7.28, 7.38, Theorem 7.31, and Remark 7.40.
For the part ΛB∗ of the solution we define pointwisely (W∗

τ )−1(t) := (W∗
τ (t))−1 and note⃦⃦

(W∗
τ )−1(t)

⃦⃦
L (V∗) =

⃦⃦(︁
WH

τ

)︁∗(t)
⃦⃦

L (V∗) =
⃦⃦
WH

τ (t)
⃦⃦

L (V) =
⃦⃦
Wτ (t)

⃦⃦
L (V) = 1

by Lemma 7.33 at almost every time-point t ∈ [0, T ]. With the integration operator I from (7.22)
the term

I((W∗
τ )−1 ˜︁B∗

τλτ ) (7.53a)= I( d
dt
ˆ︃W˜︁uker,τ ) + I((W∗

τ )−1 ˜︁Aτ ˜︁uker,τ )− I((W∗
τ )−1 ˜︁fker,τ )

= ˆ︃W˜︁uker,τ − uker,0 + I((W∗
τ )−1 ˜︁Aτ ˜︁uker,τ )− I((W∗

τ )−1 ˜︁fker,τ )

is bounded in L∞(0, T ;V∗) independently of τ ; see Lemma 7.36. Therefore, by Lemma 7.38, the
continuity of W−1, see Theorem 7.31, and the strong convergence of ˜︁fker,τ to ˜︁fker, see Lemma 3.34,
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we have

I((W∗
τ ′)−1 ˜︁B∗

τ ′λτ ′) ∗
⇀ W˜︁uker − uker,0 + I((W∗)−1 ˜︁A˜︁uker)− I((W∗)−1 ˜︁fker)

(7.54)= u− u0 + I((W∗)−1 ˜︁A˜︁u)− I((W∗)−1 ˜︁f)
(7.49)= u− u0 + I(Au)− I(f) =: ΛB∗

in L∞(0, T ;V∗) as τ ′ → 0. Here, τ ′ denotes the subsequence of τ from Lemma 7.38. With equivalent
arguments one shows for arbitrary but fixed v ∈ V and φ ∈ C∞([0, T ]) with φ(T ) = 0 the limit

0 (7.57a)=
∫︂ T

0
⟨ d

dt
ˆ︃W˜︁uker,τ ′ + (W∗

τ ′)−1 ˜︁Aτ ′˜︁uker,τ ′ − (W∗
τ ′)−1 ˜︁B∗

τ ′λτ ′ − (W∗
τ ′)−1 ˜︁fker,τ ′ , v ⟩φ ds

→
∫︂ T

0
⟨Au− f, v ⟩φ− ⟨u− ΛB∗ , v ⟩φ̇ds+ ⟨u0, v ⟩φ(0)

as τ ′ → 0. Furthermore, u fulfills (7.40b) since Bu = ˜︁B˜︁uc + ˜︁B˜︁uker = ˜︁B ˜︁B−
⊥g = g by (7.49), (7.52),

and Lemma 7.38. Therefore, (u, λ) is a solution in the sense of Definition 4.27. The remaining
assertions b) and d) follow with the arguments of the proof of Theorem 7.14.

For a time-independent operator B, Theorem 7.14 shows that not only B∗λ but also λ has a regular
primitive. In the associated proof we used that B−∗

left and integration commute; see Lemma 3.30.
Since B−∗

left(t) := (B(t))−∗
left is now time-dependent the proof of the existence of a primitive of λ is

more delicate.

Theorem 7.42 (Existence of a Regular Primitive of λ). Suppose that the assumptions of Theo-
rem 7.41 are satisfied. Then the Lagrange multiplier λ has a regular primitive Λ ∈ L∞(0, T ;Q).

Proof. We introduce the piecewise functions

wker,τ (t) :=
{︄
Wn˜︁uker,n, if t ∈ [tn, tn+1)
WN˜︁uker,N , if t = T

, ˆ︂Wτ (t) :=
{︄
W0, if t = 0
Wn + Wn−Wn−1

τ (t− tn), if t ∈ (tn−1, tn]
;

cf. (7.19a). By the estimate (7.56a) the function wker,τ is bounded in L∞(0, T ;H) independently
of τ . Its weak∗ limit for the subsequence τ ′ of Lemma 7.38 is given by ˜︁uker, since∫︂ T

0
∥Wτ ˜︁uker,τ − wker,τ∥2

H ds =
N∑︂

n=1
τ∥Wn˜︁uker,n −Wn−1˜︁uker,n−1∥2

H
(7.56a)
≤ τM2(˜︁uker,0, ˜︁fker)→ 0

as τ → 0. Furthermore, following the lines of Lemma 7.13 one shows ( d
dt
ˆ︂W∗

τ ′)wker,τ ′ ⇀ Ẇ∗W˜︁uker in
L2(0, T ;V∗) as τ ′ → 0.

With the introduced piecewise functions we note that for every t ∈ (tn−1, tn] ⊂ [0, T ] we have∫︂ t

0
W∗

τ
d
dt
ˆ︃W˜︁uker,τ =

n−1∑︂
k=1
W∗

k

∫︂ tk

tk−1

d
dt
ˆ︃W˜︁uker,τ ds+W∗

n

∫︂ t

tn−1

d
dt
ˆ︃W˜︁uker,τ ds

=
n−1∑︂
k=1
W∗

k (Wk˜︁uker,k −Wk−1˜︁uker,k−1)−W∗
nWn−1˜︁uker,n−1 +W∗

τ (t)ˆ︃W˜︁uker,τ (t)
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=
n−1∑︂
k=0

(W∗
k −W∗

k+1)Wk˜︁uker,k +W∗
τ (t)ˆ︃W˜︁uker,τ (t)− ˜︁uker,0

=
∫︂ t

tn−1

( d
dt
ˆ︂W∗

τ )wker,τ ds−
∫︂ t

0
( d

dt
ˆ︂W∗

τ )wker,τ ds+W∗
τ (t)ˆ︃W˜︁uker,τ (t)− ˜︁uker,0. (7.61)

The first integral of the right-hand side of (7.61) vanishes uniformly in L∞(0, T ;V∗) as τ → 0
because ∫︂ t

tn−1

∥( d
dt
ˆ︂W∗

τ )wker,τ∥V∗ ds ≤
∫︂ t

tn−1

⃦⃦⃦⃦
1
τ

∫︂ tn

tn−1

Ẇ∗ dη
⃦⃦⃦⃦

L (V∗)
ds ∥Wn−1˜︁uker,n−1∥V∗

(7.56a)
≤ CV↪→H

τ

∫︂ t

tn−1

∫︂ tn

tn−1

∥Ẇ∥L (V) dη dsM(˜︁uker,0, ˜︁fker)

≤
√
τ CV↪→H∥Ẇ∥L2[0,T ;L (V)]M(˜︁uker,0, ˜︁fker).

Then, by (7.61) and an adaptation of Theorem 7.41 we obtain

I( ˜︁Bτ ′λτ ′) (7.57a)= I(W∗
τ ′

d
dt
ˆ︃W˜︁uker,τ ′) + I( ˜︁Aτ ′˜︁uker,τ ′)− I( ˜︁fker,τ ′)

∗
⇀ W∗W˜︁uker − ˜︁uker,0 − I(Ẇ∗W˜︁uker) + I( ˜︁A˜︁uker)− I( ˜︁fker)

(7.54)= W∗u− u0 − I(Ẇ∗
u) + I(W∗Au)− I(W∗f) =: Λ˜︁B∗

in L∞(0, T ;V∗) as τ ′ → 0. By (7.50a) the function Λ˜︁B∗ ∈ L∞(0, T ;V∗) has the distributional
derivative ˜︁B∗λ. Furthermore, by Lemma 3.30 the weak∗ convergence

0 = I(P∗
⊥(0) ˜︁B∗

τ ′λτ ′) = P∗
⊥(0)I( ˜︁B∗

τ ′λτ ′) ∗
⇀ P∗

⊥(0)Λ˜︁B∗ in L∞(0, T ;V∗)

holds as τ ′ → 0. This implies that Λ˜︁B∗ is pointwise an element of the annihilator of Vker(0).
Therefore, the Volterra integral equation

Λ(t) = ˜︁B−∗
left(t)Λ˜︁B∗(t) + ˜︁B−∗

left(t)
∫︂ t

0

d
ds
˜︁B∗(s)Λ(s) ds in Q (7.62)

is well-defined. Note that ˜︁B maps into V0
ker(0) := (Vker(0))0 and so does d

dt
˜︁B as well. Furthermore,

one can show that for an arbitrary f ∈ V0
ker(0) the term ˜︁B−∗

left(t)f is given by the partial solution νt

of the saddle-point problem (7.43) with operators RV and ˜︁B(t) as well as right-hand side (−f, 0).
Thus, ˜︁B−∗

left is an element of H1[0, T ; L (V0
ker(0),Q)] ↪→ C([0, T ],L (V0

ker(0),Q)); cf. Lemma 7.28.

The Volterra integral equation (7.62) has a unique solution Λ ∈ L∞(0, T ;Q) by Theorem 4.19.
Let now φQ∗ ∈ C∞

c (0, T ;Q∗) be arbitrary. Then there exists a φV ∈ H1(0, T ;V) with φQ∗ = ˜︁BφV ,
suppφV = suppφQ∗ ⊂ (0, T ), and we get∫︂ T

0
⟨ φ̇Q∗ ,Λ ⟩ dt =

∫︂ T

0
⟨ d

dt
˜︁BφV + ˜︁Bφ̇V ,Λ ⟩ dt =

∫︂ T

0
⟨ ˜︁B∗Λ−

∫︁ t

0
d
ds
˜︁B∗Λ ds, φ̇V ⟩ dt

=
∫︂ T

0
⟨Λ˜︁B∗ , φ̇V ⟩ dt = −

∫︂ T

0
⟨ ˜︁B∗λ, φV ⟩ dt = −

∫︂ T

0
⟨φQ∗ , λ ⟩ dt.

This shows that λ is a distributional derivative of Λ.
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7.2.3. Discussion of Uniqueness
In Subsection 7.1.2 we reduced the proof of the uniqueness of the whole solution u to the uniqueness
of the part of u, which maps into Vker. As mentioned in Remark 7.35, the analysis of uker = P⊥u =
P⊥W˜︁u =W˜︁uker is connected to parabolic PDEs on evolving domains. Therefore, we can use the
arguments of the theory of PDEs on evolving domains for the uniqueness of solutions of the operator
DAE (7.40). Anyway, the uniqueness of solutions is in general unsolved [VouR18, Rem. 2.4]. The
open problem is the density of smooth function in the solution space; cf. [VouR18, Rem. 3.1]. For
our purpose this is equivalent to the question: Given the Hilbert space

W 1,2(0, T ;Vker(·),V∗
ker(·)) := {u ∈ L2(0, T ;V) | P⊥u = u, P∗

⊥u ∈ H1(0, T ;V∗), Ṗ∗
⊥u ∈ L2(0, T ;V∗)}

equipped with the norm

∥u∥2
W 1,2(0,T ;Vker(·),V∗

ker(·)) = ∥u∥2
L2(0,T ;V) + ∥P∗

⊥u∥2
H1(0,T ;V∗) + ∥Ṗ∗

⊥u∥2
L2(0,T ;V∗),

is the closure

Uker := clos∥·∥W 1,2(0,T ;Vker(·),V∗
ker(·))

{u ∈W 1,2(0, T ;V,H) | P⊥u = u}

equal to the whole space W 1,2(0, T ;Vker(·),V∗
ker(·)) ?

Remark 7.43. By Lemma 7.38 and Remark 7.40, the function uker =W˜︁uker is an element of the space
W 1,2(0, T ;Vker(·),V∗

ker(·)), where ˜︁uker is the constructed solution of (7.53) from Subsection 7.2.2.
The usual techniques to prove Uker = W 1,2(0, T ;Vker(·),V∗

ker(·)) are not applicable, since the space
W 1,2(0, T ;Vker(·),V∗

ker(·)) is not closed under translation in time; cf. [Wlo87, p. 393 ff.] or [Str66,
Th. 3.1]. One can show at least that, if the solution is an element of Uker, then it is unique. However,
it is unclear, if every solution is an element of Uker; cf. [VouR18, Ch. 3].

We finish this section with two cases with unique solutions. The first result is inspired by the
results of [AlpES15].

Theorem 7.44 (Uniqueness of Solutions I). Let the assumptions of Theorem 7.41 be satisfied.
Suppose that there exists an operator-valued function W, which satisfies the assertion of Theorem 7.31
and can be pointwise extended to an invertible operator in L (H) at almost every time-point t ∈ [0, T ],
such that W ∈ H1[0, T ; L (H)] with a pointwise inverse W−1 ∈ H1[0, T ; L (H)].

Then there is only one solution (u, λ) of operator DAE (7.40), which satisfies a) and b) from
Theorem 7.41. Furthermore, the solution satisfies u ∈ C([0, T ],H) and Λ ∈ C([0, T ],Q) from
Theorem 7.42 with u(0) = u0 and Λ(0) = 0. The solution map (f, g, u0) ↦→ (u,Λ) is linear and
continuous.

Proof. By the assumptions on W the operator ˜︂M := W∗W ∈ H1[0, T ; L (H,H∗)] is uniformly
elliptic and J := 1

2 (W∗Ẇ − Ẇ∗W) ∈ L2[0, T ; L (H,H∗)] is pointwise skew-adjoint. With the
defined operators we can rewrite the operator DAE (7.50) as

d
dt (˜︂M(t)˜︁u) + ( ˜︁A(t) + J (t)− 1

2
d
dt
˜︂M(t))˜︁u− ˜︁B∗(t)λ = ˜︁f(t) in V∗, (7.63a)˜︁B(t)˜︁u = g(t) in Q∗. (7.63b)

As usual we split ˜︁u into ˜︁uc given by (7.52) and the remainder ˜︁uker with images in Vker(0). Lemma 7.22
then proves the uniqueness of ˜︁uker ∈ L2(0, T ;Vker(0)) ∩ C([0, T ],Hker(0)) and therefore of ˜︁u as well.
Note that the time-dependence of ˜︁B does not affect the result of Lemma 7.22, since its kernel is
time-independent. Because every solution u of (7.40) implies a solution ˜︁u =W−1u of (7.63) and vice
versa, u is unique and continuous with image in H as well. With ∥u(t)∥X = ∥W(t)˜︁u(t)∥X ≲ ∥˜︁u(t)∥X ,
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X ∈ {H,V} by the assumptions on W , the remaining assertions follow by the steps of Theorem 7.19
and 7.42.

Remark 7.45. If the kernel of B is time-independent, then we can chooseW = idV and the assumptions
on W in Theorem 7.50 are satisfied.
Remark 7.46. The assumptions on the right-hand sides in Theorem 7.44 can be weakened such that g
is only an element of W 1,1(0, T ;Q∗) and f can be split into f = f1 + f2, where f1 ∈ L2(0, T ;V∗)
and f2 ∈ L1(0, T ;H∗). Then there exists a unique solution (u, λ), which satisfies the conditions a),
b), and d) of Theorem 7.21. The associated proof follows the lines of Theorem 7.21 with the results
of Theorems 7.41 and 7.44.

As the second case with a unique solution, we transfer the results of Theorem 7.24 to operator
DAE (7.50) with a time-dependent operator B.

Theorem 7.47 (Uniqueness of Solutions II). In addition to the assumptions of Theorem 7.41,
suppose that B ∈W 1,∞[0, T ; L (V,Q∗)] and A = A1 +A2 with A1 ∈W 1,∞[0, T ; L (V,V∗)] pointwise
self-adjoint and uniformly elliptic on Vker and A2 ∈ L∞[0, T ; L (V,H∗)]. Assume that u0 ∈ V is
consistent, i.e., B(0)u0 = g(0), and that f is an element of L2(0, T ;H∗).

Then there exists a unique solution u ∈ C([0, T ],V) ∩ H1(0, T ;H) and λ ∈ L2(0, T ;Q) with
u(0) = u0, which depends linearly and continuously on the data f , g, and u0.

Proof. We follow the steps of Theorem 7.24. For this let us denote A1 and A2 by A[1] and A[2],
respectively. We split u into uc and uker where uc := B−

A[1]g. By Lemma 7.28 the function uc ∈
H1(0, T ;V) satisfies A[1](t)uc(t) ∈ V0

ker(t) at almost every time-point t ∈ [0, T ]. The functions uker
and λ are given by a possible solution (˜︁uker, λ) of the operator DAE (7.53) withW from Lemma 7.33,
where uker =W˜︁uker. The right-hand side ˜︁fker is given by W∗(f [1]

ker + f
[2]
ker) with

f
[1]
ker := A[1]uc ∈W 1,∞(0, T ;V∗) f

[2]
ker := f −A[2]uc − u̇c ∈ L2(0, T ;H∗)

and the initial value ˜︁uker,0 =W(0)uker,0 = uker,0 = u0 − B−
A[1](0)g(0) ∈ Vker(0).

Let us define Wn ∈ L (V), f [1]
ker,n ∈ V∗, and ˜︁A[1]

n ∈ L (V,V∗) as the evaluation of W, f [1]
ker,

and W∗A[1]W at the time-point tn, respectively. Further, f [2]
ker,n ∈ H∗ and (A[2]W)n ∈ L (V,H∗)

are set to the integral means of f [2]
ker and A[2]W, respectively; cf. (7.9). We then consider the

temporal discretization (7.55) of (7.53) with the discrete operator ˜︁An := ˜︁A[1]
n +W∗

n(A[2]W)n and
the right-hand side ˜︁fker,n :=W∗

n(f [1]
ker,n + f

[2]
ker,n). With the steps of Theorem 7.24 one proves that

the statements of Subsection 7.2.2 are still valid with µA
2 instead of µA in Lemma 7.36 if τ is small

enough. On the other hand, since A[1]uc ∈ V0
ker(·) implies W∗f

[1]
ker ∈ V0

ker(0), testing (7.55) with
τDτ ˜︁uker,n := ˜︁uker,n − ˜︁uker,n−1 ∈ Vker(0) leads to

τ⟨Dτ (W˜︁u)ker,n,WnDτ ˜︁uker,n ⟩ + τ⟨ ˜︁A[1]
n ˜︁uker,n, Dτ ˜︁uker,n ⟩ = ⟨ f2

ker,n − (A[2]W)n˜︁uker,n,WnDτ ˜︁uker,n ⟩.
(7.64)

Note that W ∈W 1,∞[0, T ; L (V)] by Lemma 7.33. Therefore, equation (7.64) implies the estimate

τ∥Dτ (W˜︁u)ker,n∥2
H + ⟨ ˜︁A[1]

n ˜︁uker,n, ˜︁uker,n − ˜︁uker,n−1 ⟩
(7.64)= τ⟨ f [2]

ker,n − (A[2]W)n˜︁uker,n, Dτ (W˜︁u)ker,n ⟩

− τ
⟨︂
f

[2]
ker,n − (A[2]W)n˜︁uker,n −Dτ (W˜︁u)ker,n,

Wn −Wn−1

τ
˜︁uker,n−1

⟩︂
(3.8)
≤ 3τ

2 ∥f
[2]
ker,n − (A[2]W)n˜︁uker,n∥2

H∗ + 3C2
V↪→H
2τ ∥(Wn −Wn−1)˜︁uker,n−1∥2

V + τ

2∥Dτ (W˜︁u)ker,n∥2
H
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(7.12)
≤ 3τ

2 ∥f
[2]
ker,n − (A[2]W)n˜︁uker,n∥2

H∗ + τ
3C2

V↪→H
2 ∥Ẇ∥2

L∞[0,T ;L (V)]∥˜︁uker,n−1∥2
V + τ

2∥Dτ (W˜︁u)ker,n∥2
H.

With estimates analogous to (7.36)–(7.38) we get the inequality
n∑︂

k=1
τ∥Dτ (W˜︁u)ker,k∥2

H + ∥˜︁uker,n∥2
V +

n∑︂
k=1

τ∥˜︁uker,k − ˜︁uker,k−1∥2
V ≲ ∥uker,0∥2

V +
∫︂ T

0
∥f [2]

ker∥
2
H∗ ds+M2

for every n = 1, . . . , N and M = M(˜︁uker,0, ˜︁fker) from Lemma 7.36. This shows that d
dt
ˆ︃W˜︁uker,τ is

bounded in L2(0, T ;H) and ˜︁uker,τ in L∞(0, T ;V) both independently of τ .
By [Zei90a, Prop. 23.19] and the continuity ofW , we have uker =W˜︁uker ∈ L∞(0, T ;V)∩H1(0, T ;H)

with the limit ˜︁uker from Lemmas 7.38 and 7.39. This allows us to test the operator DAE (7.53)
with uker and u̇ker, which leads to uker ∈ C([0, T ],V) and the continuity with respect to (fker, uker,0);
see Theorems 7.19 and 7.24. The assertion on u follows by the properties of uker.

Finally, the Lagrange multiplier λ and the solution u are the unique solution of the time-dependent
saddle point problem (7.43) with right-hand sides f − u̇ ∈ L2(0, T ;H∗) and g ∈ H1(0, T ;Q∗) ↪→
L2(0, T ;Q∗). The properties of λ then follow by Theorem 7.27 and Lemma 4.9.

Remark 7.48. Example 7.5 is uniquely solvable by Theorem 7.47, if u0 ∈ H2
0 (0, 1) is consistent,

f ∈ L2(0, T ;L2(0, 1)), and Φ ∈W 1,∞(0, T ).

7.3. Main Results
In the previous two sections 7.1 and 7.2 we considered only cases where B orM were constant in time.
In this section, we finally investigate operator DAEs of the form (7.1), where all operators, namely
M, A, and B, are simultaneously time-dependent. The results of this section are combinations of
the ideas of the previous two sections. Since the associated proofs are rather technical and mostly
done in the sections 7.1 and 7.2, we will only sketch them.

Let us start with the existence of solutions of the operator DAE (7.1).

Theorem 7.49 (Existence of Solutions of Operator DAEs with Time-Dependent Operators). Let
Assumption 7.2 be satisfied. Then the operator DAE (7.1) has at least one solution (u, λ) which
fulfills

a) u ∈ L2(0, T ;V) ∩ L∞(0, T ;H), b) λ = d
dt Λ for an Λ ∈ L∞(0, T ;Q),

c) P∗
⊥

d
dt (Mu) ∈ L2(0, T ;V∗), d) d

dt (Mu)− B∗λ ∈ L2(0, T ;V∗).

Proof. Let W be defined as in Lemma 7.33. For the proof we split ˜︁u =W−1u into ˜︁uc given by (7.52)
and the remainder ˜︁uker with images in Vker(0). For ˜︁uker, we define ˜︁fker := ˜︁f− ˜︁A˜︁uc−W∗ d

dt (MW˜︁uc) ∈
L2(0, T ;V∗) and consider, similar to (7.8) and (7.55), the temporally discretized system

W∗
nDτ (MW˜︁uker)n + ( ˜︁An − 1

2Dτ
˜︂Mn)˜︁uker,n − ˜︁B∗

nλn = ˜︁fker,n in V∗,˜︁Bn˜︁uker,n = 0 in Q∗.

Here, we set ˜︂Mn :=W(tn)∗M(tn)W(tn). The discrete derivatives Dτ (MW˜︁uker)n and Dτ
˜︂Mn are

given by

Dτ (MW˜︁uker)n = MnWn˜︁uker,n −Mn−1Wn−1˜︁uker,n−1

τ
and Dτ

˜︂Mn =
˜︂Mn − ˜︂Mn−1

τ
.
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Then the assertions a), c), and d) follow along the lines of Theorem 7.14 and 7.41, where B∗λ = d
dt ΛB∗

also holds with a ΛB∗ ∈ L∞(0, T ;V∗). We note that W∗MW˜︁uker ∈ H1(0, T ;V∗
ker(0)) is satisfied by

arguments similar to those of Lemma 7.39. Finally, assertion b) follows as in Theorem 7.42.

For the operator DAE (7.1) with a constant operator B we proved the uniqueness of solutions
in Theorem 7.19. For a time-dependent operator B, we mentioned in Subsection 7.2.3, that the
question of unique solutions is related to the unsolved problem of unique solutions of PDEs on
evolving domains. We proved the uniqueness for two special cases. These results are translatable to
systems with a nonconstant operator M.

Theorem 7.50 (Uniqueness of Solutions of Operator DAEs with Time-Dependent Operators I).
Assume that g is an element of W 1,1(0, T ;Q∗) and that f can be split into f = f1 + f2, where
f1 ∈ L2(0, T ;V∗) and f2 ∈ L1(0, T ;H∗). Let Assumptions 7.2.i), ii), and iv) be satisfied. Suppose
that there exists an operator-valued function W, which fulfills the assumptions of Theorem 7.44.

Then there exists only one solution (u, λ) of the operator DAE (7.1), which satisfies a) and b)
from Theorem 7.49. Furthermore, the solution satisfies u ∈ C([0, T ],H) and Λ ∈ C([0, T ],Q) with
u(0) = u0 and Λ(0) = 0. The map from the data (f, g, u0) to (u,Λ) is linear and continuous.

Proof. We set ˜︂M =W∗MW and J = 1
2 (W∗MẆ − Ẇ∗MW). Then the assertions follow with the

arguments of Theorem 7.44 and Remark 7.46.

Theorem 7.51 (Uniqueness of Solutions of Operator DAEs with Time-Dependent Operators II).
In addition to Assumption 7.2, suppose that the operator B satisfies B ∈W 1,∞[0, T ; L (V,Q∗)]. Let
A = A1 +A2 be satisfied, where A1 ∈W 1,∞[0, T ; L (V,V∗)] is pointwise self-adjoint and uniformly
elliptic on Vker and A2 ∈ L∞[0, T ; L (V,H∗)]. Assume that u0 ∈ V is consistent, i.e., B(0)u0 = g(0),
and that f is an element of L2(0, T ;H∗).

Then there exists a unique solution u ∈ C([0, T ],V) ∩ H1(0, T ;H) and λ ∈ L2(0, T ;Q) with
u(0) = u0 of the operator DAE (7.1). The solution depends linearly and continuously on the data f ,
g, and u0.

Proof. The proof follows the lines of Theorems 7.24 and 7.47.

Remark 7.52. Theorem 7.51 can be extended to semi-linear operator DAEs of the form (7.1) with
non-linear right-hand sides f : [0, T ]× V → H∗ satisfying the assumptions of Section 6.4. This can
be proven like Theorems 6.15 and 6.19.
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Part C.

Temporal Discretization of
Operator Differential-Algebraic

Equations

In this part we study time-stepping methods for constrained PDEs. For their analysis, again we use
the framework of operator DAE. In this thesis, we focus on the systems of Chapter 6 with time-
independent operators. We directly discretize the systems in time without a spatial discretization
beforehand, i.e., we use the Rothe method. This leads to infinite-dimensional stationary systems for
every time step; see e.g. [Alt15, Sec. 10.2]. In particular, for each individual time step the stationary
problem then can be discretized individually in space [SchB98, p. 137]. This allows adaptive methods
for every discrete time-point, whose advantages were studied for linear PDEs in [Bor90; Bor91;
Bor92; SchB98]. Furthermore, the Rothe method allows to derive temporal error bounds which are
independent of the mesh width of spatial discretization [HocO10, Ch. 2 & p. 212]. This is vital for
spatially discretized systems, since the temporal convergence order of finite and infinite-dimensional
systems may differ; see e.g. [OstR92, Th. 2], [DebS05, Th. 7], and [HocO05a, Sec. 4.3]. If the spatial
mesh gets finer the order of the infinite system dominates the convergence of the finite dimensional
discretization; cf. [ProR74]. Note that, the (discrete) norms of V and H are equivalent under a fixed
spatial discretization. Anyway, Figure C.1 illustrates a case where the convergence order for the
finite dimensional, spatially discretized system is two, for the infinite-dimensional original system it
is one and a half, and the convergence rate fades for large numbers of degrees of freedom.

We analyze Runge-Kutta methods and exponential integrators in this thesis. Note that a time-
integration scheme for DAEs and parabolic PDEs must respect their infinitely stiff nature, in the
sense that both classes of differential equations can be approximated by a sequence of ODEs, where
every ODE in the sequence is stiffer than its predecessor; see [BreCP96, Sec. 4.5], [Zei90a, Sec. 23.7],
and [OstR92, p. 404]. Because of the stiff behavior of the problem, we consider implicit, algebraically
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Figure C.1.: Temporal error of the (constrained) PDE (9.50) temporally discretized by scheme (9.10)
for different spatial degrees of freedom (dof).

stable Runge-Kutta methods; see [HaiW96, Sec. IV.12] and [HunV03, Ch. II, Sec. 1.4]. On the other
hand, exponential integrators are always suited for stiff semi-linear problems, since they are based on
the exact solution of the linear part, which is responsible for the stiffness [HocO10]. In particular, this
allows large time steps for explicit exponential integrators [HocLS98, p. 1572]. These integrators have
the advantages of explicit methods like limited number of evaluations of the nonlinear inhomogeneity
and no nonlinear root-finding problem.

This part is organized as follows. In Chapter 8 we temporally discretize the operator DAEs
from Sections 6.1 and 6.2 with Runge-Kutta methods. Here, the operators M, A, and B are
time-independent and the right-hand sides f , g only depend on time. Since the operator DAEs
are sensitive to perturbations of g, we introduce a regularization which maintains the saddle-point
structure of the original systems. We temporally discretize the regularized system by implicit,
algebraically stable Runge-Kutta schemes, starting with the implicit Euler method. The convergence
of the time-discrete solution to the solution of the original operator DAE is studied under minimal
assumptions on the data. Afterwards, we analyze the convergence order and discuss it by means
of numerical examples. Chapter 9 is devoted to the application of explicit exponential integrators
to the operator DAE from Section 6.4, i.e., the right-hand side f depends on time and the state u.
By exploiting the structure of the operator DAE, semi-explicit integration schemes are constructed
based on the exponential Euler and Runge methods. We study their convergence orders and derive
the order conditions for schemes with an order up to three. Afterwards, we consider the temporal
discretization of the Lagrange multiplier λ. Finally, the performance of the numerical schemes is
presented, where an efficient solver for intermediate transient problems is used.

Sections 8.1 and 8.3 are essential copies of [AltZ18b, Sec. 3 & 5]. Lemmas 8.2, 8.3, and 8.5
were originally proven by Robert Altmann. We omit the proofs of the latter two lemmas and give
an alternative proof of the first one, which is closer to the definition of the differentiation index.
Section 8.2 extends the results of [AltZ18b, Sec. 4] to less regular right-hand sides. The results in
Section 8.5 are based on and extend [AltZ18c, Sec. 6]. The author of this thesis originally elaborated
[AltZ18b, Sec. 4 f.] and [AltZ18c, Sec. 6]. All remaining results of Chapter 8 are unpublished.

Sections 9.1, 9.2, and Subsection 9.4.2 are essentially copies of [AltZ20, Sec. 2.4, 3 f., & 5.2].
The schemes of the exponential integrators were elaborated in close cooperation between the two
authors of the book chapter. The algorithms in Subsections 9.1.1 and 9.2.1 were developed by
Robert Altmann. Furthermore, Robert Altmann originally implemented the numerical example in
Subsection 9.4.2. The convergence analysis in Subsections 9.1.2 and 9.2.2 was originally elaborated
by the author of this thesis. The same holds for the results of [AltZ20, Sec. 5.1] which are extended
in this thesis in Subsection 9.4.1. All remaining results of Chapter 9 are unpublished.
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8. Runge-Kutta Methods
In this chapter we investigate Runge-Kutta methods as time integration schemes for operator DAEs
of the form

u̇(t) +Au(t) − B∗λ(t) = f(t) in V∗, (8.1a)
Bu(t) = g(t) in Q∗. (8.1b)

The spaces V and Q are separable Hilbert spaces. We assume that a third Hilbert space H exists such
that V , H, V∗ is a Gelfand triple. All operators are time-independent. The existence, uniqueness, and
regularity of solutions of (8.1) were studied in Sections 6.1 and 6.2. In addition to the assumptions
of these sections, we suppose that the operator A is elliptic on Vker. This is not necessary for the
existence of an approximation for small enough step sizes τ , but will imply strong convergence of
the approximations to the solution. We summarize the assumptions in the following.
Assumption 8.1 (Operators, Right-Hand Sides, and Initial Value of Operator DAE (8.1)).

i) The operator B ∈ L (V,Q∗) is inf-sup stable and the operator A ∈ L (V,V∗) is elliptic
on Vker := kerB with an ellipticity constant µA > 0.

ii) The right-hand sides satisfy f ∈ L2(0, T ;V∗) + L1(0, T ;H∗) and g ∈W 1,1(0, T ;Q∗)
iii) The initial value u0 fulfills u0 ∈ Hker + B−g(0) ⊂ H.
The application of Runge-Kutta schemes to parabolic PDEs and operator ODEs without a spatial

discretization is well-studied; see for example [Emm04; Rou13, Ch. 8 each] for the study of existence
of solutions and [Cro75; EmmT10; GonO99; LubO93; LubO95b; OstR92] for convergence orders.
In contrast, only few results are known for constrained PDEs and operator DAEs. In [Emm00;
Emm01] the temporal discretization of the unsteady Stokes equation and the incompressible Navier-
Stokes equations by the implicit Euler scheme is studied. The author of [Emm00; Emm01] proves
convergence orders and studies by the nature of the considered constrained PDEs only systems
with constraints with homogeneous right-hand sides. The convergence of the temporally discretized
solutions of the operator DAE (8.1) given by the implicit Euler scheme is studied in [Alt15, Ch. 10].
There the author focuses on the weak convergence of the approximation, as we did in Subsections 7.1.1
and 7.2.2, and on the influence of perturbations. The convergence order of Runge-Kutta schemes
applied to a class of PDAEs with d-dimensional boxes as spatial domains is investigated in [Deb04;
DebS05]. This class excludes systems, which are considered here, and vice versa.

In [Alt15, Sec. 8.2] it is shown that the spatial discretization of the operator DAE (8.1) by the
mixed Galerkin method [Bra07, p. 134 ff.] leads to a DAE of index 2. Therefore, this DAE under
temporal discretization with Runge-Kutta methods may suffer from numerical instabilities. In
particular, perturbations of the discretized right-hand side g in (8.1b) may be amplified by the
inverse of the step size, i.e., τ−1; see [HaiLR89, Th. 4.2] for the finite-dimensional case and [Alt15,
Rem. 10.12] for the infinite-dimensional one with the implicit Euler scheme. Therefore, we consider
a regularization of the operator DAE (8.1) in Section 8.1. The resulting operator DAE has the same
solution, but the finite-dimensional DAE, which we get by Galerkin discretization, is of index 1. In
Section 8.2 we consider the discretization of the regularized operator DAE satisfying Assumption 8.1
with the implicit Euler scheme. Under slightly stronger assumptions we analyze algebraically
L-stable Runge-Kutta methods in Section 8.3. The results, which include the weak and strong
convergence of the discrete solution, are extended to algebraically stable Runge-Kutta methods with
|R(∞)| ≤ 1 in Section 8.4. The aim of Sections 8.2–8.4 is the analysis of the qualitative behavior of
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the convergence under minimal assumptions on the data and on the Runge-Kutta methods. The
convergence analysis does not require any additional regularity of the exact solution. For regular
solutions the actual convergence order of the Runge-Kutta methods is considered in Section 8.5.
Note that, higher regularity is equivalent to compatibility conditions on the data, which can be
restrictive; see [EmmT10, p. 786] and [Tem77]. However, in addition to the convergence rate we
investigate the error under perturbation of the data in Section 8.5. Finally, the performance of the
numerical schemes is presented in Section 8.6.

8.1. Regularization
As mentioned in the introduction of Chapter 8, the spatial discretization of the linear semi-explicit
operator DAE (8.1) leads to a DAE of index 2. Therefore, the temporal discretization of the operator
DAE by Runge-Kutta methods is highly sensitive to perturbations.

Motivated by the Gear-Gupta-Leimkuhler formulation for multibody systems [GeaGL85], we
extend the system (8.1) by an additional Lagrange multiplier γ : [0, T ]→ Q. With this, we enforce
the system to satisfy additionally the hidden constraint, i.e., the derivative of constraint (8.1b). The
proposed regularization makes the system more robust and achieves that a spatial discretization
leads to a DAE of index one rather than index two.

8.1.1. Finite-Dimensional Case
Consider the DAE, which results from a spatial discretization of system (8.1) by mixed finite elements.
With the symmetric positive definite mass matrix M ∈ Rnx×nx as discretized version of (·, ·)H, the
matrix A ∈ Rnx×nx as discrete version of A, and the constraint matrix B ∈ Rnµ×nx , which we
assume to have full row rank, the DAE has the form

Mẋ(t) + Ax(t)−BTµ(t) = d(t), (8.2a)
Bx(t) = h(t). (8.2b)

Here, x : [0, T ]→ Rnx denotes the coefficient vector associated with a basis of the finite element space,
which approximates the solution u. The vector-valued function µ : [0, T ]→ Rnµ corresponds to the
Lagrange multiplier λ in the continuous setting, as well as d : [0, T ]→ Rnx and h : [0, T ]→ Rnµ to
the right-hand sides f and g, respectively. The initial condition is given by x(0) = x0 with x0 being
the discrete version of u0.

By Remark 2.3 the DAE (8.2) is of index 2 by the assumptions made. As mentioned in the
beginning of Section 8.1, we reduce the index, and thus regularize the system equations, by adding
the derivative of the constraint (8.2b) and an additional Lagrange multiplier γ : [0, T ]→ Rnµ . With
some regular matrix C ∈ Rnµ×nµ , the extended DAE reads

Mẋ(t) + Ax(t)−BTµ(t)−BT γ(t) = d(t), (8.3a)
Bx(t) + Cγ(t) = h(t), (8.3b)

Bẋ(t) = ḣ(t). (8.3c)

Here, the Lagrange multiplier γ measures the difference between the right-hand side of (8.3b) and
the primitive of the right-hand side of (8.3c). However, we show that the system (8.3) has the same
solution as DAE (8.2) but a lower index.

Lemma 8.2. Let M ∈ Rnx×nx be symmetric positive definite, B ∈ Rnµ×nx have full row rank, and
C ∈ Rnµ×nµ be invertible. Then the DAE (8.3) is of index one.
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Proof. We consider the matrix M1 ∈ R(2nx+4nµ)×(2nx+4nµ) from the inflated pair of DAE (8.3), see
Definition 2.2, and the matrix P1 ∈ R(nx+2nµ)×(2nx+4nµ) given by

M1 =

⎡⎢⎢⎢⎢⎢⎢⎣
M 0 0 0 0 0
0 0 0 0 0 0
B 0 0 0 0 0
A −BT −BT M 0 0
B 0 C 0 0 0
0 0 0 B 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , P1 =

⎡⎣ Inx
0 0 0 0 0

BM−1AM−1 0 0 −BM−1 0 Inµ

0 0 −Inµ
0 Inµ

0

⎤⎦ .

The matrix P1 has full row rank. Therefore, it can be extended to an invertible matrix ˜︁R1 = [PT
1 | ∗ ]T

of the same size as M1 with a non-specified part ∗. Then the equality

˜︁R1M1 =

⎡⎢⎢⎣
M 0 0 0
0 BM−1BT BM−1BT 0
0 0 C 0
∗ ∗ ∗ ∗

⎤⎥⎥⎦ ∈ R(2nx+4nµ)×(2nx+4nµ)

holds. By the assumptions on M , B, and C the top left (nx + 2nµ)× (nx + 2nµ)-block is invertible.
Therefore, ˜︁R1M1 is 1-full and so is M1. This shows the assertion by Definition 2.2.

Lemma 8.3 ([AltZ18b, Lem 3.3]). Suppose that the assumptions of Lemma 8.2 are satisfied. For
consistent initial data x0 ∈ Rnx , i.e., Bx0 = g(0), the DAEs (8.2) and (8.3) are equivalent in the
following sense. A solution pair (x, µ) of system (8.2) implies the solution (x, µ, 0) of (8.3). On the
other hand, a solution (x, µ, γ) of the DAE (8.3) satisfies γ = 0 and (x, µ) solves (8.2).

Remark 8.4. An alternative strategy to reduce the index is the singular perturbation approach of
replacing the constraint (8.2b) by Bx+ εCµ = g. The parameter ε > 0 is assumed to be small and
the matrix C ∈ Rnµ×nµ is invertible, e.g., the identity matrix or the discretized version of (·, ·)Q.
This is known as penalty method or pressure penalization in the field of fluid dynamics [HeiV95;
She95]. The difference between the original solution x and the solution of the regularized system is
in the range of

√
ε [She95, Th. 3.1]. For the solution µ, however, the error, which is mainly located

close to the boundary ∂Ω [Ran93, p. 207], is for tµ(t) and smooth data of order O(ε) and divergent in
general [She95, Lem. 3.1 & Th. 3.1]. Furthermore, for a small parameter ε the temporally discretized
system is ill-conditioned [BenH15, p. 13 ff.] and a wise choice of ε depends strongly on the used
temporal (and spatial) discretization scheme [She95, Rem. 5.2].

8.1.2. Infinite-Dimensional Case
The regularization procedure from the previous subsection motivates to apply the same ideas also
to the operator DAE (8.2). This leads to an extended system of the form: find u : [0, T ] → V,
λ : [0, T ]→ Q, and γ : [0, T ]→ Q such that for almost every time-point t ∈ [0, T ] the system

u̇(t) +Au(t) − B∗λ(t)−B∗γ(t) = f(t) in V∗, (8.4a)
Bu(t) + Cγ(t) = g(t) in Q∗, (8.4b)

d
dt (Bu(t)) = ġ(t) in Q∗, (8.4c)

and the consistent initial condition u(0) = u0 hold. The right-hand sides still satisfy Assump-
tion 8.1.ii), whereas the linear operator C : Q → Q∗ is assumed to be elliptic and bounded.

From the construction of the operator DAE (8.4) and the results of the previous subsection, we
already know that a spatial discretization leads to a DAE of the form (8.3) and thus, is of index 1.
It remains to show the equivalence of the original and extended operator DAE.
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Lemma 8.5 (Equivalence of Operator DAEs; [AltZ18b, Lem 3.6]). Let Assumption 8.1 be satisfied
and let C ∈ L (Q,Q∗) be elliptic. Then the operator DAEs (8.1) and (8.4) are equivalent in the
following sense. Every solution (u, λ) of (8.1) implies a solution (u, λ, 0) of the operator DAE (8.4).
On the other hand, if (u, λ, γ) solves the extended system, then γ ≡ 0 and (u, λ) is a solution of
system (8.1).

Remark 8.6. By Lemma 9.22 there exists an intermediate Hilbert space Hker ⊕Vc between V and H.
The operator B can be extended to this space with the new kernel Hker. Therefore, we define Bh := 0
for h ∈ Hker with B read as its operator extension. For more details see Subsection 9.3.2.2.
Remark 8.7. By Remark 8.6 a consistent initial value u0 = Hker + B−g(0) implies γ0 := γ(0) = 0.

Finally, we make some comments on an alternative regularization approach.
Remark 8.8. A regularization approach of the operator DAE (8.1) based on dummy variables
is introduced in [AltH15]. For this, the variable u is decomposed similarly as in Part B into a
function uker with image in Vker and uc with range in a complementary space Vc of Vker. By
introducing the new variable wc := u̇c ∈ L2(0, T ;Vc) we get the regularized operator DAE

u̇ker(t) + wc(t) +Auker(t) +Auc(t) − B∗λ(t) = f(t) in V∗, (8.5a)
Buc(t) = g(t) in Q∗, (8.5b)

Bwc(t) = ġ(t) in Q∗. (8.5c)

The results of the whole chapter can be easily extended to this operator DAE.
Remark 8.9. In contrast to the regularization (8.5), the system (8.4) preserves the saddle point
structure of the original operator DAE (8.1). The temporal discretization by algebraically stable
Runge-Kutta methods can be modified such that for every time step a stationary saddle point
problem has to be solved; see system (8.6) and Remark 8.24. Therefore, efficient solution algorithms
for (generalized) saddle point problems are applicable; see [BanWY90; BenGL05] and the references
therein. Furthermore, the spatial discretization of the operator DAE (8.5) needs a splitting of
the finite dimensional subspace Vh of V with Vh = Vh,1 ⊕ Vh,2 such that dim Vh,1 = nx − nµ,
dim Vh,2 = nµ, and the columns of matrix B ∈ Rnµ×nx corresponding to Vh,2 compose an invertible
matrix [AltH15, Ch. 3]. Such a splitting is not needed for the operator DAE (8.4), since the operator
DAE does not rely on a splitting of V.

8.2. Implicit Euler Method
As a first step towards the convergence of Runge-Kutta schemes, we prove in this section the
convergence of the implicit Euler method. For this, we follow the steps of Subsections 7.1.1 and 7.2.2.
We show first that the semi-discrete system has a unique solution for every time step. With these
approximations, we construct global approximations of the solution of system (8.4) on [0, T ] and
investigate their convergence behavior.

8.2.1. Temporal Discretization
We formally apply the implicit Euler scheme to the operator DAE (8.4) as in Subsection 7.1.1. We
consider a uniform partition of the interval [0, T ] with step size τ = T/N , N ∈ N. The stationary
system, which has to be solved for each time step tn = τn, n = 1, . . . , N , is given by

Dτun +Aun − B∗λn−B∗γn = fn in V∗, (8.6a)
Bun + Cγn = gn in Q∗, (8.6b)

BDτun = ġn in Q∗. (8.6c)
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Here, Dτ denotes again the discrete derivative, defined by Dτun := (un − un−1)/τ . For n = 1,
equation (8.6c) includes the term Bu0. Assuming u0 to be consistent, we have Bu0 = g(0) in the
sense of Remark 8.6. Note that system (8.6) gives an implicit formula for un, λn, and γn in terms of
a given approximation un−1. There is no dependence on previous approximations of λ and γ.

Since the right-hand sides are assumed to be Bochner functions by Assumption 8.1.ii), function
evaluations are typically not defined. Thus, only for g ∈W 1,1(0, T ;Q) ↪→ C([0, T ],Q) we may define
gn := g(tn), whereas we define fn and ġn by their means; cf. (7.9). These approximations are of
first order but may be replaced by any other approximation, especially for more regular data f
and g. Nevertheless, we require certain convergence properties, which we summarize in the following
assumption.
Assumption 8.10. Suppose that fn ∈ V∗, gn ∈ Q∗, and ġn ∈ Q∗ are given, n = 1, . . . , N . Let
fτ : [0, T ] → V∗ denote the piecewise constant function with fτ (t) := fn for t ∈ (tn−1, tn] and
f(0) := f1. Analogously, we define the piecewise constant functions gτ and ġτ via gn and ġn,
respectively. We assume that fτ , gτ , and ġτ converge for τ → 0 in the strong sense, i.e.,

fτ → f in L2(0, T ;V∗) + L1(0, T ;H∗), gτ → g in L∞(0, T ;Q∗), ġτ → ġ in L1(0, T ;Q∗).

Remark 8.11. We emphasize that ġτ is not the derivative of gτ in the notation of Assumption 8.10.
The discretization of the right-hand sides above from this page fulfills Assumption 8.10; cf.

Lemma 3.34. For any discretization satisfying Assumption 8.10, system (8.6) is well-defined. It
remains to check the solvability of this system.

Lemma 8.12 (Solvability of the Time-Discrete System). Suppose that Assumption 8.1.i) on the
operators is satisfied and that C ∈ L (Q,Q∗) is elliptic. Let un−1 be an element of Hker + Vc such
that the operator B is applicable, n = 1, . . . , N . Assume that the right-hand sides of (8.6) satisfy
fn ∈ V∗, gn ∈ Q∗, and ġn ∈ Q∗. Then system (8.6) has a unique solution (un, λn, γn) ∈ V ×Q×Q.

Proof. By (8.6b) and (8.6c) the equality Cγn = gn− τ ġn−Bun−1 holds. This equation has a unique
solution γn by the Lax-Milgram Theorem 3.4. Therefore, we consider the system given by the
equations (8.6a) and (8.6c). This reduced problem and thus also system (8.6) have a unique solution
by Theorem 3.8.

8.2.2. Convergence Results
Due to Lemma 8.12, system (8.6) provides the discrete approximations un, λn, and γn at any time
point tn for a given consistent initial value u0. With these, we define global approximations of the weak
solution u on the interval [0, T ] similar to (7.18). More precisely, we define uτ , ˆ︁uτ : [0, T ]→ Hker +Vc
by

uτ (t) :=
{︄
u0, if t = 0
un, if t ∈ (tn−1, tn]

, ˆ︁uτ (t) :=
{︄
u0, if t = 0
un +Dτun(t− tn), if t ∈ (tn−1, tn]

. (8.7)

Analogously, we define piecewise constant approximations of the Lagrange multipliers λ and γ,
which we denote by λτ and γτ , respectively. As starting value we set γτ (0) := γ0 and λτ (0)
arbitrarily. By d

dtˆ︁uτ we denote the generalized time derivative of ˆ︁uτ , which is piecewise constant
with values Dτun. By the global approximations, the temporally discretized system (8.6) can be
reformulated as

d
dtˆ︁uτ +Auτ − B∗λτ−B∗γτ = fτ in V∗, (8.8a)

Buτ + Cγτ = gτ in Q∗, (8.8b)
B
(︁ d

dtˆ︁uτ

)︁
= ġτ in Q∗. (8.8c)
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We assume that the discrete right-hand sides fτ , gτ , and ġτ satisfy Assumption 8.10. For the study
of the piecewise approximations, we state a discrete version of Gronwall’s lemma.

Lemma 8.13. Let a, x1, b1, x2, b2, . . . ∈ R≥0 be given with x2
n ≤ a+

∑︁n
i=1 bixi. Then the inequality

xn ≤
√
a+

∑︁n
i=1 bi holds for all n = 1, 2, . . .

Proof. By the assumptions on xn, the non-negative root of y ↦→ y2 − bny − a −
∑︁n−1

i=1 bixi is an
upper bound of xn, i.e.,

xn ≤
bn

2 +
(︃
b2

n

4 + a+
n−1∑︂
i=1

bixi

)︃1/2

. (8.9)

The proof of this lemma is inductive. The base case x1 ≤ b1
2 +

(︁ b2
1
4 + a

)︁1/2 ≤
√
a + b1 holds by

inequality (8.9) and [Emm04, Cor. A.1.2], where the induction step is given by

xn

(8.9)
≤ bn

2 +
(︃
b2

n

4 + a+
n−1∑︂
i=1

bixi

)︃1/2

IH
≤ bn

2 +
(︃
b2

n

4 + a+
n−1∑︂
i=1

bi

(︂ i∑︂
j=1

bj +
√
a
)︂)︃1/2

≤ bn

2 +
(︃(︂bn

2 +
n−1∑︂
i=1

bi

)︂2
+ 2
(︂bn

2 +
n−1∑︂
i=1

bi

)︂√
a+ a

)︃1/2

=
n∑︂

i=1
bi +
√
a.

We analyze the convergence behavior of the introduced approximations in the following theorem.

Theorem 8.14 (Convergence of the Implicit Euler Scheme). Let Assumption 8.1 be satisfied and
C ∈ L (Q,Q∗) be elliptic. Suppose that (u, λ, 0) is the solution of the operator DAE (8.4). If the
approximations of the right-hand sides fτ , gτ , and ġτ fulfill Assumption 8.10, then

uτ→u in L2(0, T ;V),
d
dtˆ︁uτ→ u̇ in L2(0, T ;V∗

ker) + L1(0, T ;H∗
ker),

ˆ︁uτ→u in L2(0, T ;H),
γτ→ 0 in L∞(0, T ;Q)

as τ → 0. Furthermore, the primitive of λτ , namely Λτ (t) :=
∫︁ t

0 λτ (s) ds, converges strongly to Λ in
L2(0, T ;Q) with Λ defined as in Theorem 6.7.

Proof. In the first step we show the convergence of the Lagrange multiplier γτ . With this, we show
the weak and afterwards even the strong convergence of uτ and the derivative of ˆ︁uτ . Finally, we
prove the assertions for ˆ︁uτ and λτ .

Step 1 (Convergence of γτ ): With the consistent initial value u0, equation (8.6b), and a successive
application of equation (8.6c), we obtain

Cγn = gn − g(0)− τ
n∑︂

i=1
ġi =

∫︂ tn

0
ġ(t) dt−

n∑︂
i=1

τ ġi + gn − g(tn) =
∫︂ tn

0
ġ(t)− ġτ (t) dt+ gn − g(tn).

(8.10)

Since C is elliptic and bounded, using the Cauchy-Schwarz inequality, we obtain

∥γτ∥L∞(0,T ;Q) = max
n=1,...,N

∥γn∥Q
(8.10)
≲ max

n=1,...,N

⃦⃦⃦ ∫︂ tn

0
ġ(t)− ġτ (t) dt+ gn − g(tn)

⃦⃦⃦
Q∗

≤ ∥ġ − ġτ∥L1(0,T ;Q∗) + ∥g − gτ∥L∞(0,T ;Q∗). (8.11)
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Thus, by Assumption 8.10 it follows that ∥γτ∥L∞(0,T ;Q) → 0.

Step 2 (Weak convergence of uτ and d
dtˆ︁uτ ): We use the splitting V = Vker ⊕ Vc with Vc = {v ∈

V |Av ∈ V0
ker} as discussed in Section 3.1. We decompose un and Dτun for n = 1, . . . , N as well

as the initial value u0 = uker,0 + uc,0 with uker,0 ∈ Hker and uc,0 = B−
Ag(0) ∈ Vc. We also split the

global approximations of u into

uτ = uker,τ + uc,τ , ˆ︁uτ = ˆ︁uker,τ + ˆ︁uc,τ ,
d
dtˆ︁uτ = d

dtˆ︁uker,τ + d
dtˆ︁uc,τ . (8.12)

The exact solution u is decomposed into uker : [0, T ] → Vker and uc : [0, T ] → Vc. Equation (8.8),
Assumption 8.10, and the convergence of γτ imply

uc,τ = B−
ABuτ = B−

A(gτ − Cγτ )→ B−
Ag = uc in L∞(0, T ;Vc), (8.13a)

d
dtˆ︁uc,τ = B−

AB
(︁ d

dtˆ︁uτ

)︁
= B−

Aġτ → B−
Aġ = u̇c in L1(0, T ;Vc). (8.13b)

The linearity of the discrete derivative yields (Dτun)ker = Dτuker,n. Thus, we can rewrite
equation (8.6a) as

Dτuker,n +Auker,n − B∗λn − B∗γn = fn −Dτuc,n −Auc,n in V∗. (8.14)

Since Dτuker,n ∈ Vker = kerB for n > 1 and Dτuker,1 ∈ Hker, we conclude with uc,n ∈ Vc that uker,n

is fully determined by
Dτuker,n +Auker,n = fn −Dτuc,n in V∗

ker, (8.15)

where Auc,n vanishes by the definition of Vc. Note that equation (8.15) may also be written in its
continuous form

d
dtˆ︁uker,τ +Auker,τ = fτ − B−

Aġτ in V∗
ker. (8.16)

By the assumption on the right-hand side f there exists f [1] ∈ L2(0, T ;V∗) and f [2] ∈ L1(0, T ;H∗)
with f = f [1] + f [2]. Testing (8.15) with uker,n and summing over i = 1, . . . , n leads to

∥uker,n∥2
H +

n∑︂
i=1
∥uker,i − uker,i−1∥2

H + τµA

n∑︂
i=1
∥uker,i∥2

V

≤ ∥uker,0∥2
H + τ

µA

n∑︂
i=1

⃦⃦
f

[1]
i

⃦⃦2
V∗ + 2τ

n∑︂
i=1

⃦⃦
f

[2]
i − B

−
Aġi

⃦⃦
H∗∥uker,n∥H (8.17)

cf. Theorem 7.9. Then Lemma 8.13 with xi := ∥uker,i∥H, a := ∥uker,0∥2
H + τ

µA

∑︁n
k=1 ∥f

[1]
k ∥2

V∗ , and
bi := 2τ

⃦⃦
f

[2]
i − B

−
Aġi

⃦⃦
H∗ , i = 1, . . . , n, implies

∥uker,n∥H ≤
(︃
∥uker,0∥2

H + τ

µA

n∑︂
i=1

⃦⃦
f

[1]
i

⃦⃦2
V∗

)︃1/2

+ 2τ
n∑︂

i=1

⃦⃦
f

[2]
i − B

−
Aġi

⃦⃦
H∗ . (8.18)

By a combination of the inequalities (8.17) and (8.18) the estimate

∥uker,n∥2
H +

n∑︂
i=1
∥uker,i − uker,i−1∥2

H + τµA

n∑︂
i=1
∥uker,i∥2

V

≤
[︃(︃
∥uker,0∥2

H + τ

µA

n∑︂
i=1

⃦⃦
f

[1]
i

⃦⃦2
V∗

)︃1/2

+ 2τ
n∑︂

i=1

⃦⃦
f

[2]
i − B

−
Aġi

⃦⃦
H∗

]︃2
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=
[︃(︃
∥uker,0∥2

H + 1
µA

∫︂ T

0

⃦⃦
f [1]

τ

⃦⃦2
V∗ dt

)︃1/2

+ 2
∫︂ T

0

⃦⃦
f [2]

τ − B−
Aġτ

⃦⃦
H∗ dt

]︃2
(8.19)

holds. Note that the right-hand side of (8.19) is bounded independently of τ by Assumption 8.10.
By the arguments of Lemma 7.11, there exists a subsequence τ ′ of τ and a function w ∈ L2(0, T ;V)∩
L∞(0, T ;H) such that w is the weak limit of uker,τ ′ in L2(0, T ;V) and the weak∗ limit of uker,τ ′ andˆ︁uker,τ ′ in L∞(0, T ;H) as τ ′ → 0. The convergence of uker,τ ′ , d

dtˆ︁uc,τ , and fτ then implies

d
dtˆ︁uker,τ ′

(8.16)= fτ ′ − d
dtˆ︁uc,τ ′ −Auker,τ ′ ⇀ f − u̇c −Aw =: wd in L2(0, T ;V∗

ker) + L1(0, T ;H∗
ker).

Following the lines of Lemma 7.12 and Theorem 7.14 one shows wd = ẇ and that w is a solution of
the operator DAE

u̇ker +Auker = f − u̇c in V∗
ker (8.20)

with initial value w(0) = uker,0. Since the solution is unique by Theorem 4.22, the identity w = uker
holds and the piecewise functions converge weakly/weakly∗ for the whole sequence τ [GajGZ74,
Ch. 1, Lem. 5.4]. In combination with (8.13) this shows the weak (respectively weak∗) convergence
of uτ in L2(0, T ;V) and of d

dtˆ︁uτ in L2(0, T ;V∗
ker) + L1(0, T ;H∗

ker).

For the following analysis of the strong convergence we note that uker,N is bounded in H by (8.19).
Its weak limit is given by uker(T ) in H as N →∞ or τ → 0, respectively, since for every vker ∈ Vker
we have

lim
N→∞

(uker,N , T vker)H
(3.21)= lim

τ→0

∫︂ T

0
⟨ d

dtˆ︁uker,τ , tvker ⟩ + (ˆ︁uker,τ , vker)H dt

=
∫︂ T

0
⟨ u̇ker, tvker ⟩ + (uker, vker)H dt (3.21)= (uker(T ), T vker)H.

Step 3 (Strong convergence of uτ and d
dtˆ︁uτ ): It remains to prove that the sequences uker,τ and

d
dtˆ︁uker,τ converge strongly. For this, we note that equation (8.16) leads to the estimate

⃦⃦
uker,τ − uker

⃦⃦2
L2(0,T ;V) ≲

∫︂ T

0

⟨︁
Auker,τ −Auker, uker,τ − uker

⟩︁
dt

= −
∫︂ T

0

⟨︁ d
dtˆ︁uker,τ , uker,τ − uker

⟩︁
dt+

∫︂ T

0

⟨︁
u̇ker, uker,τ − uker

⟩︁
dt

+
∫︂ T

0

⟨︁
fτ − f + B−

A
(︁
ġτ − ġ

)︁
, uker,τ − uker

⟩︁
dt. (8.21)

The second integral on the right-hand side of (8.21) converges to zero because of the weak and
weak∗ convergence of uker,τ to uker in L2(0, T ;V) and L∞(0, T ;H), respectively, and the third
integral because of the assumption on the right-hand sides and the boundedness of uker,τ and uker
in L2(0, T ;Vker) ∩ L∞(0, T ;Hker); cf. (8.21) and Theorem 4.22. For the first integral we use∫︂ T

0

⟨︁ d
dtˆ︁uker,τ , uker,τ

⟩︁
dt =

N∑︂
n=1
⟨uker,n − uker,n−1, uker,n ⟩

(7.17)
≥ 1

2∥uker,N∥2
H −

1
2∥uker,0∥2

H.

Then, by the weak convergence of uker,N and [Alt16, Rem. 8.3.4] the limit

lim inf
τ→0

∫︂ T

0

⟨︁ d
dtˆ︁uker,τ , uker,τ

⟩︁
dt ≥ 1

2∥uker(T )∥2
H −

1
2∥uker(0)∥2

H
(3.21)=

∫︂ T

0

⟨︁
u̇ker, uker

⟩︁
dt (8.22)
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holds. With this inequality and the weak convergence of d
dtˆ︁uker,τ , the estimate (8.21) implies

0 ≤ lim sup
τ→0

∥uker,τ − uker∥2
L2(0,T ;V)

(8.21)
≲ lim sup

τ→0

∫︂ T

0

⟨︁ d
dtˆ︁uker,τ , uker

⟩︁
dt− lim inf

τ→0

∫︂ T

0

⟨︁ d
dtˆ︁uker,τ , uker,τ

⟩︁
dt

≤
∫︂ T

0

⟨︁
u̇ker, uker

⟩︁
dt−

∫︂ T

0

⟨︁
u̇ker, uker

⟩︁
dt = 0.

This shows the strong convergence uker,τ → uker as well as

d
dtˆ︁uker,τ = fτ − B−

Aġτ −Auker,τ → f − B−
Aġ −Auker = u̇ker in L2(0, T ;V∗

ker) + L1(0, T ;H∗
ker).

By the triangle inequality we obtain the claimed convergence of uτ = uker,τ + uc,τ and d
dtˆ︁uτ =

d
dtˆ︁uker,τ + d

dtˆ︁uc,τ .

Step 4 (Convergence of ˆ︁uτ ): We observe that by Theorem 3.36 and ˆ︁uc,τ (0) = uc(0) the limit

lim
τ→0
∥ˆ︁uc,τ − uc∥L∞(0,T ;V) ≤ lim

τ→0

∫︂ T

0

⃦⃦ d
dtˆ︁uc,τ − u̇c

⃦⃦
V dt (8.13b)= 0 (8.23)

holds. For the convergence of ˆ︁uker,τ we note that

lim
τ→0
∥ˆ︁uker,τ − uker,τ∥2

L2(0,T ;H) = lim
τ→0

τ

3

N∑︂
n=1
∥uker,n − uker,n−1∥2

H ≤ lim
τ→0

τ

3 M
2(uker,0, fτ , ġτ ) = 0,

where M2(uker,0, fτ , ġτ ) ≥ 0 is right-hand side of (8.19), which can be bounded independently of τ .
Thus, ˆ︁uker,τ and uker,τ have the same limit uker in L2(0, T ;H), which implies the strong convergenceˆ︁uτ → u in L2(0, T ;H).

Step 5 (Convergence of λτ ): Let Λτ , Uτ , Γτ , and Fτ denote the primitives of λτ , uτ , γτ , and fτ ,
respectively, which vanish at t = 0. An integration of equation (8.8a) then leads to

B∗Λτ = ˆ︁uτ +AUτ − B∗Γτ − Fτ − u0 in AC([0, T ],V∗), (8.24)

where AC([0, T ],V∗) denotes the space of absolutely continuous functions with values in V∗. The
inf-sup condition of B implies

β∥Λτ (t)∥Q ≤ sup
v∈V\{0}

⟨Bv,Λτ (t)⟩
∥v∥V

(8.24)
≲ ∥u0∥H + ∥ˆ︁uτ (t)∥H + ∥Uτ (t)∥V + ∥Γτ (t)∥Q + ∥Fτ (t)∥V∗

and thus, the bound

∥Λτ∥2
L2(0,T ;Q) ≲ ∥ˆ︁uτ∥2

L2(0,T ;H) + ∥u0∥2
H + ∥uτ∥2

L2(0,T ;V) + ∥γτ∥2
L2(0,T ;Q) + ∥fτ∥2

L2(0,T ;V∗)+L1(0,T ;H∗)

holds. Inserting Λτ1 − Λτ2 instead of Λτ for two different time step sizes τ1, τ2, we obtain that Λτ

is a Cauchy sequence in L2(0, T ;Q). Thus, there exists a unique limit ˜︁λ ∈ L2(0, T ;Q). Finally, a
comparison of (8.1a) and the limit of (8.24) shows ˜︁λ = Λ.

Remark 8.15. Since uτ and ˆ︁uτ converge strongly in L2(0, T ;H) and are bounded in L∞(0, T ;H)
by (8.19), both sequences converge strongly to u in Lp(0, T ;H) for every p ∈ [1,∞) [Emm04,
Rem. 8.1.13]. Analogously, the limit Λτ → Λ holds in Lp(0, T ;Q) for every p ∈ [1,∞).
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8.2.3. Convergence Results for More Regular Data
By Theorem 6.7 the Lagrange multiplier λ exists only in a distributional sense under the assumptions
of Theorem 8.14. Therefore, we cannot expect better convergence for λ as shown in Theorem 8.14.
In Section 6.2, however, we studied conditions such that λ is a Bochner-integrable function. In
this subsection, we consider these additional assumptions to prove a convergence result for λτ and
improve the one for d

dtˆ︁uτ to the convergence in the more restrictive space L2(0, T ;H) than the one
in Theorem 8.14.

Theorem 8.16 (Convergence for More Regular Data). In addition to the assumptions of Theo-
rem 8.14 suppose that u0 ∈ V is consistent, i.e., Bu0 = g(0), and one of the following conditions
holds:

i) The right-hand sides f and g are elements of L2(0, T ;H∗) and H1(0, T ;Q∗), respectively.
The approximations fτ and ġτ satisfy Assumption 8.10 in L2(0, T ;H∗) and L2(0, T ;Q∗),
respectively. Furthermore, there exist an operator A1 ∈ L (V,V∗), which is self-adjoint and
elliptic on Vker, and an operator A2 ∈ L (V,H∗) such that A = A1 +A2.

ii) The right-hand sides satisfy f ∈ H1(0, T ;V∗) +W 1,1(0, T ;H∗) and g ∈ W 2,1(0, T ;Q∗). The
approximations fτ , gτ , and ġτ are given by pointwise function evaluations of f , g, and ġ,
respectively. Furthermore, the compatibility condition f(0)−Au0 ∈ H∗

ker is fulfilled.
Then the piecewise constant approximations d

dtˆ︁uτ and λτ satisfy

d
dtˆ︁uτ → u̇ in L2(0, T ;H), λτ → λ in L2(0, T ;Q).

Proof. If d
dtˆ︁uτ strongly converges to u̇ in L2(0, T ;H) ↪→ L2(0, T ;V∗), then the convergence of λτ

follows immediately by

λτ = B−∗
left(−fτ + d

dtˆ︁uτ +Auτ − B∗γτ )→ B−∗
left(−f + u̇+Au) = λ in L2(0, T ;Q).

The convergence of uτ and γτ is shown in Theorem 8.14. Thus, it is enough to prove d
dtˆ︁uτ → u̇ in

L2(0, T ;H). We therefore split un and Dτun into their components in Vker and Vc as in the proof of
Theorem 8.14. In both cases, i.e., i) and ii), one proves d

dtˆ︁uc,τ → u̇c in L2(0, T ;Vc) ↪→ L2(0, T ;V)
analogously to equation (8.13b). It remains to prove the convergence of d

dtˆ︁uker,τ .

Proof for condition i): Following the lines of Theorem 7.24 shows that d
dtˆ︁uker,τ is bounded in

L2(0, T ;H) and has the weak limit u̇ker. In particular, this together with (8.16) and A2uker,τ →
A2uker in L2(0, T ;H∗) by the strong convergence of uker,τ imply A1uker,τ ⇀ A1uker in L2(0, T ;H∗

ker).
By the weak convergence of d

dtˆ︁uker,τ we note that the second and third integral of the right-hand
side in⃦⃦ d

dtˆ︁uker,τ − u̇ker
⃦⃦2

L2(0,T ;H) =
∫︂ T

0

(︁ d
dtˆ︁uker,τ − u̇ker,

d
dtˆ︁uker,τ − u̇ker

)︁
H dt

=−
∫︂ T

0
⟨A1uker,τ ,

d
dtˆ︁uker,τ − u̇ker ⟩ dt+

∫︂ T

0
⟨A1uker,

d
dtˆ︁uker,τ − u̇ker ⟩ dt

+
∫︂ T

0
⟨ fτ − f + B−

A
(︁
ġτ − ġ

)︁
−A2(uker,τ − uker)), d

dtˆ︁uker,τ − u̇ker ⟩ dt

vanish as τ → 0. The first integral is a zero sequence by similar arguments as in the proof of
Theorem 8.14 Step 3. Here, we used [Zim15, Th. 3.20] and the weak convergence of uker,N to uker(T )
in Vker, which follows by uker,N ⇀ uker(T ) in Hker and an estimate similar to (7.39).

Proof for condition ii): We note that Dτuker,n ∈ Vker satisfies the discrete system

DτDτuker,n +ADτuker,n = Dτfn −DτB−
Aġn in V∗

ker, (8.25)
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cf. equation (8.15). Here, we define Dτuker,0 := wker,0 with wker,0 as the representation of f(0) −
Au0 − B−

Aġ(0) ∈ H∗
ker in Hker. The system (8.25) can be seen as the approximation of the operator

ODE (8.20) with right-hand sides ḟ − B−
Ag̈ and initial value wker,0. Note that the solution of this

operator ODE is u̇ker by [Wlo87, Th. 27.2]. Furthermore, we have

Dτfn = 1
τ

(︁
f(tn)− f(tn−1)

)︁
= 1
τ

∫︂ tn

tn−1

ḟ dt.

Thus, the piecewise constant function (Dτf)τ defined as in Assumption 8.10 converges to ḟ in
L2(0, T ;V∗)+L1(0, T ;H∗) by Lemma 3.34. Analogously we have (Dτ ġ)τ → g̈ in L1(0, T ;Q∗). Finally,
limτ→0

d
dtˆ︁uker,τ = u̇ker in L2(0, T ;Vker) ↪→ L2(0, T ;V) follows by the arguments of Theorem 8.14

Step 2 and 3.

Remark 8.17. Under the assumptions of Theorem 8.16.i) one can prove that uτ and ˆ︁uτ converge
strongly to u in Lp(0, T ;V) for p ∈ [1,∞) and weakly∗ for p =∞.

The conditions i) and ii) in Theorem 8.16 are the assumptions of Theorem 6.9 and 6.8, respectively,
where the discretized right-hand sides converge in the associated spaces. In Section 8.5 we prove for
the implicit Euler method and each of these conditions that, in contrast to general algebraically
stable Runge-Kutta methods, the convergence order of the Lagrange multiplier λ is not reduced for
infinite-dimensional DAEs, if the solution is regular enough.

8.3. Algebraically and L-Stable Runge-Kutta Methods
In this section, we analyze the convergence of a special class of Runge-Kutta schemes applied to
the operator DAEs (8.4). Note that in general for operator ODEs/DAEs, an implicit Runge-Kutta
scheme may not even provide a unique approximation, which then leads to unbounded solutions and
thus, to divergence; see Example 8.20. Thus, we first give sufficient conditions on the approximation
scheme, which guarantee a unique solution in every time step. Afterwards we study the convergence
behavior of the discrete solution.

We consider an s-stage Runge-Kutta scheme given by the Butcher tableau A, b, c. As mentioned
in Section 5.1, we assume A to be regular and R(∞) = 1−bT A−1

1s = 0 with 1s := [1, . . . , 1]T ∈ Rs.
In this case, the approximations of λ and γ are independent of their approximations from the previous
time step.

For the application of the Runge-Kutta method to the operator DAE (8.4), we need the spaces V ,
H, and Q in s components. This is necessary in order to define generalized state vectors. Therefore,
we introduce

Vs := Vs, Vker,s := (Vker)s, Vc,s := (Vc)s, Hs := Hs, Hker,s := Hs
ker, Qs := Qs.

equipped with the associated norms ∥x∥X s :=
(︁∑︁s

i=1 ∥xi∥2
X
)︁1/2. Accordingly, we define their dual

spaces V∗
s , V∗

ker,s, H∗
s , H∗

ker,s, and Q∗
s.

8.3.1. Temporal Discretization
Similar to the finite-dimensional case un, λn, and γn are approximations of u, λ, and γ at time
tn = nτ , respectively. We introduce the internal stages

un =

⎡⎢⎣un,1
...

un,s

⎤⎥⎦ ∈ Vs, λn =

⎡⎢⎣λn,1
...

λn,s

⎤⎥⎦ ∈ Qs, γn =

⎡⎢⎣γn,1
...
γn,s

⎤⎥⎦ ∈ Qs.

101



8. Runge-Kutta Methods

These stage vectors call for corresponding operators such as As : Vs → V∗
s , which is induced by A

via a componentwise application. In the sequel, we do not distinguish between these two operators
such that for u,v ∈ Vs we write

⟨Au,v⟩ := ⟨Asu,v⟩ :=
s∑︂

i=1
⟨Aui,vi⟩.

In a corresponding manner, the operators B and C can be applied componentwise to elements with s
components.

Finally, we denote for an arbitrary matrix M ∈ Rm×s and an element x ∈ X s by Mx ∈ Xm the
formal matrix-vector multiplication (Mx)k :=

∑︁s
i=1 Mk,ixi ∈ X for k = 1, . . . ,m.

Lemma 8.18. Let X and Y be normed spaces. Consider a matrix M ∈ Rs×s and a linear operator
K : X → Y∗, which induces a linear operator K : X s → (Ys)∗ by a componentwise application. Then⟨︁
KMx,y

⟩︁
=
⟨︁
MKx,y

⟩︁
=
⟨︁
Kx,MTy

⟩︁
holds for all x ∈ X s and y ∈ Ys.

Proof. The result follows by a simple calculation,

⟨KMx,y⟩ =
s∑︂

k=1

⟨︁
K

s∑︂
i=1

Mk,ixi,yk

⟩︁
=

s∑︂
k,i=1

Mk,i⟨Kxi,yk⟩ =
s∑︂

i=1

⟨︁
Kxi,

s∑︂
k=1

Mk,iyk

⟩︁
= ⟨Kx,MTy⟩.

The approximations of the right-hand sides f and g need to be extended for elements with s
components as well. For this, we introduce fn ∈ V∗

s and gn, ġn ∈ Q∗
s, n = 1, . . . , N . As in

Subsection 8.2.1, the specific definition of fn, gn, and ġn is not of importance as long as it satisfies
an analog of Assumption 8.10. Anyway, we emphasize that it is not possible to estimate the internal
stages un, n = 1, . . . , N under Assumption 8.1 in the time-discrete counterpart of L∞(0, T ;Hs)
[EmmT10, p. 793]. Therefore, we have to strengthen the assumptions on the right-hand sides in
comparison to Assumption 8.10. We demand f ∈ L2(0, T ;V∗) and g ∈ H1(0, T ;Q∗). We now state
the assumptions on the approximations of f , g and ġ.

Assumption 8.19. Let fn ∈ V∗
s , gn ∈ Q∗

s , and ġn ∈ Q∗
s be given for n = 1, . . . , N . The functions fτ ,

gτ , and ġτ denote the piecewise constant functions defined on [0, T ] with

fτ (t)|(tn−1,tn] ≡ fn, gτ (t)|(tn−1,tn] ≡ gn, ġτ (t)|(tn−1,tn] ≡ ġn,

for n = 1, . . . , N and with a continuous extension at t = 0. We assume that for τ → 0 we have

fτ →f1s in L2(0, T ;V∗
s ), gτ →g1s in L∞(0, T ;Q∗

s), ġτ →ġ1s in L2(0, T ;Q∗
s).

An example, which satisfies Assumption 8.19, is given by fn := fn1s, gn := gn1s, and ġn :=
ġn1s, n = 1, . . . , N , if fn, gn, and ġn fulfill Assumption 8.10 for L2(0, T ;V∗), L∞(0, T ;Q∗), and
L2(0, T ;Q∗), respectively. Given the Butcher tableau (5.1), we could define gn by the componentwise
function evaluation gn,ℓ := g(tn−1 + cℓτ). Also, this approach satisfies Assumption 8.19, since g is
uniformly continuous on [0, T ]. In any case, we are able to prove the convergence to the solution of
the operator DAE (8.1). Recall that we aim for convergence behavior under minimal assumptions
on the data in this section. The convergence order is studied in Section 8.5.

With the introduced notation, the temporal discretization of system (8.4) yields the time-discrete
problem

un = bT A−1un, λn = bT A−1λn, γn = bT A−1γn, (8.26)
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where un, λn, and γn satisfy the operator equation

A−1Dτun +Aun − B∗λn−B∗γn = fn in V∗
s , (8.27a)

Bun + Cγn = gn in Q∗
s, (8.27b)

BA−1Dτun = ġn in Q∗
s. (8.27c)

The discrete derivative Dτun is given by (un − un−11s)/τ .
Unfortunately, un, λn, and γn are not bounded in terms of the right-hand sides for all Runge-Kutta

schemes, even for an arbitrarily small step size τ as we show by means of the following example.

Example 8.20. Consider the discretization (8.27) with vanishing right-hand sides and u0 = 0.
Furthermore, we assume that the operator A is self-adjoint and that V is compactly embedded in H;
see [Alt16, Def. 10.1] for a definition. We show that the discrete solution given by the 2-stage stiffly
accurate Runge-Kutta scheme from Example 5.2 may be non-zero no matter how small τ is chosen
and thus, not stable with respect to the initial value and the right-hand sides. For this, we note
that A−1 has a negative eigenvalue α ∈ R with eigenvector w ∈ R2, which satisfies bTw ̸= 0.

Since ⟨A ·, · ⟩ defines an elliptic, bounded, and symmetric bilinear form on Vker, there exist
countably many eigenpairs (µk, vk) ∈ R × Vker of the infinite-dimensional eigenvalue problem
µv = Av in V∗

ker. More precisely, all µk are positive and tend to infinity as k → ∞ and vk are
normalized for all k ∈ N [Mic62, Ch. 4.34]. Let ε > 0 be arbitrarily small and choose k large
enough such that τ := |α|/µk < ε. We set u := vkw ∈ Vker,s. The given eigenvalue problem implies
(A−1 + τA)u ∈ V0

ker,s such that there exists a unique λ with

B∗λ =
(︁
τ−1A−1 +A

)︁
u in V∗

s .

Thus, the tuple (u,λ, 0) satisfies system (8.27) and we obtain as approximation in the first time step

u1 = bT A−1u = αbTwvk ̸= 0.

In summary, one step of the given Runge-Kutta scheme with step size τ yields an approximation,
which is unbounded with respect to the data.

Example 8.20 shows that it is not sufficient to require that the discretization scheme satisfies
R(∞) = 0. We introduce a class of Runge-Kutta methods, which provide a unique and bounded
solution for every discrete time point. For this, we state further assumptions on the Runge-Kutta
scheme.
Assumption 8.21. The Runge-Kutta method (5.1) is algebraically stable, i.e., the matrix BA +
AT B−bbT is positive semidefinite with the diagonal matrix Bii = bi, and L-stable, i.e., R(∞) = 0.
All weights bi are positive and its classical order is at least one, i.e.,

∑︁s
i=1 bi = 1

T
s b = 1.

Example 8.22. Radau IA, Radau IIA, Lobatto IIIC [HaiW96, p. 72 ff.], and Lobatto IIID [NørW81,
p. 205] methods satisfy Assumption 8.21; see [HaiW96, Ch. IV, Pro. 3.8, Th. 12.7 & 12.9] and [Jay15,
p. 822].

With the given assumptions on the discretization scheme, we are able to show the unique solvability
for every time step.

Lemma 8.23 (Solvability of the Time-Discrete System). Consider un−1 ∈ Hker+Vc, n ∈ {1, . . . , N},
and right-hand sides fn ∈ V∗

s and gn, ġn ∈ Q∗
s. Suppose that Assumption 8.1.i) on the operators is

fulfilled and C ∈ L (Q,Q∗) is elliptic. If the Runge-Kutta method satisfies Assumption 8.21, then
system (8.27) has a unique solution of internal stages (un,λn,γn) ∈ Vs ×Qs ×Qs and thus, there
exists a unique approximation (un, λn, γn) ∈ V ×Q×Q.
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Proof. Since M := BA + AT B− bbT is positive semidefinite by Assumption 8.21, the inequality

xT BA−1x = 1
2(A−1x)T [BA + AT B](A−1x) ≥ 1

2(A−1x)T M(A−1x) ≥ 0

is satisfied for arbitrary x ∈ Rs and consequently BA−1 is also positive semidefinite. If we multiply
the equations (8.27a) and (8.27b) by B and (8.27c) by BA, then it results in the system

BA−1Dτun +ABun − B∗Bλn −B∗Bγn = Bfn in V∗
s , (8.28a)

BBun + CBγn = Bgn in Q∗
s, (8.28b)

BBDτun = BAġn in Q∗
s. (8.28c)

Note that we have used BA = AB as well as similar results for the other operators. Let B1/2 be
the diagonal matrix with B1/2

ii =
√

bi. Since⟨︁
BA−1uker + τABuker,uker

⟩︁
≥
⟨︁
τABuker,uker

⟩︁
≥ τµA

⃦⃦
B1/2uker

⃦⃦2
Vs
≥ τµA min

i=1,...,s
bi∥uker∥2

Vs

for all uker ∈ Vker,s, the operator BA−1 + τAB is elliptic. The solvability then follows by the
invertibility of B and a similar argument as in the implicit Euler case in Lemma 8.12.

Remark 8.24. System (8.28) preserves the saddle point structure of the time-continuous operator
DAE (8.4). In particular, under spatial discretization and a rearrangement the system (8.28) reads⎡⎣ 1

τ (BA−1 ⊗M) + (B⊗A) −B⊗BT −B⊗BT

B⊗B B⊗ C 0
B⊗B 0 0

⎤⎦⎡⎣xn

γn

µn

⎤⎦=

⎡⎣(B⊗ Inx
)dn + 1

τ (BA−1⊗M)xn−1
(B⊗ Inµ

)hn

τ(BA⊗ Inµ
)ḣn + (B⊗B)xn−1

⎤⎦
with the notation of Subsection 8.1.1. Here, C denotes the discrete version of the elliptic operator C.
We emphasis that B is a diagonal matrix and that the top left s(nx + nµ)× s(nx + nµ)-block of the
iteration matrix is positive definite.

Before we investigate the convergence of the Runge-Kutta schemes applied to operator DAEs, we
summarize results on the convergence for unconstrained operator equations.

8.3.2. Convergence Results for Operator Differential Equations
Let us consider a linear operator ODE

v̇(t) +Av(t) = f(t) in V∗ (8.29)

with initial condition v(0) = v0 ∈ H, right-hand side f ∈ L2(0, T ;V∗), and elliptic operator
A ∈ L (V,V∗). These assumptions guarantee a unique solution by Theorem 4.22. The following
convergence analysis is based on the paper [EmmT10], where the authors investigate the behavior
of stiffly accurate and algebraically stable Runge-Kutta schemes applied to the evolution problem
(8.29). They assume that the schemes are of at least first order and all entries of b are positive.
Note that such methods fulfill Assumption 8.21.

Lemma 8.25. Let the Runge-Kutta method with Butcher tableau A, b, c satisfy Assumption 8.21.
Suppose that K ∈ L (X ,X ∗) is elliptic and self-adjoint. Then for every x0 ∈ X and x ∈ X s we have

2
⟨︁
Kx,BA−1(x− x01s)

⟩︁
≥
⟨︁
KbT A−1x,bT A−1x

⟩︁
−
⟨︁
Kx0, x0

⟩︁
. (8.30)

Proof. The proof follows the lines of Lemma 5.7.
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In the following theorem, we consider the temporal discretization of the operator ODE (8.29) by
the Runge-Kutta method (5.1). The associated time-discrete system is given by

vn = bT A−1vn, (8.31a)
A−1Dτvn +Avn = fn (8.31b)

with the discrete derivative Dτvn defined as in (8.27).

Theorem 8.26. Consider the operator ODE (8.29) with f ∈ L2(0, T ;V∗), initial data v0 ∈ H, and
an elliptic operator A ∈ L (V,V∗). The corresponding exact solution is denoted by v. Assume that
in (8.31) the step size τ is uniform and that the Runge-Kutta method satisfies Assumption 8.21.
Suppose that the piecewise constant function fτ ∈ L2(0, T ;V∗

s ) defined by fτ (t) = fn for t ∈ (tn−1, tn]
satisfies fτ → f1s in L2(0, T ;V∗

s ) as τ → 0.
Then there exists a unique solution vn ∈ V and vn ∈ Vs of system (8.31) for every time step

n = 1, . . . , N . Furthermore, the piecewice constant functions vτ and d
dtˆ︁vτ associated to vn and Dτvn

for n = 1, . . . , N , respectively, cf. Subsection 7.1.1.2, and vN are weakly convergent in the sense

vτ ⇀ v1s in L2(0, T ;Vs), vN ⇀ v(T ) in H, d
dtˆ︁vτ ⇀ v̇ in L2(0, T ;V∗).

Proof. By the same arguments as in the proof of Lemma 8.23 one shows that BA−1 + τAB is
elliptic and bounded. The existence of a unique solution of (8.31) then follows by the Lax-Milgram
Theorem 3.4. With bT A−1vn = vn and estimate (8.30) one proves the stated convergence behavior
by an adaptation of the proof of [EmmT10, Th. 5.1 & Rem. 5.3].

8.3.3. Convergence Results for Operator Differential-Algebraic
Equations

In this section, we investigate the convergence behavior of the semi-discretized system (8.27). For
this, we recall the piecewise constant and piecewise linear approximations uτ , ˆ︁uτ , d

dtˆ︁uτ , λτ , and γτ

from Subsection 8.2.2. For the internal stages we introduce accordingly

uτ (t) :=
{︄
u01s, if t = 0
un, if t ∈ (tn−1, tn]

, d
dt
ˆ︁uτ (t) :=

{︄
0, if t = 0
Dτun, if t ∈ (tn−1, tn]

,

λτ (t) := λn, if t ∈ (tn−1, tn], γτ (t) := γn, if t ∈ (tn−1, tn].
(8.32)

The values for λτ and γτ at time t = 0 can be chosen arbitrarily.

Theorem 8.27 (Convergence of L-Stable Runge-Kutta Schemes). Let the approximations fτ , gτ ,
and ġτ of the right-hand sides f ∈ L2(0, T ;V∗), g ∈ H1(0, T ;Q∗) satisfy Assumption 8.19. Suppose
that Assumptions 8.1.i), iii) on the operators and the initial value are fulfilled. The corresponding
solution of the operator DAE (8.1) is denoted by (u, λ). Then, every Runge-Kutta scheme, which
satisfies Assumption 8.21 yields the convergence results

uτ → u in L2(0, T ;V),
d
dtˆ︁uτ → u̇ in L2(0, T ;V∗

ker),
ˆ︁uτ → u in L2(0, T ;H),
γτ → 0 in L∞(0, T ;Q)

for τ → 0. Furthermore,
∫︁ ·

0 bTλτ (s) ds converges strongly to Λ in L2(0, T ;Q).

Proof. We follow the steps of the proof of Theorem 8.14.

Step 1 (Convergence of γτ ): With (8.27b), a successive application of (8.27c), and bT A−1Dτun =
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Dτun we obtain

Cγn = gn − τAġn − τ
n−1∑︂
i=1

bT ġi1s − Bu01s

= τ
(︂

bT ġn1s −Aġn

)︂
+
(︂∫︂ tn

0
ġ(t)− bT ġτ (t) dt

)︂
1s + gn − g(tn)1s. (8.33)

Furthermore, with bT A−1
1s = 1 the equality

Cγn = CbT A−1γn =
∫︂ tn

0
ġ(t)− bT ġτ (t) dt+ bT A−1(︁gn − g(tn)1s

)︁
holds. Similar as in the proof of Theorem 8.14, Assumption 8.19, the Cauchy-Schwarz inequality,
and bT

1s = 1 imply

lim
τ→0
∥γτ∥L∞(0,T ;Q) ≲ lim

τ→0

√
T∥ġ1s − ġτ∥L2(0,T ;Q∗

s) + ∥g1s − gτ∥L∞(0,T ;Q∗
s) = 0. (8.34)

Given equation (8.33), Assumption 8.19 also implies γτ → 0 in L2(0, T ;Qs) by the estimate

∥γτ∥2
L2(0,T ;Qs) ≲ τ ∥ġτ∥2

L2(0,T ;Q∗
s) + T 2 ∥ġ1s − ġτ∥2

L2(0,T ;Q∗
s) + T ∥g1s − gτ∥2

L∞(0,T ;Q∗
s).

Step 2 (Weak Convergence of uτ and d
dtˆ︁uτ ): Note that the splitting V = Vker ⊕ Vc implies the

splitting Vs = Vker,s ⊕ Vc,s. With this, we obtain

un = uker,n + uc,n, Dτun = Dτuker,n +Dτuc,n.

Analogously, we split the global approximations into

uτ = uker,τ + uc,τ ,
d
dt
ˆ︁uτ = d

dt
ˆ︁uker,τ + d

dt
ˆ︁uc,τ .

Thus, formula (8.27b) yields

uc,τ = B−
Agτ + B−

ACγτ → B−
Ag1s = uc1s in L2(0, T ;Vs),

which implies uc,τ → uc and respectively by (8.27c) and bT
1s = 1,

d
dtˆ︁uc,τ = bT A−1(︁ d

dt
ˆ︁uc,τ

)︁
= B−

AbT ġτ → B−
AbT ġ1s = B−

Aġ = u̇c in L2(0, T ;V).

By a combination of the equations (8.27a), (8.27c) and a restriction of the test functions to Vker,s,
we obtain

A−1Dτuker,n +Auker,n = fn −A−1Dτuc,n = fn − B−
Aġn in V∗

ker,s. (8.35)

Note that (8.35) equals the Runge-Kutta approximation of the operator ODE (8.20). With the
initial value uker,0 ∈ Hker, the conditions of Theorem 8.26 are satisfied. Thus, uker,τ converges
weakly to uker1s in L2(0, T ;Vker,s) and d

dtˆ︁uker,τ converges weakly to u̇ker in L2(0, T ;V∗
ker) as τ → 0.

Step 3 (Strong Convergence of uτ and d
dtˆ︁uτ ): For the strong convergence we note that by equa-

tion (8.35) we have

∥uker,τ−uker1s∥2
L2(0,T ;Vs)

≲
∫︂ T

0

⟨︁
AB

(︁
uker,τ − uker1s

)︁
, uker,τ − uker1s

⟩︁
dt
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= −
∫︂ T

0

⟨︁
BA−1 d

dt
ˆ︁uker,τ ,uker,τ − uker1s

⟩︁
dt+

∫︂ T

0

⟨︁
Bu̇ker1s, uker,τ − uker1s

⟩︁
dt

+
∫︂ T

0

⟨︁
B
(︁
fτ − f1s

)︁
− B−

AB
(︁
ġτ − ġ1s

)︁
, uker,τ − uker1s

⟩︁
dt, (8.36)

since A is elliptic and all bi are positive. As for the implicit Euler method, we only need to analyze
the first integral, since the remaining terms vanish as τ → 0 by the weak convergence of uker,τ and
Assumption 8.19. By Lemma 8.25 we obtain∫︂ T

0

⟨︁
BA−1 d

dt
ˆ︁uker,τ ,uker,τ

⟩︁
dt =

N∑︂
n=1

τ
⟨︁
BA−1Dτuker,n, uker,n

⟩︁
≥ 1

2∥uker,N∥2
H −

1
2∥uker,0∥2

H.

From Theorem 8.26 we know uker,N ⇀ uker(T ). As for the implicit Euler method this limit implies

lim inf
τ→0

∫︂ T

0

⟨︁
BA−1 d

dt
ˆ︁uker,τ ,uker,τ

⟩︁
dt ≥

∫︂ T

0

⟨︁
u̇ker, uker

⟩︁
dt.

Further, by the convergence results for uτ , fτ , ġτ , equation (8.35), and 1
T
s B1s = 1 we get∫︂ T

0

⟨︁
BA−1 d

dt
ˆ︁uker,τ , uker1s

⟩︁
dt→

∫︂ T

0

⟨︁
Bu̇ker1s, uker1s

⟩︁
dt =

∫︂ T

0
⟨u̇ker, uker⟩ dt.

As in the proof of Theorem 8.14 we conclude with (8.36) that uker,τ → uker1s in L2(0, T ;Vker,s). A
direct implication is given by

uker,τ = bT A−1uker,τ → bT A−1uker1s = uker in L2(0, T ;Vker) ⊂ L2(0, T ;V).

Furthermore, we obtain the convergence of d
dtˆ︁uker,τ in L2(0, T ;V∗

ker) by

d
dtˆ︁uker,τ = bT A−1 d

dt
ˆ︁uker,τ = bT (fτ − B−

Aġτ −Auker,τ ) → bT (f − B−
Aġ −Auker)1s = u̇ker.

By the proven convergences of their parts in Vc and Vker, uτ and d
dtˆ︁uτ converge strongly to u and u̇.

Step 4 (Convergence of ˆ︁uτ ): For the convergence of ˆ︁uc,τ → uc we argue as in the proof of
Theorem 8.14. For ˆ︁uker,τ we observe

1
2τ

(︂
∥uker,n∥2

H − ∥uker,n−1∥2
H + ∥uker,n − uker,n−1∥2

H

)︂
(7.17)= ⟨Dτuker,n, uker,n⟩

= ⟨bT A−1Dτuker,n, uker,n⟩
(8.35)
≲ ∥fn∥2

V∗
s

+ ∥B−
Agn∥2

H∗
s

+ ∥uker,n∥2
Vs

+ ∥uker,n∥2
V .

This estimate together with the telescope sum
∑︁N

n=1
(︁
∥uker,n∥2

H − ∥uker,n−1∥2
H
)︁

= ∥uker,N∥2
H −

∥uker,0∥2
H yields

∥ˆ︁uker,τ − uker,τ∥2
L2(0,T ;H) = τ

3

N∑︂
n=1

⃦⃦
uker,n − uker,n−1

⃦⃦2
H

≲ τ

(︃
∥uker,0∥2

H + τ

N∑︂
n=1
∥fn∥2

V∗
s

+ ∥B−
Agn∥2

H∗
s

+ ∥uker,n∥2
Vs

+ ∥uker,n∥2
V

)︃
.
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Note that the terms in parentheses are bounded independently of τ , since the right-hand sides are
bounded by Assumption 8.19 and uker,τ as well as uker,τ are convergent sequences. Thus, ˆ︁uker,τ

and uker,τ have the same limit uker in L2(0, T ;H), which implies the strong convergence ˆ︁uτ → u in
L2(0, T ;H).

Step 5 (Convergence of bTλτ ): For the proof of the distributional convergence of bTλτ we
introduce primitives for the expansions of the stages uτ , λτ , γτ , and for fτ . We use capital letters
for the absolutely continuous primitives, which vanish at t = 0. Then we have

B∗bT Λτ (t) = B∗
∫︂ t

0
bTλτ (s) ds = ˆ︁uτ (t) +AbTUτ (t)− B∗bT Γτ (t)− bTFτ (t)− u0 (8.37)

in AC([0, T ],V∗), which follows from equation (8.27a). Then an argument as in the proof of
Theorem 8.14 yields that bT Λτ converges to Λ in L2(0, T ;Q).

Remark 8.28. In Theorem 8.27 we show the convergence of bT Λτ . For a proof of bT A−1Λτ = Λτ ⇀ Λ
in L2(0, T ;Q) we would need a result of the form

A1suker,0 +
∫︂ ·

0

d
dt
ˆ︁uker,τ ds ⇀ A1suker in L2(0, T ;V∗

s ).

With this, we could consider B∗bT A−1Λτ similarly as in equation (8.37).

Remark 8.29. The proof of Theorem 8.27 also shows the strong convergence of the continuous
representation of the internal stages uτ to u1s in L2(0, T ;Vs). By (8.27a) and (8.27c), this implies
d
dt
ˆ︁uτ = d

dt
ˆ︁uker,τ + d

dt
ˆ︁uc,τ → A1su̇ker + A1su̇c = A1su̇ in L2(0, T ;V∗

ker,s).

As for the implicit Euler scheme, we can prove the convergence of the Lagrange multiplier λ if we
assume additional regularity of the right-hand side f and the initial data.

Theorem 8.30 (Convergence with More Regular Data). In addition to the assumptions of Theo-
rem 8.27, consider an initial value u0 ∈ V with Bu0 = g(0) and a right-hand side f ∈ L2(0, T ;H∗).
Furthermore, let the approximation fn satisfy Assumption 8.19 in L2(0, T ;H∗

s). Assume that an
operator A1 ∈ L (V,V∗), which is self-adjoint and elliptic on Vker, and an operator A2 ∈ L (V,H∗)
exist such that A = A1 +A2. Then the approximations satisfy

d
dtˆ︁uτ → u̇ in L2(0, T ;H), λτ → λ in L2(0, T ;Q).

Proof. We follow the ideas of the proofs of Theorems 8.16 and 8.27. Due to the splitting V = Vker⊕Vc
and the strong convergence

d
dtˆ︁uc,τ = bT A−1 d

dt
ˆ︁uc,τ → bT A−1u̇c1s = u̇c in L2(0, T ;Vc) ↪→ L2(0, T ;H),

cf. the proof of Theorem 8.27, it is sufficient to consider the remaining part d
dtˆ︁uker,τ . We first show its

weak and afterwards its strong convergence. For this, we test equation (8.35) by BA−1Dτuker,n ∈
Vker,s. Lemma 8.25 with K = A1 yields

c∥Dτuker,n∥2
Hs

+ 1
2τ
(︁
⟨A1uker,n, uker,n⟩ − ⟨A1uker,n−1, uker,n−1⟩

)︁
≤ ⟨A−1Dτuker,n +A1uker,n,BA−1Dτuker,n⟩ = ⟨fn + B−

Aġn −A2uker,n,BA−1Dτuker,n⟩.

Here, c > 0 denotes the smallest eigenvalue of A−T BA−1. As in the proof of Theorem 8.16, a
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multiplication by τ and a summation over all time steps leads to the estimate∫︂ T

0
∥ d

dt
ˆ︁uker,τ∥2

Hs
dt+ ∥uker,N∥2

A1
≲ ∥u0,ker∥2

V +
N∑︂

n=1
τ∥A−T B(fn + B−

Aġn −A2uker,n)∥2
H∗

s
. (8.38)

Since the right-hand side of (8.38) is bounded, so is d
dt
ˆ︁uker,τ in L2(0, T ;Hs) and uker,N in Vker. By

Remark 8.29 and Theorem 8.26, the weak limit of the whole sequence is given by Au̇ker1s and
uker(T ), respectively. Thus, the strong convergence of d

dt
ˆ︁uker,τ → Au̇ker1s in L2(0, T ;Hs) follows

by the estimate

∥A−1 d
dt
ˆ︁uker,τ − u̇ker1s∥2

L2(0,T ;Hs)

≲
∫︂ T

0

(︁
B
(︁
A−1 d

dt
ˆ︁uker,τ − u̇ker1s

)︁
, A−1 d

dt
ˆ︁uker,τ − u̇ker1s

)︁
Hs

dt

= −
∫︂ T

0

⟨︁
A1BA−1 d

dt
ˆ︁uker,τ ,uker,τ − uker1s

⟩︁
dt+

∫︂ T

0

⟨︁
Bu̇ker1s, A−1 d

dt
ˆ︁uker,τ − u̇ker1s

⟩︁
dt

+
∫︂ T

0

⟨︁
B
(︁
fτ − f1s

)︁
− B−

AB
(︁
ġτ − ġ1s

)︁
−A2B

(︁
uker,τ − uker1s

)︁
, A−1 d

dt
ˆ︁uker,τ − u̇ker1s

⟩︁
dt

and arguments similar to the ones in Theorem 8.27 Step 3. This shows the strong convergence of
d
dtˆ︁uker,τ = bT A−1 d

dt
ˆ︁uker,τ in L2(0, T ;H). On the other hand, with the continuity of the operators

B∗λτ = bT A−1 (︁A−1 d
dt
ˆ︁uker,τ + B−

Aġτ − fτ

)︁
+Auτ − B∗γτ

→ bT A−1 (︁u̇ker + B−
Aġ − f

)︁
1s +Au = u̇− f +Au in L2(0, T ;V∗)

holds. As in the proof of Theorem 8.16, this results in the claimed convergence of λτ .

Remark 8.31. The condition in Assumption 8.21 that the scheme has to be algebraically stable
may be weakened. It is sufficient if a positive definite matrix M ∈ Rs×s exists such that M :=
MA + ATMT − bbT is positive semidefinite and MT

1s = b.

8.4. Comments on Non-L-Stable Methods
Many proofs in the previous section 8.3 did not use the L-stability of the Runge-Kutta scheme.
For this reason, we want to discuss in this section what happens if we drop the L-stability from
Assumption 8.21. The other assumptions on the discretization scheme are still satisfied such that
the considered Runge-Kutta methods fulfill the following assumptions.
Assumption 8.32. The Runge-Kutta method (5.1) is algebraically stable and R(∞) ∈ [−1, 1].
Furthermore, all weights bi are positive with

∑︁s
i=1 bi = 1

T
s b = 1.

Example 8.33. The Gauss–Legendre methods [HaiW96, p. 71 f.] satisfy Assumption 8.32; see
[HaiNW93, Th. II.16.5] and [HaiW96, Th. IV.12.7]. In particular, these methods satisfy R(∞) = −1
for odd and R(∞) = 1 for even stage numbers [HaiW96, p. 227].

Since R(∞) = 1− bT A−1
1s must not vanish under the weakened assumption 8.32, we need an

approximation of the previous time step of the Lagrange multipliers λn−1 and γn−1 to calculate λn

and γn, respectively; see Section 5.1. In particular, we need initial values for λ and γ. By Remark 8.7
we set γ0 := 0. However, a well-defined initial value λ0 would require continuous right-hand sides f ,
ġ and a regular u0 with Au0 ∈ H∗

ker; cf. Lemma 9.23. Thus, we omit the calculation of λn and only
set

un = R(∞)un−1 + bT A−1un, γn = R(∞)γn−1 + bT A−1γn. (8.39)
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The internal stages are given by the system (8.27) as for the L-stable schemes, i.e., by

A−1Dτun +Aun − B∗λn−B∗γn = fn in V∗
s , (8.40a)

Bun + Cγn = gn in Q∗
s, (8.40b)

BA−1Dτun = ġn in Q∗
s. (8.40c)

Lemma 8.23 guarantees the existence of unique internal stages (un,λn,γn) ∈ Vs ×Qs ×Qs. We
point out that in contrast to the L-Stable methods, the approximation un is only an element of H,
if u0 /∈ V . Thus, only the internal stage un has images in V.

Before we investigate the Runge-Kutta methods for operator DAEs we study their application to
the operator ODE (8.29). The temporal discretization then reads

vn+1 = (1− bT A−1
1s)vn + bT A−1vn, (8.41a)

A−1Dτvn +Avn = fn. (8.41b)

Lemma 8.34. Let the assumption of Theorem 8.26 on f , v0, and A be satisfied. Suppose that a
Runge-Kutta method is given, which satisfies Assumption 8.32. Let the operator ODE (8.29) be
discretized by (8.41) on [0, T ] with constant step size τ = T/N , N ∈ N. Assume that the piecewise
constant function fτ defined by fτ

⃓⃓
(tn−1,tn] = fn converges strongly to f1s in L2(0, T ;V∗

s ).
Then there exists a unique solution vn ∈ H and vn ∈ Vs of system (8.41) for every time step

n = 1, . . . , N . Furthermore, the piecewise constant functions vτ , vτ , and d
dtˆ︁vτ given by vn, vn, and

Dτvn at (tn−1, tn], n = 1, . . . , N , respectively, satisfy

vτ ⇀ v in L2(0, T ;H),
d
dtˆ︁vτ ⇀ v̇ in L2(0, T ;V∗),

vτ ⇀ v1s in L2(0, T ;Vs),
vτ (T ) ⇀ v(T ) in H

as τ → 0, where v is the solution of the operator ODE (8.29).

Proof. We note that the proof of Theorem 8.26 only uses the algebraic stability of the Runge-Kutta
method and the classical order of at least one. Thus, the assertion follows the lines of Theorem 8.26,
where the approximation vn is given by (8.41a) rather than by bT A−1vn.

For the study of Runge-Kutta methods applied to the operator DAE (8.4) we define the piecewise
functions uτ , uτ , ˆ︁uτ , d

dtˆ︁uτ , d
dt
ˆ︁uτ , λτ , γτ , and γτ as in Subsections 8.2.2 and 8.3.3.

We start by discussing the convergence behavior of the piecewise constant functions associated
to γ. For γτ we note that equation (8.33) still holds and therefore the arguments γτ tending to zero
in L2(0, T ;Qs) are still valid. Furthermore, γ0 = 0 implies

Cγn
(8.39)= Rn(∞)Cγ0 +

n−1∑︂
k=0

Rk(∞)bT A−1Cγn−k (8.42)

(8.33)=
n−1∑︂
k=0

Rk(∞)
(︂

bT A−1
1s

∫︂ tn−k

0
ġ − bT ġτ dt+ bT A−1(︁gn−k − g(tn−k)1s

)︁
− τR(∞)bT ġn−k

)︂
.

Thus, for R(∞) ∈ (−1, 1) \ {0} we observe by the geometric series
∑︁∞

k=0 |Rk(∞)| = 1
1−|R(∞)| and

|R(∞)| < 1 that

∥γn∥Q
(8.42)
≲

n−1∑︂
k=0
|Rk(∞)|

(︂∫︂ tn

0
∥ġ − bT ġτ∥Q∗ dt+ max

i=1,...,n
∥gi − g(ti)1s∥+

∫︂ tn−k

tn−k−1

∥bT ġτ∥Q∗ dt
)︂

110



8.4. Comments on Non-L-Stable Methods

≲
√
T∥ġ − bT ġτ∥L2(0,T ;Q∗) + ∥gτ − g1s∥L∞(0,T ;Q∗

s) + max
i=1,...,N

∫︂ ti

ti−1

∥ġ∥Q∗ dt.

Since the right-hand side is independent of n and vanishes as τ → 0 by [KufJF77, Cor. 2.19.10] and
Assumption 8.19, we have limτ→0 γτ = 0 in L∞(0, T ;Q).

For R(∞) = −1 and even n we have

Cγn
(8.42)=

n∑︂
k=1

(−1)k
(︂

2
∫︂ tk

0
ġ − bT ġτ dt+ bT A−1(︁gk − g(tk)1s

)︁
+ τbT ġk

)︂

=
n/2∑︂
k=1

2
∫︂ t2k

t2k−1

ġ − bT ġτ dt+ bT A−1(︁g2k − g2k−1
)︁
− 2(g(t2k)− g(t2k−1)) + τbT

(︁
ġ2k − ġ2k−1

)︁
=

n/2∑︂
k=1

bT A−1(︁g2k − g2k−1
)︁
− τbT (ġ2k + ġ2k−1). (8.43)

This expression does not vanish uniformly for every gτ and ġτ , which satisfy Assumption 8.19. A
counterexample is given by g(t) = t2 with approximations gk = t2k1s, and ġk = 2tk1s if k is even
and ġk = 2tk−11s otherwise, k = 1, . . . , N . Since we want to consider Runge-Kutta methods and
data under minimal assumptions, we choose a specific approximation. We set

gn := g(tn)1s + τAġn, n = 1, . . . , N. (8.44)

Then gn, n = 1, . . . , N , fulfills Assumption 8.19 by the uniformly continuity of g and [KufJF77,
Cor. 2.19.10]. Furthermore, for the limit of γτ we consider for every arbitrary but fixed ε > 0 a
function φε ∈ C([0, T ],Q∗) with ∥ġ − φε∥L2(0,T ;Q∗) < ε; see Theorem 3.32.ii). Then we observe that

max
n=2,4,...,N

∥γn∥Q

(8.43)
≲ max

n=2,4,...,N

n/2∑︂
k=1
∥bT A−1

1s

(︁
g(t2k)− g(t2k−1)

)︁
− τ2bT ġ2k−1∥Q∗

= max
n=2,4,...,N

2
n/2∑︂
k=1

⃦⃦⃦⃦ ∫︂ t2k

t2k−1

ġ dt−
∫︂ t2k−1

t2k−2

ġ dt+ bT

∫︂ t2k−1

t2k−2

ġ1s − ġτ dt
⃦⃦⃦⃦

Q∗

≲ max
n=2,4,...,N

2
n/2∑︂
k=1

∫︂ t2k

t2k−2

∥ġ − φε∥Q∗ + ∥ġ1s − ġτ∥Q∗
s

dt+
∫︂ t2k

t2k−1

∥φε(t)− φε(t− τ)∥Q∗ dt

≤ 2
∫︂ T

0
∥ġ − φε∥Q∗ + ∥ġ1s − ġτ∥Q∗

s
dt+ T max

t∈[τ,T ]
∥φε(t)− φε(t− τ)∥Q∗

→ 2
√
Tε

as τ → 0. Here, we used that φε is uniformly continuous on the interval [0, T ]. In comparison
to even n, for odd n the sum (8.43) has an additional summand, which vanishes as τ → 0 by
Assumption 8.19. Since ε > 0 was arbitrary, this shows ∥γτ∥L∞(0,T ;Q∗) → 0 for R(∞) = −1.

Finally, for R(∞) = 1 we have Cγn =
∑︁n

k=1 bT A−1gk − τbT ġk by bT A−1
1s = 1 − R(∞) = 0

and (8.42). This term does not vanish in general. A counterexample is the same as for the
case R(∞) = −1. However, by the approximation (8.44) we have Cγn = 0 and therefore γτ = 0.

With the convergence of γτ we can now investigate the approximations of the state u. As a start,
it follows uc,τ → uc1s and d

dtˆ︁uc,τ → u̇c in the associated L2-spaces by the convergence of γτ and
arguments similar to Theorem 8.27 Step 2. For the piecewise linear approximations we observe
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8. Runge-Kutta Methods

ˆ︁uc,τ → uc in L∞(0, T ;V) by (8.23) and uc,τ → uc in L2(0, T ;V) by

lim
τ→0
∥ˆ︁uc,τ − uc,τ∥2

L2(0,T ;V) =
N∑︂

n=1

τ3

3 ∥b
T A−1Dτuc,n∥2

V
(8.41)= lim

τ→0

τ2

3

∫︂ T

0
∥bTB−

Aġτ∥2
Q∗

s
dt = 0.

For the part with images in Vker, we test equation (8.40a) by Buker,n. Then we get by Lemma 8.25
the inequality ∥uker,n∥2

H + τµA
∑︁n

i=1 ∥uker,i∥2
Vs
≤ ∥uker,0∥2

H + τ
∑︁n

i=1 ∥fi∥2
V∗

s
+ ∥B−

Aġi∥2
H∗

s
for every

n = 1, . . . , N . Thus, we can use the arguments of Theorem 8.27 Step 3 to prove uker,τ → uker1s in
L2(0, T ;Vs) and d

dtˆ︁uker,τ → u̇ker in L2(0, T ;V∗
ker). In addition, we have

∫︂ T

0
∥bT A−1

1suker,τ − bT A−1uker,τ∥2
H = τ

N∑︂
n=1
∥bT A−1

1suker,n − bT A−1uker,n∥2
H

(8.39)= (1− bT A−1
1s)2τ

N∑︂
n=1
∥uker,n − uker,n−1∥2

H,

where the right-hand side vanishes as τ → 0 by Theorem 8.27 Step 4. Note that this implies
uker,τ → uker in L2(0, T ;H) by the strong convergence of uker,τ , if bT A−1

1s ̸= 0, i.e., R(∞) ∈ [−1, 1).
Finally, Theorem 8.27 Step 4 and Step 5 show ˆ︁uker,τ → u in L2(0, T ;H) and bT

∫︁ ·
0 λτ ds→ Λ in

L2(0, T ;Q) for R(∞) ∈ [−1, 1). For R(∞) = 1 the functions uker,τ , ˆ︁uker,τ , and bT
∫︁ ·

0 λτ ds converge
weakly by Lemma 8.34 and the steps of the proof of Theorem 8.27.

We summarize our observations in the following Theorem.

Theorem 8.35 (Convergence of Runge-Kutta Schemes). Let the approximations fτ , gτ , and ġτ

of the right-hand sides f ∈ L2(0, T ;V∗), g ∈ H1(0, T ;Q∗) satisfy Assumption 8.19. Suppose that
Assumptions 8.1.i), iii) on the operators and the initial value are fulfilled. The corresponding solution
of the operator DAE (8.4) is denoted by (u, λ, 0). Suppose that the Runge-Kutta scheme satisfies
Assumption 8.32.

If R(∞) ∈ (−1, 1), then we have

uτ , ˆ︁uτ → u in L2(0, T ;H), d
dtˆ︁uτ → u̇ in L2(0, T ;V∗

ker), γτ → 0 in L∞(0, T ;Q)

for τ → 0. The function
∫︁ ·

0 bTλτ (s) ds converges strongly to Λ in L2(0, T ;Q). If we replace gn

by (8.44), then for R(∞) = −1 the statements still hold and for R(∞) = 1 the convergences of uτ ,ˆ︁uτ , and
∫︁ ·

0 bTλτ ds are weak.

Proof. The assertions are proven by the previous discussion in this section 8.4.

Remark 8.36. If the data is more regular in the sense of Theorem 8.30, then we have

d
dtˆ︁uτ → u̇ in L2(0, T ;H), λτ → λ in L2(0, T ;Q)

under the assumptions of Theorem 8.35. This follows along the lines of Theorem 8.30.

8.5. Convergence Order
In the previous sections 8.2–8.4 we studied the qualitative behavior of the convergence of the discrete
solution. In this section we analyze the convergence order of the Runge-Kutta methods applied to
the operator DAE (8.4). For this we combine convergence results for operator ODEs [LubO95b,
Ch. 1] and for DAEs; see Theorem 5.4. Following [LubO95b] we restrict our investigation to regular
solutions and Runge-Kutta methods which satisfy Assumption 8.32 and |R(∞)| < 1.
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8.5. Convergence Order

Before we formulate the main result of this section, we recall the order conditions for the Runge-
Kutta method (5.1), namely

s∑︂
i=1

bick−1
i = 1

k
, k = 1, . . . , p, (8.45a)

s∑︂
j=1

Aijck−1
j = ck

i

k
, i = 1, . . . , s, k = 1, . . . , q; (8.45b)

see Section 5.1. Note that every Runge-Kutta method of classical order p satisfies (8.45a) [HaiNW93,
Th. II.2.13 & p. 208]. We can now state the first theorem on the convergence order.

Theorem 8.37 (Convergence Order for Runge-Kutta Methods). Suppose that the Runge-Kutta
scheme (5.1) satisfies Assumption 8.32, fulfills |R(∞)| < 1, has stage order q, and has classical
order p ≥ q+1. Let Assumption 8.1.i) on the operators be fulfilled. Suppose that u0 ∈ V is consistent,
i.e., Bu0 = g(0). Assume that the right-hand sides f and g as well as the solution (u, λ) of the
operator DAE (8.1) are sufficiently regular. In particular, let λ0 := λ(0) ∈ Q for non-L-stable
Runge-Kutta methods be well-defined. Furthermore, suppose that the solution and the right-hand
sides are extendable outside of [0, T ] by maintaining its regularity. Assume that the norm (in the
associated space of regular functions) of the respective extension is bounded by a multiple of the norm
of the associated function on [0, T ].

Then the approximations {(un, λn, γn)}n=1,...,N ⊂ V × Q × Q given by the temporal discretiza-
tion (8.39), (8.40) of the operator DAE (8.4) with fn,i = f(tn + τci), gn,i = g(tn + τci), and
ġn,i = ġ(tn + τci) satisfy

max
n=1,...,N

∥un − u(tn)∥2
H + τ

N∑︂
n=1
∥un − u(tn)∥2

V

≲ τ2q+2
∫︂ T

0
∥u(q+1)∥2

V + ∥u(q+2)
ker ∥2

V∗
ker

+ ∥g(q+2)∥2
Q∗ dt, (8.46a)

τ

N∑︂
n=1
∥λn − λ(tn)∥2

Q ≲ τ2q+1
∫︂ T

0
∥u(q+1)∥2

V + ∥λ(q+1)∥2
Q + ∥u(q+2)

ker ∥2
V∗

ker
+ ∥g(q+2)∥2

Q∗ dt, (8.46b)

τ

N∑︂
n=1
∥γn∥2

Q ≲ τ2k
∫︂ T

0
∥g(k)∥2

Q∗ + ∥g(k+1)∥2
Q∗ dt. (8.46c)

The integer k in (8.46c) is given by p if the Runge-Kutta method is stiffly accurate and by q + 1
otherwise. All constants which are suppressed by ≲ depend on the coefficients A, b, and c of the
Runge-Kutta method, on the operators A and B, on T , as well as the factor of the possible extension.

Proof. For the sake of brevity, we introduce the errors

∆un := un−u(tn), ∆un := un−

⎡⎢⎣u(tn−1 + τc1)
...

u(tn−1 + τcs)

⎤⎥⎦ , ∆u̇n := A−1Dτun−

⎡⎢⎣u̇(tn−1 + τc1)
...

u̇(tn−1 + τcs)

⎤⎥⎦ .
Analogously, we introduce the error for uker, uc, and λ, where we use again the direct sum V = Vker⊕Vc
with Vc := {v ∈ V |Av ∈ V0

ker}. Note that ∆γn = γn holds by γ = 0. Furthermore, we assume
ci ∈ [0, 1], i = 1, . . . , s, for the simplicity of this proof. For Runge-Kutta methods with a ci ̸∈ [0, 1]
one uses the assumed extension of the solution and the right-hand sides.

The proof is split into four parts. We start by estimating the error for uc and γ. Afterwards we
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8. Runge-Kutta Methods

bound ∆uker,n. We finish the proof with the error ∆λn.

Step 1 (Error for uc): For the part in Vc, we obtain by Buc,0 = g(0) and several Taylor expansions

B∆uc,n
(8.39)= Buc,n−1 + τbT A−1DτBuc,n − g(tn)
(8.40c)= B∆uc,n−1 + τ

s∑︂
i=1

biġ(tn−1 + τci)−
(︁
g(tn)− g(tn−1)

)︁
= B∆uc,n−1 +

p−1∑︂
k=0

τk+1
(︃ s∑︂

i=1

bick
i

k! −
1

(k + 1)!

)︃
g(k+1)(tn−1) +Rn

(8.45a)= B∆uc,n−1 +Rn (8.47)

for every p = 1, . . . , p with the remainder

Rn = τ
s∑︂

i=1
bi

∫︂ tn−1+τci

tn−1

(tn−1 + τci − t)p−1

(p− 1)! g(p+1)(t) dt−
∫︂ tn

tn−1

(tn − t)p

p! g(p+1)(t) dt.

Note that 0 ≤ ci ≤ 1 for all i = 1, . . . , s and a successive application of (8.47) implies the estimate

∥∆uc,n∥2
V ≲

⃦⃦⃦ n∑︂
i=1

Ri

⃦⃦⃦2

Q∗
≤ N

N∑︂
i=1

⃦⃦
Ri

⃦⃦2
Q∗ ≲ τ2p

∫︂ T

0
∥g(p+1)∥2

Q∗ dt. (8.48)

We emphasize that the included constant only depends on the Runge-Kutta method, B−
A, and T .

Furthermore, with analogous arguments we have for the internal stage uc,n that

B∆uc,n,i
(8.40c)= Buc,n + τ

s∑︂
j=1

Aij ġ(tn−1 + τcj)− g(tn−1 + τci)

= B∆uc,n−1 +
q−1∑︂
k=0

τk+1
(︃ s∑︂

j=1

Aijck
j

k! − ck+1
i

(k + 1)!

)︃
g(k+1)(tn−1) +Rn,i

(8.45b)= B∆uc,n−1 +Rn,i,

where the correction term Rn ∈ Q∗
s satisfies ∥Rn∥2

Q∗
s
≲ τ2q+1 ∫︁ tn

tn−1
∥g(q+1)∥2

Q∗ dt. This equality and
inequality (8.48) with p = q + 1 lead to the bound

τ

N∑︂
n=1
∥∆uc,n∥2

Vs
≲ τ2q+2

∫︂ T

0
∥g(q+1)∥2

Q∗ + ∥g(q+2)∥2
Q∗ dt. (8.49)

Step 2 (Error for γ): We observe γn = −C−1B∆uc,n by (8.40b) and (8.4b). This implies (8.46c)
for stiffly accurate methods, since γn = γn,s = −C−1B∆uc,n. For non-stiffly-accurate schemes we
note that by Young’s inequality (3.8) with ε = |R(∞)|

1−R2(∞) > 0 the estimate

∥γn∥2
Q ≤

1 +R2(∞)
2 ∥γn−1∥2

Q + 2−R2(∞)
2− 2R2(∞)∥b

T A−1γn∥2
Q
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is satisfied. This inequality implies (8.46c) by (8.49), since 1
2 (1 +R2(∞)) < 1 holds and thus

τ

N∑︂
n=1
∥γn∥2

Q ≲ τ

N∑︂
n=1
∥bT A−1γn∥2

Q ≲ τ

N∑︂
n=1
∥∆uc,n∥2

Vs
.

Step 3 (Error for uker): As in the proof of Theorem 8.27, we use that uker,n and uker,n are also the
solutions of the temporal discretization of the operator ODE (8.20) by the Runge-Kutta scheme (5.1).
By [LubO95b, Th. 1.1] we then have

max
n=1,...,N

∥∆uker,n∥2
Hker

+ τ

N∑︂
n=1
∥∆uker,n∥2

Vker
≲ τ2q+2

∫︂ T

0
∥u(q+1)

ker ∥2
Vker

+ ∥u(q+2)
ker ∥2

V∗
ker

dt. (8.50)

This estimate and (8.48) imply the error bound (8.46a). In addition to (8.50), the proof of [LubO95b,
Th. 1.1] shows for the internal stages uker,n that

τ

N∑︂
n=1
∥∆uker,n∥2

Vs
≲ τ2q+2

∫︂ T

0
∥u(q+1)

ker ∥2
V + ∥u(q+2)

ker ∥2
V∗

ker
dt. (8.51)

Furthermore, on the one hand the authors in [LubO95b, p. 606] prove ∆u̇ker,n = τ−1A−1(∆uker,n−
∆uker,n−11s + ˜︁Rn) where the remainder ˜︁Rn fulfills an estimate analogous to (8.51). On the other
hand, we have ∆u̇ker,n = −A∆uker,n in V∗

ker,s. Together these equations for ∆u̇ker,n lead to

τ

N∑︂
n=1
∥∆u̇ker,n∥2

V∗
s

≲ τ

N∑︂
n=1
∥∆u̇ker,n∥2

Hs

(3.8)
≤ τ

N∑︂
n=1

1
2τ ∥∆u̇ker,n∥2

V∗
ker,s

+ τ

2∥∆u̇ker,n∥2
Vker,s

≲ τ

N∑︂
n=1

1
2τ ∥∆uker,n∥2

Vs
+ 1

2τ
(︁
∥∆uker,n∥2

Vs
+ ∥∆uker,n−1∥2

V + ∥ ˜︁Rn∥2
Vs

)︁
≲ τ2q+1

∫︂ T

0
∥u(q+1)

ker ∥2
V + ∥u(q+2)

ker ∥2
V∗

ker
dt. (8.52)

In the last line we used (8.50), (8.51), and the estimate for ˜︁Rn.

Step 4 (Error for λ): We start by observing for every k = 1, . . . , q that
s∑︂

i=1

s∑︂
j=1

bi(A−1)ijck
j

(8.45b)= k

s∑︂
i=1

bick−1
i

(8.45a)= 1

holds. Using this equality and several Taylor expansions one shows ∆λn = R(∞)∆λn−1 +
bT A−1∆λn + ˆ︁Rn, where the remainder satisfies ∥ ˆ︁Rn∥2

Q ≲ τ2q+1 ∫︁ tn

tn−1
∥λ(q+1)∥2

Q dt. Thus, we
get the estimate

τ

N∑︂
n=1
∥∆λn∥2

Q ≲ τ

N∑︂
n=1
∥bT A−1∆λn∥2

Q + ∥ ˆ︁Rn∥2
Q ≲ τ

N∑︂
n=1
∥bT A−1∆λn∥2

Q + τ2q+2
∫︂ T

0
∥λ(q+1)∥2

Q dt

(8.53)
by following Step 2. For the first term of the right-hand side of (8.53), we note that the error of the
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internal stages λn satisfies B∗∆λn = ∆u̇ker,n +A∆un + B∗C−1B∆uc,n in V∗ by (8.40) and (8.4).
Finally, inequality (8.46b) follows by the estimates (8.49) and (8.51)–(8.53).

Remark 8.38. Theorem 1.1 in [LubO95b], which states error bounds for operator ODEs and which
we used in the proof of Theorem 8.37, is proven by energy estimates. Using techniques similar to the
method of semigroups the error estimates can be sharpened; see [GonO99; LubO93; LubO95b, Ch. 3
each]. These results would also refine (8.46a). However, this approach requires a deeper knowledge
of the underlying constrained PDE, since the convergence order then also depends on the spatial
regularity of the solution as well as on the type of boundary condition; see [LubO93, p. 116 f.]
and [LubO95b, p. 616 f.]. For a certain class of constrained PDEs this was investigated in [Deb04;
DebS05].
Remark 8.39. The convergence rate for the Lagrange multiplier λ in Theorem 8.37 can be refined
to q + θ if the interpolation space

[︁
Vker,V∗

ker
]︁

θ
is embeddable into V∗. Here, we use the notation

from [LioM72, Ch. 1, Sec. 2], where the theory of interpolation between separable Hilbert spaces
is discussed in detail. For the interpolation between general Banach spaces we refer to [BerL76].
However, by the assumed embedding we have

∥∆u̇ker,n∥2
V∗

s
≲ ∥∆u̇ker,n∥2

[Vker,s
,V∗

ker,s]
θ

≲ ∥∆u̇ker,n∥2−2θ
Vker,s

∥∆u̇ker,n∥2θ
V∗

ker,s

≲ τ2θ∥∆u̇ker,n∥2
Vker,s

+ τ2θ−2∥∆u̇ker,n∥2
V∗

ker,s
, (8.54)

where we used [LioM72, Ch. 1, Prop. 2.3] and [Emm04, Th. A.1.4]. All constants are independent
of τ . By the estimate (8.54) we can prove the refined convergence order q + θ following the steps
of (8.52) and Theorem 8.37 Step 4.

We point out that we showed the specific case θ = 1/2 in Theorem 8.37, since the embedding[︁
Vker,V∗

ker
]︁

1/2
= Hker ⊂ H ↪→ V∗ holds by [LioM72, Ch. 1, Prop. 2.1(a)].

Remark 8.40. For more regular data one can estimate the errors of uc and γ by applying Theorem 5.4
to the system (8.4b–c). As a matter of fact, Theorem 5.4 can be extended to this infinite-dimensional
system since the operators B|Vc ∈ L (Vc,Q∗) and C ∈ L (Q,Q∗) have bounded inverses.

In contrast to u and γ the convergence rate for the Lagrange multiplier λ is half an order smaller.
This is the case, since in general we can estimate u̇ker only in V∗

ker rather than in the more restrictive
space V∗; see the proof of Theorem 8.37 and Remark 8.39. For the implicit Euler method, however,
all approximations have the same convergence order.
Lemma 8.41 (Convergence Order of the Implicit Euler Scheme). In addition to the assump-
tions of Theorem 8.37 let u0 ∈ V fulfill f(0) − Au0 − B−ġ(0) ∈ H∗

ker. Then the discretization
{(un, λn, γn)}n=1,...,N given by the implicit Euler scheme (8.6) satisfies the error bounds (8.46)
with τ2, i.e., the convergence order is one for every state variable.
Proof. The convergence orders for u and γ follow along the lines of Theorem 8.37; see also [AltZ18c,
Lem 6.4]. For ∆λn it is sufficient to show that the error ∆u̇ker,n is of first order; see (8.52) and the
proof of Theorem 8.37. By (8.25) and the proof of Theorem 6.8 the error ∆u̇ker,n satisfies

Dτ ∆u̇ker,n +A∆u̇ker,n = A
(︁
Dτuker(tn)− u̇ker(tn)

)︁
=
∫︂ tn

tn−1

t− tn−1

τ
Aüker(t) dt in V∗

ker (8.55)

with Dτuker,0 = u̇ker(0) = f(0)−Au0 −B−ġ(0) ∈ H∗
ker
∼= Hker. By testing (8.55) with τ∆u̇ker,n, we

get similarly to the derivation of (7.13) the estimate

max
n=1,...,N

∥∆u̇ker,n∥2
H + τ

N∑︂
n=1
∥∆u̇ker,n∥2

V ≲
N∑︂

n=1

⃦⃦⃦⃦ ∫︂ tn

tn−1

t− tn−1

τ
Aüker(t) dt

⃦⃦⃦⃦2

V∗
ker

≲ τ2
∫︂ T

0
∥üker∥2

V dt.
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According to Lemma 8.41, the state u and the Lagrange multiplier λ have the same convergence
rate if we use the implicit Euler scheme. To get the same result for general Runge-Kutta methods,
we assume the splitting A = A1 +A2 of Theorem 8.30. This additional assumption also improves
the convergence of u in the time-discrete counterpart of C([0, T ],V).

Theorem 8.42 (Convergence Order for More Regular Data). In addition to the assumptions of
Theorem 8.37, let an operator A1 ∈ L (V,V∗) exist, which is self-adjoint, elliptic on Vker, such that
A2 = A−A1 ∈ L (V,H∗). Assume that f is an element of L2(0, T ;H∗). Suppose that the solution u
and the right-hand side g are regular enough such that

C :=
∫︂ T

0
∥Au(q+1)

ker ∥2
H∗

ker
+ ∥u(q+2)

ker ∥2
Hker

+ ∥u(q+1)∥2
V + ∥g(q+2)∥2

Q∗ dt

is well-defined with uker = u− B−
ABu. Then we have

max
n=1,...,N

∥un − u(tn)∥2
V ≲ τ2q+2 C, (8.56a)

τ

N∑︂
n=1
∥λn − λ(tn)∥2

Q ≲ τ2q+2
(︃
C +

∫︂ T

0
∥λ(q+1)∥2

Q dt
)︃
. (8.56b)

Proof. We use the notation and the splitting u = uker + uc of the proof of Theorem 8.37.
Starting with the approximation of the single parts of u, we have that the estimate (8.56a) for

∆uc,n follows by (8.48). For the part with images in Vker we investigate the error A1∆uker,n in the
time-discrete counterpart of L2(0, T ;H∗

ker,s) in addition to ∆uker,n. Note that Theorem 4.25 and
equation (8.35) guarantee that A1u and A1uker,τ are L2-functions with images in H∗

ker and H∗
ker,s,

respectively. Therefore, we have

∆u̇ker,n +A1∆uker,n = −A2∆uker,n in H∗
ker (8.57)

by (8.20) and (8.35). Using (8.57) and ∥vker∥2
A1
≤ ∥A1vker∥H∗

ker
∥vker∥Hker for every vker ∈ Vker with

A1vker ∈ H∗
ker by the Gelfand triple Vker, Hker, V∗

ker, one proves

∥∆uker,n∥2
A1

+ τ

n∑︂
i=1
∥A1∆uker,i∥2

H∗
ker,s

≲ ∥∆uker,0∥2
A1

+ τ2q+2
∫︂ T

0
∥Au(q+1)

ker ∥2
H∗

ker
+ ∥u(q+2)

ker ∥2
Hker

dt+ τ

n∑︂
i=1
∥A2∆uker,i∥2

H∗
ker,s

(8.58)

by an adaptation of the proof of [LubO95b, Th. 1.1]. In contrast to [LubO95b, Th. 1.1] which estimates
the error ∆uker,n in Hker, we consider ∆uker,n in (Vker, ∥ · ∥A1). However, the inequalities (8.51)
and (8.58) imply the error estimate (8.56a) for uker. Thus, (8.56a) follows by the triangle inequality
and the single error bounds for uc and uker.

For the Lagrange multiplier λ we note that (8.51), (8.57), and (8.58) imply that τ
∑︁N

n=1 ∥∆u̇ker,n∥2
Hs

has convergence rate 2q + 2. Thus, the error bound (8.56b) for ∆λn follows by Step 4 in the proof
of Theorem 8.37.

Remark 8.43. By piecewice polynomial interpolations based on the approximations un, λn, and
γn one can construct abstract functions; cf. [AltZ18c, p. 23 f.]. These functions then satisfy
the error estimates in Theorems 8.37 and 8.42 as well as in Lemma 8.41 in the norms of time-
continuous functions, i.e., maxn=1,...,N ∥(·)n∥2

X and τ
∑︁N

n=1 ∥(·)n∥2
X become the norm in C([0, T ],X )

and L2(0, T ;X ), respectively; cf. [AltZ18c, Th. 6.6].
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For finite-dimensional DAEs, Theorem 5.4 provides a higher convergence order than Theorem 8.37.
If we consider the spatial discretization (8.3) of the operator DAE (8.4), it may be more reasonable
to compare the fully-discrete solution, i.e., the spatially and temporally discretized solution, to the
solution of the operator DAE (8.4) rather than to the solution of (8.3). If the spatial discretization
is based on conforming finite elements [Bra07, p. 60] then the fully-discrete solution can be rewritten
as the space-continuous functions (un, λn, γn) ∈ V ×Q×Q. By the arguments of [Alt15, Sec. 10.4.2],
these time-discrete solutions satisfy

un = R(∞)un−1 + bT A−1un, γn = R(∞)γn−1 + bT A−1γn, (8.59a)

with the internal stages (un,λn,γn) ∈ Vs ×Qs ×Qs given by

A−1Dτun +Aun − B∗λn−B∗γn = fn + δn in V∗
s , (8.59b)

Bun + Cγn = gn + θn in Q∗
s, (8.59c)

BA−1Dτun = ġn + ξn in Q∗
s. (8.59d)

The new initial values are u0 = u0 + e0 and γ0 = −C−1Be0. This allows us to interpret the spatial
truncation error e0 and the residuals δn, θn, and ξn as perturbations of the system (8.40). The
following lemma addresses the influence of perturbations of (8.40) onto its solutions.

Lemma 8.44 (Error under Perturbations). Let the assumptions of Theorem 8.37 be satisfied.
Suppose that the initial value u0 is perturbed by e0 = eker,0 + ec,0 ∈ Vker ⊕ Vc = V. Assume that the
perturbations δn ∈ V∗

s , θn ∈ Q∗
s, and ξn ∈ Q∗

s of the right-hand sides fn, gn, and ġn, respectively,
are given, n = 1, . . . , N . Then the discrete solutions un and γn of the perturbed system (8.59) satisfy

max
n=1,...,N

∥un − u(tn)∥2
H + τ

N∑︂
n=1
∥un − u(tn)∥2

V

≲Eu + ∥e0∥2
V + τ |R(∞)| ∥eker,0∥2

V + τ

N∑︂
n=1
∥δn∥2

V∗
s

+ ∥ξn∥2
Q∗

s
,

τ

N∑︂
n=1
∥γn∥2

Q ≲Eγ + ∥ec,0∥2
V + τ

N∑︂
n=1
∥θn∥2

Q∗
s

+ ∥ξn∥2
Q∗

s
,

where Eu and Eγ denote the right-hand side of (8.46a) and (8.46c), respectively.

Proof. The proof follows along the lines of Theorem 8.37 using [LubO95b, p. 605, Remark (c)].

Remark 8.45. Similar to Lemma 8.44 one can estimate the error in Theorem 8.42 under perturbations.
Remark 8.46. By the loss of half an order for the Lagrange multiplier λ in (8.46b), an estimate
of τ

∑︁N
n=1 ∥λn − λ(tn)∥2

Q would include the terms τ−1∥eker,0∥2
V and

∑︁N
n=1 ∥δn∥2

V∗
s
.

Finally, we make some remarks on the temporal discretization of operator DAEs with time-
dependent operators.
Remark 8.47.

i) Theorem 8.37 as well as Lemmas 8.41 and 8.44 still hold for operator DAEs of the form (8.1)
with a time-dependent operator A ∈ C([0, T ],L (V,V∗)), which satisfies uniformly a Gårding in-
equality on kerB. The term Aun is then replaced by Anun := [A(tn−1 +τc1)un,1, . . . ,A(tn−1 +
τcs)un,s]T ∈ V∗

s in the discretized systems (8.6a) and (8.40a). For the associated proofs one
adapts the results of the first chapter in [LubO95b] to operator ODEs with an operator
A : [0, T ]→ L (V,V∗), which is satisfies uniformly a Gårding inequality.
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ii) An extension to systems with a time-dependent, uniformly inf-sup stable operator B ∈
C1([0, T ],L (V,Q∗)), which has a time-independent kernel, is also possible. The discretization
of (8.4b) and (8.4c) are then given by Bnun + Cγn = gn and BnA−1Dτun + Ḃnun = ġn,
respectively. The terms Bn, Ḃn ∈ L (V,Q∗) are defined similar to An.
If B and g are regular enough as well as τ is small enough, then ∆uc,n and ∆γn can be bounded
by Theorem 5.4. Estimates under perturbations can be derived by [HaiW96, Th. 3.6]. For the
remaining steps of the associated proofs one uses ∆uc,n = ∆uc,n−11s + τAB−

n,AḂn∆uc,n +
Řn. Note that τ∥AB−

n,AḂn∥L (Vs) < 1 holds if τ is small enough and that the correction
term Řn ∈ Vs satisfies ∥Řn∥2

Vs
≲ τ2q+1 ∫︁ tn

tn−1
∥u(q+1)

c ∥2
V∗ dt. Finally, the additional term

∆u̇c,n = −B−
n,AḂn∆uc,n in the error estimates for uker can be treated as a perturbation using

Lemma 8.44.

8.6. Numerical Examples
We illustrate the performance of Runge-Kutta schemes for two operator DAEs in this final section
of Chapter 8. The first example is a so-called lid-driven cavity modeled by the unsteady Stokes
equation. As the second example, we consider a synthetic model to investigate the impact of the
spatial regularity on the convergence order. The associated simulation code can be found in [Zim20].

8.6.1. Stokes Problem – Lid-Driven Cavity
As a first example we consider a fluid described by the unsteady Stokes equation, see Example 6.1,
inside a square cavity. The cavity has three rigid walls with no-slip conditions and a fourth side
where a moving lid enforces a velocity field. The governing equations are given by

u̇(ξ, t)− µ∆u(ξ, t)−∇p(ξ, t) = 0 in Ω× (0, T ], (8.60a)
div u(ξ, t) = 0 in Ω× (0, T ], (8.60b)

u(ξ, t) = 0 on Γ1 × (0, T ], (8.60c)
u(ξ, t) = g(ξ, t) on Γ2 × (0, T ]. (8.60d)

The state u : Ω × [0, T ] → R2 is the velocity field and p : Ω × [0, T ] → R is the pressure. In our
example the domain is the unit square Ω = (0, 1)2. The subset Γ1 and Γ2 of the boundary ∂Ω are
defined by Γ1 := {0, 1} × [0, 1] ∪ (0, 1)× {0} and Γ2 := (0, 1)× {1}.

Following [Zim15, Sec. 4.3.1] the weak formulation of the constrained PDE (8.60) has the form
of the operator DAE (8.1). We incorporate the no-slip conditions (8.60c) into the space V. The
divergence condition (8.60b) is stated explicitly as a constraint in the weak formulation. For the
boundary condition (8.60d) we choose g = [g1 0]T and formulate u1|Γ2 = g1 as a constraint whereas
u2|Γ2 = 0 is integrated into the space V. Note that, u1 vanishes at Γ1 by (8.60c). Thus, the
right-hand side g1 must be extendable to a function of H1/2(∂Ω) by setting g1 to zero on Γ1, i.e.,
g1 ∈ H

1/2
00 (Γ2). Taking all these aspects into consideration, cf. also Example 6.1, we have

V = H1
Γ1

(Ω)×H1
0 (Ω), H = L2(Ω)× L2(Ω), Q = (L2(Ω) \ R)×H−1/2

00 (Γ2).

For the regularization from Section 8.1 the operator C ∈ L (Q,Q∗) is chosen as

C =
[︃
C1 0
0 C2

]︃
,

where the operators C1 ∈ L (L2(Ω) \ R, (L2(Ω) \ R)∗) and C2 ∈ L (H−1/2
00 (Γ2), H1/2

00 (Γ2)) are elliptic.
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1

ε 1− ε0 1
ξ1

˜︁gε

Figure 8.1.: Sketch of the function ˜︁gε.

We choose C1 = RL2(Ω), which is well-defined since L2(Ω) \ R is a closed subspace of L2(Ω) [Zim15,
Rem. 2.12]. For C2 we note that there exists a bounded linear map H

−1/2
00 (Γ2)→ H1

Γ1
(Ω); ω ↦→ uω

where uω is the unique solution of∫︂
Ω
∇uω · ∇v dξ = ⟨ω, trΓ2 v ⟩H−1/2

00 (Γ2),H
1/2
00 (Γ2) for all v ∈ H1

Γ1
(Ω); (8.61)

see [Sch98, Sec. 1.4.3]. We set C2ω = trΓ2 uω ∈ H
1/2
00 (Γ2). By the right-inverse tr− of the trace

operator, see Theorem 3.24, the inner product (3.15) of H1/2
00 (Γ2), and r := R−1

H
1/2
00 (Γ2)

ω the estimate

∥ω∥2
H

−1/2
00 (Γ2)

= ⟨ω, r ⟩ =
∫︂

Ω
∇uω · ∇ tr− r dξ ≤ ∥uω∥H1

Γ1
(Ω)∥ tr− r∥H1

Γ1
(Ω) = ∥uω∥H1

Γ1
(Ω)∥ω∥H

−1/2
00 (Γ2)

holds. Therefore, C2 is elliptic by ⟨ω, C2ω ⟩ = ∥uω∥2
H1

Γ1
(Ω) ≥ ∥ω∥

2
H

−1/2
00 (Γ2)

.
Before we come to the simulation, we have to discuss the right-hand side g = [g1 0]T . We point out

that the moving lid would imply that g1 is constant on Γ2, which is not an H1/2
00 (Γ2)-function unless g1

vanishes everywhere [Sch98, Ex. 1.38]. Therefore, we translate smoothly the enforced velocity field
to zero near the corners of Γ2 ⊂ ∂Ω. In particular, we will use g1(ξ1, t) = g1(t) ˜︁g1/64(ξ1) for the
simulation, where g1(t) passes slowly from zero to one and ˜︁g1/64(ξ1) is given by the parameterized
function

˜︁gε(ξ1) := (φε/2 ∗ χ[ε/2,1−ε/2])(ξ1) :=
∫︂
R
φε/2(η)χ[ε/2,1−ε/2](ξ1 − η) dη =

∫︂ 1−ε/2

ε/2

φε/2(ξ1 − η) dη

with choice ε = 1/64. In the definition of ˜︁gε(ξ1) the parameter ε satisfies 0 < ε ≤ 0.5, χE denotes
the characteristic function of the set E, and φε is given by φε(η) = cε−1 exp(ε2/(η2 − ε2))χ(−ε,ε)(η),
where the constant c is chosen such that

∫︁
R φ1 dη = 1. The function ˜︁gε is depicted in Figure 8.1.

However, by construction the function ˜︁gε ∈ C∞([0, 1]) is non-negative, constantly one at [ε, 1− ε],
and satisfies ˜︁g(k)

ε (0) = ˜︁g(k)
ε (1) = 0 for all k ∈ N0; see e.g. [Zei90a, Sec. 18.14].

Numerical Simulation For the calculation we choose as the dynamic viscosity µ = 1/400 and
vanishing initial values. The final time-point is T = 10 and the non-zero entry g1 of the right-hand
side g is given by g1(ξ1, t) =

(︁
1− ( t

10 − 1)8)︁ ˜︁g1/64(ξ1). An illustration of the associated solution is
given in Figure 8.2.

As spatial discretization we use quadratic finite elements for the velocity field, which incorporate
the homogeneous boundary conditions. The pressure is discretized by linear finite elements which
vanish at ξ = (0, 0). In a post-processing step the zero mean condition is realized. The additional
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Figure 8.2.: Illustration of the velocity field u at final time t = 10.

Lagrange multiplier for the constraint (8.60d) is approximated by piecewise constant finite elements.
As mesh we use a uniform criss-cross triangulation with spatial mesh size h. For more details see
[AltH15, Sec. 4], [Ver84], and [Zim15, Sec. 4.3.2]. The implementation of the triangulation is based
on the Matlab software package AFEM [CarGK+10].

We implemented the Radau IIA schemes with one, two, and three stages for the temporal
discretization; see e.g. [HaiW96, p. 74, Tab. 5.5 & 5.6]. These methods are stiffly accurate, and
have classical order p = 2s− 1 and stage order q = s [HaiW96, p. 72 ff. & p. 227]. The reference
solution is determined by the three-stage method with step size τ = 5 · 2−12. Figure 8.3 displays the
approximation error of the velocity field u and of the pressure p for different spatial and temporal
mesh sizes. We observe for the velocity field u that every graph for the one- and two-stage methods
has optimal slope 2s − 1 = min(p, q + 1) independently of the mesh size. The convergence order
for the scheme with three stages is 4.75. This is less than the classical order but still 0.75 better
than predicted by Theorem 8.37. This observed order, however, is the optimal rate for PDEs with
homogeneous Dirichlet boundary conditions [LubO95b, p. 616, Ex. (i)]. Since Vker = kerB is the
space of trace- and divergence-free functions, we expect that the convergence order of uker and
therefore of u is limited by q + 1.75. Under the assumption of smooth solutions, this explains the
observed convergence rates.

Furthermore, we observe in Figure 8.3 that the convergence orders for the pressure p are the same
as for the state u. Lemma 8.41 and Theorem 8.42 predict these rates for the one- and two-stage
method. For the three-stage method we note that Theorem 8.42 only proves the same convergence
rate q + 1 for u and p, not the improved rate of q + 1.75. However, we expect that an adaptation
of [LubO95b, Th. 3.3] for an error estimate of τ

∑︁N
n=1 ∥A∆uker,n∥2

H∗
ker

combined with the stiff
accuracy of the Radau IIA methods proves the observed convergence order; cf. Subsection 9.3.2.2
and Theorem 9.24 in particular. As for finite-dimensional DAEs, see Theorem 5.4, the stiff accuracy
is expected to be the key point in the proof.

8.6.2. A Synthetic Example
In the previous numerical example, we saw an improvement of the convergence order, which could
be explained by solutions which are smooth in space and time. In this subsection we study the effect
of the spatial regularity of the solution from (8.1) on the convergence rate. For this, we consider as
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Figure 8.3.: Convergence history for the error of the velocity field u in the time-discrete counterpart of
C([0, 10], [L2(Ω)]2)∩L2(0, 10;H1

Γ2
(Ω)×H1

0 (Ω)) (left) and for the error of the pressure p
in the time-discrete counterpart of L2(0, 10;L2(Ω) \ R) (right). For comparison, we
added lines with slope one (solid), three (dotted), and 4.75 (dash-dotted).

the second numerical example the parameterized PDE

u̇α(ξ, t)− ∂ξξuα(ξ, t)− ∂ξξvα(ξ, t) = − πe−πt +
∞∑︂

k=1

2π2k2 − πk2

kα
e−k2πt sin(kπξ) (8.62a)

v̇α(ξ, t) + uα(ξ, t)− ∂ξξvα(ξ, t) = (1− π)e−πt +
∞∑︂

k=1

π2k2 − πk2 + 1
kα

e−k2πt sin(kπξ)

(8.62b)
uα(0, t) = uα(1, t) = vα(0, t) = vα(1, t) = e−πt (8.62c)

with the unit interval as spatial domain and T = 1. We choose the initial value (uα;0, vα;0) such
that the solution of (8.62) is given by

uα(ξ, t) = vα(ξ, t) = e−πt +
∞∑︂

k=1

e−k2πt

kα
sin(kπξ). (8.63)

The parameter α will be used to vary the spatial regularity of the solution.
Following Example 6.2, we incorporate the boundary conditions (8.62c) by means of the trace

operator as constraints such that the weak formulation of the PDE (8.62) is an operator DAE of
the form (8.1). Thereby, we introduce the Lagrange multiplier λα ∈ Q. The spaces are given by
V = [H1(0, 1)]2, Vker = [H1

0 (0, 1)]2, and Q = R4. The part (uα;ker, vα;ker) of the solution (uα, vα)
with images in Vker is given by the infinite sum in the solution (8.63). We emphasize that the
right-hand side g(t) = e−πt

14 is infinitely differentiable and the solution satisfies

u
(k)
α;ker = v

(k)
α;ker ∈ L

2(0, T ;Hα−2k+1/2−ε
0 (0, 1)) and u

(k+1)
α;ker = v

(k+1)
α;ker ∈ L

2(0, T ;Hα−2k−3/2−ε(0, 1))
(8.64)

for k ∈ N0 with α+ 1
2 ≥ 2k > α− 3

2 and an arbitrary ε > 0.
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Table 8.1.: Properties of the Radau IA, Radau IIA, Lobatto IIIC, Lobatto IIID, and SDIRK Cro
method with three stages; [HaiW96, p. 77 & p. 100] and [Jay15, p. 822].

Radau IA Radau IIA Lobatto IIIC Lobatto IIID SDIRK Cro
Classical order 5 5 4 4 4
Stage order 2 3 2 1 1
R(∞) 0 0 0 0 ≈ −0.63
Algebraically stable ✓ ✓ ✓ ✓ ✓
Stiffly accurate ✓ ✓

For the simulation of the operator DAE associated to the PDE (8.62) we choose C as the identity
matrix in R4×4 in the regularization described in Section 8.1. The spatial discretization is given
by spectral finite elements with 400 degrees of freedom enriched by linear polynomials, i.e., we
approximate V by the space

V400 = span{1, ξ, sin(πξ), . . . , sin(400πξ)} ⊂ V .

As temporal integration schemes we use the Radau IA, Radau IIA, Lobatto IIIC, and Lobatto IIID
methods with three stages each, cf. [HaiW96, Ch. IV, Tab. 5.4, 5.6, & 5.11] and [Jay15, Tab. 5].
In addition to these L-stable schemes we implemented the singly diagonally implicit method from
Crouzeix (SDIRK Cro) with three stages; see [HaiW96, p. 100]. Some properties of these methods
are collected in Table 8.1. Note that the node c3 ≈ −6.858 · 10−2 of the SDIRK Cro scheme is
negative and the right-hand side of (8.62) is unbounded for t < 0. Therefore, we choose t = τ as the
initial time for this method.

Figure 8.4 illustrates the experimental convergence order for the state (uα, vα) and for the Lagrange
multiplier λα as a function of the parameter α. We remind that the spatial regularity depends
strongly on α; see (8.64). The depicted convergence rates are approximated by the means of the
slopes of the logarithmic errors against the logarithmic step sizes. In these calculations we reject
outliers which may occur in transient phases or by errors which are close to machine precision. We
note that the convergence rates for (uα, vα) and λα are mostly better than predicted by Theorem 8.37.
In particular, the convergence rate for (uα, vα) is not limited by q + 1 or by q + 1.75 for the stiffly
accurate methods. This behavior can be explained by [LubO93, p. 116], because the boundary of
Ω = (0, 1) consists of two separated points and the solution (uα;ker, vα;ker) vanishes on this boundary.
For α which is infinitesimal bigger than 2ℓ + 2.5, ℓ ∈ N0, the convergence rates of (uα;ker, vα;ker)
are min(ℓ+ 1, p) as anticipated by Theorem 8.37. These values of α are special in the sense that
by (8.64) the solutions u(ℓ+1)

α;ker = v
(ℓ+1)
α;ker are contained in W 1,2(0, T ;H1

0 (0, 1), H−1(0, 1)) for every
α > 2ℓ+ 2.5 and are not contained in this space for α ≤ 2ℓ+ 2.5.

For λα we note that after the convergence order becomes stationary it is equal to q + 1 for the
non-stiffly-accurate methods and it is similar to the order of (uα, vα) for the stiffly accurate ones. As
for the numerical example in Subsection 8.6.1 we expect that this can be proven by error estimates for
∆uker,n and ∆uker,n for spaces which are more regular than H1

0 (0, 1). However, before it transitions
into the constant phase the convergence order for λα is around 0.25 smaller than the convergence
rate of (uα;ker, vα;ker). This follows by Remark 8.39 and

[H1
0 (0, 1), H−1(0, 1)]3/4−ε = H−1/2+ε(0, 1) =

[︁
H

1/2−ε
0 (0, 1)

]︁∗ =
[︁
H

1/2−ε(0, 1)
]︁∗
↪→
[︁
H1(0, 1)

]︁∗
with an arbitrary ε > 0, where we used [LioM72, Ch. 1, Th. 11.1 & 12.3].

Beside the convergence of (uα, vα) and λα, the results of this numerical example show that the
convergence rate for the additional Lagrange multiplier γα is constant over α and as predicted in
Theorem 8.37. Thus, we omit the corresponding plot here.
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Figure 8.4.: The convergence order for (uα, vα) and λα against the spatial regularity of the solution
characterized by the parameter α.

Finally, it is worth to mention that for the approximation of (uα, vα), λα, and γα the convergence
rates of the non-L-stable SDIRK Cro method are similar to those of the L-stable Lobatto IIID
method, which has the same classical and stage order.
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9. Exponential Integrators
In this chapter we extend the idea of exponential integrators introduced in Section 5.2 to semi-linear
operator DAEs of the form

u̇(t) + Au(t) − B∗λ(t) = f(t, u(t)) in V∗, (9.1a)
Bu(t) = g(t) in Q∗. (9.1b)

The spaces V and Q are separable Hilbert spaces. We assume a third Hilbert space H exists such
that V, H, V∗ is a Gelfand triple. The operators A and B are time-independent. In the interest
of readability, we assume in addition to the assumptions of Subsection 6.4, which give us unique
solutions, see Theorem 6.15, that A is elliptic on Vker. Anyway, the results of this chapter are still
valid if A satisfies only a Gårding inequality (3.6) on Vker. In this case, we add to A the term κA idH
and accordingly to the nonlinearity f , i.e., we redefine f(t, u)← f(t, u) +κAu, such that A+κA idH
is elliptic on Vker. The assumption on the operators and the right-hand sides are summarized in the
following.
Assumption 9.1 (Operator B). The operator B ∈ L (V,Q∗) satisfies the inf-sup condition (3.2).
Assumption 9.2 (Operator A).

i) The operator A ∈ L (V,V∗) has the form A = A1 +A2 with A1 ∈ L (V,V∗) being self-adjoint
and A2 ∈ L (V,H∗).

ii) We assume that A is elliptic on Vker := kerB.
Assumption 9.3 (Right-Hand Sides f and g).

i) The right-hand side f : [0, T ]×V → H∗ fulfills the Carathéodory conditions, see Definition 4.1,
and is bounded via ∥f(t, v)∥H∗ ≤ k(t)(1 + ∥v∥V) with k ∈ L2(0, T ) for all v ∈ V and almost all
t ∈ [0, T ]. Furthermore, f is locally Lipschitz continuous in the second argument; see (6.12).

ii) The function g is an element of H1(0, T ;Q∗).
For semi-linear ODEs and parabolic PDEs exponential integrators are well-studied. This includes

explicit and implicit exponential Runge-Kutta methods [Cer60; CoxM02; HocO05a; HocO05b;
Law67], exponential Runge-Kutta methods of high order [LuaO14a; LuaO14b], exponential Rosen-
brock-type methods [HocOS09], and multistep exponential integrators [CalP06]. To the best of
the author’s knowledge, exponential integrators for constrained PDEs have only be studied for the
incompressible Navier-Stokes equations [EdwTF+94; KooBG18; New03], where the convergence
order is not investigated. In [HocLS98], the authors successfully apply exponential integrators to
finite-dimensional index-1 DAEs. We emphasize that a standard spatial discretization of the operator
DAE (9.1) by finite elements leads to a DAE of index two; see Remark 2.3 and Section 8.1.1. In
this thesis, we consider explicit exponential integrators for the operator DAE (9.1). The approach
for the explicit schemes, however, can be translated to the general exponential integrators like the
methods mentioned above.

In the linear case, the solution of (9.1) can be expressed by the variation-of-constants formula;
cf. [EmmM13, Sec. 3.2.2]. In the semi-linear case, we consider the term f(t, u) as a right-hand side,
which leads to an implicit formula only. This, however, is still of value for the numerical analysis of
time integration schemes.

The solution formula is based on the decomposition u = uker + uc with uker : [0, T ] → Vker
and uc : [0, T ] → Vc with Vc := {v ∈ V |Av ∈ V0

ker}. The latter is fully determined by the con-
straint (9.1b), namely uc(t) = B−

Ag(t) ∈ Vc. For uker we consider the restriction of (9.1a) to the test
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9. Exponential Integrators

space Vker. Since the Lagrange multiplier disappears in this case, we obtain

u̇ker(t) +Akeruker(t) = f(t, uker + uc)− u̇c(t) in V∗
ker, (9.2)

with
Aker := A|Vker : Vker → V∗

ker.

Note that we use here the fact that functionals in V∗ define functionals in V∗
ker simply through the

restriction to Vker. The term Auc disappears under test functions in Vker due to the definition of Vc.
If this orthogonality is not respected within the implementation of numerical simulations, then this
term needs to be reconsidered.

The solution to (9.2) can be obtained by an application of the variation-of-constants formula.
Therefore, we note that Aker is an elliptic operator by Assumptions 9.2.ii). This in turn implies
that −Aker generates an analytic semigroup on Hker; see Remark 4.24. Since the semigroup can
only be applied to functions in Hker

∼= H∗
ker, we introduce the operator

ιker : H∗ → H∗
ker
∼= Hker.

This operator is again based on a simple restriction of test functions and leads to the solution formula

u(t) = uc(t) + uker(t)

= B−
Ag(t) + e−tAkeruker(0) +

∫︂ t

0
e−(t−s)Akerιker

[︁
f(s, uker(s) + uc(s))− u̇c(s)

]︁
ds;

cf. [EmmM13, Sec. 3.2.2] and (4.16). Assuming a partition of the time interval [0, T ] by 0 = t0 <
t1 < · · · < tN = T , we can write the solution formula in the form

u(tn+1)− B−
Agn+1

= e−(tn+1−tn)Aker
[︁
u(tn)− B−

Agn

]︁
+
∫︂ tn+1

tn

e−(tn+1−s)Akerιker
[︁
f(s, u(s))− u̇c(s)

]︁
ds. (9.3)

Note that we use here the abbreviation gn := g(tn). In the following sections we construct explicit
exponential integrators for constrained semi-linear systems of the form (9.1) by approximating
the integral in (9.3). In Sections 9.1 and 9.2 we consider schemes based on the exponential Euler
and Runge methods, respectively. The order conditions for schemes up to an order of three are
studied in Section 9.3. At first, we consider the approximation of operator ODEs in Subsection 9.3.1.
In Subsection 9.3.2 we translate the results to the temporal discretization of operator DAE (9.1).
Here, we also approximate the Lagrange multiplier λ. Comments on the efficient computation and
numerical experiments for semi-linear parabolic systems illustrating the obtained convergence results
are presented in Section 9.4. We recall that we consider in this thesis only explicit integrators. We
start with a first-order scheme based on the exponential Euler method.

9.1. The Exponential Euler Scheme
The idea of exponential integrators is to approximate the integral term in (9.3) by an appropriate
quadrature rule. Following the construction for PDEs [HocO10], we consider the function evaluation
at the beginning of the interval. This then leads to the scheme

un+1 = B−
Agn+1 + e−τAker

[︁
un − B−

Agn

]︁
+
∫︂ τ

0
e−(τ−s)Akerιker

[︁
f(tn, un)− u̇c(tn)

]︁
ds

= B−
Agn+1 + ϕ0(−τAker)

(︁
un − B−

Agn

)︁
+ τϕ1(−τAker)

(︁
ιker
[︁
f(tn, un)− B−

Aġn

]︁)︁
(9.4)
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with ϕ0 and ϕ1 defined as in Section 5.2. As usual, un denotes the approximation of u(tn). Further,
for simplicity we restrict ourselves to a uniform partition of [0, T ] with step size τ . Assuming that
the resulting approximation satisfies the constraint in every step, we have un −B−

Agn ∈ Vker ↪→ Hker
such that the semigroup e−τAker is applicable.

The derived formula (9.4) is beneficial for the numerical analysis, but its practical utility depends
on the evaluation of the ϕ-functions. In Subsection 9.4.1 we explain a direct implementation.
If e−τAker is simple to evaluate, the method described in the following section is more favorable.

9.1.1. An Algorithm

Since the evaluation of the ϕ-functions with the operator Aker is not straightforward, we reformulate
the method in terms of saddle point problems. Furthermore, we need evaluations of B−

A applied to
the right-hand side g or its time derivative.

Corollary 3.9 shows that these evaluations of B−
A can be replaced by the solution of a saddle point

problem. As a reminder, for given gn ∈ Q∗, the vector un,c = B−
Agn ∈ Vc ⊆ V is equal to the partial

solution of

Aun,c − B∗ν = 0 in V∗, (9.5a)
Bun,c = gn in Q∗. (9.5b)

Analogously one calculates u̇n,c = u̇c(tn) = B−
Aġn. The Lagrange multiplier ν in (9.5) is not of

particular interest and simply serves as a dummy variable. For a saddle point problem, which
can be used to approximate the Lagrange multiplier λ(tn) for a given un ≈ u(tn), we refer to
Subsection 9.3.2.2.

Being able to compute B−
Agn and B−

Aġn, we are now interested in the solution of problems involving
the operator Aker. This is helpful for the reformulation of the exponential Euler method (9.4). We
introduce the auxiliary variable wn ∈ Vker as the solution of

Akerwn = f(tn, un)− u̇c(tn) = f(tn, un)− B−
Aġn in V∗

ker.

Then wn is again equivalent to a partial solution of a stationary saddle point problem, namely

Awn − B∗νn = f(tn, un)− B−
Aġn in V∗, (9.6a)

Bwn = 0 in Q∗. (9.6b)

As for (9.5), the Lagrange multiplier is only introduced for a proper formulation and not of particular
interest in the following. The unique solvability of system (9.6) follows by Theorem 3.8, since
f(tn, un)− B−

Aġn ∈ V∗. In order to rewrite (9.4), we further note that the recursion formula (5.8)
for ϕ1 implies

τϕ1(−τAker)h = −
[︁
ϕ0(−τAker)− id

]︁
A−1

kerh

for all h ∈ H∗
ker
∼= Hker. Recall that Aker is indeed invertible due to Assumption 9.2.ii). Thus, the

exponential Euler scheme can be rewritten as

un+1 = B−
Agn+1 + ϕ0(−τAker)

(︁
un − B−

Agn − wn

)︁
+ wn.

Finally, we need a way to compute the action of ϕ0(−τAker). For this, we consider the underlying
operator DAE formulation,

ż(t) + Az(t) − B∗µ(t) = 0 in V∗, (9.7a)
Bz(t) = 0 in Q∗ (9.7b)
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9. Exponential Integrators

with initial condition z(tn) = un − B−
Agn − wn. The resulting method then reads un+1 = B−

Agn+1 +
z(tn+1) + wn. Thus, the exponential Euler scheme given in (9.4) can be computed by solving a
number of saddle point problems. We summarize the necessary steps in Algorithm 1.

Algorithm 1 Exponential Euler Scheme for Operator DAE (9.1)
1: Input: step size τ , consistent initial data u0 ∈ V, right-hand sides f , g with gn := g(tn) and
ġn := ġ(tn)

2: for n = 0 to N − 1 do
3: compute B−

Agn, B−
Agn+1, and B−

Aġn by (9.5)
4: compute wn by (9.6)
5: compute z as solution of (9.7) on [tn, tn+1] with initial data un − B−

Agn − wn

6: set un+1 = B−
Agn+1 + z(tn+1) + wn

7: end for

Remark 9.4. One step of the exponential Euler scheme consists of the solution of three (in the first
step four) stationary – twice (9.5) and once (9.6) – and a single transient saddle point problem (9.7),
including only one evaluation of the nonlinear function f in total. We emphasize that all these
systems are linear such that no Newton iteration is necessary in the solution process. Furthermore,
the time-dependent system (9.7) is homogeneous such that it can be solved without the need of a
regularization; cf. Remark 7.6.

9.1.2. Convergence Analysis
In this section we analyze the convergence order of the exponential Euler method for constrained
PDEs of parabolic type (9.1). For the unconstrained case it is well-known that the convergence order
is one, see e.g. [HocO05a, Sec. 4.2]. Since our approach is based on the unconstrained PDE (9.2)
of the dynamical part in Vker, we expect the same order for the solution of Algorithm 1. For the
associated proof we assume that the approximation un lies within a strip of radius r around u,
where f is locally Lipschitz continuous with constant L > 0. By Lemma 6.18 there exists such a
uniform radius and local Lipschitz constant. Furthermore, a sufficiently small step size τ guarantees
that un stays within this strip around u, since the solution z of (9.7) and B−

Ag are continuous by
Theorem 6.9 and 3.38.

Theorem 9.5 (Exponential Euler). Suppose that Assumptions 9.1–9.3 are fulfilled and u0 ∈ V is
consistent, i.e., Bu0 = g(0). Further, let the step size τ be sufficiently small such that the derived
approximation un lies within a strip along u, in which f is locally Lipschitz continuous with a
uniform constant L > 0. For the right-hand side of the constraint we assume g ∈ H2(0, T ;Q∗). If
the exact solution of (9.1) satisfies d

dtf(·, u(·)) ∈ L2(0, T ;H∗), then the approximation un obtained
by the exponential Euler scheme of Algorithm 1 satisfies

∥un − u(tn)∥2
V ≲ τ2

∫︂ tn

0
∥ d

dtf(t, u(t))∥2
H∗ + ∥B−

Ag̈(t)∥2
H∗ dt.

The involved constant only depends on tn, L, and the operator A.

Proof. With the constant wn and function z from (9.6) and (9.7), respectively, we define v(t) :=
z(t) + wn + B−

Ag(t) for t ∈ [tn, tn+1], n = 0, . . . , N − 1. This function satisfies

v(tn) = z(tn) + wn + B−
Agn = un and v(tn+1) = z(tn+1) + wn + B−

Agn+1 = un+1.
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Furthermore, since v̇(t) = ż(t) + B−
Aġ(t), the function v solves the operator DAE

v̇(t) + Av(t) − B∗γ(t) = f(tn, un) + B−
A(ġ(t)− ġn) in V∗,

Bv(t) = g(t) in Q∗

on [tn, tn+1], n = 0, . . . , N−1 with initial value v(t0) = u0. To shorten notation we define ∆u := u−v
and ∆λ := λ− γ, which satisfy

d
dt ∆u + A1∆u − B∗∆λ = f(·, u(·))− f(tn, un)−A2∆u− B−

A
(︁
ġ − ġn

)︁
in V∗,

B∆u = 0 in Q∗

on each interval [tn, tn+1] with initial value ∆u(t0) = 0 if n = 0 and ∆u(tn) = u(tn)− un otherwise.
In the following, we derive estimates of ∆u on all sub-intervals. For this, we assume without loss of
generality that the operator A1 is elliptic on Vker with ellipticity constant µA1 ; see page 31. Starting
with n = 0, by Theorem 4.25 with t = t1 = τ and ω := 2C2

A2
µ−1

A1
we obtain the bound

∥u(t1)− u1∥2
A1

(4.26)
≤ 2 exp(ωτ)

∫︂ τ

0

⃦⃦⃦ ∫︂ s

0

d
dηf(η, u(η))− B−

Ag̈(η) dη
⃦⃦⃦2

H∗
ds

≤ 2 exp(ωτ)
∫︂ τ

0
s

∫︂ s

0
∥ d

dηf(η, u(η))− B−
Ag̈(η)∥2

H∗ dη ds

≤ 2 exp(ωτ)τ2
∫︂ τ

0
∥ d

dsf(s, u(s))∥2
H∗ + ∥B−

Ag̈(s)∥2
H∗ ds⏞ ⏟⏟ ⏞

=: I( d
dt f, g̈, 0, t1)

.

(9.8)

With the uniform Lipschitz constant L we have for n ≥ 1 that∫︂ tn+1

tn

∥f(s,u(s))− f(tn, un)∥2
H∗ ds

≤ 2
∫︂ tn+1

tn

∥f(tn, u(tn))− f(tn, un)∥2
H∗ + ∥f(s, u(s))− f(tn, u(tn))∥2

H∗ ds

≤ 2 τ L2

µA1
∥u(tn)− un∥2

A1
+ 2

∫︂ tn+1

tn

(s− tn)
∫︂ s

tn

∥ d
dηf(η, u(η))∥2

H∗ dη ds.

This estimate together with Young’s inequality (3.8) lead to the bound

∥u(tn+1)− un+1∥2
A1
≤ exp(ωτ)

[︂(︁
1 + 3 τ L2

µA1

)︁
∥u(tn)− un∥2

A1
+ 3 τ2 I

(︁ d
dtf, g̈, tn, tn+1

)︁]︂
(9.9)

similarly as in (9.8). With (1 + x) ≤ exp(x), estimate (9.8), and an iterative application of the
estimate (9.9) we get

∥u(tn+1)− un+1∥2
A1
≤ τ2 3

n∑︂
k=0

exp(ωτ)n+1−k
(︁
1 + 3 τ L2

µA1

)︁n−k I
(︁ d

dtf, g̈, tk, tk+1
)︁

≤ τ2 3 exp(ω tn+1) exp
(︁
3 L2

µA1
tn
)︁
I
(︁ d

dtf, g̈, 0, tn+1
)︁

for all n = 0, . . . , N − 1. The stated estimate finally follows by the equivalence of ∥ · ∥V and ∥ · ∥A1

on Vker; see (4.25).

Remark 9.6. Since ϕ0(−At) is calculated exactly, the assumption of Theorem 9.5 on the step size τ
depends not on the operator A but only on the nonlinearity f such that the approximation stays
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inside the strip along u. Thus, the step size does not depend on the stiffness of the system and is
still allowed to be large.
Remark 9.7. In the case of a self-adjoint operator A, i.e., A2 = 0, the convergence result can
also be proven by the restriction to test functions in Vker and the application of corresponding
results for the unconstrained case, namely [HocO10, Th. 2.14]. This requires similar assumptions
but with d2

dt2 f(·, u(·)) ∈ L∞(0, T ;H∗). Anyway, we like to emphasize that this procedure is also
applicable if A2 ̸= 0 by moving A2 into the nonlinearity f . This, however, slightly changes the
proposed scheme, since then only A2un enters the approximation instead of A2u(t). In practical
applications this would also need to find the symmetric part of the differential operator A, which is
still elliptic on Vker.

9.2. Two-Stage Methods
This section is devoted to the construction of an explicit exponential integrator with two stages
and an order of one and a half for constrained parabolic systems. In particular, we aim to transfer
the method given in [StrWP12, Exp. 11.2.2] to the operator DAE (9.1). This explicit exponential
integrator is described by its Butcher tableau

0
1 ϕ1

ϕ1 − ϕ2 ϕ2

(9.10)

and is a special case of the exponential Runge methods from Subsection 9.2.3. In the unconstrained
case, i.e., for v̇ +Akerv = f̃(t, v) in V∗

ker, one step of this method is defined through

vEul
n+1 := ϕ0(−τAker)vn + τϕ1(−τAker)f̃(tn, vn), (9.11a)
vn+1 := vEul

n+1 + τϕ2(−τAker)
[︁
f̃(tn+1, v

Eul
n+1)− f̃(tn, vn)

]︁
. (9.11b)

Similarly as for the exponential Euler method, we define a number of auxiliary problems in order to
obtain an applicable method for parabolic systems with constraints.

9.2.1. An Algorithm
We translate the numerical scheme (9.11) to the constrained case. Let un denote the given ap-
proximation of u(tn). Then the first step is to perform one step of the exponential Euler method,
cf. Algorithm 1, leading to uEul

n+1. Second, we compute w′
n as the solution of the stationary problem

Aw′
n − B∗ν′

n = f(tn+1, u
Eul
n+1)− B−

Aġn+1 − f(tn, un) + B−
Aġn in V∗, (9.12a)

Bw′
n = 0 in Q∗ (9.12b)

and w′′
n as the solution of

Aw′′
n − B∗ν′′

n = 1
τw

′
n in V∗, (9.13a)

Bw′′
n = 0 in Q ∗ . (9.13b)

Note that, due to the recursion formula (5.8), w′
n and w′′

n satisfy the identity

τϕ2(−τAker) ιker
[︁
f(tn+1, u

Eul
n+1)− B−

Aġn+1 − f(tn, un) + B−
Aġn

]︁
= −ϕ1(−τAker)w′

n + w′
n

= ϕ0(−τAker)w′′
n − w′′

n + w′
n.
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It remains to compute ϕ0(−τAker)w′′
n and thus, to consider the homogeneous system (9.7) on the

time interval [tn, tn+1] with initial value z(tn) = w′′
n. The solution z at time tn+1 then defines the

new approximation by
un+1 := uEul

n+1 + z(tn+1)− w′′
n + w′

n.

Note that the consistency is already guaranteed by the exponential Euler step, which yields Bun+1 =
BuEul

n+1 = gn+1. The resulting exponential integrator is summarized in Algorithm 2.

Algorithm 2 Exponential Integrator (9.10) for Operator DAE (9.1)
1: Input: step size τ , consistent initial data u0 ∈ V , right-hand sides f , g with ġn := ġ(tn)

2: for n = 0 to N − 1 do
3: compute with Algorithm 1 one step of the exponential Euler method for un leading to uEul

n+1
4: compute B−

Aġn and B−
Aġn+1 by (9.5)

5: compute w′
n by (9.12)

6: compute w′′
n by (9.13)

7: compute z as solution of (9.7) on [tn, tn+1] with initial condition z(tn) = w′′
n

8: set un+1 = uEul
n+1 + z(tn+1)− w′′

n + w′
n

9: end for

9.2.2. Convergence Analysis
In this subsection we investigate the convergence order of Algorithm 2 when applied to operator DAEs
of the form (9.1). For PDEs it is well-known that the exponential integrator given by the Butcher
tableau (9.10) has a convergence order of one and a half if we assume d2

dt2 f(·, u(·)) ∈ L∞(0, T ;H∗);
cf. [HocO05a, Th. 4.3]. This carries over to the operator DAE case.

Theorem 9.8 (Two-Stage Method). Suppose that Assumptions 9.1–9.3 are fulfilled and u0 ∈ V
is consistent, i.e., Bu0 = g(0). Let the step size τ be sufficiently small such that the discrete
solution un and the internal stage uEul

n lie in a strip along u, where f is locally Lipschitz continuous
with a uniform constant L > 0. Further assume g ∈ H3(0, T ;Q∗). If the exact solution of (9.1)
satisfies f( · , u( · )) ∈ H2(0, T ;H∗), then the approximation un obtained by Algorithm 2 satisfies the
error bound

∥un − u(tn)∥2
V ≲

∫︂ tn

0
τ3(︁∥ d

dtf(t, u(t))∥2
H∗ + ∥B−

Ag̈(t)∥2
H∗

)︁
+ τ4(︁∥ d2

dt2 f(t, u(t))∥2
H∗ + ∥B−

A
d3

dt3 g(t)∥2
H∗

)︁
dt.

The involved constant only depends on tn, L, and the operator A.

Proof. Let vEul be the function constructed in the proof of Theorem 9.5, which satisfies vEul(tn) = un

and vEul(tn+1) = uEul
n+1, and set v(t) := vEul(t)+z(t)−w′′

n + t−tn

τ w′
n with z as in Step 7 in Algorithm 2.

This function satisfies

v(tn) = vEul(tn) = un, v(tn+1) = vEul(tn+1) + z(tn+1)− w′′
n + w′

n = un+1.

Note that the estimates (9.8) and (9.9) are still valid if one replaces un+1 by vEul(tn+1) on the
left-hand side of these estimates. As in the proof of Theorem 9.5, we can interpret v as the solution
of an operator DAE on [tn, tn+1]. The corresponding right-hand sides are then given by

f(tn, un) + t−tn

τ

(︁
f(tn+1, v

Eul(tn+1))− f(tn, un)
)︁

+ B−
A
(︁
ġ(t)− ġn − t−tn

τ (ġn+1 − ġn)
)︁
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for the dynamic equation and g(t) for the constraint. By Young’s inequality, Theorem 4.25, and an
error bound of the right-hand side by Taylor expansions we then get

∥u(tn+1)− un+1∥2
A1
≤ exp(ωτ)

[︂(︁
1 + 4τ L2

µA1

)︁
∥u(tn)− un∥2

A1
+ 4 τ L2

µ ∥(u− v
Eul)(tn+1)∥2

A1

+ τ4
∫︂ tn+1

tn

2
15 ∥

d2

dt2 f(t, u(t))∥2
H + 2

45 ∥B
−
A

d3

dt3 g(t)∥2
H dt

]︂
with ω = 2C2

A2
µ−1

A1
. The stated error bound then follows by an iterative application of the previous

estimate together with the estimates (9.8), (9.9) and the norm equivalence of ∥ · ∥V and ∥ · ∥A1 .

In Subsection 9.3.2 we prove that the convergence order can improve to two if t ↦→ f(t, u(t)) and
its derivatives map into V. The authors of [HocO05a] analyze the PDE case where t ↦→ f(t, u(t))
maps into a interpolation space [V,H]θ, θ ∈ [0, 1]; see [LioM72, Ch. 1, Sec. 2] for an introduction
of interpolation spaces. The convergence rate then is 4−θ

2 . We close this section with remarks on
alternative two-stage schemes.

9.2.3. Exponential Runge Methods
The analyzed scheme (9.10) is a special case of a one-parameter family of exponential Runge-Kutta
methods described by the tableau

0
c2 c2ϕ1,2

ϕ1 − 1
c2
ϕ2

1
c2
ϕ2

(9.14)

with positive parameter c2 > 0; cf. [HocO10]. Here, ϕ1,2(·) is defined by ϕ1(c2 ·); see (5.11). The
members of the family are called exponential Runge methods. Note that, for c2 > 1 we must
assume that f and t ↦→ f(t, u(t)) have regular extension for t > T ; cf. Theorem 8.37. However, we
regain (9.10) for c2 = 1. For c2 ̸= 1, the resulting scheme for constrained systems calls for two
additional saddle point problems in order to compute B−

Ag(tn + c2τ) and B−
Aġ(tn + c2τ). This then

leads to an exponential integrator summarized in Algorithm 3 with the abbreviations

gn,2 := g(tn + c2τ), ġn,2 := ġ(tn + c2τ), tn,2 := tn + c2τ.

We emphasize that the convergence result of Theorem 9.8 transfers to this family of integrators.

Algorithm 3 Exponential Runge Integrators for Operator DAE (9.1)
1: Input: step size τ , consistent initial data u0 ∈ V, right-hand sides f , g with gn := g(tn),
gn,2 := g(tn + c2τ), ġn := ġ(tn), ġn,2 := ġ(tn + c2τ)

2: for n = 0 to N − 1 do
3: compute B−

Agn, B−
Agn,2, B−

Agn+1, B−
Aġn, B−

Aġn,2, and B−
Aġn+1 by (9.5)

4: compute wn by (9.6)
5: solve (9.7) on [tn, tn,2] with initial condition z(tn) = un − B−

Agn − wn

6: set un,2 = z(tn,2) + wn + B−
Agn,2

7: compute w′
n by (9.12) with right-hand side 1

c2

(︁
f(tn,2, un,2)− f(tn, un)− B−

Aġn,2 + B−
Aġn

)︁
8: compute w′′

n by (9.13)
9: solve (9.7) on [tn, tn+1] with initial condition z(tn) = un − B−

Agn − wn + w′′
n

10: set un+1 = z(tn+1) + wn + w′
n − w′′

n + B−
Agn+1.

11: end for
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9.3. Order Conditions for Schemes of Order up to Three
In the previous two sections we constructed explicit exponential integrators of convergence order up
to one and a half. The associated proofs needed the local Lipschitz continuity of the nonlinearity
but nothing more. In [HocO05b] the authors prove under the same condition the existence of
so called exponential Runge-Kutta method of collocation type of arbitrary order. However, the
investigated methods are of collocation type and therefore implicit [AscP98, p. 101]. In this thesis
we are interested in explicit exponential integrators. In this case, we have to assume more regularity
of f and t ↦→ f(t, u(t)) if we want to overcome the bound of one and a half as convergence order.
For semi-linear PDEs with a nonlinearity with domain [0, T ]×H the necessity of this additional
assumption is investigated in [HocO05a, Sec. 4.4].
Assumption 9.9. Let the function t ↦→ f(t, u(t)) be sufficiently many times differentiable with images
in H∗. Suppose f is sufficiently many times Fréchet-differentiable with uniform bounded derivatives
in a strip along the solution u.

Before we can analyze the order of exponential integrators of higher order for operator DAEs we
have to investigate the unconstrained case.

9.3.1. Operator Differential Equations
In this subsection we consider the semi-linear operator ODE

u̇(t) +Au(t) = f(t, u(t)) in V∗ (9.15)

and its temporal discretization by an arbitrary explicit exponential integrator. The approximation un

and the internal stages Un,i are determined by (5.10), i.e.,

un+1 = e−τAun + τ

s∑︂
i=1

bi(−τA)f(tn + ciτ, Un,i) (9.16a)

Un,i = e−ciτAun + τ

i−1∑︂
j=1

ai,j(−τA)f(tn + cjτ, Un,j), (9.16b)

i = 1, . . . , s. Here, ci ∈ R≥0 and the functions bi, ai,j are given by the Butcher tableau (5.12). For
the sake of simplicity, we assume in Section 9.3 that ci ≤ 1. Otherwise, we have to extend the
function f for t > T .

The main goal is to estimate the global error

en := un − u(tn). (9.17)

For our investigation we combine the main ideas of [HocO05a] and [LuaO14a]. We want to point
out that the authors of [HocO05a; LuaO14a] study the order condition of exponential integrators
with convergence order higher than two for the special case that the non-linearity f maps from
[0, T ]×H to H and where the error is measured in the H-norm. We overcome this restriction in our
investigation.

In the following, we make use of the local approximation

ˆ︁un+1 = e−τAu(tn) + τ

s∑︂
i=1

bi(−τA)f(tn + ciτ, ˆ︁Un,i), (9.18)

i.e., instead of making one step with un as starting value we use u(tn). The associated internal
stages ˆ︁Un,i are analogously defined by (9.16b). In addition to the global errors (9.17), we introduce
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the differences

˜︁en+1 := un+1 − ˆ︁un+1, ˆ︁en+1 := ˆ︁un+1 − u(tn+1), ˆ︁En,i := ˆ︁Un,i − u(tn + ciτ). (9.19)

Since en+1 = ˜︁en+1 + ˆ︁en+1, we can treat the two parts ˜︁en+1 and ˆ︁en+1 separately. Furthermore, we
introduce for a shorter notation

fu(t) = f(t, u(t)).

Let us start with the local error ˆ︁en+1. As a first step, we represent the exact solution by the
variation-of-constants formula

u(tn+1) = e−τAu(tn) +
∫︂ τ

0
e−(τ−s)Afu(tn + s) ds.

A Taylor expansion of fu(tn + s) around tn gives us the representation

u(tn+1) = e−τAu(tn) +
q∑︂

j=1
τ jϕj(−τA)f (j−1)

u (tn) +
∫︂ τ

0
e−(τ−s)A

∫︂ s

0

(s− η)q−1

(q − 1)! f (q)
u (tn + η) dη ds.

(9.20)
On the other hand, if we insert the analytic solution u in our numerical scheme and use again a

Taylor expansion we get with a defect Rn+1 the identity

u(tn+1)

= e−τAu(tn) + τ

s∑︂
i=1

bi(−τA)fu(tn + ciτ) +Rn+1 (9.21)

= e−τAu(tn) +
s∑︂

i=1
bi(−τA)

[︃ q∑︂
j=1

τ j cj−1
i

(j − 1)!f
(j−1)
u (tn) + τ

∫︂ ciτ

0

(ciτ − s)q−1

(q − 1)! f (q)
u (tn + s) ds

]︃
+Rn+1.

With the ω-functions defined as

ωj(−τA) := ϕj(−τA)−
s∑︂

i=1
bi(−τA) cj−1

i

(j − 1)! , (9.22)

j = 1, 2, . . ., the expansions (9.20) and (9.21) of u(tn+1) leads to the representation of the defect as

Rn+1 =
q∑︂

j=1
τ jωj(−τA)f (j−1)

u (tn) +R
[q]
n+1.

The remaining integrals R[q]
n+1 are

R
[q]
n+1 =

∫︂ τ

0
e−(τ−s)A

∫︂ s

0

(s− η)q−1

(q − 1)! f (q)
u (tn+η) dη ds−τ

s∑︂
i=1

bi(−τA)
∫︂ ciτ

0

(ciτ − s)q−1

(q − 1)! f (q)
u (tn+s) ds.

Analogously we can rewrite the internal stages by

u(tn + ciτ) = e−ciτAu(tn) + τ

i−1∑︂
j=1

ai,j(−τA)fu(tn + cjτ) +Rn,i, (9.23)

where we expand the defect Rn,i as
∑︁r

k=1 τ
kψk,i(−τA)f (k−1)

u (tn) + R
[r]
n,i. The function ψk,i are
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defined as

ψk,i(−τA) := ϕk(−ciτA)ck
i −

i−1∑︂
ℓ=1

ai,ℓ(−τA) ck−1
ℓ

(k − 1)! (9.24)

and the remainder R[r]
n,i is given by

R
[r]
n,i =

∫︂ ciτ

0
e−(ciτ−s)A

∫︂ s

0

(s− η)r−1

(r − 1)! f (r)
u (tn + η) dη ds

− τ
i−1∑︂
j=1

ai,j(−τA)
∫︂ cjτ

0

(cjτ − s)r−1

(r − 1)! f (r)
u (tn + s) ds. (9.25)

We determine bounds for the two remainders R[r]
n+1 and R[r]

n,i, which we use later in this subsection
for the order conditions. Note that, we use the assumption ci ≤ 1 in the following lemma.

Lemma 9.10. Let A ∈ L (V,V∗) be elliptic and satisfy Assumption 9.2.i). Suppose that the
right-hand side f (r)

u is an element of L∞(0, T ;H∗). Then the remainders R[r]
n+1 and R[r]

n,i satisfy⃦⃦
R

[r]
n,i

⃦⃦
H ≲ τ r+1 ess sup

ζ∈[0,1]

⃦⃦
f (r)

u (tn + τζ)
⃦⃦

H∗ , (9.26)

√
τ
⃦⃦
R

[r]
n,i

⃦⃦
V ≲ (1 +

√
τ)τ r+1 ess sup

ζ∈[0,1]

⃦⃦
f (r)

u (tn + τζ)
⃦⃦

H∗ , (9.27)⃦⃦⃦⃦ n∑︂
j=0

e−τ(n−j)AR
[r]
j+1

⃦⃦⃦⃦
V
≲ τ r (

√︁
tn+1 + tn+1) ess sup

t∈[0,tn+1]

⃦⃦
f (r)

u (t)
⃦⃦

H∗ . (9.28)

If f (r)
u ∈ L∞(0, T ;V), then (9.27) improves to

⃦⃦
R

[r]
n,i

⃦⃦
V ≲ τ r+1 ess supζ∈[0,1]

⃦⃦
f

(r)
u (tn + τζ)

⃦⃦
V .

Proof. For the estimates of R[r]
n,i we note that the first term in (9.25) can be estimated with the

same tricks as in the proof of Lemma 5.11. For this, one considers the underlying operator ODE
with homogeneous initial value and right-hand side

∫︁ t

0
(t−s)r−1

(r−1)! f
(r)
u (tn + s) ds. The bounds for the

second term in the expression (9.25) of R[r]
n,i is a consequence of Lemma 5.11.d)–f). Analogously

one shows that the remainder R[r]
n+1 satisfies upper bounds analogous to (9.26) and (9.27). With

Lemma 5.11, we get⃦⃦⃦⃦ n∑︂
j=0

e−τ(n−j)AR
[r]
j+1

⃦⃦⃦⃦
V
≤

n−1∑︂
j=0

t
−1/2
n−j

⃦⃦
t

1/2
n−je

−τ(n−j)A⃦⃦
L (H,V)

⃦⃦
R

[r]
j+1
⃦⃦

H +
⃦⃦
R

[r]
n+1
⃦⃦

V

≲

(︄
τ

n−1∑︂
j=0

t
−1/2
n−j +

√
τ + tn+1

)︃
· τ r ess sup

t∈[0,tn+1]

⃦⃦
f (r)

u (t)
⃦⃦

H∗ .

For the term in the parentheses we note that tj+1 ≤ 2tj , j = 1, . . . , n. This and the monotonicity of
t ↦→ 1/

√
t lead to

1√
2

(︃√
τ + τ

n−1∑︂
j=0

t
−1/2
n−j

)︃
≤
√
τ + τ

n−1∑︂
j=0

t
−1/2
n+1−j = τ

n+1∑︂
j=1

t
−1/2
j ≤

∫︂ tn+1

0

1√
s

ds = 2
√︁
tn+1. (9.29)

With the expression (9.18) of the local approximation ˆ︁un+1 and the expansion (9.21) of the
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solution un+1 with defect Rn+1 we get the expression for the local error

ˆ︁en+1 = ˆ︁un+1 − u(tn+1) = τ

s∑︂
i=1

bi(−τA)(f(tn + ciτ, ˆ︁Un,i)− fu(tn + ciτ))−Rn+1. (9.30)

To obtain a formulation of the difference of the nonlinearity in (9.30) we can use the local error of
the internal stages ˆ︁En,i and the expansion

f(tn + ciτ, ˆ︁Un,i)− fu(tn + ciτ) = Jn
ˆ︁En,i + τciKn

ˆ︁En,i + ˆ︁Qn,i, (9.31)

with the Fréchet derivatives

Jn = ∂

∂u
f(tn, u(tn)) and Kn = ∂2

∂t∂u
f(tn, u(tn)).

If ˆ︁En,i is small enough, then the linear operators Jn and Kn map continuously from V to H∗

and the defect ˆ︁Qn,i ∈ H∗ is bounded by ∥ ˆ︁Qn,i∥H∗ ≲ (c2
i τ

2 + ∥ ˆ︁En,i∥V)∥ ˆ︁En,i∥V by Assumption 9.9;
cf. [HocO05a, Lem. 4.4]. As the last preparation step, we introduce some notation, such that we can
describe the local error of the whole step and of the internal stages in a compact way. Therefore, we
introduce the expressions

ˆ︁En :=

⎡⎢⎣
ˆ︁En,1

...ˆ︁En,s

⎤⎥⎦ ∈ Vs, Rn :=

⎡⎢⎣Rn,1
...

Rn,s

⎤⎥⎦ ∈ Vs, ˆ︁Qn :=

⎡⎢⎣
ˆ︁Qn,1

...ˆ︁Qn,s

⎤⎥⎦ ∈ Hs.

The notation A and b are short notations for A(−τA) and b(−τA), respectively, from the Butcher
tableau (5.12) and Jn and Kc

n are the block operators

Jn :=

⎡⎢⎣Jn

. . .
Jn

⎤⎥⎦ ∈ L (Vs,H∗
s), Kc

n :=

⎡⎢⎣c1Kn

. . .
csKn

⎤⎥⎦ ∈ L (Vs,H∗
s).

This allows us to express the local error ˆ︁en+1 = ˆ︁un+1 − u(tn+1) in a compact manner.

Lemma 9.11. Let Assumption 9.9 be satisfied. Suppose that A ∈ L (V,V∗) is elliptic and satisfies
Assumption 9.2.i). Let the step size τ be sufficiently small such that the local approximation ˆ︁un+1
and the local internal stages ˆ︁Un,i lie in a strip along u, where f is locally Lipschitz continuous with
a uniform constant L ≥ 0. Then the local error ˆ︁en+1 defined as in (9.19) can be expressed as

ˆ︁en+1 = τ ˆ︁Sn − τbT
s−1∑︂
k=0

((Jn + τKc
n)τA)k(Jn + τKc

n)Rn −Rn+1,

where ˆ︁Sn is an element of V with bounds
√
τ∥ˆ︁Sn∥V + ∥ˆ︁Sn∥H ≲ (τ2 + ∥Rn∥Vs

)∥Rn∥Vs
+ h.o.t. (9.32)

The higher order terms are all bounded, positive, and terms with higher powers of τ .

Proof. To show the assertion we make use of the representation (9.30) of the local error ˆ︁en+1. Note
that ˆ︁en+1 is a function of the local error of the internal stages ˆ︁En,i, i = 1, . . . , s, by the presence of
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the nonlinearity. By the definition of ˆ︁Un,i and the expression (9.23) we have

ˆ︁En,i = τ

i−1∑︂
j=2

ai,j(−τA)(f(tn + ciτ, ˆ︁Un,j)− fu(tn + ciτ))−Rn,i.

Expanding the nonlinearity f by (9.31), the error ˆ︁En,i is implicitly given by

ˆ︁En = τA(Jn + τKc
n)ˆ︁En + τAQn −Rn.

Since the exponential integrator scheme is explicit, the block operators
√
τAJn,

√
τAKc

n ∈ L (Vs)
are strictly lower triangular. By a successive application of the last representation of ˆ︁En we get

ˆ︁En =
s−1∑︂
k=0

(τA(Jn + τKc
n))k(τAQn −Rn). (9.33)

On the other hand, we can use the local Lipschitzity of f , Lemma 5.11, and that the method is
explicit, which implies ˜︁En,1 = ˆ︁en = 0, such that

∥ ˆ︁En,i∥V ≤
i−1∑︂
j=2

√
τL∥
√
τai,j(−τA)∥L (H∗,V)∥ ˆ︁En,j∥V + ∥Rn,i∥V ≲

i−1∑︂
j=2

(
√
τ + τ)L∥ ˆ︁En,j∥V + ∥Rn,i∥V .

Here, we used that f has images in H∗. With this bound and an induction argument over i = 1, . . . , s,
one shows ∥ ˆ︁En,i∥V ≲ ∥Rn,i∥V + h.o.t., where the higher order terms are all positive with higher
powers of τ . This then implies

∥ ˆ︁Qn,i∥H∗ ≲ (c2
i τ

2 + ∥Rn,i∥V)∥Rn,i∥V + h.o.t. (9.34)

Let us come back to local error ˆ︁en+1. With the formulation (9.30) and with the reformulation of
the local internal error (9.33) we have the identity

ˆ︁en+1
(9.30)= τ

s∑︂
i=1

bi(−τA)(f(tn + ciτ, ˆ︁Un,i)− fu(tn + ciτ))−Rn+1

(9.31)= τbT ((Jn + τKc
n)ˆ︁En + Qn)−Rn+1

(9.33)= τ

s−1∑︂
k=0

bT ((Jn + τKc
n)τA)kQn − τbT

s−1∑︂
k=0

((Jn + τKc
n)τA)k(Jn + τKc

n)Rn −Rn+1.

We define τ ˆ︁Sn as the first sum of the right-hand side. Lemma 5.11 and the estimate (9.34) then
yield the desired statement.

For the difference ˜︁en+1 = un+1 − ˆ︁un+1 between the global approximation un+1 and the local
one ˆ︁un+1 we get a similar result.

Lemma 9.12. Let the difference ˜︁en+1 be given as in (9.19) and en be the global error (9.17). Suppose
that A ∈ L (V,V∗) is elliptic and satisfies Assumption 9.2.i). Further, let the step size τ be sufficiently
small such that the derived local and global approximation and their associated internal stages lie
within a strip along u in which f is locally Lipschitz continuous with a uniform constant L > 0.
Then ˜︁en+1 satisfies ˜︁en+1 = e−τAen + τ ˜︁Sn
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with an element ˜︁Sn ∈ V, which fulfills

∥˜︁Sn∥H ≲ ∥en∥V + h.o.t. and
√
τ∥˜︁Sn∥V ≲ (1 +

√
τ)(∥en∥V + h.o.t.). (9.35)

Here, the higher order terms are all positive and of the form τp/2 ∥en∥V , p > 1.

Proof. Following the steps of the proof of Lemma 9.11, we get for the difference of the internal stages˜︁En,i = Un,i − ˆ︁Un,i, i = 1, . . . , s, the estimate

∥ ˜︁En,i∥V ≲ ∥en∥V + L

i−1∑︂
j=1
∥τai,j(−τA)∥L (H∗,V)∥ ˜︁En,j∥V ≲ ∥en∥V + (

√
τ + τ)L

i−1∑︂
j=1
∥ ˜︁En,j∥V .

Note that in contrast to the estimate of ∥ ˆ︁En,i∥V the difference of the first terms in the definition
of internal stages, i.e., e−ciτA(un − u(tn)), does not vanish. Anyway, the bound of ∥ ˜︁En,i∥V and an
induction argument over i = 1, . . . , s proves ∥ ˜︁En,i∥V ≲ ∥en∥V + h.o.t.

Inserting the definition of global un+1 and local approximations ˆ︁un+1, i.e., (9.16a) and (9.18),
respectively, into ˜︁en+1 = un+1 − ˆ︁un+1 we get the identity

˜︁en+1 = e−τA(un − u(tn)) + τ
s∑︂

i=1
bi(−τA)(f(tn + ciτ, Un,i)− f(tn + ciτ, ˆ︁Un,i)) = e−τAen + τ ˜︁Sn.

The local Lipschitzity of f and the estimate of ∥ ˜︁En,i∥V imply

∥˜︁Sn∥X ≤ L
s∑︂

i=1
∥bi(−τA)∥L (H∗,X )∥ ˜︁En,i∥V ≲ L

s∑︂
i=1
∥bi(−τA)∥L (H∗,X )(∥en∥V + h.o.t.)

with X ∈ {H,V}. Then the assertion follows by Lemma 5.11.

An important consequence of the previous lemmas 9.11 and 9.12 is the representation of the global
error en+1 as

en+1 =˜︁en+1 + ˆ︁en+1

=e−τAen + τ ˜︁Sn + τ ˆ︁Sn − τbT
s−1∑︂
k=0

((Jn + τKc
n)τA)k(Jn + τKc

n)Rn −Rn+1

= e−τ(n+1)Ae0⏞ ⏟⏟ ⏞
(9.36a)

+ τ

n∑︂
j=0

e−τ(n−j)A ˜︁Sj⏞ ⏟⏟ ⏞
(9.36b)

+ τ

n∑︂
j=0

e−τ(n−j)A ˆ︁Sj⏞ ⏟⏟ ⏞
(9.36c)

− τ
n∑︂

j=0
e−τ(n−j)AbT

s−1∑︂
k=0

((Jj + τKc
j )τA)k(Jj + τKc

j )Rj⏞ ⏟⏟ ⏞
(9.36d)

−
n∑︂

j=0
e−τ(n−j)ARj+1⏞ ⏟⏟ ⏞

(9.36e)

(9.36)

where we applied the second equality successive to get the third one. To get the order conditions for
our exponential integrator we assume that the initial value is correct, i.e., e0 = 0, and we expand the
defects Rj and Rj+1. The resulting order conditions are summarized in Table 9.1. In the following
associated theorem ⌈p⌉ ∈ N denotes for p ∈ R>0 the unique integer, which satisfies p ≤ ⌈p⌉ < p+ 1.

Theorem 9.13 (Order Conditions). Let Assumption 9.9 on the nonlinearity f be satisfied. Suppose
that A ∈ L (V,V∗) is elliptic and satisfies Assumption 9.2.i). Assume that for 1 ≤ p ≤ 3 the order
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9.3. Order Conditions for Schemes of Order up to Three

Table 9.1.: Order conditions for exponential integrators. The function ωi and ψk,i are defined
at (9.22) and (9.24), respectively. Conditions with J or K should hold for all operators
J ,K ∈ L (V,H∗).

No. Order Order condition
1 1 ω1(−τA) = 0
2 1 ψ1,i(−τA) = 0, i = 1, . . . , s

3 3/2 ω2(−τA) = 0

4 2
∑︁s

i=1 bi(−τA)Jψ2,i(−τA) = 0

5 5/2 ω3(−τA) = 0
6 5/2

∑︁s
i,k=1 bi(−τA)J ai,k(−τA)Jψ2,k(−τA) = 0

7 3
∑︁s

i=1 bi(−τA)Jψ3,i(−τA) = 0
8 3

∑︁s
i,k,ℓ=1 bi(−τA)J ai,k(−τA)J ak,ℓ(−τA)Jψ2,ℓ(−τA) = 0

9 3
∑︁s

i=1 bi(−τA)ciKψ2,i(−τA) = 0

conditions in Table 9.1 hold up to order p. Let τ be fixed and sufficiently small such that the discrete
solution un and its internal stages Un,i, i = 1, . . . , s, lie in a strip along u, where f is locally Lipschitz
continuous with a uniform constant L > 0. Then we have

∥un − u(tn)∥V ≲ τp + h.o.t.,

n = 1, . . . , N , where the constant depends on tn, L, A, and ∥f(·, u(·))∥W q,∞(0,tn,H) with q = ⌈p⌉.

Proof. Theorem 4.3 in [HocO05a] shows that the conditions 1, 2, and 3 in Table 9.1 are sufficient
for an exponential integrator to be of order one and a half. With the same steps of the proof one
shows that the order condition No. 1 and 2 imply at least first order of the method.

Therefore, we may assume that the order conditions No. 1, 2, and 3 are fulfilled. In particular, a
consequence of condition 2, i.e., ψ1,i(−τA) = 0, i = 1, . . . , s, is by Lemma 9.10 that

∥Rn,i∥V = ∥R[1]
n,i∥V ≲ τ3/2∥ d

dtfu∥L∞(tn,tn+1;H∗). (9.37)

We now consider the representation (9.36) of the global error and estimate the summands (9.36a)
to (9.36e). Note that the error (9.36) is for the (n+ 1)st step. Anyway, (9.36a) vanishes since we
use the exact initial value, i.e., e0 = 0. By Lemma 5.11 and 9.12 we can bound (9.36b) by⃦⃦⃦⃦

τ

n∑︂
j=0

e−τ(n−j)A ˜︁Sj

⃦⃦⃦⃦
V

≲ τ

n−1∑︂
j=1

(t−1/2
n−j + 1)∥˜︁Sj∥H + τ∥˜︁Sn∥V

(9.35)
≲ τ

n−1∑︂
j=1

(t−1/2
n−j + 1)(∥ej∥V + h.o.t.) + (

√
τ + τ)(∥en∥V + h.o.t.)

≤
√

2(1 +
√︁
tn+1) τ

n∑︂
j=1

t
−1/2
n+1−j(∥ej∥V + h.o.t.),

where we used ˜︁S0 = 0 and tj+1 ≤ 2tj , j = 1, . . . , n. With the same argument for (9.36c) we get⃦⃦⃦⃦
τ

n∑︂
j=0

e−τ(n−j)A ˆ︁Sj

⃦⃦⃦⃦
V

(9.32)
≲
√

2τ
n∑︂

j=0
(t−1/2

n+1−j + 1)(τ2 + ∥Rj∥Vs
)∥Rj∥Vs

+ h.o.t.
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(9.29)
≤
√

2(2
√︁
tn+1 + tn+1) max

j=0,...,n
(τ2 + ∥Rj∥Vs

)∥Rj∥Vs
+ h.o.t.

(9.37)
≤ τ3√2(2

√︁
tn+1 + tn+1)∥ d

dtfu∥2
L∞(0,tn+1;H∗) + h.o.t.

For the term (9.36d) we introduce the vectors ψk = [ψk,1 . . . ψk,s]T ∈ Vs with ψk,i from (9.24),
k = 2, 3. We then bound (9.36d) via⃦⃦⃦⃦

τ

n∑︂
j=0

e−τ(n−j)AbT
s−1∑︂
k=0

((Jj + τKc
j )τA)k(Jj + τKc

j )Rj

⃦⃦⃦⃦
V

≤ τ 3/2

⃦⃦⃦⃦
τ

n∑︂
j=0

e−τ(n−j)AbT Jj

√
τψ2

d
dtfu(tj)

⃦⃦⃦⃦
V

+ τ2
⃦⃦⃦⃦
τ

n∑︂
j=0

e−τ(n−j)AbT Jj

√
τAJj

√
τψ2

d
dtfu(tj)

⃦⃦⃦⃦
V

+ τ
5/2

⃦⃦⃦⃦
τ

n∑︂
j=0

e−τ(n−j)AbT
[︁
Jj

√
τψ3

d2

dt2 fu(tj) + Kc
j

√
τψ2

d
dtfu(tj) +Jj

√
τ(AJj

√
τ)2ψ2

d
dtfu(tj)

]︁⃦⃦⃦⃦
V

+ τ3 ˆ︁Rn. (9.38)

By the same steps as in the proof of Lemma 9.10 one shows⃦⃦⃦⃦
τ

n∑︂
j=0

e−τ(n−j)AbT Jj

√
τψ2

d
dtfu(tj)

⃦⃦⃦⃦
V
≲ (
√︁
tn+1 + tn+1)∥fu∥W q,∞(0,tn+1;H∗) + h.o.t.

with q = 2. The higher order terms are terms with positive integer powers of
√
τ . The next two

summands of the right-hand side of (9.38) can be bounded analogously. The needed regularity q
then is one order higher as in the summands itself, i.e., for the second summand q = 2 and for the
third q = 3. The remainder ˆ︁Rn can be estimated by ˆ︁Rn ≲ (√tn+1 + tn+1)∥fu∥W 3,∞(0,tn+1;H∗) + h.o.t.
For (9.36e) we have by Lemma 9.10 the estimate⃦⃦⃦⃦ n∑︂

j=0
e−τ(n−j)ARj+1

⃦⃦⃦⃦
V

=
⃦⃦⃦⃦ n∑︂

j=0
e−τ(n−j)AR

[r]
j+1

⃦⃦⃦⃦
V

(9.28)
≲ τ r (

√︁
tn+1 + tn+1)∥f (r)

u ∥L∞(0,tn+1;H∗)

with r = 3 if ω3 = 0 and r = 2, otherwise. Finally, the assertion follows directly by the discrete
version of Gronwall’s lemma from [HocO05b, Ch. 4, Lem 4.].

Remark 9.14. The application of the discrete version of Gronwall’s lemma in the last step of the
proof of Theorem 9.13 introduces a constant depending on eLtn . This constant is hidden in the
prefactor in the error estimate. For its determination one possibly could use the exponential decay
of the semigroup e−tA. For the simplest case of an operator DAE (9.1) with a self-adjoint, elliptic A,
i.e., A = A1, discretized with the exponential Euler the error becomes

∥un − u(tn)∥2
V ≤ τ2 2

LCV↪→H

eβtn − 1
β

√
1 + ε

ε
∥ d

dtfu∥2
L∞(0,tn;H∗), (9.39)

if τ is sufficiently small. The sufficiently small upper bound for τ depends on ε > 0 and β =
2
√

1 + εLC−1
V↪→H − 2µAC

−2
V↪→H. The associated proof is similar to the one of Theorem 9.5, where we

consider the operator A− κ id, κ ≤ µAC
−2
V↪→H, and optimize over κ afterwards.

Table 9.1 summarizes the order conditions for the case that f(t, u(t)) ∈ H∗. If the solution u
behaves well such that f(t, u(t)) and its time derivatives are elements of V as well as that the Fréchet
derivatives Jn,Kn ∈ L (V), then the convergence order can increase. For example, condition 1 in
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9.3. Order Conditions for Schemes of Order up to Three

Table 9.2.: Order conditions for exponential integrators if f(t, u(t)) and their derivatives have images
in V . The function ωi and ψk,i are defined at (9.22) and (9.24), respectively. Conditions
with J or K should hold for all operators J ,K ∈ L (V).

No. Order Order condition
1 1 ω1(−τA) = 0

2 2 ψ1,i(−τA) = 0, i = 1, . . . , s
3 2 ω2(−τA) = 0

4 3
∑︁s

i=1 bi(−τA)Jψ2,i(−τA) = 0
5 3 ω3(−τA) = 0

6 4
∑︁s

i,k=1 bi(−τA)J ai,k(−τA)Jψ2,k(−τA) = 0
7 4

∑︁s
i=1 bi(−τA)Jψ3,i(−τA) = 0

8 4
∑︁s

i=1 bi(−τA)ciKψ2,i(−τA) = 0
9 4 ω4(−τA) = 0

Table 9.1 then is already sufficient for a first order method and the conditions 1 to 5 in Table 9.1
would lead to third order. The order conditions for methods up to fourth order then are the same as
in [HocO05a, Tab. 4.1]. They are summarized in Table 9.2. The associated proof is equivalent to the
one of Theorem 9.13, where one uses Lemma 9.10 to improve the estimate of the remainder R[1]

n,i.
The used techniques in this section can only show the conditions for methods of order up to three

and four for f(·, u(·)) having codomain H∗ and V, respectively. By also considering the bilinear
form ∂2f

∂u2 , the authors of [LuaO14a] derived the conditions of methods up to fifth order for an
error in the H-norm if the nonlinearity has domain H. It is possible to adapt this approach to get
higher order methods for our purpose. This, however, is not investigated in this thesis, since the
construction would rely not only on the smoothness of nonlinearity f(t, u(t)) like before but also
of the initial value u0 and the solution u itself; cf. [LuaO14b]. Even in the linear case of operator
DAEs theses smoothness conditions can be very restrictive and hardly practical; cf. [Tem82].

The first order of the one stage exponential Euler of Section 9.1 and order 3/2 of exponential
Runge methods from (9.14) are presented in Table 9.1. Note that there does not exist an exponential
integrator of second order with two stages since in this case the second and fourth condition in
Table 9.1 contradict each other. In [HocO05a, Sec. 5.2] the so-called exponential Heun methods are
introduced. This three-parameter family of three-stage integrators is given by

0
c2 c2ϕ1,2

c3 c3ϕ1,3 − γc2ϕ2,2 − c2
3

c2
ϕ2,3 γc2ϕ2,2 + c2

3
c2
ϕ2,3

ϕ1 − 1+γ
γc2+c3

ϕ2
γ

γc2+c3
ϕ2

1
γc2+c3

ϕ2

(9.40)

with c2, c3, γc2 +c3 ̸= 0 (and c2, c3 ≤ 1). Every scheme of this family satisfies the first four conditions
in Table 9.1 and has therefore convergence order two. The specific choice c2 = c3 = 1 leads to a
minimal number of evaluations of the right-hand side. The authors of [HocO05a] were actually
interested in a three-stage method, which fulfills the first five conditions in Table 9.1 and showed
that such a method does not exist. With a long calculation one can also prove that there is even no
four-stage method that satisfies the first six conditions in Table 9.1. Therefore, a four-stage method
of order 5/2 is not possible. A five-stage method is presented in [HocO05a, Eq. (5.19)].

This subsection is concluded with an investigation of the exponential integrators under pertur-
bations of the right-hand side and the initial value. Recall, that this may then be interpreted as
the error of a spatial discretization; cf. p. 118. For the spatially discretized system the nonlinear-
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ity f(t, u(t)) might be further approximated by model reduction techniques like the discrete empirical
interpolation method [ChaS10]. This introduces additional perturbations of the original right-hand
side f .

Lemma 9.15 (Error under Perturbations). Suppose the assumption of Theorem 9.13 are satisfied.
Assume that there is an error e0 ∈ V in the initial value and the evaluation of the nonlinearity
f(tn + ciτ, Un,i) is perturbed by δn,i ∈ H∗, n = 0, . . . , N − 1, i = 1, . . . , s. Let all perturbations be
small enough such that the discrete solution and its internal stages lie in a strip along u, where f is
locally Lipschitz continuous with a uniform constant. Then the error between the solution and its
numerical approximation is bounded by

∥un − u(tn)∥V ≲ τp +
(︂

1 +
√︂

τ
n

)︂
∥e0∥V + τ

n−1∑︂
j=0

(t−1/2
n−j + 1)

s∑︂
i=1
∥δj,i∥H∗ + h.o.t.,

n = 0, . . . , N , with positive higher order terms.

Proof. We review the proof of Theorem 9.13. At first, we note that the statement of Lemma 9.11 does
not change under perturbations. For Lemma 9.12 we adapt the estimate for the internal stages under
sufficiently small perturbations, which results in ∥ ˜︁En,i∥V ≲ ∥en∥V + (

√
τ + τ)

∑︁i−1
k=1

(︁
L∥ ˜︁En,k∥V +

∥δn,k∥H∗
)︁
. By an induction argument we get ∥ ˜︁En,i∥V ≲ ∥en∥V + (

√
τ + τ)

∑︁i−1
k=1 ∥δn,k∥H∗ + h.o.t.

With the steps of the proof of Lemma 9.12 one shows that ˜︁Sn ∈ V under small perturbations satisfies
the bounds (9.35) with ∥en∥V +

∑︁s
i=1 ∥δn,i∥H∗ instead of ∥en∥V . The assertion then follows by an

adaptation of the proof of Theorem 9.13, where one considers e−(n+1)τAe0 and ˜︁S0 in (9.36) and uses
τt

−1/2
n =

√︁
τ/n.

Remark 9.16. As in Remark 9.14 the estimate under perturbations can be improved, if one takes
the exponential decay of the semigroup e−tA into account. For the exponential Euler with A2 = 0
the error of a perturbed solver can be bounded for small τ and small enough perturbations by
√

1 + εLCV↪→H

2 ∥un − u(tn)∥2
V ≤ τ2 e

βtn − 1
β

(︂
2 + 2

ε

)︂
∥ d

dtfu∥2
L∞(0,tn;H∗)

+ eβtn

(︂
CA +

√
1 + εLCV↪→H

2

)︂
∥e0∥2

V + τ
(︂

1 + 2
ε

)︂ n−1∑︂
j=0

eβtn−j−1∥δj,1∥2
H∗ ,

with β as in (9.39). In particular, β is negative if µA > LCV↪→H and ε > 0 is small enough.

9.3.2. Systems with Linear Constrains
We now return to the analysis of the semi-linear operator DAE (9.1). We explained the steps to get
an approximation of the solution u with exponential integrators in the beginning of this chapter 9.
The main idea is to calculate the part of the solution in {v ∈ V |Av ∈ V0

ker} by the stationary saddle
point problem (9.5) and apply the exponential integrator to the operator ODE (9.2) to approximate
the part in Vker. If the explicit exponential integrator is given by the Butcher tableau (5.12), then
the approximation reads

un+1 = B−
Ag(tn+1) + e−τAker(un − B−

Ag(tn))

+ τ

s∑︂
i=1

bi(−τAker)ιker
[︁
f(tn + ciτ, Un,i)− B−

Aġ(tn + ciτ)
]︁

(9.41a)
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with n = 0, . . . , N − 1. The internal stages Un,i, i = 1, . . . , s are given by

Un,i = B−
Ag(tn + τci) + e−τciAker(un − B−

Ag(tn))

+ τ

i−1∑︂
j=1

ai,j(−τAker)ιker
[︁
f(tn + ciτ, Un,i)− B−

Aġ(tn + ciτ)
]︁
. (9.41b)

In Subsection 9.3.2.1 we investigate the convergence order of this time-stepping method. Note
that, scheme (9.41) only approximates the state u. An approximation of the Lagrange multiplier λ
is constructed and analyzed in Subsection 9.3.2.2.

9.3.2.1. Error Analysis

The practical calculation of the internal states (9.41b) and the whole step (9.41a) can be done by
solving some stationary saddle point problems as (9.5) or (9.6) and transient ones with homogenous
right-hand side; cf. Subsection 9.1.1 and 9.2.1. Alternatively, one also can determine the approxi-
mation by transient saddle point problems with a polynomial right-hand side, which reduces the
number of stationary saddle point problems to solve; see Subsection 9.4.1. However, the practical
computation does not change the convergence order.

Theorem 9.17 (Error Estimate for Operator DAEs). Let Assumptions 9.1 and 9.2 on B and A
as well as Assumptions 9.3 and 9.9 on the nonlinearity f and right-hand side g be fulfilled. The
initial value u0 ∈ V be consistent, i.e., Bu0 = g(0). Assume that the order conditions up to order p,
1 ≤ p ≤ 3, of Table 9.1 are satisfied. Let f(·, u(·)) ∈W q,∞(0, T ;H∗) and g ∈W q+1,∞(0, T ;Q∗) with
u be the solution of (9.1) and q = ⌈p⌉. Suppose that the step size τ is fixed and small enough such
that the numerical solution and the associated internal stages lie in a strip along u, where f is locally
Lipschitz continuous with a uniform constant L > 0. Then the numerical error is bounded by

∥un − u(tn)∥V ≲ τp + h.o.t.,

n = 1, . . . , N , where the constant depends on tn, the Lipschitz constant L, the operators A and B,
as well as the norms of right-hand sides ∥f(·, u(·))∥W q,∞(0,tn,H∗) and ∥g∥W q+1,∞(0,tn,Q∗).

Proof. Since uc,n = B−
Ag(tn) = uc(tn) and analogously Uc,n,i = uc(tn + τci), the assertion follows by

Theorem 9.13 and the approximation of uker by the operator ODE (9.2).

In Subsection 9.3.1 we mentioned that the convergence order for PDEs can increase if f(t, u(t)) ∈ V
and Jn,Kn ∈ L (V). This still holds for the operator DAE case. The arguments are the same where
we additionally use Remark 5.12. For completeness, we summarize this result in the following lemma.

Lemma 9.18. In addition to the assumptions of Theorem 9.17 suppose that the function t ↦→
f(t, u(t)) and its time derivatives have images in V as well as the Fréchet derivatives Jn,Kn are
element of L (V), n = 0, . . . , N − 1. Then the order conditions for methods up to fourth order are
given in Table 9.2.

In comparison to the unconstrained case, the error analysis under perturbations becomes more
delicate for operator DAEs. The source of possible perturbations doubles, since not only the
initial value, and the right-hand side f could be perturbed, but also the right-hand side g of the
constraint (9.1b) and its derivative ġ.

Lemma 9.19 (Error Estimate for Operator DAEs under Perturbations). Let the assumptions of
Theorem 9.17 be satisfied. In addition, let the initial value u0 be perturbed by e0 ∈ V, g(tn + ciτ)
by θn,i ∈ Q∗, ġ(tn + ciτ) by ξn,i ∈ Q∗, and the evaluation of the nonlinearity f(tn + ciτ, Un,i) by
δn,i ∈ H∗. Suppose that the perturbations are consistent, i.e., Be0 = θ0,1, and sufficiently small such
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that un and Un,i, i = 1, . . . , s, lie in a strip along u, where f is Lipschitz continuous with a uniform
Lipschitz constant. Then the error can be estimated by

∥un − u(tn)∥V ≲ τp +
(︂

1 +
√︂

τ
n

)︂
∥e0 − B−

Aθ0,1∥V + ∥B−
Aθn,1∥V

+ τ

n−1∑︂
j=1

(t−1/2
n−j + 1)

s∑︂
i=1

(︁
∥δj,i − B−

Aξj,i∥H∗ + ∥B−
Aθj,i∥V

)︁
+ h.o.t.,

n = 0, . . . , N , with positive higher order terms.

Proof. We split the solution in its parts in Vc and Vker. Then the error of the approximation in Vc
is given by uc,n − uc(tn) = B−

A(gtn + θn,1 − gtn) = B−
Aθn,1, where we used c1 = 0. Analogously, one

determines the error of Uc,n,i as B−
Aθn,i. For the part in Vker we consider the approximation of the

solution of the operator DAE (9.2) under perturbations. Note that the initial value is perturbed by
uker,0 − uker(0) = u0 − uc,0 − u(0) + uc(0) = e0 − B−

Aθ0,1 and the right-hand side associated with
Uker,n,i by

ηn,i = f(tn + ciτ, Uker,n,i + Uc,n,i) + δn,i − B−
Aξn,i − f(tn + ciτ, Uker,n,i + uc(tn + ciτ)) ∈ H∗

with ∥ηn,i∥H∗ ≤ L∥B−
Aθn,i∥V + ∥δn,i − B−

Aξn,i∥H∗ . The assertion then follows by Lemma 9.15.

Remark 9.20. Under the conditions of Remarks 9.14 and 9.16 the error estimate for the exponential
Euler method under perturbations can be improved for sufficiently small τ to

∥un − u(tn)∥2
V

≤ τ2 e
βtn − 1
β

12
√

1 + ε

εLCV↪→H
∥ d

dtf − B
−
Ag̈∥

2
L∞(0,tn;H∗) + eβtn

(︂ 4CA√
1 + εLCV↪→H

+ 2
)︂
∥e0 − B−

Aθ0,1∥2
V

+ 2∥B−
Aθn,1∥2

V + τ
12
√

1 + ε

εLCV↪→H

n−1∑︂
j=0

eβtn−j−1
[︁
∥δj,1 − B−

Aξj,1∥2
H∗ + L2∥B−

Aθj,1∥2
V
]︁
.

9.3.2.2. Approximation of the Lagrange Multiplier

To this point, we have only investigated the difference between the solution u(tn) and its approxima-
tion un. In contrast to the Runge-Kutta methods in Chapter 8, the exponential integrators do not
calculate an approximation of the Lagrange multiplier λ, only of u. In this subsection we show that
λ can be approximate at tn by only using the already calculated un and the saddle point structure.
For this task we introduce the norm

∥v∥2
[V,H]B

:= ∥v∥2
H + ∥Bv∥2

Q∗

on V . Since H and Q∗ are Hilbert spaces, the norm ∥ · ∥[V,H]B is induced by an inner product. The
space V with this norm is in general only a pre-Hilbert space; see Example 9.21. The closure of V
with respect to ∥ · ∥[V,H]B is denoted by [V,H]B, i.e.,

[V,H]B := clos∥·∥[V,H]B
V. (9.42)

Example 9.21 (The Space H1(div; Ω)). We consider the spaces V := [H1(Ω)]d and H := [L2(Ω)]d
with a Lipschitz domain Ω ⊂ Rd, d ∈ N. The operator B denoted the weak divergence. Then
[V,H]B matches the space of all [L2(Ω)]d-functions with a distributional divergence in L2(Ω), i.e.,
H1(div; Ω); see [DauL90, p. 203 ff.].
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The space [V,H]B can be interpreted as the largest space, which is (densely) embedded in H and
where the operator B is well-defined. In the following lemma we summarize properties of [V,H]B.

Lemma 9.22 (Properties of [V,H]B). Let [V,H]B be defined as in (9.42). Suppose that vn → 0 in
H and Bvn → g in Q∗ for a sequence {vn}n∈N ⊂ V imply g = 0. Then the following holds.

i) The space [V,H]B with the norm ∥ · ∥[V,H]B is a Hilbert space and [V,H]B,H, [V,H]∗B forms a
Gelfand triple. The space V is densely embedded into [V,H]B and the operator B has a unique
extension B ∈ L ([V,H]B,Q∗).

ii) The space kerB is isometric isomorphic to Hker. For every closed complement Vc ⊂ V with
V = Vker ⊕ Vc its embedding in [V,H]B is also close in [V,H]B and

[V,H]B ∼= Hker ⊕ Vc.

iii) For every f ∈ [V,H]∗B and g ∈ Q∗ the saddle point problem

Mu − B∗
λ = f in [V,H]∗B,

Bu = g in Q∗

with M = RH, has a unique solution (uB, λ) ∈ [V,H]B ×Q. The solution depends linearly and
continuously on f and g.

Proof. Item i) : This follows directly from the definition of [V,H]B, ∥ · ∥[V,H]B , and Lemma 3.1.

Item ii) : Let us consider h ∈ Hker. By the definition of Hker there exists a sequence {vn}n∈N ⊂ Vker
with vn → h in H as n → ∞. Since Bvn = 0, n ∈ N, the sequence {vn}n∈N is a Cauchy sequence
in [V,H]B, too. The limit of vn is h in [V,H]B as well, because [V,H]B and Hker are both embedded
in H. Furthermore, the equality Bh = limn→∞ Bvn = 0 holds. Hence, Hker ↪→ kerB. On the other
hand, for every v ∈ kerB there exists {vn}n∈N ⊂ V with 0← ∥v− vn∥2

[V,H]B
= ∥v− vn∥2

H + ∥Bvn∥2
Q∗

as n → ∞. To show v ∈ Hker, we have to proof that v can be approximated in H by a sequence
in Vker. Therefore, let P be the orthogonal projection of V onto Vker. Then Pvn ∈ Vker converges
to v in Hker ⊂ H, since

∥v − Pvn∥2
H ≲ ∥v − vn∥2

H + ∥(id−P)vn∥2
V ≲ ∥v − vn∥2

H + ∥B(id−P)vn∥2
Q∗ = ∥v − vn∥2

[V,H]B

holds. Here, we used in the second estimate Lemma 3.6. This proves Hker ∼= kerB.
Let now Vc be defined as in ii) and {vc,n}n∈N ⊂ Vc ↪→ [V,H]B be a Cauchy sequence in [V,H]B. In

particular, ∥Bvc,n−Bvc,m∥Q∗ is a Cauchy sequence, which implies by Lemma 3.6 that vc,n converges
in Vc ⊂ V . Therefore, Vc is close in [V,H]B. For the direct sum we note that Vc +Hker ↪→ [V,H]B is
well-defined since Vc and Hker ∼= kerB can be embedded into [V,H]B. Let v ∈ Vc ∩Hker. Then v is
an element of Vc with 0 = Bv = Bv since v ∈ Hker. By Lemma 3.6 this implies v = 0. Therefore,
the sum is direct. Let vB ∈ [V,H]B be arbitrary. Then vB = B−

Vc
BvB + (id−B−

Vc
B)vB holds, where

the first summand is an element of Vc and the second of kerB. Thus, we have [V,H]B ∼= Vc ⊕Hker.

Item iii) : We note that B is inf-sup stable by

sup
v∈[V,H]B\{0}

⟨Bv, q⟩
∥v∥[V,H]B

≥ sup
v∈V\{0}

⟨Bv, q⟩
∥v∥[V,H]B

≥ 1
CV↪→[V,H]B

sup
v∈V\{0}

⟨Bv, q⟩
∥v∥V

≥ β

CV↪→[V,H]B

∥q∥Q

for every q ∈ Q. Furthermore, the operatorM is elliptic on kerB ⊂ [V,H]B since for every vB ∈ kerB
we have

⟨MvB, vB ⟩ = ∥vB∥2
H = ∥vB∥2

H + ∥BvB∥2
Q∗ = ∥vB∥2

[V,H]B
.

The properties of the solution of the saddle point problem follows with Theorem 3.8.
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The main idea for the approximation of the Lagrange multiplier is to solve

Mu̇n − B
∗
λn = f(tn, un)−Aun in [V,H]∗B, (9.43a)

Bu̇n = ġ(tn) in Q∗, (9.43b)

with n = 1, . . . , N . This problem is associated to the semi-linear operator DAE (9.1) evaluated at
the time-point tn. Anyway, for the analysis so far un was considered as an element of V, such that
Aun ∈ V∗. But the space [V,H]∗B is more restrictive than V∗, since V has a stronger norm than [V,H]B.
The same holds for u(tn), since Theorem 6.15 only predicts Au ∈ C([0, T ],V∗). We actually need
that Au is continuous in tn with images in [V,H]∗B. We recall that the dynamics in the complement of
Vker ⊂ V is determined by (9.1b). Therefore, we have to assume that Auc,n = AB−

Ag(tn) = Auc(tn)
is an element of [V,H]∗B. For the part in Vker itself we can use the parabolic smoothing to prove the
additional regularity. The needed assumption on the temporal regularity of g and f(·, u(·)) are the
same as for the convergence of the exponential Euler in Theorem 9.5.

Lemma 9.23 (Smoothness of uker(tn) and uker,n). Let Assumptions 9.1–9.3, 9.9, as well as the
assumptions of Lemma 9.22. In addition, suppose f(·, u(·)) ∈ H1(0, T ;H∗), g ∈ H2(0, T ;Q∗), and
that u0 ∈ V is consistent. Let uker be the solution of (9.2) with initial value uker,0 = u0 − B−

Ag(0)
and uker,n = un − B−

Ag(tn) its approximation given by (9.41). Then Auker(tn) and Auker,n can be
extended to elements in [V,H]∗B for n = 1, . . . , N .

Proof. By the assumptions, the right-hand side of (9.2) is in H1(0, T ;H∗
ker). Therefore, by [Emm04,

Th. 8.5.3] we have tu̇ker(t) ∈ W 1,2(0, T ;Vker,V∗
ker) and thus tAuker(t) = tf(t, u(t)) − tB−

Ag(t) −
tu̇ker(t) ∈ H∗

ker ∩ V∗ at almost every time-point t ∈ (0, T ]. Let Vc := {v ∈ V |A∗v ∈ V0
ker} be defined.

Note that, in contrast to our usual choice of Vc, cf. (3.4), we used the adjoint operator of A. Anyway,
the space Vc satisfies the condition of Lemma 9.22.ii) by Lemma 3.5 such that [V,H]B ∼= Vc ⊕Hker
holds. Let t > 0 and v = vc + hker ∈ [V,H]B be arbitrary with vc ∈ Vc, hker ∈ Hker. Then

⟨Auker(t), v ⟩ = ⟨A∗vc, uker(t) ⟩ + (Auker(t), hker)
= (Auker(t), hker) ≤ ∥Auker(t)∥H∗

ker
∥hker∥H ≲ ∥Auker(t)∥H∗

ker
∥v∥[V,H]B

is fulfilled, where we used [BowK14, Th. 4.42] for the last inequality. Therefore, Auker(t) ∈ H∗
ker can

be extended to an element of [V,H]∗B.
For the temporal approximation uker,n we note that by its definition uker,n is the solution of an

operator ODE on (tn−1, tn] at the final time point tn. In particular, the right-hand side of the
operator ODE is a polynomial with images in H∗

ker. With the arguments as for u one then shows
that (tn − tn−1)Auker,n can be extended to an element of [V,H]∗B.

Lemma 9.23 and the additional assumption AB−
Ag(tn) ∈ [V,H]∗B guarantees that the saddle point

problem (9.43) is well-defined. We only consider n ≥ 1, since the parabolic smoothing applies only
on positive times. If one is interested in λ at the initial time point, i.e., n = 0, we have to make
additional assumptions on the initial value u0. The value λ(0) and λ0 are then identical determined
by the data u0, g(0), and ġ(0) as well as (9.43). Therefore, the error would be zero. The difference
between λ(tn) and λn can be bounded as follows.

Theorem 9.24 (Convergence Order for the Lagrange Multiplier). Let the assumptions of The-
orem 9.17 and Lemma 9.22 be satisfied. Suppose AB−

Ag is a continuous function with images in
[V,H]∗B. Then λ(tn) ∈ Q and λn ∈ Q are well-defined by (9.1) and (9.43), respectively. Further,
their difference is bounded by

∥λn − λ(tn)∥Q ≲ τp− 1
2 + h.o.t.,

n = 1, . . . , N , where the constant depends on tn, L, operators A and B, ∥f(·, u(·))∥W q,∞(0,tn,H∗), as
well as ∥g∥W q+1,∞(0,tn,Q∗) with q = ⌈p⌉.
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Proof. By Lemmas 9.22 and 9.23 the solutions λ(tn), λn ∈ Q are well-defined. For the difference
between them, we consider the saddle point problem

M∆u̇n − B
∗∆λn = f(tn, un)− f(tn, u(tn))−A(un − u(tn)) in [V,H]∗B,

B∆u̇n = 0 in Q∗,

with n = 1, . . . , N . It is easy to check that this saddle point problem is well-defined by H∗ ↪→
[V,H]∗B and that its unique partial solution is ∆λn = λn − λ(tn) ∈ Q. By Lemma 9.22 and the
embedding H∗ ↪→ [V,H]∗B we have

∥λn − λ(tn)∥Q ≲ ∥f(tn, un)− f(tn, u(tn))−A(un − u(tn))∥[V,H]∗
B
≤ L∥en∥V + ∥Aen∥[V,H]∗

B
.

To bound the first term, we can use Theorem 9.17. For the second term we note that u(tn), un

and Un,i are all consistent. Thus the error en is given by the difference of uker(tn) and uker,n. With
the argument of Lemma 9.23, an index shift, and (9.36) it is enough to consider the error

∥Aen+1∥[V,H]∗
B
≲ ∥Akeren+1∥H∗

ker

≤∥Akere
−τAkeren∥H∗

ker
+ τ∥Aker ˜︁Sn∥H∗

ker
+ τ∥Aker ˆ︁Sn∥H∗

ker
(9.44)

+ τ

⃦⃦⃦⃦
AkerbT

s−1∑︂
k=0

((Jn + τKc
n)τA)k(Jn + τKc

n)Rn

⃦⃦⃦⃦
H∗

ker

+ ∥AkerRn+1∥H∗
ker
.

By Lemma 5.13 and a revision of Lemmas 9.11, 9.12, we get ∥Akere
−τAkeren∥H∗

ker
≲ (τ− 1

2 + 1)∥en∥V
as well as the bounds

τ∥Aker ˜︁Sn∥H∗
ker

≲ ∥en∥V and τ∥Aker ˆ︁Sn∥H∗
ker

≲ (τ2 + ∥Rn∥Vs
)∥Rn∥Vs

+ h.o.t.

for the second and third term of (9.44), respectively. The fourth term of (9.44) can be expanded and
bounded like the fourth term of (9.36); cf. (9.38). The estimates then are equivalent where we bound
∥τAkerbi(−τAker)∥L (Hker,H∗

ker) with Lemma 5.13. By a reconsideration of Lemma 9.10 with the help
of Lemma 5.13, one proves that ∥AkerR

[r]
n+1∥H∗

ker
is bounded by τ rC ess supt∈[tn,tn+1] ∥f

(r)
u (t)∥H∗

ker
from above. These estimates of the terms of (9.44) together with Theorem 9.17 lead to the desired
bound.

Remark 9.25. The proven convergence order in Theorem 9.24 is rather pessimistic and has space for
improvements. If, for example, A2 and f maps (locally) Lipschitz continuously into an interpolation
space between H and V, i.e., into [V,H]θ, θ ∈ (0, 1), then the error for λ is again of order p. This
can be proven similarly to [HocO05b] with fractional powers of operators.

9.4. Numerical Examples
In this final section of Chapter 9 we illustrate the performance of the introduced time integration
schemes for three numerical examples. The first example is a heat equation with nonlinear dynamic
boundary conditions. In the second experiment, we consider a constrained PDE where the smoothness
of the right-hand side is minimal such that the convergence orders are the same as predicted in
Theorem 9.17. At last, we look at a toy model with a non-homogeneous constraint. The simulation
code of all these problems can be found in [Zim20].

Since exponential integrators for (operator) DAEs are based on the exact solution of (operator)
DAE systems with polynomial right-hand sides, we first discuss the efficient solution of such systems.
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9.4.1. Efficient Solution of Differential-Algebraic Equations in
Saddle-Point Form

This subsection is devoted to the efficient calculation of uker,n+1 and Uker,n,i in (9.41). This is
equivalent to solving the operator DAE (9.1) with a polynomial right-hand side f of degree p and
g = 0. In particular, this includes the case of homogeneous right-hand side, which is needed in
Algorithm 1 and 2. Given a spatial discretization, e.g., by a finite element method, the operator
DAE turns into the DAE

Mẋ(t) + Ax(t) − BTλ(t) =
p∑︂

k=1

fk

(k − 1)! t
k−1, (9.45a)

Bx(t) = 0 (9.45b)

with consistent initial value x(0) = x0. The matrices M,A ∈ Rnx×nx and B ∈ Rnλ×nx with nλ ≤ nx

are possibly sparse. Here, the mass matrix M is symmetric, positive definite and B has full rank.
The goal is to find an efficient method to calculate the solution x at a specific time point t ∈ [0, T ].

Let us first recall the ODE case with homogeneous right-hand side, ẋ(t) +Ax(t) = 0, where we
update M−1A → A. There exist various methods to approximate the solution x(t) = e−tAx0 of
this linear ODE with initial condition x(0) = x0. For an overview see [MolV78]. These apporaches
include Krylov subspace methods based on the Krylov space Kn(A, x0) := span{x0, Ax0, . . . , A

n−1x0}
[EieE06; HocL97; NieW12; Saa92] but also methods based on polynomial interpolation of e−tAx0
[CalKO+16; CalO09; CalVB04]. All these methods have in common that they never use the explicit
representation of A, only its action onto a vector. In particular we never have to work with the
possibly full matrix M−1A but with the two sparse matrices A and M . These algorithms for
evaluating exponential functions can be used for ODEs with polynomial right-hand sides.

Lemma 9.26 ([Al-H11, Ch. 2]). Let A ∈ Rnx×nx , F = [f1, . . . , fp] ∈ Rnx×p, x0 ∈ Rnx be given
and ϕk defined as in (5.8). Suppose

e1 :=
[︁
1 0 . . . 0

]︁T ∈ Rp and N :=
[︃

0 0
Ip−1 0

]︃
∈ Rp×p

are defined and t ∈ R. Then we have

[︁
Inx

0nx×p

]︁
exp

(︃
t

[︃
A F
0 N

]︃)︃[︃
x0
e1

]︃
= exp(tA)x0 +

p∑︂
k=1

tkϕk(tA)fk.

With Lemma 9.26 and the mentioned algorithms for the calculation of etAx0 we can efficiently
solve linear ODEs with polynomial right-hand side. We return to the DAE (9.45). By [EmmM13,
Th. 2.4 & Eq. (18)] there exists matrices X,Y ∈ Rnx×nx such that its unique solution x with
consistent initial value x0 ∈ kerB is given by

x(t) = etXx0 +
∫︂ t

0
e(t−s)XY

p∑︂
k=1

fk

(k − 1)! s
k−1 ds = etXx0 +

p∑︂
k=1

tkϕk(tX)Y fk. (9.46)

To efficiently solve (9.46) it is left to identify X ∈ Rnx×nx and Y ∈ Rnx×nx .

Lemma 9.27. Let w ∈ Rnx , A,M ∈ Rnx×nx , and B ∈ Rnλ×nx be arbitrary, with M symmetric
positive definite and let B have full row rank. Suppose that the linear matrix Y ∈ Rnx×nx is given
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by Y : w ↦→ y where y ∈ kerB is the unique solution of

My − BTµ =w, (9.47a)
By =0. (9.47b)

Define X := −Y A. Then x given as in (9.46) solves the DAE (9.45) with initial value x0 ∈ kerB.

Proof. By the linearity of (9.45) and (9.46) we can investigate the ϕk-functions, k = 0, . . . , p,
individually. Let us start with etXx0 = ϕ0(tX)x0. By (9.47b) and x0 ∈ kerB we have BetXx0 =
Be−tY Ax0 ≡ 0. On the other hand, d

dte
tXx0 = XetXx0 = −Y AetXx0 holds, which means by (9.47a)

that for every t ≥ 0 a µ(t) exists with M d
dte

tXx0 − BTµ(t) = −AetXx0. Thus x(t) = etXx0 and
λ(t) = µ(t) solves the DAE (9.45) with homogeneous right-hand sides and x(0) = e0Xx0 = x0.
Analogously to ϕ0 one shows with (5.8) that Btkϕk(tX)Y fk ≡ 0 and tkϕk(tX)Y fk|t=0 = 0, k ≥ 1.
Finally, one has

d
dt t

kϕk(tX)Y fk
(5.8)=

∞∑︂
ℓ=0

tℓ+k−1

(ℓ+ k − 1)! (−Y A)ℓY fk
(5.8)= −Y Atkϕk(tX)Y fk + Y

tk−1

(k − 1)!fk.

Therefore, tkϕk(tX)Y fk solves (9.45) with the monomial right-hand side tk−1fk/(k − 1)! .

With the previous two lemmas we can approximate the solution of (9.45) by the algorithms
for etAx0. We want to point out that we only work with the sparse saddle-point problem (9.47),
not with X or Y . For solving the saddle-point problems there exists a zoo of effective algorithms;
see [BanWY90; BenGL05] and the references therein.
Remark 9.28. Since the saddle point problem (9.47) must be solved in the algorithms for the
exponential function several times, see Lemmas 9.26 and 9.27, the numerical solution x̃ of (9.45)
may not satisfy the constraint (9.45b) due to round-off errors. To prevent a drift-off for longtime
simulations, one can project x̃ onto kerB by solving an additional saddle point problem (9.47) with
right-hand side Mx̃.

9.4.2. Nonlinear Dynamic Boundary Conditions
In this first experiment we revisit Example 6.13 and consider the linear heat equation with nonlinear
dynamic boundary conditions; cf. (6.10). More precisely, we consider the system

u̇− κ∆u = 0 in Ω := (0, 1)2, (9.48a)
u̇+ ∂nu+ αu = fΓdyn(t, u) on Γdyn := (0, 1)× {0}, (9.48b)

u = 0 on ΓD := ∂Ω \ Γdyn, (9.48c)

with α = 1, κ = 0.02, and the nonlinearity fΓdyn(t, u)(ξ1) = −3 cos(2πt) sin(2πξ1)−u3(ξ1). As initial
condition we set u(0) = u0 = sin(πξ1) cos(5πξ2/2). Following [Alt19], the weak formulation of (9.48)
can be written in the form[︃

u̇
ṗ

]︃
+
[︃
K

α

]︃ [︃
u
p

]︃
− B∗λ =

[︃
0

fΓdyn(t, p)

]︃
in V∗, (9.49a)

B
[︃
u
p

]︃
= 0 in Q∗ (9.49b)

with spaces V = H1
ΓD

(Ω)×H1/2
00 (Γdyn), H = L2(Ω)× L2(Γdyn), Q = H

−1/2
00 (Γdyn), the weak Laplace

operator K, and operator B(u, p) = u
⃓⃓
Γdyn
− p. Here, p denotes a dummy variable modeling the

dynamics on the boundary Γdyn. The constraint (9.49b) couples the two variables u and p. This
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Figure 9.1.: Illustration of the solution (u, p). The left figure shows u at time t = 0.7, whereas the
right figure includes several snapshots of p in the time interval [0, 0.7]. The graph of p
becomes darker over time and the dashed line shows the initial value of p.
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Figure 9.2.: Convergence history for the error in (u, p), measured in the V-norm. The solid line
shows first and the dashed line second order rate.

example fits into the framework of the considered semi-linear operator DAEs (9.1) with g = 0.
Further, the nonlinearity satisfies the assumptions of the convergence results in Theorems 9.5 and 9.8
due to the Sobolev embedding H1/2

00 (Γdyn) ⊂ H1/2(Γdyn) ↪→ L6(Γdyn) [Rou13, Cor. 1.22 & p. 18].
For the simulation we consider a spatial discretization by bilinear finite elements on a uniform

mesh with mesh size h = 1/128. The associated matrices are determined by the Matlab software
package AFEM [CarGK+10]. As time-stepping schemes we use the exponential Euler method (9.4)
and the exponential Runge method (9.10) given by Algorithm 1 on page 128 and by Algorithm 2 on
page 131, respectively. The simulated time horizon is [0, 0.7]. For the calculation of the exponential
functions we use the Matlab routine phipm from [NieW12], which allows function handles as input.
The initial value of p is chosen in a consistent manner, i.e., p0 = u0|Γdyn . An illustration of the
dynamics is given in Figure 9.1.

The convergence results of the exponential Euler scheme of Section 9.1 and the exponential
Runge method introduced in Section 9.2 are displayed in Figure 9.2 and show first and second
order convergence, respectively. These convergence orders are predicted by Theorem 9.5 and
Lemma 9.18, respectively, where we expect the solution p to be as smooth such that an abstract
function ˜︁p ∈ L2(0, T ;H1/2

00 (Γdyn)) exists, where (fΓdyn(t, p(t)), w)L2(Γdyn) = (˜︁p(t), w)L2(Γdyn) holds for
all w ∈ H1/2

00 (Γdyn).
Finally, we note that the computations remain stable for very coarse step sizes τ , since the possible

temporal step size is not limited through the stiffness of the operator A.
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Figure 9.3.: Convergence history for the error in u, measured in the H1(0, 1)-norm. For comparison
we added lines of different slopes: slope 1 is represented by the solid line, 1.5 by the
dashed line, and 2 by the dash-dotted line.

9.4.3. Slow Convergence
In the first numerical example in Subsection 9.4.2 we saw that the order of the two-stage method
of Section 9.2 can increase if f(t, u(t)) is regular enough in time and space. In this subsection we
investigate the convergence order under less regular data. For this, let γ(ξ) := −2

∑︁∞
k=1

sin(kπξ)
k0.51 ∈

L2(0, 1) be defined. We choose Φ such that

u(ξ, t) =
∞∑︂

k=1

(︂
e−(πk)2t + πk

(πk)2 − 1
[︁
e−t − e−(πk)2t

]︁)︂ sin(kπξ)
k1.51 (9.50)

is the solution of the PDE

u̇(ξ, t)− ∂ξξu(ξ, t) = (D0.49u(·, t))2γ(ξ) + Φ(ξ, t) in Ω = (0, 1),
u(ξ, t) = 0 on ∂Ω = {0, 1},

with the bounded functional Dα : v ↦→
√

2
∑︁∞

k=1(2k − 1)α−1(∂ξv, cos((2k − 1)π ·))L2(0,1), α < 0.5,
from H1(0, 1) to R. The solution (9.50) and the right-hand side are constructed such that the
convergence rates of the exponential integrators do not improve. Note that the whole right-hand side
of the PDE is equal to πe−t

∑︁∞
k=1

sin(kπξ)
k0.51 for the specific choice of the solution (9.50). Therefore,

it is an element of C∞([0, T ], L2(0, 1)) ↪→ L2(0, T ;L2(0, 1)) and by Theorem 4.25 the solution u
satisfies u ∈ H1(0, T ;L2(0, 1)) ∩ C([0, T ], H1(0, 1)).

For the simulation we rewrite the problem as a constrained PDE by introducing the boundary
condition as constraint; cf. Example 6.2. As spatial discretization we use spectral finite elements with
1000 degrees of freedom enriched with linear polynomials; cf. Subsection 8.6.2. For the temporal dis-
cretization we predetermine the precise value of ϕk(−τM−1

kerAker), k = 0, 1, 2. Here, Mker and Aker are
the discrete versions of M = RL2(0,1) and A = RH1

0 (0,1), respectively, restricted to the kernel of the
(discrete) trace operator, i.e., restricted to the spectral finite elements span{sin(πξ), . . . , sin(1000πξ)}.
The determination of ϕk(−τM−1

kerAker) then is reasonable since Mker and Aker are diagonal matrices.
Figure 9.3 illustrates the convergence rate for the exponential Euler method (9.4), the exponential
Runge scheme (9.10), and exponential Heun method (9.40) with c2 = c3 = 1. The numerical
convergence rates coincide with the proven ones of Theorem 9.13.

Table 9.3 summarizes the errors of the associated Lagrange multiplier λ = [ ∂xu|x=0, −∂xu|x=1 ]T .
Since γ ∈ [H1(0, 1), L2(0, 1)]0.99 by [LioM72, Ch. 1 Th. 9.1 & Rem. 10.5], Remark 9.25 predicts that
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9. Exponential Integrators

Table 9.3.: Convergence history for the error in λ measured in the Euclidean norm.

Exp. Euler Exp. Runge Exp. Heun
Error Rate Error Rate Error Rate

τ = 2−3 1.098 · 10−1 7.535 · 10−3 1.232 · 10−3

τ = 2−6 1.019 · 10−2 1.14 4.095 · 10−4 1.40 2.720 · 10−5 1.83
τ = 2−9 1.119 · 10−3 1.06 1.478 · 10−5 1.60 4.237 · 10−7 2.00
τ = 2−12 1.286 · 10−4 1.04 5.555 · 10−7 1.58 6.288 · 10−9 2.02
τ = 2−15 1.525 · 10−5 1.03 2.143 · 10−8 1.57 9.453 · 10−11 2.02
τ = 2−18 1.845 · 10−6 1.02 8.034 · 10−10 1.58 1.380 · 10−12 2.03
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Figure 9.4.: Error in the constraint over time.

the convergence rate of u and λ are the same. The calculated rates in Table 9.3 confirm this.

9.4.4. Non-Homogeneous Constraints
As last example we consider a finite-dimensional DAE (2.3) with

A =

⎡⎢⎢⎣
2 −1
−1 2 −1

−1 2 −1
−1 2

⎤⎥⎥⎦ , M = 1
6

⎡⎢⎢⎣
4 1
1 4 1

1 4 1
1 4

⎤⎥⎥⎦ , BT =

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ , x0 =

⎡⎢⎢⎣
−0.8

0.6
0.4
−0.2

⎤⎥⎥⎦
and right-hand sides fi(t, x) = e−t cos(xi), i = 1, . . . , 4, and g(t) = sin(πt). In contrast to the
previous two examples, the constraint is not homogeneous. For the simulations we use as temporal
step size τ = 2−9 and the method described in Subsection 9.4.1. The error of the approximation
in the constraint is illustrated in Figure 9.4. One observes that the error of the exponential Euler
method mostly is smaller than of the exponential Runge method – even if both are of moderate size.
A possible explanation is that the exponential Runge method needs twice as many evaluations of
the ϕ-functions per time step such that the drift-off is stronger; see Remark 9.28. In addition to
the exponential Euler and Runge methods, we modified these schemes such that uker,n is projected
onto kerB after every time step. The associated methods have the prefix Proj. in Figure 9.4. These
methods do not suffer from drift-offs and the errors of the constraint are in the range of double
precision O(10−16).

The convergence orders of the methods with and without the projection steps are the same, i.e.,
first and second order. We omit the corresponding error plots here.
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10. Summary and Outlook
In this thesis we have analyzed the existence, uniqueness, and regularity of solutions of the semi-linear,
constrained PDE in the framework of the operator DAE (1.1); see Part B. Furthermore, we have
investigated their temporal discretization by implicit, algebraically stable Runge-Kutta methods and
explicit exponential integrators in Part C.

In Part A, we provided the essential mathematical concepts for the analysis of constrained PDEs.
In particular, we introduced the abstract framework of operator DAEs, in which we considered
the constrained PDEs. While most results in this part are well-known, we also derived novel
contributions. These included the analysis of strongly measurable operator-valued functions and
their generalized derivatives in Section 4.1. We proved the existence and uniqueness of solutions of
Volterra integral equations with values in abstract Banach spaces; Theorem 4.19. In Lemmas 5.11
and 5.13, we estimated the norm of the ϕk(−tA)-functions as maps from V and H ∼= H∗ into the
spaces V, H, and the domain of A.

Part B was devoted to the analysis of solutions of the operator DAE (1.1). Starting with systems
with time-independent operators, we extended well-known existence, uniqueness, and regularity
results in Sections 6.1 and 6.2. Here, the right-hand side f splits into parts with images in V∗ and
H∗ and the right-hand side g and its derivative are L1-functions. This can be seen as an abstract
linear extension of the solution operator. We showed that controlled operator DAEs of the form (6.6)
satisfy a dissipation inequality in a distributional sense, see Lemma 6.12, and proved the continuous
dependence of the unique solutions of systems with a state-dependent f on the data u0 and g in
Section 6.4. Afterwards, we analyzed the solution of operator DAEs with time-dependent operators
in Chapter 7. Since the kernel of B is time-dependent, we introduced the operator ODE (7.45),
whose fundamental solution W tracks the kernel of B over time; see Theorem 7.31. This allowed
us to restate the system as the operator DAE (7.50) with an operator ˜︁B = BW with a constant
kernel. The derivatives u̇ and d

dt (Mu) become W∗ d
dt (Wu) and W∗ d

dt (MWu), respectively. For the
existence results, we temporally discretized the (restated) system by the implicit Euler scheme. We
showed that weak/weak∗ limits of the time-discrete solutions solve the (restated) operator DAE, see
Sections 7.1.1 and 7.2.2. The existence theorem of the Lagrange multiplier λ in a distributional sense
was derived by an Volterra integral equation; see Theorem 7.42. The uniqueness of the solution (u, λ)
was proven under additional assumptions on W or A in Subsection 7.2.3 and Section 7.3. For the
first case, we used that u ∈ L2(0, T ;V) ∩ L∞(0, T ;H) with d

dt (˜︂Mu) ∈ L2(0, T ;V∗) and a uniformly
elliptic operator ˜︂M : [0, T ]→ L (H,H∗) has a continuous representative. The details are presented
in Theorem 7.18.

Table 10.1 summarizes the main results obtained in Part B on the solutions of the operator
DAE (1.1). In addition, we made comments on possible extensions of the solvability results in
Remarks 6.10, 7.25, 7.26, and 7.52. The latter two, in particular, consider operator DAEs with
time-dependent operators and a state-dependent right-hand side f = f( · , u( · )).

The temporal discretization of the operator DAE (1.1) was analyzed in Part C. Here, the operators
M, A, and B are time-independent. We focused on the saddle-point structure of the operator
DAE (1.1) and chose time-stepping schemes that exploit this structure. For the Runge-Kutta
methods we introduced the regularization (8.4), which is still in saddle-point form and where a
spatial discretization leads directly to a DAE of index one. This implies that the system is more
stable than the original formulation although the solution set remains unchanged; see Lemma 8.5 for
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10. Summary and Outlook

Table 10.1.: Main results on the solutions of the operator DAE (1.1) in Part B.

Existence of
solutions

Uniqueness
of solutions

Continuous
sol. operator

More regular
solutions

Constant operators. . . Th. 6.7 Th. 6.7 Th. 6.7 Th. 6.8, 6.9
. . .with state-dependent f Th. 6.15 Th. 6.15 Th. 6.19
Time-dependent M and A Th. 7.14, 7.21 Th. 7.19, 7.21 Th. 7.19, 7.21 Th. 7.23, 7.24
Time-dependent A and B Th. 7.41, 7.42 Th. 7.44, 7.47 Th. 7.44, 7.47

Time-dependent M, A, and B Th. 7.49 Th. 7.50, 7.51 Th. 7.50, 7.51

details. Under the minimal assumptions on the data of Section 6.1, we showed that the sequence of
stationary solutions given by the regularized operator DAE under the implicit Euler method converge
strongly to the solution of the original operator DAE; Theorem 8.14. We proved strong convergence
in more restrictive spaces under the assumptions for more regular solutions; see Section 6.2. Similar
results were proven for algebraically stable, L-stable Runge-Kutta schemes in Theorems 8.27 and 8.30.
Here, we considered f ∈ L2(0, T ;V∗), since estimates of the internal stages in the discrete counterpart
of C([0, T ],Hs) are not possible. Theorem 8.35 and Remark 8.36 extend the results to non-L-stable
methods. For schemes with R(∞) = ±1, we introduced a special discretization of the right-hand
side g. The convergence order was analyzed in Section 8.5. In Theorem 8.37 we showed for
algebraically stable Runge-Kutta methods with R(∞) ∈ (−1, 1) a convergence rate of q + 1 for
the state u and q + 1/2 for the Lagrange multiplier λ, where q denotes the stage order. For the
Euler scheme or for systems with an operator A satisfying the usual splitting A = A1 + A2, the
convergence order of λ can be improved to q + 1; Lemma 8.41 and Theorem 8.42. In addition, we
made comments on time-dependent operators A and B as well as on perturbed data, where, for
example, a spatially discretized operator DAE can be interpreted as a perturbed infinite-dimensional
system. The theory of Chapter 8 was verified by numerical experiments.

In Chapter 9, we derived a novel class of time integration schemes for semi-linear operator DAEs.
For this, we combined explicit exponential integrators for the dynamical part of the system with
(stationary) saddle point problems for the part of the solution with images in Vc. For the methods
based on the exponential Euler and the exponential Runge methods we have proven a convergence
order of one and one and a half, respectively, under minimal assumptions on the right-hand side
f = f( · , u(·)); Theorem 9.5 and 9.8. Under regularity assumptions on f with respect to the second
arguments, we derived order conditions for the approximation of the state u up to order three or four,
depending on the image of f in Subsection 9.3.2.1. The Lagrange multiplier λ was approximated by
solving an additional saddle-point problem, which leads to a decrease of half an order; Theorem 9.24.
Numerical experiments were presented to validate the theoretical results.

Although operator DAEs are powerful in the analysis of constrained PDEs, their mathematical
understanding is still far from complete. Linked to this thesis, nonlinear constrained PDEs, e.g.,
the Stefan problem [DiPVY15], can be studied by linearization, which leads to systems with time-
dependent operators. Here, the assumption that the operator B and its derivative have pointwise the
same domain, is maybe too restrictive. In modeling moving boundary conditions [Alt14], for example,
the derivative Ḃ asks for more regular functions than the operator B itself. These differences are
subject of future works. Also, extensions of the results of this thesis to constrained hyperbolic PDEs
in saddle-point form with time- and state-dependent operators are conceivable.

Investigations of other temporal discretization schemes like multistep and Rosenbrock methods
can be considered in the future. With the ideas presented in this thesis, algorithms based on
other exponential integrators besides explicit ones can be constructed. For explicit exponential
integrators, weakly and very weakly satisfied order conditions, see [HocO05a; HocO10], may improve
the predicted convergence order. For example, for the PDE with dynamic boundary conditions
in Subsection 9.4.2 the exponential Heun method is of third order [Wie20]. Future studies may
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show that the observed convergence rate is due to weakened order conditions. Explicit exponential
integrators for constrained PDEs with time-dependent coefficients can be considered by extending the
ideas of [HipHO12; HipHO14]. Further convergence results for Runge-Kutta methods and systems
with rough right-hand side would be interesting as well. Here, the parabolic smoothing and energy
estimates can be used as in [Emm00]. For time-dependent operators M, B, and A one can possibly
adapt the results of [GonO99]. The effect of a first-order approximation of the operator-valued
function W as in [KunM07] for a time-dependent operator B can be subject to future work. In
the context of longtime simulations, the preservation of the dissipation inequality for constrained
PDEs is of importance under temporal discretization. Similar to [Egg19; HaiW96; MehM19], one
can consider discontinuous Galerkin time-stepping, partitioned Runge-Kutta, or collocation methods.
Here, a regularization for the constrained PDEs is desirable on the infinite-dimensional level, that
maintains the port-Hamiltonian structure. The temporal discretization of constrained hyperbolic
PDEs in saddle-point form is another possible research topic. Here, schemes like the Gautschi-type
methods [HocL99], which deploy the possible second temporal derivatives, are favorable.

Finally, most results in this thesis rely on the saddle-point structure of the problem. It would be
of interest whether statements can be translated to constrained PDEs of more general form.
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