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ABSTRACT

Predictors are used in many fields of computer architectures
to enhance performance. With good estimations of future
system behavior, policies can be developed to improve sys-
tem performance or reduce power consumption. These poli-
cies become more effective if the predictors are implemented
in hardware and can provide quantified forecasts and not
only binary ones.

In this paper, we present and evaluate a generic predictor
implemented in VHDL running on an FPGA which pro-
duces quantified forecasts. Moreover, a complete scalability
analysis is presented which shows that our implementation
has a maximum device utilization of less than 5%. Further-
more, we analyze the power consumption of the predictor
running on an FPGA. Additionally, we show that this im-
plementation can be clocked by over 210 MHz. Finally, we
evaluate a power-saving policy based on our hardware pre-
dictor. Based on predicted idle periods, this power-saving
policy uses power-saving modes and is able to reduce mem-
ory power consumption by 14.3%.

Categories and Subject Descriptors
B.0 [Hardware]: General

1. INTRODUCTION

Right now, we are living in a time where the complexity
of computer systems and embedded systems increase very
fast, since more computational components are integrated
on smaller and smaller chips. This high complexity allows
us to develop embedded systems which have high compu-
tational power in small hand-held devices like tablets and
smartphones. However, with this high degree of complexity,
problems like a high amount of data transfer between com-
ponents inside these embedded systems or the high power
consumption which drains the battery of these portable de-
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vices arise. Some of these problems can be reduced or solved
with a good estimation of the prospective behavior of such
components. This is the point where predictors come into
the focus. The well known predictors in the field of com-
puter engineering are usually simple branch predictors which
decide if a branch is taken or not. This is a binary deci-
sion perfectly suitable for branch predictors. However, if
the problem becomes more intricate and a binary decision is
not sufficient, more complex predictors are required which
can quantify forecasts. These types of predictors allow de-
veloping of strategies and policies that can increase system
performance or reduce power consumption. For example,
in [14] a power-saving policy was presented that reduces the
dynamic random-access memory (DRAM) power consump-
tion tremendously. The whole power-saving policy is based
on a predictor which forecasts the length of the memory idle
periods. Using this idle period length, a memory power-
saving mode is applied to reduce the memory power con-
sumption and wake up the memory before the next request
arrives to avoid wake-up penalties. However, the authors
did not present a hardware implementation for this predic-
tor and the power consumption of the predictor itself. In
order to fill this gap, we present an implementation of a
generic predictor in very high speed integrated circuit hard-
ware description language (VHDL). The three main contri-
butions of this paper can be summarized as follows: (1) The
register-transfer level (RTL) implementation of the generic
predictor is introduced in detail. (2) A complete scalabil-
ity analysis for the RTL implementation of the generic pre-
dictor is presented, which includes resource, frequency and
power consumption analysis for a field programmable gate
array (FPGA). (3) We evaluate the hardware predictor by
applying the power-saving policy presented in [14]. This
shows the efficiency of this policy by predicting the mem-
ory idle periods for three different multimedia benchmarks
including the power consumption of the predictor itself

This paper is organized as follows: Section 2 presents a
brief overview of related work. Afterwards, we present the
required background knowledge in Section 3 to understand
all following sections. The VHDL implementation of the
predictor is described in Section 4 including the whole data
path as well as the control unit. Section 5 depicts the com-
plexity, frequency and power consumption analysis as well
as the evaluation of the power-saving policy from [14]. Fi-
nally, Section 6 summarizes and highlights the contributions
of this work.
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Figure 1: Working of the Predictor

2. RELATED WORK

Predictors are used in many areas of computer architec-
ture. For example in [20] and [13] a predictor was used to
reduce average DRAM access latency by forecasting whether
an open DRAM row should be closed. Both predictors can
therefore only forecast a binary result, whether an action
should take place or not. Similarly in [1], a predictor is used
to predict DRAM locality to perform page closing decisions.

Another field for predictors is to forecast traffic patterns
in networks. In [11] a predictor was used to predict switch-
to-switch traffic in a network on chip (NoC). A table-driven
predictor was presented in [6] to forecast end-to-end traffic.
In [4] the authors presented a fuzzy-based predictive traffic
model to avoid congestion while maintaining high quality
service in Asynchronous Transfer Mode (ATM) networks.
However, all these mentioned predictors did not present a
hardware implementation or any kind of power analysis for
their predictors. In [15], a predictor was applied to forecast
traffic in NoC, however the authors presented only results
based on a software implementation. In [14], the same pre-
dictor was used inside a memory controller to snoop memory
access. With this data, the predictor forecasts memory idle
periods and based on this forecasts a power-saving policy
was presented to achieve significant power reductions with
only a marginal performance penalty. However, the authors
did not present a power analysis for the predictor itself. The
authors in [5] presented a fuzzy logic controller running on
an FPGA. This controller used a similar technique like [15]
and [14] to forecast data points. In [7] the authors presented
an implementation of intelligent predictors for solar irradia-
tion running on FPGA. However, both did not provide any
analysis on power consumption for their work.

All mentioned predictors were either not able to perform
quantified forecasts, the predictor was not implemented in
hardware or does not include a complete scalability and
power analysis. In contrast, we address all these points in
our paper.

3. BACKGROUND

The generic history-based predictor used in this paper was
originally proposed in [15], where it was used to forecast
traffic pattern for rerouting in networks. In [14] this pre-
dictor was used to forecast memory idle periods. Based on
this forecast a power-saving strategy was developed to re-
duce the energy consumption of memory for a multiprocessor
System-on-Chip (MPSoC). However, the authors did not
present a hardware implementation of the predictor. This
paper presents a fully synthesizeable VHDL implementation
of this predictor. To understand this implementation, the
theoretical background of the predictor is introduced in this
section.

The general structure of the predictor is depicted in Fig-
ure 1. The predictor builds up a history of data points (yo

t0 Yn—1) before forecasting the next future data point (y»).
Afterwards, the predictor probes the history of data points,
considering a current set of reference data points between
(Yn—1) and (yn—m) and searches for similar patterns in the
history. If there is a similar pattern in the past that is very
similar to the reference pattern, like the pattern between
(Yy—m) and (yy—1), the algorithm weights the next data
point (y) depending on the similarity. The matching to
past data points is not limited to just one occurring pat-
tern set in the history. Once the predictor has probed the
whole history, the next future data point (y,) is calculated
by considering all weighted data points from the history.

The prediction is done in 5 steps. To understand the RTL
implementation of the predictor these steps are explained in
more detail:

1) Build history: Before the predictor is able to forecast
data points, a set of n data points is required (history length).

2) Calculate absolute differences: Next, the algorithm
considers the latest m data points between (yn—1) and (yn—m)
as reference pattern. These reference patterns are subtracted
iteratively from the history data points.

Di=Y[n—-m-—i—1n—2—4i (1)

—-Y[n—m,n—1] i€0,n—m—1]
3) Determine weight/similarity: A parameter width (w)
is used to identify whether a set of differences fits the ref-
erence pattern. A triangular function pu(z) is applied to all
data points to weight all similar ones and set all other which
differs by more than |w/2| to zero. To determine the weight
for each set of absolute differences, all single weights within
this set are multiplied among each other.

Bi= 1] n(dir) 2)

4) Weight past data points: In the following, each weight
is multiplied with the corresponding data point and summed
up. In addition, the sum of all weights is calculated. Both
steps are necessary to forecast the next data point and are
shown in next step as numerator and denominator.

5) Forecast data point: In the last step N is divided by
D and calculates the next future data point.

N Z:;(T)nilﬁv S Yn—y—1
- 5 - n—m—1 (3)
Z’YZO 5’7

This operation matches the calculation of the weighted mean.

Yn

4. IMPLEMENTATION

To implement the predictor in VHDL, several constraints
are made. The introduced algorithm works on rational num-
bers. However, in [14] the predictor was used on unsigned in-
teger and was, nevertheless, able to predict all necessary val-
ues. Moreover, the realization for unsigned integer decreases
the complexity, since components like adder and multiplier
are easier to build. Hence, the predictor is implemented to
work on unsigned integer.
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Figure 3: Predictor Core in detail

Figure 2 gives an overview of all components necessary to
realize the data path of the predictor. First, a description
of all components is provided to realize steps (1) to (5) from
Section 3. Afterwards, the control unit is introduced and
explained in detail to complete the full predictor unit.

4.1 Data Path

To build up a history as described in Section 3, a generic
FIFO buffer is used, where each element is also placed on
the output. Step (2), calculate absolute differences, and
(3), determine weight/similarity, are both performed in the
component predictor core which is depicted in Figure 3. The
latest entries are the reference pattern and are depicted as
crosshatched lines. The predictor is generic in terms of the
reference pattern but set to three in this figure. Each el-
ement of the reference pattern is connected to a subtrac-
tor (sub), respectively. The other input of the subtrac-
tors are all possible past data points connected via multi-
plezer (mux) which is controlled by the counter shown in
Figure 2. Every clock cycle another set of absolute differ-
ences between the reference pattern and the past data points
is calculated.

The triangular function from step (3) must be adapted to
handle unsigned integers. By extending the Y-range from
[0,1] to [0,w/2] all differences can still be weighted due to
their similarity using unsigned integer. The weighting is
realized as lookup table (LUT). Next, all single weighted

full

new_data

new_data

Figure 4: Predictor FSM

values are multiplied among each other to weight the cor-
responding past data point named as value. The design is
pipelined to increase clock frequency. As an additional com-
ponent, a timer is connected to the predictor core as depicted
in Figure 2. The timer can be used to delay the prediction
process by a user defined amount of clock cycles. In [14] this
functionality was needed to apply a standard time-out strat-
egy. For step (4), a standard accumulator, taken from [17],
is used to sum up all weight and calculate the denomina-
tor D. Additionally, a standard multiply and accumulate
component was taken from [17] to determine the numerator
N by summing up the product of each single weight and
the corresponding past data point. Finally for step (5), the
devision is realized by using a modified and extended ver-
sion of the radix-2 divider, presented in [10]. An additional
rounding unit was implemented which computes, based on
the quotient and the remainder, a rounded unsigned integer
as result.

4.2 Control Unit

The component depicted in Figure 2 shows the data path
of the predictor. A control unit is needed so that all single
components work together. The predictor control unit is
realized as finite-state machine (FSM) and is depicted in
Figure 4.

The FSM consists of 5 states, namely idle, data, wait,
accu and div. Starting with the state idle the FSM is wait-
ing for data input. Independent from the state, every time
a new value arrives the FSM changes the state to data, add
the value to the historybuffer and returns to the idle state.
As long as the historybuffer is not full and no new data ar-
rived the FSM stays in idle. Once the historybuffer is full
the FSM changes the state to wait to delay the prediction
process for a user chosen amount of clock cycles. Following,
the FSM goes to state accu which triggers the predictor core
as well as the accumulators. Once the whole history is pro-
cessed, the FSM changes to state div to calculate the final
result. After the prediction process has finished, the FSM
stays in state idle until new data arrives.

5. RESULTS

In this section, first the experimental setup is presented.
Afterwards, experiments are shown to analyze the predictors



Table 1: Parameter configuration for the predictor scalabil-
ity

[ Parameter | Range |
History length (hl) | 10,20, 30,40, 50
Pattern length (pl) 2,3,4,5
Width (w) 2,4,6,8
Register size (rs) 4,5,6,7,8 bit

scalability due to the variation of the different predictor pa-
rameters. Finally, we apply the generic hardware predictor
to analyze the power consumption for the power-saving pol-
icy introduced in [14] using real multimedia benchmarks.
For more information about the predictor like the accuracy,
we refer to [15], since this analysis was already done in detail.

5.1 Experimental Setup

The predictor is implemented as a generic and fully syn-
thesizeable VHDL implementation. As described in Sec-
tion 3 the predictor has four parameters which have a huge
influence on the predictor performance. The parameters are
history length (hl), register size (rs), pattern length (pl) and
width (w). For the rest of this paper, we refer to an instance
of the predictor with fixed set of parameters as predictor
configuration.

To analyze the influence of these four mentioned predic-
tor parameters on the scalability, power consumption and
maximum frequency, the design space depicted in Table 1 is
used. The predictor is set up with a parameter set, synthe-
sized with the help of the Xilinx ISE Design Suite 14.6 [18]
as well as placed and routed. As target device a Spartan-6
FPGA [19] is used. After the place and route, the scalabil-
ity of the design is analyzed. To determine the maximum
frequency, the design is iteratively synthesized using a con-
straint on the frequency. Section 5.2 presents the results for
the device utilization, run time and maximum frequency.

In Section 5.3 the power consumption is analyzed using
the lowest frequency (50 MHz) achievable for all configu-
rations within the design space as well as the same 4 bit
input sequence to achieve comparable results. The power
consumption is determined by simulating each configuration
with Mentor Graphics ModelSim 6.6SE [8] and analyzed af-
terwards using the XPower Analyzer [18].

Finally, in Section 5.4 results are presented by applying
the predictor to real multimedia benchmark. In [14] a power-
saving policy was presented to reduce memory power con-
sumption for DRAMSs applying the same predictor on mem-
ory idle cycles. Based on the predicted length of these idle
cycles one of two memory power-saving modes is used to
reduce power consumption with a negligible performance
penalty. However, this work does not consider the power
consumption of the predictor itself. The determined data
from [14] are taken and validated against the power num-
bers from a predictor configuration running on an FPGA.

5.2 Device Utilization Analysis

The parameter w has only a minor influence on the pre-
dictor complexity and is therefore not shown in any figure.
Increasing the width influences the complexity of all fol-
lowing components only marginally. As shown in previous
works [14, 15] the parameter w ranges between 4 to 6 in most
cases which gives a maximum bit size of 3. We analyze all
predictor configurations with a width of 4.

Figure 5 depicts the device utilization of all analyzed pre-
dictor configurations by giving the number of used slice reg-

Table 2: Usage of slice registers/LUTs to implement the
predictor on an Spartan-6 FPGA

[ | Usage | Spartan-6 | Utilization[%] |
#LUT 245...1278 27288 0.9...4.68
#Register 186...891 54576 0.34...1.63

isters and slice LUTs. The x-axis gives the pattern length
and register size (e.g. 2-4 equals a pattern length of 2 and
each register in the history buffer has 4 bit). Each stacked
bar gives the device utilization by depicting the slice register
(R) in the lower and the slice LUTs (L) in the upper part
for a certain history length.

For a given pl and rs, the number of used slice registers
and slice LUTs grows with the increasing history length.
This reflects the growing history buffer since a longer his-
tory length requires more registers inside the history buffer
to store the past data values. However, the predictor core
and the following computational components do not become
larger, since the history length has no influence on these com-
ponents.

Also the influence of the register size on the history buffer
can be seen in Figure 5. A larger register size results in an
increasing complexity, not only because of the history buffer
becoming more complex but because of the predictor core
and the computational components doing so as well.

The increase of the pattern length at fixed size hl and
rs cause also a growing complexity, since the pl equals the
number of chains (mux, sub, LUT) inside the predictor core
as can be seen in Figure 3. However, the bit size of the cal-
culated value weight increases and causes an increased com-
plexity of all following components, since more values have
to be multiplied . The available and used slice registers/LUT's
for the Spartan-6 FPGA are shown in Table 2. As can be
seen, most of the FPGA is not used and the device utiliza-
tion is always below 5%.

The predictor has a certain latency to finish the forecast,
which ranges between 28 cc for smaller configurations and
120 cc for the maximum configuration. There are two main
contributors to the total latency: (1) The historybuffer,
since all elements need to be probed clockwise and therefore
the number of clock cycles equals the hl. (2) The latency of
the divider equals the maximum bit size of both input vec-
tors, which is identical to the output vector of the Multiply
& Accumulate component. The size of this vector can be
estimated by the following formula:

divee = 7 + [log, (%)} - pl + (hl — pl)

The total latency for the predictor can be estimated as sum
of both main contributors.

We also determined the maximum frequency for each pre-
dictor configuration. The frequency ranges between 210 MHz
and 85MHz depending on the configuration’s complexity.
With growing complexity the maximum frequency drops,
since operations performed by the predictor’s components
increase, too.

5.3 Power Consumption Analysis

To achieve comparable results for the power consumption
all predictor configurations run with the same frequency and
the same test pattern as described in Section 5.1. Figure 6
depicts the power consumption for different predictor config-
urations. One stacked bar depicts the total power consump-
tion for a certain history length, pattern length and register
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Figure 6: Spartan-6 FPGA Power Consumption

size in Watts. The lower part of each bar gives the static
power consumption and the upper half the dynamic one. For
better presentation, the y-axis starts at 30 mW. Again, the
x-axis shows the pattern length and the register size.

It can be seen clearly that the static power consumption
for each configuration is almost constant. There are some
variations for each configuration, however this can not be
seen in the figure, since they are in ranges around +0.1 mW.
The reason for almost constant static power is that the pre-
dictor is running on an FPGA. Independent from the size
of the predictor design, the basic static power consumption
for the Spartan-6 FPGA is at 31 mW [16], since the whole
FPGA has to be powered. Moreover, our design contributes
to the static power only by approximately 6 mW.

The dynamic power consumption is heavily influenced by
the predictor configuration. The higher the complexity of
the design, like longer history length, higher pattern length
or a larger register size, the higher the dynamic power con-
sumption.

However, it is important to point again to the high static
power consumption compared to our small predictor design
as shown in the previous section. Around 85% of total static
power consumption is needed to power the whole FPGA and
only the remaining 15% is consumed by our design. This
power can be decreased tremendously if a smaller or more
power efficient FPGA is used. Moreover, also the realiza-
tion as application-specific integrated circuit (ASIC) would
decrease the power consumption.

5.4 Memory Idle Prediction

In this section, we evaluate the impact of the predictor
forecasting on memory idle periods, based on the approach
presented in [14]. The predictor was integrated in the mem-
ory controller and used to forecast the length of memory idle

periods. Based on this prediction the used memory (Micron
DDR3-800 [9]) was set to one of two power-saving modes
(power-down or self-refresh). However, selecting the best
power-saving mode depends on the length of the idle pe-
riod, the power-down mode is more gainful for short periods
and self-refresh for longer one. Both modes have a wake-up
penalty if the memory was not powered up in time before the
next request arrives. A power-saving policy was presented
that combines the best of both power-saving modes.

To validate this power-saving policy [14], the authors pre-
sented results for three multimedia benchmarks (H263 de-
coder, Ray Tracer and JPEG encoder) running on the Comp-
SOC platform [12] and using [2, 3] to analyze power. The
predictor was set up with the following configuration [14]:
hl =50, pl =2, w =4 and rs = 4 bit. The authors reduced
the energy consumption between 68.8% and 79.9% with only
a marginal increase in execution time form 0.3% up to 2.2%,
but did not consider the power consumption of the predictor
itself.

The power saving policy used in CompSOC system [14]
required the forecast of the idle time to be delivered after a
specific period of time after the last activity of the memory.
In order to meet this requirement, the predictor presented in
this paper was configured as described earlier, synthesized
and implemented to target operation frequency of 180 MHz.
A test bench was used to insert the same multimedia bench-
marks. To analyze the power consumption the same setup
presented in Section 5.1 is used.

Figure 7 depicts the results of the power analysis for the
three different multimedia benchmarks. The y-axis gives
the power numbers and the x-axis the different benchmarks.
The first bar (Base) in each set gives the power consump-
tion of the memory without predictor for the corresponding
benchmark and is considered as baseline. The second bar for
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each benchmark gives the power consumption of the mem-
ory using the power-saving policy from [14] (Memory) as
well as the static (Static) and dynamic (Dynamic) power
consumption of the predictor itself.

Figure 7 shows that approx. 50% of the total power
consumption is caused by the static power of the FPGA.
Despite this high static power consumption, the presented
power-saving policy [14] still produces beneficial results, since
the power consumption of the memory can be reduced by
up to 14.3%. However, as already mentioned in previous
sections, the whole FPGA has to be powered and there-
fore 31 mW are needed [16], even if only a small part is
used for the design. In our case, this predictor configura-
tion needs less than 5% of the FPGA and consumes only
approx. 6 mW. This high basic static power consumption
from 31 mW can be reduced by using a more power efficient
or smaller FPGA. Moreover, another option to reduce the
static power consumption is the realization of predictor as an
ASIC which can reduce the power consumption drastically.

6. CONCLUSIONS

In this paper, we have presented a RTL implementation
of a generic predictor in VHDL. This predictor is able to
produce quantified forecasts and not only binary ones. Fur-
thermore, we have shown how the data path as well as the
control unit is implemented. Therefore, we have shown how
an algorithm working on real numbers is mapped to hard-
ware working only on unsigned integer numbers. Moreover,
we demonstrated that the whole VHDL implementation uses
less than 5% resources of an FPGA and still runs with over
210 MHz. We presented power analyses which show the dis-
tribution of dynamic and static power when running on an
FPGA. Finally, we evaluated a power-saving policy with dif-
ferent multimedia benchmark to reduce the memory power
consumption. Using the generic hardware predictor, this
power-saving policy reduces the memory power consump-
tion of a DDR3-800 memory by up to 14.3%.
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