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Abstract

Domain optimization problems for the two-dimensional stationary flow
of incompressible linear-viscous fluids, i.e. the Navier-Stokes equations,
are studied. An embedding domain technique which provides an equiva-
lent formulation of the problem on a fixed domain is introduced. Existence
of a solution to the domain optimization problem and Fréchet differen-
tiability with respect to the variation of the domain of tracking type cost
functionals for the velocity field are proved. A simply computable formula
for the derivative of the cost functional is presented. Numerical examples
show the advantages of the embedding domain method and the reliability
of the derivative formula.

1 Introduction

In this work we consider domain optimization problems for the stationary Navier-
Stokes equations. The aim of domain optimization is to find the shape of a
domain which is optimal in the sense that a given cost functional is minimized
subject to the constraint that some (partial) differential equation is satisfied.
Typical features of such problems are the highly non-linear dependence and the
lack of sensitivity of the cost functionals with respect to the variation of the
domain.

Here we consider these problems in the field of fluid mechanics. Therefore
typical constraints are the Navier-Stokes equations. We restrict our study to
incompressible fluids and stationary problems in two space dimensions.

There are different types of cost functionals which are of interest in fluid me-
chanics, and in many types of geometrical settings domain optimization might
be applied. Two examples are channel flow with a sudden expansion in ma-
chines where one tries to avoid back-flow and optimal design of airfoils for drag
reduction.
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The methods presented in this work allow significant reduction of compu-
tational effort necessary to perform an iterative optimization process for state
equations whose solution itself is rather time-consuming, as it is the case for the
Navier-Stokes equations.

The embedding domain method we used reduces the effort of discretization
and assembling of the discrete systems for the changing domains during the op-
timization process. Moreover it provides us with a formula for the derivative of
the cost functional with respect to the domain which is efficient and numerically
stable.

This paper summarizes results of the author’s PhD thesis [7]. It is based on
a work by Kunisch and Peichl [6] who applied the same technique to the Laplace
equation with mixed boundary conditions.

The outline of this paper is the following: In the second section we formulate
the domain optimization problem with its geometrical setting and summarize
the used basic results on the theory of the Navier-Stokes equations. In the next
section we introduce the embedding domain method and derive an equivalent
formulation of the Navier-Stokes equations on a fixed domain. In the fourth
section we prove continuous dependence of the solution of the state equations
with respect to the variation of the domain and the existence of a solution to
the domain optimization problem. The central part is the fifth section which is
concerned with Fréchet differentiability and the explicit formula for the deriva-
tive of the cost functional. In the last section we describe the applied numerical
methods and present some results.

2 The Domain Optimization Problem

Before we formulate the domain optimization problem we describe the geomet-
rical setting:
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Figure 1:

We consider domains Ωγ := Ω(γ) ⊂ R2 where the control parameter γ is a
function defined on I = (0, 1) whose graph is one part (denoted by Γγ) of the
boundary of Ωγ , compare the picture on the left in Fig. 1.
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The remaining part Γ := ∂Ωγ \ Γγ is fixed and consists of the three seg-
ments [(0, 0), (0, 1)], [(0, 1), (1, 1)], [(1, 1), (1, 0)]. The variable part Γγ therefore
connects the two end points of Γ, namely (0, 0) and (1, 0).

To apply the embedding domain method and to prove the explicit formula
of the derivative of the cost functional we need a combination of smooth and
convex polygonal boundary. Clearly Γ is a convex polygon, for Γγ we assume
C2 regularity.

To preserve the convexity of Ωγ near the two transition points (0, 0), (1, 0)
we assume that γ is linear in neighbourhoods of these points. Furthermore Γγ

shall always be in the unit square (0, 1)× (0, 1). Working in Sobolev spaces we
assure the regularity by choosing γ ∈ H3(I), and to get existence of a solution
of (2) we need boundedness in this space. Summarizing we define the set of
admissible functions γ defining the variable boundary parts Γγ and thus the
admissible domains Ωγ by

S :=
{
γ ∈ H3(I) : ‖γ‖H3(I) ≤ cS , γ(0) = γ(1) = 0, c0 ≤ γ(x) ≤ c1, x ∈ (δ, 1 − δ)

γ′|(0,δ) = c0, γ′|(1−δ,1) = c1
}
. (1)

Here c0, c1 ∈ (0, 1), δ ∈ (0, 1
2 ), cS , c0 ∈ R+, c1 ∈ R− are fixed.

Given an observation region ΩC which is a subset of Ωγ for all γ ∈ S and a
velocity field ud ∈ L2(ΩC)2 we study the following domain optimization prob-
lem:

min
γ∈S

J (γ) :=
1
2
‖uγ − ud‖2

L2(ΩC)2 (2)

where uγ is the velocity component of a variational solution (uγ , pγ) ∈ H1(Ωγ)2×
L2

0(Ωγ) of the Navier-Stokes equations

−ν�uγ + uγ · ∇uγ + ∇pγ = fγ in Ωγ

∇ · uγ = 0 in Ωγ

uγ = Φ on Γ
uγ = 0 on Γγ .

(3)

In (2) an additional regularization term may be included. The space for the
pressure pγ is defined as L2

0(Ωγ) := {q ∈ L2(Ωγ) :
∫
Ωγ

q dx = 0}. For the inho-
mogeneity we assume fγ ∈ L∞(Ωγ)2. The function Φ describing the boundary
values of the velocity on Γ shall have a divergence-free extension onto Ωγ which
is in H2(Ωγ)2. We define

H(Γ) :=
{
Φ ∈ L2(Γ)2 : there exists u0

γ ∈ H2(Ωγ)2 : ∇ · u0
γ = 0 in Ωγ ,

u0
γ |Γγ = 0,u0

γ |Γ = Φ
}

.

We summarize some needed theoretical results for the Navier-Stokes equations:

Theorem 2.1 Let γ ∈ S, fγ ∈ L2(Ωγ)2, and Φ ∈ H(Γ).
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(a) Then there exists a variational solution (uγ , pγ) ∈ H2(Ωγ)2 × [H1(Ωγ) ∩
L2

0(Ωγ)] to (3) which for some C > 0 independent of γ, fγ , and Φ satisfies

‖uγ‖H2(Ωγ )2 + ‖pγ‖H1(Ωγ ) ≤ C
(‖fγ‖L2(Ωγ )2 + ‖Φ‖L∞(Γ)2

)
.

(b) If ν > ν0 = ν0(γ, fγ , Φ) the solution is unique.

Proof. Regularity and uniqueness results for completely smooth C2 or convex
polygonal boundary are standard, see e.g. [3], [5]. From [5] it can be deduced
that the regularity remains valid also in our case where both boundary types
are mixed. The uniform regularity for the polygonal part is stated in the same
reference, whereas for the smooth part it is shown e.g. in [2, Section IV.5.].

�

3 The Embedding Domain Method

Concerning the effort of discretization and assembling of the system matrices in
the numerical solution of the state equations it is much more efficient to solve
them on a simple-shaped and fixed domain rather than on the changing Ωγ

during an iterative optimization process. Thus we choose a so-called ”fictitious
domain” Ω̂ satisfying Ωγ ⊂ Ω̂ for all γ ∈ S. In our case we take Ω̂ as the unit
square.

Remark 3.1 A smooth transition between Γ and Γγ would result in a highly
irregular complementary domain Ωc

γ = Ω̂\Ωγ with not even Lipschitz boundary.
Thus there would be no existence result for the state equations on Ωc

γ .

We now derive an equivalent formulation of the Navier-Stokes equations on Ω̂.
For this purpose we introduce the trace operator τγ onto the boundary Γγ and
extend the inhomogeneity fγ by zero to Ω̂. The former boundary condition
τγuγ = uγ |Γγ = 0 is treated as a constraint using a Lagrange multiplier gγ .

The fictitious domain formulation of the Navier-Stokes equations then is to
find (ûγ , p̂γ , gγ) ∈ H1(Ω̂)2 × L2

0(Ω̂) × H∗
γ such that

−ν�ûγ + ûγ · ∇ûγ + ∇p̂γ − τ∗
γ gγ = f̃γ in H−1(Ω̂)2

∇ · ûγ = 0 in L2
0(Ω̂)

τγ ûγ = 0 in Hγ .

(4)

where τ∗
γ denotes the adjoint of the trace operator, and Hγ := H

1/2
00 (Γγ)2 is an

abbreviation for the space

H
1/2
00 (Γγ)2 =

{
h ∈ H1/2(Γγ)2 : there exists h̃ ∈ H1/2(∂Ωγ)2 : h̃|Γγ = h, h̃|Γ = 0

}
.

We can now prove the equivalence of problems (3) and (4):

Theorem 3.2 Let γ ∈ S, fγ ∈ L2(Ωγ)2 and Φ ∈ H(Γ). Then (ûγ , p̂γ , gγ) ∈
H1(Ω̂)2 × L2

0(Ω̂) × H∗
γ is a solution of (4) if and only if
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• (uγ , pγ) := (ûγ , p̂γ)|Ωγ ∈ H2(Ωγ)2 × [H1(Ωγ) ∩ L2
0(Ωγ)] solves (3),

• (ûγ , p̂γ)|Ωc
γ

= (0, 0),

• gγ =
(

ν
∂uγ

∂nγ
− pγnγ

)∣∣∣∣
Γγ

in H1/2(Γγ)2 where nγ denotes the outer (with

respect to Ωγ) normal vector on Γγ.

Proof. The result is proved by testing the weak formulation of (3) with ap-
propriate functions that vanish on Ωc

γ , applying a uniqueness result for the
homogeneous Navier-Stokes equations and Green’s formula. The regularity of
gγ follows from the regularity of uγ , pγ , compare Theorem 2.1. For more details
see [7, Th. 3.5]. �

Remark 3.3 Here we see the first advantage of the embedding domain method:
If γ changes only Γγ but not the whole domain has to be re-discretized. To get
the discrete form of (4) only the discretized trace operator (which in principal
is a one dimensional mass matrix) has to be re-assembled, and the discrete
right-hand side has to be set to zero on Ωc

γ. The rest of the system remains
unchanged.

4 Continuous Dependence of the Solution on

the Shape of the Domain

To study convergence with respect to γ of the Lagrange multipliers gγ ∈ H∗
γ we

introduce on Hγ the mapping

Iγh(x) := h(x, γ(x)) h ∈ Hγ , x ∈ I,

which can be shown (see [7, Th. 2.4]) to be an isomorphism between Hγ and

HI :=
{
g ∈ H1/2(I)2 :

∫
I

‖g(t)‖2
2

t(1 − t)
dt < ∞

}
.

We define the adjoint of I−1
γ by

(I−1
γ

)∗
: H∗

γ → H∗
I

〈(I−1
γ

)∗
g,g〉H∗

I ,HI := 〈g, I−1
γ g〉H∗

γ ,Hγ g ∈ H∗
γ , g ∈ HI

where 〈·, ·〉 denotes dual pairings. Now we can formulate the following result:

Theorem 4.1 Let γ, γn ∈ S with

γn → γ in W 1,∞(I), f̃γn → f̃γ in L2(Ω̂)2,
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and let the condition ν > ν0 for the uniqueness of the solution to the Navier-
Stokes equations be fulfilled. Then the solutions of problem (4) satisfy

ûγn → ûγ in H1(Ω̂)2,
p̂γn → p̂γ in L2

0(Ω̂),(I−1
γn

)∗
gγn

∗
⇀

(I−1
γ

)∗
gγ in H∗

I .

For ν > ν1 = ν1(f , Φ) the mapping γ �→ ûγ is Lipschitz continuous, i.e. there
exists L independent of γ, γ̄ such that

‖ûγ̄ − ûγ‖H1(Ω̂)2 ≤ L‖γ̄ − γ‖L∞(I) for all γ̄, γ ∈ S.

Proof. First step is to show uniform boundedness of the family of solutions for
γ ∈ S which implies weak convergence for a subsequence and weak-∗ convergence
of the Lagrange multipliers. To show strong convergence of velocity and pressure
we exploit the weak form of (4) with appropriate test functions. The different
terms can be estimated exploiting their regularity. See [7, Th.3.7]. �
As a consequence of this Theorem and the boundedness of S in H3(I) which is
compactly embedded in C2(Ī) we now obtain:

Corollary 4.2 The domain optimization problem has at least one solution γ ∈
S.

5 Fréchet Differentiability and Derivative For-
mula

To show differentiability we use the solution of the adjoint system of the do-
main optimization problem (2). We introduce a Lagrangian with two multipliers
λγ , µγ for the constraints of the momentum and continuity equation, respec-
tively. Then we compute the necessary optimality conditions for a saddle point
of this Lagrangian which form the adjoint equations. Roughly speaking they
are linearized Navier-Stokes equations: Find (λγ , µγ) ∈ H1

0 (Ωγ)2 ×L2
0(Ωγ) such

that

−ν�λγ + ∇uγ · λγ − uγ · ∇λγ + ∇µγ = −DuJ (γ) in Ωγ

∇ · λγ = 0 in Ωγ
(5)

where uγ is the velocity component of a solution to (3). Again we derive an
equivalent fictitious domain formulation by introducing an additional Lagrange
multiplier χγ corresponding to the constraint τγλγ = 0. Then we obtain the
problem:
Find (λ̂γ , µ̂γ , χγ) ∈ H1

0 (Ω̂)2 × L2
0(Ω̂) × H∗

γ such that

−ν�λ̂γ + ∇ûγ · λ̂γ − ûγ · ∇λ̂γ + ∇µ̂γ − τ∗
γ χγ = −DuJ (γ) in Ω̂

∇ · λ̂γ = 0 in Ω̂
τγ λ̂γ = 0.

(6)

For the solution of the adjoint problem we can show:
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Theorem 5.1 Let γ ∈ S and let (uγ , pγ) be a solution to (3). Then we have:

(a) Problem (5) has a solution (λγ , µγ) ∈ [H2(Ωγ)2 ∩ H1
0 (Ωγ)2] × [H1(Ωγ) ∩

L2
0(Ωγ)]. The regularity is uniform in γ.

(b) The solution is unique for ν sufficiently large.

(c) (λ̂γ , µ̂γ , χγ) ∈ H1(Ω̂)2 × L2
0(Ω̂) × H∗

γ is a solution of (6) if and only if

• (λγ , µγ) := (λ̂γ , µ̂γ)|Ωγ is a solution of (5),

• (λ̂γ , µ̂γ)|Ωc
γ

= (0, 0),

• χγ =
(

ν
∂λγ

∂nγ
− µγnγ

)∣∣∣∣
Γγ

in H1/2(Γγ)2.

Proof. Part (a) is shown in [4], (b) follows from a uniqueness result for saddle
point problems, and (c) is shown as Theorem 3.2. See [7, Th. 3.9]. �
To show differentiability we characterize the set of admissible directions as

S′ :=
{
γ̄ ∈ H3(I) : there exists {tn}n∈N : tn ↓ 0, γ + tnγ̄ ∈ S, n ∈ N

}
.

Now we can state the main result of this paper, the Fréchet differentiability of
the cost functional with respect to γ. This can be shown if the parameter ν
is large enough to ensure Lipschitz continuity of the velocity vectors ûγ with
respect to γ, compare Theorem 4.1.

Theorem 5.2 Let f ∈ L∞(Ω̂)2, fγ := f |Ωγ for γ ∈ S, and ν > ν1 as is Theo-
rem 4.1. Then J is Fréchet differentiable with respect to γ, and the derivative
in γ satisfies

DγJ (γ)γ̄ =
1
ν

∫
I

[
gγ

(
x, γ(x)

) · χγ

(
x, γ(x)

) − pγ

(
x, γ(x)

)
µγ

(
x, γ(x)

)]
γ̄(x) dx (7)

for all γ̄ ∈ S′.

Proof. Using the variational forms of the Navier-Stokes and the adjoint equa-
tions with appropriate test functions it can be shown that the directional deriva-
tive satisfies (7). Clearly the right-hand side of (7) is a bounded linear operator
on S′ and therefore the Gateaux differential. Finally it can be shown that the
mapping γ �→ DγJ (γ) is continuous which proves that it is the Fréchet deriva-
tive. For the details see [7, Th. 3.10]. �
We want to emphasize a second advantage of the embedding domain method:

Remark 5.3 The Lagrange multipliers gγ , χγ introduced by the embedding do-
main method allow to compute the derivative of J as the one-dimensional inte-
gral in (7) without computing normal derivatives of the velocities. In the discrete
case (e.g. for finite element basis functions) the integral can be computed exactly
by a simple quadrature rule.
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The assumption on ν can be generalized in the following way:

Remark 5.4 The result of the last Theorem remains valid if the assumption
ν > ν1 is replaced by Hölder continuity of the mapping γ �→ ûγ in the L4 norm
with an exponent p > 1

2 , i.e. there exist L > 0, p > 1
2 independent of γ̄, γ ∈ S

such that

‖ûγ̄ − ûγ‖L4(Ω̂)2 ≤ L‖γ̄ − γ‖p
L∞(I) for all γ̄, γ ∈ S.

6 Numerical Methods and Results

The numerical examples presented below were computed using the formula (7)
for the derivative. The state and adjoint equations were discretized using sta-
bilized finite elements (see e.g. [1]). The discretized Navier-Stokes equations
were solved using a semi-implicit scheme presented in [3]. The linear systems
were solved using sparse direct solvers. As optimization routine we used a SQP
method.

As example we studied a flow separation problem in a driven cavity at a
Reynolds number of Re = 1

ν = 500: The computational domain is the unit
square where a part of the right lateral boundary is variable. On the top bound-
ary we have a constant horizontal velocity which is positive in y direction, on
the other boundaries we have zero velocity. If the right lateral boundary is a
straight line at x = 1 the resulting flow shows one big vortex turning clockwise.

Aim of the optimization was to split this vortex into two which are separated
by a horizontal line at y = 0.5. To achieve this we chose this line as observation
region ΩC and minimized the cost functional

J (γ) :=
∫

ΩC

‖uγ‖2
2 dx

The right wall between y = 0.125 and 0.75 was allowed to vary in the range
x ∈ [0.75, 1) with six control parameters. As start curve we used a straight line
near the right lateral wall. We used no regularization.

The optimization using the gradient computed with the formula (7) reduced
the cost functional to less than one percent in a few iterations. The achieved
solution was ”optimal” in the sense that a comparison with the solution when Γγ

was a straight line at x = 0.75 showed the superiority of the optimized solution.
For detailed results see Table 1 and Fig. 2 and 3.
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It. Ev. J γ(0.125) γ(0.25) γ(0.375) γ(0.5) γ(0.625) γ(0.75)
1 1.961e-04 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

1 2 1.4893e-06 0.9999 0.9999 0.9999 0.9999 0.9999 0.7500
2 3 1.211e-06 0.9999 0.9999 0.9999 0.7822 0.7500 0.7500
3 5 1.134e-06 0.9999 0.8750 0.8750 0.7661 0.7500 0.7500
4 7 1.1296e-06 0.9812 0.8758 0.8742 0.7622 0.7512 0.7500
...
7 52 1.1296e-06 0.9812 0.8758 0.8742 0.7622 0.7512 0.7500

1.2472e-06 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500

Table 1: Convergence behaviour. In the last line the result with Γγ being
a straight line at 0.75 is given. The cost functional value obtained by the
optimization is still ten percent better. Most of the function evaluations (Ev.)
were needed in the line search in the last iterations when no significant cost
functional reduction was achieved.
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Figure 2: Streamlines for start (left) and solution curve (right). The horizontal
line marks the observation region ΩC .
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Figure 3: Left: Streamlines for straight line at x = 0.75, compare Table 1.
Right: Euclidean norm of velocity vector on ΩC . Dotted: start curve, solid:
solution, dashed: straight line at 0.75.
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